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Introduction

Gonality is a concept that is motivated by algebraic geometry, and that measures
the complexity of a multigraph. In this sense it is comparable to treewidth. But
unlike treewidth, gonality does not only depend on the underlying simple graph of
a multigraph.

There are four different notions of gonality for graphs. Divisorial gonality can be
defined using a chip-firing game (Section 1.1). Geometric gonality is defined as the
smallest degree of a harmonic morphism from a graph to a tree (Section 1.3). For
both these versions there exists a stable variant, which asks for the minimal gonality
over all refinements of the graph (Sections 1.2 and 1.3)).

In 2007, Baker and Norine [7] defined the notion of divisors on graphs. Based
on this concept, Baker [6] introduced divisorial gonality in 2008. In 2000, Urakawa
[31] defined harmonic morphisms of simple graphs; in 2009, Baker and Norine [8]
extended this to multigraphs. Caporaso [17] extended this to indexed harmonic
morphisms in 2014, and used it to define geometric gonality. The stable versions
were introduced by Cornelissen, Kato and Kool in 2015 [20].

We mention some known results about gonality. Firstly, there are relations
between the different notions of gonality and treewidth [20, 24]. Specifically, if G is
a graph and we use dgon(G) to denote its divisorial gonality, sdgon(G) to denote
its stable divisorial gonality, gon(G) to denote its geometric gonality and sgon(G)
to denote its stable geometric gonality, then we know that:{

dgon(G) ≥ sdgon(G) ≥ tw(G)

gon(G) ≥ sgon(G) ≥ sdgon(G).

However, the divisorial gonality of a graph cannot be bounded from above by a
function of treewidth, since there are graphs G with tw(G) = 2 and arbitrarily high
divisorial gonality [27]. Secondly, computing the divisorial gonality of a graph is
NP-complete and in XP [26].

Stable versions of gonality are important in number theory to say something
about the finiteness of the number of solutions of polynomial equations, cf. [20]. All
notions are interesting in theoretical computer science. It is possible that there are
hard problems that are not tractable for bounded treewidth, but are tractable for
bounded gonality.

In this thesis we study various aspects of these notions of gonality. In Chapter
1, we give definitions and show some basic results. In the second chapter, we study
the relation between these notions of gonality and we give proofs for the relations
mentioned earlier. In the third chapter, we show our original work:
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Theorem. There are sets of reduction rules to recognize graphs of stable gonality 2
and to recognize graphs of stable divisorial gonality 2.

These sets can be used for an algorithm to decide in O(n log(n)+m) time whether
the stable (divisorial) gonality of a graph equals 2 [14]. In the last chapter we prove
a new theorem on the complexity of gonality:

Theorem. Computing the stable divisorial gonality of a graph is NP-hard.

Part of my thesis work is contained in a joint preprint [14]. I reused some parts of
that paper for this thesis. As a consequence the following results in this thesis were
originally written by Jelco Bodewes: the definition of divisorial gonality, section 3.1
and the proofs of Lemma 3.3.2, 3.3.3 and 3.3.13.

Prerequisites

Whenever we write “graph” we refer to a finite undirected multigraph. Recall that
a multigraph G = (V,E) can have parallel edges and loops, i.e., V is a set of vertices
and E is a multiset of edges. In this thesis, we will count a loop vv twice in the
degree of the vertex v. We call a graph without loops a loopless graph.

For a vertex v, we write Ev for the set of edges that are incident to v. For a set
A ⊂ V , we write E(A) for the set of edges with both endpoints in A, and E(A, V \A)
for the set of edges with one endpoint in A and one endpoint in V \A. For a set
A ⊆ V and a vertex v ∈ A, we write outdegA(v) for the number of neighbours of v
outside A.

Some definitions that we will use in this thesis are the following:

Definition. Let G = (V,E) be a graph, and U ⊆ V . The induced subgraph on U is
the graph H = (U,F ), where for any u, v ∈ U we have uv ∈ F if and only if uv ∈ E.

Definition. Let G = (V,E) be a graph and v, u ∈ V . When we remove v, G can fall
apart in several connected components, let U be the set of vertices in the connected
component that contains u. By Gv(u) we denote the induced subgraph of G on
U ∪ {v}.

Definition. Let G = (V,E) be a graph. Let U ⊆ V , we write G\U for the induced
subgraph on V \U . Let H = (W,F ) be a subgraph of G, we write G\H for the
induced subgraph on V \W .

Definition. Let G be a graph. The adjacency matrix of G is the n × n-matrix A
where Av,v is equal to two times the number of loops vv, and Au,v is the number of
edges between u and v if u 6= v.



1 Preliminaries

In this chapter we introduce the main concepts of this thesis: four different notions
of gonality. We first give the definitions of all notions, and after that we will show
some basic results about gonality.

1.1 Divisorial gonality

Divisorial gonality can be understood using a chip firing game. A chip-firing game
starts with a distribution of chips over the vertices of a graph: to each vertex v a
non-negative number of chips, D(v), is assigned. We can fire a vertex v by moving
chips from this vertex to its neighbours. We move one chip for each incident edge,
so the number of chips that a neighbour w of v receives is equal to the number of
edges vw. When the number of chips on a vertex is negative, we consider this vertex
to be in debt.

In 1991, Björner, Lovász and Shor [12] introduced a chip-firing game where no
vertex is allowed to be in debt, so we can only fire a vertex when it has more chips
than its degree. There are some variants of this game, for example a game on
directed graphs [11] or a game where one specific vertex is allowed to be in debt
[10].

Chip-firing games appear in various fields of research. Independently, in statis-
tical physics a similar chip-firing game was defined by Bak, Tang and Wiesenfeld [5]
and Dhar [22]; they called it the abelian sandpile. The complexity of some problems
related to these abelian sandpiles is studied in [16] and [28]. Chip-firing games have
links with spanning trees in a graph [18]. There are also links with potential theory,
where graphs are considered as electrical networks [9].

In 2007, Baker and Norine [7] studied the similarity between Riemann surfaces
and graphs. They introduced a new chip-firing game that led to the definition of
divisorial gonality. In this game, all vertices are allowed to be in debt. The divisorial
gonality is the minimum number k of chips, such that there is an initial configuration
with k chips with the following property: for any vertex v in the graph, there exists
a sequence of firings that results in vertex v having at least one chip and no other
vertex being in debt.

Formal definition

We now give a formal definition for divisorial gonality, based on the concepts of [7]:
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Definition 1.1.1. Let G be a graph. A divisor D on G is an element of
⊕

V (G) Z,
so it is a vector consisting of n integers indexed by the vertices of G. We use D(v)
to denote the integer assigned to vertex v by the divisor D. We call a divisor D
effective if D(v) ≥ 0 for all v ∈ V (G). We denote the set of divisors on G by Div(G)
and the set of effective divisors by Div+(G). The degree deg(D) of a divisor is the
sum of D(v) over all v ∈ V (G). By Divk(G) we denote the set of all divisors with
degree k.

Definition 1.1.2. Let G be a graph with n vertices. The Laplacian matrix L of
G is defined as the n × n-matrix L = D − A, where D is the diagonal matrix with
Dv,v = deg(v) and A is the adjacency matrix of G.

We call a divisor P a principal divisor if there exists a divisor D such that
P = LD and we denote the set of principal divisors by Prin(G).

Definition 1.1.3. We call two divisors D and D′ equivalent, denoted by D ∼ D′, if
there exists a principal divisor P such that D′ = D−P . We call P the transformation
of D into D′. Given a divisor D, we have a class of equivalent effective divisors
|D| = {D′ ∈ Div+(G) | D ∼ D′}.

Notice that this relation indeed is an equivalence relation. We see that the class
|D| is the intersection of the equivalence class of D with the set of all effective
divisors. If D is effective then |D| 6= ∅, but if D is non-effective, then possibly
|D| = ∅.

Definition 1.1.4. The rank of a divisor D is denoted by r(D) and defined as follows:

r(D) =

{
max{k | |D − E| 6= ∅ for all E ∈ Divk+(G)} if |D| 6= ∅;
−1 if |D| = ∅.

Definition 1.1.5. The divisorial gonality of a graph G, denoted by dgon(G), is the
lowest degree for which there exists an effective divisor of rank at least one, i.e.,

dgon(G) = min{deg(D) | D ∈ Div+(G), r(D) ≥ 1}.

This definition is indeed equivalent to the more intuitive definition that we gave:
the set Div(G) describes all possible distributions of chips over the vertices and
Divk(G) consists of all possible distributions of k chips. A divisor D can also describe
how often we fire each vertex, the Laplacian matrix then describes how chips are
moved: every vertex v receives −(LD)(v) chips. We see that the set Prin(G) is the
set of all transformations that can be obtained by firing vertices. The rank of a
divisor tells us how many chips can be removed such that it is still possible to reach
a distribution where no vertex is in debt. If the rank is at least 1, this means that we
can remove a chip from any vertex and still reach a distribution in which no vertex
is in debt. This is equivalent to the condition ‘for any vertex v in the graph, there
exists a sequence of firings that results in vertex v having at least one chip and no
other vertex being in debt’ that we mentioned earlier.
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(a) The tree of example 1.1.6.
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(b) The graph of example 1.1.8.

Figure 1.1: The numbers show divisors with rank at least 1.

Example 1.1.6. Let G be the tree in Figure 1.1(a). Suppose that we have one chip
on vertex c, and that we want to have one chip on vertex e. The edges on the unique
path from c to e are cd and de. We can move a chip along the edge cd by firing a, b
and c once. After that, we can move the chip along the edge de by firing a, b, c and
d once. In total we have fired a, b and c twice and d once. This corresponds with
the divisor (2, 2, 2, 1, 0)t. The Laplacian of this tree is

L =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 .

And we see that
0
0
1
0
0

−


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1




2
2
2
1
0

 =


0
0
1
0
0

−


0
0
1
0
−1

 =


0
0
0
0
1

 .

So we see that firing (2, 2, 2, 1, 0)t indeed yields a transformation from the divisor
with a chip on c to the divisor with a chip on e.

Example 1.1.7. Let G be a tree. Then G has divisorial gonality 1. Notice that we
can move a chip over an edge e = uv from u to v as follows: fire every vertex in Au
exactly once, where Au is the connected component of u of the induced cut of e, as
in Example 1.1.6.

Let v be a vertex of G and let D be the divisor with one chip on v. Let u 6= v
be a vertex of G and let D′ be the divisor with one chip on u. The divisors D and
D′ are equivalent: There is a unique path from v to u in G, and we can move a chip
over every edge of this path. We see that D has rank at least 1. Since deg(D) = 1,
we conclude that dgon(G) = 1.

Example 1.1.8. Let G be the graph in Figure 1.1(b). Consider the divisor D =
(0, 2, 0, 0, 0, 0)t with two chips on vertex b. For each vertex v we can find vertices
such that firing them yields a divisor with at least one chip on v and all other vertices
not in debt. To get a chip on a we can fire each of the vertices b, c, d, e, f once. To get
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a chip on c we can fire a and b once. We then have the divisor D′ = (0, 0, 1, 1, 0, 0)t.
Notice that in this divisor we also have a chip on d. To reach a divisor with a
chip on e we can fire a, b, c and d once, starting from D′, to obtain the divisor
D′′ = (0, 0, 0, 0, 2, 0)t. Lastly, to reach a divisor with a chip on f from D′′, we can
fire a, b, c, d and e. So we see that D has rank at least 1, thus dgon(G) ≤ 2.

We can prove that the only graphs with divisorial gonality 1 are trees, thus
the graph G in Example 1.1.8 has divisorial gonality 2. To show this, we will first
introduce an alternative definition of divisorial gonality.

An equivalent definition of divisorial gonality

We will now look at a slightly different chip firing game, which yields us an al-
ternative definition of divisorial gonality. Again we have a graph and an initial
distribution of chips such that every vertex has a non-negative number of chips. In
this game we will fire subsets A of vertices by moving one chip along each outgoing
edge of A, provided that there are no vertices going in debt. If a vertex in A has more
neighbours outside A than it has chips, we are not allowed to fire A. The divisorial
gonality is the minimum number of chips such that there is an initial configuration
with k chips with the following property: for any vertex v in the graph, there exists
an increasing sequence of sets, such that firing these sets results in vertex v having
at least one chip.

Formally, we can write the following, where we use 1A to denote the divisor with
1A(v) = 1 if v ∈ A and 1A(v) = 0 otherwise:

Definition 1.1.9. We call two effective divisors D,D′ s-equivalent, denoted by
D ∼s D′, if there are sets A0 ⊆ . . . ⊆ Ak ⊆ V (G) and divisors D1 = D − L1A0 ,
Di = Di−1 − L1Ai−1 , i ∈ {2, . . . , k + 1}, such that

• Di is effective for all i ∈ {1, . . . , k},
• Dk+1 = D′.

Definition 1.1.10. Let G be a graph and D an effective divisor, we call a non-
empty firing set A valid for D if D(a) ≥ outdegA(a) for all a ∈ A. If it is clear from
the context what divisor D we use, we simply call A valid.

This equivalence relation tells us which divisors we can transform into each other
by firing an increasing sequence of sets of vertices such that in all intermediate steps
the divisor is effective. A set is valid exactly when we can fire it according to this
chip firing game.

We will show that, on the set of effective divisors, this equivalence relation is
equal to the one we gave earlier, in Definition 1.1.3, i.e., for two effective divisors
D,D′, it holds that D ∼ D′ if and only if D ∼s D′. In order to prove this we will
first show a construction, called level set decomposition, and some properties of it.
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Definition 1.1.11 ([23, Definition 3.7]). Let G be a graph and let D,D′ be two
equivalent divisors. Then, by definition, there exists a divisor C such that D′ =
D − LC, where L is the Laplacian matrix. Let m = max{C(v) | v ∈ V (G)} and let
k = m−min{C(v) | v ∈ V (G)}. We then define the level sets of C as follows:

Ai = {v ∈ V (G) | C(v) ≥ m− i} for i ∈ {0, . . . , k}.

Notice that for level sets A0, A1, . . . , Ak of a divisor C, the set Ak−i contains
exactly the vertices that are fired at least i + min{C(v) | v ∈ V (G)} times. It
follows that A0 ⊆ A1 ⊆ · · · ⊆ Ak. Moreover, for the transformation of a divisor D
into a divisor D′ the level sets A0, . . . , Ak are unique. Before we prove this, we show
a lemma about the null space of the Laplacian matrix.

Lemma 1.1.12 ([15, Proposition 1.3.7]). Let G be a connected graph. The null
space of L is spanned by the all-ones vector, i.e. ker(L) = 〈1〉, where 1 is the all-
ones vector.

Proof. First, we introduce the directed incidence matrix. For every edge of G, choose
an orientation. The directed incidence matrix N is a matrix, where the rows are
indexed by the vertices and the columns are indexed by the edges without the loops,
defined by:

Nv,e =


−1 if v is the head of e,

1 if v is the tail of e,

0 otherwise.

Now look at NN t. We see that the value of (NN t)v,v is the degree of v minus
two times the number of loops vv. The value of (NN t)u,v for u 6= v equals minus
the number of edges uv. Thus NN t = L.

Let x be a vector in the null space of L. Then it follows that Lx = 0, thus
xtLx = 0 and xtNN tx = 0. We can rewrite this as (N tx)t(N tx) = 0. It follows that
N tx = 0. Let e = uv, u 6= v, be an edge of G. Suppose that we oriented uv from u
to v. It follows that (N tx)e = xu − xv = 0. Thus xu = xv. Since G is connected, it
follows that x = α1 for some α ∈ R, where 1 is the all-ones vector.

Since every row of L sums up to 0, we see that the all-ones vector is indeed in
the null space of L, thus the null space of L is spanned by the all-ones vector.

Lemma 1.1.13 ([23, Remark 3.8]). Let G be a connected graph and let D,D′ be
two equivalent divisors. The level set decomposition of the transformation from D′

to D is unique. That is, if there are two divisors C1, C2 such that D′ = D −LC1 =
D − LC2, then the level sets of C1 and C2 are equal.

