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Abstract

The implemention of a communication protocol is susceptible to human errors. Two pro-
cesses engaging in such a protocol can deadlock or crash if their implementation of the
protocol is faulty. In the context of Cloud Haskell, a distributed programming library
for Haskell, we address this problem by providing a library for annotating Cloud Haskell
programs with session types. A session type describes a protocol and by annotating a
program with a session type we produce a static guarantee that the program correctly
implements the protocol. We demonstrate how we use a deep-embedded domain-specific
language for writing session typed programs to define several interpreters that can eval-
uate session typed programs. The most important interpreter is the one that evaluates a
session typed program to Cloud Haskell semantics. Other interpreters can purely evalu-
ate a session typed program, interactively step through a session typed program, visualize
a session type using a diagram and normalize session typed programs to normal form.
We introduce an optimization that reduces the amount of administrative communica-
tion required for n-ary nested branching session types. Further, we also introduce an
optimization that turns the quadratic complexity of any session typed program, caused
by left-associatively nested binds, into linear complexity using the codensity monad. To
conclude, we measured the performance overhead that our library introduces compared
to that of the Cloud Haskell library.
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1 Introduction

Protocols exist to ensure that two processes have a structured way of communicating.
The protocol specifies what type of message should be sent by which process and at what
time. A protocol is usually specified in an ordered list of sends to be completed by either
one of the processes. An example of a simple ping pong protocol can be seen below.

A: send "Ping"
B: send "Pong"

Process A sends a message containing the string "Ping". It is assumed that this message
is then received by process B. The next action is then for process B to send back the
string "Pong". The "Pong" message is essentially a confirmation by B that it received
the "Ping" message from A.

Implementing such a protocol in a programming language does not only consist of send-
ing a message, but also receives have to be specified. Since the protocol itself doesn’t
specify when a receive should occur the programmer is allowed to do a receive at any
point during the program. Though, it should be quite obvious to the programmer that,
in the case of process A, the receive should only be done after the send. Still it is possible
for the programmer to make a mistake, especially if a protocol is more complex it be-
comes easier to make such mistakes. For example, the code snippet below is an incorrect
implementation of the above protocol (we will now include the receives).

A: recv
A: send "Ping"
B: recv
B: send "Pong"

Process A starts with a receive, but this immediately causes the process to become stuck
as process B is also waiting for a message. Consequently, the protocol cannot be contin-
ued.

Another mistake that can be made is for process A or B to send the wrong message.

A: send "Pong"
B: recv
B: send "Pong"
A: recv

Again, the implementation of process A is incorrect as it sends the string "Pong" instead
of "Ping". It could very well be that B does not inspect the message it received and
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1 Introduction

sends back a verification no matter what, allowing the protocol to continue. However,
that still does not make the implementation of the protocol correct. Process A should
send "Ping" and process B should receive a string "Ping".

Both mistakes are not in the protocol itself, but in the implementation of the proto-
col. Since the protocol is statically known we could use this information to also statically
enforce a correct implementation. A solution within the domain of typed languages is to
use session types [7]. Session types encode protocols as types, where this type describes
a sequence of actions that must be completed in that exact order. For example, we could
write a session type that describes the ping pong protocol.

Ping :!> Pong :?> Eps

The session type says that first Ping must be sent, followed by receiving a Pong message
after which the session type ends. The session type does not describe the entire protocol.
It only describes a protocol in the perspective of one participating process. So the above
session type would correspond to what process A must do to complete the protocol and
the following session type describes the actions of process B.

Ping :?> Pong :!> Eps

This session type is the dual of the session type corresponding to process A. The dual of
a session type replaces an action with its opposite; a send is replaced with a receive and
a receive is replaced with a send. Using session types to describe protocols allows us to
statically enforce sending and receiving of messages in the correct order and of the right
type. If a program’s implementation does not conform to its session type, a type error
should be raised. This rules out any programs that give an incorrect implementation
of the specified protocol. Then the two previously mentioned mistakes are no longer
possible to make.

A domain that could benefit from using session types is distributed programming. In
distributed programming there are two or more processes that do work on one or more
computers. On which exact computer each process is located should not matter. Usu-
ally a library for distributed programming exposes primitives that can be used to send
messages to a process given some data type that identifies the process. One such library
is Cloud Haskell [6] that can be used to write distributed programs in Haskell. Cloud
Haskell runs processes on a node. A node is an abstraction from the hardware and gen-
erally a single node is used for each computer, but if necessary more can be used. The
Cloud Haskell library allows processes to communicate with each other, but also suffers
from the problems described above. If two processes don’t correctly implement a protocol
they might become stuck and depending on how the distributed network is programmed
this could have catastrophic consequences for the entire network. We can use session
types to resolve these problems for Cloud Haskell.

Several session type libraries for Haskell [9, 13, 15, 16] have been made already. Usu-
ally these libraries work independently and combining it with an existing library can be
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1 Introduction

difficult. We will aim to write another session types library, that can be combined with
existing libraries, such as Cloud Haskell, while using recent extensions to GHC to further
improve the session type implementation compared to those in the existing session type
libraries. As such this master’s thesis will make the following contributions:

• We begin by giving a more in depth description of Cloud Haskell (section 2). This
thesis will show how we can use session types in combination with Cloud Haskell.
We therefore often make use of Cloud Haskell semantics. That makes it important
for the reader of this thesis to at least have a basic understanding of how Cloud
Haskell works.

• Next we give a definition for session types (section 3) and discuss how session types
should be exposed at term level. We identify two approaches for using a DSL to do
so. We decide on using a deep embedding for a DSL, such that we are not limited
to only Cloud Haskell semantics. Thereby making our session types library more
generic. Finally we define a deep embedded DSL, expose an API and implement
the Cloud Haskell semantics.

• We further improve the combination of session types in Cloud Haskell (section 4),
by exposing more functions from the Cloud Haskell library in the session type API.
We also solve several problems that were stopping us from writing fully functional
session typed programs that can be called from a Cloud Haskell problem. We also
introduce a notion of a session typed channel that can be used to transmit messages
of different types and that can also handle branching and recursion of types.

• We define several interpreters for our DSL (section 5) that have different semantics:
generating a pure model of the behavior of a session typed program, interactively
evaluating a session typed program, visualizing session types in a diagram and
normalizing session typed programs to a normal form.

• We apply two optimizations to our session typed library. The first optimization
tackles the inefficiency in the Cloud Haskell semantics for branching session types.
The second reduces the quadratic complexity of the repeated use of bind to linear
complexity by using the codensity monad.

• Finally, we perform benchmarking where we compare a program written using the
Cloud Haskell library to a session typed program with the same sematics. We also
compare how the different optimizations affect the performance.
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2 Cloud Haskell

In the previous section we have already given a short introduction of Cloud Haskell as a
distributed programming library for Haskell. In this chapter we will go a little bit more
in depth, but most of all describe several primitives that are necessary to know in the
following chapters.

Cloud Haskell is inspired by Erlang [19]. Each Erlang runtime system is a node and
each Erlang program can spawn processes both local and remote. Instead of shared
variables, Erlang makes use of message passing for communication between processes.
A node receives a message and inserts it into a message queue of the process that the
message should be forwarded to. It does not matter where the message came from, even
if the process had sent the message to itself will it still be inserted in the message queue.
The process may then access his message queue to retrieve the message.

Cloud Haskell defines a data type Node that corresponds to nodes in Erlang. A NodeId is
associated to this Node that consists of an IP address and a port. Unlike Erlang, a single
node does not correspond to a single Haskell runtime system. We can start multiple
nodes on different Haskell threads. For processes there is the Process monad, which is
run on a Haskell node. A process is essentially a lightweight thread that has its own
piece of memory and acts as the interface of the library. Initially a single process is run
on a node, but more can be spawned to run on this node from that process. A process
can also spawn a process on a remote node if it has access to its NodeId. A process itself
is identified locally by an integer, located in the ProcessId of the process, and remotely
by the same data type plus the NodeId of the node that runs it.

Cloud Haskell exposes functions to start a new node and run a process on top of that
node:

newLocalNode :: Transport -> IO LocalNode
runProcess :: LocalNode -> Process () -> IO ()

The Transport type comes from the network-transport library and serves as the back-
end that facilitates the actual transmission to and from nodes. After starting a node a
LocalNode is returned that can be used to control a node. For example, the runProcess
function runs a given Process computation on top of a node by passing the correspond-
ing LocalNode. Processes are managed using the Process monad. Using it we can send
or receive messages, start new processes, kill the current process and more.

In untyped messaging, messages are sent by a Process to a given ProcessId.
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2 Cloud Haskell

send :: Serializable a => ProcessId -> a -> Process ()

The function send takes two arguments. First is the ProcessId of a process to which
the message should be sent. Second is the content of the message. Since this message
should be polymorphic in the type of the content, a Serializable constraint is applied
to this type. The Serializable a constraint allows us to serialize and deserialize values
of type a.
Once a message has been sent, it is received (assuming it arrives) by a Node. It inspects
the type of message and based on that chooses where and how to forward this message.
In the case of untyped messaging, a message is forwarded to the message queue of the
associated Process. Messages are stored in a data type Message that existentially quan-
tifies the type of the actual value. This allows the message queue to store values of
different types. The function expect allows one to retrieve a message from the message
queue.

expect :: Serializable a => Process a

When retrieving a message, it is required for the programmer to specify the type of
the message that should be retrieved from the message queue. The message queue is
traversed until it finds a message of the right type at which point extracts it from the
message queue and returns it. If none is available the function will block until a message
arrives.

Cloud Haskell also provides the option to use typed channels for sending and receiv-
ing of messages. A typed channel gives a static guarantee that the receiving end of a
channel knows how to deal with the messages it receives. There exist three primitive
functions for dealing with typed channels.

newChan :: Serializable a => Process (SendPort a, ReceivePort a)
sendChan :: Serializable a => SendPort a -> a -> Process ()
recvChan :: Serializable a => ReceivePort a -> Process a

A channel consists of a tuple of a send port and a receive port. Both are parameterized
by a type variable denoting the type of the messages that can be transmitted through
the channel. That means a channel, unlike untyped messaging, can only send and re-
ceive messages of exactly one type. The send port contains information about where the
channel was created (ip address, port and channel identifier). The function sendChan
uses this information to send a message to a node of that location. Upon receiving the
typed messaged the node stores the message in the corresponding TQueue. Finally, a
process may read from a channel using recvChan. A ReceivePort merely contains the
channel identifier, which is used to read from the corresponding TQueue. If the queue is
empty the function blocks, otherwise the messages are extracted in a FIFO order. You
cannot serialize a ReceivePort, because it corresponds to a specific Process. On the
other hand a SendPort can be serialized. It only contains information of where a mes-
sage should be sent to, which is why why more than one processes may use the send port.
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2 Cloud Haskell

One important feature of distributed programming is the ability to manage threads.
It should be possible to run code on different processes or nodes, monitor the activity of
these processes, kill processes and more.

-- Simplified
spawnLocal :: Process () -> Process ProcessId
spawn :: NodeId -> Process () -> Process ProcessId
monitor :: ProcessId -> Process MonitorRef
kill :: ProcessId -> String -> Process ()

The function spawnLocal starts a new process on the local node. Its second argument
is the code that should be executed. It also returns the ProcessId of the newly created
process allowing the two processes to communicate. There is also spawn that spawns
the process on the node that corresponds to the given NodeId. The monitor function
takes a ProcessId of the process that it should monitor. It returns a MonitorRef, which
can be used to disable monitoring. A process that monitors another process may receive
notifications that say that something happened to the monitored process. Usually that
means the monitored process has died for some reason. The last function can be used to
forcefully kill a process.

The Cloud Haskell library defines many more combinators for dealing with messaging
and managing processes or nodes, but it is not the purpose of this paper to provide a
full description of the Cloud Haskell API. In the next sections we will try to extend the
above mentioned functions by decorating them with session types.
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3 Session Types

The introduction sketched an example of how session types might be encoded in Haskell.
This section will present how session types should be defined and how we can bind Cloud
Haskell semantics to each session type. In the first section we construct a very simple
session type, define a domain specific language (DSL) for session typed programs, write
a simple API for it and show how we can evaluate a session typed program. Then in the
sections after that we will improve the DSL and add two new session types.

3.1 Send and receive

3.1.1 Type representation

We will start off by defining a data type for session types that can encode a send, receive
and the empty session type. We do this by defining a data type with three constructors.

infixr 5 :!>
infixr 5 :?>
data ST = (:!>) Type ST | (:?>) Type ST | Eps

The first constructor of ST represents the ’send’ session type. It takes an argument of
kind Type 1 and another argument of kind ST. The first argument represents the type of
the value that we are sending and the second argument is the continuation of the session
type, i.e. we might expect another send session type to follow or we could end the session
type.
The second constructor of ST, :?>, represents the receiving session type. Like :!> it takes
arguments of the same kind. The only difference is that the first argument represents
the type of a value that we are receiving.
Finally, the third session type, Eps, is the empty session type. It has no arguments and
using it in a session type means that we do not want any session typed operation to occur
after it, meaning that a protocol is finished once we reach an Eps.

We will now construct a session type that represents the ping-pong protocol from the
introduction.

data Ping = Ping
data Pong = Pong

Ping :!> Pong :?> Eps
1The kind Type is the same as kind *
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3 Session Types

We use two data types to represent the a ping message and a pong message. First we
declare that the protocol must send a Ping using :!>. Then we proceed with the con-
tinuation of the send session type, its second argument, that says that we must receive
a a message of type Pong. Finally the protocol closes with Eps.

Unlike existing work by Puecella & Tov [15], we have chosen to define session types
using a single data type instead of having a data type for each session type construct.
Because of extensions added to GHC we are now able to promote data types [23]. This
means that the type constructor of a data type becomes a kind and the data constructors
of a data type become types. Now it should also make sense why :!> and :?> take types
of a specific kind instead of values of a specific type. The benefit of using a single data
type and promoting it is that it becomes impossible to define invalid and nonsensical
session types. For instance we could modify the ping-pong example slightly to be left
associative.

(Ping :!> Pong) :?> Eps

This example is ill-typed for two reasons. First of all the second argument to :!> has
kind Type, but it must have kind ST. The second reason is that the first argument to
:?> is not of kind Type. By promoting ST we were able to disallow constructing invalid
session types.

For every valid session type there is also a dual session type. The dual of a session
type replaces its session type constructors with session type constructors that represents
the opposite action. For example, the send session type :!> represents sending a value.
The opposite of sending a value is receiving one. Hence the dual of :!> is :?>. The
duality property ensures that two processes in a session can not deadlock. For example,
if we have two programs that are session typed that both start with a receive, then we
would be able to show these programs are not dual and can therefore reject the programs.
On the other hand if we do have programs that are dual then we can be certain they
will not deadlock and will not become desynchronized. The dual of a session type can
be computed using a type family.

type family Dual (a :: ST) where
Dual (a :!> r) = a :?> Dual r
Dual (a :?> r) = a :!> Dual r
Dual Eps = Eps

We already said the dual of :!> is :?>, but that also means that the dual of :?> is
:!>. For some session types the dual is itself. The Eps session type represents an empty
session type and the dual of that can only be the empty session type. We will use duality
to reject session typed programs that are not dual. In chapter 4 we will use Dual to im-
plement this. For now we will expand Dual each time a new session type is introduced.
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3 Session Types

3.1.2 DSL

We use session types to give our programs a static guarantee at compile time that our
program does not deadlock or become unsynchronized. We will somehow have to denote
that functions implement the static guarantees that session types give us. We want to
write a domain-specific language (DSL) that defines a set of primitive functions that are
annotated with session types, where each primitive function somehow implements the
semantics corresponding to the session type that it is tagged with. It is then possible to
write a session typed program by composing these primitive functions. There are actu-
ally two types of DSLs [14]: Shallow embedding and a deep embedding. In this section
we will discuss both and compare their merits.

