
Faculteit Wijsbegeerte

On Formalizing
Decreasing Proof Orders
A thesis for the Cognitive Artificial Intelligence master’s program

Yannick Bitane
April 9th, 2015

1st Supervisor: Vincent van Oostrom
2nd Supervisor: Albert Visser

Co-assessor: Gerard Vreeswijk
Credits: 60 ECTS

i

Voorwoord

Voordat ik losbarst met de verslaggeving van dit afstudeerproject wil
ik graag een paar mensen bedanken, zonder wie het document in de
huidige vorm niet tot stand zou zijn gekomen.

Allereerst natuurlijk mijn begeleider Vincent van Oostrom. Ik
had me geen meer toegewijd, bekwaam en geduldig persoon kunnen
wensen om het proces in goede banen te leiden. Bedankt voor
de goede bereikbaarheid, de immer tot relevante nieuwe inzichten
leidende aanwijzingen, en de vele vermakelijke anecdotes.

Albert Visser en Gerard Vreeswijk, die ondanks de niet altijd
even toegankelijke materie bereidwillig waren om dit verslag van de
nodige externe feedback te voorzien, bedankt daarvoor.

De leden van #coq @ freenode.net, zonder wie het bijzonder lastig
zou zijn geweest om de finessen van Coq te kunnen doorgronden.
Kleine kans dat iemand van jullie dit ooit zal lezen, toch ben ik jullie
eeuwig dankbaar.

Jeanette van Rees en Naomi Paauw, voor het begeleiden van
de afstudeergroep, een wekelijkse bijeenkomst van scriptieschrijvers.
Bedankt voor de gelegenheid tot reflectie, ventileren, inspireren en
gëınspireerd worden. Alle leden van de afstudeergroep, voor de
tientallen zo niet honderden keren dat we samen kwamen om te gaan
schrijven, in het bijzonder Marloes van IJzendoorn, Molly Scholte en
Wilfred de Bondt. Zonder jullie was het een vrij eenzame bedoening
geworden. Bedankt voor jullie warmte en voor de lol die we samen
gehad hebben.

William de Jager, die me scherp hield met regelmatige sessies
van strategisch overleg, daarvoor doch bedankt vrind kapitein.

Beknopt zou ik ook nog willen bedanken: mijn moeder en vader,
mijn broertje Rutger Bitane, Susanne van den Elsen, Ward van
Helden, Marc van den Heuvel en last but not least : Timme Romberg.

ii

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contents . 2

2 Representation Proof 4

2.1 Presenting the framework . 4

2.1.1 French strings . 4

2.1.2 French terms . 4

2.1.3 Stratification . 7

2.1.4 Flattening . 13

2.2 Proving the framework to be correct . 14

2.2.1 Well-formedness of stratify . 15

2.2.2 Flatten after stratify . 26

2.2.3 Stratify after flatten . 32

3 Decreasing Proof Order 39

3.1 Presenting the framework . 39

3.1.1 Lexicographic Order . 39

3.1.2 Area . 40

3.1.3 Label less-than . 41

3.1.4 Lexicographic Path Order . 43

3.1.5 Decreasing Proof Order . 44

3.2 Properties . 46

4 Conclusion 57

5 Appendix 58

References 59

Index 59

Bookmarks 60

iv

1 INTRODUCTION

1 Introduction

In this chapter, the reader gets an impression of the subject matter of our research project, finds out about its
relevance to the field of AI, and gets a taste of chapters to follow.

1.1 Background

The field of AI has traditionally been a two-fold endeavor. On the one hand, we attempt to simulate the
mechanics of natural intelligence by which it solves a problem, in order to better understand its solution. For
example, we simulate a neural network to understand how the brain operates. On the other hand, we construct
artificially intelligent programs, attempting to solve problems as effectively as possible, to better understand the
nature of the problem. For example, we build a chess computer to uncover the patterns and aspects involved
in winning a game of chess. This research is geared to contribute to the latter endeavor. In particular, we have
applied ourselves to the mathematical aspects of engineering.

One of the most appealing aspects of mathematics is the associated sense of absolute certainty. In an
inherently chaotic universe, having algorithms that are guaranteed to return the correct output for any valid
input certainly is a great asset for anyone seeking to solve problems effectively. There is no risk to an unfavorable
outcome (false output) if there is only one outcome which is favorable (correct output). This greatly reduces
the need to be anxious about decisions to be made. One does not have to doubt the reliability of information
if it is guaranteed to be correct. To this end, an algorithm can have several desirable properties. For example,
low computational complexity when a fast response time is crucial. But even when complexity is low, reliability
of such a highly efficient algorithm is essentially dependent upon termination. If it is unclear if the algorithm
will return the correct answer or keep us waiting forever, we might not want to bet our lives on it just yet. The
presence or absence of such properties can be established by mathematical analysis.

A means of modelling an algorithm or set of algorithms for this purpose is called term rewriting.[d]

A software program (or any algorithmic procedure for that matter) is really just a very specific sequence of simple
instructions. Each instruction takes the provided input, modifies it in some way and passes the output onto
the next instruction. In term rewriting, the instructions are modelled as rewrite rules, and the inputs as terms.
A set of terms and rewrite rules over these terms together are called a term rewriting system.

ℓ

m

m

ℓ

ℓ

m

m

κ ℓ

m

ℓ

m

ℓ

κ

m

a

b

f

h

d

g

j

e

i

c

1 2

3

4 5

6

Figure 1: a decreasing diagram of conversions[a]

The decreasing diagrams technique is a versatile method for proving a desirable property of term rewriting
systems, called confluence.[b] This holds that when the same rewrite rules can be applied in multiple sequences,
we always get the same end result. Think of addition with numbers for example. We want 1 + 4 * 5 to
have the same result as 5 * 4 + 1. In Figure 1 above, we see a graph where the nodes represent terms, and
the arrows rewrite rules. [.....] Van Oostrom’s article[a] on decreasing proof orders is a further refinement of
the decreasing diagrams technique. The current thesis revolves around a partial formalization of this article.
We have developed a correctness verification of this technique in an automated theorem prover called “Coq”.

1

1 INTRODUCTION

Why Coq?

Correctness verification is part of the field of mathematics. To verify correctness of a proof, it doesn’t suffice
merely to follow the steps and lines of reasoning as the authors present them on paper. This is because, in favor
of readability, many steps are subtly skipped over in going from premise to conclusion. Abbreviations are used,
and many details are left implicit. The intelligent human audience is expected to be able to see the validity of
these jumps in reasoning. However, for our purposes, ie. correctness verification, we want a guarantee of every
single step along the way being correct, skipping over none. This is where Coq comes into play.

Coq is an interactive proof verification tool. It allows the user to assert properties, and create “in dialogue”
with the program a proof that is automatically verified for correctness. Developing a theorem proof in Coq is
very much like developing software. The user defines functions, specifying the data types of input and output,
and describing in detail how the one is converted into the other. This would be a very time-consuming task
were it not for the vast libraries to draw upon, of statements already proven and verified, ready to be used. As
such, Coq’s automated approach to theorem proving makes it possible to simultaneously construct and verify
theorem proofs, all with the conciseness and readability of an old-fashioned paper printed proof.

Intuitionistic logic

The formalism of Coq employs an intuitionistic approach to logic. In classical logic, (ie. regular logic) the law of
excluded middle is in effect. That is, given a proposition P , either it holds or it doesn’t: P or ¬P . A common
way to prove a statement then, is to demonstrate that its negation leads to contradiction. From this, one then
concludes that P must hold (as dictated by the law of excluded middle). In intuitionistic logic, this law of
excluded middle is rejected. As such, proofs by contradiction are generally invalid. In an intuitionistic logic,
truth equals constructability. To assert that an object with certain properties exists, is to claim that such an
object can be constructed. So, to see if P is true, is to see what the proofs of P are (if any).

This different notion of truth leads to different results in terms of what is provable. Some things unprovable
in classical logic are provable in intuitionistic logic and vice versa. What makes intuitionistic logic attractive for
our purposes is that it enjoys a very powerful property called the Curry-Howard correspondence. Simply put, it’s
a one-to-one correspondence between systems of formal logic and computational calculi. Each natural-deduction
proof in intuitionistic propositional logic can be associated with a term in the simply typed lambda calculus.
Or, in layman terms, such mathematics can be directly applied in software engineering: correct programs can
be automatically extracted from their proofs. Coq has built-in support for such automated extraction.

1.2 Contents

Before delving into details, we look at the goals and scope of our research, and at the way in which this document
is structured in order to present its results.

Scope

The main two lemmas of the proof described in the article are implemented and proven using the interactive
theorem prover Coq. We have written a framework in support of these two lemmas. As described in Chapter 2,
the first lemma concerns the main data type and correctness of its implementation. The second lemma confirms
the essential properties of the Decreasing Proof Order. We provide proof of the first part of this two-part lemma.
This is described in Chapter 3.

Status quaestionis

An older proof of the decreasing diagrams technique has been formalized by Zankl using Isabelle.[e]

Assumed knowledge

Our intended audience is fellow students of the Cognitive Artificial Intelligence master’s program. The reader
is assumed to have a basic understanding of logic, formal notation and programming. For a more in-depth
explanation of term rewriting, the reader is referred to Terese or Baaden-Nipkow.

2

1 INTRODUCTION

Presentation

Creating a certified proof in Coq is usually a back and forth between polishing the statement to be proven, and
readjusting the angle of approach towards proving it. Stating a theorem involves developing firstly the simpler
statements and concepts from which it is composed. Once stated, proving the theorem requires development
of simpler theorems (so-called lemmas) involving the theorem’s various components. In an ideal world, this
would be a one-pass process. However, in reality, multiple passes are needed: due to new insights gained during
development, adaptations are made. Some of these consist of adapting the proof strategy used, and some of
adapting the concepts from which the statement itself is constructed.

The cyclical nature of this process is reflected in the presentation of our findings. Moving from elementary
to complex, and then from complex to elementary, we present the components from which statements are con-
structed, and proofs of these statements. The components are first defined mathematically, we then describe
their implementation in Coq. Some detours to failed attempts are made for more insight. Our theorem proofs
in Coq are presented as proof state sequences. These are simplified prints of the interaction between input and
output to and from Coq, closely narrated to give the reader a clear idea of why they are structured the way
they are. Some explanations of constructs are given in advance of the proof, some are deferred to and expanded
upon after the proof.

How to read

Some final pointers before we get started. The reader is assumed to be viewing this document digitally. Many
clickable cross-references are made throughout the document for optimal accessibility. Definitions of our own
functions and lemmas are given once, and can thereafter be found via the index at the end of this document.
Native Coq tactics and definitions are explained conceptually to greater or lesser degrees, but formal definitions
are omitted. Those can be found in the Coq Reference Manual, at https://coq.inria.fr/distrib/8.4pl3/refman/.
For some of those definitions, a hyperlink to the url of the corresponding sections in the reference manual
is given at its first occurrence, denoted by underlining or by a raised reference marker: example n, example.[n]

First occurrences of these are listed in the index. Several of our own key lemmas and/or functions were provided
by Vincent van Oostrom. These are marked example

ν to indicate firstly their origin, and secondly that their
proofs are beyond the scope of this document.

Requirements

This research endeavor has been very practical in nature. For optimal clarity, the reader is advised to follow the
proofs using CoqIDE in a synchronous fashion. CoqIDE can be downloaded here: http://coq.inria.fr/download.
This project was developed in Coq version 8.4pl3.

The source code of this project can be found in plain text at http://dx.doi.org/10.17026/dans-xrh-qdd6.
In addition to CoqIDE, the following two external libraries are required.

• CoLoR: http://color.inria.fr/, https://gforge.inria.fr/scm/viewvc.php/trunk/?root=color&pathrev=2043

(we have used SVN revision 2043, released december 3rd, 2013)

• Cantor: http://www.lix.polytechnique.fr/coq/pylons/coq/pylons/contribs/view/Cantor/v8.4

(the version we used is dated januari 10th, 2013)

Haskell extraction

One of the more interesting features of this project is that it’s fully constructive (see page 1). The interested
reader can add the following lines at the end of the source code to automatically extract any Definition, Fixpoint
or Lemma of the form forall . . . exists . . . to Haskell format.[2]

Extraction Language Haskell.
Extraction "filename.hs" name_of_construct.

Excerpt #1

3

https://coq.inria.fr/distrib/8.4pl3/refman/
http://coq.inria.fr/download
http://dx.doi.org/10.17026/dans-xrh-qdd6
http://color.inria.fr/
https://gforge.inria.fr/scm/viewvc.php/trunk/?root=color&pathrev=2043
http://www.lix.polytechnique.fr/coq/pylons/coq/pylons/contribs/view/Cantor/v8.4

2 REPRESENTATION PROOF

2 Representation Proof

In this chapter, the decreasing proof order framework is formalized. This framework is to be used for developing
a proof of the main theorem, as will be described in Chapter 3. We will present the framework in Section 2.1,
and then prove its correctness in Section 2.2.

2.1 Presenting the framework

Let us start off by having a look at all the components that are involved in formalizing the decreasing proof order
framework. In describing these, the following format is used: each component is defined first in mathematical
terms, and then a description is given of how it is implemented in our framework. When appropriate, examples
are given. We’ll describe French strings , French terms , how to construct the latter from the former by means
of stratification, and how to reconstruct the former from the latter by means of flattening .

2.1.1 French strings

Every occurrence of our main data type has both a string form and a tree form, which are semantically equivalent
and (thus) interconvertible. We first consider here the string form, a data type called French string.

Definition 1. Let L be an alphabet. Then for any letter ℓ ∈ L, accenting it acute (ℓ́) or grave (ℓ̀) creates a

French letter. Denote a French letter with its accentuation type abstracted ℓ̂. Let L̂ denote the set of French
strings, ie. the set of finite strings of French letters over L.

Example. Suppose we have L = {ℓ,m, k}. Then {ℓ́, ℓ̀, ḿ, m̀, ḱ, k̀} would be the corresponding set of French

letters. Some examples of French strings would be ḿκ̀ℓ́m̀ and ℓ́ℓ̀m̀ḿℓ̀.

Implementation

Analogous to Definition 1, an fletter consists of a letter and an accent. An fstring then, is a (finite) list thereof.

470 Inductive accent : Type :=
471 acute | grave.
472
473 Inductive letter : Type :=
474 m | k | l.
475
476 Inductive fletter : Type :=
477 fletter_cons : letter → accent → fletter.
478
479 Definition fstring : Type :=
480 list fletter.

Excerpt #2

Example. ḿ would be represented as (fletter_cons m acute), with fletter_cons being the constructor function,
and ḿκ̀ℓ́m̀ as fletter_cons m acute :: fletter_cons k grave :: fletter_cons l acute :: fletter_cons m grave :: nil.

2.1.2 French terms

Every French string has a French term counterpart, which can be conceptualized as a tree. Before getting to a
formal description in Definition 4, we consider two concepts involved, that of the Hoare order and having arity .
The former is an order on French strings lifting an order on letters, the latter is a property of terms, describing
the ratio between a function symbol’s length and its number of arguments.

Definition 2. Let L be an alphabet, ≻ an order on L, and L̂ the set of French strings over L. Given s, r ∈ L̂,
we say that s relates to r in the Hoare order induced by L and ≻ if, for each French letter x̂ occurring in s,
there exists a French letter ŷ in r such that y ≻ x.

Example. Suppose we have an alphabet L = {m,ℓ, κ}, and an order ≻ such that m ≻ κ, ℓ. Then ℓ́κ̀ relates to m̀

in the Hoare order induced by L and ≻, but not to ε or ℓ̀. Likewise, m̀ḿ does not relate to any string over L̂ in
this order, and ε relates to any non-empty string in this order.

4

2.1 Presenting the framework 2 REPRESENTATION PROOF

Implementation

1708 Inductive hoare_lt (x y : list fletter) : Prop :=
1709 hoare_lt_cons : y ≠ nil →
1710 (forall e1, In e1 x →
1711 exists2 e2, In e2 y & fl_Lt e1 e2)
1712 → hoare_lt x y.

Excerpt #3

Example. Analogously to the example of Definition 2, hoare_lt (ĺ :: k̀ :: nil) (m̀ :: nil) holds, because it holds
that forall e1, In e1 (ĺ :: k̀ :: nil) → exists2 e2, In e2 (m̀ :: nil) & fl_Lt e1 e2.

We have used some shorthands in this example to benefit readability.

Definition ḿ : fletter := fletter_cons m acute.
Definition m̀ : fletter := fletter_cons m grave.
...
Definition ∅ : term := Fun fs_Sig nil nil. (* the empty term *)

Excerpt #4

Definition 3. Let L be an alphabet, Σ a signature over strings of L, and t a term over Σ. We say of t that it
has arity if, for each function symbol f in t, if f = ε the number of arguments for f equals 0, and

otherwise the number of arguments for f equals f ’s length + 1.

Example. Let t be a term that has arity. If m̀ḿ is a function symbol in t, it has 3 arguments.

Implementation

In Coq, this ratio between a function symbol’s length and the number of arguments is implemented via ar.

2080 Definition ar (fs : fstring) : nat :=
2081 match fs with
2082 | nil ⇒ 0
2083 | _ ⇒ 1 + length fs
2084 end.

Excerpt #5

Example. ar (m̀ :: ḿ :: nil) = 3

Definition 4. Let L be an alphabet, ≻ an order on L, and L̂ the set of French strings over L. The French term
signature over L, denoted L♯≻, consists of all strings in L̂ composed of letters mutually ≻-incomparable. In vein
of the tree metaphor, these function symbols are also called (node) labels. Let t be a term over L♯≻. We say that
t is a French term if it has arity, and each node in t has a label that is related to its ancestor node’s label by
the Hoare order.

Example. Suppose we have an order ≻ such that m ≻ κ, ℓ. To give an idea of how a French string corresponds
to a French term, consider the below two figures. Note that, all node labels consist of letters that are mutually
≻-incomparable, for each node, the branching factor of that node is either zero or its label’s length plus one, and
every node’s label relates to the ancestor node’s label in the Hoare order induced by L and ≻. The operations

♯ (stratification) and ♭ (flattening) are explained in Section 2.1.3 and Section 2.1.4, respectively.

ḿκ̀ℓ́m̀
♯

Ô⇒
♭

⇐Ô
ḿm̀(ε, κ̀ℓ́(ε, ε, ε), ε) ℓ́ℓ̀m̀ḿℓ̀

♯
Ô⇒
♭

⇐Ô
m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε))

⇕ ⇕

ḿm̀

ε κ̀ℓ́ ε

ε ε ε

m̀ḿ

ℓ́ℓ̀ ℓ̀ ε

ε ε ε ε ε

5

2.1 Presenting the framework 2 REPRESENTATION PROOF

Implementation

Suppose we have L = {m, l, k}. Let fl_Lt be an order on L such that strict_order fl_Lt. Now, to implement
French terms, we use the term data type, from the external library CoLoR, as shown in Excerpt #6 (implicit
parameters added in gray). This is a dependent data type that, given a signature Sig, can construct a tree with
nodes of type Sig. It also has a constructor for variables, but we won’t be using those for now.

Inductive term (Sig : Signature) : Type :=
| Var : nat → term Sig
| Fun : forall f : Sig, list (term Sig) → term Sig.

Excerpt #6 CoLoR.Term.Varyadic.VTerm

A vterm then is a term instantiated with fs_Sig, a signature over fstring.

2073 Definition vterm : Type := term fs_Sig.

Excerpt #7

Example. The term ḿm̀(ε, κ̀ℓ́(ε, ε, ε), ε) would be represented as

Fun fs_Sig (ḿ :: m̀ :: nil) (∅ :: (Fun fs_Sig (k̀ :: ĺ :: nil) (∅ :: ∅ :: ∅ :: nil)) :: ∅ :: nil).

CoLoR’s term data type is expressive enough for our purposes but not strict enough, as neither arity nor the
Hoare order are imposed. These additional constraints are implemented via vt_wellformed. In our framework, a
French term ft is a vterm such that vt_wellformed ft is True, as we’ll see in Excerpt #9.

2124 Fixpoint vt_wellformed (vt : vterm) : Prop :=
2125 match vt with
2126 | Var _ ⇒ False
2127 | Fun f args ⇒ vterm_empty vt ∨ (vterm_not_empty vt ∧
2128 ar f = length args ∧
2129 fs_incomparable f ∧
2130 Forall (fun x ⇒ hoare_lt (vt_head x) f) args ∧
2131 lforall vt_wellformed args)
2132 end.

Excerpt #8

1
2

3

4

5

6

Let’s have a closer look at the components of vt_wellformed so we can see how it helps to implement Definition 4.
It takes a vterm named vt and returns a Prop. 1 vt is pattern-matched against the constructor functions of its
data type (see Excerpt #6). By definition, any vterm matching the Var constructor is not well-formed. When
vt is matched against the constructor Fun, its head is bound to the variable f, and its arguments to args.
2 A case distinction is made on whether or not vt is empty. This disjunction would follow independently from
item 3 but is made explicit for ease of use. The empty case suffices to qualify vt as being well-formed. The
non-empty case is more complex, being embedded in a conjunction. Let’s consider the other conjuncts.

Recall from Definition 4 that, for a French term, it holds that 1. all node labels consist of letters that are
mutually ≻-incomparable. This is expressed as fs_incomparable f (item 4 , see Excerpt #10). 2. it has arity. This
is expressed as ar f = length args (item 3 , see Excerpt #5). 3. every node’s label relates to the ancestor node’s
label in the Hoare order induced by L and ≻. This is expressed as Forall (fun x ⇒ hoare_lt (vt_head x) f) args

(item 5 , see Excerpt #3). Finally, all arguments of vt are well-formed themselves. This is expressed as
lforall vt_wellformed args (item 6). The constraints of Definition 4 are thus fully covered by vt_wellformed.