Proof. Let C1, C2 be two divisors such that D′ = D − LC1 = D − LC2. We can
rewrite this to L(C1 − C2) = 0, it follows that C1 − C2 is in the null space of L.

Now we see, by Lemma 1.1.12, that C1 = C2+α1 for some α. By the construction
of the level sets it is clear that the level sets of C1 and C2 are equal.
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Remark. Let D ∼ D′ be two equivalent divisors. By Lemma 1.1.13, the level sets of
the transformation from D into D′ are well defined. We will often call the level sets
the level set decomposition of the transformation.

Definition 1.1.14 ([23, Definition 3.7]). A level set decomposition A0, . . . , Ak be-
longing to a transformation of D into D′ has an associated sequence of divisors

• D0 = D,

• Di = Di−1 − L1Ai−1 for all i ∈ {0, . . . , k + 1}.

Since A0, . . . , Ak are the level sets of the transformation from D′ to D, it follows
that Dk+1 = D′. We continue with a useful property of level set decompositions,
namely the fact that each divisor in the associated sequence is bounded from below
by the pointwise minimum of D and D′.

Lemma 1.1.15 ([23, Theorem 3.10]). Let G be a graph, D,D′ be two equivalent
divisors and A0, . . . , Ak the level set decomposition of the transformation of D into
D′. Let D0, . . . , Dk be the associated sequence of divisors. We then have that, for
all v ∈ V (G) and all i ∈ {0, . . . , k},

Di(v) ≥ min(D(v), D′(v)).

Proof. Let i ∈ {0, . . . , k} and v ∈ V (G). If Di(v) ≥ D(v) we are done, so assume
that Di(v) < D(v). Since Di(v) < D(v) and since the only way a vertex can lose
chips is by firing, v must have been fired at least once before Di. So there is an Aj
with j < i such that v ∈ Aj . But since A0 ⊆ . . . ⊆ Ak, it follows that v ∈ Am for all
m ≥ j and specifically for all m ≥ i.

So v is fired in every subset starting from Ai. However, the number of chips on
v cannot increase if v is part of the fired subset, so we have that Di(v) ≥ Dm(v) for
all m ≥ i. In particular, we have that Di(v) ≥ Dk(v) = D′(v). We conclude that
Di(v) ≥ min(D(v), D′(v)) for all v ∈ V (G) and i ∈ {0, . . . , k}.

Lemma 1.1.15 immediately gives a result for the transformation between two
equivalent effective divisors.

Corollary 1.1.16 ([23, Corollary 3.11]). Let G be a graph and D,D′ be two equiva-
lent effective divisors. Let A0, . . . , Ak be the level set decomposition of the transfor-
mation of D into D′ and D0, . . . , Dk the associated sequence of divisors. Then all
divisors Di are effective.

Now we are ready to prove that the two equivalence relations are the same on
effective divisors.

Lemma 1.1.17. Let G be a graph and D,D′ two effective divisors on G. Then
D ∼ D′ if and only if D ∼s D′.

Proof. Suppose that D ∼s D′. Then there exist sets A0 ⊆ . . . ⊆ Ak and divisors
D1 = D − L1A0 , Di = Di−1 − L1Ai−1 such that Dk+1 = D′. We see that D′ =
Dk+1 = D − L(1A0 + . . .+ 1Ak+1

). We conclude that D ∼ D′.
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Suppose that D ∼ D′. Let A0, . . . , Ak be the level set decomposition of the
transformation of D into D′ and let D0, . . . , Dk be the associated sequence of di-
visors. We have seen that A0 ⊆ . . . ⊆ Ak, that Dk+1 = D′ and that the divisors
D0, . . . , Dk are effective. We conclude that D ∼s D′.

From now on we can use the level set decomposition to argue about divisors
and divisorial gonality. This will turn out to be useful for giving proofs concerning
divisorial gonality.

Example 1.1.18. Let G be a tree. We have seen that we can move a chip along
an edge e = uv from u to v by firing every vertex in Au exactly once, where Au is
the connected component of u of the cut induced by e. Using our new definition we
can just fire Au instead of firing every vertex separately.

Example 1.1.19. We have seen that trees have divisorial gonality 1. Now we can
argue that all other graphs have divisorial gonality at least 2. Let G be a graph with
a cycle c1, c2, . . . , ck with k > 1. Suppose that G has divisorial gonality 1. Let D1 be
the divisor with a chip on c1, and Dk the divisor with a chip on ck. Then D1 ∼ Dk.
Thus there exists a level set decomposition A0, . . . Al of the transformation of D1

into Dk. Since c1 is the only vertex with a chip in D1, it follows that c1 ∈ A0. The
number of chips on vertex ck increases by firing the sets A0, . . . Al, thus ck /∈ A0.
Now look at the greatest index j such that cj ∈ A0. Then we see that firing A0

moves a chip along the edge cjcj+1, and moves a chip along the edge c1ck as well.
Because there is only one chip and no vertex is allowed to go in debt, this yields a
contradiction. So we conclude that dgon(G) ≥ 2.

1.2 Stable divisorial gonality

Now we move on to the definition of stable divisorial gonality. In order to do so we
need one additional definition.

Definition 1.2.1 ([20, Definition 3.4]). A graph G′ is a refinement of G if G′ can
be obtained by applying the following operations finitely many times to G.

(i) Add a leaf, i.e. a vertex of degree 1;

(ii) subdivide an edge by adding a vertex.

We call a vertex of G′\G from which there are two disjoint paths to vertices of G,
internal added vertices, we call the other vertices of G′\G external added vertices.

Definition 1.2.2 ([20, A.6]). The stable divisorial gonality of G is

sdgon(G) = min{dgon(G′) | G′ a refinement of G}.

Notice that for all graphs G it holds that sdgon(G) ≤ dgon(G).

Example 1.2.3. A tree has divisorial gonality 1; thus, its stable divisorial gonality
is 1 as well. Notice that refining a graph does not change whether a graph is a tree
or not. Thus if a graph G is not a tree, then it follows that dgon(G′) ≥ 2 for all
refinements G′. We conclude that sdgon(G) ≥ 2; and the stable divisorial gonality
of a graph G is 1 if and only if G is a tree.
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Figure 1.2: The graph G of Example 1.2.5 with dgon(G) = 4 and sdgon(G) ≤ 3.

Example 1.2.4. Let G be a graph with divisorial gonality 2, for example the graph
in Figure 1.1(b). It follows that sdgon(G) = 2.

Example 1.2.5 ([17, Examples 4 and 5]). Consider the graph G in Figure 1.2. We
claim that dgon(G) = 4 and sdgon(G) ≤ 3.

First we determine the divisorial gonality of G. Suppose that dgon(G) ≤ 3. Let
D be a divisor with rank at least 1 and degree 3. We know that there is a divisor
Da ∼ D with Da(a) ≥ 1. Suppose that Da(d) = 0. There is a divisor Dd ∼ Da such
that Dd(d) ≥ 1. Let A0, . . . , Ak be the level set decomposition of the transformation
of Da into Dd and D1, . . . , Dk+1 the associated sequence of divisors. The number of
chips on vertex d increases by firing the sets A0, . . . , Ak, so we see that d /∈ A0. We
distinguish three cases.

Suppose that Da(a) < 3 and Da(b) < 2. We can easily check that all sets
A ⊆ {a, b, c} are not valid; thus A0 is not valid. This yields a contradiction.

Suppose that Da(a) < 3 and Da(b) = 2. We can easily check that {a, b} is the
only valid set, so A0 = {a, b}. We see that D1(d) = 0, thus d /∈ A1. Since A0 ⊆ A1,
there are only two possibilities left: A1 = {a, b} or A1 = {a, b, c}. Both sets are not
valid, this yields a contradiction.

Suppose that Da(a) = 3. Analogously we find that A0 = {a}, A1 = {a, b} and
that A2 is not valid. This yields a contradiction.

We conclude that Da(d) > 0. It follows that Da(b) = 0 or Da(c) = 0. Without
loss of generality, we assume that Da(b) = 0. Then there is a divisor Db ∼ Da with
Db(b) ≥ 1. Let A0 be the first set in the level set decomposition of the transformation
of Da into Db. Since the number of chips on b increases by this transformation, it
follows that b /∈ A0. We can easily check that there is no valid firing set A0 ⊆
{a, c, d}. This yields a contradiction.

We conclude that dgon(G) > 3. Starting with a chip on every vertex yields a
divisor with rank at least 1 and degree 4, so dgon(G) = 4.

The stable divisorial gonality of this graph is at most 3. Add a vertex e on one
of the edges from b to c. Call the graph we obtained G′. Now assign 3 chips to
vertex a. This is an effective divisor. It has rank at least 1: firing the sets {a},
{a, b}, {a, b, e}, {a, b, c, e} consecutively leads to divisors D1, . . . , D4 such that every
vertex has at least a chip once. Thus sdgon(G) ≤ 3.

1.3 Geometric and stable gonality

In [17] and [20] the relation between algebraic curves and graphs is further studied
and new notions of gonality are defined. We will define geometric gonality as in [17]
using the terminology of [20].
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Definition 1.3.1. Let G and H be loopless graphs. A morphism is a map φ : G→
H such that

(i) φ(V (G)) ⊆ V (H),

(ii) for all e = uv ∈ E(G) either φ(uv) = φ(u)φ(v) ∈ E(H) or φ(v) = φ(e) = φ(u),

together with, for every e ∈ E(G), an index rφ(e) ∈ N ∪ {0}, such that rφ(e) = 0 if
and only if φ(e) ∈ V (H).

Definition 1.3.2. We call a morphism φ : G → H non-degenerate if for every
vertex v ∈ V (G) there is an edge e ∈ Ev(G) such that φ(e) 6= φ(v).

Definition 1.3.3. We call a morphism φ : G→ H harmonic if for every v ∈ V (G)
it holds that for all e, e′ ∈ Eφ(v)(H)∑

d∈Ev(G),φ(d)=e

rφ(d) =
∑

d′∈Ev(G),φ(d′)=e′

rφ(d′).

We write mφ(v) for this sum.

Notice that a harmonic morphism is non-degenerate exactly when mφ(v) 6= 0 for
all v ∈ V (G).

Definition 1.3.4. The degree of a harmonic morphism φ : G→ H is∑
d∈E(G),φ(d)=e

rφ(d) =
∑

u∈V (G),φ(u)=v

mφ(u),

for e ∈ E(H), v ∈ V (H). This is independent of the choice of e or v [8, Lemma 2.4].

Definition 1.3.5. Let G be a loopless graph. The geometric gonality of G is

gon(G) = min{deg(φ) | φ : G→ T a non-degenerate harmonic

morphism from G to a tree T}.

Remark. Let G be the graph consisting of a single vertex. Notice that there does
not exist a non-degenerate morphism from G to a tree T . We define the geometric
gonality of G to be 1.

We define stable geometric gonality, or stable gonality for short, as in [20, Defi-
nition 3.6].

Definition 1.3.6. We call a morphism φ : G→ H a finite morphism if φ(E(G)) ⊆
E(H).

It follows that for a finite morphism φ it holds that rφ(e) 6= 0 for all edges
e ∈ E(G).

Definition 1.3.7. The stable gonality of a graph G is

sgon(G) = min{deg(φ) | φ : G′ → T a finite harmonic morphism,

G′ a refinement of G, T a tree}.
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Notice that, although a finite morphism is only defined for loopless graphs, we
define stable gonality for all graphs, since we can add a vertex to every loop to
obtain a loopless refinement.

For a disconnected graph, we map all components to the same tree; it follows
that the stable gonality of a disconnected graph is the sum of the stable gonality
of its components. One could argue that it is better to map disconnected graphs
to a forest instead. Then one could define the degree of such a map to be the
maximum of the degrees of this map restricted to each component. In that case the
stable gonality of a disconnected graph is the maximum of the stable gonality of its
components. Nevertheless, we use the definition that maps graphs to trees.

Example 1.3.8. For a tree G we can assign to every edge index 1 and use the
identity map to see that gon(G) = sgon(G) = 1.

On the other hand, we can show that if G is not a tree, then gon(G) 6= 1 and
sgon(G) 6= 1: Let G be a graph, containing a cycle c1, . . . , ck. Let φ : G → T be a
non-degenerate harmonic morphism to a tree T . If c1 and ck are mapped to the same
vertex, then the degree of φ is at least 2. Suppose that c1 and ck are not mapped to
the same vertex. Notice that by definition φ maps paths from u to v to walks from
φ(u) to φ(v). There are two disjoint paths P1 and P2 from c1 to ck. In T there is a
unique path P from φ(c1) to φ(ck), thus any walk from φ(c1) to φ(ck) contains P .
Thus there is at least one edge from P1 and one edge from P2 mapped to each edge
of this path P . So the degree of φ is at least two. We see that gon(G) ≥ 2.

Let G be a graph, not a tree, and let G′ be a refinement of G. Then G′ contains
a cycle. Let φ : G′ → T be a finite harmonic morphism to a tree T . Analogously,
we see that deg(φ) ≥ 2. Thus sgon(G) ≥ 2.

Example 1.3.9. Consider the graph in Figure 1.3 (this is the same graph as in
Figure 1.1(b)). We can map this graph to the path graph on five vertices as follows:
φ(a) = p1, φ(b) = p2, φ(c) = φ(d) = p3, φ(e) = p4 and φ(f) = p5, see Figure 1.3
for an illustration. Give the edge ef index 2, and all other edges index 1. This is a
finite morphism, since no edge is mapped to a vertex.

a b

d

c

e f

2

p1 p2 p3 p4 p5

Figure 1.3: The graph G of Example 1.3.9 and a finite harmonic morphism of degree 2.
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u v u v v′

Figure 1.4: The banana graph has gonality m and stable gonality 2.

We can also check that φ is harmonic. Consider, for example, vertex e. There
are two edges incident to φ(e), namely p3p4 and p4p5. We can compute∑

x∈Ee(G),φ(x)=p3p4

rφ(x) = rφ(ce) + rφ(de) = 2,

∑
x∈Ee(G),φ(x)=p4p5

rφ(x) = rφ(ef) = 2.

We see that these sums are indeed equal, and mφ(e) = 2. Analogously, we can check
that mφ(a) = mφ(b) = mφ(f) = 2 and mφ(c) = mφ(d) = 1.

The degree of φ is
∑

x∈V (G),φ(x)=p4
mφ(x) = mφ(e) = 2. So we conclude that

sgon(G) ≤ 2. Since G is not a tree, we see that sgon(G) ≥ 2, thus sgon(G) = 2.

Example 1.3.10 ([20, Example 3.9]). The banana graph Bm is a graph with 2
vertices u and v and m ≥ 2 edges, see Figure 1.4. Let φ : Bm → T be a non-
degenerate harmonic morphism to a tree T . Then φ(u) 6= φ(v), otherwise φ is
degenerate. It follows that all m edges are mapped to the edge φ(u)φ(v), thus
deg(φ) ≥ m. Let T be a tree with two vertices u′, v′ that are connected by an edge.
The map φ : φ(u) = u′, φ(v) = v′ is a non-degenerate harmonic morphism of degree
m. We conclude that gon(Bm) = m.

The stable gonality of Bm is much lower, namely 2. Consider the refinement G′

where every edge is subdivided. Let T be a tree with a vertex v′ and m leaves, see
Figure 1.4. Let φ : G′ → T be the map such that φ(u) = φ(v) = v′ and all other
vertices are mapped to a unique leaf. Give every edge of G′ index 1. Now we can
see that φ is a finite harmonic morphism of degree 2. And it is clear that Bm is not
a tree, thus sgon(Bm) = 2.

1.4 Basic results

In this section we mention some basic properties and results of gonality. In the
previous sections, we have seen that for a disconnected graph, the stable gonality is
equal to the sum of the stable gonality of each of the connected components. The
same holds true for (stable) divisorial gonality, as chips can never move from one
connected component to another. We have also seen a result on trees:
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Proposition 1.4.1. Let G be a graph. The following are equivalent:

(i) G is a tree,

(ii) dgon(G) = 1,

(iii) sdgon(G) = 1,

(iv) gon(G) = 1,

(v) sgon(G) = 1.