A shallow embedded DSL consists of a set of primitive functions that directly imple-
ment the semantics of the DSL. For Cloud Haskell semantics that means we call a Cloud
Haskell function, within the definition of the primitive, that corresponds to the session
type of that primitive. We define primitives for each session type.

newtype Session s a = Session { runSession :: ProcessId -> Process a }
send :: Serializable a => a -> Session (a :!> r) ()
send a = Session $ \pid -> CH.send pid a
recv :: Serializable a => Session (a :?> r) a
recv = Session $ \_ -> CH.expect
eps :: a -> Session Eps a
eps a = Session $ \_ -> return a

Each function returns a data type Session that has the session type as a phantom type
and carries a ProcessId of the process that the current process is in session with. The
function definitions construct this data type and call the Cloud Haskell function that
corresponds to the session type. For :!> this would be send and for :?> this is expect.
The main advantage of using a shallow embedding for DSL is in its simplicity. The func-
tions are essentially wrappers around a piece of Cloud Haskell code that we annotated
with an extra type. However, when using a shallow embedding we are committing to a
single semantics, in this case the Cloud Haskell semantics.

A deep embedding decouples evaluation of a DSL from the DSL API by implement-
ing the semantics in some interpreter function that evaluates an abstract syntax tree
(AST) generated by the functions defined in the API. To create a deep embedded DSL
for session types we first need to describe terms that compose the AST. We do this
by defining a GADT named STTerm whose constructors’, the terms, are annotated with
session types.

data STTerm :: ST -> Type -> Type where
Send :: (a :: Type) -> STTerm r b -> STTerm (a :!> r) b
Recv :: (a -> STTerm r b) -> STTerm (a :?> r) b
End :: a -> STTerm Eps a

9
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The structure of each constructor reflects the structure of the session type that it is
annotated with. For example, the session type :!> takes an argument a and another
argument r. We have that Send also takes this argument a and another STTerm that
is annotated with r. This is similarly so for :?>, except for that we cannot give Recv
an argument a until evaluation. Instead we give Recv a continuation that given a value
of type a produces the STTerm that is annotated with the continuation of the receive
session type. The third constructor End does not take a STTerm as an argument, since
Eps does neither. We do give it a value as an argument that can be used as the result
of the protocol. We will one again show an example of the ping pong protocol, but this
time using the deep embedding.

prog2 :: STTerm (Ping :!> Pong :?> Eps) Pong
prog2 = Send Ping $ Recv $ \pong -> End pong

This example also shows why it is necessary to have a continuation in Recv. At the time
of writing a session typed program we don’t have access to the value that will eventually
be received. This is only given to us during evaluation.

The second part of our deep embedding is defining an interpreter that takes a program
like prog2 as an argument and implements the desired semantics, which in this case are
the Cloud Haskell semantics. We define a simple interpreter named eval that takes a
STTerm and a ProcessId and returns a Process a.

eval :: STTerm s a -> ProcessId -> Process a
eval (Send a r) pid = CH.send pid a >> eval pid r
eval (Recv r) pid = CH.expect >>= eval pid . r
eval (End a) _ = return a

The implemented semantics are no different from the shallow embedding. To fully eval-
uate an abstract syntax tree we have to traverse it and evaluate each node in the tree,
but this is easily done by simply recursively calling eval on the STTerm argument of each
constructor (if there is one).

As said before, the biggest advantage of a deep embedded DSl over a shallow embedded
DSL is that we can define different interpreters that each implement different seman-
tics without having to change our API. This means that we can take a piece of code
and simply pass it to different interpreters to get different types of results. This is only
possible with a shallow embedding if you defined functions for different semantics. We
have chosen to use a deep embedding for our DSL for this specific reason as it can make
our library much more powerful than it would otherwise be. In later chapters we also
show different interpretations that we could think of and that are useful. Of course there
is also a downside to using a deep embedding, besides being more complex, and that is
mostly performance related. Compared to the shallow embedding we have to generate an
AST representing a program and once generated we evaluate it. This is much more work
then directly evaluating it. In chapter 7 we perform benchmarking tests to see exactly
how big this penalty is.

10



3 Session Types

3.2 Composing session type programs

To write a session typed program using our deep embedded DSL you have to make use
of the constructors of STTerm. You combine them in such a way that it represents a
program with the desired semantics. Often though you would like to split up your code
in different functions. The larger a function becomes the more unclear it becomes what
each part of the function is actually doing, furthermore it becomes more difficult to
generalize certain computations. This can also be the case for session typed programs
and we should therefore also be able to compose separate session typed programs to form
one larger session typed program. The current way to do this is by having a function
take an argument that is placed as the continuation of the session. To illustrate what
we mean by this we split the ping pong example in two different functions that we then
compose.

sndRecv r = Send Ping $ Recv \pong -> r pong
end a = End a
prog = sndRecv end

This form of composition is not the most user friendly. First of all it requires that if you
want to make a function composable you have to explicitly give it a parameter. Fur-
thermore in section 3.4, we introduce a form of branching to session types, which means
that there should be a parameter to the function for each branch that is composable.
Also, arguments given to sndRecv must be functions that take a value that is eventually
returned by the receive. In this example we happen to have exactly such a function, but
not is not necessarily the case. And in that case you would have to explicitly ignore the
value returned by the receive using a lambda function that ignores its argument.

3.2.1 Monads

Library writers often turn their data types into instances of Monad. There are several
benefits to doing so. First we have that functions that return a data type that is an
instance of Monad may be written using do-syntax. The do-syntax in Haskell refers to
writing code in an imperative style, while remaining completely functional. It is often
viewed that using do-syntax increases the readability of code compared to using explicit
binds.
Monad is a type class that works as an interface for bind and return. However, there are
many more functions that can be used on any arbitrary monad. Simply by constraining
the function with Monad allows the function to be used by any data type is an instance
of Monad. Meaning that a data type that is made to be an instance of Monad gets an
extensive set of functions for free.
The third benefit of using Monad is that monadic code is highly composable. Essentially
any two monadic functions can be composed without requiring extra parameters assum-
ing that both functions use the same monad. We will see that making STTerm an instance
of monad drastically improves its usability.
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3 Session Types

To make STTerm into an instance of Monad we have to give definitions for return and
>>= (bind). The function return can be used to wrap a value into the data type. Since
we have several constructors we need to pick one and use that. At first sight End seems
most suitable, because it takes an argument that has the result type of the data type.
However, we can’t forget session types here. Using any of the three constructors any-
where in a program will affect the session type, which we wouldn’t want to do when we
use return. We therefore make a change to STTerm.

data STTerm :: ST -> Type -> Type where
Send :: (a :: Type) -> STTerm r b -> STTerm (a :!> r) b
Recv :: STTerm r b -> STTerm (a :?> r) b
Ret :: a -> STTerm s a

We have replaced End with Ret whose session type is left unconstrained. It might also
look like we have completely removed the session type Eps and while we have done so in
the GADT, we have not in our DSL. This will be explained soon enough.

We can now try to give definitions to return and bind for STTerm.

instance Monad (STTerm s) where
return a = Ret a
(Send a r) >>= f = Send a (r >>= f)
(Recv r) >>= f = Recv $ \a -> (r a >>= f)
Ret a >>= f = f a

The above definition is actually not type correct, but before we explain why, we will first
explain the definitions and describe the API.
The function return simply wraps a value into Ret and for its definition in bind we can
drop the constructor and simply apply the composing function to the value wrapped in
Ret. We also give a definition of bind for Send and Recv. All we do there is recursively
compose the continuation of a session type term with the given function. What we also
realize here is that STTerm has a free-like structure [20]; we have a constructor repre-
senting a return and several constructors that do some kind of unrolling of its recursive
argument. We will see in later chapters why realizing this is important.

We would now like to redefine our example that composed two simple session type pro-
grams using binds and possibly returns. However, the first argument of bind may not be
a function. This means we cannot use Send a as the first argument to a bind nor can we
use the function sndRecv in the same way as it still requires an argument for composition.
To solve this we write wrapper functions around each constructor such that they do not
require an extra argument for composition, but can still be composed using bind.

send :: a -> STTerm (a :!> r) ()
send a = Send a $ Ret ()
recv :: STTerm (a :?> r) a
recv = Recv Ret

12
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end :: a -> STTerm Eps a
end = Ret

For send and recv we use a Ret as its continuation knowing that if it is used in a bind
it will be replaced. By passing Ret to Send and Recv we ensure that they are fully ap-
plied and are of type STTerm s a, allowing them to be composed using bind. We also
introduce a wrapper for Ret itself, but now it is annotated with Eps.

We can now revise the example program to the following:

sndRecv = send Ping >> recv
prog = sndRecv >>= end

Unfortunately, our current implementation is actually not type correct. Namely, the
definition of bind for both Send and Recv do not type check. Bind has the following type
m a -> (a -> m b) -> m b. Let’s try replacing m with the type of Send.

STTerm (a1 :!> r) a -> (a - STTerm (a1 :!> r) b) -> STTerm (a1 :!> r) b

That means that f, the second argument in our bind definition, has type

a -> STTerm (a1 :!> r) b

However, we must also compose this function with the continuation of Send, which has
type STTerm r a. It seems that we cannot compose GADTs with differently tagged
constructors using the normal monadic bind. To solve this problem we will make STTerm
into an indexed monad [10].

3.2.2 Indexed monads

Indexed monads are monads that, besides a result type, have two additional type pa-
rameters that denote the state of the monad. The first being the initial state and second
the final state. We define the interface for indexed monads as follows:

class IxMonad (m :: p -> p -> Type -> Type) where
(>>=) :: m s t a -> (a -> m t k b) -> m s k b
(>>) :: m s t a -> m t k b -> m s k b
return :: a -> m i i a
im1 >> im2 = im1 >>= \_ -> im2

The interface is very similar to that of the Monad type class, except for that m now takes
two additional type parameters of the same kind. Furthermore, to bind two indexed
monadic computations it is necessary that the final state of the first computation equals
the initial state of the second computation. The resulting computation’s state is then
equal to the initial state of the first computation and its final state is equal to that of
the second computation. A return does not modify state as it only wraps a value into
the indexed monad.
We once again need to modify STTerm such that we can make it an instance of IxMonad.
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data STTerm :: ST -> ST -> Type -> Type where
Send :: (a :: Type) -> STTerm r r' b -> STTerm (a :!> r) r' b
Recv :: (a -> STTerm r r' b) -> STTerm (a :?> r) r' b
Ret :: a -> STTerm s s a

The initial state of Send is simply a :!> r. It then passes r as the initial state of
its continuation. The continuation produces a final state, which is then also the final
state of Send. This works similarly for Recv. Also like return, Ret does not modify state.

We have now made the necessary modifications to make STTerm an instance of IxMonad.

instance IxMonad STTerm where
return = Ret
(Send a r) >>= f = Send a (r >>= f)
(Recv r) >>= f = Recv (r >>= f)
(Ret a) >>= f = f a

These definitions are no different from the definitions in the Monad instance, however the
type of the indexed bind ensures that this definition does type check.

To accommodate for the extra type parameter given to STTerm we also have to mod-
ify the wrapper functions.

send :: a -> STTerm (a :!> r) r ()
send a = Send a $ Ret ()
recv :: STTerm (a :?> r) r a
recv = Recv Ret
end :: a -> STTerm Eps Eps a
end = Ret

For both send and recv the continuation session type is simply s. For end it stays Eps,
since we cannot change a session type after it has been emptied and neither would the
type of Ret allow us to type it any differently.

As it is we still cannot use do-syntax for our DSL. Using do-syntax translates to a
sequence of monadic binds. However, it uses by default the bind of Monad. We can
change this by enabling the RebindableSyntax extension. Then do-syntax will translate
to a sequence of (>>=) that is in scope. Hence, then all we need to do is ensure that the
bind of IxMonad is in scope and that of Monad is not. A clear downside of this is that
you cannot mix do-syntax for indexed monadic code with that of monadic code. To close
this section we give the ping pong example that is written using do-syntax.

prog :: STTerm (Ping :!> Pong :?> Eps) Eps ()
prog = do

send Ping
Pong <- recv
end ()
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3.3 Interleaving computations

So far we’ve only considered how to construct a session type program that can send
and receive messages and besides regular pure computations we can’t do much else. For
example, we might want to print a received message to console, or perhaps the message
contains the name of a file that we need to read. Both of these actions require that we
can do IO. To facilitate this we make STTerm into a monad transformer such that we
can lift monadic computations. First we’ll have to define an indexed monad transformer
type class.

class IxMonad (t m) => IxMonadT t m where
lift :: m a -> t m s s a

We also have to add a new constructor to STTerm that stores monadic computations.

data STTerm :: (Type -> Type) -> ST -> ST -> Type -> Type where
..
Lift :: (m (STTerm m s r a) :: Type) -> STTerm m s r a

instance M.Monad m => IxMonad (STTerm m) where
..
(Lift m) >>= f = Lift $ m M.>>= \st -> M.return st >>= f

instance Monad m => IxMonadT STTerm where
lift m = Lift $ m >>= return . Ret

STTerm gets yet another type parameter that denotes the type of the underlying monad.
Lift is given a monadic computation that returns STTerm. In the bind definition we first
extract a value from m, which we can then bind with f. Note that two different instances
of bind are used there. The function lift runs the computation m and stores the result
in an Ret. Being able to lift computations is a powerful tool to have. A simple example
can be seen below.

io :: MonadIO m => IO a -> STTerm m s s a
io = lift . liftIO
prog :: STTerm m (a :?> Eps) Eps ()
prog = recv $ \x -> io (putStrLn x) >> end ()

3.4 Branching

Using :!>, :?> and Eps we can write session type programs that are of a linear structure,
but often do we want to make a choice in the protocol depending on some value. For
example, we might want to write a program like this:

client :: String -> ByteString ->
STTerm m (String :!> Either String ByteString :?> ..) Eps ()

client fname newdata = do
send fname
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eth <- recv
case eth of

Left err -> io (putStrLn err) >> end ()
Right _ -> send newdata >> end ()

We have a client that communicates with a server storing file data. The client wants to
modify the data of a file. It does so by sending the server the file name, after which the
server sends back the file data to the client. Since the file name passed to the server might
not correspond to an existing file, the server returns an Either String ByteString. If
the file did not exist, the server returns Left together with an error in the form of a string,
and otherwise it returns Right together with the file data in the form of a ByteString.
The client has to make a choice depending on what it receives. Usually, you would make
a choice using an if-or-case expression as is done in the example. If the client received an
error, then it simply prints it to console and subsequently ends the protocol. However,
if the client did receive the file data, then it knowns the file existed and replaces it with
new data. The difference in the two choices is that the second choice requires an extra
send. We have to remember that we want to do this session typed, but that poses a
problem. In the type signature of client I had already left out a part of the session type
for good reason. We have to express the session type that comes after the recv, but we
cannot choose a specific branch to form this session type. We have to somehow encode
the branching in the session type as well, such that we can describe the session types of
both branches.