3036 Definition fterm : Type :=
3037 {vt : vterm & vt_wellformed vt}.

Excerpt #9

A French term then is a vterm such that vt_wellformed holds. This is captured in the type fterm, a pair consisting
of a vterm and a proof its well-formedness. In Coq, such pairing of a data type with proof of some property is
called a sigma type.[18]

6

2.1 Presenting the framework 2 REPRESENTATION PROOF

Epilogue

Here we display fs_incomparable, which was skipped over in explaining our implementation of French terms.

706 Inductive fl_comparable : relation fletter :=
707 | fl_comparable_cons1 l1 l2 : fl_Lt l1 l2 → fl_comparable l1 l2
708 | fl_comparable_cons2 l1 l2 : fl_Lt l2 l1 → fl_comparable l1 l2.
709
710 Inductive fl_incomparable (f : fletter) (L : list fletter) : Prop :=
711 fl_incomparable_cons : (forall e, In e L → ∼ fl_comparable e f) → fl_incomparable f L.
712
713 Inductive fs_incomparable (fs : fstring) : Prop :=
714 fs_incomparable_cons: (forall e, In e fs → fl_incomparable e fs) → fs_incomparable fs.

Excerpt #10

An fstring is fs_incomparable if all its letters are fl_incomparable, which holds if they are all not fl_comparable

to any letter in fs. In other words, if ∀xy∈fs : ¬ fl_Lt x y and ¬ fl_Lt y x.

This concludes our description of French strings and French terms. We can get a clearer understanding of an
fterm’s structure by looking at how it is created, as is done in the next section.

2.1.3 Stratification

The French string form and French term form are interconvertible. This section is about the operation
converting a French string to its corresponding French term, called stratify . The operation inverse to this,
called flattening , will be the subject of Section 2.1.4. We begin this section by considering the concept of a
scattered substring . We then proceed to examine stratification in a fashion similar to that of the previous two
sections on French strings and French terms, going back and forth between mathematical description, example
and Coq implementation.

A scattered substring of a string f is any string made from f by omitting letters from it. Or, more formally,

Definition 5. Let L∗ be the set of strings over some alphabet L, and let f, g ∈ L∗. We say that f is a scattered
substring of g if f = a1 . . . an and g = x0a1x1 . . . anxn for some ai ∈ L and xj ∈ L

∗.

Example. m̀ḿ is a scattered substring of ℓ́ℓ̀m̀ḿℓ̀, as are ℓ̀m̀ḿℓ̀ and ℓ́ℓ̀ℓ̀. Also, any string is a substring of itself,
since the empty string ε is also in L∗ (f = g if all the xj in the above definition are empty).

Implementation

In Coq we have implemented this as a relation between fstring called sublist.

736 Inductive sublist : list fletter → list fletter → Prop :=
737 | sublist_cons1 : sublist nil nil
738 | sublist_cons2 : forall L1 L2 f, sublist L1 L2 → sublist L1 (f :: L2)
739 | sublist_cons3 : forall L1 L2 f, sublist L1 L2 → sublist (f :: L1) (f :: L2).

Excerpt #11

Any two fstring relating in sublist to one another can be constructed by taking two empty lists L1 and L2, and
repeatedly adding a single letter f either to both L1 and L2, or only to L2.

Example. In the case of sublist (m̀ :: ḿ :: nil) (ĺ :: l̀ :: m̀ :: ḿ :: l̀ :: nil): this holds, because we can
construct it by, starting from sublist_cons1, consecutively applying sublist_cons2 with f := l̀ , cons3 with ḿ ,
cons3 with m̀, cons2 with l̀, and cons2 with ĺ.

7

2.1 Presenting the framework 2 REPRESENTATION PROOF

A French string f is converted to a French term t by means of stratification. This is a recursive process,
where the scattered substring containing all letters maximal in f is assigned to be the function symbol, and the
stratification of each omitted fragment as arguments. More specifically,

Definition 6. Stratification, denoted ♯, maps each French string to its corresponding French term. This is
defined inductively as follows: ε♯ = ε, and (s0ℓ̂1 . . . ℓ̂nsn)♯ = ℓ̂1 . . . ℓ̂n(s♯0, . . . , s

♯
n), with ℓ̂i all occurrences of

≻-maximal letters in the string, si the substrings around each ℓ̂i, and n > 0.

Example. Again, suppose we have an order ≻ such that m ≻ κ, ℓ. Then

(ℓ́ℓ̀m̀ḿℓ̀)♯ = m̀ḿ(ℓ́ℓ̀♯, ε♯, ℓ̀♯) = m̀ḿ(ℓ́ℓ̀(ε♯, ε♯, ε♯), ε, ℓ̀(ε♯, ε♯)) = m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε)).

Implementation

To better understand our present implementation of stratify in Coq, consider first an early attempt at
implementing stratification and why it was not satisfactory. To explain this we distinguish between standard
and non-standard recursion in Coq.

Standard recursion

A recursive process terminates if it doesn’t contain infinite chains of nested recursive calls. The absence of
infinite chains is established in Coq by assigning to the recursion a decreasing argument [1]. This argument can
be of any inductively defined data type. To rule out non-terminating recursion, Coq wants to see this argument
differ by at least one constructor between iterations. For example, consider the function finite_nat below.

Fixpoint finite_nat (n : nat) : Prop :=
match n with
| 0 ⇒ True
| S x ⇒ trivial x

Excerpt #12

Here, the decreasing argument is n of type nat. The second clause is recursive. How do we know if this recursion
will terminate? Well, if n matches S x, then x, the argument used in the next iteration, has decreased by one
constructor relative to n (by the successor function S). As objects of type nat are inductively defined, this peeling
off of constructors will continue until the core of the construct, 0 in the case of nat, is inevitably reached.

Similarly, objects of type list are inductively defined. However, for our purposes, this does not suffice to
serve as a decreasing argument. To see why, consider an earlier attempt at implementing stratification in Coq.
In Excerpt #13 below, we see an implementation of stratify using standard recursion on lists.

Fixpoint stratify_rec (vt : vterm) (lfs : list fstring) : vterm :=
match lfs with
| nil ⇒ vt
| head :: args ⇒ stratify_rec (@Fun fs_Sig head

(map (fun x ⇒ stratify_rec vt x) (map stratify_sub’ args))
) nil

end.

Definition stratify (fs : fstring) : vterm :=
stratify_rec empty_vterm (stratify_sub fs).

Excerpt #13 bitane_thesis_stratifail.v

Shown is part of the code. For the full example see bitane_thesis_stratifail.v. The definition of stratify_sub
(of type fstring → list fstring) can be found there as well, but is unimportant to understand our issue here
with standard recursion. Having said that, let’s look at the data flow chart of this algorithm, as displayed in
Figure 2 on the next page.

8

2.1 Presenting the framework 2 REPRESENTATION PROOF

(input)

stratify_sub fs

MAX l0 l1 l2 . . . ln nil

stratify_rec MAX

l2l1l0 . . . ln

map stratify_sub

. . .

Figure 1: non-terminating recursion in stratify

The process begins with stratify_sub fs. This
returns a list, MAX :: l0 :: l1 :: ..., which is
preformatted for stratify_rec. The head, here
denoted MAX, is the list of all letters that are
maximal in fs. The tail are all the other letters
(non-maximal in fs), grouped as they occur in
between the maximal letters. This list is input
for stratify_rec, which builds a term using
MAX as its head, and l0, l1, l2, . . . , ln as
arguments. These arguments are then recursed
upon using map stratify_sub.

As an algorithm to build terms, this setup
should work. However the problem here is
that Coq cannot tell if this recursion will ever
stop, as stratify_sub is external to stratify_rec.
From stratify_rec’s point of view, it’s unclear
how the current iteration’s main argument
relates to that of the next iteration, because
this relation is obscured by the intervention
of stratify_sub. As far as stratify_rec can
tell, stratify_sub could be spawning child nodes
larger than stratify_rec’s current input. Using
those in its next iteration would make the
recursion loop indefinitely.

Non-standard recursion

So what does a terminating version of stratify look like? Well, Coq allows the user to select any inductively
defined object to recurse upon, instead of the standard objects (list, nat, et cetera).[1] Intuitively, it’s obvious
that our recursive process would end at some point: we are working with finite lists, so repeatedly splitting such
a list cannot continue indefinitely. Each subsequent list is smaller in length than its predecessor.

To capture this fact in an inductively defined object, we use the accessibility constructor Acc applied to
the relation lengthOrder to serve as our base for terminating recursion. lengthOrder is a simple less-than relation
on string lengths.

2203 Definition lengthOrder (x y : fstring) :=
2204 length x < length y.

Excerpt #14

Acc is a relation property with respect to a specific domain. Consider Acc’s definition below. Given a data type A,
a relation R between instances of A, and x, an instance of A, Acc R x is an object if, for any y such that R y x,
Acc R y is also an object. Let’s apply this to our relation lengthOrder. Acc lengthOrder fs is an object if, for all
fs’ such that length fs’ < length fs, Acc lengthOrder fs’ is also an object.

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=
Acc_intro : (forall y:A, R y x → Acc R y) → Acc R x.

Excerpt #15 Coq.Init.Wf

This construction chain must end at some point, because there can only be so many lengths smaller than
the previous before length 0 is included (more specifically, lengthOrder is well-founded). As such, structural
recursion can be established. Whereas in Excerpt #12 the successor function constructor was peeled off, here
we peel off the accessibility constructor. And so if we take the object Acc lengthOrder fs to be our decreasing
argument we can establish terminating recursion. Let’s see how this is implemented, first schematically and
then specifically.

9

2.1 Presenting the framework 2 REPRESENTATION PROOF

(input)

. . .

stratify’

fs

Acc
stratify

fs

fl_max

MAX

l2

Acc

l1

Acc

l0

Acc

ln

Acc

split_fstring_sigT

Figure 2: terminating recursion in stratify

Sketch

In the previous setting (see Figure 2), we saw that Coq could
not establish termination of the recursive process. In each
iteration, the main argument actually was decreasing, but this
was obscured by the intervention of map and stratify_sub. We
prevent this here by literally keeping a side note of the measure
of decreasingness.

A paired argument structure is used where the string fs

is held in the first part, and its measure of decreasingness in
the second part, Acc lengthOrder fs.

Let’s have a quick step by step through the recursion
as outlined schematically in Figure 3. Firstly, stratify is
merely a wrapper function, initiating the main function,
stratify’. This function then constructs a term where fl_max

of fs is the head, and split_fstring_sigT fs are the arguments
(red arrows) These arguments are then processed recursively
by stratify’ (blue arrows), until a full term is constructed.
When these recursive calls are made, the decreasing argument
has become smaller by at least one constructor of Acc.

Specifics

For a more technical description of this, consider the following.
As the definition of stratify’ shows in Excerpt #16 below,
stratify’ builds a vterm by taking two arguments, a French
string fs and some proof a of Acc lengthOrder fs. It then calls the constructor @Fun with three arguments. Firstly,
fs_Sig, the signature over French strings. Secondly, fl_max fs, the maximal elements in fs. This will be the term’s
head. Thirdly, the function stratify’ mapped over the term’s arguments, as computed by split_fstring_sigT.

2709 Fixpoint stratify’ (fs : fstring) (a : Acc lengthOrder fs)
2710 {struct a} : vterm :=
2711 @Fun fs_Sig (fl_max fs)
2712 (map (fun e ⇒ stratify’ (projT1 e) (Acc_inv a (projT2 e)))
2713 (split_fstring_sigT fs)
2714).

Excerpt #16

Let’s zoom into this third argument a little. split_fstring_sigT fs returns a list of non-maximal substrings
fsi of fs, each paired with a proof that lengthOrder fsi fs. Now, map takes each of these pairs and applies
fun e ⇒ stratify’ (projT1 e) (Acc_inv a (projT2 e)) to them. In each of these applications of stratify’, it is
thus given two arguments. Firstly, projT1 fsi: the first projection of fsi. Secondly, Acc_inv a (projT2 fsi): its
second projection with Acc_inv a applied to it. This is a lemma that derives precisely the required decreasingness
measure, Acc lengthOrder fsi, given a proof “a” that Acc lengthOrder fs, and a proof that lengthOrder fsi fs.

Lemma Acc_inv :
forall (A : Type) (R : A → A → Prop) (x : A),

Acc R x → forall y : A, R y x → Acc R y.

Excerpt #17 Coq.Init.Wf

R would bind here to lengthOrder, y to fsi and x to fs, resulting in the conclusion that Acc lengthOrder fsi. And
so the next iteration of stratify’ has a substring to process and an anchor point for its terminating recursion.

10

2.1 Presenting the framework 2 REPRESENTATION PROOF

The main function, stratify, is thus defined as follows.

2718 Definition stratify (fs : fstring) : vterm:=
2719 stratify’ fs (lengthOrder_wf fs).

Excerpt #18

Given fs, stratify calls stratify’ fs lengthOrder_wf, where lengthOrder_wf is a proof that Acc lengthOrder fs.
More specifically, lengthOrder_wf is a proof that well_founded lengthOrder. Given some relation R on instances of A,
well_founded R means that forall a : A, Acc R a.

This concludes our description of stratify. Before we move on to Section 2.1.4 about flattening, some
definitions are expanded upon in the epilogue to this section, that would have distracted from the main subject
should we have done so at their first mention.

Epilogue

In this epilogue to Section 2.1.3, we expand upon these definitions used in stratify’: fl_max,

split_fstring’,

split_fstring_sigT’.

fl max

To determine what letters to select for a term’s head, we use fl_max.

972 Definition not_below f L :=
973 Forall (fun x ⇒ ∼ fl_Lt f x) L.

Excerpt #19

We define a letter f to be maximal in L if there is no letter x in L such that fl_Lt f x. That is, if not_below f L.

998 Fixpoint fl_max’ (rest static : fstring) : fstring :=
999 match rest with

1000 | x :: xs ⇒ match (not_below_dec x static) with
1001 | left _ ⇒ x :: fl_max’ xs static
1002 | right _ ⇒ fl_max’ xs static
1003 end
1004 | nil ⇒ nil
1005 end.
1006
1007 Definition fl_max (L : fstring) : fstring :=
1008 fl_max’ L L.

Excerpt #20

Given an fstring L, fl_max returns the list of all French letters maximal in L. Internally, fl_max is merely an
interface for fl_max’, calling it with the same fstring twice.

Given two French strings rest and static, fl_max’ computes the list of all letters maximal in L by taking each
letter x of rest, and adding it to the end result if not_below_dec x static. Otherwise, x is discarded and fl_max’

continues with the remainder of rest. Here, not_below_dec is a lemma that proves decidability of not_below.
Recall from Section 1.1 that decidability is not inherent to our logic.

Example. Suppose again that we have an order ≻ such that m ≻ κ, ℓ. Then

fl_max’ (m̀ :: l̀ :: ḱ :: ḿ :: nil) (m̀ :: l̀ :: ḱ :: ḿ :: nil) =

m̀ :: (fl_max’ (l̀ :: ḱ :: ḿ :: nil) (m̀ :: l̀ :: ḱ :: ḿ :: nil)) :: nil =

m̀ :: (fl_max’ (ḱ :: ḿ :: nil) (m̀ :: l̀ :: ḱ :: ḿ :: nil)) :: nil =

m̀ :: (fl_max’ ḿ :: nil) (m̀ :: l̀ :: ḱ :: ḿ :: nil)) :: nil = m̀ :: ḿ :: nil.

11

2.1 Presenting the framework 2 REPRESENTATION PROOF

split fstring’

For any fstring L, the complement of (fl_max L) in L is (split_fstring’ L). This will become more apparent in
Section 2.2.2, where we prove that inverting this decomposition results in the original string. Whereas (fl_max’ L)
returns the head of stratify L, (split_fstring’ L) computes the list of scattered substrings that will be recursed
upon to form the arguments of stratify L. This corresponds to ⋃n

i {si}, with si from Definition 6.

2263 Fixpoint split_fstring’ (fs lx max : fstring) : list fstring :=
2264 match max with
2265 | nil ⇒ (lx ++ fs) :: nil
2266 | mi :: M ⇒ match fs with
2267 | nil ⇒ nil
2268 | li :: L ⇒ match (eq_fletter_dec li mi) with
2269 | left _ ⇒ lx :: split_fstring’ L nil M
2270 | right _ ⇒ split_fstring’ L (lx ++ (li :: nil)) (mi :: M)
2271 end
2272 end
2273 end.

Excerpt #21

Let’s see how this works. split_fstring’ takes three arguments. The main argument is fs. Then we have lx,
which is the substring currently being constructed. Finally, max is the list of letters maximal in fs.

Example. Take m and l with m maximal. Suppose we have max = m̀ m̀

fs = ĺ l̀ m̀ ḿ ĺ

Here, max has the letters maximal in fs with their order of appearance preserved. Now, for each letter mi in
max, split_fstring’ keeps comparing it to the next letter li in fs. So, for clarity, during this whole recursive
process, mi is always the next maximal letter in (what’s left of) fs. When comparing mi to li, the next letter in
fs, we can thus infer that if they are not the same, li is not maximal (since mi is the next maximal letter in fs).
In that case, li is added to lx. If they are the same, then there are no more non-maximal letters before mi in
fs. The list lx is added to the result, and the process is continued with the next letter in max, until max is empty.
At that point, the rest of fs, which is all non-maximal, is added to the result, and the recursion is complete.

In this example, the result would be the list (ĺ :: l̀ :: nil) :: nil :: (ĺ :: nil) :: nil.

split fstring sigT’

How does this relate to split_fstring_sigT’?

2691 Definition split_fstring_sigT’
2692 (fs : fstring) (input : list {x : fstring & In x (split_fstring fs)})
2693 : list {x : fstring & lengthOrder x fs}.

Excerpt #22

Basically, split_fstring_sigT’ is a version of split_fstring’, adapted for stratify’. It takes the result of
split_fstring fs and pairs each element e with a proof that lengthOrder e fs. This paired data type allows
for stratify to establish a terminating recursive process, as discussed in Section 2.1.3 above.

This concludes the epilogue to Section 2.1.3. In Section 2.1.4, we describe the inverse to stratification, called
flattening .

12

2.1 Presenting the framework 2 REPRESENTATION PROOF

2.1.4 Flattening

This section is about the operation inverse to stratification, called flattening. Its explanation is more succinct
compared to that of stratification, because the operation itself is simpler, both to define and to implement.
Flattening is to the head of a term and interleave what stratification is to fl_max of a string and split_fstring.
More specifically,

Definition 7. Flattening, denoted ♭, maps each French term to its corresponding French string. This is defined
inductively as follows: ε♭ = ε, and (ℓ̂1 . . . ℓ̂n(t0, . . . , tn))♭ = t♭0ℓ̂1 . . . ℓ̂nt

♭
n.

Example. Suppose we have an order ≻ such that m ≻ κ, ℓ. Then

(m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε)))♭ = (ℓ́ℓ̀(ε, ε, ε))♭m̀ε♭ḿ(ℓ̀(ε, ε))♭ = ε♭ℓ́ε♭ℓ̀ε♭m̀ḿε♭ℓ̀ε♭ = ℓ́ℓ̀m̀ḿℓ̀.

Implementation

Flattening a term in Coq is done as follows. Given a French term vt, flatten takes the head and list of arguments
args, and uses interleave to put the first element of args before the first letter of head, then put the second
element before the second letter, et cetera. flatten is then recursively applied to each element of args.

. . .

2290 Fixpoint interleave (h : fstring) (t : list fstring) : fstring :=
2291 match h, t with
2292 | head, nil ⇒ head
2293 | nil, _ ⇒ fold_right (fun x y ⇒ app x y) nil t
2294 | x :: xs, l :: ll ⇒ l ++ x :: (interleave xs ll)
2295 end.

2790 Fixpoint flatten (vt : vterm) : fstring :=
2791 match vt with
2792 | Var _ ⇒ empty_fstring
2793 | Fun head args ⇒ interleave head (map flatten args)
2794 end.

Excerpt #23

This concludes the description of our framework. Next, in Section 2.2, we prove this framework to be correct.

13

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

2.2 Proving the framework to be correct

In this section we go over a multi-part proof of correctness for our framework. To be correct, within the
framework every French string should uniquely correspond to a single French term and every French term
should uniquely correspond to a single French string. This correspondence is established via a bijection between
the domain of French strings and the domain of French terms. That is, a one-on-one relation between French
strings and French terms. This is captured in Lemma 12, displayed below.1

Lemma 12. The functions ♯ and ♭ are each other’s inverse. In other words, ♭ ○ ♯ and ♯ ○ ♭ are the identity.

Our proof of Lemma 12 in Coq will be threefold. Each segment of our threefold proof is described in its own
subsection, as sketched out in Figure 4.

s

=
=

ℓ́ℓ̀m̀ḿℓ̀

←Ð
ÐÐ
#

=
=

=

(ℓ́ℓ̀m̀ḿℓ̀)♯ ε♭ℓ́ε♭ℓ̀ε♭m̀ḿε♭ℓ̀ε♭

= =

m̀ḿ(ℓ́ℓ̀♯, ε♯, ℓ̀♯) (ℓ́ℓ̀(ε, ε, ε))♭m̀ε♭ḿ(ℓ̀(ε, ε))♭

= =
m̀ḿ(ℓ́ℓ̀(ε♯, ε♯, ε♯), ε, ℓ̀(ε♯, ε♯)) (m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε)))♭

=
=

Ð
→
♭

m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε))

§2.2.3: (t♭)♯ = t

§2.2.2: (s♯)♭ = s

=
=

t Ð→ well-formed? §2.2.1

Figure 4: contents of Section 2.2

In Section 2.2.1, we prove that vt_wellformed t holds for any term t generated by stratify. That is, French terms
generated by our stratification function are well-formed: it holds that, forall fs, vt_wellformed (stratify fs).
Next, in Section 2.2.2, we prove that ♭ ○ ♯ (flatten after stratify) is equivalent to the identity function: it holds
that, forall fs, flatten (stratify fs) = fs. Finally, in Section 2.2.3 we prove that ♯ ○ ♭ (stratify after flatten) is
equivalent to the identity function.