Proof. This follows from Examples 1.1.7, 1.1.19, 1.2.3 and 1.3.8.

For a graph G that is not a tree, it follows that all gonalities are at least 2. We
can also give simple upper bounds in the number of vertices and edges.

Proposition 1.4.2. Let G be a graph. It holds that dgon(G) ≤ n and sdgon(G) ≤ n.

Proof. It is easy to see that the (stable) divisorial gonality of a graph is at most n
by placing a chip on every vertex.

Proposition 1.4.3. Let G be a graph. Let l be the number of vertices with a loop.
It holds that sgon(G) ≤ n+ l.

Proof. For every vertex v, let lv be the number of loops of v. Consider the graph
G′, obtained by subdividing every edge once and adding m − deg(v) + lv leaves to
every vertex v in G. See Figure 1.5 for an illustration. Notice that every vertex has
m added neighbours. Let T be a tree consisting of a vertex v with m leaves. Then
we can map this graph G′ to the tree T by mapping every original vertex of G to
v, mapping all vertices that are added to an edge to a unique leaf, and mapping all
added leaves such that for each original vertex its m neighbours are mapped to the
m leaves. Assign index 2 to all edges vx, where v is a vertex of G with a loop vv in
G and x is not added to a loop, and index 1 to all other edges. We see that this is a
finite harmonic morphism. Every vertex v ∈ V (G) has index two if there is a loop
vv in G and index 1 otherwise. Thus the degree of this morphism is n+ l.

The geometric gonality of a graph can be greater than n, consider the banana
graph for example (see Figure 1.4 and Example 1.3.10).

Proposition 1.4.4. Let G be a connected graph. It holds that gon(G) ≤ m.

Proof. Let T be a tree consisting of two vertices u, v and an edge uv. Pick a vertex
w ∈ V (G). We define the following map φ : G→ T :

φ(x) =

{
u if the shortest path from w to x has even length,

v if the shortest path from w to x has odd length,

here the length is the number of edges of the path. Assign index 1 to all edges that
are mapped to uv and 0 to all other edges.

For a vertex x ∈ V (G), let w = x0, x1, . . . , xk = x be a shortest path from w to
x. Then the edge xk−1x is mapped to uv. It follows that φ is non-degenerate. Since
T has only one edge, φ is harmonic. The degree of φ is at most m, since there are
at most m edges mapped to the edge uv. We conclude that gon(G) ≤ m.
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2 2
2

2
2

Figure 1.5: The stable gonality of a graph is at most n+ |{v | there is a loop vv}|.

The stable divisorial gonality of a graph G is defined as the minimum of the
divisorial gonality over all refinements of G. We can prove that the stable gonality
of a graph G is equal to the minimum of the geometric gonality over all refinements
of G as well [20, Lemma A.3]:

Proposition 1.4.5. Let G be a graph. Then

sgon(G) = min{gon(G′) | G′ a refinement of G}.

Proof. It is clear that sgon(G) ≥ min{gon(G′) | G′ a refinement of G}, since every
finite harmonic morphism is a non-degenerate harmonic morphism.

We will show that for any non-degenerate harmonic morphism φ : G′ → T from
a refinement G′ of G to a tree T , there exists a finite harmonic morphism φ′ of the
same degree from a refinement G′′ of G′ to a tree T ′. For every edge e = uv such
that φ(e) ∈ V (T ), subdivide e by adding a vertex we and add a leaf le,x to every
vertex x ∈ φ−1(φ(e)), x 6= u, v. Write G′′ for the graph thus obtained. For every
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such e, add a leaf le to φ(e) in T , to obtain a tree T ′. Now set

rφ′(e
′) =


mφ(x) if e′ = xle,x,

mφ(u) if e′ = uwe,

mφ(v) if e′ = wev,

rφ(e) otherwise.

We define φ′ : G′′ → T ′ by

φ′(y) =

{
le if y = le,x, we

φ(y) otherwise.

It is easy to check that φ′ is a finite harmonic morphism with deg(φ′) = deg(φ). We
conclude that sgon(G) = min{gon(G′) | G′ a refinement of G}.

It is easy to see that sdgon(G′) ≥ sdgon(G) for all refinements G′ of G. We will
now prove that it also holds that sdgon(G′) ≤ sdgon(G).

Proposition 1.4.6. Let G be a loopless graph and H a refinement of G. Then
sdgon(G) = sdgon(H).

Proof. Every refinement of H is a refinement of G as well, so sdgon(H) ≥ sdgon(G).
For the other direction we prove that the stable divisorial gonality of a graph

does not increase by adding a leaf or subdividing an edge. Let G′ be a refinement
of G such that there exists an effective divisor D with degree sdgon(G) and rank at
least 1.

Let G̃ be G with a leaf v added to a vertex u. We will show that there is a
refinement G̃′ of G̃ such that there is an effective divisor D′ with degree sdgon(G)
and rank at least 1. If there is a leaf added to u in G′, then G′ is a refinement of
G̃, so we are done. If there is no leaf added to u in G′, then add a leaf l to vertex
u in G′. Write G̃′ for this graph. It is clear that G̃′ is a refinement of G̃. There
exists an effective divisor D′ ∼ D on G′ such that D′(u) ≥ 1. Now consider the
divisor D′ on G̃′. We claim that D′ has rank at least 1. By adding l to every firing
set that contains u, we see that we can still reach a divisor with one chip on w for
every vertex w ∈ G′. And we can reach a divisor with a chip on l by firing G′ in
G̃′. Thus D′ is an effective divisor with rank at least 1 on G̃′. We conclude that
sdgon(G̃) ≤ sdgon(G).

Let G̃ be G where an edge e = u1u2 is subdivided by a vertex v. We will prove
that there is a refinement G̃′ of G̃ and an effective divisor on G̃′ of rank at least 1 and
with degree sdgon(G). If the edge u1u2 is subdivided in G′, then G′ is a refinement
of G̃ too, so we are done.

Assume that the edge u1u2 is not subdivided in G′. For every vertex w ∈
V (G′), let Dw ∼ D be a divisor with Dw(w) ≥ 1 and Bw,0, . . . Bw,rw the level set
decomposition of the transformation of D into D2. Suppose that there are w and
i such that u1 ∈ Bw,i and u2 /∈ Bw,i or such that u1 /∈ Bw,i and u2 ∈ Bw,i. Thus,
suppose that there is a chip fired along the edge u1u2.
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For all w, i, let Ew,i be the set of all edges along which a chip is fired by the

set Bw,i. Subdivide the following edges once to obtain a refinement G̃′ of G′: all

edges of G′ that occur in some set Ew,i. Notice that G̃′ is a refinement of G̃. Let
Vw,i be the set of vertices that are added to the edges in Ew,i. Define B′w,i as Bw,i
together with all added vertices that are added to an edge with both endpoints in
Bw,i. We can replace every set Bw,i by two sets B′w,i, B

′
w,i ∪ Vw,i in the level set

decomposition Bw,0, . . . Bw,rw to see that for every vertex w we can still reach a
divisor with at least one chip on w. For every vertex in Vw,i we will encounter a
divisor with a chip on that vertex when we transform D into Dw. We conclude that
sdgon(G̃) ≤ deg(D) = sdgon(G).

Now suppose that for all w, i either u1, u2 ∈ Bw,i or u1, u2 /∈ Bw,i. We claim
that there is a divisor D′ ∼ D such that D′(u1) ≥ 1 and D′(u2) ≥ 1. Suppose
that such a divisor does not exist. Let Du1 ∼ D be a divisor with Du1(u1) = 0
and Du2 ∼ D be a divisor with Du2(u2) = 0. It follows that Du1(u2) = 0 and
Du2(u1) = 0. Let A0, . . . , Ar be the level set decomposition of the transformation
of Du1 into Du2 and let D1, . . . , Dr+1 be the associated sequence of divisors. Let i
be the smallest index such that Di(u2) ≥ 1. Then we know that u2 /∈ Ai−1. We
also know that Di(u1) = 0 by assumption, thus u1 is fired once. It follows that
u1 ∈ Ai−1. This yields a contradiction. We conclude that there is a divisor D′ ∼ D
such that D′(u1) ≥ 1 and D′(u2) ≥ 1.

Now subdivide the edge u1u2 by adding a vertex v in G′ to obtain a refinement
G̃′ of G̃. We can obtain a divisor with a chip on v by firing all vertices of G̃ starting
from the divisor D′. Let w ∈ G̃. Add v to all sets Bw,i for which holds that
u1, u2 ∈ Bw,i. Now we can reach the divisor Dw by firing these sets Bw,0, . . . , Bw,rw .

Thus sdgon(G̃) ≤ deg(D) = sdgon(G).
Since H can be obtained from G by adding some leaves and subdividing edges,

and each of these operations does not increase the stable divisorial gonality, we can
conclude that sdgon(H) = sdgon(G).

We can do the same for stable gonality [20, Lemma 5.4].

Proposition 1.4.7. Let G be a graph and H a refinement of G. Then sgon(G) =
sgon(H).

Proof. Every refinement of H is a refinement of G as well, so sgon(H) ≥ sgon(G).
For the other direction we prove that the stable gonality of a graph does not

increase by adding a leaf or subdividing an edge. Let G′ be a refinement of G and
T a tree such that there exists a finite harmonic morphism φ : G′ → T of degree
sgon(G).

Let G̃ be G with a leaf v added to a vertex u. We will show that there is a
refinement G̃′ of G̃, a tree T ′ and a morphism φ′ : G̃′ → T ′ with degree sgon(G). If
there is a leaf added to u in G′, then G′ is a refinement of G̃, so we are done. If there
is no leaf added to u in G′, then add a leaf lx to every vertex x in φ−1(φ(u)). Write
G̃′ for the graph we obtained. It is clear that G̃′ is a refinement of G̃. Add a leaf l to
φ(u) in T to obtain the tree T ′. Set the indices of all new edges as rφ′(xlx) = mφ(x)
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and all other indices rφ′(e) = rφ(e). Define φ′ : G̃′ → T ′ as

φ′(y) =

{
l if y = lx,

φ(y) otherwise.

We see that φ′ is a finite harmonic morphism with degree deg(φ′) = deg(φ) =
sgon(G), thus sgon(G̃) ≤ sgon(G).

Subdivide the edge e = u1u2 of G by a vertex v, write G̃ for this graph. If the
edge e is subdivided in G′, then G′ is a refinement of G̃ as well. Otherwise, we
find, analogous to the previous case, by subdividing all edges of G′ in φ−1(φ(e)), a
refinement G̃′ of G̃. By subdividing φ(e) in T , we obtain a tree T ′. Again, there is
a finite harmonic morphism φ′ : G̃′ → T ′ of degree sgon(G).

Since H can be obtained from G by adding some leaves and subdividing edges,
and each of these operations does not increase the stable gonality, we can conclude
that sgon(H) = sgon(G).



2 Bounds for gonality

2.1 Inequalities relating different notions of gonality

From the definition of stable divisorial gonality it is clear that sdgon(G) ≤ dgon(G)
for any graph G. It is known that sgon(G) = min{gon(H) | H a refinement of G},
see Proposition 1.4.5 (or [20, Lemma A.3]), thus it holds true that sgon(G) ≤ gon(G)
for all (loopless) graphs G. As mentioned in [20, A.6] there is also a relation between
the stable geometric gonality and the stable divisorial gonality of a graph: sgon(G) ≥
sdgon(G) for all graphs G.

The idea of the proof is as follows: Let G be a graph, G′ a refinement of G, and
φ : G′ → T a finite harmonic morphism of degree k to a tree T . We want to show
that there is a refinement H of G′ and a divisor D with degree k and rank at least
1. The idea is to pick a vertex v′ ∈ T , and assign mφ(v) chips to every vertex v in
φ−1(v′). Notice that there are exactly k chips in total. For any edge e′ in T the
sum of the indices of the edges that are mapped to e′ is equal to k. So if we can fire
rφ(e) chips along each edge e, then we can maintain the following property: there
is a vertex u′ ∈ T such that the vertices u ∈ φ−1(u′) have exactly mφ(u) chips.

Before we give the proof, we illustrate this idea by means of an example.

Example 2.1.1. Let G be the graph in Figure 2.1. We have a finite harmonic
morphism φ : G→ T of degree 4 by mapping all vertices to the vertex below it and
we assign index 3 to the edges a1a4, a4a5, a10a11 and a11a12, and index 1 to all other

a1

a4 a5 a7 a10 a11

a12
a13

a2 a3

a6

a8 a9

3

3 3

3

φ

p1 p2 p3 p4 p5 p6 p7 p8

Figure 2.1: The graph G of Example 2.1.1 with a finite harmonic morphism of degree 4.
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a1

a4 a5 a7 a10 a11

a12
a13

a2 a3

a6

a8 a9

3

3 3

3

w1

w2

x1 x2 y1 y2
z1
z2

Figure 2.2: The graph H of Example 2.1.1.

edges.
We pick a vertex, for example p4, and distribute 4 chips over the vertices in

φ−1(p4) according to their index mφ. Let Dp4 be the divisor of this distribution,
then Dp4(a7) = Dp4(a6) = 2.

Now we can fire vertices such that all vertices u ∈ φ−1(p5) have exactly mφ(u)
chips as follows: the edge p4p5 induces a cut (X ′, Y ′) in T . This cut corresponds to a
cut (X,Y ) in G, where X = φ−1(X ′) and Y = φ−1(Y ′). Thus X = {ai | 1 ≤ i ≤ 7}
and Y = {ai | 8 ≤ i ≤ 13}. By firing X we get the distribution Dp5 : Dp5(a8) = 1
and Dp5(a10) = 3.

To obtain a distribution where all vertices u ∈ φ−1(p6) have exactly mφ(u) chips,
we have to fire three chips along the edge a10a11, while we fire only one chip along
the edge a8a9. To do this, we have to slow this last chip down. We can do this
by adding two vertices y1, y2 to the edge a8a9. Again, the edge p5p6 induces a cut
(X ′, Y ′) in T . Define X = φ−1(X ′). Now firing the sets X, X∪{y1} and X∪{y1, y2}
leads to the desired divisor Dp6 with Dp6(a11) = 3 and Dp6(a9) = 1.

Analogously, we can add two vertices z1 and z2 to the edge a9a12, and set X =
{ai | 1 ≤ i ≤ 11}∪ {y1, y2}. Now we can fire X, X ∪{z1} and X ∪{z1, z2} to obtain
a divisor Dp7 with Dp7(a12) = 4. Firing the set {ai | 1 ≤ i ≤ 12} ∪ {y1, y2, z1, z2}
yields a distribution Dp8 with Dp8(a13) = 4.

Analogously, we add two vertices to the edges a1a2 and a2a3. Write H for
the graph thus obtained. See Figure 2.2 for an illustration. This graph H is a
refinement of G, and the divisor Dp4 on G′′ has degree 4 and rank at least 1.

We use the idea of Example 2.1.1 for the proof of the following proposition.

Proposition 2.1.2. Let G be a graph. Then sgon(G) ≥ sdgon(G).

Proof. Suppose that sgon(G) = k. Then there exist a refinement G′ of G, a tree
T and a finite harmonic morphism φ : G′ → T such that φ has degree k. We will
construct a refinement H of G, such that dgon(H) ≤ k.

For every edge e′ ∈ E(T ), determine le′ = lcm{rφ(e) | φ(e) = e′}. Now subdivide
every edge e ∈ E(G′) in lφ(e)/rφ(e) edges by adding ae = lφ(e)/rφ(e) − 1 vertices.
Write H for this refinement of G′; it is clear that H is a refinement of G too.

For a vertex v′ ∈ V (T ), we define the divisor Dv′ by

Dv′(v) =

{
mφ(v) if v ∈ φ−1(v′)
0 otherwise.
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a b c d

Figure 2.3: The graph G of Example 2.1.3 with dgon(G) = 4 and gon(G) ≤ 3.