For this purpose we extend ST with two more session type operators that encode branch-
ing.

data ST = .. | (:+:) ST ST | (:&:) ST ST

We have introduced two new session types: :+: represents selecting a session type branch
and :&: represents offering a choice between two session type branches. With selecting
a branch we mean that following the selection the program implementing this session
type must adhere to the session type in the selected branch. An offering means that a
program must prepare code that is specific to each branch and have it be prepared to
execute either branch. We can illustrate this with the example in the beginning of this
section. The client receives an Either String ByteString. If the contained value is a
String, then the client chooses the left branch and if it is a ByteString it chooses the
right branch. The client is actively selecting a branch and requires :+: to represent this
selection. Dually the server will have to expect that the client selected either one of the
branches. It is in fact offering the client to select a branch and it represents this offering
of branches using :&:. Using these two session type constructors we can now fully write
the type signature of client:

client :: String -> ByteString ->
STTerm (String :!> Either String ByteString :?>

(Eps :+: ByteString :!> Eps))
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The session type operators for send and receive have a higher priority than that of
the branching session types. Hence why Eps :+: ByteString :!> Eps is parsed like
Eps :+: (ByteString :!> Eps). Next we will add new constructors to STTerm so that
we have a way of representing branching at term level.

data STTerm :: (Type -> Type) -> ST -> ST -> Type -> Type where
..
Sel1 :: STTerm m s t a -> STTerm m (s :+: r) t
Sel2 :: STTerm m r t a -> STTerm m (s :+: r) t
Offer :: STTerm m s t a -> STTerm m r t a -> STTerm m (s :&: r) t a

We introduce three new constructors to STTerm to support branching. For making a
choice we add Sel1 and Sel2. Both constructors only take one continuation STTerm,
which is encoded with the session type of the branch it represents. Sel1 representing the
left branch and Sel2 the right branch. Offer takes two possible continuation STTerms,
one for each possible branch. The bind definition for all three constructors are fairly
straightforward, except that for Offer we compose bind f with both s and r, since any
computations after an Offer have to consider that either branch was taken and should
therefore be composable with both.

(Sel1 r) >>= f = Sel1 $ r >>= f
(Sel2 r) >>= f = Sel2 $ r >>= f
(Offer s r) >>= f = Offer (s >>= f) (r >>= f)

We also have to change the Dual type family.

type family Dual (s :: ST) where
..
Dual (s :+: r) = Dual s :&: Dual r
Dual (s :&: r) = Dual s :+: Dual r

It should be of no surprise that the dual of making a choice is offering a choice, and the
dual of offering a choice is making one.

Evaluating the branching constructors comes down to choosing a branch and afterwards
evaluating that branch, while ignoring the other.

eval :: ProcessId -> STTerm Process s r a -> Process a
eval pid (Sel1 r) = send pid True >> eval pid r
eval pid (Sel2 r) = send pid False >> eval pid r
eval pid (Offer s r) = do

b <- expect :: Process Bool
if b then eval pid s

else eval pid r

We choose a branch by sending a Bool to the other process. That process then knows
which branch we took by checking the value of the boolean. We use True for choosing
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the left branch, and False for choosing the right branch.

As a final touch to this section we add wrapper functions for branching and use those to
give a correct implemention of client.

sel1 :: STTerm m s t a -> STTerm m (s :+: r) t a
sel2 :: STTerm m r t a -> STTerm m (s :+: r) t a

client fname newdata = do
send fname
eth <- recv
case eth of

Left err -> sel1 >> io (putStrLn err) >> end ()
Right _ -> sel2 >> send newdata >> end ()

This time we use sel1 and sel2 to select a branch, after which session type operations
are used that are specific to the selected branch.

3.5 Recursion

Often, one wants to repeat a certain action several or even an unknown number of times.
In Haskell this is generally implemented using recursion. Unfortunately, we are unable
to repeat session typed actions a potentially infinite number of times as it is. Take the
following program for example:

sendChar = send 'c' >> sendChar

All this program does is send the character ’c’, but the program doesn’t even type check
giving us the following error message:

Occurs check: cannot construct the infinite type: r ~ Char :!> r

Apparently GHC tries to construct a session type that has an infinite occurrence. To
understand why this error is generated, let us first recall the session type for sending:
(a :!> r). Since we are sending a character, we have that a unifies with Char giving
us the type Char :!> r. The final state of send 'c' remains r and must be equal to
the initial state of sendChar as is required by the use of the indexed monad bind. The
definition of sendChar starts with send 'c', which means the initial state of sendChar
must be equal to send 'c'. We now have that the initial and final state of send 'c'
must be equal to the initial state of sendChar. However, that would only be possible
if the initial and finale state of send 'c' are the same, but this is not the case. The
produced type error essentially explains that the initial state of sendChar must be equal
to both r and Char :!> r.

We will need some additional type machinery to be able to write recursive session type
programs. We add three more session type constructors to ST:
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data ST = .. | R ST | V | Wk ST

The first session type R delimits the scope of recursion. Within that scope we use a
recursion variabled, denoted by V, to mean the actual point of recursion with the idea
that, at term level after the use of V, all session type operations from the beginning of
the scope that R delimits have to be repeated. For instance the following session type:
R (Char :!> V) says that after enabling recursion we do a send. The recursion variable
that comes after the send tells us that we then have to repeat the send.
Occasionally we need nested recursion. Since the recursion variable recurses to the most

inner R, we need another session type that allows us to broaden the scope of recursion.
We use the Wk session type for this purpose.

R (Int :!> R (Wk V :+: Char :?> V))

The example session type is a bit more involved, since to show the use of Wk we need to
enable recursion twice and we need branching if we want to use two recursion variables.
Using Wk right before the recursion variable will weaken the scope delimited by the most
outer R. Therefore the next action to be done is sending an Int. In the second branch
we first do a receive followed by recursing back to the most inner R.

We need a way to enforce that the session typed operations occuring after the recur-
sion variable have the same session type as the argument session type of the R that
enabled this recursion. We can define a term that replaces V with the appropriate session
type, but in doing so we need know what this session type is. In the work done by Pucella
and Tov they use a data type called a capability that holds a context, a list of types, and
a session type. Instead of tagging a term with a session type they tag it with that data
type. We will do the same.

data Cap = Cap [ST] ST

We change STTerm such that it is now indexed by Cap and we add three constructors for
recursive session types.

data STTerm :: (Type -> Type) -> Cap -> Cap -> Type -> Type where
..
Rec :: STTerm m (Cap (s ': ctx) s) r a -> STTerm m (Cap ctx (R s)) r a
Var :: STTerm m (Cap (s ': ctx) s) r a -> STTerm m (Cap (s ': ctx) V) r a
Weaken :: STTerm m (Cap ctx s) r a -> STTerm m (Cap (t ': ctx) (Wk s)) r a

The context in Cap is being used as if it were a stack, where the top most session type
points represents the current scope delimited by the most inner R. The constructor Rec
further delimits the scope by pushing the session type argument R on the context. Since
subsequent R's always have increasingly smaller session types, the scope will always de-
crease when pushing a session type on the context. For the opposite effect we can pop
session types from the context to expand the scope as is done in the type of Weaken. The
idea that the scope is defined by the session type at the top of the context is validated
by the Var constructor that takes the session type on top of the context as the initial
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state of its argument STTerm. Afterall recursion always recurses back to the beginning
of the current scope.

Let us now try to these new constructs to solve the earlier mentioned type error. First
we define wrapper functions for our session type terms:

recurse :: STTerm m (Cap (s ': ctx) s) r a -> STTerm m (Cap ctx (R s)) r a
var :: STTerm m (Cap (s ': ctx) s) r a -> STTerm m (Cap (s ': ctx) V) r a
wk :: STTerm m (Cap ctx s) r a -> STTerm m (Cap (t ': ctx) (Wk s)) r a

Unlike previously defined session type primitives, we now ask continuations to be given to
these functions. We do this, because we believe that a user would prefer to apply recurse
or var to an argument as these are usually used at the start and end of a function. To
give the user more options we also provide functions that take no argument and have
to be composed using bind: recurse0, var0 and wk0. We can now rewrite sendChar as
follows:

client :: String -> ByteString ->
STTerm m (Cap ctx (R (String :!> Either String ByteString :?>

(V :+: ByteString :!> Wk Eps)))) r ()
client = recurse . client'
client' fname newdata = do

send fname
eth <- recv
case eth of

Left err -> do
sel1
io (putStrLn err)
fname' <- io readLine
var $ client' fname' newdata

Right _ -> do
sel2
send newdata
wk0
end ()

We once again use the client program from the previous section. With the addition of
recursion, we can now make it more complete. We start by enabling the recursion using
recurse. Then in the first branch, where the server was not able to find a file with the
given file name, we can now request a new file name and repeat a part of the protocol. In
the second branch we do a wk0 to empty the context. This isn’t strictly necessary since
we end the protocol right after that, but it is good practice to expand the context after it
had been delimited and recursion within that scope no longer occurs. This way you can
avoid accidental recursion when you don’t delimit the scope where you want to delimit it.
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The dual of R, Wk and V are themselves. Whenever a process recurses, we require that
the other process in the session does the same. Otherwise, it can become easy for a
process to repeat actions more often than the other process. We also do not change Dual
to accept a Cap instead of a ST. We will assume that a session typed program always
starts with an empty context. Then it is not necessary to also dualize the contents of
a context. The definitions for bind and eval are entirely straightforward. For bind we
simply apply f to the argument of the constructor and in eval we only need to evaluate
the argument.
Dual (R s) = R (Dual s)
Dual (Wk s) = Wk (Dual s)
Dual V = V

eval (Rec s) pid = eval s pid
eval (Weaken s) pid = eval s pid
eval (Var s) pid = eval s pid

In this chapter we have introduced a DSL for writing session typed programs. Fur-
thermore, we also described a way to make a translation from the semantics of a session
typed program to those of the Cloud Haskell library. But we are still missing some
mechanisms that allow us to actually run and evaluate sessions from within a Cloud
Haskell program. In the next chapter we will introduce these mechanisms and solve
some remaining problems after which we have a fully functional library.
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The library that we are writing should be usable in combination with the Cloud Haskell
library. Specifically, a user should be able to spawn a session, two conversing session
typed programs, from within a Cloud Haskell program. Besides that, basic primitives
have made up our example session typed programs so far, but you should be able to use
all Cloud Haskell functions from within a session typed program. You can simply lift
most of these functions, but some of these functions require some extra effort to be usable.
We’ve mostly ignored the Serializable constraint. We have to use it to constrain eval,
where we make use of send and recv. However, the types to be constrained are hidden
in the session type, which in the type of eval is polymorphic. The final problem we will
be addressing in this chapter is the potential that a session becomes unsynchronized,
which may occur when the administrative communication required for branching mixes
with actual values sent or received in the program.

4.1 Spawning sessions

The mechanism for spawning a Process is to use spawnLocal and spawn, which spawn a
new Process on the local node or a remote node respectively. We want to do something
similar for spawning sessions.
The first combinator we write is spawnSession that spawns a session on the local node.

type Session s r a = STTerm Process s r a
spawnSession :: Session s r a -> Session (Dual s) r a -> Process a
spawnSession ss1 ss2 = do

mpid <- getSelfPid
othpid <- spawnLocal $ eval ss2 mpid
eval ss1 othpid

The function takes two session typed programs as arguments. It spawns a process to
evaluate the second program and evaluates the first program on the current process. For
evaluation a process needs to know the ProcessId of the other process in the session.
This is given to the first use of eval by taking the ProcessId of the current process.
The result of spawning a process is the ProcessId corresponding to the spawned process.
This can then be passed to the second use of eval together with the remaining program.
In this function we also see the first use of Dual. To enforce that two session typed
programs can actually be used to form a session we use Dual applied to s to say that
the second program must implement the dual session type of the first program, thereby
ensuring that these two programs can together correctly implement the given protocol.
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Something to note here is that we are using spawnLocal for the first session typed
program and do not spawn a new process to compute the second session typed program.
Unlike spawnLocal and spawn we have to spawn two processes to run a session, but this
also gives us more options. We can decide to simply spawn two new processes or spawn a
single process as we have done in spawnSession. The difference being that spawnSession
is now a blocking function, whereas a function that spawns two processes is not. We also
have more options regarding where to spawn these processes. For example, we could
spawn one process locally and the other remotely. Overall there are six different ways to
spawn a session.

asyncLocalSession :: Session s r a ->
Session (Dual s) r a ->
Process (ProcessId, ProcessId)

asyncSession :: NodeId ->
Session s r a ->
Session (Dual s) r a ->
Process (ProcessId, ProcessId)

Above we have given two more functions for spawning sessions. Both spawn two processes
that are both spawned locally or both spawned remotely and as such are non-blocking.
For all non-blocking functions that spawn sessions we can also return the ProcessIds of
the spawned processes. We do this to allow untyped messaging from within the session
itself.

Finally we introduce one more type of function for spawning sessions.

spawnSessionS :: Session s r a -> Session (Dual s) r a -> Session t t a
spawnSessionS = lift . spawnSession

This function has the same semantics as spawnSession. The only difference being that
this function can be directly used within Session. It should be noted that the session
types of the arguments passed to spawnSessionS are completely independent from the
session type of the current session. In other words, spawning a session from within a
session should not change the state of the session. This is reflected in the session by hav-
ing the initial state and final state of the session be the same. Our session type solution
cannot handle multi-party sessions [8], where a protocol is executed by more than two
processes, but with spawnSessionS we can still allow a running sessions during a session
without affecting the protocol of the session.

Using one of the above mentioned spawn functions we can finally run a session. For
example, we can take the client program from section 3.4, construct the server program
as well and run the session using spawnSession.
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client fname newdata = do
send fname
_ <- recv
sel2
send newdata
end ()

server = do
fname <- recv
data <- io $ IO.readFile fname
send data
offer (end ()) $ do

newdata <- recv
io $ IO.writeFile fname newdata
end ()

We have slightly modified the protocol. We will now assume that a file with the given
file name exists on the server and the client can now choose to update or not to update
the file using a selection operator. In this case it chooses to update the file using sel2.
To support this selection, the server has to offer both both options. In the first branch
it simply ends the session and in the second branch does it do another receive before
ending the session. With spawnSession we now have the ability to run this session:
spawnSession client server, which is then evaluated to Process (). However, the
definition of Dual is somewhat faulty, as will be explained in the next paragraph, and in
this case will throw a type error.

We have on purpose left out the type signatures of both client and server. While
it is recommended to always give a type signature to functions for improving readability,
sometimes you want to make use of type inference to figure out the type for you. Espe-
cially, if the type can become somewhat complex. Type inference computes the following
two types for the functions:

client :: Session (String :!> ByteString :?> (s :+: ByteString :!> Eps))
server :: Session (String :?> ByteString :!> (Eps :&: ByteString :?> Eps))

We had to leave the first branch in client unconstrained as we do not define it at term
level in client. Therefore type inference cannot figure out the type for this branch. The
function spawnSession requires that the dual session type of client must be equal to
the session type of server. However, Dual is unable to compute what the dual session
type of the first branch should be as it was left unconstrained. The type family Dual
becomes stuck and cannot fully compute the dual session type with the following session
type as a result.

String :?> ByteString :!> (Dual s :&: ByteString :?> Eps)

The computed session type is clearly not equal to the session type of server resulting in
a type error. To solve this we can add a type family dependency [18] that makes type
families injective.

type family Dual s = r | r -> s

By making Dual injective, the type checker is able to determine the arguments of a
pattern if the result of the type family is known. In our case we know the result, because
the result must be equal to the session type of server. Specifically, the first branch of
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server has session type Eps. The type family can then determine that s in the session
type of client must be Eps as well. Dual is now able to fully compute and for this
example will see that server is in fact the dual of client.

4.2 Constraints

As we have already explained in chapter 2, to send or receive a value using the Cloud
Haskell primitives it is necessary values can be serialized and deserialized. The type class
Serializable provides us with a means to do so. The types in the Cloud Haskell func-
tions send and expect are constrained with Serializable. Any value passed as an ar-
gument to send or is returned by expect must therefore be an instance of Serializable.
We happen to use these functions in our eval function, but nowhere have we been con-
straining the types with Serializable. Since we do not know which types of values will
be transmitted, we must also constrain these types in eval with Serializable in some
way.