1the name of this lemma, “Lemma 12”, was adopted directly from Van Oostrom’s article[a] for sake of clarity

14

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

2.2.1 Well-formedness of stratify

In our framework, the properties described in Definition 4 should hold for any term t created by stratify.
That is, it should hold that, forall fs, vt_wellformed (stratify fs). Otherwise, we might be working with terms
that are not French terms. Recall from Section 2.1.2 that “CoLoR’s term data type is expressive enough for our
purposes but not strict enough, as neither arity nor the Hoare order are imposed. These additional constraints
are implemented via vt_wellformed”.

We will first examine a construct used in proving this, called unfold once, then break down the proof itself,
and then expand upon several auxiliary lemmas used in the proof.

Prologue

In this prologue to Section 2.2.1, we explain unfold once in preparation for the proof of vt_wellformed_stratify.

unfold once

S24 The tactic used to replace a function with
its definition is unfold. However, what happens
if we apply this to a function that is recursively
defined? Applying unfold to stratify here
gives us the (fix ...) format as displayed in
State S25, which is highly undesirable.

S25 This happens because Coq is unclear as to
what the end result of the recursive unfolding
will be. It keeps the ‘result so far’ embedded
inside of a new, locally defined function, because
the end result could be anything as far as Coq
is concerned. This is inconvenient, because no
tactics can be applied to embedded components
of such a partially unfolded function.

S241 subgoals
x : fstring
IH : forall y, lengthOrder y x → vt_wellformed (stratify y)
______________________________________(1/1)
vt_wellformed (stratify x)

intros x IH. unfold stratify. unfold stratify’.

S251 subgoals
x : fstring
IH : forall y, lengthOrder y x → vt_wellformed (stratify y)
______________________________________(1/1)
vt_wellformed
((fix stratify’ (fs : fstring) (a : Acc lengthOrder fs)

{struct a} : vterm :=
Fun (fl_max fs)
(map
(fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv a (projT2 e0)))
(split_fstring_sigT fs))) x (lengthOrder_wf x))

So we want to get rid of this embedding. This is done by use of a lemma dedicated to this, unfold_1_stratify’.
Rather than attempting to lay bare the full definition, it reveals the non-recursive part and leaves the recursive
part folded. Throughout the project, we have labelled such lemmas unfold_1_f, with f being the function
unfolded one layer deep, in this case stratify’.

2729 Lemma unfold_1_stratify’ :
2730 forall (x : fstring) (a : Acc lengthOrder x),
2731 stratify’ x a = @Fun fs_Sig (fl_max x)
2732 (map (fun e ⇒ stratify’ (projT1 e) (Acc_inv a (projT2 e)))
2733 (split_fstring_sigT x)
2734).

Excerpt #26

S27 applying unfold_1_stratify’ rather than
unfold stratify’ we arrive at the following proof
state (compare State S25). The head is not
embedded inside of a locally defined function,
making it readily accessible to our tactics.

S271 subgoals
x : fstring
IH : forall y, lengthOrder y x → vt_wellformed (stratify y)
______________________________________(1/1)
vt_wellformed
(Fun (fl_max x)

(map
(fun e0 : {x0 : fstring & lengthOrder x0 x} ⇒
stratify’ (projT1 e0)

(Acc_inv (lengthOrder_wf x) (projT2 e0)))
(split_fstring_sigT x)))

15

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

Proof

Now onto the actual proof itself. Our proof of the statement shown below in Excerpt #28 will follow the
structure of vt_wellformed’s definition as indicated by the circled numbers in Excerpt #8.

2993 Lemma vt_wellformed_stratify :
2994 forall fs,
2995 vt_wellformed (stratify fs).

Excerpt #28

S29 We do well-founded induction using length-

Order, as structural recursion in stratify’ is
based on lengthOrder (see Section 2.1.3).

S291 subgoals
______________________________________(1/1)
forall fs : fstring, vt_wellformed (stratify fs)

apply well_founded_ind with lengthOrder;

[apply lengthOrder_wf|idtac]. (2997)

S30 Given that, for all fstring y shorter than x,
stratify y is well-formed (that is, given the
induction hypothesis), we now have to show that
stratify x too is well-formed. We introduce
the induction hypothesis as IH, and begin to
unfold stratify (once).

S31 We’d also like to unfold vt_wellformed once.

We can dismiss the Var _ case[11] (item 1 in
Excerpt #8): as revealed by unfold_1_stratify’,
the result of stratify begins with “@Fun fs_Sig

(fl_max..”, and such a term is not a variable.
So the first real hurdle will be item 2 :

is it the case that after stratify x either
vterm_empty holds or vterm_not_empty? We begin
to answer this by doing case analysis on x.[16]

Case x = nil

S32 This gives us two subgoals. The first
subgoal, where x = nil, corresponds to the left-
hand side of item 2 in Excerpt #8.

Firstly, fl_max nil = nil holds by definition.
Secondly, split_fstring_sigT nil = nil, the other
half of vterm_is_empty (stratify nil), is already
simplified here to nil = nil, which is trivial
(split_fstring_sigT maps over split_fstring,
and map f nil = nil for any function f).

S301 subgoals
______________________________________(1/1)
forall x,
(forall y, lengthOrder y x → vt_wellformed (stratify y))
→ vt_wellformed (stratify x)

intros x IH. unfold stratify. rewrite unfold_1_stratify’. (2998)

S311 subgoals
x : fstring
IH : forall y, lengthOrder y x → vt_wellformed (stratify y)
______________________________________(1/1)
vt_wellformed
(Fun (fl_max x)

(map
(fun e0 : {x0 : fstring & lengthOrder x0 x} ⇒
stratify’ (projT1 e0)

(Acc_inv (lengthOrder_wf x) (projT2 e0)))
(split_fstring_sigT x)))

case_eq x; intros. (2999)

rewrite unfold_1_vt_wellformed. simpl. (3000)

S322 subgoal
IH : forall y, lengthOrder y nil → vt_wellformed (stratify y)
______________________________________(1/2)
(fl_max nil = nil ∧ nil = nil) ∨
(fl_max nil ≠ nil ∧ nil ≠ nil
∧ 0 = 0 ∧ fs_incomparable (fl_max nil)
∧ Forall (fun x0 ⇒ hoare_lt (vt_head x0) (fl_max nil)) nil
∧ True)

______________________________________(2/2)
...

left. split; trivial. (3000)

16

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

Case x ≠ nil

S33 We are then left to prove the second
subgoal, in which x = f::l, ie. x not empty.

Let’s unfold vt_wellformed once, and break
down what this well-formedness implies into
seperate subgoals by repeatedly applying split

to the conjunction on the right-hand side of item
2 in Excerpt #8.

S331 subgoals
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/1)
vt_wellformed
(Fun (fl_max (f::l))

(map
(fun e0 : {x0 : fstring & lengthOrder x0 (f::l)} ⇒
stratify’ (projT1 e0)
(Acc_inv (lengthOrder_wf (f::l)) (projT2 e0)))

(split_fstring_sigT (f::l))))

rewrite unfold_1_vt_wellformed. right. (3001)

split. Focus 2. split. Focus 2. (...) Unfocus. Unfocus. (3002)

S34 This brings us to State S34. X and Y are
edited in for reduction of clutter. Note that
subgoals 2 to 5 here correspond to items 3 to
6 in Excerpt #8. Let’s run by each subgoal,
starting with subgoal 1, in which we are to prove
that vterm_not_empty (Fun X Y). That is, neither
the head of Fun X Y nor its list of arguments is
empty (item 3).

S345 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
X := fl_max (f::l)
Y := (map (fun e0 : {x0 : fstring & lengthOrder x0 (f::l)} ⇒

stratify’ (projT1 e0) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e0))) (split_fstring_sigT (f::l)))

______________________________________(1/5)
vterm_not_empty (Fun X Y)
______________________________________(2/5)
ar X = length Y
______________________________________(3/5)
fs_incomparable X
______________________________________(4/5)
Forall (fun x0 : vterm ⇒ hoare_lt (vt_head x0) X) Y
______________________________________(5/5)
lforall vt_wellformed Y

Focus 1. unfold vterm_not_empty. split. (3003)

State S34 subgoal 1

S35 Firstly, we prove that X, fl_max (f::l) is not
empty, as f::l is not empty. This is proven by
fl_max_neq_nil :

forall fs, fs ≠ nil → fl_max fs ≠ nil.
Intuitively, this already makes sense: any non-
empty list should have at least one element
maximal for that list Next, neq_nil proves that
f::l is a non-empty list.

S352 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/2)
fl_max (f::l) ≠ nil
______________________________________(2/2)
map (fun e0 : {x : fstring & lengthOrder x (f::l)} ⇒

stratify’ (projT1 e0) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e0))) (split_fstring_sigT (f::l)) ≠ nil

apply fl_max_neq_nil. apply neq_nil. (3004)

S36 Secondly, we prove that Y is not empty.
Will this list of arguments, after each element
having stratify’ applied to it recursively, be
non-empty? Well, suppose it were empty. Then,
from map_eq_nil (∀f: map f nil = nil) it would
follow that split_fstring_sigT (f::l) were also
empty. But split_fs_sigT_neq_nil proves this to
be false: forall fs,

fs ≠ nil → split_fstring_sigT fs ≠ nil.
And so we dismiss the subgoal by contradiction.

S361 subgoals
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/1)
map
(fun e0 : {x : fstring & lengthOrder x (f::l)} ⇒
stratify’ (projT1 e0) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e0))) (split_fstring_sigT (f::l)) ≠ nil

intro. apply map_eq_nil in H. apply split_fs_sigT_neq_nil in H. (3005)

assumption. apply neq_nil. (3006)

17

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

State S34 subgoal 2

S37 Next, we want to establish that the
term has arity (item 2 in Excerpt #8) This
property is captured in ar. By map_length we
know that length (map f L) equals length L.

We want to make a case distinction on
fl_max (f::l). This way we can split our subgoal
according to ar’s definition, generating two new
subgoals. One for which fl_max (f::l) is nil,
and one for which it is not.

S374 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/4)
ar (fl_max (f::l)) =
length (map

(fun e0 : {x : fstring & lengthOrder x (f::l)} ⇒
stratify’ (projT1 e0) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e0))) (split_fstring_sigT (f::l)))

rewrite map_length. unfold ar. (3007)

case_eq (fl_max (f::l)); intros;[idtac|rewrite ← H]. (3008)

Case fl max (f::l) = nil

S38 The first case has a false assumption, H.
As we saw in State S35, fl_max L is not empty
for any non-empty list L. By this contradictory
assumption we can dismiss the first case.

Case fl max (f::l) ≠ nil

S39 split_fstring_sigT is a function mapped
over split_fstring to convert a list of sublists
of L into a list of pairs (s,p), where s is a sublist
of L and p a proof of this fact. We see in the
current subgoal a comparison of lengths. The
conversion made by split_fstring_sigT is length
preserving, so we can strip this layer, effectively
replacing split_fstring_sigT with split_fstring.

S385 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
H : fl_max (f::l) = nil
______________________________________(1/5)
0 = length (split_fstring_sigT (f::l))
______________________________________(2/5)
1 + length (fl_max (f::l)) =

length (split_fstring_sigT (f::l))

apply fl_max_neq_nil in H;[idtac|apply neq_nil]. contradiction H. (3009)

S394 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/4)
1 + length (fl_max (f::l)) =

length (split_fstring_sigT (f::l))

unfold split_fstring_sigT. unfold split_fstring_sigT’. (3010)

rewrite map_length. rewrite from_list_length. (3011)

We have captured the ratio between vt_wellformed and split_fstring in the lemma ar_holds, which states:

2888 Lemma ar_holds :
2889 forall fs,
2890 (fs = nil ∧ length (split_fstring fs) = 0)
2891 ∨ (fs ≠ nil ∧ 1 + length (fl_max fs) = length (split_fstring fs)).

Excerpt #40

S41 So we address the current subgoal by
adding to the list of hypotheses ar_holds applied
to f::l, and splitting its disjunction, leading to
State S42 and State S43.

S414 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/4)
1 + length (fl_max (f::l)) = length (split_fstring (f::l))

cut (f::l = nil ∧ length (split_fstring (f::l)) = 0 ∨ ...);

[intro|apply ar_holds]. do 2 destruct H0. (3016)

18

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S42 The left disjunct of ar_holds represents the
case where fs = nil, which is here false, so by
this false assumption, the current subgoal can
be dismissed.

S425 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
H0 : f::l = nil
H1 : length (split_fstring (f::l)) = 0
______________________________________(1/5)
1 + length (fl_max (f::l)) = length (split_fstring (f::l))

inversion H0. (3016)

S43 The right disjunct of ar_holds, the case
where fs ≠ nil, precisely matches the current
subgoal, so we close it by this assumption.

State S34 subgoal 3

S44 The stratified term’s head is an fstring

that should consist of mutually incomparable
letters (item 4 in Excerpt #8). This is proven
directly by lemma fl_max_incomparable (for its
proof see Excerpt #72), which states:

forall L, fs_incomparable (fl_max L).

State S34 subgoal 4

S45 Next, we show that hoare_lt holds between
the head of a stratified term and the heads of
its arguments. This corresponds to item 5 in
Excerpt #8, which states:

Forall (fun x ⇒ hoare_lt (vt_head x) f) args.
Let’s first decompose Forall. By Forall_forall:

forall P l,

Forall P l ↔ (forall e, In e l → P e),
item 5 would state

forall x, In x args → hoare_lt (vt_head x) f.
We apply Forall_forall to our current subgoal,
adding the premises (x and In x args) to our
list of hypotheses using intros.

S46 We apply in_map_iff, which states
forall f l y,

In y (map f l) ↔ (exists x, f x = y ∧ In x l),
and thus we separate y’s membership of l from
its having f applied to it.

S434 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
H0 : f::l ≠ nil
H1 : 1 + length (fl_max (f::l)) =

length (split_fstring (f::l))
______________________________________(1/4)
1 + length (fl_max (f::l)) = length (split_fstring (f::l))

assumption. (3016)

S443 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/3)
fs_incomparable (fl_max (f::l))

apply fl_max_incomparable (3017)

S452 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/2)
Forall (fun x ⇒ hoare_lt (vt_head x) (fl_max (f::l)))
(map

(fun e0 : {x : fstring & lengthOrder x (f::l)} ⇒
stratify’ (projT1 e0) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e0))) (split_fstring_sigT (f::l)))

apply Forall_forall. intros. (3018)

S462 subgoal
...
x : vterm
H : In x (map

(fun e : {x : fstring & lengthOrder x (f::l)} ⇒
stratify’ (projT1 e)

(Acc_inv (lengthOrder_wf (f::l))
(projT2 e)

)
)
(split_fstring_sigT (f::l))

)
______________________________________(1/2)
hoare_lt (vt_head x) (fl_max (f::l))

apply in_map_iff in H. (3018)

19

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S47 Now that we have reformulated H, let’s
create a witness and isolate its properties.

S472 subgoal
...
x : vterm
H : exists x0 : {x : fstring & lengthOrder x (f::l)},

stratify’ (projT1 x0)
(Acc_inv (lengthOrder_wf (f::l))

(projT2 x0)
) = x ∧

In x0 (split_fstring_sigT (f::l))
______________________________________(1/2)
hoare_lt (vt_head x) (fl_max (f::l))

do 2 destruct H. destruct x0. (3018)

S48 The hypothesis l0 then allows us, by the
induction hypothesis IH, to add to our list of
hypotheses that vt_wellformed (stratify x0):
since our newly created witness x0 relates to
f::l in lengthOrder (by l0) we know by IH that
vt_wellformed (stratify x0) must hold.

S482 subgoal
...
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
x0 : fstring
l0 : lengthOrder x0 (f::l)
H : stratify’ (projT1 x0)

(Acc_inv (lengthOrder_wf (f::l))
(projT2 x0)

) = x
H0 : In (existT x0 l0) (split_fstring_sigT (f::l))
______________________________________(1/2)
hoare_lt (vt_head x) (fl_max (f::l))

cut (vt_wellformed (stratify x0));[intro|apply IH; assumption]. (3019)

S49 We then generalize H0. A sublist s, paired
with proof p of its being a sublist, only occurs in
split_fstring_sigT if s is in split_fstring. This
fact is captured in split_fs_sigT_drop_proofs:

forall fs li p,

In (existT li p) (split_fstring_sigT fs) →

In li (split_fstring fs).

And split_fstring_sigT in H0 is thus replaced by
split_fstring. Next, let’s add stratify x0 = x to
our hypotheses.

S492 subgoal
...
x : vterm
x0 : fstring
l0 : lengthOrder x0 (f::l)
H : stratify’ (projT1 x0)

(Acc_inv (lengthOrder_wf (f::l))
(projT2 x0)

) = x
H0 : In (existT x0 l0) (split_fstring_sigT (f::l))
H1 : vt_wellformed (stratify x0)
______________________________________(1/2)
hoare_lt (vt_head x) (fl_max (f::l))

apply split_fs_sigT_drop_proofs in H0. (3020)

cut (stratify x0 = x);[intro|idtac]. Focus 2. (3021)

justification for stratify x0 = x

S50 Proof for this is provided by H: the specific
proof of Acc lengthOrder x given to stratify’ is
irrelevant (as captured in proof_irrelevance), so
we can generalize H to stratify x0 = x. Recall
from Excerpt #18 that stratify fs is merely a
shorthand for stratify’ fs (Acc lengthOrder fs).

See Excerpt #61 for more on proof_irrelevance.

S501 subgoals
...
H : stratify’ (projT1 x0)

(Acc_inv (lengthOrder_wf (f::l))
(projT2 x0)

) = x
H0 : In x0 (split_fstring (f::l))
______________________________________(1/1)
stratify x0 = x

rewrite ← H. apply proof_irrelevance. (3022)

rewrite ← H2. clear H2. (3023)

20

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S51 Back to the subgoal at hand. We will be
using the lemma hoare_Lt_split_max : forall L,

L ≠ nil → hoare_Lt (split_fstring L) (fl_max L)

(see Excerpt #68 for its proof). hoare_Lt simply
raises hoare_lt, from comparing one list to one
list, to comparing multiple lists to one list.
In other words, hoare_Lt_split_max states that
hoare_lt holds between the head of an fterm and
each of its (unstratified) arguments.

However, our current subgoal is about
hoare_lt between the head of f::l and the
head of one of its arguments (stratified).
So let us first transform this by means of
hoare_lt_sublist_congr1:

forall M’ L M,

sublist M M’ → hoare_lt M’ L → hoare_lt M L.

S52 We have replaced vt_head (stratify x0)

with x0 in our subgoal. sublist_head_fstring

provides proof that the former is a sublist of
the latter.

S53 Next, let’s apply hoare_Lt_split_max in
order to add to our hypotheses that:
hoare_Lt (split_fstring (f::l)) (fl_max (f::l)).

S512 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
x : vterm
x0 : fstring
l0 : lengthOrder x0 (f::l)
H : stratify’ (projT1 x0)

(Acc_inv (lengthOrder_wf (f::l))
(projT2 x0)

) = x
H0 : In x0 (split_fstring (f::l))
H1 : vt_wellformed (stratify x0)
______________________________________(1/2)
hoare_lt (vt_head (stratify x0)) (fl_max (f::l))

apply hoare_lt_sublist_congr1 with x0. (3024)

S523 subgoal
...
______________________________________(1/3)
sublist (vt_head (stratify x0)) x0
______________________________________(2/3)
hoare_lt x0 (fl_max (f::l))

apply sublist_head_fstring. (3025)

S532 subgoal
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
x : vterm
x0 : fstring
l0 : lengthOrder x0 (f::l)
H : stratify’ (projT1 x0)

(Acc_inv (lengthOrder_wf (f::l))
(projT2 x0)

) = x
H0 : In x0 (split_fstring (f::l))
H1 : vt_wellformed (stratify x0)
______________________________________(1/2)
hoare_lt x0 (fl_max (f::l))

cut (hoare_Lt (split_fstring (f::l)) (fl_max (f::l)));

[intro|apply hoare_Lt_split_max; apply neq_nil]. (3027)

S54 As explained above at State S51, given some
list fstring LL and an fstring fs, to say that
hoare_Lt LL fs, is to say that for any member
m of LL, hoare_lt m fs holds. We rewrite H2 in
accordance to this.

S542 subgoal
...
H0 : In x0 (split_fstring (f::l))
H2 : hoare_Lt (split_fstring (f::l)) (fl_max (f::l))
______________________________________(1/2)
hoare_lt x0 (fl_max (f::l))

unfold hoare_Lt in H2. rewrite Forall_forall in H2. (3028)

S55 Well, we have by H0 that x0 is a member
of split_fstring (f::l). So from this it follows
that hoare_lt x0 (fl_max (f::l)), concluding this
subgoal (ie. subgoal 4 of State S34).

S552 subgoal
...
H0 : In x0 (split_fstring (f::l))
H2 : forall x, In x (split_fstring (f::l)) →

hoare_lt x (fl_max (f::l))
______________________________________(1/2)
hoare_lt x0 (fl_max (f::l))

apply H2. assumption. (3029)

21

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

State S34 subgoal 5
S56 Last but not least, we proceed to show that
the arguments of a stratified term are also well-
formed, ie. item 6 in Excerpt #8.

