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Abstract

In this thesis we investigate maximum matching-width (MM-width) fur-

ther. MM-width is a graph width parameter similar to treewidth, related to

the number of maximum matchings made in an induced bipartite graph made

from partitions over the vertices of a graph. We improve the link between

the value of maximum matching-width and the value of treewidth of a graph

to MM(G) ≤ tw(G). We also give a bounded dynamic programming algo-

rithm BMMDP to calculate the MM-width of a graph exactly. In addition to

the exact algorithm we look into approximating the MM-width of graphs from

above by using optimization algorithms based on local search and evolutionary

algorithms.

In the thesis we also make general observations about maximum matching-

width, investigate the MM-width of standard graphs and come up with a

set of safe kernelization rules to improve the performance of our algorithms.

We also use the link between maximum matching-width and the other width

parameters, the MM-widths of standard graphs and widths found during run

time to add upper and lower bounds to the exact algorithm.

Keywords: maximum matching-width, graph decomposition, width parame-

ter, graph algorithm, treewidth, approximation



1 Introduction

In 2012 Martin Vatshelle introduced three new graph parameters: boolean-width,
maximummatching-width (MM-width) and maximum induced matching-width (MIM-
width); all three based on the notion of branch decompositions of speci�c set function
as de�ned by Robertson and Seymour. These new graph parameters were both intro-
duced and compared to other, earlier de�ned, graph width parameters in Vatshelle's
work in [1].

MM-width has already been used in the literature to give a faster algorithm
for dominating set than treewidth gives [18] and it and the related graph width
parameters may bring even more such improvements.

In Vatshelle's thesis MM-width is mainly used to simplify the comparison be-
tween treewidth and parameters de�ned via branch decomposition of a set function.
In this thesis however, we let MM-width take a more central position and we will
be examining MM-width itself closer.

We will �rst look at the de�nition of MM-width to make initial analyses, after
which we will �nd a more intuitive de�nition with which we will do a another set of
analyses. With that information we can look at a set of standard graphs and reason
about the MM-width of such graphs, such that we do not have to calculate these
widths and can just easily write them out.

We also �nd a few kernelization rules, though we were not able to �nd a set
of rules that gives us a polynomial kernel or prove that we have such a kernel.
These rules are still useful for reducing the size of input to an algorithm though
and therefore reducing the running time of an algorithm while still allowing the
algorithm to output the correct MM-width of a graph.

In addition to the kernelization rules to improve on the performance of an al-
gorithm to �nd the MM-width of a graph, we also use upper and lower bounds.
These bounds are not only derived directly from the values we know from our ear-
lier analyses of the values of the graph, but the lower bound also updates as we
make decisions during the algorithm and can be based on the values of other graph
width parameters.

Using the analyses of the MM-width values of standard graphs, we were also
able to improve the link between the value of the treewidth and the value of the
maximum matching-width of a graph.

We also have developed a set of approximation algorithms based on optimiza-
tion algorithms to �nd the MM-width of graphs too large to be easily handled by
the exact algorithms. To be precise, we based these on local search algorithms
and evolutionary algorithms. As these approximation algorithms approximate the
MM-width of a solution from above by �nding non-optimal decompositions, these
approximation algorithms can be used to �nd upper bounds on the MM-widths of
larger graphs.

Finally, we have also provided a small list of known MM-widths of graphs.
We have tried writing this thesis somewhat closer to an introductory work to

MM-width, by having it introduce MM-width itself and presenting examples in
some situations to help illustrate both MM-width and relevant situations. We did
this such that any reader with knowledge of sets and graphs can follow the contents
without having to also read relating work.
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2 De�nitions

De�nition 1. (Graph)
A graph G = (V,E) is a pair of a set of vertices and a set of edges, where an edge
is a subset of vertices of G. V (G) is the denotion of the set of vertices of G and
E(G) is the denotion of the set of edges of G. [In this thesis, we will only consider
undirected edges between exactly two distinct vertices and graphs without duplicate
edges.]

De�nition 2. (Degree)
Let G be a graph. The degree of a vertex v ∈ V (G) is the number of edges with v
as an endpoint.

De�nition 3. (Subgraph)
Let G and H be graphs. H is a subgraph of G if and only if V (H) ⊆ V (G) and
E(H) ⊆ E(G). This is denoted H ⊆ G. Given S ⊆ V (G), G[S] is the induced
subgraph, if and only if G[S] ⊆ G, V (G[S]) = S and E(G[S]) = {(x, y) ∈ E(G) |
x, y ∈ S}.

De�nition 4. (Bipartite graph)
A graph G is bipartite if and only if there is a subset S ⊆ V (G), such that ∀(x, y) ∈
E(G) : (x ∈ S AND y /∈ S)OR (x /∈ S AND y ∈ S), thus every edge has an endpoint
in S and one outside of it.

De�nition 5. (Induced bipartite subgraph)
Let G be a graph and S and R be two subsets of V (G), such that S ∩ R = ∅. Then
graph H is the induced bipartite subgraph of G, S and R if and only if V (H) = S∪R
and E(H) = {(x, y) ∈ E(G) | (x ∈ S AND y ∈ R) OR (x ∈ R AND y ∈ S)}. This is
denoted H = G[S,R].

De�nition 6. (Neighbourhood)
For G a graph and v ∈ V (G) a vertex of that graph, the neighbourhood N(v) =
{x | ∃y ∈ V (G) : (x, y) ∈ E(G)} is the set of vertices connected directly to v by
an edge. The closed neighbourhood of v also includes v itself and is denoted as
N [v] = N(v) ∪ v.