Let e′ = {x′, y′} be an edge in T . We will show that Dx′ ∼ Dy′ . Removing
e induces a cut (X ′, Y ′) in T , where x′ ∈ X ′ and y′ ∈ Y ′. This corresponds to a
cut (X,Y ) in G′, where X = φ−1(X ′) and Y = φ−1(Y ′). Define X̃ ⊆ V (H) as
X ∪ {we,i | e ∈ E(X)}. Now we will construct l(e′) sets A0, A1, . . . , Al(e′)−1. For

every 0 ≤ i ≤ l(e′)− 1, set Ai = X̃.
Notice that the edges that cross the cut (X,Y ) are exactly the edges for which

holds that φ(e) = e′. For every edge e = xy ∈ E(G′), such that φ(e) = e′, x ∈ X,
y ∈ Y , let we,1, . . . , we,ae be the vertices that are added to e in order from x to y.
Add vertex we,i to all sets Aj with j ≥ i · rφ(e). Notice that we have added the set
{we,1, we,2, . . . , we,i} to exactly rφ(e) sets.

Firing the sets A0, . . . , Al(e′)−1 moves exactly rφ(e) chips along edge e from x
to y. It follows that every x with φ(x) = x′ loses exactly mφ(x) chips, and every
y with φ(y) = y′ receives exactly mφ(y) chips. We conclude that firing the sets
A0, . . . , Al(e′)−1, leads to the divisor Dy′ . Thus Dx′ ∼ Dy′ .

Pick a vertex v′ ∈ V (T ) and consider the divisor Dv′ ; this divisor has degree
k. We claim that this divisor has rank at least 1. Let u ∈ V (G′) and u′ = φ(u).
There is a unique path v′, v1, . . . , vr, u

′ in T from v′ to u′. We have seen that
Dv′ ∼ Dv1 ∼ . . . ∼ Dvr ∼ Du′ . We know that Du′(u) ≥ 1. Thus for all vertices
u ∈ V (G′), there is a divisor D′ ∼ Dv′ with D′(u) ≥ 1. Now let we′,i be a vertex that
is added to G′. There is a path in T starting in v′ that contains e′. Now we can move
chips in the same way as described above. Notice that there is some intermediate
situation where there is at least 1 chip on we′,i and at least 0 on all other vertices.

We conclude that dgon(H) ≤ k, so sdgon(G) ≤ k.

So far we have the following relations between the different notions of gonality:{
dgon(G) ≥ sdgon(G)

gon(G) ≥ sgon(G) ≥ sdgon(G)

The following examples show that divisorial gonality is incomparable with stable
gonality and with geometric gonality.

Example 2.1.3 ([17, Example 4]). Let G be the graph in Figure 2.3. In Example
1.2.5, we have seen that dgon(G) = 4. This graph has stable gonality at most 3,
as the following morphism shows. Give one of the edges bc index 2 and all other
edges index 1. Let T be a path on four vertices p1, p2, p3, p4. The map φ : G → T ,
defined by φ(a) = p1, φ(b) = p2, φ(c) = p3, φ(d) = p4 is a non-degenerate harmonic
morphism of degree 3. Thus we see that gon(G) ≤ 3.
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Example 2.1.4 ([2, Example 5.13]). Let G be as in Figure 2.4(a). We claim that
sgon(G) = 4 and dgon(G) ≤ 3. First we look at the divisorial gonality. Let D be
the divisor with D(a) = D(b) = D(c) = 1 and D(d) = D(e) = D(f) = 0. It is easy
to check that this divisor has rank at least 1, thus dgon(G) ≤ 3.

We will now show that sgon(G) = 4. First look at the refinement and map in
Figure 2.4(b). One can easily check that this is a finite harmonic morphism of degree
4. We see that sgon(G) ≤ 4.

Now we will show that sgon(G) ≥ 4. Suppose that there exists a refinement G′

of G and a finite harmonic morphism φ : G′ → T of degree 3, where T is a tree.
Suppose that φ(a) 6= φ(d), φ(b) 6= φ(e) and φ(c) 6= φ(f), then∑

x∈G′a(d),φ(x)=φ(a)

mφ(x) = 3,

∑
x∈G′b(e),φ(x)=φ(b)

mφ(x) = 3,

∑
x∈G′c(f),φ(x)=φ(c)

mφ(x) = 3.

It follows that φ(a) 6= φ(b), φ(b) 6= φ(c) and φ(c) 6= φ(a). Write Pab for the path
from a to b in G′ and Pac for the path from a to c and Pbc for the path from b to c.
We distinguish two cases:

Suppose that φ(a) ∈ φ(Pbc). Then there is a vertex in Pbc that is mapped to
φ(a). But then it follows that ∑

x,φ(x)=φ(a)

mφ(x) ≥ 4.

This yields a contradiction.
The cases φ(b) ∈ φ(Pac) and φ(c) ∈ φ(Pab) are analogous.
Suppose that φ(a) /∈ φ(Pbc), φ(b) /∈ φ(Pac) and φ(c) /∈ φ(Pab). Then there is

a vertex v′ ∈ T such that v′ ∈ φ(Pab), v
′ ∈ φ(Pac) and v′ ∈ φ(Pbc). Let v be the

vertex on Pbc such that φ(v) = v′. It follows that there is an edge e1 = vw1 incident
to v that is mapped to the first edge of the path from v′ to φ(a). There is an edge
e2 = w1w2 that is mapped to the second edge of the path from v′ to φ(a). We can
iterate this to see that there is a vertex w added to v such that φ(w) = φ(a). It
follows that ∑

x,φ(x)=φ(a)

mφ(x) ≥ 4.

This yields a contradiction.
Now suppose that φ(a) = φ(d). Suppose that φ(b) 6= φ(e). There is an edge

e1 = dw1 incident to d that is mapped to the first edge of the path from φ(a) to
φ(b). There is an edge e2 = w1w2 that is mapped to the second edge of the path
from φ(a) to φ(b). We can iterate this to see that there is a vertex w added to d
such that φ(w) = φ(b). It follows that∑

x,φ(x)=φ(b)

mφ(x) ≥ 4.
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(b) A refinement of G and a finite harmonic mor-
phism of degree 4.

Figure 2.4: The graph G of Example 2.1.4 with sgon(G) = 4 and dgon(G) ≤ 3.

This yields a contradiction.
Now suppose that φ(a) = φ(d), φ(b) = φ(e) and φ(c) = φ(f). It follows that∑

x∈G′a(d),φ(x)=φ(a)

mφ(x) ≥ 2,

∑
x∈G′b(e),φ(x)=φ(b)

mφ(x) ≥ 2,

∑
x∈G′c(f),φ(x)=φ(c)

mφ(x) ≥ 2.

We see that φ(a) 6= φ(b), φ(b) 6= φ(c) and φ(c) 6= φ(a). We can distinguish the same
cases as before, and we see that there are vertices w1 and w2 added to e and f that
are mapped to φ(a). But then it follows that∑

x,φ(x)=φ(a)

mφ(x) ≥ 4.

This yields a contradiction.
We conclude that such a morphism φ does not exist, and sgon(G) ≥ 4.

2.2 Treewidth is a lower bound for gonality

Now we look at the relation between gonality and treewidth. First we give one of the
equivalent definitions of treewidth. After that, we will prove that dgon(G) ≥ tw(G)
for all G. We follow the proof of [24, Section 2]. We will conclude that treewidth is
a lower bound for all notions of gonality. We start with introducing brambles.

Definition 2.2.1. Let G be a connected graph. A bramble B is a subset of P(V (G))
such that ∅ /∈ B,

⋃
B∈B B = V (G) and for any twoB,B′ ∈ B it holds that the induced

graph on B ∪B′ is connected.

Definition 2.2.2. Let B be a bramble. We call a set S ⊆ V (G) a hitting set if for
every B ∈ B it holds that B ∩ S 6= ∅.
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Definition 2.2.3. Let B be a bramble. The order ‖B‖ of B is the minimum size of
a hitting set: ‖B‖ = min{|S| | S is a hitting set for B}.

The following definition is one of the definitions of treewidth:

Definition 2.2.4. LetG be a connected graph. Then the treewidth ofG, in notation
tw(G), is tw(G) = max{‖B‖ | B a bramble} − 1.

A better known definition of treewidth uses the notion of tree-decomposition.

Definition 2.2.5. Let G be a graph. A tree decomposition is a pair (T,W ), where
T is a tree and W = (Wt)t∈V (T ) is a family of subsets of V (G) such that:

(i)
⋃
t∈V (T )Wt = V (G);

(ii) for every edge e = uv ∈ E(G) there is a t ∈ V (T ) such that u, v ∈Wt;

(iii) for every vertex v ∈ V (G), the induced subgraph on {t ∈ V (T ) | v ∈ Wt} is
connected.

Definition 2.2.6. Let G be a graph and (T,W ) a tree decomposition. The width
of a (T,W ) is max{|Wt| − 1 | t ∈ T (V )}.

Lemma 2.2.7. Let G be a graph. The treewidth of G is at most k if and only if
there is a tree decomposition of width k.

Proof. See [30, 1.4].

Now before we look at the relation between gonality and treewidth, we will prove
two lemmas.

Lemma 2.2.8. Let D be an effective divisor and let U ⊆ V (G) be a valid firing set.
Let D′ be the divisor after firing the set U . Let B ⊆ V (G) be such that the induced
graph on B is connected. If there is some vertex in B with chips in D, but there are
no chips on B in D′, then it holds that B ⊆ U , so all vertices in B are fired.

Proof. Let v ∈ B be a vertex such that D(v) > 0. It is clear that v can only lose
chips if v is fired. Thus v ∈ U . Now suppose that B * U . Then there exist vertices
x, y in B such that x and y are neighbours and x ∈ U , y /∈ U , since the induced
graph on B is connected. Then we see that y receives a chip by firing U , thus
D′(y) > 0. This yields a contradiction. We conclude that B ⊆ U .

Lemma 2.2.9. Let B be a bramble and U ⊆ V (G). Suppose that there exist B,B′ ∈
B such that B ⊆ U and B′ ⊆ V \U . Then ‖B‖ ≤ |E(U, V \U)|+ 1.

Proof. We will construct a set S of size E(U, V \U) + 1 and prove that it is a hit-
ting set for B. Define X = {x ∈ U | outdegU (x) ≥ 1} and Y = {y ∈ V \U |
outdegV \U (y) ≥ 1}. Let B′′ ∈ B, B′′ ⊆ U be a set such that B′′ ∩ X is minimal
with respect to inclusion. Notice that B′′ ∩ X 6= ∅, since B ∪ B′ is connected and
B′ ⊆ V \U . Pick v ∈ B′′ ∩X, add v to S. Now for every edge e = xy ∈ E(U, V \U),
where x ∈ X and y ∈ Y , add one of its endpoints to S: if x ∈ B, add y to S,
otherwise add x to S. Now S consists of v together with an endpoint of every edge
in E(U, V \U), thus |S| = |E(U, V \U)|+ 1.

Let A ∈ B. To prove that S hits A, we distinguish three cases.
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• Suppose that A ⊆ U . Since B′′ ∩X is minimal, it holds that A∩X = B′′ ∩X
or there exists a vertex x ∈ (A∩X)\(B′′ ∩X). In the first case v ∈ A∩ S. In
the second case we have x ∈ A ∩ S.

• Suppose that A ⊆ V \U . We see that there are neighbours x and y with x ∈ B′′
and y ∈ A, since the induced graph on A ∪ B′′ is connected. It follows that
y ∈ A ∩ S.

• Suppose that A∩U 6= ∅ and A∩ (V \U) 6= ∅. Since the induced graph on A is
connected, it is clear that A contains an edge e = xy with x ∈ X and y ∈ Y .
Thus S ∩A contains at least one of x and y.

We conclude that S is a hitting set of size |E(U, V \U)|+1, thus ‖B‖ ≤ |E(U, V \U)|+
1.

Now we are ready to prove that treewidth is a lower bound for divisorial gonality.
For a divisor D the support supp(D) of D is the set of vertices with chips: supp(D) =
{v | D(v) > 0}.

Lemma 2.2.10. Let G be a connected graph. Then dgon(G) ≥ tw(G).

Proof. Suppose that dgon(G) = k. Let B be a bramble of maximum order, say l.
Then tw(G) = l − 1. Let D be a divisor of rank at least 1 and degree k, such that
supp(D) ∩B is non-empty for a maximal number of B ∈ B. If supp(D) is a hitting
set for B, then it holds that ‖B‖ ≤ k. Thus l ≤ k and tw(G) = l−1 < k = dgon(G).

Now suppose that supp(D) is not a hitting set. Let B ∈ B be a set such that
B ∩ supp(D) = ∅ and pick v ∈ B. Let Dv ∼ D be a divisor with a chip on v. Let
A0 ⊆ A1 ⊆ . . . ⊆ Ar be the level set decomposition of the transformation of D into
Dv, and let D1, . . . , Dr+1 be the associated sequence of divisors.

Let j be the least index such that supp(Dj) ∩ B 6= ∅. Since we chose D to
be such that it intersects as much elements of B as possible, there is a B′ that we
do not hit any more, i.e. there exists a B′ ∈ B such that B′ ∩ supp(D) 6= ∅ and
B′ ∩ supp(Di) = ∅ for some i ≤ j. Let i be the least index such that such a B′

exists.
By Lemma 2.2.8 we see that B′ ⊆ Ai−1. Notice that we can obtain Dj−1

from Dj by firing V \Aj−1. Thus by Lemma 2.2.8 it follows that B ⊆ (V \Aj−1).
Since Ai−1 ⊆ Aj−1, we see that B ⊆ (V \Ai−1). By Lemma 2.2.9 we see that
‖B‖ ≤ |E(Ai−1, V \Ai−1)|+ 1. We conclude that:

tw(G) = ‖B‖ − 1

≤ |E(Ai−1, V \Ai−1)|
≤ k = dgon(G),

where the second inequality holds since Ai−1 is valid for Di−1.

It is known that treewidth does not change under taking refinements, that is
tw(G) = tw(H) for any refinement H of G. Thus we see that

sdgon(G) = min{dgon(H) | H a refinement of G}
≥ min{tw(H) | H a refinement of G}
= tw(G).



Chapter 2. Bounds for gonality 26

Summing up the results of this chapter, we conclude:

Theorem 2.2.11. Let G be a graph. The following relations hold:{
dgon(G) ≥ sdgon(G) ≥ tw(G),

gon(G) ≥ sgon(G) ≥ sdgon(G).

�



3 Recognizing hyperelliptic graphs

In [8], hyperelliptic graphs G are defined as graphs with dgon(G) = 2. We call
graphs of stable or stable divisorial gonality 2 respectively stable or stable divisorial
hyperelliptic graphs.

In this chapter we will give two algorithms to recognize stable hyperelliptic
graphs and stable divisorial hyperelliptic graphs. These algorithms are inspired
by the reductions rules to recognize simple graphs with treewidth 2 or 3 [4].

3.1 Reduction rules

The main algorithmic technique that we will use is based on reduction rules. By a
reduction rule we mean a rule that can be applied to a graph to produce a different,
preferably smaller, graph. A set of reduction rules R can be used to recognize a
graph class G if there is a finite set of graphs H, such that a graph G is an element of
G if and only if it can be reduced using the rules from R to one of the graphs in H.
There are, for example, such rules to recognize graphs with treewidth 2 or 3 [4] or to
recognize series-parallel graphs [25]. All classes of graphs with bounded treewidth
that can be defined by a formula in monadic second order logic, can be recognized
using reduction rules in linear time [3]. In parametrized complexity theory, reduction
rules are used to find polynomial kernels, see for example [1] for such rules for the
dominating set problem.

In this chapter we use reduction rules to recognize stable (divisorial) hyperelliptic
graphs. We use the following notation to denote that a graph can be produced by
the application of reduction rules starting from another graph:

Definition 3.1.1. Let G and H be graphs and S be some set of reduction rules.
We use GSH to denote that H can be produced from G by some application of a
reduction rule from S. We use GS∗H to denote that H can be produced from G
by some finite sequence of applications of reduction rules from S.

