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Abstract 

The Leaf Area Index (LAI) is an important parameter characterising vegetation and 
knowledge of LAI is crucial for describing the activities within an ecosystem. It is 
widely used as a basic input parameter in hydrological and bio-chemical models for 
the estimation of the water-cycle, agricultural primary production and other 
parameters. This study attempted to improve the spatial resolution of MODIS LAI 
product (1000m pixel size), through the regression analysis applied to MODIS EVI 
(1000m) and LAI data and the use of the estimated regression equations in a 
downscaling model using images from the EVI product of Landsat (30m) and several 
land-cover maps. Regression analysis was applied in 5 selected study sites around the 
world, which differ with respect to the climate conditions. Several scenarios were 
tested in order to find the important parameters affecting the LAI-EVI relationship 
(vegetation type, seasonality) and the data were found to be described best by a 
linear fit. During the downscaling process the estimated LAI-EVI equations were used 
to calculate LAI values and subsequently create LAI maps at the Landsat spatial 
resolution level (30m). The results of the study showed that vegetation type has the 
highest influence on the EVI-LAI relationship, as well as that the sensitivity of EVI to 
LAI is lower in periods of high biomass production. The created LAI maps showed 
visual similarity of high level in patterns of LAI value distribution, when compared to 
the corresponding lower resolution LAI maps (MODIS). The comparison of field data 
with the model estimated values of LAI showed high correlation especially during the 
dry period. The lowest correlation was observed during the rainy season when the 
availability of cloud free pixels in the LAI images was low. For most of the cases 
examined, the model gave statistically significant results (at 0.05 and 0.001 level) 
with the r coefficient values ranging from negative (-0.1783, one case) and relatively 
low (2 cases, 0.25 and 0.32) values, to moderate (3 cases, 0.4-0.7) and high (5 cases, 
0.7-0.935). Limited samples per vegetation type on specific dates, the diversity of 
vegetation species within the same vegetation type, as well as saturated EVI values 
were evaluated to be the most possible factors affecting the regression analysis 
results. The model estimated LAI values were found to correlate better with the field 
measurements in study areas of the Southern Hemisphere. 
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model, high resolution LAI maps. 
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1 Introduction   

The Leaf Area Index (LAI) is an important parameter characterising vegetation 

and is defined as the one sided green leaf area per unit ground area in broadleaf 

canopies and as one half the total needle surface area per unit ground area in 

coniferous canopies (Myneni, 2012). Knowledge of LAI in a study area is crucial in 

order to describe the activities within an ecosystem. It is widely used as a basic input 

parameter in hydrological and bio-chemical models for the estimation of the water-

cycle, agricultural primary production, exchange of carbon dioxide, desertification 

risk, etc. 

Measuring LAI in-situ is in general considered to be a difficult and costly 

process. It can be achieved with direct methods that are ground-based (e.g. 

destructive sampling and litterfall collection), or indirect methods, such as 

photographing the canopy with a vertical hemispherical lens and processing the 

acquired photos with specialized software (Weiss et al., 2004; Alexandridis et al., 

2013b).  

Remote sensing is considered as an indirect method, which has the ability to 

provide LAI data at various spatiotemporal scales, due to the variety of spatial and 

temporal resolution of the available satellite data. Retrieval of LAI on the landscape 

scale can be achieved through different platforms, such as aerial, ground and space-

based (Zheng and Moskal, 2009). The underlying hypothesis for estimating LAI with 

remote sensing is that increased vegetation biomass, which is related to high LAI 

values, reflects the near-infrared and absorbs the red wavelengths. Three methods 

are characteristic of the remote sensing approach:  

• the empirical based model, relating vegetation indices with in-situ LAI 

estimations (Clevers, 1988a; Butson and Fernandes, 2004; Soudani et al., 

2006);  

• the radiative transfer model, which uses physical laws to describe with 

accuracy the spectral variation of canopy reflectance as a function of canopy, 

leaf and soil background (Goel, 1989; Kimes et al., 2000; Meroni et al., 2004);  

• the hybrid model, which combines the advantages of both previous methods 

into an integrated LAI inverse model (Shen et al., 2014).  

Colwell (1974) demonstrated that the near-infrared (NIR) and red reflected 

energy are closely related to the amount of plants (vegetation) present on an area. 

The photosynthetic process of any plant and especially the amount of chlorophyll 

present in its leaves during the stages of the plant’s development, affects the amount 

of the reflected red energy, as this is decreased when the presence of chlorophyll is 

being increased. The exact opposite happens with the amount of NIR reflected 

energy, as it increases while the healthy plant leaves grow. In an ideal situation, the 
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two types of reflected energy could be quantified and used in order to interpret the 

amount of vegetation present in a location, the health state of the plants, or even 

their growth development. However, due to several characteristics such as the 

influence of the atmosphere between the satellite sensor and the object (plant) 

reflecting the energy, the canopy structure or background, etc., it is not feasible to 

quantify with accuracy the measured reflection value and use it to monitor the 

vegetation state. According to Huete et al. (1999), the solution to this problem is to 

combine two or more bands into a single equation, formulating this way the so-

called vegetation indices (VI), which are widely used to describe, monitor and 

quantify the state of vegetation in an area, or to describe important vegetation 

characteristics.  

Heterogeneity of vegetation causes under-estimation levels of LAI (Fensholt 

et al., 2004) and therefore it is wise to select for the research purposes the tools (VIs) 

that provide the maximum stability and accuracy possible. An index that is often 

used in estimating LAI is the Normalized Difference Vegetation Index (NDVI) (Wang et 

al., 2005a). Major disadvantage is that the NDVI is not sensitive at medium to large 

LAI values. From the free of cost available VI products, those of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) were selected, because this sensor 

provides also a LAI product (which will be used for the present study purposes) in the 

same spatial resolution as the VI data and for the exact same time periods. The 

Enhanced Vegetation Index (EVI) was selected to be used for the research purposes, 

since according to relevant literature it is more stable and accurate compared to the 

NDVI, while in general these two indices have similar performance no matter what 

crops are analyzed (Colombo et al., 2003). Moreover, the EVI has improved 

sensitivity in high biomass regions and according to Wang et al. (2005b) the values of 

EVI are more useful than those of the NDVI in estimating LAI. Even though NDVI is 

considered to be more appropriate for estimating chlorophyll responsiveness of the 

vegetation, the EVI is more sensitive to the variations of canopy structure (canopy 

architecture, crown type, vegetation physiognomy and LAI) (Chen and Sun, 2010). An 

additional advantage is that EVI normalizes and adjusts the reflectance in the red 

band as a function of the reflectance in the blue band, minimizing this way the 

residual atmosphere influences (Huete et al., 1997).  

As mentioned above, the LAI is a very important input parameter in 

hydrological models operating at river basin or sub-basin level (Schumann, 1993) and 

especially in the estimation of water related parameters, such as dynamics of the 

water flow (superficial or groundwater flow) (Pedro et al., 2011). For these models, 

LAI is a very common input as it defines the water loss by evapotranspiration, 

roughness for surface water flow and development stage of plants (Teixeira, 2010; 

Chambel-Leitão et al., 2011; Jassas et al., 2015). The models' requirement for LAI 

input is characterized by a relative flexibility in resolution and time steps, meaning 

that the ideal situation would be to acquire LAI data at as high resolution as possible, 
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and at frequent time steps to describe the development of vegetation (depending on 

the examined vegetation type). 

This study was conducted within the project of the Research Committee of 

the Aristotle University of Thessaloniki (Greece) entitled "Improvement of the 

estimation of Leaf Area Index (LAI) at basin scale using satellite images" and 

capitalized on the results of the MyWater research project "Merging hydrological 

models with Earth observation data for reliable information on water" 

(http:\\mywater-fp7.eu), using part of the data acquired during the progress of the 

project for several test sites.    

1.1 Problem Definition 
Several products are available from FAO, ESA and NASA that provide LAI maps 

at regional or global scales, at high frequency (eight days interval), but at low spatial 

resolution (1000 meters, only recently upgraded to 500 meters). These products 

could satisfy the research needs of global and regional scale studies. However, at 

local scale studies such as the area covered by a catchment, the above mentioned LAI 

products cannot be considered representative due to the large level of 

generalization. 

In relevant literature, efforts to estimate LAI at higher spatial resolution level 

are narrowed to only some kinds of crops (Walthall et al., 2004), certain types of 

forest vegetation (Eklundh et al., 2001), or in general for relatively limited study 

areas. They are also dependent on in-situ observations, which are costly and usually 

limited to a few sampled locations. For example, some researchers try to focus on 

the different characteristics of several biomes but without considering other 

characteristics affecting LAI, e.g. seasonality (Turner et al., 1999; Tian et al., 2000), 

while other (Myneni et al., 2002) take in consideration all the characteristics 

involved, with the research focusing on evaluating the existing LAI products. On the 

other hand, most cases are usually dedicated to certain types of crops or forests, 

taking in consideration all related landscape and climate characteristics (Chen and 

Cihlar, 1996; Fassnacht et al., 1997; Gupta et al., 2000; Johnson, 2003; Fensholt et al., 

2004; Wang et al., 2005a), but their resulting methodology cannot find application in 

other vegetation types. In some cases (Colombo et al., 2003; Foody et al., 2003; 

Wang et al., 2005b) the researchers take in consideration all the characteristics 

related to seasonality, vegetation type and phenology stage of the examined areas, 

which are described with different equations per characteristic. Finally, there have 

also been approaches to study and estimate LAI at catchment area level, using 

satellite data of various spatial resolutions (Topaloglou et al., 2013; Silleos et al., 

2014). 

Considering all the above, there is the need to develop a methodology for 

estimating LAI at higher resolution levels, without being based on empirical 

equations and in-situ observations and moreover without focusing only to certain 
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vegetation types, but instead taking in consideration all vegetation species present in 

a landscape. Therefore, the present research focuses on a wide range of vegetation 

and seasonality characteristics in several study areas distributed worldwide. Since 

relevant literature for estimation of high resolution LAI only focuses at certain crop 

or vegetation types, or only for a certain period of the growing season, it would be 

interesting to examine whether there is a methodology that could find wider 

application (within the river basin and within the hydrological year). Moreover, if the 

downscaling method of MODIS LAI (presented in the next sub-chapter, 1.2) using 

MODIS EVI and Landsat EVI imagery proves to be successful, it will be feasible to 

develop a procedure which will provide remote sensing LAI data of high spatial and 

temporal accuracy, without the need of in-situ measurements.  

1.2 Research objectives 
The main goal of this research was the improvement of LAI estimation at the 

river basin scale, using LAI and EVI products of moderate and high spatial resolution, 

created from satellite imagery. As side goals were considered the spatio-temporal 

analysis of the relation between MODIS LAI and EVI, and the downscaling of LAI using 

higher resolution satellite images (Landsat). The research was applied in selected 

river basins scattered around the globe (Greece, Netherlands, Portugal, Mozambique 

and Brazil). 

 The results include the analysis and presentation of correlation of LAI with the 

EVI for the selected test sites, the formulation of a methodology for downscaling the 

estimation of LAI from lower to higher spatial resolution and finally, the creation of 

LAI maps with improved resolution for the test sites. 

The above mentioned research objectives led to the three main research 

questions of this thesis: 

1. What is the nature of the relation between LAI and EVI across the various 

climatic conditions (and thus vegetation types) of the study areas?  

2. How is this relation affected by seasonality (different stages of vegetation 

growth) and land-cover (different types of vegetation)? 

3. Can the relation (equations derived by regression analysis between EVI-
LAI) be used to downscale LAI using higher resolution satellite images 
than MODIS? 
 

1.3 Thesis Overview 
The first chapter of the Thesis introduces the subject of the research and 

identifies the objectives examined in the following chapters. The second chapter is 

dedicated to define and analyze all the concepts and terms related to the theoretical 

background of the thesis, as well as the description of the algorithms behind the 

satellite products used. Description of the study areas and data used throughout the 
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research can be found in the third chapter, followed by the fourth chapter which is 

the description of the methodology used. Chapter five includes all the related results 

after the application of each methodological step described previously, along with 

methods and techniques to validate the methodological results, while chapter six 

includes discussion of the results. The final chapter is conclusions, where it is 

expressed whether the goals were partially or fully fulfilled and in which extent, 

followed by the list of references used throughout the research. Chapter nine is 

provided as an appendix. 
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2 Literature review    

In this chapter the relevant literature is being analyzed and insight over the 

theoretical concepts behind relevant research and the products used throughout the 

research, as introduced in the first chapter, is provided. 

2.1 Vegetation monitoring with VIs & LAI 
 In general, monitoring and analyzing the stages of vegetation growth during 

the repeated life-cycle of each type of plant, known as phenology, is considered to be 

a valuable tool in order to assess the impact of climatic changes. Several scientific 

fields, such as forestry and agriculture, are closely related and being affected by 

changes in climate, mainly because of the impact that such changes have on 

phenology, creating new conditions and affecting characteristics of the vegetation 

(van Vliet et al., 2003) in a manner similar to the effects of evolution on the human 

kind during the years. Therefore, it is crucial for the scientific community to have in 

place such tools or techniques that would simplify the procedure of phenology 

monitoring and at the same time minimize the effort and time needed to be spent 

during the relevant tasks. 

 The LAI, as well as the VIs, have been and are still considered to be some of 

the most valuable tools with a global use, in order to monitor and evaluate the 

progress during plants’ growth. Several global studies have validated the MODIS LAI 

product (for details see section 2.2.1) using related fieldwork , for a wide range of 

vegetation types and time-periods, with the accuracy of the product estimated at 

0.66 RMSE (Root-Mean-Square-Error) LAI units in case all types of biomes were taken 

into consideration, falling to a value of 0.5 RMSE units, when broadleaf forests were 

excluded (Myneni, 2012). Researchers warn that there has to be increased 

awareness using such data (MODIS), since the relation between LAI and VIs is not 

applicable everywhere and all the time, due to measurement geometry and spatial 

resolution of the examined plant canopies (Tian et al., 2000). Seasonality during the 

growth cycle of each vegetation type seems to be another crucial factor when 

regression analysis is applied between MODIS LAI and VI data. As Wang et al. (2005a) 

support, when regression analysis is performed between LAI and VI’s of MODIS, R² 

values are constantly increasing during different growing stages, but they also warn 

that assumptions and conclusions should be made only per growth-cycle (over one 

year period), as year to other years comparison between LAI/VIs may be erroneous . 

Meteorological condition during different seasons is also a characteristic affecting 

the overall quality of such data, however by the 8-day image compositing method 

that MODIS uses, it is possible to eliminate the contamination from cloud cover 

(Knyazikhin et al., 1999).  
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Moreover, there are major advantages related to the use of MODIS data, 

since there is no need for additional processing of the datasets in order to correct 

any atmospheric effects present, as they are delivered already pre-corrected (Walker 

et al., 2012). Even though the spatial resolution of MODIS data is considered to range 

from moderate levels (250 m.) to relatively low (1000 m.), it has been proved that 

higher resolution data of Landsat can also be used together with MODIS, in order to 

improve the spatial resolution in the estimations. Masek et al. (2006) support in their 

research that comparison between MODIS and Landsat data shows very high 

consistency, but on the other hand, variations can still be found due to bandwidth 

and solar geometry differences (Gao et al., 2006). Although MODIS includes spectral 

bands with a number of differences compared with Landsat bands (in terms of band-

passes and spectral response), they are generally considered to be equivalent (Masek 

et al., 2006). An overview of the similarities between the wavelength bands of 

Landsat (TM, ETM+, and OLI/TIRS) and MODIS sensors can be found in Table 1. From 

the presented wavelength values of the associated spectral bands, it is evident that 

the best agreement can be found between the data of Landsat 8 (OLI/TIRS sensors) 

and MODIS, but overall all the values for each band and the equivalent band of 

another sensor seem to be very close. Therefore, a priority has been given on 

choosing Landsat 8 data over Landsat 7 and 5 whenever this is possible, in order to 

retain errors, which might occur due to this inconsistency, to the minimum level 

possible. 

Table 1: Wavelengths (in micrometers) of blue, green, red and NIR bands for MODIS and 

Landsat sensors 

Sensor Band 3 Band 4 Band 1 Band 2 

MODIS 
0.459 - 
0.479 

0.545 - 
0.565 0.62 - 0.67 

0.841 - 
0.876 

 
        

Landsat Band 1 Band 2 Band 3 Band 4 

(TM) 0.45 - 0.52 0.52 - 0.60 0.63 - 0.69 0.76 - 0.90 

 
        

(ETM+) Band 1 Band 2 Band 3 Band 4 

  0.45 - 0.52 0.52 - 0.60 0.63 - 0.69 0.77 - 0.90 

          

(OLI/TIRS) Band 2  Band 3  Band 4  Band 5  

  0.45 - 0.51 0.53 - 0.59 0.64 - 0.67 0.85 - 0.88 

 

 Considering the effect of the atmosphere on the quality of Landsat and 

MODIS data, it is supposed that atmospheric correction of MODIS images can be 

performed with a greater degree of accuracy than Landsat images due to the 

improved onboard capabilities of MODIS  (Vermote et al., 1997; Vermote et al., 

2002). Comparison between VIs (Landsat-NDVI, MODIS-NDVI) products of Landsat 
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and MODIS (Maiersperger et al., 2013) for a specified study area, showed that there 

is a very strong linear relation between the values of the two products, with the only 

exception being a dataset of MODIS used that was dominated by heavy cloud 

presence. The MODIS-NDVI values show a slight but systematic over-estimation 

compared to these of Landsat, with the R² value of the regression analysis between 

the datasets reaching a level of 0.8 (80%), the Root Mean Square Deviation (RMSD) 

value being 0.09 and the point values being plotted on the 1:1 trend-line showing a 

slope of 0.85.   

EVI rather than other available VIs was selected for the Thesis purposes. 

Relevant research showed that for the period of the past 35 to 40 years, several 

attempts have been made to study the relation between LAI and other VIs (NDVI, 

EVI, Weighted Difference Vegetation Index (WDVI), Soil Adjusted Vegetation Index 

(SAVI) and other), analyzing each time the benefits or disadvantages behind these 

choices. For example, Clevers (1988b) stated that the most suitable reflectance 

factors that could be used in order to estimate LAI are those in the NIR wavelength, 

with only disadvantage being the fact that due to soil moisture, which shows 

variations during the growth stages of a canopy, problems might appear if a multi-

temporal analysis is applied, since the soil reflectance is dramatically affected by it. 

The WDVI could be used to bypass this problem, as it is known for the improved 

correction for soil background when green vegetation is examined (Clevers, 1991). 

However, in seasons (periods) or in vegetation types where green vegetation is not 

the dominating characteristic of the examined canopy, problems in the LAI 

estimation might still occur. The NDVI, as mentioned in the introduction, is one of 

the most common indices used in relevant research for the LAI estimation, but still, 

for some regions (e.g. Western Europe) with agricultural conditions showing 

variations compared to other regions, the associated results are not of a satisfying 

level (Clevers, 1986). Cohen et al. (2003) support that coupling more than one VI of 

multiple dates in the regression analysis, could enhance the overall accuracy of the 

analysis results, but due to the fact that the present Thesis uses five different 

geographic regions as study areas and for a time period of a whole year, the related 

data and the work demanded would dramatically increase in volume.   