The approach we will employ is very
similar to that of subgoal 4: move properties of
the list under investigation (map ...) to the list
of hypotheses, split properties, and derive the
subgoal from IH using the isolated properties.
Let’s begin by splitting lforall using
lforall_intro:
forall P l,

(forall x : A, In x l → P x) → lforall P l.

S57 Again, similar to what we did at State S47,
we break down H into its constituent parts using
in_map_iff.

S561 subgoals
f : fletter
l : list fletter
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
______________________________________(1/1)
lforall vt_wellformed
(map

(fun e0 : {x : fstring & lengthOrder x (f::l)} ⇒
stratify’ (projT1 e0) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e0))) (split_fstring_sigT (f::l)))

apply lforall_intro. intros. (3030)

S571 subgoals
...
x : vterm
H : In x (map

(fun e : {x : fstring & lengthOrder x (f::l)} ⇒
stratify’ (projT1 e) (Acc_inv (lengthOrder_wf (f::l))
(projT2 e))) (split_fstring_sigT (f::l)))

______________________________________(1/1)
vt_wellformed x

apply in_map_iff in H. do 2 destruct H. destruct x0. (3030)

S58 We then add vt_wellformed (stratify x0)

to our hypotheses by virtue of IH and l0: we
can use the induction hypothesis because x0 is
smaller than f::l, same as State S48.

S581 subgoals
...
IH : forall y, lengthOrder y (f::l) →

vt_wellformed (stratify y)
x : vterm
x0 : fstring
l0 : lengthOrder x0 (f::l)
H : stratify’ (projT1 (existT x0 l0))

(Acc_inv (lengthOrder_wf (f::l))
(projT2 (existT x0 l0))

) = x
H0 : In (existT x0 l0) (split_fstring_sigT (f::l))
______________________________________(1/1)
vt_wellformed x

cut (vt_wellformed (stratify x0));[intro|apply IH; assumption]. (3031)

S59 We infer from H that stratify x0 = x, similar
to what we did at State S49.

S591 subgoals
...
H : stratify’ (projT1 (existT x0 l0))

(Acc_inv (lengthOrder_wf (f::l))
(projT2 (existT x0 l0))

) = x
H1 : vt_wellformed (stratify x0)
______________________________________(1/1)
vt_wellformed x

cut (stratify x0 = x);[intro|rewrite ← H; apply proof_irrelevance]. (3032)

S60 Which in turn enables us to conclude that
vt_wellformed x for an arbitrary argument x

of stratify f::l, thus concluding the fifth and
final subgoal of State S34. ◻

S601 subgoals
...
H1 : vt_wellformed (stratify x0)
H2 : stratify x0 = x
______________________________________(1/1)
vt_wellformed x

rewrite ← H2. assumption. (3033)

This concludes our proof of vt_wellformed_stratify.

22

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

Epilogue

In this epilogue to Section 2.2.1, we explain the following auxiliary lemmas: proof_irrelevance,

hoare_Lt_split_max,

fl_max_incomparable.

proof irrelevance

The stratification of a French term does not depend on the particular instance of its decreasingness measure.

2814 Lemma proof_irrelevance :
2815 forall (x0 : fstring) (p1 p2 : Acc lengthOrder x0),
2816 stratify’ x0 p1 = stratify’ x0 p2.

Excerpt #61

S62 This is captured in the above lemma,
proof_irrelevance. We begin its proof by doing
induction on the length of x0.

S621 subgoals
______________________________________(1/1)
forall (x0 : fstring) (p1 p2 : Acc lengthOrder x0),
stratify’ x0 p1 = stratify’ x0 p2

intro. apply well_founded_ind with

(P := fun x0 ⇒ forall p1 p2, stratify’ x0 p1 = stratify’ x0 p2)

(R := lengthOrder);[apply lengthOrder_wf|idtac];

intro; intro IH; intros. (2822)

S63 Our induction hypothesis IH now tells us
that the particular decreasingness measure for
stratify’ of any y smaller than x is irrelevant.
In other words, our subgoal already holds for
the arguments of stratify’ x _. Let’s unfold
stratify’ once and include these in our subgoal.

S631 subgoals
x0 : fstring
x : fstring
IH : forall y, lengthOrder y x →

forall p1 p2, stratify’ y p1 = stratify’ y p2
p1 : Acc lengthOrder x
p2 : Acc lengthOrder x
______________________________________(1/1)
stratify’ x p1 = stratify’ x p2

do 2 rewrite unfold_1_stratify’. (2823)

S64 This reveals that the terms we are
comparing are indeed very similar. The only
difference between them is the base of their
arguments’ decreasingness measure (p1 or p2).
So we simplify this subgoal by removing the
heads, which are equal.

S641 subgoals
...
______________________________________(1/1)
Fun (fl_max x)

(map (fun e0 ⇒ stratify’ (projT1 e0)
(Acc_inv p1 (projT2 e0))

) (split_fstring_sigT x)) =
Fun (fl_max x)

(map (fun e0 ⇒ stratify’ (projT1 e0)
(Acc_inv p2 (projT2 e0))

) (split_fstring_sigT x))

apply f_equal. (2824)

S65 We then arrive at an equation between
the arguments of these stratifications. That is,
between two mappings of stratify’. These take
the same arguments except for p1 and p2. We
exploit functional extensionality to prove that
these mappings are equal (see Excerpt #83 for
a definition of map_ext).

S651 subgoals
...
______________________________________(1/1)
map (fun e0 ⇒ stratify’ (projT1 e0)

(Acc_inv p1 (projT2 e0))
) (split_fstring_sigT x) =

map (fun e0 ⇒ stratify’ (projT1 e0)
(Acc_inv p2 (projT2 e0))

) (split_fstring_sigT x)

apply map_ext with (g :=

(fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv p2 (projT2 e0)))). (2825)

23

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S66 Which leaves us with the burden to prove
that the functions mapped were in fact equal.
This is provided by the induction hypothesis IH.
From the type of a0 it follows that the premise
lengthOrder _ x is fulfilled. This makes sense
because these are the arguments of the original
stratification. Recall from split_fstring_sigT’

that they are smaller in lengthOrder. ◻

S661 subgoals
...
IH : forall y, lengthOrder y x →

forall p1 p2, stratify’ y p1 = stratify’ y p2
______________________________________(1/1)
forall a0 : {x1 : fstring & lengthOrder x1 x},
stratify’ (projT1 a0) (Acc_inv p1 (projT2 a0)) =
stratify’ (projT1 a0) (Acc_inv p2 (projT2 a0))

intro. apply IH. destruct a0. simpl. assumption. (2826)

hoare Lt split max

For any French string L, the Hoare order holds between each element of split_fstring L and fl_max L.
To appreciate our proof of the lemma corresponding to this statement, consider first hoare_Lt’s definition,
which is simply a lifting of hoare_lt, from (fstring → fstring → Prop) to (list fstring → fstring → Prop).

1791 Definition hoare_Lt (LL : list fstring) (L : fstring) :=
1792 Forall (fun x ⇒ hoare_lt x L) LL. (*V*)

Excerpt #67

The lemma then reads as follows.

2630 Lemma hoare_Lt_split_max :
2631 forall L, L ≠ nil →
2632 hoare_Lt (split_fstring L) (fl_max L).

Excerpt #68

S69 For any two lists M and L, if hoare_Lt M L

then hoare_Lt M (fl_max L). This is captured in
hoare_Lt_then_also_fl_max, the proof of which is
touched upon below.

S691 subgoals
______________________________________(1/1)
forall L, L ≠ nil → hoare_Lt (split_fstring L) (fl_max L)

intros. apply hoare_Lt_then_also_fl_max. (2634)

S70 The proof state we are left with is proven
by split_fstring_hoare_Lt.ν ◻

S701 subgoals
L : list fletter
H : L ≠ nil
______________________________________(1/1)
hoare_Lt (split_fstring L) L

apply split_fstring_hoare_Lt. assumption. (2634)

2616 Lemma hoare_Lt_then_also_fl_max :
2617 forall M L,
2618 hoare_Lt M L → hoare_Lt M (fl_max L).

Excerpt #71

If hoare_Lt holds between M and L, it should also hold between M and fl_max L. In other words, if for each fstring

m in M it holds that hoare_lt m L, then it should also hold for each fstring m in M that hoare_lt m (fl_max L). Let
m be an arbitrary string in M, and mi an arbitrary letter in m. Then by hoare_Lt M L we know that there is some
letter lj in L such that fl_Lt mi lj . Since fl_max L contains all letters maximal in L, either lj itself is in fl_max L,
or there is a letter lk in fl_max L such that fl_Lt lj lk. By transitivity then, fl_Lt mi lk. ◻

24

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

fl max incomparable

According to Definition 4, the French term signature over L consists of all strings in L̂ composed of letters
mutually ≻-incomparable. For our stratification process, this means that each head should by construction
consist of only letters that are mutually ≻-incomparable, which is expressed in the following lemma.

1473 Lemma fl_max_incomparable :
1474 forall L,
1475 fs_incomparable (fl_max L).

Excerpt #72

This lemma however is merely a wrapper for the next lemma, which we will proceed to prove below. Recall from
Section 2.1.3 that “internally, fl max is merely an interface for fl max’, calling it with the same fstring twice”.

1462 Lemma fl_max’_incomparable :
1463 forall M L, sublist M L →
1464 fs_incomparable (fl_max’ M L).

Excerpt #73

S74 An fstring L is only fs_incomparable if for
any e in L it holds that not_below e L. This is
expressed in all_not_below_incomparable, which
states: forall L,

(forall e, In e L → not_below e L) →

fs_incomparable L.

S741 subgoals
M : list fletter
L : list fletter
H : sublist M L
______________________________________(1/1)
fs_incomparable (fl_max’ M L)

apply all_not_below_incomparable. intros. (1467)

S75 For a letter e to be in fl_max’ M L is to be
not_below e L. By fl_max_not_below, which states
forall M e L, In e (fl_max’ M L) → not_below e L,
we can thus replace H0 by not_below e0 L.

S751 subgoals
...
H : sublist M L
e0 : fletter
H0 : In e0 (fl_max’ M L)
______________________________________(1/1)
not_below e0 (fl_max’ M L)

apply fl_max_not_below in H0. (1468)

S76 If not_below e X, then also not_below e S

for any sublist S of X. By sublist_not_below,
a lemma capturing this, we thus replace the
current subgoal by not_below e0 L (ie. H0) and
sublist (fl_max’ M L) L.

S761 subgoals
...
H : sublist M L
H0 : not_below e0 L
______________________________________(1/1)
not_below e0 (fl_max’ M L)

apply sublist_not_below with L;[idtac|assumption]. (1469)

S77 The maximal elements of a list are a sublist
of that list. ◻

S771 subgoals
...
H : sublist M L
______________________________________(1/1)
sublist (fl_max’ M L) L

apply fl_max’_L_sublist_L; assumption. (1470)

This concludes Section 2.2.1. In the next section we prove that flatten is the operation inverse to stratify.

25

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

2.2.2 Flatten after stratify

In this section, we prove that for any French string s it holds that (s♯)♭ = s. That is, we prove that the function

♭ ○ ♯ (flatten after stratify) is equivalent to the identity function in our framework. This is the first half of our
proof of Lemma 12 (recall its statement from our introduction to Section 2.2). The other half of Lemma 12,
proof that for any French term t, it holds that (t♭)♯ = t, is the topic of the next section, §2.2.3.

Below in Figure 5, the seemless transition from French string s via recursive application of stratification to
French term and then via recursive application of flattening back to the original string s, is outlined schematically.
After we have presented the proof, in the epilogue to this section we will expand upon a lemma called
interleave_split_id.

s

=
=

ℓ́ℓ̀m̀ḿℓ̀

←Ð
ÐÐ
#

=
=

=

(ℓ́ℓ̀m̀ḿℓ̀)♯ ε♭ℓ́ε♭ℓ̀ε♭m̀ḿε♭ℓ̀ε♭

= =

m̀ḿ(ℓ́ℓ̀♯, ε♯, ℓ̀♯) (ℓ́ℓ̀(ε, ε, ε))♭m̀ε♭ḿ(ℓ̀(ε, ε))♭

= =

m̀ḿ(ℓ́ℓ̀(ε♯, ε♯, ε♯), ε, ℓ̀(ε♯, ε♯)) (m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε)))♭

=
=

Ð
→
♭m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε))

Figure 5: ♭ ○ ♯ is equivalent to the identity function

Proof

For any fstring fs, applying flatten to the result of stratify fs should result in fs again. That is,

2849 Lemma flatten_after_stratify_id :
2850 forall fs,
2851 flatten (stratify fs) = fs.

Excerpt #78

S79 We’re doing well-founded induction using
lengthOrder, again because the recursion
of stratify’ is based on just that (see
Excerpt #16). Proof of its well-foundedness is
provided by lengthOrder_wf. We will begin this
proof by unfold the top layers of this statement.
Let’s start by unfolding stratify once.

S80 split_fstring_sigT is a wrapper function
for split_fstring_sigT’, let’s unfold it.

S791 subgoals
______________________________________(1/1)
forall fs : fstring, flatten (stratify fs) = fs

apply well_founded_ind with lengthOrder;

[apply lengthOrder_wf|idtac]; intros. (2853)

unfold stratify. rewrite unfold_1_stratify’. (2854)

S801 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
flatten (
Fun (fl_max x)

(map (fun e0 ⇒
stratify’ (projT1 e0)

(Acc_inv (lengthOrder_wf x)(projT2 e0)))
(split_fstring_sigT x))

) = x

unfold split_fstring_sigT. (2855)

26

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S81 To flatten a term is to interleave its head
with its arguments, and flatten each of those
arguments recursively (see also Section 2.1.4).
Let’s unfold flatten once.

S811 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
flatten (
Fun (fl_max x)

(map (fun e0 ⇒
stratify’ (projT1 e0)

(Acc_inv (lengthOrder_wf x)(projT2 e0)))
(split_fstring_sigT’ x

(from_list (split_fstring x))
)

) = x

rewrite unfold_1_flatten. (2855)

S82 After unfolding flatten once, we see that
map is applied to the result of another map. We
can simplify this using map_map :

forall f g l,

map g (map f l) = map (fun x ⇒ g (f x)) l.

S83 After rewriting map flatten (map stratify _)

to map (fun x⇒ flatten (stratify x)) _, we want
to simplify this compounded function being
mapped. We use functional extensionality,
which is captured in map_ext :

forall f g,

(forall a, f a = g a) →

forall l, map f l = map g l.

We replace the function fun x0 ⇒ flatten (

stratify’ (projT1 x0)

(Acc_inv (lengthOrder_wf x)(projT2 x0)))

by fun x0 ⇒ flatten (stratify (projT1 x0)),
effectively folding stratify’ to stratify.

S821 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
interleave (fl_max x)
(map flatten

(map (fun e0 ⇒
stratify’ (projT1 e0)

(Acc_inv (lengthOrder_wf x)(projT2 e0)))
(split_fstring_sigT’ x

(from_list (split_fstring x))
)

) = x

rewrite map_map. (2856)

S831 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
interleave (fl_max x)
(map (fun x0 ⇒

flatten (stratify’
(projT1 x0)
(Acc_inv (lengthOrder_wf x)(projT2 x0))

)
(split_fstring_sigT’ x

(from_list (split_fstring x))
)

) = x

rewrite map_ext with

(g := (fun x0 ⇒ flatten (stratify (projT1 x0)))). (2857)

Focus 2. (2858)

map ext justification

S84 To justify this maneuver, we have to
prove the premise of map_ext. Something of the
form flatten A = flatten B can be rewritten by
means of f_equal to A = B. We unfold stratify to
further homogenize the equation.

S841 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
forall a0 : {x0 : fstring & lengthOrder x0 x},
flatten (stratify’ (projT1 a0)

(Acc_inv (lengthOrder_wf x) (projT2 a0)))
= flatten (stratify (projT1 a0))

intro. f_equal. unfold stratify. (2858)

27

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S85 This brings us to an equation between
two instances of stratify’, that are identical
except for their proof of lengthOrder a0. This
scenario is covered by proof_irrelevance, see
Excerpt #61.

S851 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
a0 : {x0 : fstring & lengthOrder x0 x}
______________________________________(1/1)
stratify’ (projT1 a0) (Acc_inv (lengthOrder_wf x) (projT2 a0))
= stratify’ (projT1 a0) (lengthOrder_wf (projT1 a0))

apply proof_irrelevance. (2858)

main proof, continued

S86 fun x0 ⇒ flatten (stratify (projT1 x0)) can
then be replaced by fun x0 ⇒ projT1 x0, again
using map_ext.

S861 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/2)
interleave (fl_max x)
(map (fun x0 ⇒

flatten (stratify (projT1 x0)))
(split_fstring_sigT’ x

(from_list (split_fstring x))
)

) = x

rewrite map_ext with (g := (fun x0 ⇒ projT1 x0)). Focus 2. (2859)

map ext justification

S87 First we introduce a0 and dissect it.
S871 subgoals

x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
forall a0 : {x0 : fstring & lengthOrder x0 x},
flatten (stratify (projT1 a0)) = projT1 a0

intro. destruct a0. (2860)

S88 This then leads to a proof state where
projT1 (existT x0 l) occurs. That is, the first
projection of the pair (x0,l). We simplify and
replace this by x0.

S881 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
x0 : fstring
l : lengthOrder x0 x
______________________________________(1/1)
flatten (stratify (projT1 (existT x0 l))) =

projT1 (existT x0 l)

simpl. (2860)

S89 The resulting subgoal is matched by our
induction hypothesis, H. The premise of its
application, lengthOrder x0 x, is covered by l.

S891 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
x0 : fstring
l : lengthOrder x0 x
______________________________________(1/1)
flatten (stratify x0) = x0

apply H. simpl. assumption. (2860)

28

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

main proof, continued

S90 We clean up the proof paired formatting
using split_fstring_sigT_inversion, stating:
forall fs L,

map (fun x ⇒ projT1 x) (split_fstring_sigT fs)

= split_fstring fs.

S901 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
interleave (fl_max x)
(map (fun x0 ⇒ projT1 x0)

(split_fstring_sigT’ x (from_list (split_fstring x)))
) = x

rewrite split_fstring_sigT_inversion;

[idtac|exact (from_list (split_fstring x))]. (2861)

S91 The rest is handled by interleave_split_id,
which is elaborated upon next. ◻

S911 subgoals
x : fstring
H : forall y, lengthOrder y x → flatten (stratify y) = y
______________________________________(1/1)
interleave (fl_max x) (split_fstring x) = x

apply interleave_split_id. (2862)

Epilogue

In this epilogue to Section 2.2.2, we address a key auxiliary lemma, called interleave_split_id.

interleaving fl max and split fstring

2321 Lemma interleave_split_id :
2322 forall L,
2323 interleave (fl_max L) (split_fstring L) = L.

Excerpt #92

To reduce the complexity of this lemma’s proof, define another auxiliary lemma interleave_split’_id, where we
generalize over fl_max L. This way we don’t have to be concerned with the mechanics of fl_max.

2297 Lemma interleave_split’_id :
2298 forall L l0 max, sublist max L →
2299 interleave max (split_fstring’ L l0 max) = l0 ++ L.

Excerpt #93

Before looking at its proof, consider why this lemma would hold. interleave and split_fstring essentially invert
each other. split_fstring separates a string into substrings, dropping elements of max, which function to mark
the border between one substring and the next. interleave concatenates a list of substrings into a single string,
adding an element of max in between each sublist.

S94 So let’s begin by doing induction on the
length of L.

S941 subgoals
______________________________________(1/1)
forall L l0 max, sublist max L →

interleave max (split_fstring’ L l0 max) = l0 ++ L

intro. induction L; intros. (2301)

induction base

S95 The induction base, where L’s length is
zero, is trivial. As max is a sublist of nil, its
value must be nil. We substitute nil for max

and simplify to make the triviality of this proof
state more visible.

S952 subgoal
l0 : fstring
max : list fletter
H : sublist max nil
______________________________________(1/2)
interleave max (split_fstring’ nil l0 max) = l0 ++ nil

inversion H. simpl. (2302)

29

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S96 This results in the following equation.
Adding an empty list to any list will not alter
that list. The equation thus holds.

S962 subgoal
...
H0 : nil = max
______________________________________(1/2)
(l0 ++ nil) ++ nil = l0 ++ nil

rewrite ← app_assoc. trivial. (2302)

induction step

S97 Next, the induction step. For this, we delve
into the definition of split_fstring’.

S971 subgoals
a0 : fletter
L : list fletter
IHL : forall l1 max, sublist max L →

interleave max (split_fstring’ L l1 max) = l1 ++ L
l0 : fstring
max : list fletter
H : sublist max (a0::L)
______________________________________(1/1)
interleave max (split_fstring’ (a0::L) l0 max) = l0 ++ a0::L

unfold split_fstring’. (2303)

S98 Based on this definition, we will make
some case distinctions. For starters on max, and
shortly on fletter_eq_dec a0 mi (as we will see at
State S101).

S981 subgoals
...
______________________________________(1/1)
interleave max (match max with

| nil ⇒ (l0 ++ a0::L) :: nil
| mi :: M ⇒ if (fletter_eq_dec a0 mi) then ...

else ...)

case_eq max; intros; fold split_fstring’. (2304)

induction step, case max = nil

S99 The case distinction on max reveals the
subgoal to be trivial for max = nil, as we can
see after simplification.

S992 subgoal
...
H0 : max = nil
______________________________________(1/2)
interleave nil ((l0 ++ a0::L) :: nil) = l0 ++ a0::L

simpl. (2305)

S100 This is similar to State S96. We eliminate
parenthesis and declare the subgoal trivial.

