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Abstract
For a patient monitoring system to work, it is important to keep track of a patient’s
physiological signals, such as heart rate and blood pressure. Equally important is the
availability and analysis of data that can add context to the physiological signals. In
this thesis, accelerometer and gyroscope data collected from a medical wearable device
are used to infer the posture and activity of the wearer.

A simple, threshold based method is presented, that distinguishes between activity and
rest and can distinguish between some postures. Additionally, a method is presented
that can detect postural transitions, and these transitions are classified using different
neural network architectures and other machine learning methods. A fully connected
neural network with regularization achieves the best classification accuracy.

The same methods are applied to classify postures, activities and postural transitions.
The best overall classification accuracy is achieved with a window-based random forest
classifier, combined with an LSTM network over those windows. The thesis is con-
cluded with a discussion about the usability of the methods in a real life application.
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Chapter 1

Introduction

"The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it"

With this quote, Mark Weiser started his 1991 landmark paper [41], where he coined
the term ubiquitous computing, the concept of computing being all around us in every-
day life. A quarter of a century has passed, and Weiser’s vision is becoming more and
more a part of our reality. Microprocessors are being integrated into everything, and
our everyday life is no longer possible without this processing power all around. An
important component in ubiquitous computing is context awareness. Dey and Abowd
[10] describe it as the ability to use context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task.

Microprocessors and sensors have become cheaper and smaller over the years, leading
to a growth in context aware ubiquitous computing. Google is able to provide you
with relevant (and sponsored) content, based on your location, search history, and
many more parameters. Over the last few years, context aware computing has had
an impact on many fields, including consumer health care. A notable example is
the fitness tracker, that uses sensors (accelerometer, sometimes GPS) to deduce what
activity the user is doing, and estimates parameters such as steps taken and energy
expenditure.

In this thesis, a medical application of ubiquitous computing is discussed, which uses
a novel wearable device to recognize posture and activity of the user. Section 1.1
introduces the context and motivation, and the research questions will be stated in
Section 1.2. The research methodology will be explained in Section 1.3. Finally,
Section 1.4 will give an outline of the rest of the thesis.

1.1 Motivation

After staying in a hospital, patients return to their homes and normal daily life. There
is a risk assessment involved in sending a patient home; sending a patient home too
soon, when a full recovery has not yet been made, could result in a dangerous situation.
On the other hand, keeping a patient too long has drawbacks as well: it is costly to
keep someone in the hospital, and it takes longer for the patient to return to their
normal lives.

Continuous monitoring at the patient’s home would solve this problem, but is often
infeasible. Firstly, monitoring equipment that can provide accurate information about
the patient’s vital signs is often expensive, and hospitals do not have enough of this
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equipment to provide for every patient in need. The equipment is usually heavy and
bulky, and impedes patients from living their normal lives when attached to it. An
example is an ECG monitor, which involves attaching 12 wired electrodes to different
parts of the body.

The wearable device that is used in this thesis attempts to provide a solution to
continuous monitoring of patients. It is cheap, which means it can be produced in
bulk and provided to a large number of patients. It is very small (the size is about
that of a matchbox), and can worn around the arm with an armband or on the chest
with a chest patch, providing little to no inconvenience for the user. The device is
equipped with multiple sensors to infer physiological data, such as heart rate, blood
pressure and skin temperature.

The physiological data is collected at the patient’s home and not in a hospital bed,
which is where the need for context data arises. An observed increase in heart rate
can be a dangerous event when the patient is in bed, or just a physical response when
the patient is climbing the stairs. For this reason, the device is also equipped with an
accelerometer and gyroscope, which will be used for the recognition of posture and
activity. This data can then be combined with the physiological data, to provide a
more accurate image of the state of the patient.

1.2 Research questions

Key to the success of continuous monitoring is the quality of the context information.
This thesis is concerned with the inference of context information from data acquired
with the wearable device. The central research question is:

Is it possible to accurately recognize posture and activity of an individual using ac-
celerometer and gyroscope data acquired from a wearable device?

While there are many methods to achieve this task, special attention will be given to
neural networks, as they have been shown to consistently outperform other machine
learning methods at a variety of machine learning tasks. The sub-question is hence:

Do neural networks provide a better recognition of posture and activity, compared to
other machine learning methods?

1.3 Methodology

Many approaches have been used to attempt the classification of posture and activity,
cf. Chapter 2. Across the different approaches, there is a significant variation in
achieved classification accuracy. It is difficult to compare these one to one, as there is
a large number of parameters which varies among different approaches. The number
of postures or activities that is chosen is an important factor, as recognizing a lot
of activities will make the choice harder for any classifier, especially when activities
exhibit similar movements. The number of accelerometers and their placement also
has an impact; using more accelerometers can improve the result, as data from two
or more devices gives info about the positions of the devices relative to each other.

In this thesis, the activity recognition task will be performed using a wearable device,
equipped with an accelerometer and gyroscope, worn at the arm. The classifier will
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have to work with data from unknown subjects, which means person specific train-
ing data is not available. Because of the high bandwidth of the accelerometer and
gyroscope signals, it is infeasible to transmit them to a computer, to perform the
classification there. This means the classification has to be performed on the device,
which requires an efficient algorithm. Training data will be collected beforehand,
which means model training can happen offline.

To collect the training data, a protocol has been designed, which includes different
postures and activities (a detailed explanation of the protocol is given in Chapter 4).
Data is collected on 27 participants, which is a regular number in activity recognition
research [23]. On this dataset, a comparative study of machine learning algorithms
will be performed, where classification accuracy and computational complexity are
evaluated.

1.4 Outline

The remainder of this thesis will start with a discussion of related work in Chapter 2.
The methods used in the research will be explained in Chapter 3. Chapter 4 covers
the experiments that have been performed and their results. Chapter 5 concludes the
thesis, provides a discussion and discusses possible future work.
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Chapter 2

Related work

This chapter gives a short overview of previous work on activity recognition, and will
be structured in a chronological manner: Section 2.1 discusses how data is acquired
and processed by the different researchers, Section 2.2 explains the process of feature
extraction, Section 2.3 examines the classifier choices made by previous researchers
and Section 2.4 compares other design choices made by different researchers. To
conclude, a few example applications are given in Section 2.5.

2.1 Data acquisition and processing

The first step of the classification process is data acquisition, using one or more sensors.
Most commonly, one or more accelerometers are used for this task. An accelerometer
measures acceleration in one (uniaxial), two (biaxial) or three (triaxial) dimensions.
After the choice of accelerometer, the number of accelerometers and their locations
on the body are important. In [38] three uniaxial accelerometers are used, mounted
on different parts of the body. Most later researchers have opted for a single triaxial
[24, 8, 1, 3] or biaxial [13] accelerometer. Roggen et al. [30] uses 72 sensors, including
accelerometers, microphones and RFID chips, to form a sensor network for activity
recognition. The resulting dataset is the OPPORTUNITY dataset, which is freely
available at the UCI machine learning repository.