Finally, Ganguly et al. (2012) have recently started developing (in a project 

funded by NASA) an algorithm, which will be able to estimate LAI at high resolution 

level through the direct use of Landsat data, and specifically by using the 

Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and 

wavelength. However, this project is not finished yet and according to the scientific 

team responsible for it, several parameters such as the provided scale of the final 

product, the heterogeneity of vegetation as well as the validation stage of the results 

are factors that still need research. 
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Considering all the above, along with the basic advantages of the EVI 

presented in the introduction chapter, led to the choice of the data and techniques 

that was finally used in the present Thesis methodology.  

2.2 MODIS products  
The Moderate Resolution Imaging Spectroradiometer, also known as MODIS, 

is an instrument of the Terra satellite which was launched by NASA on 18th of 
December 1999. On 4th of May 2002, an additional similar instrument was launched 
on the Aqua satellite. Since then, the two instruments provide continuous daily data 
for uses related to the monitoring of ecosystems, oceans and the atmosphere, 
helping the scientific community in several fields to apply research on climate and 
earth surface changes (Savtchenko et al., 2004). 36 spectral bands are available 
through the MODIS instrument, covering a range from 415 nm to 14,235 nm, with a 
viewing swath of 2330 km and a spatial resolution which varies from 250 m to 500 m 
and 1000 m, depending on the characteristics of each product provided. 

Several products have been created by the scientific teams of NASA since the 

initial launch of the instruments into orbit. These products are divided in five broader 

categories, namely MODIS Level1, Land, Ocean, Cryosphere and Atmosphere 

products. The LAI/FPAR and EVI products are part of the MODIS Land products 

category and are provided by the LPDAAC website already corrected for atmospheric 

gases, thin cirrus clouds and aerosols, based on the MOD09 product daily surface 

reflectance series (Fensholt et al., 2004).  

MODIS data of LAI and EVI is provided with relevant information about its 

quality. Factors such as cloud or snow cover, dark soil type, gas emissions, sensor 

viewing angle, etc. can significantly affect the reliability and quality of the EVI and LAI 

data acquired by MODIS. Additionally, Myneni et al. (2002) point out that the 

algorithms behind the MODIS products are expected to fail more often over latitudes 

with frequent cloud cover, such as the tropics.  For these reasons, developers of the 

products advise users to examine the per-pixel product quality information to screen 

out poor quality data before use in applications, science, or research (Huete et al., 

1999). Subsequently, for each image downloaded, Quality Assurance (QA) data per 

pixel is also provided, in order to discard pixels that are characterized by low quality 

and thus low accuracy. This is considered as a common practice in relevant research 

(Ahl et al., 2006; Chen and Sun, 2010). 

2.2.1 LAI algorithm description 

The MODIS FPAR/LAI product is available for downloading through the Land 

Processes Distributed Active Archive Center (LPDAAC) internet platform of the U.S 

Geological Survey. The exact name of the LAI product used throughout the Thesis is 

MCD15 and apart from LAI data, it also includes data of the Fraction of Absorbed 

Photosynthetically Active Radiation (FPAR) that a plant canopy absorbs for 

photosynthesis and growth in the 0.4 – 0.7 µm spectral range. MCD15 is 
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characterized by a spatial resolution of 1000 meters per pixel and recently a version 

of 500 meters per pixel has also been made available. Seven spectral bands (648 nm, 

858 nm, 470 nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm) participate in the 

development of the final product, along with land-cover data (from MODIS 

MODAGAGG and MOD12Q1 land products), since the algorithm and the final 

estimation of LAI values per pixel depends heavily on the type of vegetation present 

in each pixel. Vegetation is described by these products in seven general classes, 

dividing all possible types of plants in seven biomes (grasslands, crops, shrubs, broad-

leaf crops, savannahs, broad-leaf forests and needle-leaf forests).  

The philosophy behind formulation of the MODIS LAI algorithm is mainly 

based on the three-dimensional radiative transfer theory. Atmospherically corrected 

surface spectral bi-directional reflectance is used as input in order to make an 

estimation of the most probable LAI values in the areas of interest (Myneni et al., 

2002). In order to tackle the problem of inverse LAI retrieval from Bidirectional 

Reflectance Distribution Function (BRDF), a three-dimensional approach is used by 

the developers of the product, adopting several techniques such as Green’s function 

and ad-joint formulation. According to Myneni et al. (2002), the initial function of the 

algorithm is to try and estimate through the use of characteristics such as the sun 

position and view directions, using BRDF values and any uncertainties present, the 

observed values of LAI and FPAR. The values found are then compared with LAI and 

FPAR values from models representing similar natural conditions, in order to 

evaluate which of these are the acceptable values (or the so-called solutions). The 

dispersion magnitude of the estimated values is used as input to evaluate the 

reliability of the corresponding LAI values and it is not possible to improve the 

accuracy in the retrievals if any additional information is not available. Taking in 

consideration the natural variability of vegetation canopies, it is then possible to 

divide the three-dimensional transfer of radiation in canopies to two sub-problems; 

one considering dark surfaces and the other related to anisotropic sources at the 

canopy bottom (Knyazikhin and Marshak, 2000). Red and near-infrared bands are 

used to examine whether the canopy leaves are completely absorptive or if they fully 

reflect/transmit the radiation, with the in between conditions being characterized as 

super-positions (Myneni et al., 2002). It is then feasible to proceed with more 

accuracy in the specification of changes in structural characteristics of the canopy. All 

the previously mentioned characteristics are finally stored in Look-Up-Tables (LUT), 

which can be used as reference data to model various canopy structures and soil 

types. Overall, as explained by Wang et al. (2001), reliability and accuracy of the 

algorithm is heavily dependent on the quality and quantity of spectral information 

used as input.  

After all these steps, if the algorithm still fails to make a valid estimation due 

to the effects of the atmosphere, a backup algorithm using the values of Vegetation 

Indices (VIs) is used instead (Myneni et al., 2002). However, the data created through 
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the backup algorithm is provided by LPDAAC with a quality flag and is labeled as 

“marginal”, indicating that researchers should use such data with caution.    

Wang et al. (2005b) also note that cloud state should always be a quality 

check flag and this was the reasoning behind the choice of the MODIS research team 

to compose 8-day period images with the LAI values, in order to avoid the effect of 

cloud coverage in the output data (Knyazikhin et al., 1999). Relevant literature points 

out that the minimum period over which significant changes might occur to the LAI 

values of any vegetation type in real life conditions is 9 days (one-year cycle 

agricultural crops) (Alexandridis et al., 2008), and therefore the composition period 

of 8 days was evaluated as sufficient and safe to be adopted for the Thesis purposes. 

2.2.2 EVI algorithm description 

The Vegetation Indices (VIs) provided by MODIS are level 2 products and 

consider two different indices: the Enhanced Vegetation Index (EVI) and the 

Normalized Difference Vegetation Index (NDVI). They are available at various spatial 

resolution levels, with the majority of the related products characterized by a spatial 

resolution of 500 and 1000 m, while limited products can also be found in 250m 

(Huete et al., 2002). Unlike the MODIS LAI/FPAR product, the estimated values of the 

VI products are computed in the same way in time and space, which actually means 

that characteristics related to the type of land-cover and soil in the areas of interest 

are not taken into consideration. In general, the two products are characterized by a 

16-day time-step and for their creation a MODIS-specific compositing method is 

used, which is based on the Quality Assurance (QA) product, in order to remove low 

quality pixels. After the exclusion of low quality and low accuracy pixels due to 

extreme atmospheric (clouds, etc.) or land (snow, inland water, etc.) conditions, a 

constrained view angle (<30 degrees) approach is applied on the remaining good 

quality VI values, which selects a pixel to represent the compositing period. The 

philosophy behind the choice of the final value is that from the two highest values 

available, the one characterizing the pixel located closer to nadir is being used (Huete 

et al., 1999).  

The overall accuracy of the MODIS EVI product is estimated up to ± 0.025 

units (Huete et al., 2002). Apart from the atmospheric and viewing angle parameters 

that might influence the EVI value estimation accuracy, factors such as extreme 

brightness or darkness of a surface, snow coverage and presence of desert areas or 

inland water bodies might also affect the accuracy of the estimations. This is mainly 

due to the atmospheric corrections applied to the blue, red and NIR spectral bands 

data, which participate in the equation used to calculate the EVI values, and follows 

below (Huete et al., 1999): 
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 where G is the 

Gain factor, near infra-red (NIR), red and blue are atmospherically corrected values 

of surface reflectance, L is the factor for the canopy background adjustment and C1 - 

C2 are the coefficients of the aerosol resistance term used for the blue band, in order 

to correct aerosol influences in the red band.  

The MODIS EVI-algorithm uses the values of G=2.5, L=1, C1 = 6, and C2 = 7.5. 

Huete et al. (1999) add that the overall accuracy of the estimated MODIS EVI values 

shows a high level of agreement with satellite data of other sources (such as Landsat 

EVI and ASTER EVI), as well as with field means (such as FLUXNET Towers), no matter 

the area of interest (worldwide character) and without being affected by seasonality. 

Agreement between the different sensors used for the EVI estimation is even higher 

in areas with high levels of biomass.  

2.3 Landsat products 
Landsat, which is a play of words between Land and Satellite, is the longest 

program running related to satellite imagery data since 23
rd

 of July 1972, which was 

the date the Earth Resources Technology Satellite was launched. Since then, 7 more 

satellites have been sent into orbit, with one of them (Landsat 6, 5
th

 of October 1993) 

failing to reach the orbit during launch. The most recent of them, Landsat 8, was 

launched on 11
th

 of February 2013. The Landsat satellites and their sensors are 

considered to be major components of the NASA EOS program, supplying the 

scientific community with continuous high resolution earth surface data used in the 

fields of environment, agriculture, biology, surveying, cartography and many more. 

The US Geological Survey is responsible for the distribution of Landsat data through 

the EarthExplorer platform available on their website. Recently, pre-processed higher 

level data of Landsat (level 2 and higher) has also been made available for ordering, 

through the EROS_ESPA platform of USGS 

(https://espa.cr.usgs.gov/login?next=http%3A%2F%2Fespa.cr.usgs.gov%2F) 

Through the years, the sensors on board of each satellite have been evolving, 

with 5 different types being available until the launch of Landsat 8: the Multi-Spectral 

Scanner (MSS, Landsat 1-3), the Thematic Mapper (TM, Landsat 4-5), the Enhanced 

Thematic Mapper Plus (ETM+, Landsat 7), the Operational Land Imager (OLI, Landsat 

8) and the Thermal Infrared Sensor (TIRS, Landsat 8). Through the available sensors, 

it was feasible and still is for the Landsat program to supply visible, infrared, thermal 

and panchromatic imagery. The spatial resolution characterizing the Landsat data is 

considered to be high, with the related products having a pixel resolution of 15, 30, 

60 or 120m, depending on which spectral band the data comes from. The viewing 

swath of each image covers an area of 185x185 km and the sensors operate in 11 

spectral bands (7-8 bands until the launch of Landsat 8), covering a range between 



13 
 

0.43µm to 12.51µm. The temporal resolution of Landsat data is characterized by a 

16-day period time-step.  

2.3.1 EVI algorithm description 

The equation used to estimate the EVI values on the Landsat level remains 

the same as in case of MODIS data, since the spectral bands used by the sensors of 

the two satellites operate in similar wavelengths and usually even the same co-

efficient values are being used. Until recently, it was feasible to acquire EVI Landsat 

data by downloading the calibrated Landsat level 1 data of the needed period 

(EarthExplorer website platform) and follow a process to convert the data in EVI 

values per pixel. During this process the values of the bands (NIR-Red-Blue) 

participating in the MODIS EVI algorithm presented previously, have to be initially 

converted to 8-bit digital numbers ranging from 0-255 values (DN values), and then 

the surface reflectance (SR) values are being used in the EVI equation (using the 

same coefficients as in the MODIS equation) in order to calculate the final values of 

EVI.  

Application of atmospheric correction is suggested by the developers in-

between these steps, in order to ensure that the data is accurate, with several 

Remote Sensing software programs developing models to standardize the procedure, 

in order to reduce the effort and time needed to pre-process such data. Since the 

introduction of the EROS-ESPA website platform, it is possible to order already pre-

processed and atmospherically corrected products of Landsat which include not only 

level 1 data, but also ready products related to VIs, and in general products that are 

feasible to be generated through the use of Landsat data. The additional benefit 

besides the cost related to human-hours and the time spent until the final VI or other 

level 2 or higher product is ready, is the fact that all the ordered data is ensured to be 

of high quality and no human related mistakes are involved, since the routines 

applied on the data until it reaches its final format, are being developed and applied 

by the scientific team of Landsat in a standardized procedure. Recently (January 

2016), the developers of the data introduced in their EVI algorithm a Gain Factor (G) 

of 2.5 (which was not included in their previous versions), in order for the data to be 

of the same magnitude as those of the MODIS EVI. The rest of the coefficients 

participating in the equation had the exact same values as those used in the MODIS 

equation since the beginning of the product distribution.  

2.3.2 Landsat atmospheric correction methods 

The atmospheric correction routine used by the Landsat team, the Landsat 

Calibration, Reflectance, Atmospheric Correction Preprocessing Code or better 

known as LEDAPS, was developed with a philosophy similar to the one followed by 

MODIS team for the atmospheric correction of their products, using the same 

radiative transfer model in the algorithm and thus, decreasing the potential source of 

errors if the two datasets were compared (Masek et al., 2006). It was initially created 
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in 2006 by NASA, Goddard Space Flight Center (GSFC) and the University of Maryland 

and was intended to be used for the atmospheric correction of Landsat 4, 5 (TM) and 

7 (ETM+) data. An advanced version of LEDAPS was released in 2011, with the 

contribution of the USGS Landsat Program as well.   

The LEDAPS algorithm uses as input Landsat data along with data about 

digital elevation, aerosol thickness, water vapor, geo-potential height, and ozone, 

and through the use of radiative transfer models it provides information in the form 

of raster files for several characteristics; top of atmosphere (TOA) reflectance, 

surface reflectance and brightness temperature. Additionally, masks for the exclusion 

of low quality pixels (contaminated with the presence of clouds, cloud shadows or 

adjacent clouds) are available, as well as a mask to distinguish and isolate areas 

covered only by land or water. The techniques applied through the LEDAPS routine 

are divided in 6 modules, which are based on three more general techniques: 

• The conversion of DN values to TOA reflectance. 

• The detection of cloud contaminated pixels in the TOA reflectance. 

• The conversion from TOA reflectance values and any auxiliary datasets to 

surface reflectance (SR) values. 

The accuracy, precision and overall quality of the outcome of the atmospheric 

correction is ensured to be high, if some basic preconditions are followed; the 

Landsat data intended to be used as well as the metadata coming with it must be 

properly formatted and should be of TM or ETM+ sensor origin, must be geo-

referenced and in image (geotiff, .img, etc.) file format, and must be accompanied by 

precise data about water vapor, air temperature, ozone and digital elevation (DEM) 

(Schmidt et al., 2013). 

 For the recently available data coming from Landsat 8, an additional 

algorithm has been developed, called the Landsat Surface Reflectance Code (LaSRC). 

This algorithm uses a unique radiative transfer model, along with auxiliary climate 

data from MODIS and coastal aerosol data in order to perform aerosol inversion 

tests. The most notable innovation implemented, compared to the LEDAPS 

algorithm, is the fact that LaSRC also takes advantage and uses data about the view 

zenith and the solar zenith angles as part of the atmospheric correction calculation. 
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3 Study areas and data  

This chapter includes a description of the geography and basic characteristics 

(meteorological conditions, soil characteristics, vegetation presence, etc.) of the 

locations selected as study areas of the Thesis. Additionally, technical information 

about the quality and quantity of data used throughout the research is provided.  

3.1 Study areas 
Study sites of the research were selected to be catchment areas of rivers 

located in Greece, Portugal, Netherlands, Mozambique and Brazil, including the 

cross-border areas (Figure 1). The selected areas provided a relatively high diversity 

of the included types of natural vegetation and agricultural systems, in order for the 

research to be feasible to express conclusions considering a wide range of possible 

cases that could be found in real life conditions. Moreover, the geographic 

distribution of the study sites offered the opportunity to examine the relation 

between LAI and EVI across different vegetation types. This was feasible because of 

the different climate conditions existing between the selected locations, which 

subsequently are related to different vegetation conditions in each area. Nestos has 

a Mediterranean climate, Queimados has dry Tropical, Rijnland has temperate 

Oceanian, Tamega has warm Temperate - Mediterranean and Umbeluzi has a warm 

Tropical climate. 

 
Figure 1: Geographic distribution of study sites. 

The methodology was applied on all vegetation types considered to be 

characteristic of the selected catchment areas, such as agricultural areas, forest 

areas, grassland areas, etc.  

3.1.1 Nestos 

The study area of Nestos (Figure 2) includes Nestos River, which is located at 

a transboundary area between Bulgaria and Greece and discharges into the north 
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Aegean Sea. Its flow starts from the Rila and Pirin mountains of Bulgaria with a 

southeast direction. The total catchment area including it is around 6400 km² and its 

length is 234 km. A network of tributaries can be found on the northern part of the 

basin with most important of them being Diavolorema (356.4 km²), Arkoudorema 

(283.3 km²) and Despati (118.9 km²). The river basin morphology of Nestos is mainly 

characterized as mountainous or semi-mountainous, with only exception being the 

delta floodplain area before the discharge into the sea. Three dams are located in the 

Greek part of the river having a significant impact on hydrology.  One of them is 

located at Toxotes village and is used for irrigation purposes, covering the needs of 

an area of approximately 25,000 ha. The other two (Thissavros dam, 1998 and 

Platanovrisi dam, 1999) are hydroelectric dams which were constructed for energy 

production, flood control and storage of irrigation water, with the Thissavros Dam 

considered to be as the highest and largest earthen dam in volume constructed in 

Greece (Boskidis et al., 2011). After the construction of the dams and through the 

years, several local organizations have been complaining about the influence these 

have to the river outflow, with water scarcity being their main concern. A shallow 

groundwater level in the floodplain is considered to be relatively important.   

 

 
Figure 2: Overview of Nestos study area. (source: Bing Maps) 

The average rainfall received by the Nestos area is about 600-1200 mm. The 

annual water flow is estimated to be 1830 x 106 m3. The climate in the mountainous 

area is characterized by cold winters and hot summers and is different from the 
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climate of the floodplain area which is characterized by hot and dry summers and 

mild winters, indicating a Mediterranean climate.  

The hydrogeology of the river basin can be described in two parts: the 

northern part, characterized by the presence of carbonate rocks and the southern 

part consisting of alluvial deposits (Boskidis et al., 2011).  Typical sandy soils can be 

found in the Nestos watershed, with the vegetation present at the area characterized 

mainly as natural vegetation, with a coverage rate close to 60% of the total area and 

the rest characterized as agricultural land. The natural vegetation can be described as 

typical Mediterranean climatic zone phenology (dry grass in the arid summer), while 

the agricultural vegetation mainly consists of single crop cycle plants. Coniferous and 

broadleaved forests, as well as shrubs are the main types of natural vegetation 

present in the mountainous parts. The river’s delta hosts many habitats of rare and 

wild flora and fauna. This was the main reason to characterize the area as a Ramsar 

Wetland of International Importance and to include it in the Natura 2000 network.  