S1002 subgoal
...
H0 : max = nil
______________________________________(1/2)
(l0 ++ a0::L) ++ nil = l0 ++ a0::L

rewrite app_nil_r. trivial. (2305)

induction step, case max ≠ nil

S101 Next, we want to split our subgoal on
fletter_eq_dec a0 f by making a case distinction
on it. That is, we do case analysis on whether
or not a0 equals f, splitting our current subgoal
into one where they are equal, and one where
they are not.

S1011 subgoals
...
f : fletter
l : list fletter
H0 : max = f::l
______________________________________(1/1)
interleave (f::l)

(if (fletter_eq_dec a0 f) then
l0 :: split_fstring’ L nil l

else
split_fstring’ L (l0 ++ a0 :: nil) (f::l)) =
l0 ++ a0::L

case (fletter_eq_dec a0 f); intro; subst. (2306)

30

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

induction step, case max ≠ nil, a0 = f

S102 This gives us the current subgoal, where f

is substituted for any occurrence of a0.

S103 Simplification completes the first step of
the recursive interweaving process, bringing l0

and f to the surface of interleave. Now we can
see both ends of the equation are lists with the
same prefix. Whether or not the equation holds
will thus depend on the rest of it. We remove
l0 ++ f with app_eq and cons_eq.

S1022 subgoal
...
IHL : forall l1 max, sublist max L →

interleave max (split_fstring’ L l1 max) = l1 ++ L
H : sublist (f::l) (f::L)
______________________________________(1/2)
interleave (f::l) (l0 :: split_fstring’ L nil l)
= l0 ++ f::L

simpl. (2307)

S1032 subgoal
...
______________________________________(1/2)
l0 ++ f :: interleave l (split_fstring’ L nil l)

= l0 ++ f :: L

apply app_eq;[trivial|idtac]. apply cons_eq;[trivial|idtac]. (2308)

S104 The remainder of this subgoal is matched
by our induction hypothesis IHL (let l1 := nil,
and max := l). The premise of IHL, sublist l L, is
covered by H, after we have dropped f by means
of sublist_incl2.

S1042 subgoal
...
IHL : forall l1 max, sublist max L →

interleave max (split_fstring’ L l1 max) = l1 ++ L
H : sublist (f::l) (f::L)
______________________________________(1/2)
interleave l (split_fstring’ L nil l) = L

apply IHL. apply sublist_incl2 in H. assumption. (2309)

induction step, case max ≠ nil, a0 ≠ f

S105 Again we arrive at a subgoal where
we can apply our induction hypothesis (with
l1 := l0 ++ a0 :: nil)), and max := f::l.

S1051 subgoals
...
IHL : forall l1 max, sublist max L →

interleave max (split_fstring’ L l1 max) = l1 ++ L
n : a0 ≠ f
H : sublist (f::l) (a0::L)
______________________________________(1/1)
interleave (f::l) (split_fstring’ L (l0 ++ a0::nil) (f::l)) =
l0 ++ a0::L

rewrite IHL. (2310)

S106 We then arrive at a trivial subgoal. The
premise of IHL, here subgoal 2, is covered by H.
By sublist_incl3, a0 can be dropped from H if f

and a0 are unequal. ◻

S1062 subgoal
...
IHL : forall l1 max, sublist max L →

interleave max (split_fstring’ L l1 max) = l1 ++ L
n : a0 ≠ f
H : sublist (f :: l) (a0 :: L)
______________________________________(1/2)
(l0 ++ a0 :: nil) ++ L = l0 ++ a0 :: L
______________________________________(2/2)
sublist (f :: l) L

rewrite app_assoc_reverse. apply app_eq;[trivial|idtac].

simpl. trivial. (2311)

apply neq_sym in n. apply sublist_incl3 in H; assumption. (2312)

This concludes Section 2.2.2. In the next section we prove that stratify is the operation inverse to flatten.

31

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

2.2.3 Stratify after flatten

In this section we prove that for any French term t it holds that (t♭)♯ = t. That is, we prove that the function

♯ ○ ♭ (stratify after flatten) is equivalent to the identity function in our framework, ie. the second half of our
proof of Lemma 12 (recall its statement from our introduction to Section 2.2). The other half of Lemma 12,
proof that for any French string s it holds that (s♯)♭ = s, was the topic of the previous section, §2.2.2.

Below in Figure 6, the seemless transition from French string t via recursive application of flattening
to French string and then via recursive application of stratification back to the original term t, is outlined
schematically. Before presenting the proof, we briefly touch upon an adaption of flatten called flatten_cert ,
and term induction versus the default induction predicate generated by Coq. After we have presented the proof,
in the epilogue to this section we will expand upon a lemma called move_stratify_inward.

ℓ́ℓ̀m̀ḿℓ̀

←Ð
ÐÐ
#

=
=

=

(ℓ́ℓ̀m̀ḿℓ̀)♯ ε♭ℓ́ε♭ℓ̀ε♭m̀ḿε♭ℓ̀ε♭

= =

m̀ḿ(ℓ́ℓ̀♯, ε♯, ℓ̀♯) (ℓ́ℓ̀(ε, ε, ε))♭m̀ε♭ḿ(ℓ̀(ε, ε))♭

= =

m̀ḿ(ℓ́ℓ̀(ε♯, ε♯, ε♯), ε, ℓ̀(ε♯, ε♯)) (m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε)))♭

=
=

Ð
→
♭m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε))

=
=

t

Figure 6: ♯ ○ ♭ is equivalent to the identity function

Prologue

So in preparation for the proof of stratify_after_flatten_id, let’s consider flatten_cert and term induction.

flatten cert

3350 Fixpoint flatten_cert (ft : fterm) : fstring :=
3351 flatten (projT1 ft).

Excerpt #107

As we mention in Section 2.1.2 on French terms, CoLoR’s term data type does not inherently enforce the property
of having arity (as in Definition 4, item 2). As is shown in Section 2.2.2, a term created by stratify is
guaranteed to have arity. And so the proposition forall t, stratify (flatten t) = t does not hold for any term

in general. More specifically, it doesn’t hold for any term that doesn’t have arity. We resolve this issue by only
quantifying over fterm (see Excerpt #9), which is a term paired with a proof of its well-formedness. flatten_cert
then simply performs flatten on the term part of this data type.

term induction

The default induction principle for terms automatically generated by Coq is term_ind:

Definition term_ind (P : term → Prop) (Q : terms → Prop) :=
term_rect P Q.

Excerpt #108 CoLoR.Term.Varyadic.VTerm

This is generally not convenient however. We would like to be able to perform induction on the whole term,
rather than have to perform a double induction on its head and arguments.

32

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

This principle is provided by CoLoR in the form of term_ind_forall, which uses the structure of terms. Given any
head f and arguments v, if P holding for each individual argument in v (if lforall P v) means that P holds for
the term in its entirety (that P (Fun f v) holds), then P holds for terms in general.

Lemma term_ind_forall :
forall (P : term → Prop)

(H1 : forall x, P (Var x))
(H2 : forall f v, lforall P v → P (Fun f v)),

forall t, P t.

Excerpt #109 CoLoR.Term.Varyadic.VTerm

This is a one-step (single) induction principle, rather than the two-step (double) term_ind. Sometimes it can be
useful to perform induction with seperate properties for full terms and for a list of terms,2 but that is beyond
the scope of this document.

Proof

We now proceed to prove stratify_after_flatten_id. For any fterm F, applying stratify to the result of
flatten_cert F should again result in (the first projection of) F. That is,

3614 Lemma stratify_after_flatten_id :
3615 forall (F : fterm),
3616 stratify (flatten_cert F) = projT1 F.

Excerpt #110

As we will see in a moment, stratify_after_flatten_id is merely an interface for stratify_after_flatten_id’,
packing together the vterm and its well-formedness into the fterm data type.

S111 Our proof of stratify_after_flatten_id

begins by transformation of flatten_cert to
flatten. This is done by dissecting the fterm F.

S1111 subgoals
______________________________________(1/1)
forall F : fterm, stratify (flatten_cert F) = projT1 F

intro. destruct F. unfold flatten_cert. (3620)

S112 We know that projT1 (existT x v) = x, so
let’s simplify our subgoal.

S1121 subgoals
x : vterm
v : vt_wellformed x
______________________________________(1/1)
stratify (flatten (projT1 (existT x v))) = projT1 (existT x v)

simpl. (3620)

S113 Now we arrive at the subgoal we were
aiming at, with x’s well-formedness captured
in the hypothesis v. We generalize v to
make the subgoal match our auxiliary lemma,
stratify_after_flatten_id’.

S1131 subgoals
x : vterm
v : vt_wellformed x
______________________________________(1/1)
stratify (flatten x) = x

generalize v. clear v. (3620)

S114 We apply stratify_after_flatten_id’. ◻

Let’s prove this lemma next.

S1141 subgoals
x : vterm
______________________________________(1/1)
vt_wellformed x → stratify (flatten x) = x

apply stratify_after_flatten_id’. (3620)

2as done by Van Oostrom in vt_transform_sub_inv, conttextterm2context vt_transform_var0_unique (see
bitane_thesis_coq_source.v)

33

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

Our main lemma then is a slightly decomposed version of stratify_after_flatten_id.

3591 Lemma stratify_after_flatten_id’ :
3592 forall vt (p : vt_wellformed vt),
3593 stratify (flatten_cert (existT vt p)) = vt.

Excerpt #115

S116 We begin by doing term induction on vt. S1161 subgoals
______________________________________(1/1)
forall (vt : vterm) (p : vt_wellformed vt),
stratify (flatten_cert (existT vt p)) = vt

intro. apply term_ind_forall with (P := fun vt ⇒ forall p,

stratify (flatten_cert (existT vt p)) = vt); intros. (3597)

S117 After introducing the assumptions we
begin our proof by induction.

We can dismiss the case in which vt = Var x

on the base of vt_wellformed (Var _) having been
defined as False (see Excerpt #8).

S1172 subgoal
vt : vterm
x : nat
p : vt_wellformed (Var x)
______________________________________(1/2)
stratify (flatten_cert (existT (Var x) p)) = Var x
______________________________________(2/2)
stratify (flatten_cert (existT (Fun f v) p)) = Fun f v

inversion p. (3598)

S118 As explained in the prologue (see page 32),
the identity between stratify (flatten vt) and
vt only holds if vt is well-formed. flatten_cert

takes a sigma type, drops the second half, and
performs flatten.

S1181 subgoals
vt : vterm
f : fs_Sig
v : list (term fs_Sig)
H : lforall

(fun vt : vterm ⇒
forall p : vt_wellformed vt,
stratify (flatten_cert (existT vt p)) = vt) v

p : vt_wellformed (Fun f v)
______________________________________(1/1)
stratify (flatten_cert (existT (Fun f v) p)) = Fun f v

simpl; simpl in H. (3599)

S119 We want to distinguish cases on p without
losing the original hypothesis, so we make a
duplicate first using pose.

S1191 subgoals
...
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v
p : vt_wellformed (Fun f v)
______________________________________(1/1)
stratify (interleave f (map flatten v)) = Fun f v

pose proof p as p’. destruct p. (3600)

Case Fun f v empty

S120 The first case of p (renamed H0 by Coq) is
vterm_empty (Fun f v), in which case the current
subgoal should be trivially true.

S1202 subgoal
...
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v
H0 : vterm_empty (Fun f v)
p’ : vt_wellformed (Fun f v)
______________________________________(1/2)
stratify (interleave f (map flatten v)) = Fun f v

simpl in H. destruct H0. subst. (3601)

34

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S121 After substituting nil for f and v, we can
simplify further. map flatten nil is nil, leading
to interleave nil nil, which is also nil. The
resulting subgoal is stratify nil = Fun nil nil,
which is true by definition.

Case Fun f v not empty

S122 The second case of p (renamed H0) is the
case in which Fun f v is not the empty term. We
first split H0 into its constituent parts for better
accessibility.

Because Fun f v is well-formed, we can peel
off the first layer of stratify’s recursion. f will
come out on top again, because hoare_lt holds
between each node and its parent. This is done
by move_stratify_inward (see page 37).

map (fun x ⇒ stratify (flatten x)) will
amount to the identity function for v, as follows
from H. To save ourselves the trouble of proving
this twice, we add this to our hypotheses,
anticipating that it will be coming up in both
subgoals generated by move_stratify_inward in
one form or another.

This then brings us to State S123. Let’s prove
each of its three subgoals consecutively.

State S123 subgoal 1

S123 We can see the heads are equal, so the
real question is if map stratify (map flatten v) =

v. This idea is captured by f_equal:
forall f x y, x = y → f x = f y.

S1212 subgoal
vt : vterm
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v
p’ : vt_wellformed (Fun nil nil)
______________________________________(1/2)
stratify (interleave nil (map flatten nil)) = Fun nil nil

simpl. trivial. (3601)

S1221 subgoals
vt : vterm
f : fs_Sig
v : list (term fs_Sig)
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v
H0 : vterm_not_empty (Fun f v) ∧

ar f = length v ∧
fs_incomparable f ∧
Forall (fun x : vterm ⇒ hoare_lt (vt_head x) f) v ∧
lforall vt_wellformed v

p’ : vt_wellformed (Fun f v)
______________________________________(1/1)
stratify (interleave f (map flatten v)) = Fun f v

destruct H0; destruct H1; destruct H2; destruct H3. (3602)

cut (map (fun x ⇒ stratify (flatten x)) v = v);[intro|idtac]. (3603)

rewrite move_stratify_inward. (3604)

S123
3 subgoal
vt : vterm
f : fs_Sig
v : list (term fs_Sig)
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v
H0 : vterm_not_empty (Fun f v)
H1 : ar f = length v
H2 : fs_incomparable f
H3 : Forall (fun x : vterm ⇒ hoare_lt (vt_head x) f) v
H4 : lforall vt_wellformed v
p’ : vt_wellformed (Fun f v)
H5 : map (fun x ⇒ stratify (flatten x)) v = v
______________________________________(1/3)
Fun f (map stratify (map flatten v)) = Fun f v
______________________________________(2/3)
vt_wellformed (Fun f (map stratify (map flatten v)))
______________________________________(3/3)
map (fun x : vterm ⇒ stratify (flatten x)) v = v

apply f_equal (3605)

S124 Merging the two uses of map results in the
assumption we just made (H5).

S1243 subgoal
...
H5 : map (fun x ⇒ stratify (flatten x)) v = v
______________________________________(1/3)
map stratify (map flatten v) = v

rewrite map_map. assumption. (3605)

35

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

State S123 subgoal 2

S125 First we merge two uses of map. We
then rewrite H5 to get our subgoal to match the
assumption p’.

State S123 subgoal 3

S126 Lastly, we will prove our assumption that
map (fun x ⇒ stratify (flatten x)) does indeed
amount to the identity function for v. We do
this by induction on the length of v.

The induction base, the case where v

equals nil, is dismissed, because by definition,
for any f, map f nil = nil.

S1252 subgoal
...
p’ : vt_wellformed (Fun f v)
H5 : map (fun x ⇒ stratify (flatten x)) v = v
______________________________________(1/2)
vt_wellformed (Fun f (map stratify (map flatten v)))

rewrite map_map. rewrite H5. (3606)

assumption. (3607)

S1261 subgoals
...
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v
H4 : lforall vt_wellformed v
______________________________________(1/1)
map (fun x : vterm ⇒ stratify (flatten x)) v = v

induction v. trivial. (3608)

S127 We then proceed with the induction step.
By definition of map, for any f, map f (x::xs) is
the same as f x :: (map f xs). We simplify to
uncover this fact.

S1272 subgoal
vt : vterm
f : fs_Sig
a0 : term fs_Sig
v : list (term fs_Sig)
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) (a0::v)
H4 : lforall vt_wellformed (a0::v)
IHv : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v →
lforall vt_wellformed v →
map (fun x : vterm ⇒ stratify (flatten x)) v = v

______________________________________(1/2)
map (fun x : vterm ⇒ stratify (flatten x)) (a0::v) = a0::v

simpl. (3609)

S128 An equation of the form x::xs = y::ys can
be split by f_equal into x = y and xs = ys.

S1282 subgoal
...
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) (a0::v)
H4 : lforall vt_wellformed (a0::v)
______________________________________(1/2)
stratify (flatten a0) :: map (fun x ⇒ stratify (flatten x)) v
= a0 :: v

f_equal. (3609)

S129 The first part of the split is the subgoal
stratify (flatten a0) = a0. If we fill in a0

for vt in H, we get precisely this. H’s premise
vt_wellformed a0, is fulfilled by H4.

S1293 subgoal
...
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) (a0::v)
H4 : lforall vt_wellformed (a0::v)
______________________________________(1/3)
stratify (flatten a0) = a0

apply H; apply H4. (3610)

36

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S130 The second part of the split is the sub-
goal map (fun x ⇒ stratify (flatten x)) v = v,
which precisely matches the conclusion of the
induction hypothesis IHv. The premises of IHv

are fulfilled by H and H4, respectively. ◻

S1302 subgoal
...
H : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) (a0::v)
H4 : lforall vt_wellformed (a0::v)
IHv : lforall (fun vt ⇒ vt_wellformed vt →

stratify (flatten vt) = vt) v →
lforall vt_wellformed v →
map (fun x : vterm ⇒ stratify (flatten x)) v = v

______________________________________(1/2)
map (fun x : vterm ⇒ stratify (flatten x)) v = v

apply IHv. apply H. apply H4. (3611)

Epilogue

In this epilogue to Section 2.2.3, we address move_stratify_inward.

move stratify inward

Let Fun f v be a well-formed French term. Then flatten (Fun f v) equals interleave f v (by definition of flatten).
If we want to apply stratify after flatten, that is, if we’re working with stratify (interleave f v), we can make
use of the present seperation between maximal and non-maximal elements, so we don’t have to recompute them.
We thus take f to be the head and v to be the list of arguments over which stratify is mapped recursively.

3571 Lemma move_stratify_inward :
3572 forall (f : fstring) (v : list fstring),
3573 vt_wellformed (@Fun fs_Sig f (map stratify v)) →
3574 stratify (interleave f v) = @Fun fs_Sig f (map stratify v).

Excerpt #131

S132 So what we want to show here essentially is
that stratify and interleave cancel each other
out. As we will see, this can be done without
induction. Let’s do intros and get started. We
begin by unfolding stratify.

S1321 subgoals
______________________________________(1/1)
forall (f : fstring) (v : list fstring),
vt_wellformed (Fun f (map stratify v)) →
stratify (interleave f v) = Fun f (map stratify v)

intros. unfold stratify. rewrite unfold_1_stratify’. (3576)

S133 We then employ max_after_interleave_id :

forall f v,

vt_wellformed (Fun f (map stratify v))

→ fl_max (interleave f v) = f,
to substitute f for fl_max (interleave f v) on the
left hand side of the equation. After having done
this, we apply f_equal to drop Fun f from both
sides of the equation.

S1331 subgoals
f : fstring
v : list fstring
H : vt_wellformed (Fun f (map stratify v))
______________________________________(1/1)
Fun (fl_max (interleave f v))

(map (fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv (
lengthOrder_wf (interleave f v)) (projT2 e0)))

(split_fstring_sigT (interleave f v)))
= Fun f (map (fun fs ⇒ stratify’ fs (lengthOrder_wf fs)) v)

rewrite max_after_interleave_id; trivial. f_equal. (3577)

S134 Next, we duplicate H as H0 using pose and
apply split_fs_sigT_invertible to it:
forall f v,

vt_wellformed (Fun f (map stratify v)) →

exists x,

split_fstring_sigT (interleave f v) = x

∧ map (fun y ⇒ projT1 y) x = v.

S1341 subgoals
...
H : vt_wellformed (Fun f (map stratify v))
______________________________________(1/1)
map (fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv (

lengthOrder_wf (interleave f v)) (projT2 e0)))
(split_fstring_sigT (interleave f v))

= map (fun fs ⇒ stratify’ fs (lengthOrder_wf fs)) v

pose proof H as H0. apply split_fs_sigT_invertible in H0. (3578)

do 2 destruct H5. (3578)

37

2.2 Proving the framework to be correct 2 REPRESENTATION PROOF

S135 Destructing H0 of State S134 then has
created witness x, described by (now) H0 and H1.
Let’s replace split_fstring_sigT (interleave f v)

by x.

S1351 subgoals
...
H : vt_wellformed (Fun f (map stratify v))
x : list {x’ : fstring & lengthOrder x’ (interleave f v)}
H0 : split_fstring_sigT (interleave f v) = x
H1 : map (fun y ⇒ projT1 y) x = v
______________________________________(1/1)
map (fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv (

lengthOrder_wf (interleave f v)) (projT2 e0)))
(split_fstring_sigT (interleave f v))

= map (fun fs ⇒ stratify’ fs (lengthOrder_wf fs)) v

rewrite H0 (3579)

S136 Upon having a closer look, what can we
tell about our witness x? It’s a list of a sigma
type. By H1, if we list the first projection of each
element, we get our term’s list of arguments, v.
Likewise, by H0, if we interleave f with v and do
split_fstring_sigT, we get x again.

We want to rewrite the right hand side
using H1, but somehow Coq doesn’t like that.
Therefore we have done it via transitivity of
equality.