Acceleration data is usually sampled at a frequency between 20 and 100 Hz. It is
not possible to classify single frames, as they do not contain enough information. To
overcome this problem, data can be processed in windows [22, 8]. For each window,
features are calculated from that window’s signal, which are then used to classify the
activity in that window. To improve results, a sliding window with overlap can be
used [20]. In [4], the influence of window size on classification accuracy is investigated;
a shorter window size is found to be beneficial for the activity recognition task.

Before extracting features, noise needs to be removed from the signal, which can be
achieved using a low-pass filter, which removes high frequencies that have do not orig-
inate from body acceleration [2]. The last preprocessing step before feature extraction
is to separate the body acceleration and gravity acceleration components. This can
be done using another low-pass filter, using the fact that body acceleration is in a
higher frequency range than gravitational acceleration [1].
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2.2 Feature extraction

For posture classification, different features have been used in the literature. Popular
choices are mean and standard deviation of the signal over the time window. The
mean of the gravitational acceleration in a window can be used to distinguish between
postures [38], where the standard deviation can be used to distinguish between static
and dynamic activities. The correlation between different accelerometer axes can
be used to distinguish activities that move in one dimension (such as walking) from
activities that move in more directions (such as climbing the stairs) [8]. Other features
include signal skewness and kurtosis [2], and shifted delta coefficients (slope of the
signal in different points) [1].

Features are extracted not only from the time domain, but also the frequency domain,
after performing an FFT. The frequency domain feature energy [20] can distinguish
between periodic (such as walking) and non periodic activities. Another frequency
domain feature is entropy, which measures the complexity of the signal. This can
distinguish between movements of different complexities, such as cycling and walking
[20]. Park et al. [28] use spectral energy and FFT magnitudes as features.

2.3 Choice of classifier

Earlier work [38, 24] uses threshold based approaches to distinguish between activities
(e.g. static versus dynamic or between different postures). These simple classifiers
are then used to make a hierarchical classification of activities. The downside to
this approach is that it requires careful tuning of the thresholds, and is not easily
extendable to detect more activities or deal with different datasets. Later works
deploy more sophisticated machine learning techniques to accomplish the task. Allen
et al. [1] use a Gaussian Mixture Model 1 to detect 5 postures and 3 movements, and
find that their approach performs well: their classification rate of 90 % on their data
is a considerable improvement over the 70 % rate by a threshold based approach. The
model is first trained on a large data set of multiple subjects. Person specific data is
then used to create a separate model for each subject, using Bayesian adaptation.

Anguita et al. [3] propose a hardware-friendly approach to activity recognition, with
accelerometers from a mobile phone, where they use Support Vector Machines (SVM).
The dataset from this research has been made publicly available and is often used
as benchmark [2]. They achieve 89 % precision and recall using 17 FFT and time
domain features. The same researchers extend this approach in another paper [2],
by extracting a total of 561 features from accelerometer and gyroscope data. With
these features, they classify activities correctly 96 % of the time. In [42], different
models are compared (among others k-Nearest Neighbor (kNN), decision tree, logistic
regression), and kNN is found to have the best overall classification performance.
Gyroscope data is found to improve classification accuracy. In [43], a neural network is
used to first distinguish between static and dynamic activities, and recognize activities
and postures. The classification has an accuracy of 85 % for 6 different activities.

The classification methods mentioned before do not take into account that the activ-
ity data is sequential in nature, but a recording of someone’s activity is basically a
sequence of postures, activities and transitions. There exist methods to exploit this

1An explanation of most of the classifiers in this section can be found in [6].
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temporal aspect, which have also been applied in the field of activity recognition. The
canonical probabilistic model for temporal data is the Markov Model, where future
states exclusively depend on the current state. When the states are not directly ob-
served, a Hidden Markov Model (HMM) [34] can be used, where observed variables
model the hidden variables. Mannini and Sabatini [23] employ an HMM to distin-
guish 3 postures and 4 dynamic activities, in order to exploit the sequential nature
of the data. They find that Markov modeling improves the classification accuracy,
when compared to non-sequential classifiers. A alternative approach to sequence clas-
sification is the Conditional Random Field (CRF). Vinh et al. [39] apply CRFs to
the activity classification problem, with a fast implementation that makes use of the
interdependency and duration of the activities.

A method that has been gaining in popularity the last decade is that of Recurrent
Neural Networks (RNNs). They combine the power of neural networks with the abil-
ity to exhibit temporal behavior, and are widely used for time series prediction and
classification [18]. RNNs are currently used in some of the most exciting applications
in machine learning, such as computer vision and speech recognition and prediction.
Ordóñez and Roggen [27] apply a deep convolutional RNN architecture to the previ-
ously mentioned OPPORTUNITY dataset. They achieve an F1 score of 0.93, where
the highest non-RNN score is 0.91 and the highest score achieved without using neural
networks is 0.87.

2.4 Other design choices

Most research uses offline training and classification, because of the high compu-
tational load associated with the techniques involved. Park et al. [28] train their
classifier offline, and use it for online classification on a mobile device. The approach
used by Anguita et al. [3] also focuses on reducing the computational complexity,
such that classification can be done on the device. To validate their classifiers, some
researchers use conventional techniques such as a train/test split [3]. Others use leave-
one-participant-out cross validation, where training is done on all subjects but one,
and validation is done on the remaining subject [20]. This is done to avoid that the ac-
curacy is improved by person-specific training. Some researches choose to use person
specific data to improve classification accuracy [1]. This approach is not feasible for
applications, because usually there is no labeled data available for a new test subject.

Transitions occur between activity segments, which are usually quite noisy and difficult
to classify. Usually, this problem is solved by just removing the transition moments
[20], because the objective of the research is limited to classify the postures and activ-
ities, and the duration of transitions is usually short. In [29], the transition problem is
explicitly addressed by creating a transition-aware human activity recognition system.

2.5 Applications

The applications of activity classification are manifold, and fall within the framework
of context aware computing. Li et al. [21] developed a fall detection algorithm, based
on accelerometer and gyroscope data; the algorithm tries to determine if a transition
between activities is intentional or not. If there is an unintentional transition between
two activities, there could be a fall. An algorithm like this could be implemented in
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a continuous monitoring system for the elderly, who have an increased risk of falling.
Park et al. [28] use accelerometer data from a smartphone to classify where the device
is located (in the pocket, bag, hand or at the ear). Apps could use this information
to adapt their behavior (e.g. notification type) to the current state of the device. In
the same paper, accelerometer data is used to make a prediction of walking speed .
In [19], the data from a single gyroscope is used to make a pedometer (step count)
algorithm.