An overview of the most important land-cover types found per study area 

according to GlobCover 2009 data, as well as the total area covered by each one of 

them, is presented in Table 2. 

Table 2: Land-cover types per study area.    

 
Source: MyWater (http:\\mywater-fp7.eu) 

3.1.2 Rijnland 

The Rijnland area (Figure 3) is located in the western part of The Netherlands 

covering approximately 1075 km². A percentage of 72% of the total area is 

characterized by areas under sea level, 15% consists of free draining areas and 8% of 

dune areas. The area is dominated by the presence of water canals mainly used for 

irrigation and leisure purposes, and combined with the low altitude mentioned 

Land Cover type 

Artificial areas 157.91 2.45% 170.88 14.21% 180.14 4.5% 30.3 0.8% 53.4 1%

Herbaceous rainfed crops 152.69 2.37% 6678.82 56.43% 393.59 9.8% 1328.9 36.6% 169.4 3%

Irrigated herbaceous crops 285.36 4.44% 96.66 2.4% 235.1 6.5% 171.7 3.1%

Permanent crops 35.27 0.55% 34.74 2.89% 305.26 7.6% 21.6 0.4%

Broad-leaved forests 1685.17 26.19% 28.71 2.39% 238.62 5.9% 460.9 12.7% 931.7 17.1%

Needle-leave forests 1508.19 23.44% 31.69 2.63% 719.65 17.9% 5.9 0.1%

Shrubs 1311.71 20.39% 97.70 8.12% 1844,67 45.9% 522.4 14.4% 2021.6 37%

Grasslands 968.88 15.06% 90.59 7.53% 104.41 2.6% 941.5 25.9% 1397.8 25.6%

Recently burned areas 37.39 0.9%

Barren 269.37 4.19% 29.37 2.44% 88.63 2.2% 64.5 1.8% 646.2 11.8%

Water bodies 59.41 0.92% 40.42 3.36% 7.45 0.2% 45.5 1.3% 47.3 0.9%

Nestos Rijnland Tamega Queimados Umbeluzi

Area covered (km²) and percentage % per study area
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above leads to high risk of flooding during periods of heavy rainfall. However, the 

presence of several dikes, along with pump stations used to discharge excess water, 

eliminates this risk to minimum levels. A storage basin system of canals, lakes and 

pumping stations serve drainage and irrigation purposes to and from the main water 

system in connection with the North Sea. 

 

 
Figure 3: Overview of Rijnland study area. (source: Bing Maps) 

In general, there is a very high percentage of vegetation coverage in the 

Rijnland area. The natural vegetation is fully covering the ground, with green 

vegetation present even during the summer period (with the exception of the coastal 

and sand dune areas), due to the presence of the water canals. Natural vegetation in 

the Rijnland area occurs in small patches, and mainly consists of broadleaved and a 

few coniferous trees. Natural herbaceous vegetation can be found in the coastal 

sand dunes and small and large settlements are also located in the area including lots 

of green space. Considering the farming areas, the fields are all rainfed with the most 

frequent crop being pasture for grazing purposes. Several other crops with a single 

cropping cycle can also be found, as well as greenhouses.   

3.1.3 Tamega 

The Tamega study area (Figure 4) includes Tamega River, which is a tributary 

of the Douro River, located in the transboundary area between Spain and Portugal. It 

is characterized by a North East - South West orientation and flows over a distance of 
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approximately 164.5 km, from which 140.5 km are located in Portugal and 24 km in 

Spain. The Tamega basin covers an area of 2,646 km² and the river’s flow starts near 

the Serra of S. Mamede in Spain and enters in Portugal at an elevation of 

approximately 375m. The basin area is mainly characterized by high annual rainfall 

levels and steep slopes, which along with the reduced to moderate soil’s erosive 

potential often leads to floods in the neighboring areas. 

 
Figure 4: Overview of Tamega study area. (source: Bing Maps) 

The vegetation in the area is a mixture of natural and agricultural land, with 

some of the fields located in the lower parts of the basin being irrigated. There is 

high vegetation coverage in the natural areas of the site, with forest fire occurrence 

being frequent in the area, mainly in managed forest plantations. The natural 

vegetation could be characterized as the typical Mediterranean climatic zone 

phenology, with dry grass presence during the summer period. The agricultural 

activities in the area mainly include fields with a single crop cycle.   

3.1.4 Queimados 

The watershed of Queimados is located between the cities of Brasília and 

Unaí and covers an area of 3629 km². Several rivers cross the sub-basin, with Rio Sao 

Marcos (466.7 km length, 870 m altitude) and Rio Preto being the largest and most 

important for the region, mainly because a reservoir used for agricultural (irrigation) 
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purposes, as well as a hydro-electric power plant built in 2004 (with 105 MW 

capacity, 1060 m dam length, 38946 ha³ volume) are located there. The dry-Tropical 

climate of the area gives an average annual temperature of 27 °C, with the maximum 

temperature being 40 °C and the minimum 12 °C. Occasionally, floods occur in the 

surroundings of Unaí city, but with the risk of such incidents characterized as 

relatively low.  

 

 
Figure 5: Overview of Queimados study area. (source: Bing Maps) 

The study area is mainly characterized as agricultural. Characteristic of the 

local climate is the fact that agricultural activities might have more than one cropping 

cycle per year. Main crops cultivated in the area are grains, soybeans, rice, corn, 

wheat and beans. The predominant irrigation method is pivot irrigation, so the shape 

of each field in the study area can help to identify whether it is irrigated or not; for 

example rectangular shaped fields tend to be non-irrigated. Considering the natural 

vegetation presence in the area, it is characterized by a high degree of coverage and 

is mainly found along river corridors. Small patches of the “Brazilian cerrado”, which 

is considered to be vulnerable to forest fires during the dry season (winter), usually 

can be found between the cultivated lands. In the central part of the study area, a 

military zone with no access to civilians exists. Stretches of grass for grazing are also 

distributed within the study site.  
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3.1.5 Umbeluzi 

The study area of Umbeluzi (Figure 6) includes River Umbeluzi, which is a 

transboundary river between Mozambique, Swaziland and South Africa. The total 

area covered by its sub-basin is approximately 5400 km², with 2160 km² of these 

located in Mozambique, 3132 km² in Swaziland and 108 km² in South Africa. Nearby 

rivers are characterized as rather small in the study area, with the largest water 

bodies being the reservoirs of the dams located there. 

 

 
Figure 6: Overview of Umbeluzi study area. (source: Bing Maps) 

 As noticed also in the Queimados study area, due to the climate conditions 

present in the Umbeluzi sub-basin, it is possible that more than one cropping cycle 

per year might occur for some of the crops cultivated. Apart from only a few but very 

large sized irrigated plantations, there are also some small-scale irrigated fields. The 

rest of the agricultural land is rainfed and is consisting of small fields with mixed 

natural vegetation (grasses and bushes), and with a few fruit trees. Barren land 

presence is rare, while grasses and weeds can be found growing all over the study 

site, even in fields shortly after harvesting. Natural vegetation can be divided in two 

main categories: grasses and bushes. However, the term bush in this location does 

not define only small sized trees (not exceeding 1.5 meters), but mainly characterizes 

whole areas with savanna-like vegetation, sparse or thick trees and bushes. Tall trees 

or needle-leaved forests (with the common meaning used for these two words 

worldwide) are totally absent from the landscape.   
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3.2 Description of data  
In this sub-chapter, information is provided about the quantity, quality and 

accuracy of data used for the Thesis, as well as any related errors that might be 

present due to known issues, which are being analyzed.  

3.2.1 MODIS data 

MODIS images are available for downloading through the LPDAAC website in 

.hdf format. The data downloaded included the annual time series for both EVI and 

LAI MODIS products (1000 m spatial resolution), along with their associated Quality 

Control (QC) datasets. 

All pixels of each 8-day composite image of MODIS LAI and EVI acquired have 

been used in subsequent analyses, excluding those of low quality, and those falling 

on or close to the borders of different land cover types (mixed pixels) according to 

the GLOBCOVER land cover map, a process that is explained later in the Methodology 

chapter (chapter 4). The datasets were directly downloaded from the associated 

internet sources (LPDAAC). 

3.2.1.1 LAI data 

The selected MODIS LAI product (MCD15A2) represents 8-day composites 

retrieved from daily, atmosphere-corrected, bidirectional surface reflectance. 

However, a 16-day time-step was used for the Thesis purposes, because this is the 

frequency of image availability for the related EVI MODIS images that has been used 

along with the LAI data. A series of Terra/MODIS satellite images covering a period of 

a whole hydrological year (October 2012 – September 2013) was downloaded, and 

from the 46 available composite images, only 23 were finally used per study area, for 

the same periods EVI data existed. Examples of LAI MODIS images for the study area 

of Nestos can be found in Figure 7, where low LAI values are presented with red 

colour and high LAI values with green colour. 
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Figure 7: Examples of LAI MODIS images for DOY 2013-273 (left) and DOY 2013-177 (right) in 

the study area of Nestos. 

3.2.1.2 EVI data 

The used product is MOD13A2 “Vegetation Indices” generated at 16-day 

intervals. The same procedure as for the LAI data was followed to acquire the EVI 

data, resulting into a time-series of 23 images per study area for the same period 

(October 2012 – September 2013) and for the exact same 8-day periods as for the 

MODIS LAI images. MODIS uses the starting date of each 8-day composite to label 

the acquired images, which was also adopted for the Thesis purposes. Therefore, 

whenever throughout the Thesis the acquisition Day Of Year (DOY) for a MODIS 

image is used, it refers to the whole 8 day period, with the name of the image given 

after the starting date of the composite. Examples of MODIS EVI images can be found 

in Figure 8 for the study area of Tamega, in which high EVI values are represented 

with green color and low with red color.  

 



24 

 

 
Figure 8: Examples of EVI MODIS for DOY 2013-113 (left) and DOY 2013-257 (right) images in 

the study area of Tamega. 

 

3.2.1.3 Quality Control (QC) data 

As mentioned in chapter two, the downloaded EVI and LAI MODIS datasets 

included extra layers of information, indicating the quality of each pixel. This Quality 

Assurance (QA) data provided information over each pixel’s quality in the associated 

images, ensuring this way that pixels characterized by low precision in the relevant 

estimations would not be taken into consideration. After the necessary pre-

processing of the QA data, which is explained in detail in the fourth chapter 

(Methodology), it was feasible to apply filters to the related data tables of each area, 

in order to isolate the so-called “marginal” (labeled with “1” value) or only “good” 

data (labeled with value “0”), for which “good” data the overall accuracy is supposed 

to be the maximum possible as supported by the product developers. In relevant 

research, when data of marginal quality was also used, the authors warned to use it 

with caution and only when there is a large data gap (Wang et al., 2005b). Due to the 

large size of a pixel (1000m) in the present research, it was decided to only use data 

of “good” quality, excluding any additional factor that could affect the overall 

accuracy negatively. An additional advantage from the exclusion of the “marginal” 

data is the fact that values of LAI are not estimated with the product’s backup 

algorithm. This practically means that data from VI products were not used to 

estimate the LAI values, and therefore it would be wise to avoid using dependent 

data, in a research that intends to apply regression analysis using this data.   
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3.2.2 Landsat EVI data 

Several atmospherically corrected satellite images from Landsat 7 and 8 

within the same hydrological year as the previous mentioned MODIS images have 

been downloaded for each study area, covering the main phenological stages of 

vegetation. From these images, a selection was done of only those of a date close to 

the DOY of field measurements, where the MyWater project took place per study 

area. This was mainly decided in order to be able to validate the accuracy of the 

created higher resolution LAI maps, by comparing the LAI values per pixel of interest 

with the LAI values of high accuracy measured during the MyWater project at the 

same locations. Additionally, from the remaining images those covered extensively 

with clouds were also excluded, especially in the areas of interest (vegetation land-

cover), since the data could not be used due to low accuracy. An overview of the 

images finally used can be found in Table 3. The images had also a proper 

UTM/WGS84 projection system pre-assigned, relative to the geographic location of 

each study area (UTM zones). 

Table 3: Final selection of the Landsat EVI images used. 

 

An additional problem that needed to be tackled with the Landsat EVI data was 

the known problem of the Landsat 7 scan-line corrector, which creates line-gaps of 

no data in the images. However, in this case such a problem was evaluated as not 

affecting the associated research results, since this data was intended to be used 

only in comparison with existing field measurements in specified sample points. 

Application of interpolation techniques that could fill-in the gaps was therefore 

evaluated as inappropriate for the Thesis research purposes. This was decided in 

order to retain accuracy of the results at the highest possible level and avoid 

inserting errors (Alexandridis et al., 2013a). Examples of unprocessed (raw) Landsat 

EVI images for the study area of Umbeluzi can be found in Figure 9, where apart from 

the valid range of EVI values for healthy vegetation (value range 100 – 10000), values 

Study area Satellite type DOY (out of 365) Cloud coverage

Landsat 7 096/2013 50-60%

Nestos Landsat 8 104/2013 75-80%

Landsat 8 184/2013 40-45%

Rijnland Landsat 7 265/2013 70-75%

Landsat 8 273/2013 10-15%

Landsat 7 147/2013 70-75%

Tamega Landsat 7 243/2013 5-10%

Landsat 8 251/2013 5-10%

Landsat 7 309/2012 40-50%

Umbeluzi Landsat 8 175/2013 <5%

Landsat 8 191/2013 55-60%
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representing non-vegetative conditions or low quality data are also included (values 

<100 and >10000). 

 
Figure 9: Examples of EVI Landsat 7 (DOY 2013-071, left) and Landsat 8 (DOY 2013-175, right) 

images in the study area of Umbeluzi. 

3.2.3 Land-cover data 

Information on land-cover at various scales is considered to be critical for a 

range of ecological, socioeconomic and policy questions. Land-cover maps can be 

used as input in order to produce LAI related data, data about evapotranspiration or 

prediction of soil erosion. Moreover, land-cover maps can be used for the detection 

of environmental changes, if landscape metrics of the areas of interest are also 

available for use.  

Since the research intended to downscale the MODIS LAI maps’ resolution of 

1000m to Landsat resolution of 30m, a land-cover dataset (source: Landsat) 

corresponding to the new pixel size was also used, as well as land-cover maps of 

lower resolution (GlobCover, 300m resolution). 

The land-use/land-cover (LULC) data used for the Thesis purposes has been 

created during the progress of the MyWater project for all the study areas and at a 

regional (1:1,000,000, GlobCover) and local (1:50,000, Landsat) scale. The Land Cover 

Classification System (LCCS) developed by FAO was used to produce the MyWater 

land-cover classes, describing the LULC in 12 classes in the regional and local maps. 

LCCS is a system classifying data a-priori and for this reason all the related classes 

intended to be used should be defined before the collection and classification of any 

data. The 12 classes defined were further reduced to 6 more general classes for the 

Thesis purposes, including types of biomes similar to those used by the MODIS land-
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cover products, in order for the data to be comparable. These 6 classes representing 

vegetation types are: irrigated crops, rainfed crops, broadleaved forests, needle-

leaved forests, shrublands and grasslands. The regional maps were produced by 

modifying the GlobCover product from the MEdium Resolution Imaging 

Spectrometer (MERIS) satellite, into the MyWater nomenclature. The local maps 

were produced by using spectral classification techniques on digitally enhanced 

Landsat multispectral images and field surveyed data. The maps were provided in 

common raster format (.img and .tif).  

3.2.3.1 GlobCover data 

The GlobCover project provides global land cover maps, using as input data 

the MERIS sensor on board of the ENVISAT satellite mission, characterized by a 

spatial resolution of 300 m. The composites were created through the pre-processing 

module of GlobCover, including corrections related to the detection of clouds and 

the effects of the atmosphere, geo-localisation and re-mapping. The GlobCover 

product is considered to be the highest resolution (300m) Global Land Cover product 

ever produced.  

 
Figure 10: GlobCover land-cover map of the Rijnland study area. 

 

A global image of GlobCover was acquired during the MyWater project for 

further processing, in order to create land-cover maps at a 1:1,000,000 scale 
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(regional level). The image was then clipped to each study area extent and a proper 
UTM/WGS ’84 projection system was assigned to each image, according to the UTM 
zone each study area is located. Pre-processing of the image included geometric 
correction, cloud masking, atmospheric correction, mosaicking, and classification 
based on 4 steps; per-pixel classification algorithm, per-cluster temporal 
characterization, per-cluster classification algorithm, and labeling-rule based 
procedure. An example for the GlobCover map created for the Rijnland study area is 
demonstrated in Figure 10. 

3.2.3.2 Landsat data 

Landsat land-use/land-cover data has been created through the acquisition of 
Level 1 data of the Landsat 5 sensor at a local scale (1:50,000) during the progress of 
the MyWater project. The pre-processing of the downloaded Landsat 5 data included 
five methodological steps in order for the data to be prepared for the creation of the 
high-resolution land-cover maps. The first step was to ortho-correct the images 
according to the UTM/WGS 84 projection system, in order to be compatible with the 
other datasets used throughout the research and according to the specific UTM 
geographical zone of each study area for each relevant image. Then, pixel values (DN) 
were converted to at-sensor radiance using information from the image metadata. 
Atmospheric correction was then applied to scaled surface radiance after using a 
dark object subtraction (DOS) approach. The DOS approach is a simple and efficient 
method for atmospheric correction as shown in relevant studies (Song et al., 2001). 
Conversion to surface reflectance was implemented using two topographic 
corrections; the first was to use the improved cosine correction and the second to 
use the Lambert surface assumption. As a final step followed for the pre-processing 
of the land-cover images, the mosaicking of the images into a single image was 
performed, in case several images were needed to cover the selected study areas. 

After pre-processing, the Landsat 5 TM images were ready to be used for the 
creation of the land-cover maps. The basic criteria addressed for the final choice of 
the images intended to be used, were the total percentage of cloud contamination 
on each image (as low as possible) and the period (season) the image was taken, in 
order to take into account as many phenological stages of vegetation growth as 
possible. Due to the frequent cloud presence, spectral and textural features of the 
available Landsat 5 images were extracted, whenever these were available and cloud 
free, and merged with the initial satellite images, resulting into various composite 
outputs. 
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Figure 11: Landsat 5 land-cover map of the Nestos study area 

 

As a next step, it had to be ensured that the classification accuracy of the to-

be-created land-cover maps, would be the best possible. A pixel-by-pixel sampling 

method has been tailored for this purpose, resulting into 8,500 spots being applied 

to the previously created composite images, producing a spectral signature for each 

class. A sum of eight intermediate thematic maps was created using the spectral 

signatures. Maximum-likelihood classifier was used in a supervised classification, 

achieving fusion of the thematic maps and improving the classification accuracy. The 

thematic maps were then merged into a single composite image and a majority filter 

of 3 by 3 pixels was applied on the classified image. This process was repeated for 

each image available by mixing the used seasonal dates (e.g. summer-autumn), and 

by doing so, it was feasible to take the changes existing in vegetation phenology into 

consideration.  