S1361 subgoals
...
H : vt_wellformed (Fun f (map stratify v))
x : list {x’ : fstring & lengthOrder x’ (interleave f v)}
H0 : split_fstring_sigT (interleave f v) = x
H1 : map (fun y ⇒ projT1 y) x = v
______________________________________(1/1)
map (fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv (

lengthOrder_wf (interleave f v)) (projT2 e0))) x
= map (fun fs ⇒ stratify’ fs (lengthOrder_wf fs)) v

transitivity (map (fun f0 ⇒ stratify’ f0 (lengthOrder_wf f0))

(map (fun y ⇒ projT1 y) x)). Focus 2. (3581)

justification for transitivity

S137 After substituting map (fun y ⇒ projT1 y) x

for v indirectly, we strip away the context using
f_equal and point to H1 for justification of this
substitution.

main proof, continued

S138 We now have map applied to map, which can
be simplified using map_map (in general it holds
that f(g(x)) = f ○ g (x)). Next, we transform
the subgoal using map_ext: if these two functions
mapped over x are the same in general, any maps
over the same list should be the same as well.

S1371 subgoals
...
H1 : map (fun y ⇒ projT1 y) x = v
______________________________________(1/1)
map (fun fs ⇒ stratify’ fs (lengthOrder_wf fs))

(map (fun y ⇒ projT1 y) x)
= map (fun fs ⇒ stratify’ fs (lengthOrder_wf fs)) v

f_equal. assumption. (3581)

S1381 subgoals
...
______________________________________(1/1)
map (fun e0 ⇒ stratify’ (projT1 e0) (Acc_inv (

lengthOrder_wf (interleave f v)) (projT2 e0))) x
= map (fun f0 ⇒ stratify’ f0 (lengthOrder_wf f0))

(map (fun x0 ⇒ projT1 x0) x)

rewrite map_map. apply map_ext. (3582)

S139 This is true by virtue of proof_irrelevance
(recall Section 2.2.1): the only difference is the
second argument of stratify’. ◻

S1391 subgoals
...
______________________________________(1/1)
forall a0,
stratify’

(projT1 a0)
(Acc_inv (lengthOrder_wf (interleave f v)) (projT2 a0))

= stratify’ (projT1 a0) (lengthOrder_wf (projT1 a0))

intros. apply proof_irrelevance. (3582)

This concludes the epilogue to Section 2.2.3.

38

3 DECREASING PROOF ORDER

3 Decreasing Proof Order

In this chapter, the main theorem is developed, expanding upon the framework as described in Chapter 2.

3.1 Presenting the framework

In this section, the framework we set out in Chapter 2 is expanded upon to accomodate for the formalization
of Lemma 19 , the main theorem of this thesis.3 Proving the core of Lemma 19 will be the topic of Section 3.2.

Below in Figure 7, an impression is given of the components involved. The main theorem revolves around
an order on French strings called the decreasing proof order, denoted »ilpo (see §3.1.5). This order is an instance
of the lexicographic path order (§3.1.4) induced by » (§3.1.3). The order », itself a lexicographical order (§3.1.1),
compares two node labels, based firstly on their multiset , and secondly on their area (§3.1.2).

ḿm̀ » m̀ḿ

ḿm̀
1

ε
3

κ̀ℓ́
2

ε
4

ε
5
ε
7
ε
6

m̀ḿ
1

ℓ́ℓ̀
2

ℓ̀
4

ε
3

ε
6
ε
5
ε
7

ε
8
ε
9

⇐
⇒

⇐
⇒

ḿm̀(ε, κ̀ℓ́(ε, ε, ε), ε) m̀ḿ(ℓ́ℓ̀(ε, ε, ε), ε, ℓ̀(ε, ε))

⇐
Ô #

⇐
Ô #

ḿκ̀ℓ́m̀ »ilpo ℓ́ℓ̀m̀ḿℓ̀

Figure 7: contents of Section 3.1

3.1.1 Lexicographic Order

The order on French strings featured in our main theorem compares labels in two dimensions: by their letters
and by their area (see §3.1.2). To this end, the lexicographic order is used, which is defined formally as follows.

Definition 8. Let > and ⊐ be orderings on sets A and B, respectively. For any two elements (a1, b1) and (a2, b2)
of A×B then, the lexicographic order (a1, b1) > ×lex ⊐ (a2, b2) holds, if either a1 > a2 or both a1 = a2 and b1 ⊐ b2.

Example. Consider the set of paired numbers N×N and the greater-than relation >. Then (9,2) > ×lex > (1,4),
as 9 > 1, and (4,2) > ×lex > (4,1), as 4 = 4 and 2 > 1; but not (4,9) > ×lex > (5,0), as neither 4 > 5 nor 4 = 5.

Implementation

For our Coq implementation of this we have used the CoLoR libraries, which provide precisely this type of order.

Inductive lp_LexProd_Gt (A B : Type)
(eqL gtL : relation A)
(gtR : relation B) : relation (A * B) :=

| GtL: forall a a’ b b’, gtL a a’ → (a, b) >lex (a’, b’)
| GtR: forall a a’ b b’, eqL a a’ → gtR b b’ → (a, b) >lex (a’, b’)

where "a >lex b" := (lp_LexProd_Gt a b).

Excerpt #140 CoLoR.Util.Pair.LexOrder

Given two elements a, a’ of type A, two elements b, b’ of type B, two relations eqL and gtL on A, and one relation
gtR on B, it holds that lp_LexProd_Gt (a, b) (a’, b’) if either gtL a a’, or both eqL a a’ and gtR b b’.

3as with Lemma 12, the name was adopted directly from Van Oostrom[a] for sake of clarity

39

3.1 Presenting the framework 3 DECREASING PROOF ORDER

3.1.2 Area

Every French string has an area associated with it. For a formal description of the concept, the reader is referred
to Van Oostrom[a], pp. 5−6. For our purposes here, such level of detail is not needed and would be cumbersome.
In this section we give a short, intuitive description.

The accents on French letters indicate a measure of computational convergence. The larger the degree of
convergence, the smaller the area. As such, a well-founded order can be established on this measure. In Figure 8
below, we see how the accents on a French string are first mapped to a sequence of diagonals and then to a
triple. The middle value of this triple represents the area of that string. Its left (right) value is the number of
gràve (acúte) accents.

ℓ ℓ
mm ℓ 3

2
4

ℓ́ℓ̀m̀ḿℓ̀ z→ ÒÓÓÒÓ z→ (3, 4, 2)

Figure 8: Mapping French strings via strings of accents into triples4

Example. To see how this measure of convergence could help to establish an order on French strings, consider
ḿm̀ and m̀ḿ. They have the exact same multiset {m, m}, and so the order on letters does not help to establish
an order between them. However, the former’s area (ÒÓ ↦ 1) is larger than the latter’s (ÓÒ ↦ 0). (as the latter
models a convergence of computation and the former a divergence of computation).

Implementation

An fstring’s area can be computed quite efficiently by associating with each fletter a triple, and then
performing a left-to-right algorithm over the sequence of triples. Below, part of our implementation is shown.

. . .

. . .

1562

482 Inductive triple : Type :=
483 triple_cons : nat → nat → nat → triple.

1559 Definition empty_triple := triple_cons 0 0 0.
1560 Definition acute_triple := triple_cons 0 0 1.
1561 Definition grave_triple := triple_cons 1 0 0.

1563 Definition triple_prod (t1 t2 : triple) : triple :=
1564 match t1,t2 with
1565 | triple_cons n1 m1 k1,
1566 | triple_cons n2 m2 k2 ⇒ triple_cons (n1 + n2) (m1+k1 ∗ n2+m2) (k1 + k2)
1567 end.

1577 Fixpoint lab2trip (fs : fstring) : triple :=
1578 match fs with
1579 | nil ⇒ empty_triple
1580 | x :: xs ⇒ triple_prod (fl2trip x) (lab2trip xs)
1581 end.

Excerpt #141

The conversion of an fstring fs to the area of fs is driven by lab2trip, which takes each fletter x, converts
it to either an acute_triple or a grave_triple, depending on its accent, and uses triple_prod to compute from
these the total area for fs. This will be the middle value of the final resulting triple.

4illustration adopted from Van Oostrom[a] p. 6

40

3.1 Presenting the framework 3 DECREASING PROOF ORDER

Example. lab2trip (ḿ :: m̀ :: nil) = triple_prod acute_triple (triple_prod acute_triple empty_triple)

= triple_prod (triple_cons 0 0 1) (triple_prod (tc
5
1 0 0) (tc 0 0 0))

= triple_prod (triple_cons 0 0 1) (triple_cons (1+0)(0+0*0+0)(0+0))

= triple_cons (0+1)(0+1*1+0)(1+0)

= triple_cons 1 1 1
∧

The middle value of the final resulting triple (1) is the area of (ḿ :: m̀ :: nil).

3.1.3 Label less-than

A comparison of node labels between two French terms is made by combining the concepts explained in the
previous two sections. The order » is a lexicographical order on node labels, based on their multisets of letters
firstly, and their areas secondly.

In Section 3.1.5 we describe the order on French strings around which our main theorem Lemma 19 revolves.
This order is based on a comparison of node labels in their interpretation as French terms.

Definition 9. Let » be a relation on the French term signature L♯≻ (recall Definition 4) by interpreting each
function symbol s in L♯≻ as a tuple ⟨M,m⟩, where M is the multiset of letters in s, and m the area of s. These
tuples are related by the combination of ≻≻ and > (the multiset-extension of ≻, and greater-than, respectively).
That is, they are related by ≻≻ ×lex >.

Example. ḿm̀ » m̀ḿ: again, their multisets are equal, but the former has greater area (1) than the latter (0).

Implementation

As we describe in Section 3.1.1, CoLoR provides an implementation of lexicographic orders, called lp_LexProd_Gt.
This function is operated through the module LexicographicOrder. Modules are a convenient way to bundle the
required proofs and properties for a set of functions, and have their accessibility coordinated automatically.[3]

Part of this module’s interior is shown below.

Module LexicographicOrder (A_ord B_ord : Ord).
...
Notation L := A_ord.S.A.
Notation R := B_ord.S.A.
Notation eqL := A_ord.S.eqA.
Notation eqR := B_ord.S.eqA.
Notation gtL := A_ord.gtA.
Notation gtR := B_ord.gtA.
...
Definition LexProd_Gt (x y: L * R) := lp_LexProd_Gt eqL gtL gtR x y.
...

Excerpt #142 CoLoR.Util.Pair.LexOrder

To initialize an instance of LexicographicOrder, two parameters are required: A_ord and B_ord, which themselves
are instances of another module, called Ord (see Excerpt #143 below).

Example. Let (LexAmple NatOrd AlphOrd) be an instance of LexicographicOrder, taking a module that models
an order on natural numbers nat, and one that models an order on the English alphabet (say, alpha). Then
LexAmple.LexProd_Gt is the lexicographic order on (NatOrd.S.A * AlphOrd.S.A), ie. (nat * alpha), using the domains
and relations provided by these modules.

5we have used the shorthand tc here, for triple_cons to be able to fit the page

41

3.1 Presenting the framework 3 DECREASING PROOF ORDER

As convenient as the automatic coordination of proofs and properties might be, it can also lead to confusion as
to where the actual definition of a function or value of a variable might be found. For this reason we (somewhat
superfluously) explain the Ord module here as well.

Module Type Ord.

Parameter A : Type.

Declare Module Export S : Eqset with Definition A := A.

Parameter gtA : relation A.
Notation "X >A Y" := (gtA X Y) (at level 70).

Parameter gtA_eqA_compat : forall x x’ y y’,
x =A= x’ → y =A= y’ → x >A y → x’ >A y’.

Hint Resolve gtA_eqA_compat : sets.

End Ord.

Excerpt #143 CoLoR.Util.Relation.RelExtras

This module has three parameters: A, gtA and gtA_eqA_compat. The first (A) is its domain, and the second (gtA)
the order on that domain. Note that this module again reaches to yet another module, of type Eqset, which
pertains to decidable equality for A. The third parameter (gtA_eqA_compat) is a proof of compatibility between
this equality relation and gtA.

Example. We initialize a module of type Ord to model the order we need on areas, by giving it the parameters
nat, gt and a proof that forall (n n’ m m’ : nat), n = n’ → m = m’ → gt n m → gt n’ m’.

3847 Module LexMSTR :=
3848 LexOrder.LexicographicOrder MSOrd AROrd.

Excerpt #144

Back to LexicographicOrder. We initialize LexMSTR above to model ≻≻ ×lex >, our lexicographic order on L̂ ×N.
The first parameter MSOrd models our order ≻≻ on the set of French strings L̂. This is done by referral to
MultisetListOrder, a module also provided by CoLoR, which models the Dershowitz-Manna order on multisets,6

implemented as instances of list. The second parameter AROrd is initialized by referral to the greater-than
relation on natural numbers, as explained in the description of Ord above.

4578 Definition lab_lt (f g : fstring) :=
4579 LexMSTR.LexProd_Lt (lab2pair f) (lab2pair g).

Excerpt #145

Finally, our relation » (or rather ») on labels then is implemented as lab_lt, as shown in Excerpt #145 above.
LexProd_Lt is simply a wrapper function for lp_LexProd_Gt, passing to it the values bundled when LexMSTR was
initialized. Those implicit parameters marked gray in Excerpt #140 are actually fields in LexicographicOrder.
lab2pair fs is defined as (fs, lab2area fs), generating instances of type (fstring * nat).[15]

This concludes our description of node label comparison by » (implemented as lab_lt). In Section 3.1.4 we
describe a lifting of orders from symbols to terms, applied in Section 3.1.5 to lift » from node labels to conversions
(that is, from node labels to French strings interpreted as French terms).

6for more on multiset-comparison the reader is referred to the appendix (esp. Definition 19 and Definition 20)

42

3.1 Presenting the framework 3 DECREASING PROOF ORDER

3.1.4 Lexicographic Path Order

In Section 3.1.3 we described », an order on node labels. In Section 3.1.5 we will see how this order is lifted
from labels to terms over labels. But before exploring its application in our framework, let’s have a look here
at the general mechanics of this lifting.

Definition 10. Let ≻ be a strict order on a finite signature Σ. The lexicographic path order ≻lpo on terms over Σ
induced by ≻ is (recursively) defined as follows. For any two such terms s and t, it holds that s ≻lpo t, if:

(LPO1) t ∈ Var(s)7 and s ≠ t, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) there exists i, 1 ≤ i ≤m: si ≻lpo t or si = t , or

(b) f ≻ g and for all j, 1 ≤ j ≤ n: s ≻lpo tj , or

(c) f = g and for all j, 1 ≤ j ≤ n: s ≻lpo tj , and

there exists i, 1 ≤ i ≤m: si ≻lpo ti and s1 = t1, . . . , si−1 = ti−1.

Example. Let LN be the set of terms over N, and > the greater-than relation on N.

Then >lpo is a lifting of > from N to LN, and

12(2, x,4) >lpo x by clause LPO1 ← x ∈ Var(12(2, x,4)),
1(1,2(9,3),3) >lpo 2(9,3) by clause LPO2a ← 2(9,3) is a direct subterm of 1(1,2(9,3),3),
10(1,2,3) >lpo 9(4,5,6) by clause LPO2b ← 10 > 9, 10 >lpo 4 by LPO2b, 10 >lpo 5 by LPO2b, etc.
8(4,5,6,7) >lpo 8(4,5,0,7) by clause LPO2c ← the head symbols are equal, all direct subterms

are equal except for the third, and 6 >lpo 0 by LPO2b.

Implementation

CoLoR provides the function lt_lpo, which is encapsulated in the module LPO, as shown below.

Module LPO (PT : VPrecedenceType).

Module Export P := VPrecedence PT.
Module Export S := Status PT.

Inductive lt_lpo : relation term :=
| lpo1 : forall f g ss ts,

g <F f →
(forall t, In t ts → lt_lpo t (Fun f ss)) →
lt_lpo (Fun g ts) (Fun f ss)

| lpo2 : forall f g,
f =F= g →
forall ss ts,
(forall t, In t ts → lt_lpo t (Fun f ss)) →
lex lt_lpo ts ss →
lt_lpo (Fun g ts) (Fun f ss)

| lpo3 : forall t f ss,
ex (fun s ⇒ In s ss ∧ (s = t ∨ lt_lpo t s)) →
lt_lpo t (Fun f ss).

Definition mytau (f : Sig) (r : relation term) := lex r.

End LPO.

Excerpt #146 CoLoR.RPO.VLPO

LPO takes one parameter, an instance of the module VPrecedenceType, which contains precisely the required
information to initialize a module of type VPrecedence. This module in turn models a strict order.

This concludes our description of lifting an order from symbols to terms over symbols. In the next section this
is applied to establish a lifting of » from node labels to French terms.

7for any given term x, Var(x) denotes here the set of variables occurring in x

43

3.1 Presenting the framework 3 DECREASING PROOF ORDER

3.1.5 Decreasing Proof Order

This then brings us to the order featured in Lemma 19, as explained in Section 3.2.

Definition 11. The decreasing proof order on conversions (ie. French strings interpreted as French terms),
»ilpo, is the iterative lexicographic path order8 induced by ». To accommodate the lexicographic aspect of this
ordering, French term argument positions are given an arbitrary but fixed total order, based on accentuation.
That order is specified as follows: if a node label’s i + 1th letter has a gràve (acúte) accent then the ith argument
of that node is evaluated before (after) the i + 1th argument in a leftmost way of ordering.

Example. Consider àé(ε0, ε1, ε2). The 0 + 1st label, à, has a grave accent, so the 0th argument, ε0, comes before
the 0 + 1st argument, ε1. The 1 + 1nd label, é, has an acute accent, so the 1st argument, ε1, comes after the
1 + 1nd argument, ε2. At this point all of the label’s letters are considered, leaving the last argument’s position
unaltered. Two sequences are then compatible with this description, ε2, ε0, ε1 and ε0, ε2, ε1: in both cases, ε0
comes before ε1 and ε1 comes after ε2. This ambiguity does not agree with the requirement of “giving argument
positions an arbitrary but fixed total order”, so the leftmostly ordered of these is chosen, in our case ε0, ε2, ε1.

Implementation

This order »ilpo is implemented by initializing LPO with lab_lt.

5016 Module MyLPO := LPO fs_VPrecedence.

Excerpt #147

The command in Excerpt #147 has made lt_lpo (or, more precisely, MyLPO.lt_lpo) an operational relation on
vterm: lab_lt is wrapped into the module fs_VPrecedence, the format required by LPO. The accentuation based
argument position sequence is not yet in effect however. This sequence is brought about by vt_transform.

6100 Fixpoint vt_transform (t : vterm) : vterm :=
6101 match t as t return vterm with
6102 | Var x ⇒ Var x
6103 | Fun f v ⇒ Fun f (
6104 projT1 (
6105 args_rearrange’ f ((fix vts_transform (v : list vterm) : list vterm :=
6106 match v as v return (list vterm) with
6107 | nil ⇒ nil
6108 | cons t’ v’ ⇒ cons (vt_transform t’) (vts_transform v’)
6109 end)
6110 v)
6111)
6112)
6113 end. (*V*)

Excerpt #148

The function args_rearrange’ returns the arguments rearranged according to the order described in Definition 11,
paired with proof that this is indeed a permutation of the original list. The recursive rearrangement of arguments
is performed by the locally defined function vts_transform, as indicated by the dash-lined square.

6160 Definition lt_lpo’ (vt1 vt2 : vterm) :=
6161 lt_lpo (vt_transform vt1) (vt_transform vt2).

Excerpt #149

We thus define »ilpo (or rather, »ilpo) as lt_lpo’. Note that, to modify the order of evaluation, we transform
the terms and evaluate them using standard lt_lpo, leaving the actual (low-level) order of evaluation unaltered.

8the iterative lexicographic path order is an order equivalent to the lexicographic path order described in Section 3.1.4

44

3.1 Presenting the framework 3 DECREASING PROOF ORDER

Example. Consider Figure 9 below. This is taken from the graph displayed in Figure 1. Each of the circled
numbers in Figure 1 represents a conversion step. This rewriting of conversions as modelled by French strings
adheres to the decreasing proof order.

m

κ ℓ

m

a

b

c

d

e

⇐⇒ ḿκ̀ℓ́m̀
♯

Ô⇒
♭

⇐Ô
ḿm̀(ε1, κ̀ℓ́0(ε0, ε2, ε1), ε2)

Ô
⇒ 1

»

ilpo : multiset decreased at position 1, {κ, ℓ} ≻≻ {ℓ}

ℓ

m

ℓ

m

a

c

d

e
f

⇐⇒ ℓ́ḿℓ́m̀
♯

Ô⇒
♭

⇐Ô
ḿm̀(ℓ́1(ε1, ε0), ℓ́0(ε1, ε0), ε2)

Ô
⇒ 2

»

ilpo : multiset decreased at position 1, {ℓ} ≻≻ ε

ℓ

m m

ℓ
a

c

e
f g ⇐⇒ ℓ́ḿm̀ℓ̀

♯
Ô⇒
♭

⇐Ô
ḿm̀(ℓ́1(ε1, ε0), ε0, ℓ̀2(ε1, ε0))

Ô
⇒ 3

»

ilpo : area decreased at the root, 1 > 0

ℓ

m

ℓ ℓ

m
a e

f g

h

i

⇐⇒ ℓ́ℓ̀m̀ḿℓ̀
♯

Ô⇒
♭

⇐Ô
m̀ḿ(ℓ́ℓ̀0(ε1, ε0, ε2), ε2, ℓ̀1(ε0, ε1))

Ô
⇒ 4

»

ilpo : multiset decreased at position 0, {ℓ, ℓ} ≻≻ {ℓ}

ℓ

m

ℓ

m
a e

g

h

i

⇐⇒ ℓ́m̀ḿℓ̀
♯

Ô⇒
♭

⇐Ô
m̀ḿ(ℓ́0(ε1, ε0), ε2, ℓ̀1(ε0, ε1))

Ô
⇒ 5

»

ilpo : multiset decreased at the root, {m,m} ≻≻ {m}

ℓ

m

ℓ

κ

a e
h

i

j ⇐⇒ ℓ́m̀κ́ℓ́
♯

Ô⇒
♭

⇐Ô
m̀(ℓ́0(ε1, ε0), κ́ℓ́1(ε2, ε1, ε0))

Ô
⇒ 6

»

ilpo : multiset decreased at position 0, {ℓ} ≻≻ ε

m
ℓ

κ

a e

i

j ⇐⇒ m̀κ́ℓ́
♯

Ô⇒
♭

⇐Ô
m̀(ε0, κ́ℓ́1(ε2, ε1, ε0))

Figure 9: conversion example

45

3.2 Properties 3 DECREASING PROOF ORDER

3.2 Properties

Now that the groundwork is laid, let’s consider the proof to be formalized. This section covers the first part of
Lemma 19.