If R is a single rule, we write GRH as shorthand for G{R}H.
During the reduction of the graph we will need to keep track of certain restric-

tions otherwise lost by the removal of vertices and edges. We will maintain these
restrictions in the form of a set of pairs of vertices:

Definition 3.1.2. Given a graph G = (V,E) a set of constraints C is a set of
unordered pairs (v, w), where v, w ∈ V . This set can contain pairs of the form
(v, v).
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Notice that C is a set, thus it can contain every pair (u, v) at most one.
Though the different notions of gonality use the same concept of a set of con-

straints, the restrictions given by a constraint differ between them. What a con-
straint means for each type of gonality will be explained in their respective sections.

Constraints are, like edges, pairs of vertices, so we can consider them as an extra
set of edges. Similar to the notation Ev, we will use Cv to denote all constrains that
contain a vertex v.

Our final goal with each set of reduction rules is to show that they can be used to
characterize the graphs in a certain class by reduction to the empty graph. For this
we need to make sure that membership of the class is invariant under our reduction
rules.

Definition 3.1.3. Let R be a rule and S be a set of reduction rules. Let A be
a class of graphs. We call R safe for A if for any two graphs G,H, if GRH then
H ∈ A ⇐⇒ G ∈ A. We call S safe for A if every rule in S is safe for A.

Note that if S is safe for a class A then GS∗H implies that H ∈ A ⇐⇒ G ∈ A.
Apart from our rule sets being safe, we also need to know that, if a graph is in

our class, it is always possible to reduce it to the empty graph.

Definition 3.1.4. Let S be a set of reduction rules and let A be a class of graphs.
We call S complete for A if for any graph G ∈ A it holds GS∗∅.

Any rule set that is both complete and safe for A, is suitable for characterization
of A. Additionally, it is not possible to make a wrong choice early on that would
prevent the graph from being reduced to the empty set.

Lemma 3.1.5. Let S be a set of rules that is safe and complete for A, with ∅ ∈ A,
then we have the following for all graphs G, H:

(i) GS∗∅ if and only if G ∈ A;

(ii) if G ∈ A and GS∗H, then HS∗∅.

Proof. For property i: Let G be a graph, such that GS∗∅. Note that by the safeness
of S and the fact that ∅ ∈ A it follows that G ∈ A. Assume on the other hand that
G ∈ A, note that by the completeness of S it follows that GS∗∅.

For property ii: Let G be a graph in A and H a graph such that GS∗H. Note
that by the safeness of S we have that H ∈ A, then by completeness of S it follows
that HS∗∅.

3.2 Reduction rules for stable gonality

In this section, we give a complete set of safe reduction rules to recognize stable
hyperelliptic graphs, i.e. graphs with stable gonality 2. We will first introduce some
extra notation and then we will state all rules. Next we will show that all rules are
safe for graphs with stable gonality at most 2 and that those graphs can be reduced
to the empty graph, i.e., that we have a safe and complete set of rules. It is not
hard to see that the set of rules implies a polynomial time algorithm to test if a
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graph has stable gonality at most 2; in [14, Section 7], it is discussed how we can
obtain an algorithm with a running time of O(m + n log n) by paying attention to
the implementation of the reduction rules.

Notation

For a given graph G, we want to determine whether there exists a finite harmonic
morphism of degree 2 from a refinement of G to a tree. We will do this by reducing
G to the empty graph. During this process we sometimes add constraints to our
graph. The set of constraints gives restrictions to which morphisms we allow.

Definition 3.2.1. Let G be a graph, G′ a refinement of G and T a tree. Let
φ : G′ → T be a map. We call φ a suitable morphism if it is a finite harmonic
morphism of degree 2 and it satisfies the following conditions.

(i) For all pairs (v, v) ∈ C it holds that mφ(v) = 2.

(ii) For all pairs (u, v) ∈ C with u 6= v it holds that φ(u) = φ(v) and mφ(u) =
mφ(v) = 1.

We say that a graph with constraints has stable gonality at most 2 if there exists
a suitable morphism from a refinement of G to a tree. Let Gs2 be the class of graphs
with constraints that have stable gonality at most 2. We define the empty graph to
have stable gonality 0 and thus ∅ ∈ Gs2.

Now we can prove some lemmas about constraints.

Lemma 3.2.2. Let G be a graph with constraints. If there is a vertex v with |Cv| > 1,
then sgon(G) ≥ 3.

Proof. Let G be a graph with sgon(G) = 2. Suppose that |Cv| > 1. Let (u, v) and
(v, w) be two constraints that contain v. We know that u 6= w. Suppose that φ is a
suitable morphism of degree 2 from a refinement of G to a tree. We distinguish two
cases.

Suppose that u = v. Then we know that mφ(v) = 2. On the other hand we have
that mφ(v) = mφ(w) = 1. This yields a contradiction.

Now suppose that u 6= v and w 6= v. Notice that φ(u) = φ(v) = φ(w), thus there
are at least three vertices mapped to φ(v). We conclude that deg(φ) ≥ 3. This
yields a contradiction.

We conclude that |Cv| ≤ 1.

Lemma 3.2.3. Let G be a graph, and φ : G → T a finite harmonic morphism of
degree 2. If φ(u) = φ(v), then deg(u) = deg(v).

Proof. Notice that mφ(u) = mφ(v) = 1. Let e be an edge incident to φ(u). We
see that there is exactly one edge e′ such that e′ is incident to u and φ(e′) = e.
On the other hand every edge that is incident to u is mapped to an edge that is
incident to φ(u). So we conclude that degG(u) = degT (φ(u)). Analogously we find
that degG(v) = degT (φ(v)). Since φ(u) = φ(v), it follows that deg(u) = deg(v).
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Lemma 3.2.4. Let G be a graph where every leaf is incident to a constraint, so if
deg(u) = 1 then Cu 6= ∅ for all u. Suppose that (u, v) ∈ C. If deg(u) 6= deg(v), then
sgon(G) ≥ 3.

Proof. Suppose that deg(u) 6= deg(v). Assume without loss of generality that
deg(u) > deg(v). Suppose that sgon(G) = 2. Let G′ be a refinement of G with
a minimal number of vertices such that there exists a suitable morphism of degree
2. Let φ : G′ → T be such a morphism.

We know that φ(u) = φ(v), thus degG′(u) = degG′(v). So there is a neighbour x
of v which is an external added vertex. Now we look at φ(x). Notice that there is a
neighbour y of u such that φ(x) = φ(y). It is clear that y 6= x, since x is an external
added vertex. Thus mφ(x) = mφ(y) = 1.

Let x′ be a neighbour of x, not equal to v. Suppose that mφ(x′) = 2. We know
that the edge e = {x, x′} has index 1, so there exists another neighbour of x′ that is
mapped to φ(x). We know that y is the unique vertex other than x that is mapped
to φ(x), hence y is a neighbour of x′. This yields a contradiction, since x′ is an
external added vertex. We conclude that mφ(x′) = 1. Inductively we find that
mφ(x′′) = 1 for all vertices x′′ ∈ Gv(x).

Let x′ 6= v be a leaf in Gv(x); then mφ(x′) = 1. Let y′ be the vertex such that
φ(x′) = φ(y′). Now it follows that deg(x′) = deg(y′), thus y′ is a leaf. Since x′

is an added vertex, it also follows that Cy = 0. Since every leaf in G is incident
to a constraint, we conclude that y′ is added to G. It follows that G′\{y′, x′} is a
refinement of G and that φ′ : G′\{y′, x′} → T\{φ(y′)} is a suitable morphism of
degree 2. This yields a contradiction with the minimality of G′.

We conclude that sgon(G) ≥ 3.

Reduction rules

We will now state all rules. Figure 3.1 shows all rules in pictures; constraints are
showed as green dashed edges. From now on we will refer to the constraints as green
edges. When a rule adds a constraint uv, and there already exists such a constraint,
then the set of constraints does not change.

Rule T s
1 . Let v be a leaf with Cv = ∅. Let u be the neighbour of v. Contract the

edge uv.

Rule T s
2 . Let v be a leaf with Cv = {(v, v)}. Let u be the neighbour of v. Contract

the edge uv.

Rule Ss
1. Let v be a vertex of degree 2 with Cv = ∅. Let u1, u2 be the neighbours of

v (possibly u1 = u2). Contract the edge u1v.

Rule T s
3 . Let G be a graph where every leaf and every degree 2 vertex is incident

to a green edge. Let v1 and v2 be two leaves that are connected by a green edge. Let
u1 and u2 be their neighbours (possibly u1 = u2). Contract the edges u1v1 and u2v2.

Rule Ss
2. Let G be a graph where every leaf and every degree 2 vertex is incident to

a green edge. Let v be a vertex of degree 2 with a green loop, such that there exists
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Rule T s
1 Rule T s

2

Rule Ss
1

Rule T s
3

Rule Ss
2

Rule Ls Rule P s
1

Rule P s
2 Rule Es

1

Rule Es
2 Rule Es

3

Figure 3.1: The reduction rules for recognizing stable hyperelliptic graphs.

a path from v to v in G (possibly containing green edges). Let u1 and u2 be the
neighbours of v (possibly u1 = u2). Remove v and connect u1 and u2 with a green
edge.

Rule Ls. Let v be a vertex with a loop. Remove this loop from v and add a green
loop to v.

Rule P s
1 . Let uv be an edge such that there also exists a green edge uv. Remove

the black edge uv.

Rule P s
2 . Let u, v be vertices, such that |E(u, v)| > 1. Let e1 and e2 be two of those

edges. If there exists another path, possibly containing green edges, from u to v, then
remove e1 and e2 and add a green edge from u to v.
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Rule Es
1. Let G be the graph consisting of a single vertex v with Cv = ∅. Remove

v.

Rule Es
2. Let G be the graph consisting of a single vertex v with a green loop.

Remove v.

Rule Es
3. Let G be the graph consisting of two vertices u and v that are connected

by a green edge. Remove u and v.

We will write Rs for this set of reduction rules. We can now state the main
theorem; in the next subsections we will prove this theorem.

Theorem 3.2.5. The set of rules Rs is safe and complete for Gs2.

Safeness

First, we prove that the rules Rs are safe for Gs2, i.e., if G a is graph, and H is
obtained from G by applying one of the rules in Rs, then sgon(G) ≤ 2 if and only
if sgon(H) ≤ 2. In all proofs we assume that the original graph is called G and the
graph obtained by applying a rule is called H.

Lemma 3.2.6. Rule T s
1 is safe.

Proof. This follows from Proposition 1.4.7.

Lemma 3.2.7. Rule T s
2 is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Then there exists a refinement G′ of G and a suitable

morphism φ : G′ → T . Let u be the neighbour of v in G. We distinguish two cases:
Suppose that mφ(u) = 2. Define H ′ as the graph G′ with a green loop at vertex

u and without the green loop at v, then H ′ is a refinement of H. Now we see that
φ : H ′ → T is a suitable morphism, so sgon(H) ≤ 2.

Suppose that mφ(u) = 1. Let v0 = v, v1, . . . , vk = u be the vertices that are
added to the edge uv of G. Let i be the largest integer such that mφ(vi) = 2. Notice
that i < k. Then there exists another vertex x1 in G′ such that φ(vi+1) = φ(x1). If
vi+1 6= u, it follows that there is an edge x1x2 that is mapped to φ(vi+1vi+2). And
since mφ(vi+2) = 1, we see that x2 6= vi+2. It follows that there exists x1 6= vi+1,
x2 6= vi+2, . . ., xk−i 6= vk such that φ(vi+j) = φ(xj). Write x = xk−i, then φ(x) =
φ(u) and mφ(u) = mφ(x) = 1. See Figure 3.2 for an illustration of this.

v uv1 v2

x1 x

w

y

Figure 3.2: Proof of Lemma 3.2.7.
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Notice that x is an external added vertex. Let w be a neighbour of u not equal to
vk−1. Then we see that there exists a vertex y such that φ(uw) = φ(xy). Since x is an
external added vertex, we see that w 6= y. We conclude that mφ(w) = 1. Inductively
we see that for every vertex w′ in Gvi(vi+1)\{vi} it holds that mφ(w′) = 1. Define H ′

as Gvi(vi+1)\{vi}, with a green loop at vertex u. Notice that H ′ is a refinement of
H. Now we can restrict φ to H ′ and assign to every edge index rφ′(e) = 2 to obtain
a suitable morphism: φ′ : H ′ → T ′, where T ′ = φ(Gvi(vi+1)\{vi}). We conclude
that sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and a
suitable morphism φ : H ′ → T . Write u for the neighbour of v in G. We know that
mφ(u) = 2. Then add a leaf with a green loop to u in H ′ to obtain G′. Now we see
that G′ is a refinement of G. Give the edge uv index rφ′(uv) = 2, and give all other
edges e index rφ′(e) = rφ(e). Add a leaf v′ to φ(u) in T to obtain T ′. Then we can
extend φ to φ′ : G′ → T ′ as follows:

φ′(x) =

{
φ(x) if x ∈ H ′

v′ if x = v.

It is easy to check that φ′ is a suitable morphism, so we conclude that sgon(G) ≤
2.

Lemma 3.2.8. Rule Ss
1 is safe.

Proof. This follows from Proposition 1.4.7.

Lemma 3.2.9. Rule T s
3 is safe.

Proof. Let v1 and v2 be the vertices in G to which the rule is applied.
“=⇒”: Suppose that sgon(G) ≤ 2. Let G′ be a minimum refinement of G such

that there exists a suitable morphism φ : G′ → T , i.e. for every refinement G′′ with
less vertices than G′ there is no suitable morphism φ′ : G′′ → T ′ to a tree T ′. Let
u1 and u2 be the neighbours of v1 and v2 in G. We distinguish three cases.

Case 1: Suppose that u1 6= u2, and that there does not exist a path from v1 to
v2, except the green edge v1v2. Let a0 = v1, a1, . . . , ak = u1 be the subdivision of
the edge u1v1 and b0 = v2, b1, . . . , bl = u2 the subdivision of the edge u2v2. We know
that there exists an edge v2c such that φ(a0a1) = φ(v2c). It is clear that c 6= a1,
thus mφ(a1) = 1. (See Figure 3.3(a).) Inductively we find that for every vertex a′ in

v1 a1 a2 u1

v2 b1 b2 b3
u2

c

(a) Case 1.

v1 a1 a2 u1

v2 b1 b2 b3
u2

x

w

(b) Case 2.

Figure 3.3: Proof of Lemma 3.2.9.
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G′a0(a1) it holds that mφ(a′) = 1. We conclude that G′a0(a1) is a tree. Analogously
we find that G′b0(b1) is a tree. Thus Gv1(u1) and Gv2(u2) are trees. Hence H consists
of two black trees connected by a green edge.

Now we can construct a refinement H ′ of H, a tree T ′ and a suitable morphism
φ′ : H ′ → T ′. Copy every branch of u1 and add them to u2 and copy every branch of
u2 and add them to u1. Write H ′ for this graph. Now we see that the two trees of H ′

are identical up to isomorphism, say they are isomorphic to T ′. Now we can define
φ′ : H ′ → T ′ as the identity map on each of the components, where φ′(u1) = φ′(u2).
Thus φ′ is a suitable morphism. We conclude that sgon(H) ≤ 2.

Case 2: Suppose that u1 6= u2 and that there exists a path (possibly containing
green edges) from v1 to v2. Assume that φ(u1) 6= φ(u2). Let a0 = v1, a1, . . . , vk = u1
be the added vertices on the edge v1u1 and let b0 = v2, b1, . . . , bl = u2 be the added
vertices on the edge v2u2. Assume without loss of generality that k ≤ l. It is clear
that all vertices a0, . . . , ak, b0, . . . , bl lie on the path from v1 to v2. If φ(a1) 6= φ(b1),
then there is a vertex x in the path from a1 to b1 that is mapped to φ(v1). This
yields a contradiction. Thus φ(a1) = φ(b1). Inductively we find that φ(ai) = φ(bi)
for all i ≤ k. We conclude that φ(bk) = φ(u1). It follows that deg(bk) = deg(u1).
We again distinguish two cases.