An additional classification technique was used during the process of polygon 

sampling which was explained above, called the Multi-Stage classification. This is also 

a classification method applied per-pixel in which the pixels are being automatically 

assigned by the classifier to the class they resemble the most. In order to follow this 

approach, the values representing information classes, e.g. a land-cover type, had to 

be identified by a human operator in each image.  
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In order to specify training and testing samples, several techniques have been 
used. Each training site was assigned an amount of at least 30 x waveband samples, 
created either by using a pixel-by-pixel sampling technique, or, by selecting sample 
polygons with a multitude of pixel units. The reasoning behind these choices was the 
intention to represent intra-class variability, as well as to inhibit problems related to 
dimensionality, which might occur when using parametric classifiers. Corine Land 
Cover (CLC) maps of each study area were used as the strata for the selection of 
samples, with the focus on choosing within each study area the center of polygons 
characterized as homogenous land cover areas.  

Considering the methodology used to collect the training observations, 
there were two main techniques used. Random sampling design was the choice 
when sampling polygons were used, while a subset technique was used for the 
pixel-by-pixel technique, with 85% of the sample used as training sample and 15% 
used as validation sample. For the random sampling design, two hundred 
observations per area of interest were selected in order to attain the desired 
precision, with the acceptable error (ε) rate found to be 6.89% at the 95% 
confidence interval.  

In order to improve the accuracy of the training and validation results, a 
procedure where the trainer assigned the observation in two land cover related 
fields was used. With this method followed, the ambiguous areas that might fall in 
two categories of land cover – always according to the visual interpretation of the 
tester – could also be taken into account, if one of the two land cover 
characterizations was the same as the one indicated with the classification process 
result. 

The validation samples were used as the means to evaluate the accuracy of 
each intermediate map created. A threshold of 80% was set by the MyWater 
scientific team to be the limit below which a map was rejected from further 
processing. 

An example of a land-cover map created at Landsat spatial resolution for the 
study area of Nestos can be found in Figure 11. 

3.2.3.3 Corine Land Cover Data  

CORINE (Coordination of Information on the Environment) Land Cover (CLC) is 

a map representing the European environmental landscape and its creation was 

based on the visual interpretation of satellite images (example of a CLC map for the 

Rijnland study area is demonstrated in Figure 12). The data provided by CLC is mainly 

in the format of digital land-cover maps, covering almost all the European continent. 

The European Environment Agency (EEA) and the Joint Research Centre (JRC) are 

responsible for the management of the CLC. The project was initiated in 1990 and 

since then several updated versions have been made available. The most significant 

data source for the creation of the CLC maps until the version of 2006 were ortho-

rectified images acquired through the Landsat 7 satellite, with a spatial resolution 

that reaches 12.5 m. Since the version of 2006 and for the versions that followed, 
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SPOT satellite data started to be used instead of Landsat. The CLC provided scale is 

1:100,000, where the minimum mapping unit is 25ha, with all land cover changes 

larger than 5ha being mapped. The data of CLC are freely available on the following 

website: 

 http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version. 

The CLC product is using a 3 - level hierarchical nomenclature, with 5 classes 

participating on the first level, 15 classes on the second and 44 classes on the third 

level.  

 
Figure 12: Corine Land-Cover map for the study area of Rijnland. 

 

During the progress of the MyWater project, CLC maps of 2006 were used for 

the study areas such data was available (unfortunately, Greece was not included in 

these areas), in order to fill-in data gaps of GlobCover and Landsat data. The 

classification of ambiguous areas and the validation of the classification process, 

when this was needed, were the additional tasks in which CLC data had been used.  
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3.2.4 Field data 

During the progress of the MyWater project, field measured LAI data was 

acquired for each study area in time-periods characteristic of the vegetation 

phenological stages and within the time-series of the MODIS satellite images 

downloaded. An overview of the dates field measurements took place can be found 

in Table 4. In the present Thesis, these measurements were intended to be used for 

the validation of the LAI maps created at the Landsat level (pixel resolution 30 m), 

since they are considered to be of very high accuracy.  

Table 4: Available field measurements per date and study area. 

Study area Date Measured 

locations 

Nestos 3-5/11/2012 

9-10/04/2013 

2-3/07/2013 

27 

27 

27 

Rijnland  26-29/06/2013 

23-26/09/2013 

25 

25 

Queimados 6/06/2012*   31* 

Tamega 20-23/05/2013 

2-5/09/2013 

39 

39 

Umbeluzi 7-9/01/2012 

12-14/03/2013 

1-3/07/2013 

25 

22 

24 

 * Date not included within the research time series. 

The data acquired during the field survey consider Land Cover Land Use data 
(LULC), and Leaf Area Index (LAI) data. Representative sites in each study area were 
selected by the scientific team responsible for the MyWater project, covering all 
possible types of vegetation that could be present in each study area.  

For the sampling design, field surveys were performed in order to collect data 
for the training, calibration and validation of the products and models developed 
during the MyWater project. Therefore, Land Cover Land Use (LULC) data, as well as 
LAI data was collected in representative locations of the study areas. For the 
selection of a suitable sample design strategy for the research purposes, four key 
characteristics as identified by Brogaard and Ólafsdóttir (1997) were used:  

• The number of sample sites required within each study area. 

• The spatial distribution of the sample sites within each study area. 

• The required size of each sample site selected. 

• The number of subplots required within each sample site. 

Considering the spatial distribution of the sample sites selected, the stratified 
random sampling approach was preferred rather than a random sampling approach, 
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in order to maintain a high level of accuracy and additionally reduce the amount of 
samples. The design approach followed for the strata in all study areas ensured the 
reduction of variability within the strata, by identifying the factors defining variability 
for each parameter examined and overlaying them with GIS analysis. As a next step, 
non-vegetative classes and their associated areas were discarded from the resulting 
maps, along with areas evaluated as too small to be considered as a sample. Then, 
the vegetative classes with similar characteristics were merged into a more general 
class, with the final result being the actual strata map.  

The representation of ground data at the scale of the image, in order to 
ensure an adequate range of data for accuracy testing, has been described by Curran 
and Williamson (1986) as a characteristic of significant importance for studies related 
to remote sensing data. The final amount of sites selected as samples is highly 
dependent to the size of the study area, as well as to its spatial variability. Classical 
sampling theory indicates that the amount of sample sites required, in order to reach 
the desired precision, can be found by the equation 

n = σt / ε, 

 with n being the size of sample, σ the standard deviation, t the user’s t value with n-
1 degrees of freedom at a certain confidence level and ε being the acceptable error. 
A two-sided test was used with a 95% confidence level, while the spatial variability of 
the study area was expressed by the standard deviation of a number of spatially 
random measurements, extracted from a priori data of the study areas that was 
collected during past studies.  
 Following the guidelines of Townshend and Justice (1988) for the estimation 
of the required size of each sample site, the pixel size and the geometric accuracy of 
the satellite images used were taken into consideration, by using the formula: 

 A = (P (1 + 2G)) ², 

where A indicates the sampling area, P the pixel size and G the geometric accuracy of 
the image (pixel amount). 
 As for the number of subplots required within each study site, which is an 
important parameter as mentioned above, it was evaluated as of high importance to 
ensure the spatial compatibility between ground data and pixel resolution. 
Therefore, a series of measurements (ranging from 3 to 15) was suggested to form a 
grid, a transect, a cross or a triangle within each sample site. The process followed 
was to measure the corners (vertices) of a triangle with dimensions equal to 2/3 of 
the satellite image’s pixel size and then average the three results estimated. In cases 
of sparse vegetation or plantation, where great variability was expected, an approach 
of taking measurements on the corners and the center of each sample site was 
followed. 

Considering the measured LAI data, a protocol for measuring LAI using 
hemispheric camera photographs was used in order to ensure that the quality of the 
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measurements would be as high as possible (Alexandridis et al., 2013b). The 

technique used to measure LAI was to estimate the canopy thickness by measuring 

the light transmission through the canopy. In order to ensure that LAI estimates 

would be comparable in time and space, it was considered essential to compensate 

for the variable sun irradiance throughout the day and year, as well as under variable 

tree canopies. Therefore, the exposure of the photographic camera used was 

calibrated relatively to the sky, and this exposure was increased by two stops during 

image acquisition under the canopy (Welles and Norman, 1991). Underexposure in 

near horizontal directions was avoided by using a zenith angle range between 0 to 

75° (van Wijk and Williams, 2005). In cases of low stature vegetation, where 

distortions might be present to the LAI estimated values (van Wijk and Williams, 

2005), the hemispherical photographs were taken from above in a downwards 

direction (Bréda, 2003). Figure 13 shows the camera used during the field 

measurements during the process of taking an upward photo (left part of the figure), 

as also a downward photograph taken in the study area of Queimados (right part). 

 
Figure 13: Measuring LAI in the study area of Queimados. 

This process resulted into several hemispherical photographs of upward or 

downward direction, which were later processed with specialized software, but with 

a different approach for each of the two cases. The upward direction photographs 

were processed based on gap-fraction identification, separating the canopy (dark) 

from the sky (light) pixels. The photos of downward direction were processed by 

using reflectance ratios, in order to identify the features on the photographs based 

on the spectral behavior of the examined wavelengths. The software used for 

downward photograph processing was CAN-EYE, freely available for downloading at: 

https://www4.paca.inra.fr/can-eye/. This is image analysis software used for the 

extraction of characteristics related to the structure of plant canopies, with the use 

of multiple digital RGB or binary images. The analysis of the downward direction 

photographs was performed by grouping each series of the available photographs 

based on the date each photograph was taken and by the light conditions present. 

An automatic class pre-selection was then performed, with the user identifying or 

correcting after this step the final sample of vegetation and non-vegetation pixels on 

a hemispherical photograph. Then, this sample was used for all the photographs of 
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each group, with an image classification process following, in order to acquire 

photographs indicating two or three possible states: vegetative state, non-vegetative 

state and mixed state. When this step was finished, the software automatically 

calculated LAI values in multiple photographs according to the grouping performed 

previously, with the final results provided in a spreadsheet. 

   
Figure 14: Hemispherical photograph in RGB and processing with specialized software.  

 Considering the upward direction photographs, the HEMISFER software was 

used (Figure 14), which is also a hemispherical photograph processing specialized 

software: 

http://www.wsl.ch/dienstleistungen/produkte/software/hemisfer/index_EN.  

In this case, the pixels were first classified as sky (white) or canopy (black) by the 

application of a brightness threshold to each picture analyzed. The optimal threshold 

can automatically be calculated by the HEMISPHER software using several methods, 

but for the MyWater project the LAI-2000 method (Stenberg, 1996) was chosen to be 

the one used, as it was reported to be closer to a standard reference. For the next 

step, the light transmission (T) was calculated as a proportion of the white pixels 

present in the hemispherical photograph. Then followed the calculation of the 

average number of times that a light ray would touch the canopy when travelling a 

distance equal to the thickness of the canopy, providing this way the contact number 

(K), which is described by the equation: K = -cos Θ ln T. Finally, the K values were 

integrated over the rings in order to estimate the LAI values.  

A list of the materials used during the LAI field measurements and the 

processing of the acquired field data, in order to estimate the LAI values in MyWater 

project study areas, can be found below:  

• A Sigma 4.5 mm F2.8 fish-eye hemispherical lens 

http://www.sigmaphoto.com/shop/45mm-f28-ex-dc-hsm-circular-fisheye-

sigma 

• A Canon EOS 1000D photographic camera.  The highest image resolution and 

quality available, according to the camera settings and capability, were used.     



36 
 

• A standard tripod allowing the camera to take vertical upwards and 

downwards images.  

• A standard clinometer to measure the average slope at each sample location.    

• A standard compass to measure the direction of the maximum slope (aspect) 

at each sample location. 

• A standard handheld GPS receiver to measure the geographic coordinates at 

each sample location, or to find the pre-determined sample locations when 

such existed. 

• Specialized software for processing the hemispherical photos, such as 

HEMISFER or CAN-EYE. According to HEMISFER, a high-quality JPEG file gives 

practically the same results as an uncompressed file (RAW format) and 

therefore high quality JPEG was the format chosen for the acquired 

hemispherical photographs.   

• Surveying sheets for keeping hardcopy notes of the visited locations. 
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4 Methodology  

Literature analysis and data identification and acquisition were the first steps 

for the formulation of a methodology plan, in order to address the suitable 

techniques and come up with an appropriate plan-of-attack. The study examined the 

relation between LAI and EVI with respect to the Day Of Year (DOY, actually 

representing a period of 8 (LAI) or 16 (EVI) days, composed to a single image) and the 

vegetation type of each satellite image acquired. Regression analysis was the means 

to examine the LAI-EVI relation. The equations estimated during the regression 

analysis of MODIS LAI-EVI, were used in a model along with Landsat EVI images, in 

order to produce LAI maps at a Landsat spatial resolution level. Spread sheet 

software was used to create and organize the databases on which statistical analysis 

was applied, using appropriate software (JMP7). The regression equations were 

applied on the Landsat data using GIS software (ArcGIS Desktop). 

4.1 Data pre-processing 
The data acquired for the Thesis purposes was not initially (when 

downloaded) in a format that could make direct use possible. This was because 

geographical information (such as a projection system) was missing in some datasets, 

while in other the format of the related files was not compatible with the used 

software or with the rest of the data. Therefore, pre-processing of the data was 

judged as a necessary step and was applied in order to successfully use the data and 

acquire results of as high accuracy as possible.     

4.1.1 MODIS LAI-EVI images pre-processing   

Pre-processing of MODIS data included the conversion of all the downloaded 

LAI and EVI images of each study area, to a format compatible with GIS software 

used (ArcGIS), the assignment of a proper projection system according to the related 

geographic zones each study site is located (UTM zones, WGS ’84 datum), as well as 

the definition of areas of interest (river basins) in each study area and the trimming 

of images to these limits. Software provided by the LPDAAC platform (MRT4, 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool) was used to automatically 

assign a proper UTM projection system to each associated image, depending on 

which study area it represented, as well as to automatically convert the images from 

their initial .hdf format to .tiff format. The downloaded MODIS datasets included 

more than one layer for each associated image, and therefore MRT4 was also used to 

extract only the needed layers for each image dataset. In this case, layers 

representing EVI and LAI data, as well as layers indicating quality characteristics – 

such as Quality Assurance (QA) and pixel reliability – were extracted for each image 

downloaded. Finally, vector files that were created to specify each study area using 
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ArcGIS software were used as masks, in order to clip each MODIS image to the 

appropriate extent.   

4.1.2 Creation of MODIS sample points 

In order to apply the regression analysis between the MODIS images of EVI 
and LAI data, a systematic procedure was defined, in which a file for each study area 
representing sample points was used as the means to extract LAI and EVI values per 
image pixel. Therefore, for each one of the study sites a point shapefile was created, 
using the center of the pixels in each image used (a single MODIS image was used per 
study area due to common geo-reference) as the location where the points should 
be placed (1000m vertical and horizontal distance per point, same as MODIS pixel 
resolution). However, because the MODIS images did not include only types of land-
cover that were intended to be used in the regression analysis (such as any 
vegetation type), but also areas covered by water or urban areas, a further exclusion 
of pixels representing non-vegetative states was applied. 

For the above reason, the point shapefiles created were used along with the 
GlobCover land-cover maps, in order to eliminate the sample points that would not 
participate in the regression analysis. GlobCover data uses a spatial resolution 
approximately 3 times finer than the MODIS pixel (300 m instead of 1000 m), so it 
was also feasible to determine the effect of mixed vegetation pixels and further 
exclude any sample points representing such a state. As a next step, the raster data 
was converted to vector format (polygons) grouped according to their vegetation 
classes, and then further converted to line format, in order to be used as buffer to 
exclude the MODIS sample points located closer than a distance of 300m (one 
GlobCover pixel) from any line present. By this exclusion, it was feasible to erase any 
sample points that might fall between different vegetation classes, and with the 
spatial resolution used, which was approximately 1/3 of the MODIS pixel resolution, 
it was feasible to retain the amount of excluded pixels to the minimum possible level. 

4.1.3 Quality Control application 

According to Myneni (2012), since the MODIS LAI algorithm is executed 

irrespective to the quality of input data for the MCD15A2 product, the Quality 

Assurance (QA) layer (FparLai_QC) should always be used to ensure per-pixel 

accuracy of LAI provided values. In the associated QA layer of each MODIS LAI image 

downloaded, the actual information about each pixel’s quality is included in the 

SCF_QC bit field, which is used as the key indicator characterizing LAI quality, and in 

which field the bit patterns can be parsed from right to left, while individual bits 

within a bit-word can be read from left to right. Through the use of LDOPE software 

provided by the LPDAAC platform, it was feasible to develop and run a script (see 

appendix A for a detailed description of the software and the actual script code 

developed), which converts the information of SCF_QC bit field to actual pixel values, 

indicating the quality of the associated LAI values. For the study purposes, only pixels 

of a “good” quality were isolated for further use, excluding data of “marginal” and 
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“bad” quality, in order to ensure the highest quality possible in the associated 

results. From the remaining pixel values in the associated datasets, extreme values 

for LAI (<0, >20) and for EVI (<0.1) were excluded, as they clearly did not represent 

any possible vegetation state.    

Testing of how linear regression analysis performs in each case of different 

quality datasets had to be applied on datasets of each study area, in order to ensure 

that the choice of using data of only “good” quality and thus, excluding in some cases 

a significant amount of samples (pixels), was justified and indeed ensured the high 

level of accuracy needed in the associated results, rather than just making datasets 

of certain 8-day images unusable, due to the small amount of samples remaining 

after the exclusion. Therefore, datasets representing only “good” and “good” and 

“marginal” quality data were tested through regression analysis between the LAI and 

EVI values, in order to indicate the influence of low and marginal pixels in the 

associated results of R² values. 

4.2 MODIS LAI-EVI regression analysis 
The methodology followed used regression analysis between the LAI and the 

EVI products of MODIS, in order to define the regression equation type representing 

the actual data used for each study area. Since relevant literature, as presented in 

the second chapter, was controversial over the type of equation better describing 

the relation between LAI and VI data, it had to be examined whether the data fit a 

linear, square, square root, or polynomial type of equation. The nature of the LAI-EVI 

relation was studied for the five study areas by evaluating the R² values, the p 

probability values, the mean difference between the examined values, the amount of 

pixels participating in each case of a regression analysis between EVI and LAI 

datasets, as well as by analyzing the results with the creation of density plots 

indicating the distribution of pairs of LAI and EVI values on the x and y axes. The 

datasets used for this purpose represented each vegetation type found in the 

associated areas, and moreover the selection of the datasets was done according to 

the influence of seasonality, by selecting 16-day images representing different 

vegetation states throughout the period of a year. 