In the type of eval we do not have direct access to the types that we want to constrain.
We use eval to pattern match on a GADT whose constructors vary in their types, which
is why the session type must be left polymorphic in the type of eval. This problem is
actually quite similar to the constrained-monad problem [17]. The constrained-monad
problem explains that there are many different data types that are monad-like, but can-
not be made instances of Monad, because of extra constraints on their operations. A
solution to this problem that works for a deep embedding is to embed the constraint in
the data type itself. For STTerm that would look something like this:

Send :: c a => (a :: Type) -> STTerm c m (Cap ctx r) r' b ->
STTerm c m (Cap ctx (a :!> r)) r' b

We add an extra type parameter to STTerm that is a constraint that we apply to all types
of kind Type in the session type.

The above given solution works, but it is not perfect. Namely, we have to add yet
another type parameter to STTerm, which only increases the complexity of the data type.
There exists a much better solution that is possible because we have session types. In
eval we do not have direct access to the types that we wish to constrain, but we do have
access to the session type that contains those types. In de Vries and Löh True sums of
products [4] they introduce a type family that applies a constraint to each type in a list
of types. The result is a constraint set that can be used to constrain a function that
constrains over all the types in the given list of types. Since session types have a very
inductive structure we can write a similar type family to traverse the session type, apply
a given constraint wherever possible and construct a constraint set that we can constrain
eval with.

type family HasConstraint c s :: Constraint where
HasConstraint c (Cap ctx s) = (HasConstraintCtx c ctx, HasConstraintST c s)
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type family HasConstraintCtx c ctx :: Constraint where
HasConstraintCtx c '[] = ()
HasConstraintCtx c (s ': ctx) = (HasConstraintST c s, HasConstraintCtx c ctx)

type family HasConstraintST c s :: Constraint where
HasConstraintST c (a :!> r) = (c a, HasConstraintST c r)
HasConstraintST c (a :?> r) = (c a, HasConstraintST c r)
HasConstraintST c (s :&: r) = (HasConstraintST c s, HasConstraintST c r)
HasConstraintST c (s :+: r) = (HasConstraintST c s, HasConstraintST c r)
HasConstraintST c (R s) = HasConstraintST c s
HasConstraintST c (Wk s) = HasConstraintST c s
HasConstraintST c s = ()

We need three type families to fulfill our goal. The type family HasConstraint applies
a given constraint to types of kind Type in the session type. Often do we actually only
have access to the capability of STTerm, so the type family takes a capability as an argu-
ment. Then we apply a different type family to the context of the capability and another
one that is applied to the session type. Since the context may contain session types,
for example when evaluating a Rec, we have to be sure that we also constrain those
types. The type family HasConstraintCtx takes a constraint and a context. It pattern
matches on the context and applies HasConstraintST to the contents of the context.
The type family HasConstraintST constructs the actual constraint set. For the session
types :!> and :?> it applies the given constraint to their first argument and then makes
a recursive call on their second argument, thereby constraining the entire session type.
For the branching session types, we actually make two recursive calls for each branch.
The results are then unified into a single constraint set. For the other session types we
either make a recursive call using their session type argument or we return the empty
constraint set.

Using these type families we can now constrain eval with Serializable.

eval :: HasConstraint Serializable s => Session s r a -> ProcessId -> Process a

Sometimes, we might also need more than one constraint over a session type. We can
reuse HasConstraint to apply constraints from a list of constraints to a session type.

type family HasConstraints cs s :: Constraint where
HasConstraints '[] s = ()
HasConstraints (c ': cs) s = (HasConstraint c s, HasConstraints cs s)

The given solution for constraining types of kind Type in a session type is not only
polymorphic in which constraints we want to apply, but it is also polymorphic in the order
that the constraints are given to HasConstraints. The previously mentioned solution is
not polymorphic in the order of the constraints. For instance, a trivial program of the
following type
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STTerm Process '[Serializable, Show] s s ()

can only be passed to functions that take an argument of that exact type.

f :: STTerm Process '[Serializable] s s () -> Process ()

The function f would reject the above program, because the type level lists containing
the constraints do not match. With our type family solution for constraining functions
we do not have this problem.

In further chapters we will more often have to write type families that traverse a session
type. In that case, just like HasConstraint, we will have exactly three type families that
work on a capability, context and session type respectively. The structure of the type
families applied to the capability and context will always be (almost) the same, which is
why we won’t define these anymore and simply assume their existence.

4.3 Intermediate evaluations

The Cloud Haskell library features an extensive API consisting of functions shown in
section 2 and many more. As we’re writing a library that builds on top of Cloud Haskell,
it is good practice to write wrapper functions for all these functions. We simply take a
function from the Cloud Haskell library and lift it to a function whose result type is of
the form Session s s. For example, there exists a function named getSelfPid, which
returns the ProcessId of the current process. For this function all we need to do is apply
lift to it so that we get a function of type Session s s ProcessId.

getSelfPid :: Session s s ProcessId
getSelfPid = lift getSelfPid

Unfortunately, it is not always this easy. The Process monad has an instance of
MonadThrow, MonadCatch and MonadMask. These three type classes together allow the
use of throw, catch and mask within the Process monad. We also want to allow these
functions to be used in Session. Defining an instance for MonadThrow poses no problem.
We can simply lift throw. It is not as easy for the other two functions. First we need to
consider whether catch (and mask) should be aware of the progression of a session. In
other words, should we give catch the type

catch :: Exception e => Session s r a -> (e -> Session s r a) -> Session s r a

or the type

catch :: Exception e => Session s s a -> (e -> Session s s a) -> Session s s a

If we make catch aware of the progression then we would allow catching exceptions that
occur from session typed operations. It is not difficult to pass a session typed program to
catch, have that argument be evaluated and pass the result to catch that corresponds
to the Process instance of MonadCatch. However, it is much more difficult, perhaps even
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impossible, to define a function that can handle an exception and return a session of
type Session s r a. Consider a small program that consists of three consecutive sends,
where each send sends a value of a different type.

prog = catch (do
send True
send 'c'
send 5) (\_ -> prog)

We try to catch any exceptions occuring from these three sends. Let’s assume that the
third send throws an exception. The type of catch tells us that the handler must redo
the session. So all we can do is call prog once more. However, we also need to consider
the other process in the session that had actually already progressed by doing two re-
ceives. That process also does not know the protocol must be restarted, since it has no
way of knowing that prog is using catch. As a result the session is out of sync. Perhaps
it is possible to make a Session always be ready to receive synchronization messages in
the background, such that we can ensure a session stays synchronized no matter what
happens. However, that seems fairly difficult to accomplish. Furthermore, is it even
necessary to make catch be aware of a session’s progression? Most exceptions will most
likely occur when lifting IO computations and if an exception does interrupt the session,
then we can always let the session itself crash and use catch of the Process instance to
catch this exception. Hence, why we will make catch and mask oblivious to the progres-
sion of a session.

Upon defining catch and mask we encountered another problem. To define catch we
have to lift the catch function that is under the instance of Process.

catch :: Exception e => Process a -> (e -> Process a) -> Process a

To supply arguments of the correct type we transform Session s s a to Process a and
e -> Session s s a to e -> Process a. But the only way to do this is by evaluating
the sessions, which requires knowing the ProcessId of the other process in the session.
The only place where we have that knowledge is in spawnSession. There we could
potentially pass the ProcessId to the given session, which should then be expecting a
ProcessId. Then have catch expect the same so we can explicitly pass the ProcessId
to catch. While not incorrect, it can be annoying to have to pass this ProcessId around
explicitly. Instead we can use make a reader monad pattern [12] that has the ProcessId
as its environment ensuring that same ProcessId is always used and that we can access
the ProcessId as long as we are in a Session.

newtype Session s r a = Session { runSession :: ProcessId -> STTerm Process s r a }

Using a wrapper around STTerm does require that we also wrap all session typed functions,
but these definitions are all very straightforward.

28



4 Connecting to Cloud Haskell

4.4 Session typed channels

In our eval function we use untyped messaging as our communication method. Unlike
typed channels, it allows for messages of different types to be transmitted, but there
exists the problem that it can lead to synchronization issues or semantical changes dur-
ing runtime. For example, a process in a session might have to communicate with some
outside process. It will have to do so in a non-session-typed manner, because we do not
allow for multi-party sessions [8]. The outside process might send a boolean to a process
in the session, but at the same time the other process in the session might also send a
boolean that determines which branch it took in the protocol. If the receiving process
does not receive the booleans in the same order that they were sent in, then it could mean
that the receiving process will take a wrong branch to evaluate. To further illustrate this
problem we show three code snippets below.

pOth pid = do
send pid True
end ()

pA = do
sel2
end ()

pB = do
y <- lift (expect :: Process Bool)
offer (send 'c' >> end ())

(end ())
The second and third snippet show two processes that are in a session. Process pA se-
lects the second branch in the protocol. Process pB does a non-session-typed receive of a
boolean using expect. Afterwards it offers a choice between two branches. We also have
pOth that is a process that is not in any session. It is passed the ProcessId of pB and
uses it to send the value True. The sel2 in process pA sends the value False to pB to
select the second branch. If we have that pB first receives a value from pA, then that is the
value taken by y. Consequently, the boolean received internally by offer has the value
True and came from pOth. Because of that the offer decides to evaluate the first branch.
However, pA clearly selected the second branch; the session has desynchronized. Instead
of branching pA could have simply done a session typed send that sends a boolean to pB.
That doesn’t lead to synchronization issues, but it does lead to unexpected behavior of
the program.

Ultimately what leads to these synchronization issues and semantical changes during
runtime is our inability to separate messages that are sent or received by session typed
operations from those that are sent or received by non-session typed operations. A fairly
simple solution to this problem would be defining a custom data type that is annotated
with the type of the value it carries and using that data type for the session typed oper-
ations. A more interesting solution involves session types and typed channels. A typed
channel also gives us this separation of messages, but it currently can only send messages
of a single type. In the next sections we will aim to solve this problem using session
types.

4.4.1 Typed channels

The typed channel problem seems very similar to that of homogeneous lists. The list
type [a] in Haskell is a homogeneous list. Similar to a typed channel it can only contain
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values of the same type. Occasionally it is necessary to have a data structure that can
contain values of different types. For that purpose you would use a heterogeneous list
[11]. A heterogeneous list can be defined as follows:

data HList xs where
HNil :: HList '[]
HCons :: x -> HList xs -> HList (x ': xs)

A GADT is used to define a list-like structure composed of two constructors that are each
tagged with a type level list. The constructor HNil represents the empty list and is also
tagged with the empty list type. Subsequently, HCons represents the cons constructor that
stores a value and the tail of the list. The constructor is also tagged with a list whose head
is equal to the type of the stored value. The tail of the list type comes from the second
argument of the constructor, which also represents the tail of the list. A heterogeneous
list like HCons True (HCons 1 HNil) will have type HList (Bool ': Int ': '[]). We
are guaranteed that the order in which the types appear in the type and values are stored
in the term correspond. This guarantee ensures that you can safely remove a value from
the list as long as you also remove the corresponding type from the list of types. Likewise
you can always safely append a value as long as you also append the type of the value
to the list of types.

We can apply the idea of a heterogeneous list to define a heterogeneous typed chan-
nel. If, instead of a single type, we tag a typed channel with a list of types we can safely
receive and send values of different types through this typed channel:

SendPort (Bool ': Int ': [])

Although a simple list type is not powerful enough for our purposes. Since a session
type may branch, the types of values that are transmitted can differ depending on the
branch that was selected. A potential heterogeneous typed channel must accommodate
for this possibility. Furthermore, we also require that the channel can recurse over the
types for similar reasons. In fact it appears that we are better off simply tagging the
typed channel with a session type instead.

4.4.2 STChan

There are at least two approaches that we could take to implement session typed typed
channels. Firstly, we can modify the existing Cloud Haskell code. When a node receives
a message it will inspect the message and then either adds it to the message queue of a
process or inserts it into a typed channel. We could modify the code such that messages
can also be inserted into a session typed channel. The downside of this approach is that
it requires some hefty modifications to the Cloud Haskell library. The other approach is
to define session typed channels as some kind of wrapper over typed channels. This is
the approach that we have taken.

First we define a data type for messages. The content of a Message is existentially
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quantified allowing us to insert a value of any type. The only way to then extract the
type of the value is to use unsafeCoerce.

data Message = forall a. Serializable a => Message a deriving Typeable

Next we define wrappers for SendPort and ReceivePort.

data STSendPort (l :: Cap) = STSendPort (SendPort Message)
data STReceivePort (l :: Cap) = STReceivePort (ReceivePort Message)

Both STSendPort and STReceivePort are tagged with a phantom type that has kind Cap.
Using Cap and not ST is necessary if we also want to allow recursion. Both SendPort
and ReceivePort may only transmit messages of type Message, which allows us to use
a typed channel underneath as we are actually only transmitting messages of the type
Message.
We first define primitives for sending and receiving.

sendSTChan :: Serializable a =>
STSendPort (Cap ctx (a :!> l)) -> a ->
Process (STSendPort (Cap ctx l))

sendSTChan (STSendPort s) a = do
sendChan s $ Message a
return $ STSendPort s

recvSTChan :: Serializable a =>
STReceivePort (Cap ctx (a :?> l)) ->
Process (a, STReceivePort (Cap ctx l))

recvSTChan (STReceivePort r) = do
(Message a) <- receiveChan r
return (unsafeCoerce a, STReceivePort r)

In sendSTChan we first pattern match on the first argument so we have access to the
SendPort. Furthermore, we wrap a into a Message, which we then, together with the
send port, pass to sendChan. We also have to return a new send port that has a :!>
stripped from its type. This way we ensure progression of the session type. Remember
that it is important for both STSendPort and STReceivePort to stay synchronized, just
like two processes are supposed to be in a session. These functions work in the Process
monad and not the STTerm indexed monad. We do this because we want to use the
session typed channel in the eval function, where we are also in the Process monad.
Furthermore, we can always lift any Process to a STTerm allowing us to also use session
typed channels within sessions. The function recvSTChan receives a Message, which it
unwraps to access the value within. However the type of the value is existentially quan-
tified. This means that the type of the value could be anything and because it can be
anything the type checker cannot simply give it a specific type. Fortunately, thanks to
session types we do know what the type of the value is. We use unsafeCoerce to force
the type checker to assume the type of the value is the type described in the session type.
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Using these two functions we can try to partially rewrite eval, but as you might have
already noticed there is a problem. Session types are actually too descriptive for what
we need. We tag both the send port and the receive port with the same session type.
This means that the send port could be forced to do a receive and the receive port a
send, which isn’t possible. We can use a type family to filter out all sends in the session
type passed to the receive port and filter the receives in the session type passed to the
send session port.

type family FilterSendST s where
FilterSendST (a :!> r) = FilterSendST r
FilterSendST (a :?> r) = a :?> FilterSendST r

type family FilterRecvST s where
FilterRecvST (a :!> r) = a :!> FilterRecvST r
FilterRecvST (a :?> r) = FilterRecvST r

Then we can rewrite eval to make use of our session typed channel solution.

eval :: HasConstraint Serializable s =>
STTerm Process s r a -> STSendPort (FilterRecv s) ->
STReceivePort (FilterSend s) -> Process a

eval (Send a r) sp rp = do
sp' <- sendSTChan sp a
eval a sp' rp

eval (Recv r) sp rp = do
rp' <- recvSTChan rp
eval a sp rp'

4.4.3 STChanT

In the revised definition of eval we’re forced to pass the updated port from sendSTChan
or recvSTChan to the recursive call of eval. This is necessary to progress the session
type. If we have to do a sequence of sends and receives it can become especially cum-
bersome to explicitly pass around these ports. Of course that is not the case in eval,
but there is no reason session typed channels may only be used within eval. They can
even be used outside sessions. To make it more pleasant to use a session typed channel
we will design an interface where we do not have to explicitly pass around the ports.