Suppose that deg(u1) > 2. Then bk has an external added neighbour w. We see
that u1 has a neighbour x such that φ(bkw) = φ(u1x). Since w is an external added
vertex, it follows that w 6= x. Thus mφ(w) = 1. (See Figure 3.3(b).) Iteratively we
see that for every vertex w′ in G′bk(w), it holds that mφ(w′) = 1. Notice that G′bk(w)
is a tree, since w is an external added vertex. Now let y be a leaf in G′bk(w), and
let y′ be such that φ(y) = φ(y′). Then y′ is a leaf. It is clear that y′ has no green
edge incident to it, thus y′ is an added vertex. We conclude that we can remove y
and y′ from G′ and φ(y) from T and still have a suitable morphism. This yields a
contradiction with the minimality of G′.

Suppose that deg(u1) = 2 in G′. Then the degree of u1 in G is also 2. It follows
that Cu1 6= ∅. Let u1c be a green edge. If c = u1, so if u1 has a green loop, then
mφ(u1) = 2. This yields a contradiction. It is clear that c 6= bl, since bl is an added
vertex. It follows that there are 3 distinct vertices that are mapped to φ(u1). This
yields a contradiction.

Altogether we conclude that φ(u1) = φ(u2). Define H ′ as G′ with a green edge
u1u2. Now H ′ is a refinement of H, and φ : H ′ → T is a suitable morphism. We
conclude that sgon(H) ≤ 2.

Case 3: Suppose that u1 = u2. Analogous to the second case, we can prove that
mφ(u1) = 2. Define H ′ as G′ with a green loop at vertex u1. Now H ′ is a refinement
of H, and φ : H ′ → T is a suitable morphism. We conclude that sgon(H) ≤ 2.

“⇐=”: Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and
a suitable morphism φ : H ′ → T . Write u1 and u2 for the neighbours of v1 and v2
in G. We know that φ(u1) = φ(u2). Then add leaves v1 and v2 to u1 and u2 and a
green edge v1v2 in H ′ to obtain G′. Now we see that G′ is a refinement of G. Give
the edges u1v1 and u2v2 index rφ′(u1v1) = rφ′(u2v2) = 1, and give all other edges e
index rφ′(e) = rφ(e). Add a leaf v′ to φ(u1) in T to obtain T ′. Then we can extend
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φ to φ′ : G′ → T ′ as follows:

φ′(x) =

{
φ(x) if x ∈ H ′

v′ if x = v1, v2.

It is easy to see that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2.

Lemma 3.2.10. Rule Ss
2 is safe.

Proof. This proof is analogous to the proof of the second and third case in the proof
of Lemma 3.2.9, so we omit it.

Lemma 3.2.11. Rule Ls is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Then there exists a refinement G′ of G and a suitable

morphism φ : G′ → T . Let u be a vertex that is added to the loop vv. We distinguish
two cases.

Suppose that mφ(v) = 2. Define H ′ as the graph G′\(G′v(u)\{v}) with a green
loop at vertex v, then H ′ is a refinement of H. Let T ′ = T\φ(G′v(u)\{v}). We see
that the restricted morphism φ : H ′ → T ′ is a suitable morphism, so sgon(H) ≤ 2.

Suppose that mφ(u) = 1. Let v0 = v, v1, . . . , vk = v be the vertices that are
added to the loop vv of G. Let i be such that φ(vi) = φ(v). Let w be a neighbour
of v not equal to v1 or vk−1. Then there is a neighbour x of vi, not equal to vi−1
and vi+1, such that φ(w) = φ(x). Notice that x is an external added vertex, thus
mφ(w) = mφ(x) = 1. Inductively we see that for every vertex w′ in G′v(w) it holds
that mφ(w′) = 1. We conclude that G′v(w) is a tree.

Define H ′ as G′v(w), with a green loop at vertex v. Notice that H ′ is a refinement
of H. Now we can restrict φ to H ′ and give every edge e index rφ′(e) = 2 to obtain
a suitable morphism: φ′ : H ′ → T ′, where T ′ = φ(G′v(w)). We conclude that
sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and a suitable
morphism φ : H ′ → T . We know that mφ(v) = 2. Then add a vertex u to H ′ with
two black edges to v to obtain G′. Now we see that G′ is a refinement of G. Give
both edges uv index rφ′(uv) = 1, and give all other edges e index rφ′(e) = rφ(e).
Add a leaf v′ to φ(u) in T to obtain T ′. Then we can extend φ to φ′ : G′ → T ′ as
follows:

φ′(x) =

{
φ(x) if x ∈ H ′

v′ if x = u.

It is clear that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2.

Lemma 3.2.12. Rule P s
1 is safe.

Proof. Let uv be the edge in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Let G′ be a refinement of G and φ : G′ → T a

suitable morphism. Let Guv be the set of all vertices that are internal added to the
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edge uv, together with all external added vertices for which all paths to v contain
such an internal added vertex. Thus Guv contains all vertices that are internal or
external added to the edge uv. Now define H ′ = G′\Guv and T ′ = T\(φ(Guv)).
Write φ′ for the restriction of φ to H ′. Notice that φ′ is a suitable morphism and
that H ′ is a refinement of H. Thus sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Let H ′ be a refinement of H and φ : H ′ → T a
suitable morphism. Add an edge uv and a vertex w on this edge to H ′, to obtain a
refinement G′ of G. Add a vertex w′ to T with an edge to φ(u), to obtain a tree T ′.
Give the edges uw and vw index rφ′(uw) = rφ′(vw) = 1, and give all other edges e
index rφ′(e) = rφ(e). Consider the morphism φ′ : G′ → T ′, defined as

φ′(x) =

{
φ(x) if x ∈ H ′

w′ if x = w.

Notice that φ(uw) = φ(vw), since there is a green edge uv. We conclude that φ′ is
a suitable morphism, thus sgon(G) ≤ 2.

Lemma 3.2.13. Rule P s
2 is safe.

Proof. Let u and v be the vertices in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Let G′ be a refinement of G and φ : G′ → T a suitable

morphism. If φ(u) 6= φ(v), then there are at least three paths that are mapped to
the path from φ(u) to φ(v) in T . This yields a contradiction. Thus φ(u) = φ(v).
Now we see, analogous to the proof of Lemma 3.2.12, that sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Then we find analogous to the proof of Lemma
3.2.12, that sgon(G) ≤ 2.

Lemma 3.2.14. Rules Es
1, Es

2 and Es
3 are safe.

Proof. All these graphs have stable gonality at most 2, so the statement holds true.

Now we have proven that all rules are safe, thus we have the following lemma:

Lemma 3.2.15. The set of rules Rs is safe for Gs2.

Completeness

Now we will prove that the set of rules Rs is complete. Let G be a connected graph.
Suppose we obtain H by applying rules from Rs until no rule is applicable any more.
Notice that the graph, formed by the vertices and the black and green edges of H
is connected.

We define the graphs H1, H2 and H3 as a single vertex, a vertex with a green
loop and two vertices connected by a green edge respectively. These are exactly the
graphs that can be reduced to the empty graph by Rules Es

1, Es
2 and Es

3.

Lemma 3.2.16. The set of rules Rs is complete for Gs2.
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Proof. Let G be a graph with sgon(G) ≤ 2. Suppose that H is obtained by reducing
G and that we cannot apply any rule to H any more. By Lemma 3.2.15 it follows
that sgon(H) ≤ 2.

Suppose that H 6= ∅. First we make an observation on the structure of H. If
there is a double edge between two vertices u and v, then removing these two edges
yields a disconnected graph, otherwise we could apply Rule P s

2 . Let u1v1, . . . , ukvk
be all double edges in H. Let Hi,1, Hi,2 be the two different connected components
after removing the edges uivi. If there is a degree 2 vertex with a green loop, then
removing this vertex yields a disconnected graph, otherwise we could apply rule Ss

2.
Let v1, . . . , vl be all degree two vertices with a green loop. Let H ′i,1, H

′
i,2 be the two

different connected components after removing vi. Let H ′ be the element of

{Hi,j | 1 ≤ i ≤ k, j ∈ {1, 2}} ∪ {H ′i,j | 1 ≤ i ≤ l, j ∈ {1, 2}}

with the minimum number of vertices. Notice that there is at most one vertex v in
H ′ with degH′(v) 6= degH(v). Now we can say the following about H ′.

• If H ′ contains only one vertex, then we could have applied Rule T s
1 , T s

2 , Ss
1,

Ss
2, Es

1 or Es
2. Thus H ′ contains at least 2 vertices.

• If there is a vertex that is incident to more than one green edge, then sgon(H) ≥
3 by Lemma 3.2.2. So we can assume that no vertex is incident to more than
one green edge.

• If H ′ contains a vertex u 6= v of degree 0, then degH(u) = degH′(u) = 0. We
see that Cu = {(u,w)} with u 6= w, because H ′ is connected and contains at
least two vertices. By Lemma 3.2.4 it follows that degH(u) = degH(w) = 0.
Since H is connected it follows that H = H3, so we can apply Rule Es

3. This
yields a contradiction. So we can assume that H does not contain vertices
with degree 0.

• If H contains a leaf u 6= v, then degH′(u) = degH(u) = 1. We see that u
is incident to a green edge uw, with degH(w) 6= 1, otherwise we could have
applied Rule T s

1 , T s
2 or T s

3 . By Lemma 3.2.4, it follows that sgon(H) ≥ 3. So
we can assume that H does not contain leaves.

• If H contains a vertex u 6= v of degree 2, then we see that Cu = {u,w} with
u 6= w, by Rules Ss

1 and Ss
2 and by the choice of H ′.

• We see that H ′ does not contain black loops because of Rule Ls.

• By Rules P s
1 and P s

2 and by the choice of H ′ it follows that H ′ has no multiple
edges.

Write H ′′ for the graph obtained from H ′ by removing all green loops and colour-
ing all green edges of H ′ black. Altogether we see that H ′′ is a simple graph with
at least two vertices and every vertex, except at most one, has degree at least 3. It
follows that H ′′ has treewidth at least 3.

If we change the colour of all green edges to black, we see that all rules are
deletions of vertices or edges, contractions of edges and/or additions of loops. Since
the set of graphs with treewidth at most k is closed under these operations, we see
that tw(G) ≥ tw(H ′′) ≥ 3. But then it follows that sgon(G) ≥ tw(G) ≥ 3. This
yields a contradiction.

We conclude that H = ∅, and thus GRs∗∅.
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Lemma 3.2.15 says that Rs is safe for Gs2 and from 3.2.16 it follows that Rs is
complete for Gs2. So together this proves Theorem 3.2.5. We conclude that we can
use this set of rules to recognize graphs with stable gonality at most 2.

3.3 Reduction rules for stable divisorial gonality

In this section we show a set of reduction rules to decide whether stable divisorial
gonality is at most two, this set is similar to the set of rules for stable gonality.
In this section, we use a different concept of constraints. These are based on the
constraints used by Jelco Bodewes for recognizing graphs of divisorial gonality 2
[13, 14].

Notation

To check whether a graph has stable divisorial gonality two or lower, we have to
check whether there is a refinement of our graph such that there exists a divisor
with degree 2 and rank at least 1. Constraints in this case are used to restrict which
divisors we consider and what sets we are allowed to fire after reduction. The pairs
in the constraints place the following restrictions on what divisors and firing sets
are allowed:

Definition 3.3.1. Given a constraint r = (u, v), we say that a divisor D satisfies
r if it is equivalent to an effective divisor after removing one chip from v and one
chip from w. In addition, any set that we fire should contain either both u and v or
neither.

Note that in the case that u = v the first part means a divisor should be equiva-
lent to an effective divisor after removing two chips from v and the second condition
is fulfilled trivially.

We will refer to constraints as red edges. We call an effective divisor of degree
2, rank greater than or equal to 1, and that satisfies all conditions given by the
constraints a suitable divisor. A graph with constraints has stable divisorial gonality
at most 2 if there exists a refinement such that there is a suitable divisor. Again, let
Gsd2 be the set of all graphs with constraints with stable divisorial gonality at most
2.

Lemma 3.3.2. Let G be a graph. If there is a vertex v with |Cv| > 1, then
sdgon(G) ≥ 3.

Proof. Let (v, w) and (v, w′), with w 6= w′, be two constraints that contain v. Sup-
pose that sdgon(G) = 2. Let G′ be a refinement of G such that dgon(G′) = 2. We
first look at the possibility where v = w′. Then any suitable divisor on G′ must
be equivalent to the divisor D with D(v) = 2, but also equivalent to the divisor D′

with D′(v) = 1 and D′(w) = 1. It follows that these divisors are equivalent to each
other. Let A0, . . . , Ak be the level set decomposition of the transformation from D
into D′. Note that, since we have the constraint (v, w), all sets Ai containing v also
contain w. Note that v ∈ A0, since it is the only vertex with chips, which means
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that it must also contain w. But then the number of chips on w cannot increase by
firing A0, . . . , Ak, this yields a contradiction. We conclude that G /∈ Gsd2 .

The other possibility is that v 6= w and v 6= w′. This means that any suitable
divisor should be equivalent to the divisor D with D(v) = 1 and D(w) = 1, and
equivalent to the divisor D′ with D′(v) = 1 and D′(w′) = 1. Let A0, . . . , Ak be the
level set decomposition of the transformation of D into D′. Note that any firing set
that contains v also contains both w and w′ by our constraints. Moreover, any firing
set containing w contains w′ by our constraints. Since in D the only vertices that
have chips are v and w, it follows that either v or w is an element of A0. It follows
that A0 contains w′. This means that the number of chips on w′ cannot increase,
this yields a contradiction. We conclude that G /∈ Gsd2 .

We conclude that sdgon(G) > 2.

Lemma 3.3.3. Let G be a graph where every leaf is incident to a red edge, so if
deg(u) = 1 then |Cu| > 0 for all u. Suppose that v is a leaf and (v, w) is a red edge.
If deg(w) 6= 1, then sdgon(G) ≥ 3.

Proof. Assume on the contrary that deg(w) 6= 1 and sdgon(G) = 2, and let G′ be
a refinement of G with dgon(G′) = 2. Let D be the divisor on G′ with D(v) =
D(w) = 1. Since we have the constraint (v, w) and G′ ∈ Gsd2 , D is a suitable divisor.

Suppose that degG(w) = 0. Then the graph G′ consists of two connected compo-
nents, write Cv for the component containing v and Cw for the component containing
w. Notice that every vertex in Cw\{w} is an added vertex. The chip on w will never
leaf Cw, thus G′\Cw is a tree. It follows that there is a leaf x, with a constraint
(x, y). Since there will never be two chips on Cv, we see that y ∈ Cw. Since all ver-
tices in Cw, except w, are added, it follows that y = w. This yields a contradiction
with Lemma 3.3.2.

Suppose that degG(w) > 1, then degG′(w) > 1 too. We first consider the case
where w is not a cut-vertex in G′. Let u be the neighbour of v. Since w is not a
cut-vertex, we see that w 6= u. Consider the transformation from D to a divisor
D′ with D′(u) ≥ 1. Let A0 be the first firing set in the level set decomposition of
this transformation. Note that we have v, w ∈ A0 and u /∈ A0. Since w is not a
cut-vertex, it follows for each neighbour wi of w that there is a path from wi to
u that does not contain w or wi = u. Note that if a neighbour wi 6= u is in A0,
then somewhere on its path to u must be an edge that crosses between A0 and its
complement Ac0. But such a crossing edge would imply that we are not allowed to
fire A0, since no vertex on this path contains a chip. It follows that none of the
neighbours of w are in A0. Since w has degree at least two, and only one chip, it
follows that we are not allowed to fire the set A0. This yields a contradiction.

We proceed with the case where w is a cut-vertex. Let Cx be a connected
component not containing v after removing w. Consider the subset Cx in G′. Note
that from D we can never obtain an equivalent divisor with two chips on Cx. Since
the chip from v would have to move through w to get to Cx, this would require D to
be equivalent to a divisor with two chips on w, which is impossible by Lemma 3.3.2.
Since D has rank greater than zero it then follows that Cx must be a tree. This
means Cx must contain a vertex x of degree one. We know however that x must
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have a constraint (x, y) where y is a vertex with degree greater than one. Thus D is
equivalent to D′′ with D′′(x) = D′′(y) = 1. We now consider the possible locations
of y.