When the final choice of the type of equation that would be used for the EVI-

LAI regression analysis was decided, the LAI and EVI pixel values from each pair of 

images were exported in tabular form per test site, including information over 

vegetation type and the 16-day period date it came from. This process led to the 

creation of the final tables that were going to be used for the regression analysis, in 

order to examine the relation between LAI and EVI, and derive the relevant 

regression equations with respect to vegetation type per study area. Moreover, the 

relevant regression equations were estimated per DOY to identify any seasonal 

effect, as well as per DOY and vegetation type together, in order to examine the 

overall accuracy of the associated results in each case examined and decide which 
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approach is the most precise. The phenological phases of vegetation types were used 

to explain the temporal variation of the relation between LAI and EVI. 

4.2.1 Total regression for whole year 

The tables with the EVI and LAI values within each study area were merged 

into two tables, one representing the EVI data and the other representing LAI data 

for the whole year of the research period. To achieve this, beside the fields indicating 

the sample point ID, the LULC, and the LAI or EVI value, an extra field was added 

indicating the DOY each dataset represented. Although relevant literature suggests 

that each vegetation class should be examined individually, it was evaluated as 

interesting to compare the results of this case with the results of the other cases 

explained in the following sub-chapters of the Thesis. Plots of the EVI and LAI values 

on x,y axes and the fit of each dataset by a linear equation were the output of this 

step, along with statistics over the mean difference, R², f probability and Root Mean 

Square Error (RMSE) values of the regression analysis results.  

4.2.2 Regression per DOY 

In this case, regression analysis was applied between LAI and EVI datasets of 

each study area without taking into consideration the different types of vegetation. 

However, this time the datasets were used with respect to the DOY each dataset was 

associated with. The anticipated results were similar to the total year regression 

scenario presented above, but this time, the results could be used to evaluate the 

effect of seasonality in each study area’s data, and moreover, to get a clearer picture 

of which periods during the different phases of vegetation (in each study area) were 

more probable to produce erroneous or inaccurate data. 

4.2.3 Regression per vegetation type 

The effect of vegetation type on the regression equations is pointed out by 

relevant literature as the most important parameter to be taken into consideration, 

when the criteria of regression analysis between LAI and EVI data are decided. In this 

case, the datasets were classified according to the vegetation class they belong to 

and then regression analysis using a linear equation was performed between the 

datasets of LAI and EVI. The same parameters and statistical values were examined 

as in previous cases. 

4.2.4 Regression per vegetation type & DOY 

In this step, the relation of EVI and LAI was decided to be examined by taking 

into account both the characteristics of seasonality (DOY) and vegetation type, in 

order to examine the level of improvement in the associated regression analysis 

results and estimate the equations that would later be used for the downscaling 

methodology of LAI MODIS maps to the Landsat spatial resolution level. Therefore, 

the datasets were once again classified according to these characteristics and 

regression analysis was applied for each combination of LAI and EVI datasets 
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available, per DOY, vegetation type and study area. The results of this case were in 

the same form as in previous cases in order to be comparable. 

4.3 Comparison of Landsat and MODIS spectral bands 
Several studies have demonstrated the similarities between the MODIS and 

Landsat band wavelengths as presented in chapter 2, showing that the data from 

these two sources is directly comparable. However, since there are minor differences 

between the band values of the two sensors (Table 1), it was evaluated as necessary 

to proceed in a comparison between the level 1 products of the 2 satellites. 

Therefore, for two of the study areas (Umbeluzi and Tamega) -in order to ensure that 

the results would not be valid just for one case-, images of the same period were 

downloaded representing pixel values of red, blue and infra-red bands for both 

Landsat and MODIS satellites. The choice of these particular bands was done 

according to the EVI equation, which uses values of these bands for the calculation of 

EVI values. Unfortunately, the EarthExplorer platform did not provide any MODIS 

surface reflectance data for the needed bands in a spatial resolution of 1000 meters, 

and for this reason images with a pixel of 500 meters that were available were 

downloaded. The pre-processing needed for the MODIS images was the same as with 

the rest of the MODIS images used throughout the Thesis (assignment of UTM 

projection system/datum, clip to the study area limits through ArcGIS software), 

while for the Landsat data downloaded, the needed layers representing red, blue and 

near-infrared bands were extracted as single images from the compressed file 

downloaded and then the same procedure as with the MODIS pre-processing was 

followed once again. 

The overall goal of this step was to prove that the pixel values between each 

equivalent image (MODIS red compared with Landsat red band image, blue with the 

equivalent blue, etc.) show a high level of correlation in their corresponding pixel 

values. Correlation analysis was the method used to prove the above hypothesis. 

However, in this case the data of the two satellites was not directly comparable, due 

to the different spatial resolution each downloaded product used (500m pixel for 

MODIS and 30m for Landsat). Moreover, since this study uses a pixel of 1000m for 

the MODIS LAI and EVI data, the MODIS red, blue and infra-red data with a spatial 

resolution of 500m should also be converted to the same spatial resolution level with 

the rest of the data. It was decided to compare both the 500m (initial format) and 

1000m versions of MODIS images with the Landsat images, in order to also evaluate 

the scaling effect between the data versions. Therefore, a methodology was 

developed during which: 

i. The clipped Landsat images were used as mask to clip the MODIS data. 

ii. One MODIS image of 500m and one of 1000m were used to create point 

shapefile layers (1 point per pixel) for both study areas examined. 
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iii. One MODIS image of 500m and one of 1000m were used to create fishnet-

shaped layers (1 square polygon per pixel) for both study areas examined. 

iv. The cloud and low pixel reliability mask (CF_Mask) of Landsat, was used per 

image of interest (both MODIS and Landsat images) to extract ambiguous 

areas from the images. Additionally, areas covered by non-vegetative land 

types (water bodies, rocks, etc.) were also extracted. 

v. The fishnet-shaped layers of 500m and 1000m were used as masks to 

calculate zonal statistics (ArcGIS) for all the images (MODIS and Landsat) 

examined. By doing this, each image was converted to a spatial resolution 

relative to the fishnet layer used each time, with the resulting pixels 

representing the mean value of the pixels included in each fishnet block 

(pixel). Moreover by following this procedure, all the resulting images were 

characterized by the exact same spatial geometry, making the pixels directly 

comparable with each other. 

vi. The CF_mask layer of Landsat was used once again to extract ambiguous 

and non-vegetative areas per image and study area of interest, in the 

resulting images. 

vii. The point shapefiles created during the second step of this methodology, 

were used as masks to extract values from each corresponding image, in 

order to create data tables with the values of each pixel in the associated 

images. 

After the application of the above mentioned steps, it was feasible to apply 

correlation analysis between each associated data table created (MODIS and Landsat 

500m, MODIS and Landsat 1000m). As an additional step, it was decided to apply a 

similar methodological routine as described above between the EVI images of 

Landsat and MODIS, in order to compare directly the downloaded data used for the 

Thesis and analyze their correlation levels. However in this case, since the EVI data of 

MODIS was available for downloading directly in a 1000m spatial revolution, the in-

between steps used for the 500m spatial resolution were excluded from the process. 

4.4 Downscaling of MODIS LAI maps 
In order to downscale MODIS LAI maps to the spatial resolution of Landsat 

(1000m to 30m), the regression equations estimated for MODIS EVI and LAI in 

chapter 4.2, were used on Landsat EVI images, in order to estimate LAI values per 

pixel. The application of the MODIS regression equations on the Landsat EVI maps 

was done per vegetation category and per date of interest, as these were the 

characteristics decided to be used after testing the results for several parameters 

(chapter 4.2). Landsat derived land-cover maps (30 meters pixel, available from 

MyWater project) were used as the means to indicate the land-cover type of each 

pixel per image and study area. The result was the creation of LAI maps at Landsat 
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spatial resolution level, for the dates Landsat EVI images were available (seasonal 

coverage).  

4.4.1 MODIS LAI downscaling model development 

The methodology used was quite simple (Figure 15); a model was created in 

ArcGIS software per area of interest, which used as initial input the available Landsat 

EVI images, one per each run of the model. For each image of interest, its 

corresponding CF_Mask layer was initially used to exclude pixels of low quality and 

not representing a vegetation state, and then using the Landsat land cover maps, 

each pixel was assigned an additional value indicating the vegetation class it falls in. 

As a next step, the pixels of each image were divided into several images, with the 

amount of images depending on the vegetation classes present in each study area. 

Then, the equations calculated per vegetation class and date of interest during the 

MODIS LAI-EVI regression analysis were used as formulas to estimate the LAI values 

per pixel, using the corresponding EVI values along with the rest of the factors 

participating in each equation.  

 

 
Figure 15: Flowchart of MODIS LAI downscaling model 

 

The resulting images were then mosaicked to a single image, which 

represented the LAI values in the Landsat spatial resolution level, for the exact same 

areas as in the Landsat EVI images.  

4.5 Comparison of Landsat LAI with in-situ measured LAI   
The final step of the methodology was the comparison of the LAI values 

estimated at Landsat spatial resolution level with the actual LAI values measured in-

situ during the progress of MyWater project (described in chapter 3.2.4), for dates as 



44 
 

close as possible to the period the field measurements were acquired. Therefore, 

point shapefiles per date that field measurements took place and per study area 

were created, in order to be used as masks and extract the associated Landsat LAI 

values per point of interest. With the resulting data tables indicating in-situ 

measured and Landsat estimated LAI values, as well as the land cover type present 

per point of interest according to in-situ observations and according to the Landsat 

land cover maps, it was feasible to apply correlation analysis and evaluate the results 

of the downscaling methodology. The results were in the form of plots indicating the 

level of correlation between the LAI values, as well as in the form of statistics 

indicating the r-value, the mean difference, the p probability and the RMSE.   
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5 Results  

5.1 Pre-processed data 
Pre-processing of the images and in general the data intended to be used in GIS 

software environment, led to the geo-referencing process of each dataset used, 

according to the study area located. The datum assigned to all datasets was WGS 84, 

while the projection system assigned to each dataset was the Universal Transverse 

Mercator (UTM) system. Depending on the location of each study area (latitude-

longitude), the UTM projection system is divided in zones (North and South of the 

equator) and when it is assigned to a dataset, a choice has to be done which zone 

includes the area of interest. Therefore, all the data related to the Nestos study area 

were assigned a 34N (North) UTM system, a 31N was assigned to Rijnland data, a 

29N to Tamega data, a 29S (South) to Umbeluzi data and a 23S to Queimados data.  

5.1.1 MODIS LAI and EVI pre-processed images   

All MODIS LAI and EVI datasets, including their quality control data, were clipped 

to the same extent depending on the study area each dataset was located. The result 

of the preprocessing of the images was 23 LAI and 23 EVI images representing 16 –

day periods for each study area, and equivalent images indicating pixel quality 

characteristics for each image available. The total amount of the images pre-

processed was 230 for the EVI-LAI data and 230 images for the Quality control data. 

5.1.2 Sampled MODIS pixels 

The methodology followed for the creation of the MODIS sample points, 
resulted into 5 point shapefiles (one per study area), which represented the locations 
that would be used as samples for the regression analysis with points located in the 
center of each associated pixel. Figure 16 displays the point distribution in the 
Tamega and Nestos study areas. Ιn this figure, the density of sample points in 
vegetation areas characterized by heterogeneity or mixed vegetation pixels (e.g. 
Southern part of Tamega study area) was limited compared with homogenous areas 
characterized by a single type of vegetation (e.g. central and southern parts of 
Nestos study area). 
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Figure 16: Examples of MODIS sampled pixels in Tamega (left) and Nestos (right) study areas. 

These point shapefiles were used per study area as mask layers, in order to 

retrieve EVI, LAI and LULC values through ArcGIS software, from all the associated 

images. The geometric matching between MODIS LAI and EVI data was identical after 

processing the images with the MRT4 software, and with the technique used for the 

exclusion of mixed pixels in the GlobCover land-cover maps (chapter 3.2.3), it was 

ensured that the dominant vegetation type per sampled pixel would be selected.  

The data were then stored in 5 tables of .xls format (one per study area) classified 

per pixel Identification Number (ID) and also including the DOY of the image each 

value was retrieved from. The total amount of the MODIS sampled pixels per study 

area can be found in Table 5. There is a variable representation of samples following 

the distribution of vegetation types. Although some classes have more than 100 

samples in some study areas (e.g. rainfed (non-irrigated) crops, broadleaved forests, 

shrubs), other are not well represented (e.g. irrigated crops, grasslands). 

Table 5:  MODIS sampled pixels per study area and vegetation type. 

Site Rainfed Irrigated Broadleaved Needleleaved Shrubs Grass 

Nestos 572 143 808 704 5 7 

Queimados 164 0 31 14 28 49 

Rijnland 170 6 85 675 215 4 

Tamega 1673 33 263 - 378 - 

Umbeluzi 112 - 709 - 311 360 
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5.1.3 Impact of Quality Control  

Testing of how linear regression analysis between MODIS EVI and LAI 

performs in each case of different quality datasets (all available data selection and 

only good quality data selection) was applied and showed that in most cases there 

was a slight improvement in the R² (coefficient of determination) values, ranging 

from 0.5% – 5%. In case of the Tamega study area the R² value showed maximum 

improvement with the percentage reaching almost 10%, as presented in Table 6.  

Table 6: Comparison of regression analysis results for all study sites between all data and 

only good data, according to QA criteria. N is the total amount of pixels used and p is the 

probability value.  

 All data Good data 

Site R² N p R² N p 

Nestos 0.477914 53736 <.0001 0.46158 38900 <.0001 

Queimados 0.501308 56328 <.0001 0.570605 45398 0 

Rijnland 0.269199 6840 <.0001 0.264657 2210 <.0001 

Tamega 0.26711 27720 <.0001 0.356649 22669 <.0001 

Umbeluzi 0.643699 48672 0 0.670594 39508 0 

 

Judging from the excluded pixels in the Tamega study area (Figure 17), it was 

evident why there was such an improvement in the R² values, since a large amount 

of the excluded pixels were characterized by low LAI values (<2) and relatively high 

EVI values (>0.3), resulting into an improvement of the linear character of the 

equation.  

There were also two cases (Rijnland and Nestos) where on the contrary to 

other study sites the application of Quality Control process decreased the overall 

value of R² for a percentage of 0.5% - 1.5%.  

In case of Rijnland (Figure 17), the amount of available pixels participating in 

the regression analysis was limited, compared to other study areas (exclusion rate 

reached 60%), due to the small sized study area. Therefore, it was judged that this 

case was not the most appropriate to express conclusions safely, even though the 

overall difference in R² values was negligible.  Finally, the application of Quality 

Control process eliminated the already limited sample points in grasslands for the 

Umbeluzi study area.  
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Figure 17: Example of application of Quality Control (QC) to sample points of Rijnland (1st 

row) and Tamega (2nd row) study areas. 

 

Although the Quality Control process did not provide significant improvement 

of the regression analysis results (best case was the Tamega study area with an 

improvement of approximately 10% for the R² result), it was decided to apply the QC, 

since in the majority of cases examined there was a slight improvement. Moreover, 

this process (according to relevant literature as demonstrated in chapter 2) was 

expected to increase the confidence level and the accuracy of the associated results. 

5.2 MODIS LAI-EVI relation type  
Regression analysis (y=LAI, x=EVI) was applied for all good data of each study 

area’s time series of images. The results showed that the relation was best described 

by a linear type equation for all study areas, rather than other types of equations (an 

overview of the results per study area and per equation type tested can be found in 

(Table 7).  

Linear equations returned the best values of R² in the majority of study areas, 

except from the cases where a polynomial equation was used, which showed slightly 

improved results in all cases compared to other regression types. Considering the 

regression results when a power or square root equation fit was used, it was judged 

that since they showed lower R² values and higher RMSE values for the majority of 

the examined cases, they should be rejected for further use in the Thesis 

methodology. 

Rijnland

QC All Data Good

RSquare 0,269199 0,264657

Prob > F <.0001 <.0001

Pixels 6840 2210

Tamega

QC All Data Good

RSquare 0,26711 0,356649

Prob > F <,0001 <,0001

Pixels 52415 22669

All pixels Excluded Good pixels
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Table 7: Regression analysis results for all tested equation types per study area.  

 

The polynomial trend lines had a similar fit to the data as the linear one, as 

presented in Figure 18, also evident from the distribution of the points in density 

plots (Figure 19). Since the overall improvement of the R² values was only marginal 

(best improvement shown in Umbeluzi with a rate of 1.4% or 0.014 in absolute 

values), it was judged that there was no need to choose such a complex type of 

equation, compared to the simpler linear equation. The RMSE in all study areas 

remained at similar values in both cases (linear and polynomial). 

  
Figure 18: Overview of linear equation (light blue color) and polynomial equation (yellow 

color) fits for all good LAI(y) – EVI(x) data per study area. 

 

 

Study Area R² RMSE R² RMSE R² RMSE R² RMSE

Nestos 0.4616 1.1412 0.4395 1.1644 0.4609 1.1419 0.4678 1.1392

Queimados 0.5706 0.5633 0.5281 0.5905 0.5664 0.5661 0.5720 0.5624

Rijnland 0.2647 1.3010 0.2497 1.3141 0.2637 1.3019 0.2658 1.3003

Tamega 0.3566 0.6610 0.3568 0.6609 0.3488 0.6650 0.3591 0.6597

Umbeluzi 0.6706 0.5866 0.6827 0.5756 0.6440 0.6098 0.6842 0.5743

**Probability (p) value is <.0001 or 0 in all cases and study areas
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The density plots visualizing the distribution and density of the sample points 

on the x and y axes (Figure 19) showed that indeed the distribution of sample points 

was characterized by a relative linearity, especially in the study areas of Umbeluzi, 

and Queimados.  

 
Figure 19: Density plots of point distribution for all LAI(y) –EVI(x) data per study area. 

 

5.2.1 Relation for whole year 

A linear regression equation was applied to all good data pixels per study area 

(Table 8). The coefficient of determination showed a fluctuation from relatively high 

values in Umbeluzi and Queimados, to medium values in Nestos, when in Rijnland 

and Tamega only a small percentage of the variability was accounted for by the 

model. All results were statistically significant, as shown by the probability (p) value. 

The slope of the equations was higher in Nestos, Tamega and Umbeluzi, 

demonstrating a higher sensitivity of LAI to EVI changes. 
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Table 8: Linear regression equations per study area for all good data. N is the amount of 

sample points, R² is coefficient of determination, Intercept is the expected mean value of Y 

when all X=0, slope shows the steepness of the linear model and p stands for the probability 

value. 

Site N R² Intercept Slope p  

Nestos 38900 0.4615 -0.9416 8.4353 0  

Queimados 45398 0.5706 -0.2975 5.1678 0  

Rijnland 2210 0.2647 -0.4886 5.7599 <.0001  

Tamega 22669 0.3566 -0.6849 7.6922 0  

Umbeluzi 39508 0.6706 -0.8298 7.1751 0  

 

Analysis of the density plots showed that some points (not the majority) were 

drifting away from the regression line, towards high LAI, while the EVI values 

remained at lower levels from the expected according to the linear fit, as 

demonstrated in the example for the Queimados study area (Figure 20).  

 
Figure 20: Density plot of all good EVI(x) and LAI(y) data for the Queimados study area and 

possible signs of saturated values indicated with red color on the plot. 