Notation. Let [] and { } denote optionality and arbitrary repetition. Let ℓ⃗≻ (≺ℓ⃗) denote any French letter to
which at least one letter in the vector ℓ⃗ is ≻-related (≺-related).

Example. {ℓ≻} is an arbitrary string of letters to which ℓ is ≻-related, and [m̀] denotes either m̀ or ε.

Lemma 19(a). For all labels ℓ,m in L and all French strings s, r over L: sℓ̂r »ilpo s{ℓ≻}r.

Prologue

8382 Definition tree_rel1 (phi : relation fstring) : relation vterm :=
8383 fun v1 v2 ⇒ exists (C : context fs_Sig) (v1’ v2’ : vterm),
8384 v1 = fill C v1’ ∧ v2 = fill C v2’ ∧ phi (vt_head v1’) (vt_head v2’). (*V*)

Excerpt #150

tree_rel1 states that two terms differ by exactly one subtree, and that the head of the one subtree is greater
than the head of the other subtree.

46

3.2 Properties 3 DECREASING PROOF ORDER

Proof

We now proceed to prove Lemma 19(a). In Coq, this is formulated as follows.

10162 Lemma Lemma19a :
10163 forall x s l r, x = (s ++ (l :: nil) ++ r) →
10164 forall L, hoare_lt L (l :: nil) →
10165 lt_lpo’ (stratify (s ++ L ++ r))
10166 (stratify (s ++ (l :: nil) ++ r)).

Excerpt #151

S152 We introduce our hypotheses. Rather
than formulating an induction hypothesis, we
simplify our subgoal first by application of
tree_rel1_lt_lab_lpo’.ν

S1521 subgoals
______________________________________(1/1)
forall (x s : list fletter) (l : fletter) (r : list fletter),
x = s ++ (l :: nil) ++ r →
forall L : list fletter, hoare_lt L (l :: nil) →
lt_lpo’ (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

intros. (10168)

S153 tree_rel1_lt_lab_lpo’
ν states:

forall u t,

vt_wellformed u → vt_wellformed t →

tree_rel1 lab_lt u t → lt_lpo’ u t.

Instead of proving lt_lpo’ u t to follow from our
assumptions, we’ll prove tree_rel1 u t to follow
from them, which is a much narrower statement.

S1531 subgoals
x : list fletter
s : list fletter
l : fletter
r : list fletter
H : x = s ++ (l :: nil) ++ r
L : list fletter
H0 : hoare_lt L (l :: nil)
______________________________________(1/1)
lt_lpo’ (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

apply tree_rel1_lt_lab_lpo’; try apply vt_wellformed_stratify. (10169)

S154 Our original lemma is thus divided in two
steps: firstly from (tree_rel1 lab_lt) to lt_lpo’,
and secondly from our original assumptions to
(tree_rel1 lab_lt). The former step is provided
by Van Oostrom. Let’s have a look then at the
latter step. We wrap this step into an auxiliary
lemma called Lemma19a’.

S1541 subgoals
...
______________________________________(1/1)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

apply Lemma19a’ with x; assumption. (10170)

10104 Lemma Lemma19a’ :
10105 forall x s l r, x = (s ++ (l :: nil) ++ r) →
10106 forall L, hoare_lt L (l :: nil) →
10107 tree_rel1 lab_lt (stratify (s ++ L ++ r))
10108 (stratify (s ++ (l :: nil) ++ r)).

Excerpt #155

S156 So, having reduced the complexity of our
conclusion, let’s proceed to prove what remains.
We do induction on the length of s++(l::nil)++r
(here captured by x).

S1561 subgoals
______________________________________(1/1)
forall (x s : list fletter) (l : fletter) (r : list fletter),
x = s ++ (l :: nil) ++ r →
forall L : list fletter, hoare_lt L (l :: nil) →
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

intro. apply well_founded_ind with (P := ...) (R := lengthOrder);

[apply lengthOrder_wf|idtac]. (10115)

intro; intro IH; intros. (10116)

47

3.2 Properties 3 DECREASING PROOF ORDER

S157 This brings us to the following proof state.

We add to our assumption that
forall e0 : fletter, In e0 L → fl_Lt e0 l,

which follows from H0 (see Excerpt #3).

S1571 subgoals
x : list fletter
x0 : list fletter
IH : forall y, lengthOrder y x0 →

forall s l r, y = s ++ (l :: nil) ++ r →
forall L, hoare_lt L (l :: nil) →

tree_rel1 lab_lt (stratify (s ++ L ++ r))
(stratify (s ++ (l :: nil) ++ r))

s : list fletter
l : fletter
r : list fletter
H : x0 = s ++ (l :: nil) ++ r
L : list fletter
H0 : hoare_lt L (l :: nil)
______________________________________(1/1)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

cut (forall e0 : fletter, In e0 L → fl_Lt e0 l);[intro|idtac]. (10117)

Focus 2. inversion H0. intros. apply H2 in H3. destruct H3.

apply In_sgt in H3. rewrite ← H3. assumption. (10119)

S158 Then we do case analysis on whether or
not l is maximal in s++(l::nil)++r.

Note: for preservation of space, throughout this
commentary we replace s++(l::nil)++r with its
equivalent, s++l::r.

S1581 subgoals
...
H0 : hoare_lt L (l :: nil)
H1 : forall e0 : fletter, In e0 L → fl_Lt e0 l
______________________________________(1/1)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

cut ({not_below l (s ++ (l :: nil) ++ r)}

+ { ∼ not_below l (s ++ (l :: nil) ++ r)});

[intro|apply not_below_dec]. (10121)

destruct H2. (10121)

Case 1/2: l is maximal in s++(l::nil)++r

S159 If l is maximal in s++l::r, the
head of stratify s++l::r will differ from
the head of stratify s++L++r precisely
by l, since the letters maximal in s and r

are in both heads, and from H0 it follows that
none of L’s letters are maximal.

Let’s unfold tree_rel1 and see where this fits.

S160 As the heads of our terms relate in lab_lt,
we can simply compare the terms directly. To
this end, we choose the empty context Hole, and
fill in our terms. fill Hole x equals x, so this
results in

stratify s++L++r = stratify s++L++r ∧

stratify s++l::r = stratify s++l::r ∧

lab_lt (vt_head (stratify s++l::r))

(vt_head (stratify s++L++r)).

The first two conjuncts are trivial. Let’s proceed
by addressing the third conjunct.

S1592 subgoal
...
H1 : forall e0 : fletter, In e0 L → fl_Lt e0 l
n : not_below l (s ++ (l :: nil) ++ r)
______________________________________(1/2)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

unfold tree_rel1. (10123)

S1602 subgoal
...
H1 : forall e0 : fletter, In e0 L → fl_Lt e0 l
n : not_below l (s ++ (l :: nil) ++ r)
______________________________________(1/2)
exists exists (C : context fs_Sig) (v1’ v2’ : vterm),
stratify (s ++ L ++ r) = fill C v1’ ∧
stratify (s ++ (l :: nil) ++ r) = fill C v2’ ∧
lab_lt (vt_head v1’) (vt_head v2’)

exists Hole. simpl. (10123)

exists (stratify (s ++ L ++ r)); exists (stratify (s ++ l :: r)). (10124)

split; trivial. split; trivial. (10125)

48

3.2 Properties 3 DECREASING PROOF ORDER

S161 The remaining subgoal is fully covered
by l_max_then_head_greater, which states:

forall s r l L,

(forall e, In e L → fl_Lt e l) →

not_below l (s++l::r) →

lab_lt (vt_head (stratify (s++L++r)))

(vt_head (stratify (s++l::r))).

More on this auxiliary lemma can be found in
the epilogue to this section. Moving on,

Case 2/2: l is not maximal in s++(l::nil)++r

S162 If l is not maximal in s++l::r, then the
heads of stratify s++L++r and stratify s++l::r

are equal, since both L and l are not in them
(by H1, all of L is less than l in fl_Lt).

We begin our proof by duplicating our
assumption n. We apply to this duplicate
l_not_max_then_heads_equal to obtain from H1

and Hx that the heads are equal (see epilogue,
Excerpt #185).

S163 We duplicate Hx so we can simplify it.
Both formats (Hx and Hx0) will be needed later.

S1612 subgoal
...
H1 : forall e0 : fletter, In e0 L → fl_Lt e0 l
n : not_below l (s ++ (l :: nil) ++ r)
______________________________________(1/2)
lab_lt (vt_head (stratify (s ++ L ++ r)))

(vt_head (stratify (s ++ l :: r)))

apply l_max_then_head_greater; assumption. (10126)

S1621 subgoals
...
n : ∼ not_below l (s ++ (l :: nil) ++ r)
______________________________________(1/1)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

pose proof n as Hx.

apply l_not_max_then_heads_equal with (L := L) in Hx;

[idtac|assumption]. (10129)

S1631 subgoals
...
n : ∼ not_below l (s ++ (l :: nil) ++ r)
Hx : vt_head (stratify (s ++ L ++ r)) =

vt_head (stratify (s ++ (l :: nil) ++ r))
______________________________________(1/1)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

cut (vt_head (stratify (s ++ L ++ r)) =

vt_head (stratify (s ++ (l :: nil) ++ r)));

trivial; intro Hx0. (10131)

rewrite unfold_1_stratify in Hx0, Hx0. simpl in Hx0. (10132)

S164 Both heads being equal, we can be
certain that Hole is not the context we’re
looking for. We thus gear the current
subgoal towards an embedded context using
tree_rel1_heads_eq_then_sub: forall t1 t2,

(exists f t1_args t2_args, t1 = Fun f t1_args

∧ t2 = Fun f t2_args

∧ exists (C : context fs_Sig) v1 v2 t1’ t2’,

Fun f t1_args = fill (Cont f v1 C v2) t1’

∧ Fun f t2_args = fill (Cont f v1 C v2) t2’

∧ lab_lt (vt_head t1’) (vt_head t2’)

) → tree_rel1 lab_lt t1 t2.

S1641 subgoals
...
n : ∼ not_below l (s ++ (l :: nil) ++ r)
Hx : vt_head (stratify (s ++ L ++ r)) =

vt_head (stratify (s ++ (l :: nil) ++ r))
Hx0 : fl_max (s ++ L ++ r) = fl_max (s ++ l :: r)
______________________________________(1/1)
tree_rel1 lab_lt (stratify (s ++ L ++ r))

(stratify (s ++ (l :: nil) ++ r))

apply tree_rel1_heads_eq_then_sub. (10133)

49

3.2 Properties 3 DECREASING PROOF ORDER

S165 We’re thus looking to pinpoint in our two
terms stratify s++L++r and stratify s++l::r the
single and only difference, and show that it
bridges the relation tree_rel1 lab_lt between
them. To this end, let’s abstract from stratify,
which currently obscures the underlying term
structure.

We redefine our terms as Fun f t1_args and
Fun f t2_args, respectively, and look for a single
context Cont f v1 C v2 and two terms t1’ and t2’,
such that filling t1’ in C results in Fun f t1_args,
and filling t2’ in C results in Fun f t2_args.

Note that both of our abstractions have
f as the head label, since the heads are equal.
Also, between instances of Cont f v1 C v2, all
arguments v1 ... v2 are equal, except for C.

S166 We have filled in the variables of our
abstractions with fragments of our original
terms. We have then split the complex goal
into three subgoals. The first subgoal, displayed
in State S166, says that the abstractions should
actually match the original terms. As we
assigned fl_max s++L++r to serve as the head of
our abstraction, this matching trivially follows
from stratify’s definition for stratify s++L++r.

S167 The same goes for stratify s++l::r,
but we need to rewrite its head using Hx0.

S168 So let’s construct from our assumptions
the context we’re looking for. The one and
only difference between both terms is L and l.
From H1 we can infer that none of L will be
in the node of stratify s++L++r corresponding
stratify s++l::r’s node containing l, as all of L

is smaller than l in fl_Lt. The node containing
l will thus be greater than the corresponding
node in stratify s++L++r, by one letter: l,
(compare State S159). This intuition is captured
by the lemma l_not_max_then_exists_not_eq,ν as
we’ll see next.

S1651 subgoals
...
n : ∼ not_below l (s ++ (l :: nil) ++ r)
Hx : vt_head (stratify (s ++ L ++ r)) =

vt_head (stratify (s ++ (l :: nil) ++ r))
Hx0 : fl_max (s ++ L ++ r) = fl_max (s ++ l :: r)
______________________________________(1/1)
exists (f : fs_Sig) (t1_args t2_args : list vterm),
stratify (s ++ L ++ r) = Fun f t1_args ∧
stratify (s ++ (l :: nil) ++ r) = Fun f t2_args ∧
(exists (C : context fs_Sig)

(v1 v2 : list vterm) (t1’ t2’ : vterm),
Fun f t1_args = fill (Cont f v1 C v2) t1’ ∧
Fun f t2_args = fill (Cont f v1 C v2) t2’ ∧
lab_lt (vt_head t1’) (vt_head t2’))

exists (fl_max (s ++ L ++ r)).

exists (vt_args (stratify (s ++ L ++ r))).

exists (vt_args (stratify (s ++ l :: r))). (10136)

split. Focus 2. split. Unfocus.

S1663 subgoal
...
______________________________________(1/3)
stratify (s ++ L ++ r) =
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ L ++ r)))

rewrite unfold_1_stratify. simpl. unfold fl_max. trivial. (10137)

S1672 subgoal
...
Hx0 : fl_max (s ++ L ++ r) = fl_max (s ++ l :: r)
______________________________________(1/2)
stratify (s ++ (l :: nil) ++ r) =
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ l :: r)))

do 2 rewrite unfold_1_stratify. rewrite Hx0. simpl. trivial. (10138)

S1681 subgoals
...
H1 : forall e0 : fletter, In e0 L → fl_Lt e0 l
n : ∼ not_below l (s ++ (l :: nil) ++ r)
______________________________________(1/1)
exists
(C : context fs_Sig) (v1 v2 : list vterm) (t1’ t2’ : vterm),
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ L ++ r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t1’ ∧
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ l :: r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t2’ ∧
lab_lt (vt_head t1’) (vt_head t2’)

apply l_not_max_then_exists_not_eq with (L:=L) in n; trivial. (10139)

50

3.2 Properties 3 DECREASING PROOF ORDER

S169 So from H1 and n in State S168, we have
derived by l_not_max_then_exists_not_eq

ν the
current assumption n. Let’s break down the
complexity of this statement a bit by creating
a witness for its existential component: x1.

S1691 subgoals
...
n : exists i,

i < length (vt_args (stratify (s ++ (l :: nil) ++ r))) ∧
(forall j,

(j ≠ i → vt_arg j (stratify (s ++ L ++ r)) =
vt_arg j (stratify (s ++ (l :: nil) ++ r)))

∧ (j = i →
exists s’ r’,

length (s’ ++ (l :: nil) ++ r’) <
length (s ++ (l :: nil) ++ r)

∧ vt_arg j (stratify (s ++ L ++ r)) =
stratify (s’ ++ L ++ r’)

∧ vt_arg j (stratify (s ++ (l :: nil) ++ r)) =
stratify (s’ ++ (l :: nil) ++ r’)))

______________________________________(1/1)
...

destruct n. destruct H2. (10140)

S170 All arguments except for position x1 are
equal. The x1

th argument is stratify s’++L++r’

for stratify s++L++r, and stratify s’++l::r’ for
stratify s++l::r. This is expressed in H3. Note
that both terms in position x1 are equal except
for L and l. Note also that these subterms are
constructed such that their length is smaller
than the term itself:

length s’++l::r’ < length s++l::r.
From this we can establish a correspondence
between each and every argument of both
terms. If we want to use this to formulate v1

and v2 for the present subgoal (see State S168),
we should establish also that, when taken
together, all the individual arguments add up
to t1_args and t2_args, respectively. Let’s add
the hypothesis and prove it.

S171 We can infer this from vt_arg_construct

(see epilogue, Excerpt #187). Some premises of
this lemma are in the list of assumptions (H2 and
Hx), some are proven by vt_wellformed_stratify.
Let’s address the remaining premises.

S1701 subgoals
...
x1 : nat
H2 : x1 < length (vt_args (stratify (s ++ (l :: nil) ++ r)))
H3 : forall j,

(j ≠ x1 → vt_arg j (stratify (s ++ L ++ r)) =
vt_arg j (stratify (s ++ (l :: nil) ++ r)))

∧ (j = x1 →
exists s’ r’,

length (s’ ++ (l :: nil) ++ r’) <
length (s ++ (l :: nil) ++ r)

∧ vt_arg j (stratify (s ++ L ++ r)) =
stratify (s’ ++ L ++ r’)

∧ vt_arg j (stratify (s ++ (l :: nil) ++ r)) =
stratify (s’ ++ (l :: nil) ++ r’))

______________________________________(1/1)
...

cut (exists s1 r1,

vt_args (stratify (s ++ (l :: nil) ++ r)) =

s1 ++ (vt_arg x1 (stratify (s ++ (l :: nil) ++ r))) :: r1

∧ vt_args (stratify (s ++ L ++ r)) =

s1 ++ (vt_arg x1 (stratify (s ++ L ++ r))) :: r1). (10145)

intro. Focus 2.

S1711 subgoals
Hx : vt_head (stratify (s ++ L ++ r)) =

vt_head (stratify (s ++ (l :: nil) ++ r))
______________________________________(1/1)
exists s1 r1 : list vterm,
vt_args (stratify (s ++ (l :: nil) ++ r)) =
s1 ++ vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) :: r1 ∧
vt_args (stratify (s ++ L ++ r)) =
s1 ++ vt_arg x1 (stratify (s ++ L ++ r)) :: r1

apply vt_arg_construct; trivial; try apply vt_wellformed_stratify. (10146)

51

3.2 Properties 3 DECREASING PROOF ORDER

vt arg construct requirements

S172 A requirement of vt_arg_construct is that
the smaller term (here stratify s++L++r be
not empty. Since both terms are the result of
stratify, from vt_wellformed_stratify it follows
that both are well-formed. From fl_max_neq_nil

it follows that the head of stratify (ie. fl_max

s++l::r) is not empty. As the heads are
equal, we can rewrite using Hx. We apply
head_not_empty, which states that if the head of
a well-formed term is not empty, neither is its
list of arguments.

S173 vt_arg_construct also requires that all
arguments except for position x1 are identical
between both terms. This follows directly from
H3.

S1722 subgoal
...
Hx : vt_head (stratify (s ++ L ++ r)) =

vt_head (stratify (s ++ (l :: nil) ++ r))
______________________________________(1/2)
vterm_not_empty (stratify (s ++ L ++ r))
______________________________________(2/2)
forall j : nat, j ≠ x1 →
vt_arg j (stratify (s ++ L ++ r)) =
vt_arg j (stratify (s ++ (l :: nil) ++ r))

apply head_not_empty; try apply vt_wellformed_stratify. (10147)

rewrite Hx. rewrite unfold_1_stratify. simpl.

apply fl_max_neq_nil. apply app_cons_not_nil’. (10148)

S1731 subgoals
...
H3 : forall j,

(j ≠ x1 → vt_arg j (stratify (s ++ L ++ r)) =
vt_arg j (stratify (s ++ (l :: nil) ++ r)))

∧ (j = x1 →
exists s’ r’,

length (s’ ++ (l :: nil) ++ r’) <
length (s ++ (l :: nil) ++ r)

∧ vt_arg j (stratify (s ++ L ++ r)) =
stratify (s’ ++ L ++ r’)

∧ vt_arg j (stratify (s ++ (l :: nil) ++ r)) =
stratify (s’ ++ (l :: nil) ++ r’))

______________________________________(1/1)
forall j : nat, j ≠ x1 →
vt_arg j (stratify (s ++ L ++ r)) =
vt_arg j (stratify (s ++ (l :: nil) ++ r))

apply H3. (10149)

main proof, continued

S174 Back to the main subgoal. From H3 we
can now construct each individual argument to
our abstracted terms, and by H4 we can bind
these together to fit the mold of our abstract
description, Cont f v1 C v2.

Let’s begin by constructing the subterms
in position x1, containing L and l respectively, by
cutting[4] the trivially true assumption x1 = x1

and then applying H3 to it. We destruct the
result to obtain our witnesses.