Suppose that y ∈ Cx. As mentioned before, D cannot be equivalent to a divisor
with two chips on Cx, so it follows that y /∈ Cx. Let Cy be the component containing
y. Let A0 be the first subset of the level set decomposition of the transformation
of D into D′′. Note that v, w ∈ A0 and x, y /∈ A0. This implies that w has at least
one neighbour w1 in Cy, with w1 /∈ A0, namely the first vertex on a path from w to
y. But w also has at least one neighbour w2 in Cx, with w2 /∈ Cx, namely the first
vertex on the path from w to x. This means w has two neighbours that it will send
a chip to, but w only has one chip. This yields a contradiction. We conclude there
can be no such constraint (x, y).

We conclude that if deg(w) 6= 1, then sdgon(G) > 2.

Reduction rules

We will now state all rules. When a rule adds a red edge uv, and there already
exists such a red edge, then the set of constraints does not change. The reduction
rules for stable divisorial hyperelliptic graphs are almost the same as the rules for
stable hyperelliptic graphs. Instead of green edges we use red edges, and we replace
Rule Ss

1 and Ls by new Rules Ssd
1a, Ssd

1b and Lsd, see Figure 3.4 for the new rules.

Rule T sd
1 (=T s

1 ). Let v be a leaf with Cv = ∅. Let u be the neighbour of v. Contract
the edge uv.

Rule T sd
2 (=T s

2 ). Let v be a leaf with Cv = {(v, v)}. Let u be the neighbour of v.
Contract the edge uv.

Rule Ssd
1a. Let v be a vertex of degree 2 with Cv = ∅. Let u be the only neighbour of

v. Remove v and add a red loop to u.

Rule Ssd
1b . Let v be a vertex of degree 2 with Cv = ∅. Let u1 and u2 be the two

neighbours of v, with u1 6= u2. Contract the edge u1v.

Rule T sd
3 (=T s

3 ). Let G be a graph where every leaf and every degree 2 vertex is
incident to a red edge. Let v1 and v2 be two leaves that are connected by a red edge.
Let u1 and u2 be their neighbours. Contract the edges u1v1 and u2v2.

Rule Ssd
1a Rule Lsd

Figure 3.4: The reduction rules for stable divisorial gonality that are different from the rules
for stable gonality.
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Rule Ssd
2 (=Ss

2). Let G be a graph where every leaf and every degree 2 vertex is
incident to a red edge. Let v be a vertex of degree 2 with a red loop, such that
there exists a path from v to v in the black and red graph G. Let u1 and u2 be the
neighbours of v. Remove v and connect u1 and u2 with a red edge.

Rule Lsd. Let v be a vertex with a loop. Remove all loops from v.

Rule P sd
1 (=P s

1 ). Let uv be an edge. Suppose that there also exists a red edge from
u to v. Remove the black edge uv.

Rule P sd
2 (=P s

2 ). Let u, v be vertices, such that |E(u, v)| > 1. Let e1 and e2 be two
of those edges. If there exists another path, possibly containing red edges, from u to
v, then remove e1 and e2 and add a red edge from u to v.

Rule Esd
1 (=Es

1). Let G be the graph consisting of a single vertex v with Cv = ∅.
Remove v.

Rule Esd
2 (=Es

2). Let G be the graph consisting of a single vertex v with a green
loop. Remove v.

Rule Esd
3 (=Es

3). Let G be the graph consisting of two vertices u and v that are
connected by a green edge. Remove u and v.

We write Rsd for the set of these reduction rules. We can now state our main
theorem.

Theorem 3.3.4. The set of rules Rsd is safe and complete for Gsd2 .

Safeness

We will show that the set Rsd is safe for Gsd2 .

Lemma 3.3.5. Rule T sd
1 is safe.

Proof. This follows from Proposition 1.4.6.

Lemma 3.3.6. Rule T sd
2 is safe.

Proof. This proof is analogous to the proof of Lemma 3.3.5.

Lemma 3.3.7. Rule Ssd
1a is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Let u be the neighbour of v. Suppose that sdgon(G) ≤ 2. Let G′ be a refinement

of G such that there exists a suitable divisor D. Let C be the cycle through v and
u. Notice that D is equivalent to a divisor D′ with two chips on C. If G\(C\{u})
is a tree, then we are done. Otherwise we see that D′ is equivalent to D′′, where
D′′(u) = 2. Let H ′ be G′\(C\{u}) with a red loop at u. We see that H ′ is a
refinement of H and D′′ is a suitable divisor for H ′, thus sdgon(H) ≤ 2.

Suppose that sdgon(H) ≤ 2. Then there exists a refinement H ′ of H such that
D, with D(u) = 2, is a suitable divisor. Let G′ be H ′ without the red loop on u and
with a vertex v with two edges to u. Then G′ is a refinement of G. It is clear that
D is a suitable divisor for G′ too. We conclude that sdgon(G) ≤ 2.
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Lemma 3.3.8. Rule Ssd
1b is safe.

Proof. This follows from Proposition 1.4.6.

Lemma 3.3.9. Rule T sd
3 is safe.

Proof. Let v1 and v2 be the vertices in G to which the rule is applied.
Suppose that sdgon(G) ≤ 2. Let G′ be a minimum refinement of G and D a

suitable divisor on G′. Let u1 and u2 be the neighbours of v1 and v2 in G. We
distinguish three cases.

Case 1: Suppose that u1 6= u2, and that there does not exist a path from v1 to
v2, except the red edge v1v2. Then we can reach all vertices in Gv1(u1) with only
one chip, thus Gv1(u1) is a black tree. So Gv1(u1) contains a leaf that is not incident
to a red edge. This yields a contradiction with the minimality of G′.

Case 2: Suppose that u1 6= u2 and that there exists a path P , possibly containing
red edges, from v1 to v2. Assume that D � D′ where D′ is the divisor such that
D′(u1) = D′(u2) = 1. Let a0 = v1, a1, . . . , ak = u1 be the added vertices on the
edge v1u1 and let b0 = v2, b1, . . . , bl = u2 be the added vertices on the edge v2u2.
Assume that k < l. It is clear that all vertices a0, . . . , ak, b0, . . . , bl lie on P . Notice
that firing the sets {ai, bi | i ≤ j} for all j ≤ k results in the divisor Dk with
Dk(ak) = Dk(bk) = 1. Thus Dk(u1) = 1. Since bk is an internal added vertex and
G′ is a minimum refinement, we see that deg(bk) = 2.

Suppose that u1 is incident to a red edge u1x. We know that x 6= bk, since bk is
an added vertex. Let D′′ be the divisor with D′′(u1) = D′′(x) = 1. Let A0, . . . , As
be the level set decomposition of the transformation from Dk to D′′. We see that u1
cannot lose its chip. Thus bk fires its chip to one of its neighbours when we fire A0.
But then we see that the cut of A0 is at least two, and we can only fire one chip.
This yields a contradiction. We conclude that u1 is not incident to a red edge.

By the conditions of the rule it follows that deg(u1) ≥ 3. Let w /∈ P be a
neighbour of u1. Now we see that G′u1(w) is a black tree. It follows that G′u1(w)
contains a leaf that is not incident to a red edge. Since G′ is a minimum refinement,
this yields a contradiction. Altogether we conclude that k = l.

Let P1, P2 be the two arcs of P between u1 and u2. Notice that, if there are two
chips on P , then they are either on u1 and u2 or on the same arc Pi. Suppose that
there are divisors E,E′ such that E ∼ E′ and that there is a set A in the level set
decomposition of E′−E such that u1 ∈ A and u2 /∈ A. It follows that there is a chip
fired along each of the arcs P1 and P2. This yields a contradiction. We conclude
that for every firing set it holds that either u1 and u2 are both fired or they are both
not fired.

Now let H ′ be G′ without the red edge v1v2 and with a red edge u1u2. We see
that D is a suitable divisor for H ′ as well. Thus sdgon(H) ≤ 2.

Case 3: Suppose that u1 = u2. This case is analogous to case 2.
Suppose that sdgon(H) ≤ 2. Then it is clear that sdgon(G) ≤ 2.

Lemma 3.3.10. Rule Ssd
2 is safe.

Proof. This proof is analogous to the proof of cases two and three in the proof of
Lemma 3.3.9, so we omit it.
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Lemma 3.3.11. Rule Lsd is safe.

Proof. There will never be a chip fired over a loop, so loops do nothing for the stable
divisorial gonality. Thus sdgon(G) ≤ 2 if and only if sdgon(H) ≤ 2.

Lemma 3.3.12. Rule P sd
1 is safe.

Proof. Let uv be the edge in G to which the rule is applied.
Suppose that sdgon(G) ≤ 2. Let G′ be a refinement of G and D a suitable

divisor with D(u) = D(v) = 1. Let Guv be the set of all vertices that are internal
added to the edge uv, together with all external added vertices for which all paths
to v contain such an internal added vertex. Thus Guv contains all vertices that
are internal or external added to the edge uv. Now define H ′ = G′\Guv. Look at
the divisor D on H ′ and notice that D is a suitable divisor. Observe that H ′ is a
refinement of H. Thus sdgon(H) ≤ 2.

Suppose that sdgon(H) ≤ 2. Let H ′ be a refinement of H and D a suitable
divisor. Add an edge uv to H ′, to obtain a refinement G′ of G. We see that D′ is a
suitable divisor for G′, thus sdgon(G) ≤ 2.

Lemma 3.3.13. Rule P sd
2 is safe.

Proof. Let e1, e2 be the edges from u to v in G to which the rule is applied.
Suppose that sdgon(G) ≤ 2. Then there exists a refinement G′ of G such that

there exists a suitable divisor on G′. Let D be a suitable divisor on G′ with a
chip on u. We will show that there is a suitable divisor that has a chip on both
u and v: Assume that D(v) = 0, then there should be a suitable divisor D′ with
D′(v) = 1 and D ∼ D′. This implies there is a level set decomposition A0, . . . , Ak
of the transformation from D to D′.

If none of the subsets contains u then it follows that D′(u) = 1 and we are done.
Otherwise let i be the smallest index such that Ai contains u and let Di be the
divisor before firing Ai. Suppose that Di(v) = 0, then it follows that v /∈ Ai. Notice
that there are three disjoint paths from u to v, so the minimum cut between u and
v is at least 3. It follows that there are at least three chips fired by Ai. But we only
have two chips, this yields a contradiction. We conclude that Di(v) = 1.

Also by the fact that the minimum cut between u and v is at least three it follows
that firing a subset A can only be valid if A contains either both u and v or neither.

Define H ′ as G′ after removing the edges e1, e2 and adding a red edge uv. Notice
that H ′ is a refinement of H. We conclude that the divisor Di is a suitable divisor
on H ′, and sdgon(H) ≤ 2.

Now we assume that sdgon(H) ≤ 2. From this it follows that there exists a
refinement H ′ of H and a suitable divisor D on H ′ with a chip on u and a chip on
v. Define G′ as H ′ after adding the edges e1, e2 and notice that G′ is a refinement
of G. Consider the divisor D on G′. We see that D is suitable on G′ and thus
sdgon(G) ≤ 2.

Lemma 3.3.14. Rules Esd
1 , Esd

2 and Esd
3 are safe.

Proof. All those graphs have stable gonality at most 2, so the statement holds
true.
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Now we have proven that all rules are safe, so we can conclude the following:

Lemma 3.3.15. The set of rules Rsd is safe for Gsd2 .

Completeness

Now we will prove that Rsd is complete for Gsd2 , i.e. if G ∈ Gsd2 , then GRsd∗∅.
We define the graphs H1, H2 and H3 as a single vertex, a vertex with a red loop

and two vertices connected by a red edge respectively, these are the graphs that can
be reduced to the empty graph by rules Esd

1 , Esd
2 and Esd

3 .
Let G be a connected graph. Suppose we obtain H by applying rules from Rs

until no rule is applicable any more. Notice that the graph, formed by the vertices
and the black and red edges of H is connected.

Lemma 3.3.16. The set of rules Rsd is complete for Gsd2 .

Proof. Let G be a graph with sdgon(G) ≤ 2. Suppose that H is obtained by reducing
G and that no rule can be applied to H. By 3.3.15 it follows that sdgon(H) ≤ 2.

Suppose that H 6= ∅. As in the proof of Theorem 3.2.16, if there are two
edges between the vertices u and v, then removing these edges leads to H being
disconnected. And if there is a degree 2 vertex v with a red loop, then removing v
yields a disconnected graph. Let H ′ be the smallest connected component that can
be created by removing two parallel edges or a degree 2 vertex, as in the proof of
Theorem 3.2.16.

Now we colour all red edges black and remove all loops to obtain H ′′, as in the
proof of Theorem 3.2.16. Then we see thatH ′′ is a simple graph that contains at least
two vertices and all vertices, except at most one, have degree at least three. Thus
H ′′ has treewidth at least three. It follows that sdgon(G) ≥ tw(G) ≥ tw(H ′′) ≥ 3.

We conclude that if sdgon(G) ≤ 2, then GRsd∗∅.

Lemma 3.3.15 shows that the set of reduction rules Rsd is safe and Lemma 3.3.16
shows that this set is complete. So together this proves Theorem 3.3.4. Thus we
can use the set Rsd to recognize graphs of stable divisorial gonality at most 2.

3.4 Algorithms using the reduction rules

We can use the reduction rules of Section 3.2 and 3.3 to obtain algorithms that
decide in polynomial time whether a graph is stable (divisorial) hyperelliptic.

For this, we introduce a new rule, see Figure 3.5:

Rule M s Rule M sd

Figure 3.5: An extra reduction rule for stable and stable divisorial gonality.
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Rule M s. Let u, v be vertices, such that |E(u, v)| ≥ 3. Remove all edges in E(u, v)
and add a green edge from u to v.

It is clear that this rule is the same as first applying Rule P s
2 and then applying

Rule P s
1 to all remaining edges uv. For stable divisorial gonality we introduce a

similar rule.

Rule M sd. Let u, v be vertices, such that |E(u, v)| ≥ 3. Remove all edges in E(u, v)
and add a red edge from u to v.

This is again the same as first applying Rule P sd
2 and then applying Rule P sd

1

to all remaining edges uv.
All applications of these rules can be done in O(m) time at the start of the

algorithm, after which we know that no pair of vertices can have more than two
edges between them. By application of Rule Ls and Lsd we can also ensure in
O(m) time that no loops exist.

By Lemma 2.2.11 we know that treewidth is a lower bound for gonality. So if
tw(G) > 2, then we know that sgon(G) > 2 and sdgon(G) > 2. So if the treewidth
is at least 3, the algorithm can terminate. We can check in linear time whether the
treewidth of a graph is at most 2. In the rest of the algorithm we can assume that
the treewidth is at most 2.

If there is a vertex which is incident to more than one green or red edge, it
follows by Lemma 3.2.2 and 3.3.2 that sgon(G) > 2 and sdgon(G) > 2. So if there
is a vertex which is incident to more than one green or red edge, the algorithm can
terminate. We can check in linear time whether there is such a vertex. In the rest
of the algorithm we can assume that every vertex is incident to at most 1 green or
red edge.

Now we can repeatedly apply a rule, until none is applicable. For each of the
rules, one can test in polynomial time for a given graph (with green or red edges) if
the rule can be applied to the graph, and if so, the rule can be applied in polynomial
time.

We claim that we apply at most O(n) rules. Consider the following potential
function f : let f(G) = n+ 2m+ g for a graph G with n vertices, m (black) edges,
and g green or red edges. We know that every vertex is incident to at most 1 green
or red edge, thus g ≤ n. The number of edges is at most 4n: Simple graphs of
treewidth k and n vertices have at most kn edges. It follows that the underlying
simple graph has at most 2n edges. By our previous steps, there are at most 2 edges
between a pair of vertices and no loops, so there are at most 4n edges left. We
conclude that for a graph G with treewidth at most 2, it holds that f(G) = O(n).
The application of each rule decreases f(G) by at least one. So we apply at most
O(n) rules.