 

5.2.2 Relation across time 

While examining the EVI-LAI relation per DOY, significant changes in the 

results of the regression analysis were revealed, mainly during periods of extreme 

meteorological conditions (i.e., heavy cloud/snow cover), when the excluded data 

rate reached a level of 100% in extreme cases (e.g. Rijnland from the end of October 

until February- Figure 21, when some parts of the Rijnland line is missing). When the 
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amount of excluded sample points did not exceed a rate of approximately 50-60% 

per DOY, the regression analysis results remained at similar levels or were improved 

per study area, compared to the regression analysis for the whole year (section 

5.2.1).  

For the dates that the exclusion rate of pixels was >60%, the majority of R² 

values when examined across time were lower than the values when examined 

undivided for the whole year. In most cases (Nestos, Tamega, Umbeluzi) the 

difference of the values fluctuated between 20-30% and never dropped under 10%. 

In most areas, R² values during November, February and March were characterized 

as low (Nestos, Rijnland, Tamega - Northern Hemisphere), however, there were also 

random dates during the rest of the year (e.g. Rijnland early summer) when low 

values were also present (Figure 21). Since Rijnland is characterized by a relatively 

flat landscape and shallow groundwater level, it is highly possible that extreme 

fluctuations could be also caused by water inundation that could occur after heavy 

rainfalls and in areas with poor drainage, which could affect the accuracy of LAI and 

EVI values. Agricultural areas and grasslands are more likely to be affected by such 

conditions. Moreover, the relatively small field size and the long and narrow shape 

that often characterizes the agricultural areas located in Rijnland, could also lead to 

erroneous identification of the vegetation type of such areas as mixed vegetation. 

 
Figure 21: R²(y) per DOY(x) and study area 
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Figure 22: Plot of slope(y) when intercept =0, indicating the steepness of the linear model per 

DOY(x) and study area. 

The analysis of the slope of the model (Figure 22) showed that sensitivity of LAI 

to EVI reached a maximum level between November and February for the study 

areas located in the Southern Hemisphere, and between June and August for those 

located in the Northern Hemisphere.  

During consecutive DOY in certain periods for each study area, there were 

notable changes in the patterns of the EVI and LAI scatter plots, which means that 

the EVI-LAI relation could dramatically change from a 16-days period to the next 

(Figure 23).  
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Figure 23: Plots of EVI(x) – LAI(y) data for 3 consecutive DOY for the Umbeluzi study area (1st 

row) and for 4 consecutive DOY for the Nestos study area (2nd row). 

5.2.3 Relation per vegetation type 

When the regression analysis was applied per vegetation type there was a 

strong increase in R² values compared to the whole year results (chapter 5.2.1, Table 

8), as demonstrated in Figure 25. The coefficient of determination (R²) was high and 

statistically significant (ranging from 0.41 to 0.83 in approximately 90% of the 

examined cases). There was no evident pattern characterizing certain vegetation 

types by higher or lower R² values when the study areas were examined as a total, 

however, there was a tendency in each study area -for different vegetation types- to 

have significantly lower R² values compared to the rest of the existing vegetation 

types. For example, in areas with needle-leaved vegetation the EVI related to LAI 

with lower R² values for the study area of Nestos, but not for Rijnland and Tamega. 

The same situation was observed for shrublands of Nestos (R²=0.44) and Rijnland 

(R²=0.23), but in Umbeluzi for example, the value of R² was close to 0.8 for this 

vegetation type. Irrigated crops overall showed stability in the EVI-LAI relation, with 

high R² values in all study areas where such data was available.  

There were study areas where the majority of the sampled pixels per 

vegetation type were concentrated in certain areas of the plot showing similar values 

for EVI and LAI (e.g. Nestos study area - all vegetation types except the broadleaved 
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forests, Figure 24). On the contrary, there were study areas where the EVI and LAI 

pairs of values of all vegetation types were distributed in random patterns (e.g. 

Rijnland study area, Figure 24) all over the plot, without being easily identified as 

groups of values concentrated per vegetation type in certain parts of the plot.  

 
Figure 24: Examples of linear type of regression per vegetation type available for all good 

LAI(y) – EVI(x) data and R² results per case for the study areas of Nestos (up) and Rijnland 

(down). 

An overview of the associated regression analysis results for the coefficient of 

determination estimated per study area and vegetation type can be found in Figure 

25. 
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Figure 25: R²(y) per vegetation type and study area. 

 
Figure 26: Slope(y) describing the linear model per vegetation type and study area. 

Judging from the slope of the linear model, as demonstrated in Figure 26, 

Tamega and Rijnland had the highest slope values in general for the majority of the 

examined cases, with Nestos following and Umbeluzi and Queimados being 

characterized by the lowest values. 

5.2.4 Relation per vegetation type and DOY 

Regression analysis was performed once again, with the EVI and LAI datasets 

divided per vegetation type and DOY simultaneously (good quality pixels only). 

Approximately 700 equations were calculated for all data available in all study areas. 

Once again, the results tended to be more inaccurate and with a lower confidence 

level during periods of extreme meteorological conditions (rain/snow fall, cloud 

presence) as seen in previous cases. During such periods, there were vegetation 

types that were totally excluded by the QC process, or remained with a limited 

amount of sample points, as it can be seen in Table 9 for the vegetation classes of 
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shrubs (LULC 34, 7 pixels remained) and grass (LULC 35, 4 pixels remained) in the 

Nestos study area.  

An example of the regression analysis results estimated between LAI and EVI 

according to this case can be found in Table 9, where the values of R2, amount of 

sample points (N) and probability value (p) are presented for 2 dates and for 2 study 

areas (Nestos, Umbeluzi). In this example, it was observed that for the study area of 

Nestos on DOY 2013-097, the a factor in the equation: y = a + b * x, was always 

negative in cases where a high value of R² was found, when the two cases of low R²  

values were characterized by a positive (a) factor. Moreover, the p value was very 

high in two cases (shrubs and grass), due to the limited amount of pixels 

representing these vegetation types. The remaining vegetation types were 

represented by a large amount of pixels and had p values close to 0. The results for 

Umbeluzi on DOY 2013-177 (Table 9) were consistent for all the related regression 

analysis results.  

Table 9: Examples of regression analysis results for Nestos and Umbeluzi study areas per 

vegetation type and DOY. 

 

Random patterns of regression analysis results were present in all DOY and 

vegetation types and for all study areas. In all study areas, there was always a 

tendency for certain vegetation types to be related with relatively lower R² values 

compared to the rest of the vegetation types present, during most of the DOY 

examined through the year. For example, in the plots per vegetation type of the 

Nestos study area for DOY 2013-097 (Figure 27), the non-irrigated and irrigated crops 

seem to be well fit and well distributed around the regression line, while the grass 

and the shrubs types also show linearity but with a small amount of pixels 

participating in the regression. Broadleaved forests show the expected LAI and EVI 

values for that season, but clearly are divided into two groups of pixels on the plot, 

indicating two different main species of plants present in the sampled pixels. In the 

needle-leaved forests the R² value found was <0.015, which is evaluated as very low. 

Study Area DOY LULC R² N p

Nestos 2013_097 21 0.49147 489 <.0001

Nestos 2013_097 22 0.657395 139 <.0001

Nestos 2013_097 31 0.083514 773 <.0001

Nestos 2013_097 32 0.014546 553 0.0045

Nestos 2013_097 34 0.569685 4 0.2452

Nestos 2013_097 35 0.411727 7 0.1203

Umbeluzi 2013_177 21 0.507396 448 <.0001

Umbeluzi 2013_177 31 0.4284 236 <.0001

Umbeluzi 2013_177 34 0.400739 171 <.0001

Umbeluzi 2013_177 35 0.598282 181 <.0001
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The LAI and EVI values do not seem to be representing the state of vegetation 

expected during that time of the season (early spring) for the needle-leaved forests. 

The amount of sampled pixels participating in the regression is rather large (553) so, 

it is likely that this is a statistically significant result (at 0.0045 level) and the low 

value of R² are not associated to limited amount of samples (such as in cases of 

grasslands and shrublands). The low R² value of needle-leaved forests could be 

explained from the slope of the line as demonstrated in Figure 27 which is also low, 

and practically means that the changes of EVI do not justify the very low changes of 

LAI values (the majority of the sample points had a tendency for LAI values <1, while 

EVI had a fair distribution of values), which could happen due to the presence of 

herbaceous vegetation at the ground level or in-between such a vegetation type 

(needle-leaved forests). In case of the broadleaved forests, the point samples were 

distributed almost evenly around two parts of the diagram, one with values of EVI 

ranging from 0.2 to 0.3 and values of LAI from 1 to 2.5, and the second with EVI 

values ranging from 0.3 to approximately 0.4 and the LAI values characterized by the 

same range as in the first case (LAI = 1 - 2.5).   

 

 
Figure 27: Scatter plots and linear models for LAI(y) and EVI(x) on DOY 2013-097 for the 

Nestos study area per vegetation type available. 

As it was expected, dates for which low R² values had been observed using 

the undivided dataset per vegetation type (results per DOY chapter 5.2.2), displayed 

also low values of R² when examined by DOY and vegetation type together. By 

dividing the datasets into vegetation classes, it was feasible to distinguish the 
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vegetation types (and the associated sampled pixel data) that affected negatively the 

regression analysis results in each pair of LAI-EVI image available.  

Because of the large amount of the estimated regression results, it was 

decided to give an overview of the 700 equations calculated for all study areas. 

Therefore, descriptive statistics are presented in Table 10 per study area and 

vegetation type, with R² values representing the average value for all DOYs of the 

time-series. In general, the data representing the irrigated crop type tended to have 

higher R² values, for the DOYs and study areas that such data was available, with the 

average of the R² values for the whole year estimated as a value of 0.52. However, in 

the Nestos area, the R² value for this vegetation type was approximately 0.25, which 

is very low compared to the other 2 study areas that such data was available. This is 

mainly due to the diversity of irrigated crop types in the Nestos area with different 

phenological cycle, including rice, maize, alfalfa, vegetables, and some fruit orchards. 

Τhe other 2 areas with higher R2 values for the irrigated crops (0.77 for Tamega and 

0.54 for Queimados), have rather uniform irrigated vegetation types dominated by 

maize in Tamega, and soya, rice and sorghum in Queimados.  The vegetation types of 

shrubs, grass and non-irrigated crops have a value of R2 around 0.40, with Rijnland 

having the lowest value in the grass type (0.0214 - lowest value average of all cases, 

inundation phenomena might have affected the results). The lowest R² values can be 

found in the vegetation types of broad-leaved and needle-leaved forests, with only 

exception the area of Queimados who had a value of over 0.60.  

Table 10: Average of R² values per study area and vegetation type for the per DOY and 

vegetation type regression analysis, and average of R² values for the whole year. 

 

Queimados showed the highest R² values throughout the whole period of the 

year, with Umbeluzi following. These 2 areas are both located in the Southern 

Hemisphere. On the contrary, the areas in the Northern Hemisphere show moderate 

regression analysis results. Of these, Rijnland showed the lowest regression analysis 

results, with best values found from the end of February until the end of May, and 

gaps of data showing before and after this period. Figure 28 and Figure 29 give a 

good view of the mentioned situation, with the Queimados area (Figure 29) showing 

low results only in one case of a 16-day DOY representation (mid-January until 

Average annual R² per vegetation type

Study area Non-rrigated Irrigated Broad-leaved Needle-leave Shrubs Grass

Nestos 0.4650 0.2575 0.079 0.2477 0.3768 0.6592

Queimados 0.4756 0.5452 0.6186 0.6108

Rijnland 0.4173 0.424 0.1897 0.1867 0.0214

Tamega 0.1736 0.7747 0.1942 0.3535 0.2958 0.3214

Umbeluzi 0.4088 0.3018 0.4123 0.5875

Total 0.3881 0.5258 0.2472 0.2636 0.3765 0.3974
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February) and for only 2 of the 4 vegetation types present (non-irrigated and 

irrigated crops). 

 
Figure 28: R²(y) per DOY(x) available for all vegetation types in the Rijnland study area. 
 

 
Figure 29: R²(y) per DOY(x) available for all vegetation types in the Queimados study area. 
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5.3 Relation between Landsat and MODIS reflectance 
  The comparison between the MODIS and Landsat Red, Blue, and Near 

Infrared bands for the study areas of Tamega and Umbeluzi showed high R² values 

between the corresponding pixel values of the datasets. The values (Figure 30, Figure 

31, Figure 32 and Figure 33) were calculated to be approximately between 0.925 and 

0.995, with the p probability value being highly significant for all cases and the mean 

difference estimated by the paired t-test applied was not exceeding an absolute 

value of 0.012 in all cases examined.  

Obviously, the differences between the data of MODIS and Landsat were 

evaluated as minor in both datasets tested (500m. and 1000m. pixel resolution) as 

well as in both areas examined (Umbeluzi and Tamega) and thus the data was 

evaluated as directly comparable. 

 

Figure 30: Statistical analysis and comparison of Red, NIR and Blue bands between MODIS(y) 

and Landsat(x)  surface reflectance images at a 500 m resolution for Umbeluzi study area 

(MODIS DOY 2013-175).   
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Figure 31: Statistical analysis and comparison of Red, NIR and Blue bands between MODIS(y) 

and Landsat(x) surface reflectance images at a 1000 m resolution for Umbeluzi study area 

(MODIS DOY 2013-175). 

 

Figure 32: Statistical analysis and comparison of Red, NIR and Blue bands between MODIS(x) 

and Landsat(y) surface reflectance images at a 500 m resolution for Tamega study area 

(MODIS DOY 2013-251). 
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Figure 33: Statistical analysis and comparison of Red, NIR and Blue bands between MODIS(x) 

and Landsat(y) surface reflectance images at a 1000 m resolution for Tamega study area 

(MODIS DOY 2013-251). 

The additional check between the datasets of MODIS and Landsat EVI showed 

slightly lower R² values compared to surface reflectance data correlation results –but 

overall still high as presented in Figure 34, with a value of approximately 0.89 for the 

coefficient of determination in the Tamega study area and 0.87 for Umbeluzi. The 

mean difference was approximately 0.031 in absolute value. Once again, the p 

probability value was 0 for both cases. An additional finding was the fact that the 

surface reflectance images comparison between MODIS and Landsat showed slightly 

higher values of R² for the Umbeluzi study area when compared to these of the 

equivalent cases in Tamega study area, but when the EVI values of MODIS and 

Landsat were compared, the opposite happened; the R² value result estimated for 

the Tamega study area was slightly improved  compared to this of Umbeluzi but still 

the difference was not significant as in the previous cases examined.  
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Figure 34: Regression analysis of EVI values between MODIS(x) and Landsat(y) data for the 

study areas of Tamega (left, MODIS DOY 2013-257) and Umbeluzi (right, MODIS DOY 2013-

177). 

5.4 High resolution LAI maps 
The MODIS estimated regression equations per DOY and vegetation type were 

used in the model of downscaling MODIS LAI to Landsat resolution level for the days 

(DOY) close to the dates a Landsat EVI image was available. Despite the fact that this 

methodology is applicable for all available Landsat images during the study period (at 

least for those without heavy cloud presence), it was applied for all dates that LAI 

field measurements were available for its validation. The field measurements of the 

Queimados study area included only one dataset (LAI values were measured in the 

field only for one period during the year) and moreover, these measurements 

concerned a period of approximately 6 months before the starting date of the 

regression analysis data used for the Thesis purposes (chapter 5.3). Therefore, it was 

decided not to include the Queimados study area in the results of this chapter.  

An example of the tables created per date and image of interest can be found 

in Table 11 for the Nestos and Umbeluzi study areas. For cases where for a MODIS 

16-day image, two images of Landsat EVI were available (e.g. Nestos study area, 

Table 11) for dates close to the MODIS DOY (one image from Landsat 7 and one from 

Landsat 8), the regression analysis equations remained the same per vegetation type 

when used in the model. 
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Table 11: Examples of the tables created showing the equation used in the LAI downscaling 

model per date and area of interest. 

 

Several LAI maps were created at the Landsat spatial resolution level and are 
presented per date of interest and per study area.      

Nestos study area 

 For the study area of Nestos, even though there were 3 datasets of field 

measurements available during the year, one was unusable due to cloudy conditions. 

Thus, LAI maps at Landsat resolution level were created only for 2 periods (April and 

July) in Nestos.  

 For the field measurements of April (exact dates for all available field 

measurement datasets per study area can be found in Table 4 of chapter 3.2.4), 2 EVI 

Landsat images were available to be used in the model, one from Landsat 7 (DOY 

2013-096, Figure 35) and one from Landsat 8 (DOY 2013-104, Figure 36). The model 

excluded the areas with low quality data per date of interest (cloud, water, rocks, 

etc.) and for the remaining pixels, LAI values were calculated. For both dates, only 

some of the sites where field measurements were applied were included in the 

created LAI maps.  

For the Landsat 7 EVI image of DOY 2013-096, the model created a LAI map 

including approximately 65% of the study area, leaving however only 4 field 

measurements available for comparison with the estimated LAI values (central part 

of the study area). The amount of points could be up to 8 for this LAI map, but the 

data gaps of Landsat 7 due to the sensor problem (SLC-off) explained in chapter 3.2.2 

made this impossible, since some of the points were located in-between such data 

Study Area Sensor DOY Landsat DOY MODIS LULC Equation

Nestos LC7 2013_096 2013_097 21 LAI = -0.404429 + 4.0996533*EVI

Nestos LC7 2013_096 2013_097 22 LAI = -0.182653 + 3.2657184*EVI

Nestos LC7 2013_096 2013_097 31 LAI = 0.1656716 + 2.5926736*EVI

Nestos LC7 2013_096 2013_097 32 LAI = 1.3574629 + 1.4591396*EVI

Nestos LC7 2013_096 2013_097 34 LAI = -0.073846 + 2.9878605*EVI

Nestos LC7 2013_096 2013_097 35 LAI = -0.264893 + 3.9639147*EVI

Nestos LC8 2013_104 2013_097 21 LAI = -0.404429 + 4.0996533*EVI

Nestos LC8 2013_104 2013_097 22 LAI = -0.182653 + 3.2657184*EVI

Nestos LC8 2013_104 2013_097 31 LAI = 0.1656716 + 2.5926736*EVI

Nestos LC8 2013_104 2013_097 32 LAI = 1.3574629 + 1.4591396*EVI

Nestos LC8 2013_104 2013_097 34 LAI = -0.073846 + 2.9878605*EVI

Nestos LC8 2013_104 2013_097 35 LAI = -0.264893 + 3.9639147*EVI

Umbeluzi LC8 2013_175 2013_177 21 LAI = -0.092231 + 2.9176324*EVI

Umbeluzi LC8 2013_175 2013_177 31 LAI = -0.20038 + 3.6218802*EVI

Umbeluzi LC8 2013_175 2013_177 34 LAI = -0.144638 + 3.2141674*EVI

Umbeluzi LC8 2013_175 2013_177 35 LAI = -0.271659 + 3.9360174*EVI
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gaps. The highest LAI values (3.33691, green color on the map) can be found in areas 

in the central and northern parts of the map, where needle-leaved forests are 

located, as well as in some areas where broad-leaved forests are present, which is 

logical considering the season of the year (early spring). On the other hand, crops 

show relatively low values at this season.  