In [36], the data from an accelerometer is used to first classify if someone is walking or
stationary; in case of walking, the accelerometer data is used to construct a navigation
system based on dead reckoning. Such a navigation system could be used in places
where the GPS signal is bad, for instance in cities with skyscrapers. García-García
et al. [13] combine the accelerometer data with heart rate data to make an assessment
of physical activity intensity, which is a good indicator of energy expenditure. This is
relevant for people who want to keep track of their fitness or weight, or want to live
a healthier lifestyle in general.
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Chapter 3

Methods

Posture classification is a sequential supervised learning problem; supervised because
there is labeled training data, sequential because the accelerometer data has a tem-
poral aspect and can thus be treated as a sequence of data points. In this chapter, an
overview of the methods used for the posture classification task will be given. Section
3.1 introduces classification, one of the main tasks in machine learning. Section 3.2
features an introduction to sequence labeling, with an overview of different methods.
Section 3.3 introduces the concept of a neural network, which can be used for classifi-
cation. Recurrent Neural Networks, which are suitable for sequence classification, are
introduced in Section 3.5.

3.1 Classification

In a supervised learning problem, the goal is to infer a model from labeled training
examples, which can later be used to classify new data. A famous example is the
recognition of handwritten digits [9], where a number between 0 and 9 has to be
assigned to each handwritten sample. Each training example is a pair (x, y), where
x is a vector containing the pixel values of the image of the handwritten digit, and
y ∈ {0, . . . , 9} denotes the label. The model takes as input a new example x and
predicts a label y. A sample of handwritten digits, ordered by label, is shown in
Figure 3.1. Not all digits of the same class are written exactly in the same way,
because different people have different handwriting. Because of this, it is not possible
to simply use a fixed template for each digit and use this for classification.

Figure 3.1: A sample of handwritten digits, ordered by label
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To successfully perform a classification task, the model must detect patterns in the
data. A problem that often arises is that the dimensionality of the problem if very
high. For the handwritten digits, each training sample has 28 · 28 = 784 pixels, each
with a grayscale value between 0 and 255. With 255784 possible images, it is safe to
assume that none of the training examples are exactly the same. The key to finding
patterns then is to reduce the dimensionality, by feature extraction. For the digits, a
possible feature is ’amount of ink used’, which can be easily computed by summing
over all grayscale values in an image. This feature will not give a good classification
rate on its own, but can distinguish between certain digits, such as 0 and 1. In many
approaches to classification, the features are handcrafted from the data, which often
requires a certain domain knowledge. These features are then fed to an algorithm
that attempts to find a model that fits the data. An example of such an algorithm
is the decision tree, which iteratively partitions the feature space to separate points
with different labels. In Section 3.3, the neural network will be introduced, a different
architecture for classification that learns features from the data itself.

3.2 Sequence labeling

In the digit recognition problem described in the previous section, the assumption is
made that all training examples are independently and identically drawn from the joint
distribution P (x, y). However, in many real world problems the training examples
are not independent of each other. Each training sample is a multivariate sequence
x1, . . . , xn, which has to be assigned a sequence of labels y1, . . . , ym, where m ≤ n.
The case m = 1 is known as sequence classification, other cases (m > 1) as segment
classification. An example of sequence classification is single word identification, where
a single word is recognized from an audio waveform. When attempting to recognize a
sentence from an audio waveform, multiple labels have to be predicted. These labels
are dependent on one another, which means sequence classification can no longer be
used, and segment classification is the appropriate method.

A possible solution method for the sequence labeling problem is the sliding window
approach, where each training example is divided into time windows, to which a
supervised classification algorithm is then applied. This approach is often applied
when the input data is a high frequency signal, where the individual samples of a
signal have less information than features extracted from a window of signals. The
downside to the sliding window approach is that it does not take correlations of nearby
labels into approach.

A popular approach to sequence labeling is the HMM [32], which is defined by two
distributions: an observation distribution P (x|y) which models how the observations
depend on the labels, and the transition distribution P (yt|yt−1) which models how
adjacent labels are related. The observation and transition matrix can be learned from
the data, and the most likely label sequence is found with a dynamic programming
algorithm. HMMs have been successful in a wide range of applications, for example
speech recognition [12] or gesture recognition [35]. The discriminative analogue to
HMMs are CRFs, which model the conditional (labels given features) instead of the
joint distribution of the labels and features. CRFs have been successful for parsing
[33] and gesture recognition [40]. The current best results in sequence labeling are
achieved with RNNs, which will be introduced in section 3.5.
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3.3 Neural networks

The field of machine learning is concerned with enabling computers to learn, and has
seen a huge rise in popularity in the last decades. Different models have been suggested
to enable a computer to learn, varying in complexity and success. One class of models,
Artificial Neural Networks (ANNs), is based on the inner workings of the brain, which
is unsurprising considering that the brain is also the thing that came up with the
idea of machine learning. The human brain is made up of neurons, which transmit
information through the brain, which is essential to our functioning. The information
is used, for example, to notify us of pain, to make us perform complex movements, or
to understand what we are seeing. There are about 100 billion neurons in the human
brain, which are all connected to other neurons. An ANN is also built out of multiple
layers of neurons, which are more commonly called units in ANN terminology (the
terms neuron and unit will be used interchangeably in the remainder of this thesis).

The first layer is the input layer, where new inputs are presented. This input is
passed through one or more hidden layers, and finally to the output layer. An ANN
represents a function from output to input, and a network with just a single hidden
layer has been shown to be a universal function approximator : it can approximate
any continuous function on a compact input domain to arbitrary precision [17], as
long as no restraint is placed on the number of hidden units.

Consider a network with n input units, with input vector x = (x1, x2, . . . , xn). Each
hidden layer takes as input the vector of outputs hl−1 from the previous layer (this
can be the input layer, in this case hl−1 = x), first applies an affine transformation
by weight matrix wl and bias vector bl to calculate the weighted input zl. Next, a
non-linear activation function f is applied to arrive at the intermediate output vector
hl:

hl = f(zl) = f(wlhl−1 + bl).

The activation function is usually non-linear; a neural network with just linear acti-
vation functions would just be a linear classifier. Popular activation functions are the
the logistic sigmoid

σ(x) =
1

1 + e−x

and the hyperbolic tangent

tanhx =
e2x − 1

e2x + 1
.

The two functions are related by a linear transformation:

tanhx = 2σ(2x)− 1.

A third popular activation function, which has been gaining popularity, is the Rectified
Linear Unit (ReLU), which is defined as

ReLU(x) = max(0, x)

In Figure 3.2, the three activation functions are plotted. The reasons for choosing a
particular activation function will be explained in Section 3.4.