Since the ports are session typed we can, just like STTerm, use an indexed monad to
progress the ports without having to explicitly pass them around. Different from STTerm
is that we need to index over four type variables, two for each port. There are two ways to
make an indexed monad index over four type variables. We can change IxMonad to take
a data type that has four type parameters. If we take this approach we would have to
add two type parameters to STTerm adding redundant type information and only making
the type of STTerm more complex.
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data Prod = (:*:) Cap Cap
type family Fst p where

Fst (p :*: q) = p
type family Snd q where

Snd (p :*: q) = q
data STChanT m (p :: Prod) (q :: Prod) a = STChanT {

runSTChanT:: (STSendPort (Fst p), STReceivePort (Snd p)) ->
m (a, (MTSendPort (Fst q), MTReceivePort (Snd q)))

}

The other method is to define a data type Prod that takes two arguments. We then define
another data type STChanT that is indexed with two type parameters of kind Prod. The
use of Prod allows us to specify two types as a single type. The type class IxMonad only
requires an initial state and final state to be equal, but does not put any constraint on
how these states are defined. Therefore we can make a state as complex as we want.
STChanT is also a state monad whose state is defined by the ports’ types. These types are
extracted from the type parameters of kind Prod using two type families Fst and Snd.
We use the first argument of each Prod as the state of the send ports and the second
argument for the state of the receive ports. As is usually the case we will start with
writing wrapper functions for sending and receiving.

sendSTChanM :: Serializable a => a -> STChanT Process
('Cap ctx (a :!> r) :*: k)
('Cap ctx r :*: k) ()

sendSTChanM a = STChanT $ \(sp, rp) ->
sendSTChan a >>= \sp' -> return ((), (sp', rp))

recvSTChanM :: Serializable a => STChanT Process (s :*: 'Cap ctx (a :?> r))
(s :*: 'Cap ctx r) a

recvSTChanM = STChanT $ \(sp, rp) ->
recvSTChan >>= \(a, rp') -> (a, (sp, rp'))

We can see in both type signatures of sendSTChanM and recvSTChanM that we only need
to progress one of the session types. In the definition we construct a STChanT to gain
access to the previous state of the ports. We then pass either one of these ports to the
non-M variant function that actually modifies the state of the port. Finally, we return
the result of the non-M variant function together with the modified ports. The passing of
updated ports is now entirely handled within these functions and henceforth don’t need
to be explicitly passed anymore.

Before we give another revised version of eval we also need to consider the other session
type operations. Besides a send and receive session type, the ports can also be encoded
with the remaining session types. Each that that a session typed program progresses,
the ports must be progressed similarly. For example, if we select a branch in a session
typed program, then we must also select the same branch in the ports. Otherwise, the
port has no way of knowing which types of values are to be sent or received. Therefore,
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besides for send and receive, we also define functions that modify the state of the ports
for the other session types.

class STOperation m where
sel1STChan :: m ('Cap ctx (s :+: r)) -> m ('Cap ctx s)
sel2STChan :: m ('Cap ctx (s :+: r)) -> m ('Cap ctx r)
off1STChan :: m ('Cap ctx (s :&: r)) -> m ('Cap ctx s)
off2STChan :: m ('Cap ctx (s :&: r)) -> m ('Cap ctx r)
recSTChan :: m ('Cap ctx (R s)) -> m ('Cap (s ': ctx) s)
wkSTChan :: m ('Cap (t ': ctx) (Wk s)) -> m ('Cap ctx s)
varSTChan :: m ('Cap (s ': ctx) V) -> m ('Cap (s ': ctx) s)

Since these operations can be used for both MTSendPort and MTRecvPort we make use of
a type class. The definitions are entirely straightforward. For each of these functions we
only need to update the type of the port and nothing term level needs to be done. Note
that these functions also do not need to live within the Process monad. So all we end
up doing is pattern matching and instantiating a new port. We also define M-variant for
these functions.

sel1STChanM :: STChanT Process (Cap ctx (s :+: r) :*: Cap ctx (k :+: l))
(Cap ctx s :*: Cap ctx l) ()

sel1STChanM = STChanT $ \(sp, rp) -> return ((), (sel1STChan sp, sel1STChan rp)))

Unlike, sendSTChan and recvSTChan we now update both ports as can also be seen in
the function’s type. I’ll omit definitions for the other functions as these follow the same
pattern.

eval :: HasConstraint Serializable s =>
STTerm Process s r a -> ProcessId ->
STChanT Process (FilterRecvs s :*: FilterSends s) k a

eval (Send a r) pid = sendSTChan a >>= eval r pid
eval (Recv r) pid = recvSTChan >>= \a -> eval (r a) pid
eval (Sel1 s) pid = sel1STChan >> send pid True >> eval s pid
eval (Sel2 r) pid = sel2STCHan >> send pid False >> eval r pid
eval (Offer s r) pid = do

b <- expect :: Process Bool
if b then off1STChan >> eval s pid

else off2STChan >> eval r pid
eval (Rec s) pid = recSTChan >> eval s pid
eval (Wk s) pid = wkSTChan >> eval s pid
eval (Var s) pid = varSTChan >> eval s pid

In this definition of eval we still make use of untyped messaging to send and receive
booleans for branching purposes. The sending and receiving of these booleans is not
encoded in the session types, but we can use a type family to insert sending and receiving
a boolean into the session type argument of eval.
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type family SendInsBoolST s where
..
SendInsIntST (s :+: r) = (Bool :!> SendInsIntST s) :+:

(Bool :!> SendInsIntST r)
type family RecvInsBool s where

..
RecvInsIntST (s :&: r) = (Bool :?> RecvInsIntST s) :&:

(Bool :?> RecvInsIntST r)

For the send port, in the case of a selection, we want to send a boolean. Whether the
first or second branch is selected does not matter. Dually for the receive port do we want
to receive a boolean for an offering. In the type signature of eval we apply these two
type families to the session types of STChanT and in the definition of eval we replace
send and expect with sendSTChan and recvSTChan respectively.

The introduction of the session typed channel allows us to clearly separate communi-
cation within the session from communication that is outwards from and inwards going
into the session.

4.4.4 UTChan

We need to tackle one last problem before concluding this chapter. Before we required
a ProcessId to allow intermediate evaluation. This was mostly necessary in functions
such as catch and mask. Now we’d also like for the environment in Session to include
the send and receive port. However, Session is a reader monad and the type of the
environment does not change. That means we can’t use the session type of Session to
determine the session types of STSendPort and STReceivePort, since the session type
Session changes with each use of bind. Fortunately, we only need to be aware of the
session types when evaluating. So instead of typed ports, we store untyped ports in the
environment. An untyped port is simply a regular send or receive port that is typed with
Message.

type UTChan = (SendPort Message, ReceivePort Message)
type STChan s r = (STSendPort s, STRecvPort r)
newtype Session s r a = Session {

runSession :: ProcessId -> UTChan -> STTerm Process s r a
}

newUTChan :: Process UTChan
toSTChan :: Proxy s -> Proxy r -> UTChan -> STChan s r

We also add two combinators for creating an untyped channel and one for converting an
untyped channel to a session typed channel.

With the completion of this chapter we now have a fully functional session types li-
brary for writing session typed Cloud Haskell programs. In the next chapters we will
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look how we can further improve the library by defining more interpreters and making
optimizations.
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One of the main advantages for using a deep embedded DSL over a shallow embedded
DSL is that we can write different interpretation functions that apply different semantics
to the same program. In this chapter we will look at several interpreters for a session
typed programs.

5.1 Pure semantics

Testing code that makes use of the Process monad is difficult to test and debug. The
Process monad is essentially a reader monad over the IO monad. A consequence is that
Cloud Haskell programs are impure and allow for side effects. This should not really be
a surprise as sending and receives messages over the network is an impure action, but
it is exactly those actions that make these programs difficult to test. Since Session is
a reader monad over the Process monad, it is no different for Session. Consider for
example, the following program that is supposed to convert a boolean to an integer.

boolToInt :: Session (Cap (Bool :?> Int :!> r)) (Cap ctx r) ()
boolToInt = do

b <- recv
if b then send 0

else send 1

On receiving True you would expect the value 1 to be returned and for False we expect
1 to be returned. The function does not correspond to this expection and we can deem
it to be a bug. We would like to test this function to verify its output. We can always
evaluate a Session from within the Process monad. So if we can test a Cloud Haskell
program, then we can also test a session typed program. The expected way to test this
function is to start a node and to run this function together with its dual as a session.
The value that the dual of boolToInt sends can be played with to change the input to
boolToInt. This method of testing requires the existance of a function that is the exact
dual of boolToInt. If it does not exist then it would have to be written. Preferably,
we wouldn’t have to do this and instead test boolToInt individually. However, that can
only be done if we find a different way to supply a value to recv that it can then re-
turn. In the next paragraph, we discuss a method on how we can accomplish exactly that.

Swierstra and Altenkirch describe in their paper Beauty in the beast [21] a method for
purely debugging and testing impure code by defining functional and pure specifications
of otherwise impure models. They begin by describing how to model teletype IO. They
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define a data type IOtt a that specifies interactions with a teletype, which together with
primitive functions for each interaction describe a pure model of functions in the IO
monad. They then define an interpreter that implements the semantics of a teletype to
each corresponding interaction. The interpreter consists of three parts. The first is the
first argument passed to the interpreter that are the teletype interactions. The second
is a stream of input that is to be used by the interactions. The third part consist of a
description of the output or behavior of the given interactions.

We will apply the method described above to purely test and debug session typed pro-
grams. IOtt like monad that describes our pure model for session typed interactions.
As it happens that is already our STTerm monad. It is entirely pure if there are no
occurrences of lift within a program. Also, for each session typed action there exists
a constructor of type STTerm. Next we want to describe the behavior of a session typed
program. We consider three possible ways to do this. The interpreter can return an AST
that describes each session typed action, the AST only describes sends and receives or
the interpreter only returns the result of the program. We will first define a data type
that allows us to describe the behavior of a session typed program in all three ways.

data Output :: Type -> Type where
O_Send :: Show b => b -> Output a -> Output a
O_Recv :: Show b => b -> Output a -> Output a
O_Sel1 :: Output a -> Output a
O_Sel2 :: Output a -> Output a
O_Offer :: Output a -> Output a -> Output a
O_Rec :: Output a -> Output a
O_Var :: Output a -> Output a
O_Weaken :: Output a -> Output a
O_Ret :: a -> Output a
O_Lift :: Output a -> Output a

The constructors are structurally the same; they have a single argument that is a contin-
uation. O_Send and O_Recv possess an additional showable argument that is the value
sent or received. Also O_Ret has only the return type as an argument.

Before we write the interpreter we also need a to define a stream for our input val-
ues. However, we can’t use a data structure that stores values of a single type. There
can be values of different types, furthermore we have to account for branching and recur-
sion. To that purpose a session typed channel sounds like a good candidate. However, a
session typed channel maintains two independent session types whereas we only need to
keep track of one. This doesn’t exclude STChanT, but it is probably a good idea to define
a new data type that does exactly fit this specification. For that purpose we define a
indexed state monad transformer.

newtype IxStateT m s r a = IxStateT { runIxStateT :: s -> m (a, r) }
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Similar to STChanT, IxStateT helps us maintain and update the data structure that it
carries. We define a GADT that is session typed as our data structure.

data STStream :: Cap -> Type where
S_Send :: a -> STStream (Cap ctx r) -> STStream (Cap ctx (a :!> r))
S_Recv :: a -> STStream (Cap ctx r) -> STStream (Cap ctx (a :?> r))
S_Sel1 :: STStream (Cap ctx s) -> STStream (Cap ctx (s :+: r))
S_Sel2 :: STStream (Cap ctx r) -> STStream (Cap ctx (s :+: r))
S_Rec :: STStream (Cap (s ': ctx) s) -> STStream (Cap ctx (R s))
S_Weaken :: STStream (Cap ctx s) -> STStream (Cap (t ': ctx) (Wk s))
S_Var :: STStream (Cap (s ': ctx) s) -> STStream (Cap (s ': ctx) V)
S_Eps :: STStream (Cap '[] Eps)

As is always the case when we define some session typed monad, we also define a set of
functions for the interface.

s_Send :: Monad m => IxStateT m (Stream (Cap ctx (a :!> r))) (Stream (Cap ctx r)) ()
s_Send = IxStateT $ \(S_Send r) -> return ((), r)
s_Recv :: Monad m => IxStateT m (Stream (Cap ctx (a :?> r))) (Stream (Cap ctx r)) a
s_Recv = IxStateT $ \(S_Recv a r) -> return (a, r)
..

Finally we can define an interpreter that describes the full behavior of a session typed
program.

run' :: (HasConstraint Show s, Monad m) =>
STTerm m s r a ->
IxStateT Identity (STStream s) (STStream r) (Output a)

run' (Send a r) = s_Send >> fmap O_Send $ run' r
run' (Recv c) = s_Recv >>= fmap O_Recv . run' . c
run' (Sel1 s) = s_Sel1 >> fmap O_Sel1 $ run' s
run' (Sel2 r) = s_Sel2 >> fmap O_Sel2 $ run' r
run' (Offer s r) = do

str <- s_get
s_Off1
o1 <- run' s
put str
s_Off2
o2 <- run' r
return $ O_Offer o1 o2

run' (Rec s) = s_Rec >> fmap O_Rec $ run' s
run' (Var s) = s_Var >> fmap O_Var $ run' s
run' (Weaken s) = s_Weaken >> fmap O_Weaken $ run' s
run' (Ret a) = return $ O_Ret a

The definitions for all constructors mostly follow the same pattern; first we progress the
session type using a session typed function, then we make a recursive call and finally
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wrap the result into a constructor of Output. For Offer we have to do an extra bit of
work. We don’t have a second process that sends us a boolean to decide which branch
to evaluate. We therefore need to evaluate both branches.

To define interpreters for the other two descriptions of the behavior of a session typed
program, it mostly comes down to copying the definition of run' and removing gener-
ating the constructors that we do not want as output. To do this for an Offer is more
difficult, because it involves two branches both with separate results. A trick here is to
use a type family to insert a boolean into the session type of the stream, such that the
input must contain an additional boolean that we use to select a branch to evaluate.

Using the newly defined interpreter we can almost purely evaluate boolToInt. The
session type of boolToInt still expects some sort of continuation. If we only want to test
a specific part of the session type program independently from the rest of the program,
then we should be allowed to treat that specific part as if it were the entire session. We
can therefore prepend the program with some initializing function that sets the context
to empty and append an end that empties the session type.

initialize :: Monad m => STTerm m (Cap '[] s) (Cap '[] s)
run :: (HasConstraintST Show s, Monad m) =>

STTerm m (Cap '[] s) (Cap ctx Eps) a ->
Stream (Cap '[] (FilterSendST s)) -> Output a

run st str = fst $ runIdentity $
runIxStateT (eval $ initialize >> st >>= end) str

Now we can use run to purely evaluate boolToInt.

> run boolToInt (S_Recv True $ S_Send S_Eps)
O_Recv True (O_Send 0 (O_Ret ()))

> run boolToInt (S_Recv False $ S_Send S_Eps)
O_Recv False (O_Send 1 (O_Ret ()))

5.2 Interactivity

The pure semantics interpreter is a useful tool for debugging and testing session typed
programs, but it requires the user to prepare input for all possible paths that the program
might follow. The combination of recursion with branching can make this task not so
easy. Furthermore, it can be difficult to parse the output of the interpreter if it evaluates
a fairly large program. An easier means to debugging is to evaluate a session typed
program interactively. We can let the user supply the values for receives and let it select
a branch to follow. Furthermore, we can let the user evaluate the program one step at a
time, where one step equates to one session typed action,or have it abort evaluation early.
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The interpreter for interactive evaluation takes a STTerm and a Bool as arguments, and
returns a Maybe monad transformer.

interactiveStep' :: (MonadIO m, HasConstraints [Show, Typeable] s) =>
STTerm m s r a -> Bool -> MaybeT m ()

Since we want to be able to quit the interpretation at any point it should be possible to
ignore all computations after the point where we stopped. The semantics of this is similar
to how the Maybe monad works. It continuously applies functions to the value in a Just
until the result of such an application is a Nothing. Then any function applications after
that are ignored.
First we’ll give a definition for the Send pattern.

interactiveStep' s@(Send a r) b = do
print s b
waitStep
interactiveStep' r b

print (Send a _) True = liftIO $ "> Send value " ++ show a
print _ False = return ()

For Send there isn’t anything interesting to do. So all we do is print a message to console
that we have now evaluated the Send together with the value that is being send, but only
if the user wants something to be printed, which is determined by the boolean argument.
It should now also be clear why we need MonadIO and Show constraints. The function
waitStep may either continue evaluation or will stop it depending on the user’s input.
It prints the following message:

"?> Press n to continue or q to quit."