 

 
Figure 35: LAI map at Landsat resolution (30m) for the Nestos study area (DOY 2013-096). 

 For the Landsat 8 EVI image of DOY 2013-104, the same regression equation 

was used as with the DOY 2013-096 Landsat 7 image, in order to create the Landsat 

resolution LAI map. This time the excluded areas due to low quality data reached 

approximately 90% of the total study area. However, 5 field measurement points 

were available for the parts of the study area that LAI values have been estimated. 

The highest LAI value present is again close to the one found in the map of DOY 

2013-096 (3.4857) and is characterizing mainly areas with needle-leaved forests in 

the northern part of the map. However, this time there are also areas with broad-

leaved forests in the southern part of the map having a high LAI value.   
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Figure 36: LAI map at Landsat resolution (30m) for the Nestos study area (DOY 2013-104). 

 

 An additional LAI map was created for the period of July that field 

measurements were available (DOY 2013-184, Figure 37). This time, almost 80% of 

the study area was included in the estimated LAI values of the map, since the 

summer season in the local climate (June - August) is generally characterized by good 

weather conditions and consequently almost zero cloud contamination in the 

acquired Landsat images. The highest LAI value found at this time of season is close 

to 12 (characterizing areas covered with broad-leaved and needle-leaved forests in 

the central and northern part of the map), but on this occasion there are also areas 

with agricultural activity in the southern part of the map (irrigated crops) showing LAI 

values close to 6 and even higher, since at this time of the year several species of 

crops are in the stage of full growth. On the other hand, the lowest values of LAI 

close to 0 can be found in areas with arable (non-irrigated) crops.  
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Figure 37: LAI map at Landsat resolution (30m) for the Nestos study area (DOY 2013-184). 

Rijnland study area 

 For the study area of Rijnland, only two Landsat EVI images were cloud free 

and included parts of the study area where field measurements were available. The 

images of DOY 2013-265 (Landsat 7, Figure 38) and DOY 2013-273 (Landsat 8, Figure 

39) were used to calculate the LAI values at Landsat resolution level, both using the 

same regression equations, since they considered the same 16-day period MODIS 

equations were available.  

 The LAI map created from the Landsat 7 image included only 25% of the study 

area due to the effect of low quality data and the data gaps present. Only 7 points of 

field measurements coincided with pixels of an estimated LAI value. The highest LAI 

value found was over 8 and mainly represented forested areas. High LAI values could 

also be found in areas with shrubs, when the lowest LAI values characterized 

narrowed areas all over the remaining study area, falling into the non-irrigated crops 

vegetation type. 
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Figure 38: LAI map at Landsat resolution (30m) for the Rijnland study area (DOY 2013-265). 

The EVI map of DOY 2013-273 was almost cloud-free and resulted into a 

created LAI map representing approximately 90% of the Rijnland study area. In this 

case, even though the highest LAI value was a bit lower compared to DOY 2013-265 

(7.42), the map is dominated with a rate over 60% of the total area with LAI values 

higher than 5. Moreover, these high LAI values represent pixels from all available 

vegetation types in the area, rather than falling only into the broad-leaved and 

needle-leaved vegetation categories. The early days of September in the region of 

Netherlands can be characterized by relatively high LAI values for the vegetation, 

since the local climate (temperature is still high, heavy rainfalls and strong winds 

occur rarely compared to the winter season) is ideal for the growth of the plants.  

 



70 

 

 
Figure 39: LAI map at Landsat resolution (30m) for the Rijnland study area (DOY 2013-273). 

Tamega study area 

 In the Tamega study area, 2 images of EVI Landsat were available for the 

dataset of field measurements of May and 2 additional for the field measurements of 

September (one for Landsat 7 and one for Landsat 8 per each period). 

 For the fieldwork dataset of May, a Landsat 8 EVI image was available for DOY 

2013-139, which was dominated by low quality pixels that were discarded, with the 

remaining 5% of the pixels for which LAI values were calculated not coinciding with a 

point of a field measurement (Figure 40) and thus, could not be used for validation 

purposes.  

The LAI map of DOY 2013-147 (Figure 41) was created using a Landsat 7 EVI 

image in the downscaling model. This time, almost 85% of the total study area was 

assigned a LAI value, with the highest LAI value being close to the LAI map of DOY 

2013-139 (7.812). The highest LAI values are characterizing mainly needle-leaved 

forest areas (central and southern part of the map), followed by relatively high values 

for the broad-leaved forests (central and northern part of the map) and the irrigated 

crops (central-East part of the map). On the contrary, lowest LAI values can be found 

in the majority of the non-irrigated crop areas (South-East and northern part of the 

map) and for the grasses vegetation type (northern part of the map), while 

shrublands are characterized by moderate LAI values and are indicated on the map 

with a light orange or yellow color. 
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Figure 40: LAI map at Landsat resolution (30m) for the Tamega study area (DOY 2013-139). 

 
Figure 41: LAI map at Landsat resolution (30m) for the Tamega study area (DOY 2013-147). 

 The final 2 LAI maps created for the Tamega study area were for DOY 2013-

243 (Landsat 7, Figure 42) and for DOY 2013-251 (Landsat 8, Figure 43). The highest 
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LAI values in both cases remained at similar levels as in the LAI maps of May 

(approximately 7.8) and the distribution of the LAI values followed a similar pattern 

in both periods. However, the values for the needle-leaved forests were relatively 

lower in September, compared to the maps of May. Moreover, the shrublands 

present in the central and southern part of the map had lower LAI values in 

September. The comparison between the 2 maps of September showed that the map 

of DOY 2013-243 is characterized by slightly lower LAI values for the total of the 

study area, compared to the one of DOY 2013-251, even though the pattern of LAI 

distribution remained the same in both maps. This could be explained by the fact 

that in both model runs for the creation of the maps, the same MODIS equations per 

vegetation type were used (DOY 2013-241), since the regression equations of MODIS 

DOY 2013-257 (closer to DOY 2013-251) were not available due to the low quality 

MODIS image available for that day. Therefore, the values of the LAI map DOY 2013-

243 were evaluated as more accurate and closer to the real conditions present, 

despite the fact that both cases were assigned LAI values for approximately 95% of 

the total study area (cloud free images), since the equations used for the calculation 

of LAI values were closer to that date (2 days) compared to DOY 2013-251 (10 days). 

For both maps, the majority of available field measurements coincide with areas for 

which a LAI value was calculated.   

 
Figure 42: LAI map at Landsat resolution (30m) for the Tamega study area (DOY 2013-243). 
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Figure 43: LAI map at Landsat resolution (30m) for the Tamega study area (DOY 2013-251). 

Umbeluzi study area 

 Umbeluzi was the only study area for which Landsat EVI images were 

available for all existing datasets of field measurements. A LAI map was created for 

the November 2012 period (DOY 2012-309, Figure 44) using Landsat 7 EVI data, 

covering approximately 25% of the total study area. November is a period when 

rainfalls are highly possible to occur, which affects the local vegetation and therefore 

LAI values are the highest found during the whole year (highest LAI value 7.35). The 

low values in the south-west part of the map, as well as in the north-east, are 

characterizing non-irrigated crops which probably had no vegetation at that time of 

the year. Forest areas and shrubs showed the highest LAI values, while grasslands 

were characterized by relatively moderate LAI values. Several field measurement 

points from the available dataset of that period coincide with the areas for which LAI 

values were available.  
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Figure 44: LAI map at Landsat resolution (30m) for the Umbeluzi study area (DOY 2012-309). 

 

 
Figure 45: LAI map at Landsat resolution (30m) for the Umbeluzi study area (DOY 2013-071). 

For the period of July (dry period), the field measurements were acquired 

between DOY 182 and 184 of 2013 and, therefore, 2 EVI images of Landsat 8 were 



75 

 

available to be used in the downscaling model, one for DOY 2013-175 and an 

additional one for DOY 191. The MODIS equations used were different for each run 

of the model (equations of DOY 2013-177 and 2013-193) and in both cases had only 

2 days difference from the EVI images.  
 

 
Figure 46: LAI map at Landsat resolution (30m) for the Umbeluzi study area (DOY 2013-175). 

  In case of LAI map DOY 2013-175 (Figure 46), the highest LAI value was 

calculated as 2.64 for forested areas in the central and central-east part of the map, 

for which areas the LAI values remain relatively high compared to the rest of the 

areas during all periods examined. Once again, non-irrigated crops showed the 

lowest values, but this time for the majority of the related areas. Moderate values of 

LAI presented with light orange and yellow color on the map represented mainly 

shrublands, as well as a part of the grasslands present in the study area. Almost 100% 

of the area was included in the calculation of LAI values, due to the fine weather 

conditions that provided a cloud-free EVI image. Therefore, almost all field 

measurements coincided with areas assigned a LAI value. 

 The LAI map of DOY 2013-191 included approximately 65% of the total study 

area, showing a much higher LAI value (approximately 4) compared to DOY 2013-

175, but for the exact same areas located in the central  and central east part of the 

map (indicated with green color in both maps). The overall pattern of the LAI value 

distribution was similar when the 2 LAI maps were compared. The values of DOY 

2013-191 were relatively lower compared to DOY 2013-175, when the maximum LAI 

value present was taken into consideration. This was evident in the western part of 
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the 2 maps when compared, where areas colored with dark orange and orange color 

in map of DOY 2013-191, were represented with lighter colors (yellow, green) in map 

of DOY 2013-175. This phenomenon has two possible meanings; first, is that the LAI 

values of forested areas in the central part of the area increased rapidly (almost 

doubled) in a period of 16 days, which is not likely to happen. The second and most 

possible explanation could be that in the regression equations of DOY 2013-191, the 

regression equation used for the forested areas was not as accurate as the one used 

for the creation of LAI map DOY 2013-175, returning higher values from those 

expected. This is also strengthened by the fact that during a dry season, high 

fluctuations in LAI values, especially in natural vegetation areas, are not likely to 

occur in such a short period. 

 
Figure 47: LAI map at Landsat resolution (30m) for the Umbeluzi study area (DOY 2013-071). 

Details over the level of improvement in the downscaled LAI maps of Landsat 

resolution level, compared to those of MODIS at 1000m pixel resolution, can be 

found in Figure 48. The LAI map of DOY 2013-175 of the Umbeluzi study area was the 

image characterized by the least data gaps from the created LAI-maps series 

between all study areas (almost 100% of the study area pixels were assigned a LAI 

value). Compared with the original LAI image of MODIS, there are several features of 

detailed LAI that are now visible and can be clearly distinguished from the adjacent 

features. In general, the two images seem to be characterized by a similar pattern in 

the distribution of the LAI values. The forested area indicated with green color in the 
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central part of the maps and the crops in the northern part of the maps (indicated 

with red color) are characterized by the same high (green color) and low (red color) 

levels of LAI values. On the other hand, differences can be observed mainly in the 

South-West area of the images, with the low (red color) LAI values of the MODIS 

image being replaced by moderate (orange and yellow color) LAI values. The 

“pixelize” effect of the MODIS image due to the large pixel size of MODIS LAI is 

absent in the Landsat LAI image and transition from one pixel value to another is 

achieved by a smoother visualization. 

 

Figure 48: Comparison of spatial resolution level between a MODIS LAI image (upper part of 

figure, Umbeluzi, DOY 2013-177) and a downscaled LAI image at Landsat spatial resolution 

level (lower part of figure, Umbeluzi, DOY 2013 175). 
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5.5 Accuracy of Landsat LAI  

The results of the correlation analysis are presented in this chapter per study 

area. In cases of extreme variations between the LAI values measured at the field 

and estimated for the Landsat LAI maps, scenarios with an approximate 10% 

exclusion rate of outliers were used. The excluded sample points included sites 

indicated with a different vegetation type during the fieldwork from the one assigned 

by the Landsat land-cover maps, or sites in which special conditions were observed 

during the period the field measurements were acquired, such as heavy rainfalls, 

presence of mud, etc. 

Nestos study area 

In the Nestos study area, there were no correlation analysis results for the 

November dataset of field measurements (Table 12), as the related Landsat EVI 

images were fully covered by clouds (low quality data). 

Table 12: Correlation analysis between LAI pixel values calculated at Landsat resolution level 

per DOY and LAI field measurements at the same locations for Nestos study area.    

   

During the period of April, the 2 LAI images of DOY 096-2013 and 104-2013 

included 4 and 5 pixels respectively that coincided with points of field measurements 

acquired. The coefficient of correlation values (r) were high for both cases and 

statistically significant at 0.05 level (0.72 for DOY 096-2013 and 0.93 for DOY 104-

2013), even though the amount of sampled pixels was relatively low compared to 

other cases examined.  The RMSE was at similar levels with a value of approximately 

0.3, while the mean difference was over 0.6 for the highest r value between the 2 

days (DOY 104-2013) and 0.1 for the lowest (DOY 096-2013), indicating a systematic 

over-estimation pattern of LAI values for the map of DOY 104-2013, at least for the 

pixel values that could be validated. 

For the period of July, the r value dropped to approximately 0.25 for the image 

of DOY 184-2013, which was the lowest between all datasets examined. The RMSE 

value was also high (1.484), while the mean difference remained at lower levels, 

compared to the results of April (0.054). In order to examine the effect of outliers, 2 

out of the 19 available LAI field measurements for that date were excluded (LAI 

3-5/11/2012 n/a n/a n/a n/a n/a

096-2013 4 0.7209* 0.304972 0.10509*

104-2013 5 0.9275* 0.315112 0.604831*

184-2013 19 0.2542 1.484 0.0544

184-2013^ 17 0.6396* 1.0126 -0.1921

^ appr. 10% outliers exclusion * Statistically significant at 0.05 level

9-10/4/2013

2-3/7/2013

n/a = not available

Nestos

** Statistically significant at =< 0.001 level

Site
Date of field 

survey

Number of 

locations
r

Mean difference 

(m2/m2)

RMSE 

(m2/m2)

Landsat 

LAI DOY
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measured overestimation, LAI difference>3): a broad-leaved forest area with a high 

slope and an area with corn fields which was indicated as grasslands in the Landsat 

land-cover map. After the exclusion of these samples there was a dramatic increase 

of the r value (0.6396) which became statistically significant at 0.05 level, as well as a 

decrease in the RMSE value (1.0126). There was also a change in the mean difference 

(0.25 in absolute value), which turned the overestimation in values for the field-

measured LAI, into underestimated values (negative), which was reasonable since 

both the excluded samples showed a high over-estimation of LAI values.  

 
Figure 49: Scatter plots (y by x) and statistical analysis between LAI field values(y) and 

Landsat LAI(x) values per period of field data availability for the study area of Nestos.    

 The strong correlation found between the limited samples of field 

measurements and Landsat LAI during April was also evident from the scatter plots 

of the y by x fit (Figure 49), when on the other hand, for the period of July (DOY 

2013-184) the 1:1 line relating field LAI data with Landsat LAI shows larger 

deviations.   

Rijnland study area 

 The validation between field LAI data and Landsat level LAI data was not 

possible for the period of June, since none of the field points coincided with a pixel of 

a calculated LAI value (Table 13). 
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Table 13: Correlation analysis between LAI pixel values calculated at Landsat resolution level 

per DOY and LAI field measurements at the same locations for Rijnland study area. 

 

 For the period of September, the LAI map of DOY 265-2013 included 7 

samples, for which the analysis showed a correlation coefficient of 0.8065, which was 

statistically significant at 0.05 level. While the RMSE remained at a moderate value 

level (0.6511) the mean difference was high (1.776) but at the same time statistically 

significant at 0.001 level. The number of samples increased to 15 for the image of 

DOY 273-2013 resulting into a moderate r value of 0.4801, statistically significant at 

0.05 level. The RMSE increased to 1.15, but the mean difference decreased to 

approximately half the value of DOY 265-2013 (0.87), but this time it was statistically 

significant at 0.05 level. Outlier sample analysis showed that 2 of the samples had 

overestimated values (>2.50) for the field measured data, with the one sample 

characterized as shrubland in the Landsat land-cover map while it was found to be a 

coniferous forest on a dune during the fieldwork and the other characterized as 

broadleaved forest during the fieldwork while it was classified as a needle-leaved 

forest according to the Landsat land-cover map. For the rest of the samples, the 

ground truth points showed high level of agreement with the land-cover types as 

indicated in the Landsat LAI maps. In some cases, grasslands were falsely identified 

as agricultural areas, however, the associated LAI values of each pair of samples 

when compared were close.  The analysis of the remaining samples for both the LAI 

maps created for the September period, showed a moderate agreement of field data 

with Landsat LAI data as demonstrated in the y by x scatter plot of Figure 50.  

26-29/6/2013 n/a n/a n/a n/a n/a

265-2013 7 0.8065* 0.6511 1.7764**

273-2013 15 0.4801* 1.1576 0.8693*

273-2013^ 13 0.7875** 1.0232 0.5945*

Date of field 

survey

Landsat 

LAI DOY

Number of 

locations
r

RMSE 

(m2/m2)

 ̂appr. 10% outliers exclusion * Statistically significant at 0.05 level

n/a = not available

Mean difference 

(m2/m2)

23-26/9/2013
Rijnland

Site

** Statistically significant at =< 0.001 level
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Figure 50: Scatter plot (y by x) and statistical analysis between LAI field values(y) and 

Landsat LAI(x) values (September 2013) for the study area of Rijnland. 

Tamega study area 

 For the period of May, only one (DOY 147-2013) of the 2 images included 

areas with available field measurements in the Tamega study area. 21 samples were 

used for the correlation analysis (Table 14), giving a moderate to low r value (0.3246) 

and a RMSE value of 0.88. The mean difference of LAI values (0.455) was statistically 

significant at 0.05 level and decreased to half when outlier samples were excluded. 

From the 2 samples excluded as outliers for that period, one was classified as shrubs 

while at field it was found to be a pine-tree forest, while the other was found to be 

an irrigated field while it was classified as a non-irrigated field. The difference in LAI 

values was lower in this case compared to the outlier exclusion process of Rijnland 

and Nestos and didn’t exceed a value of 2. However, it was once again following an 

overestimation pattern of LAI field measured values. The r value increased after the 

exclusion of outliers to a moderate level (0.458), becoming also statistically 

significant at 0.05 level, while the RMSE value remained almost the same. 
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Table 14: Correlation analysis between LAI pixel values calculated at Landsat resolution level 

per DOY and LAI field measurements at the same locations for Tamega study area. 

 

 The dataset of the September field measurements, showed the best 
correlation results between all areas located in the Northern Hemisphere (Nestos, 
Rijnland, Tamega), considering that both created LAI maps of that period (DOY 243-
2013 and 251-2013) showed moderate to high r values (0.636 and 0.643) during the 
correlation analysis, with over 30 samples included in both cases examined and with 
the related r values being statistically significant at 0.001 level. The mean difference 
was characterized by similar relatively low values (0,188 and 0,248), while the RMSE 
was over 1 in both cases. Outlier analysis showed that 2 sample areas were found to 
be broad-leaved forests in the field instead of needle-leaved forests as indicated in 
the Landsat land cover map, while an additional one was falling into the shrubs 
vegetation type according to Landsat and was found to be a broad-leaved forest too. 
Exclusion of the outliers improved the r value result by approximately 0.07 in both 
cases, as well as the RMSE value by approximately 0.3 units. The mean difference 
value decreased to almost 0, showing a slight underestimation of measured LAI 
values for DOY 243-2013 (-0.05) and a slight overestimation for the values on DOY 
251-2013 (0.03). 