The output layer works like a hidden layer, where the choice of activation function
depends on the type of task. For classification, it is common to use the softmax
function, which squashes an m-dimensional vector of arbitrary real values into the an



Chapter 3. Methods 11

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.5

1
Logistic sigmoid

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1
Hyperbolic tangent

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

5
Rectified linear unit

Figure 3.2: Three popular activation functions

m-dimensional vector of values in the interval (0,1), that sum to 1:

softmax(x)j =
exj∑m
k=1 e

xk
for j = 1, . . . ,m

The j-th component of this vector is the estimated probability that x belongs to class
j.

3.4 Learning in neural networks

The quality of a neural network is largely dependent on the values of the weights, and
this is also where the power of neural networks comes in. Choosing an appropriate
set of weights for a (non-trivial) problem is almost impossible to do by hand, and
unnecessary. Instead, we let the neural network learn the weights by itself, using the
method of backpropagation. To make this work, a cost function C(w, b) has to be
defined, that defines how good the output of the network is.

3.4.1 Cost function

A popular cost function in many machine learning approaches is the mean squared
error (MSE), which, for a network with L layers and a dataset of n training examples,
is defined as follows:

C(w, b) =
1

2n

∑
x

(y(x)− hL)2,

where y(x) denotes the label for training example x, hL is the output of the last layer
of the network and the sum is taken over all x in the training set. The cost is a
function of w and b because hL depends on those parameters.

Learning in neural networks scales with the gradient of the cost, which can lead to
problems when using MSE. To analyze the behavior of MSE, consider a single neuron,
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where h = f(z) = f(wx + b). The partial derivative of the cost with respect to the
weights is given by

∂C

∂w
=

1

n

∑
x

(h− y(x))
∂h

∂w

=
1

n

∑
x

(f(z)− y(x))f ′(z)
∂z

∂w

=
1

n

∑
x

(f(z)− y(x))f ′(z)x,

where the sum is taken over all n training examples. This includes the derivative
of the activation function, which can get small if a neuron’s output is saturated (its
output is close to 0 or 1), which slows down learning. A different cost function which
does not suffer from this behavior is cross-entropy cost, which is defined for a single
neuron as:

C(w, b) = − 1

n

∑
x

[y lnh+ (1− y) ln(1− h)].

For a single neuron, the partial derivative of the cost function with respect to the
weights is:

∂C

∂w
= − 1

n

∑
x

(
y(x)

h
− 1− y(x)

1− h

)
∂f

∂w

= − 1

n

∑
x

(
y(x)

f(z)
− 1− y(x)

1− f(z)

)
∂f

∂w

= − 1

n

∑
x

(
y(x)

f(z)
− 1− y(x)

1− f(z)

)
f ′(z)x

When using the sigmoid activation, the convenient property of the derivative σ′(x) =
σ(x)(1− σ(x)) causes the derivative of the cost function to become

∂C

∂w
= − 1

n

∑
x

x(σ(x)− y).

In general, cross entropy loss is therefore preferred as a cost function over the MSE.

3.4.2 Gradient descent

The goal is to minimize the cost function, which can be effectively done with the
method of gradient descent, which finds a local minimum of a function by starting at
an initial point θ1 = (w, b) for some weights w and biases b, and iteratively moving in
the opposite direction of the gradient:
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θk+1 = θk − η∇C(θk),

where η is the learning rate, which defines the magnitude of the move in this direction.

Performing gradient descent on the whole training set (batch gradient descent) can be
time consuming, as the gradients for the whole training set need to be computed before
performing a weight update, and it also doesn’t allow for on line updating (where
new examples are added during the gradient descent). An often used alternative to
Batch Gradient Descent is Stochastic Gradient Descent (SGD), where the weights are
updated for every training example (x(i), y(i)) :

θk+1 = θk − η∇C(θ;x(i); y(i)).

SGD is usually much faster and can be used for on line updates. While these benefits
make it preferable above Batch Gradient Descent, it does have a higher fluctuation,
and makes it sensible to overshooting a local minimum. The benefits of both methods
are combined in mini-batch gradient descent, which performs the weight update in
mini-batches of l training examples:

θk+1 = θk − η∇C(θ;x(i:i+l); y(i:i+)),

where i is the number of epochs, or training runs. This method can lead to more
stable convergence, and can make use of efficient matrix-vector operations that are
available in many scientific computing libraries.

Even with these improvements, the learning rate remains a problematic part of gra-
dient descent: if it is too low, convergence can be slow; if it is too high, the algorithm
could possibly diverge. A proposed solution is to use simulated annealing: reducing
the learning rate during the learning process. In the early stage of the learning pro-
cedure, the parameter space can be ’scanned’, and in the later stages, convergence
can be achieved. The parameters for annealing have to be set in advance, and hence
cannot adapt to the dataset. Recently, adaptive gradient descent methods have been
proposed, which compute adaptive learning rates, such as Adaptive Moment Estima-
tion (ADAM). A full description and comparison of these algorithms can be found in
[31].

3.4.3 Backpropagation

The gradient of the cost function is calculated using the backpropagation algorithm.
First, the neural network is initialized with weights w and biases b, which are usually
randomly sampled from a normal distribution with mean zero and a low standard
deviation. After initialization, a forward pass is performed, in which the vectors zl

and hl are computed for each layer. After this, the error δL (in the output layer) is
computed:

δL = ∇hC � f ′(zL),

where � denotes element-wise multiplication. The intuition behind this is as follows:
the gradient ∇hC measures how fast the cost is changing as a function of each output
activation; if the cost does not depend much on a unit, this will have a negative effect
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on δL. The second term measures the rate of change of the activation function at zL.
The error is back-propagated through the layers in the backward pass:

δl = ((wl+1)T δl+1)� f ′(zl), (3.1)

where (W l+1)T is the transposed weight matrix of layer l+ 1. With this information,
the gradient of the cost function can be computed; the partial derivatives for the
biases and weights become:

∂C

∂bi
= δi and

∂C

∂wjk
= hkδj ,

1

where δi is evaluated at the same unit as bias bi, and hk and δj respectively denote
the activation from the unit input to the weight wjk and the error of the unit output
from the weight wjk.