In the case that n is pressed it simply returns a Just () and otherwise we return Nothing.

The definitions for the other constructors of STTerm are similarly defined, except for
Recv and Offer where we require input from the user.

interactiveStep' st@(Recv r) b = do
print st b
ma <- liftIO $ fmap readMaybe getLine
case ma of

Nothing -> interactiveStep' st b
Just a -> waitStep >> interactiveStep' (r a) b

interactiveStep' st@(Offer s r) b = do
print st b
br <- liftIO getLine
case br of

"Left" -> waitStep >> interactiveStep' s b
"Right" -> waitStep >> interactiveStep' r b
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_ -> interactiveStep' st b

print r@(Recv _) _ = liftIO $ putStr $
"?> Enter a value of type " ++ typeShow r ++ ": "

where typeShow :: forall m ctx a r k b. Typeable a =>
STTerm m ('Cap ctx (a :?> r)) k b -> String

typeShow _ = show $ typeRep (Proxy :: Proxy a)
print (Offer _ _ ) _ = liftIO $ putStr $ "?> Enter Left or Right: "

For Recv we ask the user to produce a value of the right type. To help the user un-
derstand what kind of value we are expecting we also print out the name of this type.
Doing so requires the Typeable constraint that we also added to the constraint set in
the type of interactiveStep'. If the user ends up giving us an incompatible type, then
we simply ask for another value. Otherwise we continue.
Also for Offer do we require user input. Normally, we would receive a boolean from the
other process in the session that decides the branch to evaluate. Since that process for
this interpreter does not exist, we need the user to manually do it for us.

We provide a small wrapper function that calls interactiveStep' and unpacks the
result from the maybe monad transformer.

interactiveStep :: (MonadIO m, HasConstraints [Show, Typeable] s) =>
STTerm m s r a -> Bool -> m ()

Then to conclude this section we give an example interaction. The following shows a
session typed program (left) and a possible interaction (right).

prog = do
x <- recv
send x
offer (end ()) $ do

y <- recv
end y

?> Enter a value of type Int: 5
?> Press n to continue or q to quit: n
Send value 5
?> Press n to continue or q to quit: n
?> Enter Left or Right: Right
?> Press n to continue or q to quit: n
?> Enter a value of type String: "Test"
?> Press n to continue or q to quit: n
Result: "Test"

5.3 Visualization

A great method for developing a communication protocol is designing a UML that de-
scribes the protocol as a sequence diagram. The sequence diagram gives a visualization
of the protocol, which is often easier to understand then if the protocol were written out
in words or in code. For example, a sequence diagram of the ping-pong protocol can be
seen below. In this diagram there are two actors, the client and the server. The vertical
lines below the actors represent time. The outgoing and incoming arrows originating
from the vertical lines represent an action at that specific moment in time. We do not
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need to pin-point an exact moment for these actions as we only care about the order
of the actions as they occur. The first action that occurs is the client sending a ’ping
request’ to the server. Upon receiving this message the server continues by sending a
’pong response’ back to the client, after which both the client and the server have fin-
ished the protocol. A simple protocol like this one does not really need a visualization to
make it any easier to understand, but it can prove to be very beneficial for more complex
protocols.

We want to write an interpreter that visualizes the session type of a session typed program
as a sequence diagram. Technically, this isn’t an interpreter for session typed programs
since we can always only pass the session type to it using a Proxy. Nonetheless, we want
to define a function that takes a STTerm and creates a visualization of the session type.

visualize :: forall m s r a. STTerm m s r a -> IO ()
visualize _ = visualizeP (Proxy :: Proxy s)
visualizeP :: Proxy s -> IO ()

To visualize session types we could potentially use a sequence diagram such as the one we
used for the ping-pong protocol. Then we would replace ’ping’ and ’pong’ with the name
of the types of values being sent and received. A session type protocol always consists
of only two actors, so we replace ’client’ with ’Process A’ and ’server’ with ’Process B’,
denoting the processes in the sessions. We also need to consider how we embed branching
and recursion. Specifically branching makes this type of sequence diagram difficult to use.
Consider this relatively simple session type that is an expanded version of the ping-pong
protocol: Ping :!> (Pong :?> Int :!> Eps) :&: (Ping :?> Bool :!> Eps). The
server may now send back either a ping or a pong. We could denote this by a single
arrow from the server to the client that is annotated with Pong / Ping. Then after-
wards the client needs to send an Int or a Bool respectively for the type of message
received. Again we could draw an arrow to the server that is annotated by both, but
then the diagram would indicate that it is possible for the client to receive a Pong and
then send a Bool, which according to the protocol should not be possible. It is apparent
that having only two lines for potentially many more branches does not work. We could
split the line whenever we branch, but that would mean arrows often have to cross lines
without interacting with it, which hurts readability of the diagram.
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Instead of a sequence diagram we can opt for a more general and simpler visualiza-
tion of a session type. This type of visualization consists of nodes that are (partial)
session types and arrows between the nodes that connect these session types. Let’s first
consider sending and receiving. The diagrams displayed below, give a visualization of the

following two session types Ping :!> and Pong :?>. Now an arrow no longer represents
a send or receive, instead it ’connects’ parts of a session type. In this case it connects
the type of message to a send or receive session type. For each session type we can
make building blocks that represent the session type and then connect these blocks to
form a visualization of the entire session type. For example, we can connect these two
diagrams to form a visualization of the ping-pong protocol. We also added another node

for the session type Eps. This time the diagram is displayed horizontally as it does not
matter whether we use a horizontal or vertical orientation. However, we should try to be
consistent in which orientation the diagram is displayed such that it does not generate
unnecessary confusion as to whether a turn in an arrow means anything.

The diagrams for branching start with a node for the session type. It has two outgoing
arrows. The first arrow that goes down connects the first branch to the session type and
the second arrow, connecting the second branch, goes horizontally to the right, where it
then makes a turn downwards. Here a turn in an arrow actually does mean something;
an arrow connecting to the second branch of a branching session type. The exactly place
where the second arrow turns is determined such that it does not cross with any node or
arrow belonging to the first branch.
The last session types we need to consider are the recursive session types. All of these
can be represented by a single node.
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Recursion and weaken connect to a session type as you would expect. However, a
recursion variable should not connect to a session type that is located below him, after
all it recurses back to just after an R. So for V we should trace an arrow to a node that
is right below the R that corresponds to this V. What we actually do is connect it to the
arrow that is in between R and the session type below it.

If the V were to connect to a node that is a branching session type, then it would
already have a right outgoing arrow, which could overlap with the arrow coming from V.
To avoid this overlap, we actually make the node with V trace an arrow to right between
the corresponding R node and the node below it. It is still possible for an arrow coming
from a V node to intersect with the branching arrow. We believe some intersection of
arrows is not necessarily bad for the clarity of the diagram.

We finish this section with an example diagram of the following session typed

R ( Int :!> Bool :?> V
:+: Char :!> V
:+: Wk Eps
)
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5.4 Normalizing session types

A function can often be written in more than one way. For example, a function that
adds two integers can be written in two ways: f x y = x + y and f' x y = y + x. It
should not matter whether we use f or f' to add two integers. In fact, we should be able
to replace f with f', wherever f is used. Similarly, we should also be able to replace a
session typed program with another as long as they are isomorphic. For example

prog1 :: STTerm m (Cap ctx ((Eps :&: Eps) :&: Eps) (Cap ctx Eps) ()
prog1 = offer (offer (end ()) (end ())) (end ())
prog2 :: STTerm m (Cap ctx (Eps :&: (Eps :&: Eps)) (Cap ctx Eps) ()
prog2 = offer (end ()) (offer (end ()) (end ()))

For prog1 and prog2 to be isomorphic, we should be able to rewrite prog1 into prog2
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and prog2 into prog1. Since all branches in both programs only lead to ending the ses-
sion, this should be possible without changing the meaning of either program.

Often you can rewrite one session typed program into another, but you cannot do the
reverse. For instance, prog3 can remove its send constructor, but prog4 cannot add a
send constructor without knowing what the value of the first argument must be.

prog3 :: STTerm m (Cap ctx (Int :!> Eps)) (Cap ctx Eps) ()
prog3 = send 5 >>= end
prog4 :: STTerm m (Cap ctx Eps) (Cap ctx Eps) ()
prog4 = end ()

Session types only tells us which constructors to place where, but other values are only
represented by their types in the session type. So we should never only consider session
types to determine whether a session typed program is isomorphic to another.

We were able to find two types of rewriting that we can apply to session typed program
and that preserves the isomorphism: associative rewriting and elimination of unnecessary
recursion. Before we explain these two types of rewriting it is important to understand
why rewriting session typed programs is important or even necessary. Consider a possible
dual program to prog2 named dprog2. We want to run dprog2 together with prog1 in a
session. However, we cannot do this because their session types are not dual. We know
this because the session types of prog1 and prog2 are not equal. Though we know that
prog1 can be rewritten to prog2, which would allow us to spawn a session consisting of
two programs with non-dual session types. Since, prog2 can also be rewritten into prog1
we have to determine a normal form, such that a session typed program will be rewritten
until it is in normal form. For example, if prog2 is determined to be in normal form then
no rewriting will be done. However, prog1 will be rewritten until it is in normal form
and thus equal to prog1.

5.4.1 Associative rewrite rules

The rewrite rule that we employed to rewrite prog1 into prog2 was the associative rewrite
rule. Basically we take a session type that contains a nesting of branches and rewrite it
in such a way that it becomes right associative.

(s :+: r) :+: t >>> s :+: r :+: t
(s :&: r) :&: t >>> s :&: r :&: t

Note that both :+: and :&: are right associative by definition. We can therefore leave
out the brackets in their normal form. We use a type family to apply this transformation.
We also have to rewrite the AST. A simplified function for rewriting looks as follows:

rewrite (Send a r) = Send a $ rewrite r
rewrite (Recv r) = Recv $ \a -> Recv (rewrite $ r a)
rewrite (Sel1 (Sel1 s)) = Sel1 s
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rewrite (Sel1 ((Sel2 r)) = Sel2 (Sel1 r)
rewrite (Sel2 t) = Sel2 (Sel2 t)
rewrite (Offer (Offer s r) t) = Offer s (Offer r t)
rewrite (Rec s) = Rec $ rewrite s
rewrite (Weaken s) = Rec $ rewrite s
rewrite (Var s) = Var $ rewrite s
rewrite (Ret a) = Ret a
rewrite (Lift m) = Lift $ m >>= return . rewrite

For Offer we only need one pattern as we can immediately rewrite all three branches.
With selection you can only choose a single branch, so we need three patterns. For all
other patterns we simply need to traverse the AST. A single rewrite to an AST might
not be enough to make it normal, therefore we also define a function that repeatedly
applies rewrite until a fix point has been reached.

5.4.2 Eliminating recursion

Another transformation we can apply is removing unneeded recursions and weakens. If
we have introduced recusion, but there is no recursion variable then there is also no
reason to introduce the recursion in the first place. We would like to prove that a session
type program that introduces recursion, but does not recurse is equal to the same session
type program that does not not introduce the recursion.
It is not very straightforward to decide whether we can remove a R or a Wk. We know a
R should not be removed if it matches with a V, but that depends on how many R's and
Wk's can be found on the path to that V. A Wk should be removed if it does not help a R
reach some V. To make it easier to understand we will consider several session types and
explain why we transform them the way we do. All of these examples are completely
trivial; they don’t do any sending or receiving, but the existence of these other session
types is irrelevant for deciding how we should transform these session types.

(1) R V >>> R V

In the first case we have simple recursion; we introduce recursion and recurse. Although
no session typed actions occur after introducing the recursion and before the recursion
variable, we cannot assume that no unsession typed computations are done. Therefore
we do not do anything.

(2) R Eps >>> Eps

In this case, we introduce the recursion but never make use of it. As such, we do not
need to introduce recursion.

(3) Wk Eps >>> X

This session type is actually impossible to construct using only the combinators provided
by the library. If we were to normalize it, we would normalize it to be Eps. However, to
rewrite it back to Wk Eps one must know about the session type in the context. Without
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introducing recursion there is no way for us to know of that session type. We therefore
do not accept this program to be normalized.

(4) R (Wk Eps) >>> Eps

Now we do introduce the recursion before weakening the scope, but we do not use a
recursion variable. We can therefore rewrite the session type. If we were to reverse the
rewriting then we would know the session type in the context must be Wk Eps.

(5) R (R (Wk V)) >>> R V

Here we have a similar situation. Now the inner R does not match a V so we remove it.
Consequently, we also remove the Wk. If we hadn’t done so, then the outer R would no
longer be matching any V.

(6) R (R (R (Wk V :+: Wk (Wk V)))) >>> R (R (V :+: Wk V))

The last case is somewhat more complex. By adding branching we can make multiple
R's match a V. We quickly see that the most inner R does not match anything, so we
get R (R (Wk V :+: Wk (Wk V))). Now it looks like the Wk in the first branch helps the
outer R reach the V in the first branch. We must not forget that we had removed an
inner R. So we should still remove a Wk from both branches. It is important that if we
remove an R we also determine any Wk that should be removed, such that the outer R
keep matching the same V as they did before the transformation. We therefore remove a
single Wk in each branch.

Similar to rewrite we define a type class that exposes a function that eliminates unnec-
essary recursion. We also won’t give a definition for it, because it ended up being quite
complex and it would be very difficult to explain how it works. Although, on a higher
level it works as described in the previous paragraph. Ultimately, the combination of
rewrite and a function named elimRec gives rise to our normalizer.

normalize :: (Rewrite s s', ElimRec s' s'') => STTerm m s r a -> STTerm m s'' r a

5.4.3 Distributive and factorize

This section doesn’t describe a new transformation rule, but rather one (or actually two)
that we initially had expected to hold but ultimately didn’t. We thought that we could
apply the distributivity rule to session types as well. We take a session type that occurs
right before a branching and then move it to the front of both branches.

a :!> (s :+: r) >>> a :!> s :+: a :!> r
a :?> (s :+: r) >>> a :?> s :+: a :?> s

At type level this seemed to make a lot of sense, but problems occurred when actually
trying to make this rewriting happen.
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rewrite (Send a (Sel1 s)) = Sel1 (Send a s)
rewrite (Send a (Sel2 r)) = Sel2 (Send a r)
-- is incorrect
rewrite (Recv c) = Recv $ \a -> case c a where

(Sel1 s) -> Sel1 $ rewrite s
(Sel2 r) -> Sel2 $ rewrite r

When branching is preceded by a send, it becomes possible to distribute the send to both
branches. However, doing the same for a receive is impossible. The Recv constructor
carries a continuation that given an argument will return the rest of the AST that includes
the branching constructors. This argument can only be produced by defining a new Recv
constructor. However, if we first define the Recv constructor, then we are not rewriting
the way we intended to; the branching constructors will still come after the Recv. At
first we thought this was merely a limitation of using a continuation for Recv, but this
appeared not to be the case. Consider the next program:

prog = do
n <- recv
go n

where
go 0 = sel1 >> end "B1"
go n = sel2 >> end "B2"

Which branch we choose depends on the value returned by recv. It would be impossible
to do this if we were to make a transformation that places recv after sel1 and sel2.
Apparently we can’t make this transformation, not because of a limitation of continua-
tions, but because it simply is impossible to do this.