139-2013 n/a n/a n/a n/a

147-2013 21 0.3246 0.8809 0.4551*

147-2013^ 19 0.4581* 0.8628 0.2746*

243-2013 32 0.6366** 1.0825 0.1888

243-2013^ 29 0.7188** 0.7582 -0.0523

251-2013 35 0.6428** 1.0593 0.2486

251-2013^ 32 0.7096** 0.7986 0.037

Site
Date of field 

survey

Landsat 

LAI DOY

n/a = not available ** Statistically significant at =< 0.001 level

^ appr. 10% outliers exclusion

Tamega

* Statistically significant at 0.05 level

20-23/5/2013

2-5/9/2013

Number of 

locations
r

RMSE 

(m2/m2)

Mean difference 

(m2/m2)
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Figure 51: Scatter plots (y by x) and statistical analysis between LAI field values(x) and 

Landsat LAI values(y) per period of field data availability for the study area of Tamega. 

 Scatter plots of y by x fit between the field measured LAI and the LAI values 

estimated at Landsat level (Figure 51), showed a low level of agreement for the 

period of May, while the level of agreement became moderate when the LAI values 

calculated for the 2 Landsat LAI maps created for the September period, were 

examined. In both plots no outliers were removed. 

Umbeluzi study area 

 The correlation analysis between the field measurements of November and 

the LAI values calculated at Landsat level (Table 15), showed a negative r value (-

0.178), although the amount of samples was not very limited compared to other 

cases examined. From the 10 samples used for the correlation analysis, 3 showed a 

LAI value difference > 2 and fell into the mixed vegetation category according to the 

field measurements (shrubs, trees and grass), while Landsat land-cover classified 

these areas as non-irrigated crops in two cases and shrubs in the third. It was 

evaluated as pointless to include an outlier analysis for this case, since after the 

exclusion of 1 outlier (10% of the total sample) the r value remains negative, after 

the exclusion of 2 outliers it doesn’t exceed 0.2 and only increases over 0.5 when all 

3 outliers are excluded (30% of the initial total of samples). 
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Table 15: Correlation analysis between LAI pixel values calculated at Landsat resolution level 

per DOY and LAI field measurements at the same locations for Umbeluzi study area. 

 
 

Correlation analysis between the field measured LAI values of March and those 
estimated at the Landsat level was not possible, since only 2 of the field 
measurement samples coincided with the areas for which a LAI value was calculated. 

For the 21 samples taken into consideration for DOY 175-2013, the correlation 
coefficient value was the highest found reaching 0.935, with the mean difference 
result showing an underestimation of measured LAI values (-0.2754), while both the 
coefficient values mentioned were found to be statistically significant at 0.001 level. 
The RMSE was found to be 0.2013 and slightly improved to 0.1613 (along with the 
rest of the coefficient values) when 2 outlier samples were excluded, both found to 
fall into the mixed vegetation category (grass, shrubs, spare trees), while Landsat 
land-cover classified them as shrubs. The difference between the measured and the 
calculated LAI of the 2 excluded outliers never exceeded a value of 0.8, which is low 
compared to the other cases where outliers were excluded. For DOY 191-2013 16 
samples were available showing a correlation r value of 0.874 statistically significant 
at 0.001 level and a mean difference value of -0.192, statistically significant at 0.05 
level. The RMSE was low (0.312), although it slightly increased compared to DOY 175-
2013. Outlier exclusion (same 2 outliers as excluded on DOY 191-2013) slightly 
improved the r value result (0.911) as well as the mean difference result (-0.129) and 
the RMSE value (0.278). 

 

7-9/11/2012 309-2012 10 -0.1783 1.3419 0.6534

12-14/3/2013 071-2013 2 n/a n/a n/a

175-2013 21 0.935** 0.2013 -0.2754**

175-2013^ 19 0.9622** 0.1613 -0.2383**

191-2013 16 0.874** 0.3127 -0.1924*

191-2013^ 14 0.9113** 0.2778 -0.129

^ appr. 10% outliers exclusion * Statistically significant at 0.05 level

n/a = not available ** Statistically significant at =< 0.001 level

1-3/7/2013

Umbeluzi

rSite
Date of field 

survey

Landsat 

LAI DOY

Number of 

locations

RMSE 

(m2/m2)

Mean difference 

(m2/m2)
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Figure 52: Scatter plots (y by x) and statistical analysis between LAI field values(y) and 

Landsat LAI values(x) per period of field data availability for the study area of Umbeluzi. 

 

The y by x scatter plots (Figure 52) between field measured LAI and the values 

estimated by the model at Landsat level for the study area of Umbeluzi, showed the 

lowest level of agreement found between all cases examined for the period of 

November 2012 (1 Landsat LAI map available). For the datasets of field 

measurements of July, the scatter plot showed relatively low LAI values in both 

created LAI maps (DOY 2013-175 and 2013-191), and the highest level of agreement 

found between all study areas examined, for the LAI values measured and those 

estimated at Landsat resolution.  
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6 Discussion 

The relationship between EVI and LAI data of MODIS 1000m pixel resolution 
was found to be better described by a linear fit equation in all study areas, although 
a polynomial fit had slightly better results of R² when regression analysis was applied. 
This choice was related to the fact that even though relevant research as presented 
in chapter 2 was supporting both cases, the actual fit of the equation lines when the 
related samples were plotted showed a stronger linear relationship for the majority 
of the samples and, moreover, it was believed that the complexity of a polynomial 
equation would affect the overall results of the LAI downscaling model. A solution to 
improve the results of the regression analysis as proposed by Wang et al. (2005a) 
would be to use more VIs in the equations. However, this would dramatically affect 
the amount of data needed for all study areas. Among the study sites, the strongest 
relationship between EVI and LAI was found for the study areas located in the 
Southern Hemisphere, for which the diversity of vegetation species within the same 
vegetation type is not as high as in the study areas of the Northern Hemisphere. 

The QC process showed that during cloudy conditions the MODIS algorithm did 
not succeed to effectively detect and flag all the low quality data, which is evident 
from the sudden increase and decrease of LAI values during consecutive 16-day 
periods of the time-series, something also found to be true by Wang et al. (2005b). 
According to Ganguly et al. (2012), the LAI algorithm of MODIS cannot retrieve LAI 
values more precisely than its inputs, while he also warns that classification 
inaccuracies of land-cover data are a critical source of error in the LAI retrieval 
process. Such inaccuracies were present in all study areas, at least for some of the 
points available from the field measurement samples that were proved to be of a 
different vegetation type according to the Landsat land-cover maps, when compared 
to the real conditions found in the field. Tian et al. (2000) also added that the effect 
of misclassification is even larger, when the spatial resolution of the data used is 
coarse, such as the MODIS data used in the present study.  

The majority of the R² values of the regression analysis per DOY were found to 
be lower, compared to the R² value estimated when all data of the time-series were 
considered. The analysis of the slope of the model showed that sensitivity of LAI to 
EVI reached a maximum level between November and February for the study areas 
located in the Southern Hemisphere, and between June and August for those located 
in the Northern Hemisphere. The highest sensitivity of EVI to LAI values was 
characterizing the broadleaved forests in all study areas, with needleleaved forests 
following in areas that such a vegetation type was present. The sensitivity of EVI to 
LAI was lower in periods of high biomass and the sensitivity range was different 
across sites, probably also related to biomass quantity or type, since the EVI has 
improved sensitivity at high biomass regions (Wang et al., 2005b).  

Vegetation type had the highest influence in the variation of the relationship 
between EVI and LAI, as R² values were found to be high in all cases examined during 
the regression analysis. However, this is also the parameter that in case of biome 
misclassification of the data could fatally impact the quality of the associated results. 
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In areas with needle-leaved vegetation the EVI related to LAI with lower R² values for 
the study area of Nestos, but not for Rijnland and Tamega, something that could be 
caused by increased diversity of tree species in one area (increased heterogeneity) 
but not in the other. The highest sensitivity of EVI to LAI values was characterizing 
the broadleaved forests in all study areas, with needleleaved forests following in 
areas where such a vegetation type was present. The R² value of irrigated-crop areas 
was the highest found among the examined cases. 

After examining how EVI relates to LAI by taking into account different factors 
each time (chapters 4.2.1, 4.2.2, 4.2.3), it was evident that the most accurate 
approach to apply regression analysis between EVI and LAI would be to use both the 
characteristics of vegetation type and seasonality (DOY). Experimenting with the data 
showed that these were the most crucial characteristics, which could improve the 
accuracy of the equations used for the LAI maps (Landsat resolution) and 
consequently produce results (LAI values) of as high confidence and accuracy level as 
possible. In general, the R2 values dramatically improved in the regression analysis 
per DOY and vegetation type, compared to the results per DOY only (chapter 5.2.2), 
an improvement which for some vegetation types reached a value of 0.5 in absolute 
values, mainly for the vegetation classes of irrigated and non-irrigated crops, for the 
study areas where such vegetation types were present. Moreover, since the analysis 
of the EVI and LAI data showed variations in their relationship between even 
consecutive 16-day periods (MODIS EVI time-step), it was decided that it would be 
wise to estimate through the EVI – LAI regression analysis not only one equation per 
study area and vegetation type, but several more, depending on the amount of 
available Landsat EVI images per study area and the dates these images were 
associated with. This could help to evaluate whether the associated results of the 
regression analysis applied for consecutive dates were remaining consistent, or if 
they included errors, indicated by a constant increasing and decreasing of LAI values 
through time. From the vegetation types examined, the grasslands showed moderate 
to high values of R² during the regression analysis in all study areas, except Rijnland, 
probably due to inundation phenomena present because of the flat landscape of the 
Netherlands. Grasslands are characterized by vertical and lateral homogeneity as 
well as a high ground cover, and because of this, the view angle influence is 
considered to be minor for this vegetation type (Myneni et al., 2002). Mowing effects 
could also be present, however, it was not possible to verify if such phenomena 
occurred. 

The patterns of LAI distribution in the LAI maps created at the Landsat spatial 
resolution were evaluated as reasonable, after visually examining the related data. 
The temporal variability present in the time-series of Landsat LAI maps could be 
explained by geo-location errors or by variable atmospheric conditions that the 
MODIS algorithms could not detect correctly (Tan et al., 2006). The application of 
correlation analysis between the LAI pixel values calculated at Landsat resolution 
level and the values of field measurements for the same locations and dates, 
displayed a wide range of values for the correlation coefficients across the different 
study areas and seasons. In general, the results of the correlation coefficient values 
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in all study areas were statistically significant (at 0.05 level for the majority of the 
cases and at 0.001 level for specific dates per study area), even in cases where the 
amount of sample points available for the analysis was lower than 10. In all study 
areas for which a Landsat 7 image was used to run the model, the available samples 
had extra limitations due to the data gaps created by the SLC-off effect of the sensor.  
The mean difference for most of the cases examined showed an overestimation of 
the field measured LAI compared to the Landsat calculated LAI, except for the 
Umbeluzi study area, which was the only study area with at least an available dataset 
of field measurements for validating Landsat LAI values, located in the Southern 
Hemisphere.  

Overall, the study areas of the Southern Hemisphere showed higher correlation 
values compared to those of Northern Hemisphere during the comparison of the 
field measured LAI with this estimated at Landsat level. This is mainly related to the 
local climate of these study areas and the fact that during dry seasons, the 
temperature is relatively higher than for the Northern Hemisphere areas, having as a 
result more areas with low LAI and EVI values (dry vegetation), which are 
characterized by a stronger linear relationship compared to those of high LAI-EVI 
values. An example for this situation, which also showed the best results for the 
correlation analysis process among all datasets examined (in all study areas), was 
found between the LAI values measured in July and the values estimated in the 
Umbeluzi LAI maps for DOY 175-2013 and 191-2013. This could be explained by 
taking into consideration the local climate of Umbeluzi, in which during the dry 
season the tendency of LAI values is to remain at very low levels for the biggest part 
of the study area (<1.5), with EVI values ranging according to the vegetation type also 
to low levels. Because of this, overestimation and underestimation of LAI values 
remains to minimum levels possible, showing high linearity of the distribution of the 
sample points on the x-y axes.  

Comparison of the correlation coefficients with a similar study, which 
attempted to downscale MODIS LAI to the spatial resolution of 250m (Silleos et al., 
2014), showed that the results for the same study areas and datasets of field 
measurements were improved, with field measured LAI showing high r values (>0.7) 
in 5 out of 11 cases, when in their study only one case had such a high r value. 
Additionally, there was a slight improvement in the moderate level r values (0.4-0.7), 
as most of the cases examined in this study with moderate values were over the 
value of 0.5, while in their study all moderate  values except for one were found to 
be lower than 0.5. A similarity found was that for the same study area and period 
(Umbeluzi, November 2012), a similar negative value was found (-0.10), slightly 
better than the one found from Silleos et al. (2014) (-0.15). Since the comparison 
between the 2 studies showed that the related results were improved when the 
spatial resolution improved, it would be interesting to examine whether the 
suggested methodology could find application while using Sentinel data (15m pixel) 
instead of Landsat, or if instead of 1000m LAI datasets of MODIS were used MODIS 
LAI datasets with a pixel size of 500m.  
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 Several limitations were identified during the progress of this study. The 
compositing method used for the MODIS products likely has contributed to the 
observed differences during consecutive DOY. The LAI values of the MODIS 8-day 
composite product might describe vegetation conditions of a different DOY 
compared to the values of 16-day composite product of EVI. The MODIS algorithm 
chooses the day with the highest fPAR value to be the LAI value characterizing the 8-
day composite period. On the other hand, the highest EVI value that is also closer to 
nadir is selected to be the EVI value characterizing the related 16-day composite 
period (VI Manual, landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13). 
Consequently, in vegetation types such as irrigated or non-irrigated crops, where 
agricultural activity is present, a high LAI value of a crop during the last days before 
harvesting might be paired with a low value of EVI for the same DOY, if the closer to 
nadir EVI value coincides with the days just after harvesting. The same phenomenon 
could also occur in dates when rapid green-up of leaves happened in a period of 10-
12 days, as warned by Ahl et al. (2006). Additionally, the standard VI and LAI 
products of MODIS may contain significant directional noise as supported by Huete 
et al. (2002). Tian et al. (2000) found that a 1-km MODIS LAI pixel could be 
underestimated by 5% compared to field measurements, if resolution of the data is 
not taken into consideration. 
 On the other hand, beside the problems related to the MODIS algorithm, 
limitations also occurred due to saturation of the EVI signal in high densities of 
biomass (as demonstrated in Figure 20), which has been documented for other VIs 
too (Turner et al., 1999). As explained by Myneni et al. (2002), pixels in data of low 
resolution, such as the LAI product of MODIS, are likely to contain an amount of 
radiative contribution from the background. While saturation problems could explain 
the low R² values of the regression analysis results between EVI and LAI in the 
needle-leaved vegetation type, this was not the case for shrublands and grasslands 
since saturation is not likely to affect sparse biomes (Fensholt et al., 2004). 
Considering the needle-leaved forest vegetation type, the results could also be 
affected by the presence of lower layers of leaves in areas of dense canopies, causing 
insensitivity of reflectance to model vegetation (Fensholt et al., 2004). 

Finally, it was found that variability of species within the same vegetation 
type but of a different phenology, could dramatically affect the results of the 
regression analysis. Heterogeneity causes greater underestimation levels of LAI  and 
the magnitude of underestimation increases as vegetation heterogeneity increases 
(Fensholt et al., 2004). Therefore, the ideal situation would be to classify the data 
that fall into that category into more detailed vegetation classes (depending on the 
diversity of the dominating species per study area), in order to improve the linearity 
of the LAI-EVI relationship and succeed to acquire more accurate LAI values when the 
related regression equations are used in the LAI downscaling model.  
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7 Conclusions 

The results of this study showed that vegetation type has the highest influence 
on the relationship between LAI and EVI, which was found to be best described by a 
linear equation, for all study areas examined. The sensitivity of EVI to LAI was lower 
in periods of high biomass production. In some case studies, a high percentage of 
variability of LAI was explained by the linear regression equation with EVI, thus the 
equation could be used to predict LAI with a high degree of confidence. The limited 
amount of pixels available for some vegetation types in specific DOYs, the diversity of 
vegetation species within the same vegetation types in the study areas, as well as 
saturated EVI values and misclassification of the vegetation type of the samples, 
were the most possible factors affecting the regression analysis results.  

The created LAI maps showed visual similarity of high level in the patterns of LAI 
value distribution, when compared to the equivalent lower resolution LAI maps 
(MODIS).  

Through the stage of the validation analysis between field-measured LAI and the 
corresponding values estimated by the model, the lowest correlation coefficient 
values were estimated during the rainy season for all the study areas, when the 
availability of cloud free pixels in the LAI images was low. For most of the cases 
examined, the model gave statistically significant results (at 0.05 and 0.001 level) 
with the r coefficient values ranging from negative (-0.1783, one case) and relatively 
low (2 cases, 0.25 and 0.32) values, to moderate (3 cases, 0.4-0.7) and high (5 cases, 
0.7-0.935). This practically means that 8 out of 11 cases examined showed at least a 
moderate level correlation and 5 out of 11 showed high correlation level for the 
associated LAI values. 
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9 Appendix A 
LDOPE is the software provided by LPDAAC in order to be able to process .hdf 

MODIS images. The interface used by the software is command line (MS-DOS). The 

user has to create custom scripts, depending on the type of processing needed to be 

applied on the downloaded MODIS images. In this study, MODIS product MCD15A2 

needed conversion of the related layer (band) “fPAR-LAI QC” from the 16-bit format 

it was initially, to a simple format, where the pixels would be divided into only two 

classes; flagged with value 0 for data of good quality and with value 1 for data of any 

other quality. This process was applied in order to use only data where the quality 

was of high standard and there was an increased level of confidence associated with 

it. When the equivalent layers of EVI were examined for their accuracy, it was 

observed that the 0 (good data) values of LAI Quality Assurance (QA) layer were also 

0 (good data) for the equivalent EVI pixel reliability layers and for all pixels in all study 

areas. 

The script written for this purpose was the following: 

@echo off 

cls 

FOR %%G IN (MCD15A2*.hdf) DO (call :subroutine15A2 %%G) 

GOTO :eof 

:subroutine15A2 

SET FF=%1 

ECHO %FF% 

unpack_sds_bits -sds=FparLai_QC -bit=0 %FF% -of=.\QC_outputs\QC_LAI.%FF:~0,16%.hdf 

cp_proj_param -ref=%FF% -of=.\QC_outputs\QCLAI.%FF:~0,16%_coords.hdf 

.\QC_outputs\QC_LAI.%FF:~0,16%.hdf 

del .\QC_outputs\QC_LAI.%FF:~0,16%.hdf 

 