The choice for sigmoid, tanh or ReLU activation functions is convenient because their
derivatives are easy to compute:

σ′(x) = σ(x)(1− σ(x))

tanh′(x) = 1− tanh2(x)

ReLU′(x) =

{
1 if x > 0

0 otherwise

3.4.4 Regularization techniques

Machine learning techniques are always prone to overfitting, and neural networks
are no different in this aspect. Regularization techniques can be used to avoid this
phenomenon. A popular regularization technique is L2 regularization, or weight decay.
This involves adding an extra term to the loss function, to penalize weights:

C = C0 +
λ

2n

∑
w

w2,

where C0 is the original cost function (e.g. cross entropy), and λ is the regularization
parameter (λ > 0). This makes sure that the network prefers to learns small weights,
while also attempting to minimize the original cost. The relative importance of the two
objectives depends on λ. Unregularized neural networks can learn complex models
that do not generalize well, where regularized models are simpler models that do.
Very similar to L2 regularization is L1 regularization, where the absolute value of the
weights (instead of the square) is added to the loss:

C = C0 +
λ

n

∑
w

|w|,

A different regularization technique, which is designed specifically for neural networks,
is dropout. Instead of modifying the cost function, the neural network itself is modified
during backpropagation. Before each forward pass, a randomly sampled fraction of

1A complete derivation of the backpropagation equations is found in [6].
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the nodes and their connecting arcs are temporarily left out of the network. The
probability that nodes are kept is the keep probability α. The input is propagated
forward and back through the modified network for a batch of training examples,
after which the appropriate weights and biases are updated. For each new batch,
different nodes of the network are left out; the size of the fraction remains the same
for each batch. Dropout was originally proposed in [15], and the technique removes
the reliance of neurons on specific other neurons, as neurons are left out with a certain
probability. This stimulates learning more robust features which are useful together
with many different subsets of neurons.

3.4.5 Unstable gradients in deep neural networks

A common problem that occurs when training deep neural networks (with more than
one hidden layer) is an unstable gradient. The gradient contains a product of the
weights matrix in a layer and the derivative of the activation function (cf. equation
3.1). In the case of an n-layer neural network, the gradient of the shallowest hidden
layer (closest to the input layer) contains this product n times, one layer deeper
contains this product n− 1 times, and so on.

The sigmoid and tanh activation functions have the property that their derivatives
are small, especially when neurons reach saturation. As a consequence, shallow layers
learn a lot slower than deeper layers, and can even cause the entire network to get
stuck. This is known as the vanishing gradient problem. Another possibility is that
weights grow during training, which causes the eigenvalues of the weight matrix to
become large, and the gradient will grow exponentially in earlier layers, which is
known as the exploding gradient problem. Both problems are described in more detail
in [5]. The ReLU activation function does not suffer from this problem, but does have
the property that its derivative is zero when the function is smaller than zero. This
causes neurons to have zeros as output values, which leads to a sparse network. This
has additional benefits, such as the fact that a sparse network is more robust to small
changes in the input, as described in [14].

3.5 Recurrent Neural networks

Neural networks have been very successful in a variety of tasks, where they have
outperformed many other machine learning methods. However, the traditional neural
network architecture described in Section 3.3, where inputs are passed through a
number of hidden layers, has no way to use information about past predictions in
future ones. For sequence labeling, this would be a useful property, with a multitude
of applications, for example in handwriting recognition; in Figure 3.3, the highlighted
letter ’n’ is ambiguous, but with the remaining letters, the word ’defence’ is easily
recognized.

Recurrent Neural Networks (RNNs) are a different neural network architecture, that
allow information to persist, by allowing loops in the network. In a traditional neural
network, information flows from the input layer, through the hidden layers, to the
output layers. In an RNN, each hidden layer also receives information from the hidden
layer in the previous timestep. Figure 3.4 depicts the architecture of an RNN, where
the compact representation with a loop is unrolled into a representation that shows
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Figure 3.3: Importance of context for handwriting recognition. In
isolation, the letter ’n’ is ambiguous, but with the remaining letters,

the word ’defence’ is easily recognized

the RNN is just a series of copies of the same RNN, each one passing information to
its successor.

Figure 3.4: The recurrent neural network architecture, rolled and
unrolled. Figure from [26].

The RNN receives a sequence of inputs (x1, . . . , xT ), and computes a sequence of
outputs (y1, . . . , yT ). The output of hidden layer l at timestep t is computed with the
following formula:

hlt = f(wlhl−1t + wthlt−1 + bl).

where wl and wt are weight matrices connecting the current unit, respectively with
the (possibly hidden) unit in the previous layer and the hidden unit at the previous
timestep.

3.6 Long Short Term Memory

The backpropagation algorithm can be adapted to gradient calculation for an RNN,
which is known as backpropagation through time (BPTT). The error is propagated
not only through the hidden layers, but also through time steps. In BPTT, the
unstable gradient problem becomes very relevant, as the number of multiplications
in the gradient calculation can become very large. To overcome this, Hochreiter and
Schmidhuber [16] introduced an alternative network architecture: the Long Short
Term Memory (LSTM). Figure 3.5 shows part of an LSTM network, with focus on
one LSTM cell.

The cell concept makes the LSTM such a powerful architecture, and much better
suited for learning long term dependencies than a traditional RNN. Each cell has a
state Ct, and multiple gates that decide the information that gets added or removed
from the cell state. First of those is the forget gate, which decides which pieces of
information are valuable to remember, and which pieces are not. The gate receives
inputs xt and ht−1, and pushes them through a sigmoid layer, arriving at output ft:
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Figure 3.5: The LSTM architecture visualized. Figure from [26].

ft = σ(wf · [ht−1, xt] + bf ),

where wf and bf are the weights and biases of this gate, and work on the concatenation
[ht−1, xt] of the hidden unit of the previous time-step, and the current input. Next, a
vector of new candidate values C̃ is created

C̃t = σ(wC · [ht−1, xt] + bC).

Before adding these candidate values to the memory, the input gate learns which
information is worth saving into the new cell state:

it = σ(wi · [ht−1, xt] + bi).

With the old cell state and the forget gate, combined with the candidate values and
the input gate, the cell state can be updated:

Ct = ft � Ct−1 + it � C̃t.

The cell state can be seen as the Long Term Memory of the LSTM. The last step is
to decide which part of the cell state is relevant to output. This is decided by the
output gate:

ot = σ(wo · [ht−1, xt] + bo),

which is applied to the new cell state, after it has been passed through a tanh activa-
tion, resulting in the new hidden output:

ht = ot � tanh(Ct).
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3.6.1 Variations on LSTM

The LSTM is the most popular and widely used variant on the RNN, but many
different architectures have been proposed. One alternative is the Gated Recurrent
Unit (GRU), which combines the forget and input gates into a single update gate zt,
has a reset gate rt and combines cell state and hidden state, to arrive at a simpler
model:

zt = σ(wz · [ht−1, xt])
rt = σ(wr · [ht−1, xt])
h̃t = tanh(wh̃ · [rt � ht−1, xt])
ht = (1− zt)� ht−1 + zt � h̃t

In a 2015 paper, Dosovitskiy, Springenberg, and Brox [11] conduct an empirical ex-
ploration of over 10,000 RNN architectures, where they failed to find any architecture
that consistently outperformed the LSTM or GRU architecture.
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Chapter 4

Experiments

The classification of posture and activity is a supervised learning problem, and an
algorithm to achieve this task needs labeled training data. Section 4.1 describes the
data collection and processing process, followed by a first attempt at the classification
task, with a threshold based method, in Section 4.2. Sections 4.3 and 4.4 focus respec-
tively on the detection and classification of transitions. Lastly, section 4.5 outlines a
method to classify postures, activities and transitions.