The problem described above clearly rules out a possibility for using distributivity as
a rewrite rule, but then perhaps we can factorize instead. The answer to that question
is a clear no. Factorizing appears to exhibit the dual of the problem that we had with
distributivity.

a :!> s :&: a :!> r >>> a :!> (s :&: r)
a :?> s :&: a :?> r >>> a :?> (s :&: r)

Factorizing does the opposite of distribution. We take a session type from a selection or
offering that is common in both branches and have it precede the branching.

rewrite (Offer (Send a s) (Send b r)) = Send ? (Offer s r)
rewrite (Offer (Recv s) (Recv r)) = Recvr $ \a -> Offer (Recv (s a)) (Recv (r a))

To make this rewrite rule work we have to merge two sends, but each Send contains a
value that will later be used. We know that the types of these values are equal, but the
values themselves are not necessarily so. That makes it impossible for us to pick one.

For both factorization and distribution the problems lies in that we want to generate
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a structure that is statically known, but contains values that depend on other dynami-
cally known values. Either these dynamically known values do not exist yet at the time
of rewriting or we cannot decide which to use.

In this chapter we have introduced exactly four interpreters other than the interpreter for
the Cloud Haskell semantics. Specifically, we defined an interpreter for purely debugging
a session typed program, impurely stepping through a session typed program, visualizing
session types and normalizing session typed programs. In the next chapter we will look at
some optimizations that we can implement to hopefully somewhat counter the potential
performance hit that using session types costs us.

51



6 Optimizations

6.1 Nested branches

The current branching implementation is very inefficient. Whenever we make a choice
to go into a specific branch the other process in the session has to be notified. This is
done by sending a boolean (or using our custom data type from chapter 4). If we take
the left branch, then we send True and if we take the right branch we send False. This
notification procedure is necessary to keep the session synchronized. If we do not send a
boolean or some other data type to indicate which branch we take, then the other process
has no way of knowing which branch to evaluate. However, the current inefficiency of
this procedure is in how it works with nested branches. Consider this (partial) session
type:

s :+: r :+: t :+: k :+: i

For this example it doesn’t matter what each branch does. It is only necessary to un-
derstand how we choose a specific branch. If we choose s then we send True, but if we
want to choose r then we first have to send False to specify that we do not want the
first branch followed by True. For each right associated nested select we have to send an
additional boolean and this is quite inefficient. Sending messages over the network is slow
compared to local computation and these messages are only used for synchronization and
not actual information relevant to the program itself.

An optimization we could implement is to send a single integer instead of a sequence
of booleans. The value of the integer denotes the branch we’re choosing, where 0 refers
to the first branch. In the example above to choose s we would send 0 and to choose
i we would send 4. We implement this optimization in the eval function, where in the
select patterns we have to count the number of right nested selects. Unfortunately, when
traversing a nesting of right associatively nested selections it is difficult to determine
which branch is the very last branch, especially when the traversing is guided by a type
family. To show what I mean we will try to write a function that unfolds a selection.

unfoldSelect :: .. => Int -> STTerm m s r a ->
STChanT m (SendInsInt s :*: RecvInsInt s)

(SendInsInt r :*: RecvInsInt r) a
unfoldSelect k (Sel1 s) = sel1ChanM >> sendChanM k >> eval s
unfoldSelect k (Sel2 r) = sel2ChanM >> unfoldSelect (k + 1)
type family SendInsIntST s where

..
SendInsIntST (s :+: r) = (Int :!> SendInsIntST s) :+: SendInsIntST r

52



6 Optimizations

We use the type family SendInsIntST to force sending an integer in the Sel1 pattern.
The integer that is sent should be the index of the chosen branch. To determine what this
index is, the function unfoldSelect counts the number of times that a Sel2 is nested
in another Sel2. With the idea that upon reaching a Sel1 we have selected a branch
with known index. We do not send an integer in the second branch of a select, otherwise
we would have to send an integer each time we unfold a Sel2. The function assumes
that a nesting of selections will always end with a Sel1, but this is actually never the
case. Sel1 is indeed used to select a branch, but you cannot use it to select the very last
branch. This is done using Sel2. So now we have the problem that we both do and do
not want to send an integer in the Sel2 pattern. It is possible to add extra patterns by
pattern matching on the argument to Sel2. If that argument is another Sel2, then we
know we have not reached the last branch and otherwise we know it is. However, doing
this amount of extra work seems unnecessary and perhaps the current implementation
of selection and offering is limited in a way. We would prefer to have a structure where
we can easily identify the last branch or one that has a separate constructor for selecting
a branch and traversing over a nesting of branches.

A suitable structure seems to be a heterogeneous list. It is typed, such that it can
be combined with our session types and it has a separate constructor for the empty list.
To embed a heterogeneous list in session types we redefine :+: and :&: in terms of Sel
and Off respectively.

data ST = .. | Sel [ST] | Off [ST] | ..

Both Sel and Off carry a type list of session types, where Sel is used for selection and
Off for offering. We also add constructors to STTerm and remove the now unneeded
constructors.

data STTerm :: .. where
..
SelN1 :: STTerm m ('Cap ctx s) r a -> STTerm m ('Cap ctx (Sel (s ': xs))) r a
SelN2 :: STTerm m ('Cap ctx (Sel (k ': xs))) r a ->

STTerm m ('Cap ctx (Sel (s ': k ': xs))) r a
OfferZ :: STTerm m ('Cap ctx s) r a -> STTerm m ('Cap ctx (Off '[s])) r a
OfferS :: STTerm m ('Cap ctx s) r a ->

STTerm m ('Cap ctx (Off xs)) r a ->
STTerm m ('Cap ctx (Off (s ': xs))) r a

Now any nested selection will end with a SelN1 that is typed with a non-empty list. It is
non-empty, because the selected branch is not always the last branch. The constructor
SelN2 is still used to traverse over the selection and that is also all it can be used for.
For that reason it takes a STTerm that is typed with another selection, such that it must
take another SelN2 or SelN1. For the same reason its argument must be typed with a
non-empty list.
Unlike selection, we have to define all branches for an offering. We could make its struc-
ture identical to that of the heterogeneous list, However, we would not be able to give a
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bind definition for OfferZ, that is if it were to represent the empty list and did not have
any arguments.

To completely replace :+: and :&: with Sel and Off respectively, we have to mod-
ify most of the existing code. We’re not going to show all changes made, but we will
show the changes that are relevant to the optimization that we’re trying to implement.

First we will modify the Dual type family. As we will keep doing, we remove the patterns
for selection and offering and add two for the new session types.

type family Dual s = r r -> s where
..
Dual (Sel xs) = Off (MapDual xs)
Dual (Off xs) = Sel (MapDual xs)
..

type family MapDual s = r r -> s where
MapDual '[] = '[]
MapDual (s ': xs) = Dual s ': MapDual

We can compute the dual for both session types by replacing the outer constructor by its
dual and then applying Dual to the contents of the list contained in the session types.
Next we change the combinators for selection and offering that work on session typed
channels, such that in eval we can still choose to go into a specific branch. Though,
these are almost no different from their old definition. What is more interesting are the
type families used to guide the types for eval.

SendInsIntST (Sel xs) = Sel (MapSend (MapInsInt xs))
SendInsIntST (Off xs) = Off (MapSend xs)

RecvInsIntST (Sel xs) = Sel (MapRecv xs)
RecvInsIntST (Off xs) = Int :?> Off (MapRecv xs)

RecvInsIntST' (Off xs) = Off (MapRecv )

type family MapSend xs where
MapSend '[] = '[]
MapSend (s ': xs) = SendInsIntST s ': MapSend xs

type family MapInsInt xs where
MapInsInt '[] = '[]
MapInsInt (s ': xs) = (Int :!> s) ': MapInsInt xs

type family MapRecv xs where
MapRecv '[] = '[]
MapRecv (s ': xs) = RecvInsIntST ': MapRecv xs
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For the send port we need to send an integer after selecting a branch. We use the type
family SendInsIntST to do this for us. In the selection pattern it calls MapSend, which
prepends each branch with Int :!>. That does not mean after every SelN2 we must
send an integer. This is because SelN2 stays within the Sel session type and does not
select a branch. Only after SelN1 do we extract a session type from the selection that is
now prepended with the session type for sending an integer. We can therefore traverse
and count as many SelN2 as we want, before having to send the final count. This is
implemented in the function below.

unfoldSelect (SelN1 s) k = sel1ChanM >> sendChanM k >> eval s
unfoldSelect (SelN2 r) k = sel2ChanM >> unfoldSelect r (k + 1)

For an offer it works slightly different. Now we need an integer that we can use to index
a branch. Since we need this integer before doing any traversing, we preprend the offer
session type with Int :?>. In the unfoldOffer we will assume that we have already
received this integer. It is therefore important that in the type signature of unfoldOffer
we do not modify the session type in any way, which is different from selection. In
unfoldOffer we simply decrement the counter while traversing the nesting of branches
until it becomes 0. Note that reaching OfferZ would be incorrect, since it does not
contain An offering on the other hand must receive an integer before traversing the
offering. In the type family this is easily done by prepending a Int :?> to an Off. Then
in our unfolding function we keep decrementing the received integer until it becomes 0
at which point we evaluate the branch that we had unfolded to.

unfoldOffer (OfferZ s) 0 = off1ChanM >> eval s
unfoldOffer (OfferN s xs) 0 = off1ChanM >> eval s
unfoldOffer (OfferN s xs) k = off2ChanM >> unfoldOffer xs (k - 1)

The receiving of the integer is done in eval itself. We have also adjusted the type of
unfoldOffer just slightly compared to that of eval such that we do not need to receive
an integer for every offering constructor.

eval s@(SelN1 _) = unfoldSelect s 0
eval s@(SelN2 _) = unfoldSelect s 0
eval o@(OfferZ _) = recvChanM >>= unfoldOffer o
eval o@(OfferN _ _) = recvChanM >>= unfoldOffer o

6.2 Codensity

Another potential source of inefficiency is the structure of a free monad. A free monad
may exhibit quadratic complexity by repeated use of binds that results in a left associative
nesting of the free monad. This is no different for STTerm that is an indexed free monad.
In this section we will try to reduce the quadratic complexity to a linear one by using
the Codensity monad [22].
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6.2.1 Quadratic complexity vs Linear complexity

Let’s start by illustrating why a free monad may exhibit quadratic complexity. Consider
a simplified instance of STTerm that consists of only Send and Ret and is also not session
typed.

data STTerm a where
Send :: a -> STTerm a -> STTerm a
Ret :: a -> STTerm a

We could write a simple program that sends a character n times in two different ways.

sendMany1 0 = return ()
sendMany1 n = send 'c' >> sendMany1 (n - 1)

sendMany2 0 = return ()
sendMany2 n = sendMany2 (n - 1) >> send 'c'

Surprisingly, if you were to benchmark both versions then the first should always be the
fastest of the two. This is because the recursive call in sendMany1 occurs under a right
nested bind. On the other hand, the recursive call in sendMany2 is followed by a bind
resulting in a left nested bind. We can verify this if we supply both functions with an
argument and expand the recursive call.

sendMany1 3 = send 'c' >> (send 'c' >> (send 'c' >> (return ())))
sendMany2 3 = (((return ()) >> send 'c') >> send 'c') >> send 'c'

The left associative nesting in sendMany2 causes quadratic complexity, because for each
repeated call of >> the up to that point generated AST needs to be traversed. We can
see this in the definition of bind.

Send a r >>= f = Send a (r >>= f)
Ret a >>= f = f a

If we have a nesting of n Sends that we bind with a function, then the entire AST
would need to be traversed until a Ret, which is replaced with the result of applying
the argument of Ret to the function, thereby appending the from the function generated
AST to the nesting of Sends. For one such bind we have linear complexity. If we do a
bind n times we get quadratic complexity.
In sendMany2 the first recursive call that we can fully evaluate is sendMany2 0, which
returns a Ret (). Every evaluation of a recursive call after this replaces the remaining
Ret () in the so far generated AST with Send 'c' (Ret ()). As a result each recursive
call ends up appending a Send 'c' (Ret ()), but since the Ret () is always placed at
the end of the AST, the entire AST will first have to be traversed.
The right associative nesting in sendMany1 ensures that the left argument of bind is at
most Send 'c' (Ret ()), such that a bind takes a constant amount of time. Then the
repeated use of bind results in linear complexity.
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6.2.2 Implementing codensity

Voigtländer describes [22] a method to turn any free monad representation into an al-
ternate one that does not require traversing an entire AST for each bind. He defines the
Codensity monad alongside two functions that connect an ordinary free monad and its
alternate representation.

data C m a = C { runC :: forall b. (a -> m b) -> m b }

rep :: Monad m => m a -> C m a
rep m = C $ \h -> m >>= h
abs :: Monad m => C m a -> m a
abs (C h) = h return

The function rep takes a monad and turns it into the alternate representation, abs does
the reverse and the composition of the two should always equal the identity function.
Essentially you can use rep to create an API in the alternate representation of which
we know it to have reduced complexity. Then when we wish to return to our normal
representation we can simply apply abs without returning to a quadratic complexity.

The reason the codensity monad does not require traversing the entire AST can be
found in the definition of bind.

data Monad m => Monad (C m) where
return a = C $ h a
(C h) >>= f = C $ \c -> h $ \a -> runC (f a) c

The codensity monad always has a continuation that points to the bottom of the AST.
This continuation can be used to efficiently append two ASTs by passing the second AST
to the continuation, thereby constructing a new AST in constant time, and constructing
a new continuation that points to the bottom of the second AST and therefore also of the
entire AST. This procedure is similar to trying to append two linked lists. If we do not
have direct access to the pointer that points to the bottom of the first list, then we need
to traverse it causing linear complexity for each append. Having direct access to this
pointer means you can do it in constant time. Furthermore after appending, the bottom
pointer of the second list should be directly accessible allowing efficient appending for
the newly constructed linked list.

6.2.3 Turning STTerm into Codensity

As is usually the case we can’t use the codensity monad defined in the previous section
for STTerm, because it is not session typed. We create a new indexed codensity monad
by adding two more parameters that will be used for indexing.

newtype IxC m s r a = IxC {
runIxC :: forall b. (a -> m (Fst r) (Snd r) b) -> m (Fst s) (Snd s) b
}
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The type of runIxC is actually very similar to that of Recv. The difference is that for
Recv we are working with a specific session type, which also tells us what its continuation
session type is. The continuation session type of a :?> r is r. This r is also the initial
state of the STTerm argument of Recv. For runIxC it is not possible to determine what
the initial state of its continuation should be, because the parameterized session types
are polymorphic. With no way to determine what the initial state of the continuation
should be, we have to parameterize it. That is the reason why we once more make use of
Prod to describe more than two session types. It should be noted that we actually only
need to describe three different session types. The Similar to Recv, the final state of the
continuation determines the final state of the resulting monad.

We will now give a couple function definitions for the different session types. We do not
show the indexed monad instance for IxC, since it is no different from the non-indexed
version.

type STTermC m s r a = IxC (STTerm m) s r a

send :: a -> STTermC m (Cap ctx (a :!> r) :*: r') (Cap ctx r :*: r') ()
send a = IxC $ \h -> Send a $ h ()

The definition of send is quite similar to that of the send function for a STTerm. Insead
of a Ret () we pass h (), the continuation, as an argument to the Send constructor. Its
initial state is derived from the send session type and has a final state of r'. For the
reason given above, this is then also the final state of the Send constructor.
Some of the session type primitives require arguments.

offer :: STTermC m (Cap ctx s :*: t) k a
-> STTermC m (Cap ctx r :*: t) k a
-> STTermC m (Cap ctx (s :&: r) :*: t) k a

offer (IxC f) (IxC g) = IxC $ \h -> Offer (f h) (g h)

In the case that we are given an argument we have to pattern match on the codensity
monad. In doing so, we gain access to the underlying functions that can be given a
continuation. The same continuation is passed to both branches, such that any function
composition occuring after the offer is applied to both branches. Once more, the defi-
nition is similar to the offer over STTerm. Now we only have to think about how and
where we apply the continuation.