S1741 subgoals
...
H3 : forall j,

(j ≠ x1 → vt_arg j (stratify (s ++ L ++ r)) =
vt_arg j (stratify (s ++ (l :: nil) ++ r)))

∧ (j = x1 →
exists s’ r’,

length (s’ ++ (l :: nil) ++ r’) <
length (s ++ (l :: nil) ++ r)

∧ vt_arg j (stratify (s ++ L ++ r)) =
stratify (s’ ++ L ++ r’)

∧ vt_arg j (stratify (s ++ (l :: nil) ++ r)) =
stratify (s’ ++ (l :: nil) ++ r’))

H4 : exists s1 r1 : list vterm,
vt_args (stratify (s ++ (l :: nil) ++ r)) =

s1 ++ vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) :: r1 ∧
vt_args (stratify (s ++ L ++ r)) =

s1 ++ vt_arg x1 (stratify (s ++ L ++ r)) :: r1
______________________________________(1/1)
exists
(C : context fs_Sig) (v1 v2 : list vterm) (t1’ t2’ : vterm),
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ L ++ r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t1’ ∧
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ l :: r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t2’ ∧
lab_lt (vt_head t1’) (vt_head t2’)

cut (x1 = x1); trivial; intro.

apply H3 in H5. do 3 destruct H5. destruct H6. (10150)

52

3.2 Properties 3 DECREASING PROOF ORDER

assembling the context

S175 Although it may be the case that l is in the
head of the subterm in position x1 of stratify

s++l::r’s arguments, it might not be maximal
in that subterm either. For the latter case we
mobilize our induction hypothesis. We assert
that tree_rel1 lab_lt holds between them.

S1751 subgoals
...
x2 : list fletter
x3 : list fletter
H5 : length (x2 ++ (l :: nil) ++ x3) <

length (s ++ (l :: nil) ++ r)
H6 : vt_arg x1 (stratify (s ++ L ++ r)) = stratify (x2 ++ L ++ x3)
H7 : vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) =

stratify (x2 ++ (l :: nil) ++ x3)
______________________________________(1/1)
...

cut (tree_rel1 lab_lt (stratify (x2 ++ L ++ x3))

(stratify (x2 ++ (l :: nil) ++ x3))). (10152)

intro. Focus 2.

S176 To justify this assertion, we then apply our
induction hypothesis IH.

S1761 subgoals
...
IH : forall y, lengthOrder y x0 →

forall s l r, y = s ++ (l :: nil) ++ r →
forall L, hoare_lt L (l :: nil) →

tree_rel1 lab_lt (stratify (s ++ L ++ r))
(stratify (s ++ (l :: nil) ++ r))

H : x0 = s ++ (l :: nil) ++ r
H0 : hoare_lt L (l :: nil)
H5 : length (x2 ++ (l :: nil) ++ x3) <

length (s ++ (l :: nil) ++ r)
______________________________________(1/1)
tree_rel1 lab_lt (stratify (x2 ++ L ++ x3))
(stratify (x2 ++ (l :: nil) ++ x3))

apply IH with (x2 ++ (l :: nil) ++ x3). (10153)

S177 The witnesses we created earlier conform
precisely to the requirements of IH.

S1773 subgoal
...
H : x0 = s ++ (l :: nil) ++ r
H0 : hoare_lt L (l :: nil)
H5 : length (x2 ++ (l :: nil) ++ x3) <

length (s ++ (l :: nil) ++ r)
______________________________________(1/3)
lengthOrder (x2 ++ (l :: nil) ++ x3) x0
______________________________________(2/3)
x2 ++ (l :: nil) ++ x3 = x2 ++ (l :: nil) ++ x3
______________________________________(3/3)
hoare_lt L (l :: nil)

rewrite H. assumption.

trivial.

assumption. (10154)

assembling the context, continued

S178 Now that we have proven our assertion,
let’s unfold tree_rel1 internally to uncover a
witness for the context we’re assembling.

S1781 subgoals
...
H8 : tree_rel1 lab_lt (stratify (x2 ++ L ++ x3))

(stratify (x2 ++ (l :: nil) ++ x3))
______________________________________(1/1)
...

unfold tree_rel1 in H8. (10155)

53

3.2 Properties 3 DECREASING PROOF ORDER

main proof, continued

S179 After unfolding tree_rel1 in our assertion
H8, we destruct it to introduce the witnesses we
set out to create.

S1791 subgoals
...
H4 : exists s1 r1 : list vterm,

vt_args (stratify (s ++ (l :: nil) ++ r)) =
s1 ++ vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) :: r1 ∧

vt_args (stratify (s ++ L ++ r)) =
s1 ++ vt_arg x1 (stratify (s ++ L ++ r)) :: r1

H8 : exists (C : context fs_Sig) (v1’ v2’ : vterm),
stratify (x2 ++ L ++ x3) = fill C v1’ ∧
stratify (x2 ++ (l :: nil) ++ x3) = fill C v2’ ∧
lab_lt (vt_head v1’) (vt_head v2’)

______________________________________(1/1)
exists
(C : context fs_Sig) (v1 v2 : list vterm) (t1’ t2’ : vterm),
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ L ++ r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t1’ ∧
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ l :: r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t2’ ∧
lab_lt (vt_head t1’) (vt_head t2’)

do 4 destruct H8; destruct H9. do 3 destruct H4. (10155)

S180 We assign the witnesses to their proper
position in our subgoal. The context C we were
looking for is x4, as demonstrated by H8 and H9.
The arguments in positions other than x1 are
represented by x7 and x8, as shown by H4 and
H11. The subterm to fill C in stratify s++L++r is
x5, and the subterm for stratify s++l::r x6, as
shown by H8 and H9.

S1801 subgoals
...
x7 : list vterm
x8 : list vterm
H4 : vt_args (stratify (s ++ (l :: nil) ++ r)) =

x7 ++ vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) :: x8
H11 : vt_args (stratify (s ++ L ++ r)) =

x7 ++ vt_arg x1 (stratify (s ++ L ++ r)) :: x8
H6 : vt_arg x1 (stratify (s ++ L ++ r)) =

stratify (x2 ++ L ++ x3)
H7 : vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) =

stratify (x2 ++ (l :: nil) ++ x3)
x4 : context fs_Sig
x5 : vterm
x6 : vterm
H8 : stratify (x2 ++ L ++ x3) = fill x4 x5
H9 : stratify (x2 ++ (l :: nil) ++ x3) = fill x4 x6
H10 : lab_lt (vt_head x5) (vt_head x6)
______________________________________(1/1)
exists
(C : context fs_Sig) (v1 v2 : list vterm) (t1’ t2’ : vterm),
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ L ++ r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t1’ ∧
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ l :: r))) =
fill (Cont (fl_max (s ++ L ++ r)) v1 C v2) t2’ ∧
lab_lt (vt_head t1’) (vt_head t2’)

exists x4. exists x7. exists x8. exists x5. exists x6. simpl. (10156)

split.

S181 After assigning the witnesses, three
statements remain to be proven. The first of
these is that the abstract term for stratify

s++L++r we just constructed actually matches
with stratify s++L++r. This follows from H11,
H8 and H6.

S1812 subgoal
...
H11 : vt_args (stratify (s ++ L ++ r)) =

x7 ++ vt_arg x1 (stratify (s ++ L ++ r)) :: x8
H6 : vt_arg x1 (stratify (s ++ L ++ r)) =

stratify (x2 ++ L ++ x3)
H8 : stratify (x2 ++ L ++ x3) = fill x4 x5
______________________________________(1/2)
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ L ++ r))) =
Fun (fl_max (s ++ L ++ r)) (x7 ++ fill x4 x5 :: x8)

rewrite H11. rewrite ← H8. rewrite ← H6. trivial. (10157)

split.

54

3.2 Properties 3 DECREASING PROOF ORDER

S182 Its stratify s++l::r counterpart follows
from H4, H9 and H7.

S1822 subgoal
...
H4 : vt_args (stratify (s ++ (l :: nil) ++ r)) =

x7 ++ vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) :: x8
H7 : vt_arg x1 (stratify (s ++ (l :: nil) ++ r)) =

stratify (x2 ++ (l :: nil) ++ x3)
H9 : stratify (x2 ++ (l :: nil) ++ x3) = fill x4 x6
______________________________________(1/2)
Fun (fl_max (s ++ L ++ r)) (vt_args (stratify (s ++ l :: r))) =
Fun (fl_max (s ++ L ++ r)) (x7 ++ fill x4 x6 :: x8)

simpl in H4. rewrite H4. rewrite ← H9. rewrite ← H7. trivial. (10158)

S183 The less-than relation for labels holds
between the head of x5 and x6, as stated by H10.

◻

S1831 subgoals
...
H10 : lab_lt (vt_head x5) (vt_head x6)
______________________________________(1/1)
lab_lt (vt_head x5) (vt_head x6)

assumption. (10159)

55

3.2 Properties 3 DECREASING PROOF ORDER

Epilogue

In this section some lemmas are addressed that were initially skipped over.

9544 Lemma l_max_then_head_greater :
9545 forall s r l L,
9546 (forall e, In e L → fl_Lt e l) →
9547 not_below l (s ++ (l :: nil) ++ r) →
9548 lab_lt (vt_head (stratify (s ++ L ++ r)))
9549 (vt_head (stratify (s ++ (l :: nil) ++ r))).

Excerpt #184

9559 Lemma l_not_max_then_heads_equal :
9560 forall s r l L,
9561 (forall e, In e L → fl_Lt e l) →
9562 ∼ not_below l (s ++ (l :: nil) ++ r) →
9563 (vt_head (stratify (s ++ L ++ r))) =
9564 (vt_head (stratify (s ++ (l :: nil) ++ r))).

Excerpt #185

8473 Lemma tree_rel1_heads_eq_then_sub :
8474 forall t1 t2,
8475 (exists f t1_args t2_args,
8476 t1 = Fun f t1_args ∧ t2 = Fun f t2_args ∧
8477 exists (C : context fs_Sig) v1 v2 t1’ t2’,
8478 Fun f t1_args = fill (Cont f v1 C v2) t1’ ∧
8479 Fun f t2_args = fill (Cont f v1 C v2) t2’ ∧
8480 lab_lt (vt_head t1’) (vt_head t2’)
8481) → tree_rel1 lab_lt t1 t2.

Excerpt #186

10050 Lemma vt_arg_construct :
10051 forall x1 L l,
10052 vt_wellformed L → vt_wellformed l →
10053 vt_head L = vt_head l → vterm_not_empty L → x1 < length (vt_args l) →
10054 (forall j, j ≠ x1 → vt_arg j L = vt_arg j l)
10055 → exists s1 r1, vt_args l = s1 ++ vt_arg x1 l :: r1 ∧
10056 vt_args L = s1 ++ vt_arg x1 L :: r1.

Excerpt #187

56

4 CONCLUSION

4 Conclusion

Confluence is an important property of term rewriting systems. Since any algorithm can be modelled as such,
the decreasing diagrams technique is very useful for establishment of this property. Van Oostrom has further
refined the technique by means of the decreasing proof order in his 2012 article.[a] We have formalized the main
two lemmas of this method, thereby verifying its correctness. Firstly, the framework we have written in support
of our formalization is correct, as described in Chapter 2. Secondly, several essential properties of the decreasing
proof order have been established, as described in Chapter 3.

57

5 APPENDIX

5 Appendix

Some basic notions formally defined for ease of reference.

Definition 12. Given a set S, an order on S is a (binary) relation R on elements of S. We call R a total order
on S if, for any two elements x and y from S, it holds that Rxy or Ryx. If there are two elements x and y from
S such that neither Rxy nor Ryx, we call (S, R) a partial order.

Example. Consider the set of natural numbers N, ie. {0, 1, 2, . . . }. The relation ≥ is a total order on N, as for
any two numbers x and y it either holds that x ≥ y or y ≥ x. The relation = is a partial order on N, since not
all numbers are equal.

Definition 13. A relation R on S is called reflexive if ∀s ∈ S ∶ Rss. It’s called irreflexive if ∀s ∈ S ∶ ¬Rss.

Example. The equality relation = on natural numbers is reflexive, as any number is equal to itself. Likewise,
the greater-than relation > is irreflexive, as no number is greater than itself.

Definition 14. A relation R on S is called symmetrical if ∀x, y ∈ S ∶ Rxy → Ryx. It’s called asymmetrical if
∀x, y ∈ S ∶ Rxy → ¬Ryx.

Example. The equality relation is symmetrical, should it be the case that x = y then y = x must also be the case.
The greater-than relation is asymmetrical: if x > y, then y ≯ x.

Definition 15. A relation R on S is called transitive if ∀x, y, z ∈ S ∶ Rxy → Ryz → Rxz.

Example. The greater-than relation is transitive. An example of a non-transitive relation would be inequality.
If x ≠ y and y ≠ z, it doesn’t follow that x ≠ z.

Definition 16. A relation R on S is called a strict order on S if R is both transitive and irreflexive on S.
It’s called a preorder on S if R is both transitive and reflexive on S.

Example. The greater-than relation is transitive. An example of a non-transitive relation would be inequality.
If x ≠ y and y ≠ z, it doesn’t follow that x ≠ z.

Definition 17. A relation < on S is called well-founded if every non-empty subset Si of S has a minimal
element. That is, in each such subset Si there is an element m such that ∀s ∈ Si ∶ s ≮m.

Example. The less-than relation < is well-founded on the set of natural numbers N. Let Sn be a non-empty
subset of N. It must be the case that Sn have a smallest element. < is not well-founded on the set of integers Z,
ie. {. . . , −2, −1, 0, 1, 2, . . . }. Consider its subset {. . . , −3, −2, −1}, the set of negative numbers. No matter the
element, there is always a smaller element in that set.

Definition 18. Given two sets X and Y , let < be a relation between elements from X and Y . We say that X
dominates Y in < if, ∀yi ∈ Y ∶ ∃xi ∈X ∶ yi < xi.

Example. Consider a set S: {a, b, c, d}, and a partial order ≺ on S: {(a, b), (b, c), (b, d), (a, d)} We then say that
{d}, {c, d}, and {a, b, c, d} all dominate {a, b}. Likewise, {d} and {c, d} are dominated by no sets.

Definition 19. A multiset is a set S paired with a map µ ∶ S → N ∖ {0}, where for any e ∈ S,µe denotes the
multiplicity (ie. the number of occurrences) of e in S. We use only finite multisets. Two multisets ⟨M,µM ⟩ and
⟨N,µN ⟩ are considered equal if ∀x ∈M ∪N ∶ µM(x) = µN(x).

Example. A multiset can be considered a set allowing multiple occurences per element. Let M = {a, b, c, d} and
µM = {(a,3), (b,1), (c,4), (d,2)}. Then ⟨M,µM ⟩ equals {a, a, a, b, c, c, c, c, d, d}.

Definition 20. Given a set S, letM(S) denote the set of all finite multisets on S. Then, given a relation < on S,
the Dershowitz-Manna ordering <DM for all M,N ∈ M(S) is defined as: M <DM N if and only if ∃X∃Y ∈ M(S)
such that: X ≠ ∅, X ⊆ N , M = (N −X) + Y , and X dominates Y in <.

Example. A more instructive way to think about this order is to suppose that M is constructed from N by first
removing the elements in X and then adding the elements in Y . Because of the requirement that X dominates
Y in <, each element that is added is smaller than some removed element, rendering a smaller multiset.

58

References

[a] Van Oostrom, V. A proof order for decreasing diagrams - Interpreting conversions in involutive
monoids (2012). Unpublished.

[b] Terese. Term Rewriting Systems (2003). Cambridge University Press.

[c] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The
Calculus of Inductive Constructions (2004). Springer.

[d] Baader, F., Nipkow, T.: Term rewriting and all that (1998). Cambridge University Press.

[e] Zankl, H. Confluence by Decreasing Diagrams – Formalized (2013). 24th International Conference
on Rewriting Techniques and Applications, pp. 352−367.

Index
French letter, 4
French string, 4
French term, 5

Hoare order, 4
arity (to have), 5

decreasing path order, 44
flattening, 13
lexicographic order, 39
lexicographic path order, 43
lifting (of an order), 43

multiset, 39
scattered substring, 7
sigma type, 6
stratification, 8
strict order, 43

Index (Coq definitions)
Acc, 9

Cont, 50

Eqset, 42

Forall, 6

Fun, 6

Hole, 48

LexMSTR, 42

LexProd_Gt, 41

LexicographicOrder, 41

MultisetListOrder, 42

MyLPO, 44

Ord, 42

Prop, 6

Sig, 6

VPrecedence, 43

Var, 6

accent, 4

ar, 5

cut, 52

fill, 48

fix, 15

fl_Lt, 6

fl_comparable, 7

fl_incomparable, 7

fl_max’, 11

fl_max, 11

flatten_cert, 32

flatten, 13

fletter, 4

fs_Sig, 6

fs_incomparable, 7

fstring, 4

fterm, 6

fun, 6

hoare_Lt, 24

hoare_lt, 5

interleave, 13

lab2pair, 42

lab2trip, 40

lab_lt, 42

lengthOrder, 9

letter, 4

lforall, 6

list, 8

lp_LexProd_Gt, 39

lt_lpo’, 44

lt_lpo, 43

map, 9

nat, 8

not_below, 11

pose, 34

split_fstring’, 12

split_fstring_sigT’, 12

stratify’, 10

stratify, 11

strict_order, 6

sublist, 7

term_ind, 32

term, 6

tree_rel1, 46

triple_prod, 40

triple, 40

unfold, 15

vt_transform, 44

vt_wellformed, 6

vterm, 6

well_founded, 11

Index (Coq theorems)
Acc_inv, 10

Lemma19a’, 47

Lemma19a, 47

ar_holds, 18

f_equal, 27

fl_max’_incomparable, 25

fl_max_incomparable, 25

flatten_after_stratify_id, 26

hoare_Lt_split_max, 24

hoare_Lt_then_also_fl_max, 24

interleave_split’_id, 29

interleave_split_id, 29

l_max_then_head_greater, 56

l_not_max_then_heads_equal, 56

lengthOrder_wf, 11

map_eq_nil, 17

map_ext, 27

map_map, 27

max_after_interleave_id, 37

move_stratify_inward, 37

proof_irrelevance, 23

split_fs_sigT_invertible, 37

stratify_after_flatten_id’, 34

stratify_after_flatten_id, 33

term_ind_forall, 33

tree_rel1_heads_eq_then_sub, 56

unfold_1_stratify’, 15

vt_arg_construct, 56

vt_wellformed_stratify, 16

59

Bookmarks

[1] Reference Manual. Definition of functions by recursion over inductive objects

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#sec54

[2] Reference Manual. Extraction of programs in Objective Caml and Haskell

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual025.html

[3] Reference Manual. The Module System

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual004.html#sec80

[4] Reference Manual. Controlling the proof flow: cut

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea default556

[5] Reference Manual. Controlling the proof flow: pose

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea tactic53

[6] Reference Manual. Sorts

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#hevea default15

[7] Reference Manual. Abstractions: fun

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#sec32

[8] Reference Manual. Explicit applications: @

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual004.html#hevea default136

[9] Reference Manual. Performing computations: unfold

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea tactic137

[10] Reference Manual. Recursive functions: fix

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#sec39

[11] Reference Manual. Inferable subterms:

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#hevea default25

[12] Reference Manual. Equality: f equal

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#sec423

[13] Standard Library. Peano natural numbers

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes.html#lab3

[14] Standard Library. Container datatypes: list

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes.html#list

60

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#sec54
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual025.html
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual004.html#sec80
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea_default556
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea_tactic53
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#hevea_default15
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#sec32
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual004.html#hevea_default136
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea_tactic137
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#sec39
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual003.html#hevea_default25
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#sec423
https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes.html#lab3
https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes.html#list

[15] Standard Library. Container datatypes: prod

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes.html#prod

[16] Standard Library. Case analysis and induction: case eq

https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea tactic70

[17] Standard Library. Existential and universal predicates over lists

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Lists.List.html#lab373

[18] Standard Library. Subsets and Sigma-types

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Specif.html

[19] Standard Library. Applying functions to the elements of a list: map

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Lists.List.html#lab363

[20] CoLoR Library. Contexts and replacement of the hole

http://color.inria.fr/doc/CoLoR.Term.Varyadic.VContext.html#term

[21] CoLoR Library. strict order

http://color.inria.fr/doc/CoLoR.Util.Relation.RelExtras.html#StrictOrder

[22] CoLoR Library. lforall

http://color.inria.fr/doc/CoLoR.Util.List.ListForall.html

[23] CoLoR Library. Module types for setoids with decidable equality: Eqset

http://color.inria.fr/doc/CoLoR.Util.Relation.RelExtras.html#Eqset

[24] CoLoR Library. An order on lists derived from the order on multisets: MultisetListOrder

http://color.inria.fr/doc/CoLoR.Util.Multiset.MultisetListOrder.html#MultisetListOrder

[25] CoLoR Library. Recursive path orderings are monotonic well-founded strict orders: VPrecedence

http://color.inria.fr/doc/CoLoR.RPO.VPrecedence.html

61

https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes.html#prod
https://coq.inria.fr/distrib/8.4pl3/refman/Reference-Manual010.html#hevea_tactic70
https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Lists.List.html#lab373
https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Specif.html
https://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Lists.List.html#lab363
http://color.inria.fr/doc/CoLoR.Term.Varyadic.VContext.html#term
http://color.inria.fr/doc/CoLoR.Util.Relation.RelExtras.html#StrictOrder
http://color.inria.fr/doc/CoLoR.Util.List.ListForall.html
http://color.inria.fr/doc/CoLoR.Util.Relation.RelExtras.html#Eqset
http://color.inria.fr/doc/CoLoR.Util.Multiset.MultisetListOrder.html#MultisetListOrder
http://color.inria.fr/doc/CoLoR.RPO.VPrecedence.html

	Introduction
	Background
	Contents

	Representation Proof
	Presenting the framework
	French strings
	French terms
	Stratification
	Flattening

	Proving the framework to be correct
	Well-formedness of stratify
	Flatten after stratify
	Stratify after flatten

	Decreasing Proof Order
	Presenting the framework
	Lexicographic Order
	Area
	Label less-than
	Lexicographic Path Order
	Decreasing Proof Order

	Properties

	Conclusion
	Appendix
	References
	Index
	Bookmarks