4.1 Data collection and processing

Data was collected with a wearable device, with an embedded InvenSense MPU-
6000 triaxial accelerometer. Figure 4.1 shows a schematic representation, with the
orientation of the accelerometer axes.

Figure 4.1: The wearable device and orientation of the accelerometer
axes.

The data is collected at a rate of 31.25 Hz, which has been proven sufficient to assess
physical activity [7]. A 6 minute protocol was performed by 30 participants, with one
device around the arm and one on the chest. The protocol consists of 5 postures, 3
activities and 6 transitions, which are listed in Table 4.1. The table also shows the
total recorded time per posture, activity and transition, summed over all participants,
with a total recording time of 180 minutes. For different participants, the order of the
postures and activities has been changed, to ensure variation among the recordings.
Figure 4.2 shows a participant during the protocol, during the sitting posture.

After collection of the data, each recording is annotated by hand with the corre-
sponding labels. To remove noise, the acceleration data is filtered with a low pass
Butterworth filter with a cutoff frequency of 20 Hz, as human motion is below this
frequency. The resulting signal is separated into gravitational and body acceleration
using another low pass Butterworth filter with a cutoff frequency of 0.3 Hz, using the
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Figure 4.2: A participant during the protocol, equipped with a device
on the arm and chest.

Label Description Time (minutes) Category
LIE-BACK Lying on back 11 posture
LIE-RIGHT Lying on right side 12 posture
LIE-LEFT Lying on left side 12 posture
SIT Sitting on a chair 28 posture
STAND Standing upright 26 posture
WALK Walking at normal pace 24 activity
DOWNSTAIRS Walking down the stairs 19 activity
UPSTAIRS Walking up the stairs 21 activity
UPWARDS Upwards transition 9 transition
DOWNWARDS Downwards transition 8 transition
RIGHT-TURN Turning right while lying down 4 transition
LEFT-TURN Turning left while lying down 4 transition

Table 4.1: The different postures, activities and transitions in the
protocol, and their total recorded time across all recordings

fact that gravitational acceleration has only low frequency components [2]. The re-
sult is a signal with 9 parameters: the 3 dimensional body acceleration, gravitational
acceleration, and gyroscopic data.

Figure 4.3 shows a recording of one participant 1, where the first subplot is the body
acceleration, the second is the gravitational acceleration and the third is the angular
velocity measured by the gyroscope. Postures and activities are annotated in the first
subplot. The body acceleration shows a clear distinction between posture and activity;
there is much more accelerometer activity in the latter case. However, also postural
segments show some accelerometer activity, which can arise due to minor movements
of the user or external noise. The gravitational acceleration shows a clear distinction
between different postures, as the accelerometer axes are oriented differently relative
to the direction of the gravity vector in each posture.

1In this plot, and following plots, the values for acceleration and angular velocity are left out, as
they are irrelevant and clutter plots.



Chapter 4. Experiments 21

Figure 4.3: Signals from one recording; the first subplot is the body
acceleration, the second is the gravitational acceleration and the third

is the angular velocity, measured by the gyroscope.

4.2 Posture and activity classification

In this section, the aim is to develop a simple method that can detect and classify
postures and activities. A sliding window is moved over the signal, and features
are extracted from each window. In order to distinguish between active and static
windows, the standard deviation σ of the acceleration is calculated. In Figure 4.4, a
density plot is shown for σ, which shows a clear difference between the distributions
of the two different types of windows (postural transitions are included in the active
windows): the static windows have a very low σ, because there is very little movement,
where the active windows have more movement, but are also more spread out, because
not all active windows have the same amount of movement in them.

As a second feature, the mean of the gravitational acceleration is computed, for each of
the 3 spatial components. The results for the different postures are plotted in Figure
4.5. The three lying postures (on back, on the left and right side) are well-separated
from the upright postures (sitting and standing), and from each other. The upright
postures are not separable in this space, which arises from the fact that the device is
oriented the same way when sitting as it is while standing, and as such the gravity
vector is oriented the same as well.

With these insights, a threshold based method is developed, that processes the signal
with a sliding window. First, the acceleration standard deviation σ, is compared to a
threshold t1, to distinguish between activity and the postures. Then, the y-component
of the gravitational acceleration is compared to a threshold t2 to distinguish upright
posture (sitting or standing) from lying down. Lastly, the z-component is compared
to thresholds t3 and t4 to differentiate between lying on different sides. The flowchart
for this threshold based algorithm is shown in Figure 4.6.

The algorithm is tested for window lengths of 1, 2, 4, 8 and 16 seconds; the 8 sec-
ond window obtained the best classification result. The resulting confusion matrix is
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Figure 4.4: A density plot of the standard deviation of the acceler-
ation, for active (blue) and static (red) windows

Figure 4.5: The 3 components of gravitational acceleration for the
different postures

shown in Figure 4.2, where rows correspond to the actual labels, and columns to the
predictions made by the algorithm. The accuracy of this method is 91.8%. Misclas-
sifications mostly arise when activity/transition windows get labeled as postures, or
vice versa. This arises partly from noise, and partly from the fact that the labeling
is done by hand, and thus can not be perfect either. The power of this method is its
simplicity, which makes it very efficient and easy to port to a wearable device. How-
ever, the method is not very sophisticated, as it can not distinguish between different
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signal σ > t1

activity

y > t2

upright

z < t3

lie-right

z > t4

lie-left

lie-back
no no no no

yes yes yes yes

Figure 4.6: The threshold based classification algorithm

activities, and does not take transitions into account.

LIE-BACK LIE-RIGHT LIE-LEFT UPRIGHT ACTIVITY
LIE-BACK 517 0 0 22 55
LIE-RIGHT 18 581 0 7 51
LIE-LEFT 97 0 517 0 47
UPRIGHT 0 0 0 2666 299
ACTIVITY 53 33 30 59 4400

Table 4.2: Confusion matrix for the threshold based method. Rows
correspond to the actual labels, and columns to the predictions made

by the algorithm

4.3 Transitions detection

Postural transitions play an important part in activity monitoring; and provide im-
portant information about the health of a user, e.g. when combined with heart rate
or blood pressure. Anomalous changes in heart rate or blood pressure when a patient
is standing up or lying down can be indicators of heart problems, and are important
to be detected. Transitions from one position to another when lying down can also
be valuable, especially when a patient suffers from apnea, which usually occurs less
when sleeping on the side than when sleeping on the back.