Now that we should understand how these functions are typed we can also redefine
rep and abs.

rep :: IxMonad m => m s r a -> IxC m (s :*: r) (r :*: r) a
rep m = IxC $ \h -> m >>= h
abs :: IxMonad m => IxC m (s :*: r) (r :*: r) a -> m s r a
abs (IxC f) = f $ \a -> return a
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In rep we let the continuation traverse the AST, such that it will point to the bottom
of the AST. For abs we need to define the continuation that is pointing to the bottom
of the AST. We can make the continuation simply return its argument, such that the
continuation also does not modify the state. As a result of defining the continuation,
instead of passing it around like in send and offer do, all passed around continuations
can now be evaluated and thereby generating the AST.

As a final touch to this section we will try to simplify the type signature of send. Since
we know that the final state of the continuation and the final state of the resulting monad
in the codensity monad must be the same, there should be no reason to have to write
both. We can write a simply type synonym that extracts this duplication.

type STTermC m s k r a = IxC (STTerm m) (s :*: r) (k :*: r) a

So now STTermC is given three parameters of kind Cap. The first two describe the initial
states of the resulting monad and the continuation respectively. The third parameter
then describes the final state of the codensity.

In this chapter we have introduced two types of optimizations. One relates to the commu-
nication required for branching, where instead of a sequence of booleans a single integer
can be send. For that purpose we had modified the branching session types to take a list
of types. The second optimization is Codensity that can reduce quadratic complexity
introduced by left associatively nested free monad ASTs to linear complexity. This was
the last chapter that either introduced new features or simply improved the library. In
the next and final chapter we will perform some benchmarking tests.
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We benchmarked the performance of session typed programs. Specifically we measured
the gains or losses to be had from optimizing and normalizing session typed programs
and we compared the performance of a Cloud Haskell program and its session typed
equivalent.
We have two ways of evaluating a session typed program that gives us an immediate
result without requiring any intervention. First of all we can evaluate a session typed
program as a Cloud Haskell program (using eval). The other option we have is using the
teletype interpreter for purely evaluating session typed programs. In our benchmarking
we have preferred to use the teletype interpreter, because there is no overhead required
for running a process and it is devoid of any delay incurred from local and remote trans-
missions of messages. This allows us to give a more accurate reading on the performance
impact caused by optimizing or normalizing a session typed program. We cannot solely
use the teletype interpreter for our benchmarking; Cloud Haskell programs cannot be
purely evaluated. So for this type of benchmarking we will only consider session typed
programs and any optimizations that may apply to it. For the other type of benchmark-
ing we use eval to compare the performance of a Cloud Haskell program, its session
typed equivalent and any optimizations that we may apply.

The benchmarks involving the teletype interpreter consisted of four different programs
that were benched under four different settings each. With a setting we mean whether any
optimizations were applied to the program. These settings are described below together
with their abbreviations.

• ST : Session typed program with no optimizations

• ST-N : Session typed program that has been normalized

• ST-C : Session typed program using codensity

• ST-(N+C) : Session typed program that has been normalized and uses codensity

The benchmarks themselves were executed using the criterion library. It runs a specific
benchmark 1000 times, returns the average time and also gives us an estimate of how
reliable the results were (how many outliers were there). Since no IO was involved, all
computed results were deemed accurate.

The first program that we benchmarked consisted of repeating a send of an integer
followed by a receive of an integer exactly 10 times. The receives integers were summed
and returned as the result of the program.
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ST ST-N ST-C ST-(N+C)
4.73 µs 5.92 µs 3.81 µs 4.53 µs

With a base time of 4.73 µs we see that normalizing this program worsens the perfor-
mance. This can easily be explained: the given program is already in normal form. So
any additional computation that we do only worsens the performance. The next result
if from using codensity, which also as expected improves the performance. Reducing the
quadratic complexity to linear complexity clearly affects the performance in a positive
way. It is possible that if we were to increase the size of the benchmarked program that
this difference in speed becomes larger. The final result is the combination of normalizing
and codensity. While still better than the base time, the inclusion of normalizing clearly
reduces the improvements made by codensity.

The next benchmarked program does the same as the previous one, but has increased the
size of the number of branchings. There is now a right associative nesting of 10 branches,
where in the very last branch the send and receive are done.

ST ST-N ST-C ST-(N+C)
14.8µs 19.3 µs 9.97 µs 13.6 µs

The results are obviously higher than the results of the previous benchmark, but they
follow the same pattern. Normalizing worsens performance, while codensity improves it.
More interestingly is if were now compare it to a similar program where the nesting of
branches is left associative.

ST ST-N ST-C ST-(N+C)
16.0µs 9.81 µs 11.5 µs 5.29 µs

This time we see that normalizing drastically improves the performance. Also codensity
performs as expected. However, this time the improvements made by normalizing and
codensity only further improves the speed making this version almost 3x as fast as the
base program.

The final purely benchmarked program is where, instead of increasing the number of
branches, we increase the number of times that we introduce recursion. We do this ex-
actly 10 times as well. We want the actual recursion to take place in the scope of the
most outer R, which means we also have to weaken the scope several times before we can
reach the recursion variable.

ST ST-N ST-C ST-(N+C)
19.9µs 11.1 µs 15.7 µs 6.82 µs

Again, this benchmark clearly benefits from normalizing the program. Furthermore, the
combination of normalizing and codensity causes the largest reduction in time.

Now we will perform benchmarking for session typed programs evaluating to Cloud
Haskell programs. Unfortunately, we were not able to make use of criterion as these
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in all configurations resulted in exceptions or the reported times could not be trusted.
The cause of this is that we require starting a node to execute a process. Initially, we
would start a node for each individual benchmark test. However, the results then also
include the time it took to start and shutdown the node, which would then only dilute
the results. Furthermore, we noticed that shutting down a node would not always be
completed before the next benchmark test was started. This would then throw an error
saying that the port was still in use. Another attempt was to start the node before
running the benchmarks. Then a single benchmark test consisted of computing a given
program on the already running node. The consequence of this is that the order in
which the benchmarks are executed matters. Earlier run benchmarks would then have
the best results, almost regardless of what was being tested. Ultimately, we ended up
not using criterion and instead we created a benchmarking program that only does a
single benchmarking test. We start a node, get the current time, execute the benchmark,
again get the ’newer’ current time and finally calculate the difference in time. Each dif-
ferent benchmarking test was repeated only 10 times, instead of the 1000 times as done
by criterion. The results are therefore less likely to give an accurate representation of
the performance. Regardless of that, we found that there was a clear difference in the
measured times for each configuration.

For this benchmark we modified the session typed program of the first benchmark re-
sults and modified it so that it spawns a session instead. We ran it in three different
configurations:

• ST : The same base session typed program as before

• ST-O : Session typed program that has been optimized such that it sends a single
integer for branching

• ST-(O+C) : The previous, but now it also uses codensity.

We included codensity, but did not give it a separate configuration, because we had
already concluded from our teletype benchmarking that is does indeed improve perfor-
mance. Likewise, we did not include normalization because the to be normalized program
is already in normal form thereby reducing performance.
We compare the above configurations to Cloud Haskell equivalents.

• CH : Cloud Haskell equivalent of the base session typed program

• CH-UM : The same, but uses untyped messaging instead of typed messaging.

CH CH-UM ST ST-O ST-(O+C)
198µs 454.4 µs 501 µs 430.2µs 381.8µs

The time difference between CH and ST should make it clear that session typed pro-
grams definitely worsen the performance. Though, this should be a given considering
the overhead of using a free monad and that we have to transmit booleans over the net-
work when branching. The reduction in speed caused by the latter can be reduced as
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is shown by ST-O. The branching consisted of only two branches, but was still enough
to give a noticable improvement. As has been the case in every benchmark, the use of
codensity always further improves performance. The final configuration that we haven’t
discussed yet is that of CH-UM. Instead of using a typed channel like in CH, it uses un-
typed messaging. The consequence is that the performance is severly reduced to that of
session typed programs. In section 4.4, we replaced untyped messaging as our underlying
method for communication with session typed typed channels. Besides arguing that this
was to fix certain problems that could occur in specific situations, it now seems that
using typed channels over untyped messaging has a positive effect on the performance of
session typed programs.

The results of our benchmarking have shown that using session typed programs certainly
does lead to worse performance. This decrease in performance is most likely caused by
the overhead of using a free monad to generate an AST and subsequently to evaluate
this AST to the Process monad. However, there are ways to slightly improve the per-
formance. Specifically, using codensity will always lead to better results. Also, reducing
how much communication is required for branching can improve performance. On the
other hand, normalizing session typed programs may lead to much better results, but
it can also reduce performance. Some of the benchmarks we used were quite extreme
in that we knew normalization would probably improve the performance. This really
showed in the results, but these benchmarks were not very realistic. If performance is
important, one should probably be wary of normalizing their programs.

The benchmarking that we performed is definitely not exhaustive in any way. We were
only able to test a limited amount of programs given the amount of time that we had
left for writing this thesis. Furthermore, we also did not consider inlining functions such
as eval or other types of optimizations to force GHC to generate faster code. While it is
reasonable to believe that a more exhaustive benchmarking would give a more accurate
representation of the performance of the session typed library, we hoped to only give
an indication of how the performance of a session typed program would compare to an
equivalent Cloud Haskell program.
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The goal of writing the session types library described in this thesis is to give a pro-
grammer the option to add more type safety to his Cloud Haskell programs. It is also
important that writing programs using this library shouldn’t be much more difficult than
writing arbitrary Cloud Haskell programs. We believe that for both goals we partially
succeeded.
Using our session types library you can annotate two Cloud Haskell processes with session
types and evaluate these as a session. However, a Cloud Haskell program often consists
of more than two processes and these processes may have different computation times.
As said before, we cannot spawn a session consisting of three or more processes. Fur-
thermore, the processes in a session are generally expected to take about the same time
to compute relative to the size of the session type. As we see it the library is therefore
best used when within a Cloud Haskell program there is a need to implement a protocol
that only requires two processes. In the future we might expand the library to allow for
multi-party sessions.
Arguably, the difficult part of writing a session lies in using the branching and recur-
sion session type combinators. The send and receive functions are straightforward and
not that different from their Cloud Haskell equivalent, but there exist no Cloud Haskell
equivalent for branching and recursion. Especially, recursion can be more difficult to deal
with if you have a nesting of recursions, since you will have to take care in how often you
do a weakening before recursing. Though, in most programs it is not likely to see more
than a nesting of two recursions. Branching itself shouldn’t be too difficult. Most likely
will branching be used in a case or if expression. You must simply remember to first
select a branch in one of the expression branches. Overall, we believe writing sessions is
not that more difficult compared to equivalent Cloud Haskell programs.
One large benefit of using our session types library are that different interpreters may
be used to evalute a session typed program. This means that the library may also be
used in combination with another networking related library that is possibly even more
suited to session types. Even for Session are these different interpreters very beneficial.
So can we use the pure semantics interpreter or the interactive interpreter to test session
typed programs in a much easier fashion than you can test Cloud Haskell programs.
We had expected that the performance of our session types library was going to be worse
than the Cloud Haskell library. Our own non-exhaustive benchmarking seems to confirm
this. Although we can make some optimizations, if performance is critical then the wiser
choice to to keep using the Cloud Haskell library.
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9.1 Multi-party

We have previously mentioned that our session type library is not capable of multi-party
sessions, although Cloud Haskell programs often consist of more than two processes. If
we could somehow allow for multi-party sessions, then we can session type the entire
Cloud Haskell program instead of only two processes defined within that program. A
multi-party session needs a global session type [8] that describes what each process does
and to which other process this relates. A global session type describes a partial ordering
of actions, where an action consists of any of the session typed actions that we have
described in this thesis. A circular ordering of such actions could potentially reintroduce
deadlocking. In the case of a session consisting of three processes, where each process
sends something to one process and receives something from the other process, it could
be possible that one process expects a message from a second process, the second process
expects a message from the third process and the third process expects a message from
the first process. For all processes to do a send they must first receive a message, but
that results in a deadlock. In this case duality is not violated, because no two processes
expect messages from each other or send messages to each other, but the cyclic nature
of the session type causes the deadlock.
The addition of global session types also calls for a session typed way to send (or receive)
messages to different processes. In the work of Imai et al. [9] they allow the creation
of session typed channels, different from our own session typed channel, that can be
passed to a send or receive. The capability now holds a type-level list of session types
instead of a single session type. The variable representing a channel, that can be passed
around through the program, denotes a de Bruijn index that can be used to access a
session type in the type-level list. This solution can also be used for programs with a
global session type to allow communication between different processes. Additionally the
channels would also have to be tagged with a process identifier, such that it cannot be
used to communicate with different processes.
Two more extensions that can be made to the multi-party session is to allow forking of
new processes and sending channels over channels [16].

9.2 Binding

Our current solution for session typed recursion is to delimit the scope of recursion
and then to use a recursion variable to denote in which scope recursion should occur.
The scope can also be weakened to be able to recurse further back into the program.

65



9 Future work

However, if we often delimit the scope, we might also often have to expand it again to
recurse in a specific scope. This can be annoying for the user, but potentially also worsens
performance, because the AST grows everytime you delimit or weaken the scope. In the
work of Pucella and Tov they describe a slightly different approach to recursion. They
annotate their recursion variables with de Bruijn numbers that denote the scope of the
recursion. Other than that their implementation is actually quite similar to ours, but
it does give rise to an interesting thought. Can we make use of de Bruijn numbers as
indices to our context, such that we merely need to index to the right scope for recursion
to occur, without having to weaken the scope as many times as the de Bruijn number
indicates?
A different approach is taken for HOAS [1]. They define a type class that exposes
a function for each of their terms. One function is lam, which is a binder binding a
variable. We can possibly take a similar approach, where we replace lam with a rec.
Now rec binds a recursion variable. The hoped benefit here is that we would no longer
need to do weakening. However, the context of the recursion variable will be set the
moment rec is used. Then in a nesting of recursion the context of the recursion variable
will still have to be weakened. Furthermore, we can define a fixpoint combinator for
recursion that essentially does what rec does without having to define a type class or
define a new term.

9.3 Pure semantics with QuickCheck

In the Beauty in the beast paper [21] they show how you can make a pure model of
an otherwise impure model and subsequently use the pure model to test their code
using QuickCheck [3]. QuickCheck is a tool for automated testing of Haskell programs.
QuickCheck tests properties of pure functies by generating random, or in a specified way,
input that is then given to the function. The result is then compared to another function
that was given the same input. For example, a property of a function that should reverse
a list is that reversing the list twice should always equal the original list. The input
generated for this test are lists of arbitrary size.
The question is whether we can also use QuickCheck to verify properties of session typed
programs. Session typed programs have complex types and the input given to the teletype
interpreter must match this type. This makes it difficult for QuickCheck to generate the
appropriate input, because it does/can not use the session type for this purpose. A
potential solution, in Haskell, would be to write singleton [5] type classes that generates
input given some session type. You should be able to pass a session type to the type
class that then returns an AST matching that type that can be passed to the teletype
interpreter. Done in a dependently typed language, such as Idris [2], we could avoid
having to use a type class. Instead, we define a function that takes an implicit argument
that is a singleton term. By pattern matching on the singleton term, the type, a session
type, is instantiated allowing us to return the appropriate input constructor.
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