So we have polynomial time algorithms.
Using Courcelle’s theorem [21], there is an implementation that leads to algo-

rithms running in O(m+ n log(n)) time. For details, see [14, Section 7].



4 Complexity of computing gonality

Computing divisorial gonality is proven to be NP-hard by Gijswijt [26]. In this
chapter, we extend his method to show that computing stable divisorial gonality is
NP-hard.

4.1 Complexity theory

First we will give a short and informal introduction into complexity theory. This
introduction is based on [19, Chapter 34] and [29, Chapter 9], which contain a more
formal introduction.

The class NP is a class of decision problems; these are problems with as answer
‘yes’ or ‘no’. An example of a decision problem is the following. An independent set
is a subset A ⊆ V of the vertices of a graph such that for any two vertices u, v ∈ A,
there is no edge uv. By α(G) we denote the size of the largest independent set in a
graph G. The independent set problem asks the following: given a simple graph G
and an integer k, is there a subset of V (G) of size k that is an independent set, i.e.,
does it hold that α(G) ≥ k?

The class NP consists of all decision problems that are ‘verifiable’ in polynomial
time. We illustrate what we mean by this with an example. An instance of the
independent set problem is a pair (G, k) of a graph G and an integer k. We call an
instance (G, k) a ‘yes’-instance, if there is an independent set of size k inG and a ‘no’-
instance otherwise. For a ‘yes’-instance there exists a certificate: an independent
set A ⊆ V (G) of size at least k. Notice that this certificate has polynomial size. For
an instance (G, k) and a set B ⊆ V (G), we can check in polynomial time whether
B is a certificate for this instance. The class NP is the class of decision problems
with the following property: for every ‘yes’-instance there exists a certificate A of
polynomial size and it can be verified that A is indeed a certificate in polynomial
time.

A decision problem is NP-hard if it is ‘at least as hard as any problem in NP’. To
explain this, we introduce the notion of polynomial-time reductions. A polynomial-
time reduction from a decision problem A to a decision problem B is a map that
transforms every instance A of A in polynomial time to an instance B of B in such
a way that A is a ‘yes’-instance if and only if B is a ‘yes’-instance. If there is
a polynomial-time reduction from A to B, then we write A � B. Suppose that
A � B. We see that, if there is an algorithm that determines in polynomial time for
any instance B of B whether B is a ‘yes’-instance, then there is an algorithm that
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determines in polynomial time for any instance A of A whether A is a ‘yes’-instance:
first reduce A to an instance of B, and then use the algorithm for B. In this sence
B is ‘harder’ then A. A problems A is NP-hard if it has the following property: for
any problem B ∈ NP it holds that B � A. Notice that to prove that a problem A is
NP-hard, it suffices to prove that there is an NP-hard problem B such that B � A.

A problem is NP-complete if it is in NP and NP-hard. The independent set
problem is known to be NP-complete.

4.2 Stable divisorial gonality is NP-hard

We define the divisorial gonality problem to be the following: let G be a graph and
k an integer, does it hold that dgon(G) ≤ k? And we define the stable divisorial
gonality problem to be the following: let G be a graph and k an integer, does it hold
that sdgon(G) ≤ k? It is proven that the divisorial gonality problem is NP-hard by
Gijswijt [26]. In this section we extend this proof to a proof that the stable divisorial
gonality problem is NP-hard.

For this proof, we will make a polynomial-time reduction from the independent
set problem to the stable divisorial gonality problem. Let G be a simple graph.
Define M = 3|V (G)| + 2|E(G)| + 2. We will construct a reduction graph H of G
with M − 1 vertices such that sdgon(H) = 4|V (G)|+ |E(G)|+ 1− α(G).

Let H be a graph with a single vertex t. For every vertex v ∈ V (G), add three
vertices ṽ, v′, vt to H. Add M parallel edges from t to vt, three parallel edges from
vt to v′ and M parallel edges from v′ to ṽ. For every edge e = uv ∈ E(G), make
two vertices eu, ev. Add an edge euev, M parallel edges from eu to ũ and M parallel
edges from ev to ṽ to H. Now we see that H contains M − 1 vertices. See Figure
4.1 for an example.

We will now prove that sdgon(H) = 4|V (G)|+ |E(G)|+ 1−α(G) for a reduction
graph H of G.

Lemma 4.2.1. Let G be a simple graph and H its reduction graph. Then sdgon(H) ≤
4|V (G)|+ |E(G)|+ 1− α(G).

Proof. Let A be an independent set in G of size α(G). Order the vertices in V \A:
u1, . . . , uk, where k = |V (G)| − α(G). For every edge e = euev we indicate a head
and a tail: if e has an endpoint in A, call this endpoint tail and the other endpoint
head. If e has two endpoints ui, uj /∈ A with i < j, then call ui tail and uj head.
Look at the divisor D defined by:

D(x) =



1 if x = t,

1 if x = ṽ,

1 if x = v′ and v ∈ A,
0 if x = v′ and v /∈ A,
1 if x = vt and v ∈ A,
3 if x = vt and v /∈ A,
1 if x = eu and u tail,

0 if x = ev and v head.
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Figure 4.1: A graph G and its reduction graph H. The bold edges are M parallel edges, for
this graph M = 15 + 14 + 2 = 31. The numbers show an effective divisor, as in Example
4.2.2

This divisor is effective and has degree 1 + |V (G)|+ |A|+ |A|+ 3|V \A|+ |E(G)| =
1 + 4|V (G)| − α(G) + |E(G)|. We can show that it has rank at least 1.

The only vertices that have no chips are the vertices v′ with v /∈ A and the heads
of the edges euev. For every vertex v ∈ V (G) we define Bv as the set {ṽ, v′} ∪ {ev |
e = uv for some u}. Now consider the following firing sets for l ∈ {0, 1, . . . , k}:

Cl = {t} ∪ {vt | v ∈ V (G)} ∪
⋃
v∈A

Bv ∪
l⋃

i=1

Bui

The outgoing edges of this set are:

• the three edges from vt to v′ for v = ui, i > l;

• the edge from ev to eui for v ∈ A, i > l;
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• the edge from eui to euj for i ≤ l, j > l.

So we fire three chips from vt to v′ for v = ui, i > l, which is possible since D has
three chips on vt if v /∈ A. And we fire chips along edges euev from tail to head.
This is possible too, since we have a chip on every tail. We see that all sets Cl are
valid.

After firing Cl we have three chips on v′ for v = ui, i > l and a chip on the head
of every edge euev with u ∈ A, v = uj , j > l and a chip on the head of every edge
euev with u = ui, i ≤ l, v = uj , j > l. So for every vertex without a chip in D, we
can fire one of the sets Cl to obtain a divisor with a chip on that vertex. It follows
that D has rank at least 1.

We conclude that dgon(H) ≤ 1 + 4|V (G)| + |E(G)| − α(G), thus sdgon(H) ≤
1 + 4|V (G)|+ |E(G)| − α(G).

Example 4.2.2. Let G be the graph in Figure 4.1, and H its reduction graph. We
see that the vertices {a, d} are an independent set. Order the vertices that are not
in the independent set as follows: u1 = b, u2 = c, u3 = e. Now we look at the divisor
D as in the proof of 4.2.1, see Figure 4.1. Suppose that we want to reach a divisor
with a chip on (bc)c. We see that we can reach such a divisor by firing the set

C1 = {t} ∪ {vt | v ∈ V (G)} ∪
⋃
v∈A

Bv ∪
1⋃
i=1

Bui

= {t, at, bt, ct, dt, et, a′, ã, (ab)a, (ae)a,
d′, d̃, (cd)d, (bd)d, (de)d, b

′, b̃, (ab)b, (be)b, (bd)e, (bc)b}.

Before proving that sdgon(H) ≥ 4|V (G)|+ |E(G)|+ 1− α(G), we prove that if
there are enough parallel edges in a graph G with sdgon(G) = k, then we do not
have to subdivide these edges to obtain a refinement G′ with dgon(G′) = k. This
allows us to assume that none of the M parallel edges in the reduction graph of a
graph G is subdivided.

Lemma 4.2.3. Let G be a graph with sdgon(G) = k. Suppose that there are l > k
edges from u to v in G. Then there is a refinement G′ of G, with dgon(G′) = k,
such that the edges from u to v are not subdivided.

Proof. Let G′ be a refinement of G such that dgon(G′) = k. Let D be a divisor of
rank at least 1 and degree k. Suppose that the edge e from u to v is subdivided in
G′ by the vertices w1, . . . , wm. Let D′ ∼ D be such that D′(u) +D′(v) is maximal.
First we show that

∑m
i=1D

′(wi) ≤ 1.
Suppose that there are two chips on the vertices in {wa | 1 ≤ a ≤ m}, one on

wi and one on wj , with i ≤ j. Then we can fire {wh | i ≤ h ≤ j}. We can repeat
this, until one of those chips reaches u or v. This yields a contradiction with the
fact that D(u) + D(v) was maximal. So there is at most one chip on the vertices
wi:

∑m
i=1D

′(wi) ≤ 1.
Let G′′ be the refinement of G such that adding the vertices w1, . . . , wm to G′′

yields G′. We claim that the divisor D′ on G′′ has rank 1 too. Let w be a vertex in
G′\{u, v, w1, . . . , wm}. Then there is a divisor Dw ∼ D′ on G′ such that Dw(w) ≥ 1.
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Let A0, . . . , Ar be the level set decomposition of the transformation from D′ into
Dw and D0, . . . , Dr+1 the associated sequence of divisors. Since there are k chips
and l disjoint paths from u to v, we know that for all i it holds that u ∈ Ai if and
only if v ∈ Ai. Suppose that wi ∈ Aj for some i and j. And suppose that u, v /∈ Aj .
It follows that there are two chips fired along the edge e, one in the direction of u
and one in the direction of v. Thus there are at least two chips on the vertices wi
in Dj . This is only possible if u or v is already fired, so if u ∈ Ah or v ∈ Ah for
some h < j. This yields a contradiction with the fact that u, v /∈ Aj . We conclude
that if wi ∈ Aj for some i and j, then u, v ∈ Aj . Now we see that firing the sets
A0\{w1, . . . , wm}, . . . , Ar\{w1, . . . , wm} in G′′ yields a divisor with a chip on w. We
conclude that D′ has rank at least 1 on G′′ too.

We define G′′′ as the refinement G′ without all vertices that are added to edges
from u to v. By the same argument it follows that D′ is an effective divisor on G′′′

with rank at least 1 and degree k. Thus G′′′ has the desired properties.

Now we define an equivalence relation on the vertices of a graph. After this we
can show that sdgon(H) ≥ 4|V (G)|+ |E(G)|+ 1− α(G) for the reduction graph H
of a simple graph G.

Definition 4.2.4. Let G be a graph and D an effective divisor. We say that two
vertices u and v are D-equivalent, or u ∼D v, if for every effective divisor D′, for
which it holds that D ∼ D′, the following holds: let A0, . . . , Ak be the level set
decomposition of the transformation of D into D′, then u ∈ Ai if and only if v ∈ Ai.

So u ∼D v if and only if u and v are always fired together. If u ∼D v, then there
will never be chips fired along the edges from u to v (if those edges exists). And, if
D is a divisor of degree k, and there are l > k edges between u and v, then u ∼D v.

Lemma 4.2.5. Let G be a simple graph and H its reduction graph. Then sdgon(H) ≥
4|V (G)|+ |E(G)|+ 1− α(G).

Proof. First notice that sdgon(H) < M , since H has only 3|V (G)|+2|E(G)|+1 < M
vertices. Let H ′ be a refinement of H with dgon(H ′) = sdgon(H). By Lemma 4.2.3
we know that we can choose H ′ to be a refinement where all M parallel edges are
not subdivided. Let D be a divisor on H ′ of rank at least 1 and degree deg(D) =
sdgon(H). We will show that D has degree at least 1 + 4|V (G)|+ |E(G)| − α(G).

Since we cannot move chips along M parallel edges, we see that the number
of chips on t is constant, i.e. for all divisors D′ ∼ D it holds that D′(t) = D(t).
Analogously, we see that for all v ∈ V (G) and all divisors D′ ∼ D it holds that
D′(v′) = D(v′). Let Av be the set of all vertices that are added to the edges from
v′ to vt, and let Ae be the set of all vertices that are added to the edge from eu to
ev. Then we see that the number of chips on the sets {v′, vt} ∪Av and {eu, ev} ∪Ae
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is constant as well. Moreover, we see that

D(t) ≥ 1

D(ṽ) ≥ 1

D(v′) +D(vt) +
∑
u∈Av

D(u) ≥

{
3 if v′ ∼D vt

2 if v′ �D vt

D(eu) +D(ev) +
∑
u∈Ae

D(u) ≥

{
2 if eu ∼D ev

1 if eu �D ev

Since v′ ∼D ṽ and vt ∼D t, we can replace the condition v′ ∼D vt by the condition
ṽ ∼D t, and since eu ∼ u we can replace eu ∼D ev by u ∼D v.

Consider the equivalence classes of ∼D on {ṽ | v ∈ V (G)} ∪ {t}, write U0 ∪ {t},
U1, . . ., Ur for these classes. Now we see that we have 3|V (G)| − |U0| chips on the
vertices v′ and vt:∑

v∈V (G)

D(v′) +D(vt) +
∑
u∈Av

D(u) = 3|V (G)| − |U0|.

And we have at least |E(G)|+ |E(U0)| chips on the vertices eu:∑
e=uv∈E(G)

D(eu) +D(ev) ≥ |E(G)|+ |E(U0)|.

Now it follows that

deg(D) ≥ 1 + |V (G)|+ 3|V (G)| − |U0|+ |E(G)|+ |E(U0)|
≥ 1 + 4|V (G)|+ |E(G)| − α(G).

The last inequality holds because α(G) + |E(U0)| ≥ |U0|: if |E(U0)| < |U0|, then
there are at least |U0| − |E(U0)| connected components. And we can pick a vertex
from every connected component of U0 to obtain an independent set. So then
α(G) + |E(U0)| ≥ |U0|.

Theorem 4.2.6. The stable divisorial gonality problem is NP-hard.

Proof. Let (G, k) be an instance of the independent set problem. We can construct
the reduction graph H in polynomial time. By Lemma 4.2.1 and 4.2.5, it follows
that G has an independent set of size at least k if and only if H has stable divisorial
gonality at most 4|V (G)|+|E(G)|+1−k. It follows that (H, 4|V (G)|+|E(G)|+1−k)
is a ‘yes’-instance for the stable divisorial gonality problem if and only if (G, k) is
a ‘yes’-instance for the independent set problem. So we conclude that the stable
divisorial gonality problem is NP-hard.



Conclusion

In this thesis, we have studied several notions of gonality. We have seen proofs of
some relations between different notions of gonality and we have seen that treewidth
is a lower bound for gonality. In Chapter 3, we gave a set of reduction rules to
recognize stable hyperelliptic and stable divisorial hyperelliptic graphs. These rules
lead to algorithms that recognize these graphs in O(n log n + m) time. In the last
chapter, we have proven that computing stable divisorial gonality is NP-hard.

Many questions remain open. First of all, are there more relations between
different notions of gonality? We have seen that in general sgon(G) � dgon(G) and
dgon(G) � sgon(G). But it is possible that the stable gonality of a graph can be
bounded from above by some function of the divisorial gonality of the graph, i.e.,
that there is a function f such that sgon(G) ≤ f(dgon(G)).

In Chapter 3 we gave a set of reduction rules to recognize stable hyperelliptic
graphs in O(n log n + m) time. Can stable hyperelliptic graphs be recognized in
linear time? Is there an algorithm to recognize graphs of stable gonality 3?

We have seen that computing stable divisorial gonality is NP-hard. It is open
whether computing stable divisorial gonality is in NP, so whether it is NP-complete.
What about stable and geometric gonality? And are some of the notions fixed
parameter tractable? Or, are there problems that are fixed parameter tractable with
gonality as parameter, while they are not fixed parameter tractable with treewidth
as parameter?
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