Postural transitions are recognizable by a change in gravitational acceleration, as can
be seen in Figure 4.3. To detect these changes, the minimum is subtracted from the
maximum of the gravitational acceleration g in a window, and this is summed over
the three dimensions x, y and z, to calculate the gravitational difference d:

d =
∑

k∈{x,y,z}

max(gk)−min(gk)

A simple peakfinder algorithm [25] can be used to find the changes in gravitational
acceleration, which may indicate a transition. The algorithm has a parameter α ∈
[0, 1], which indicates the threshold to detect peaks (relative to the highest peak in
the signal). Figure 4.7 shows the gravitational difference of an example recording, and
detected peaks for α = 0.5 and α = 0.2.

To score the detection algorithm, the binary confusion matrix is defined in Figure
4.3. Like before, rows correspond to the true labels, and columns correspond to the
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Figure 4.7: Transition detection for different values of the threshold
α. Shaded yellow segments are transition segments, red dots are the

detected peaks in gravitational acceleration.

True

Predicted

t t̄

t
true
positive

false
negative

t̄
false
positive

true
negative

Table 4.3: Binary confusion matrix for transition detection

predicted labels, where t denotes a transition and t̄ denotes a non-transition. Four
cases exist:

1. a transition is correctly detected: true positive (tp),

2. a transition is falsely detected: false positive (fp),

3. a transition is not detected: false negative (fn)

4. no transition is detected when there is none: true negative (tn)

A lower value of α detects more peaks, but also has a higher number of false positives.
To formalize this, define precision and recall as:

precision =
tp

tp + fp
and recall =

tp
tp + fn

,

Precision and recall are calculated for different values of α, the result is plotted in Fig-
ure 4.8. There is not one optimal value of α; this depends on the relative importance



Chapter 4. Experiments 25

of precision and recall for the application. If both are considered equally important,
the optimum is found at α = 0.22, with a precision of 0.85 and a recall of 0.86.

Figure 4.8: Precision and recall values for different values of α

4.4 Transition classification

The transition detection algorithm is only valuable when the detected transitions
are also classified into one of the transition classes. Because of the occurrence of false
positives in the transition detection algorithm, the transition classification problem has
5 classes: UPWARDS, DOWNWARDS, RIGHT-TURN, LEFT-TURN and NULL,
where NULL indicates the occurrence of a transition during a non-transition segment.
An 8 second time window is extracted from the signal, centered around each transition
detected with the algorithm from Section 4.3. The signals in this time window are
then classified into one of the five classes. A number of different machine learning
methods are compared, to see which obtains the best result. Two different neural
network architectures are tested:

1. a neural network with 3 fully connected hidden layers with ReLU activation and
a fully connected output layer with softmax activation, which will be referred
to as the non-recurrent architecture,

2. a neural network with 3 LSTM layers with ReLU activation and a fully connected
output layer with softmax activation, which will be referred to as the recurrent
architecture

For both architectures, different hyperparameters are tested, where hyperparameters
are the parameters of the network that are chosen before optimizing the other pa-
rameters. Examples of hyperparameters are the number of hidden units, the learning
rate and the regularization parameter. The other parameters in the network are the
weights and the biases, which get optimized with gradient descent. In the hyperpa-
rameter search, the networks are trained with mini batch gradient descent, with a
batch size of 10, where a new mini batch is randomly sampled from the training set
every epoch, for a total of 500 epochs. The learning rate is 0.001, and the optimizer
is chosen to be ADAM. The training set consists of 70 % of the transitions, and the
testing set is the other 30 %.
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An important hyperparameter is the number of hidden units. Networks with more
units have more learning capacity, but also take more time to train and can be more
prone to overfitting due to the high number of parameters. To see what the influence
of the number of hidden units is on the prediction accuracy, 5 networks are trained
for both architectures. The number of hidden units is chosen to be 10, 20, 50, 100 and
200. The accuracy on the training and testing set is shown in Figure 4.9. The number
of hidden units has an influence on the achieved accuracy for the non-recurrent archi-
tecture; the networks with 10 or 20 hidden units are outperformed by the networks
with more units. The recurrent architecture does not show such a clear distinction,
but learns faster with less hidden units. The bigger networks do have a much higher
accuracy on the training set than the testing set: they are overfitting. For the non-
recurrent architecture, the networks with 50 and 100 units reach a 100 % accuracy on
the training set. This means the cost function is equal to zero, the learning stops, and
the accuracy on the test set remains constant. When the recurrent network is run for
1000 epochs, it also reaches 100 % train set accuracy and stops learning.

Figure 4.9: Classification accuracy on the train and test set for both
neural network architectures, with different numbers of hidden units

This overfitting occurs because of the small size of the set of transitions: only 163 tran-
sitions are detected in all the recordings. To improve the generalization of the model,
two regularization methods are tested: L2 regularization and dropout, as described
in 3.4.4. A grid search is performed over the regularization parameter λ and the keep
probability α, with λ ∈ {10−4, 10−3, 10−2, 10−1 1} and α ∈ {1, 0.8, 0.6, 0.4, 0.2} for the
non-recurrent network. For the recurrent network, the grid search is performed for
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λ ∈ {10−3, 10−2, 10−1} and α ∈ {1, 0.8, 0.6}, as the networks take considerably longer
to train than their non-recurrent counterparts. The mean accuracy over the last 100
epochs is calculated and plotted as a function of λ and α in Figure 4.10

Figure 4.10: Surface plots of the accuracy of the transition classi-
fication task as function of λ and α. Left the non-recurrent network,

right the recurrent network

For the non-recurrent network, the plot hows some interesting results: for low values
of α, the regularization has a negative effect, because too little of the network is
kept to learn. In general, dropout does not seem to have a positive effect on the
classification accuracy, where the l2 regularization does have a positive impact. The
optimal accuracy is 0.94, with λ = 10−2 and α = 1 (which means dropout is not used,
as α is the keep probability) with an accuracy of 0.88 for the non-regularized network.

The recurrent network reaches the optimum value at the exact same values of α
and lambda, but only has a test set accuracy of 80 %. This probably has to do
with the fact that the recurrent network has many more parameters than its non-
recurrent counterpart; each LSTM cell features multiple weight matrices, where a
fully connected layer has just one. This makes the recurrent network even more prone
to overfitting than a non-recurrent one, which might explain the accuracy decrease.

Method Accuracy
ANN 0.88
RNN 0.76
ANN + L2 0.94
RNN + L2 0.80
Naive Bayes 0.79
Decision Tree 0.80
Random Forest 0.88

Table 4.4: Test set accuracy of different methods for the transition
classification task. ANN denotes the non-recurrent neural architecture,

L2 denotes L2 regularization

As a comparison, the transitions are also classified with three other machine learning
methods. For these methods, features are extracted from the signal for each of the 9
parameters: mean, standard deviation, minimum, maximum, argument of the mini-
mum and the argument of the maximum. First, Naive Bayes is used, a method that is
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very simple but works surprisingly well for many applications. Next, a decision tree is
fitted to the data, which recursively partitions the parameter space (both methods are
described in [6]). Lastly, a random forest (an ensemble method using decision trees
[37]) with 500 estimators is fitted to the data. Naive Bayes has an accuracy of 0.79,
where the decision tree and random forest respectively reach 0.80 and 0.88. Table 4.4
summarizes the results of the transition classification.

4.5 Posture, activity and transition classification

The threshold based method from Section 4.2 works well, but only classifies each
window in one of five classes. Ideally, a finer grained classification is made into all 12
classes listed in table 4.1, including the postural transitions. In this section, the same
methods from Section 4.4 are applied to classify postures, activities and transitions.
First, the same sliding window as in Section 4.2 is used to extract time windows of 8
seconds from the signal. These windows are then classified individually.

The training set is much larger this time: a total of 9452 time windows are to be
classified. This means the neural network will take much longer to learn. For the non-
recurrent architecture, a grid search of α and λ is performed. The network is trained
for 10000 epochs, with a batch size of 10. For time reasons, a smaller grid is searched
this time: α ∈ {0.6, 0.8, 1} and λ ∈ {−3,−2,−1}. The resulting accuracies are plotted
in Figure 4.11, where the ’accuracy’-axis has lower limit 0.5, to better visualize the
result. The best test set accuracy is 0.73 and occurs at the same parameter values
as in Section 4.4: λ = 10−2 and α = 1. Accuracy on the train set reaches 0.90 for
these values, which means there is still overfitting taking place. Dropout seems to
only negatively affect the accuracy, as was also the case with transition classification.

Figure 4.11: Surface plot of the accuracy on the window classification
task as function of λ and α for th non-recurrent network.

The recurrent architecture for this classification task takes even longer to fully train,
and is only tested for the optimal parameter values λ = 10−2 and α = 1. The
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classification accuracy on the test set is 0.63, where train set accuracy is 0.83, which
means this network is also overfitting. The Naive Bayesian and decision tree classifiers
reach a higher accuracy with 0.70, and the best classification accuracy is 0.76 for the
random forest.

4.5.1 Hybrid method

The window-based classifiers take a fixed sequence (the windowed signal) as input, and
output a probability distribution over the labels. A sample output is plotted in Figure
4.12, where the different colors correspond to different classes. This distribution is
then used to predict the label on the window, by taking the most likely label. The
methods have so far just used the information in the window itself, and not the
information of other windows that are nearby in the signal.

Figure 4.12: Output probabilities of the window classification task
for part of a recording. Different colors correspond to different classes.

To incorporate this information, a second recurrent neural network is trained. As
input for this network, the output from the random forest classifier is chosen, because
it has the highest classification accuracy on the window classification task. This input
consists of probability distributions over the labels for a sequence of windows, the
output is a sequence of predicted labels for these windows. The network is trained
with 3 fold cross validation, during 500 epochs, where in each epoch the training set is
fed into the network. The accuracy of this hybrid method is 0.86, a major improvement
over any of the individual methods. Table 4.6 shows the resulting confusion matrix.
Most misclassifications occur when a transition is detected when there is none (false
positive), or when a transition is not detected (false negative), a problem that was
already apparent in Section 4.3. Table 4.5 summarizes the results of the window
classification task.
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Method Accuracy
ANN + L2 0.73
RNN + L2 0.63
Naive Bayes 0.70
Decision Tree 0.70
Random Forest 0.76
Random Forest + RNN hybrid 0.86

Table 4.5: Test set accuracy of different methods for the window
classification task. ANN denotes the non-recurrent neural architecture,

L2 denotes L2 regularization
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STAND 0 0 0 33 1248 17 1 12 98 11 0 0
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UPSTAIRS 0 0 0 0 0 32 44 1081 0 0 0 0
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RIGHT-TURN 41 2 12 0 0 0 0 0 0 0 168 0
LEFT-TURN 7 13 33 0 0 0 0 3 8 0 1 178

Table 4.6: Confusion matrix for the window classification task for
the random forest + RNN combined method. Rows are the actual

labels, columns the predictions.
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Chapter 5

Conclusion

In Section 1.2, the research question of this thesis was posed:

Is it possible to accurately recognize posture and activity of an individual using ac-
celerometer and gyroscope data acquired from a wearable device?

In addition, a sub-question was posed:

Do neural networks provide a better recognition of posture and activity, compared to
other machine learning methods?

It is possible to distinguish between activity and postures, using the simple threshold
based method from Section 4.2. This method has an classification accuracy of 0.92,
but has the disadvantage that it can only distinguish between 5 different classes. The
advantage of this method is its simplicity, which makes it easy to implement on the
device.

The transitions detected with the algorithm from Section 4.3 can be accurately clas-
sified into one of the four transition classes, and the best accuracy is achieved with a
regularized neural network. The LSTM network does not achieve a good classification
accuracy, which might be caused by the small size of the training set, which leads to
overfitting.

Finally, the posture, activity and transition classification task from Section 4.5 was
best classified with a hybrid method, where the windows are assigned a probability
distribution over the labels by a random forest classifier, and sequences of windows
are then labeled with an LSTM network.

5.1 Discussion and future work

It is difficult to say which method is best, and this also depends on the application.
The hybrid method achieves the best classification accuracy, but is also very computa-
tionally expensive. Simpler window based classifiers, such as Naive Bayes, achieve an
acceptable accuracy and are easily integrated into the device. The transition detection
and classification algorithms can easily be implemented as well.

The data collected for this thesis was limited, and a more extensive data collection
could improve classification accuracy for all algorithms, and make the algorithms more
robust to changes in input. More data would also mean that the neural networks are
less prone to overfitting, a phenomenon that even the regularized networks still exhibit.
More data could also extend the range of detected activities, such that more activities
of daily living are recognized, such as cooking or cleaning.
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The posture, activity and transition information becomes really interesting when com-
bined with the other data that is collected on the device. A possible future research
direction is to use the activity data together with heart rate data to give users a ’car-
diac health score’. Another possibility would be to detect anomalous events in heart
rate, to avoid heart failures. Along these lines, there are many applications, most of
which have probably not been thought of yet!
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