De�nition 7. (Vertex complement)
Let G be a graph and S ⊆ V (G). The complement of S is denoted S̄ = V (G) \ S
and indicates the set of vertices in V (G) not in S.

De�nition 8. (Connected component)
A connected component is an induced subgraph H of a graph G, such that for each
pair of vertices v, w ∈ V (H), there is a path connecting v with w through H and
through G, for any vertex x ∈ V (H) and y ∈ V (H̄) there no path connecting x with y
through G. The function CC(G) returns a set containing each connected component
of G exactly once.

De�nition 9. (Connected graph)
A graph G is a connected graph if and only if G contains at most one connected
component.
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De�nition 10. (Tree)
A graph G is considered a tree if and only if G is a single connected component
without loops. Thus for every pair of vertices in the graph, there is exactly one
unique path connecting them. Vertices of trees are called nodes. Nodes of degree at
most 1 are called leaves. The set L(G) = {v ∈ V (G) | degree(v) ≤ 1} contains all
leaves of the tree. Nodes of degree at least 2 are called internal nodes.

De�nition 11. (Rooted tree)
A tree T is considered a rooted tree if there is a node r that has been designated as
the root of the tree. In a rooted tree, the parent of a node v is the neighbour of v
closest to the root (the root does not have a parent). A node v is considered a child
of node w if and only w is a parent of v. Each pair of nodes in the rooted tree with
the same parent is considered siblings. The ancestors of a node v is a set containing
all nodes on the path to the root, including the root, starting from the parent of v,
and is denoted a(v). The descendants of a node v is the set containing all nodes
that have v as an ancestor.

De�nition 12. (Binary tree)
A (rooted) tree T is a binary tree if and only if each node is either a leaf or has
exactly two children.

De�nition 13. (Binary decomposition tree)
Let G be a graph. A binary decomposition tree of G is a pair (T, δ), where T
is a binary tree and δ : V (G) → L(T ) a bijection. For every node a ∈ V (T ),
La = {L(T ) | a ∈ a(L(T ))} (the set of leaves having a as ancestor) and Va =
{δ−1(x) | x ∈ La} (the set of vertices mapped to the leaves having a as ancestor).

De�nition 14. (f-width)
Let G be a graph, f : 2V (G) → IR a set function on V (G) and (T, δ) a binary
decomposition tree of G. The f-width of (T, δ) is max

∀a∈V (T )
f(Va). The f-width of G is

the minimum f-width over all binary decomposition trees of G.

De�nition 15. (Matching)
Let G be a graph. A matching is a set of edges M ⊆ E(G), such that for every
vertex v ∈ V (E) there is at most one edge in M with v as an endpoint.

De�nition 16. (Maximal matching)
Let G be a graph. A matching is a maximal matching if and only if there is no edge
e ∈ E(G) \M such that M ∪ {e} is a matching.

De�nition 17. (Maximum matching)
For all possible matchings M over a graph G, a matching is considered a maximum
matching if and only if there is no matching M ′ over G with |M ′| > |M |.
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3 Naive MM-Width

Using the de�nitions in the previous section, we can de�ne MM-width as such,
following the de�nition from Vatshelle from [1]:

De�nition 18. (MM-width)
Let G be a graph and mm : 2V (G) → N be a symmetric set function, where mm(A)
equals the size of a maximum matching in G[A, Ā] for A ⊆ V (G). Using the de�ni-
tion for f-width with f = mm, we de�ne the MM-width of a G to be the minimum
mm-width over all binary decomposition trees of G. The mm-width of a binary de-
composition tree (T, δ) is max

∀v∈V (T )
mm(Vv). We denote the MM-width of a graph G as

MM(G) and the mm-width of a decomposition tree (T, δ) as mm((T, δ)).

Thus, to calculate the MM-width of a graph, we calculate the mm-width of each
possible binary decomposition tree of the graph. To calculate the mm-width of
a binary decomposition tree, we need to evaluate the function mm for each of the
nodes in the binary decomposition tree. To evaluate the function for a node, we need
to calculate the size of a maximum matching in the induced bipartite subgraph with
on one side all the vertices in our graph that have a corresponding leaf in the binary
decomposition tree and all the other vertices on the other side.

To calculate the size of a maximum matching in a bipartite graph, we can use
Hopcroft Karp [8], an O(|E(G)|

√
|V (G)|) algorithm that �nds a maximum matching

of a bipartite graph G.
Using this list of steps directly, gives us our �rst algorithm: Naive MM-width.

(The referred functions in the algorithm can be found in the Algorithm Addendum
on page 76.)

Algorithm 1: Naive MM-width

Data: a graph g
Result: MM-width of the graph and the binary decomposition tree of that

score
unlabeledtrees←− AllBinaryTrees(g.vertices.Length);
allnodeorders←− AllOrdersOfLength(g.vertices.Length);
bestscore←− int.MaxV alue;
besttree←− null;
foreach unlabeledtree in unlabeledtrees do

foreach nodeorder in allnodeorders do
labeledtree←− LabelTree(unlabeledtree, nodeorder);
mmscore←− TreeScorer(g, labeledtree);
if mmscore < bestscore then

bestscore←− mmscore;
besttree←− labeledtree;

return bestscore, besttree

Naive MM-width is guaranteed to �nd the MM-width of any graph you input
and one of the optimal binary decomposition trees. As the number of binary trees
of n leaves follows the formula (2n−2)!

n!·(n−1)! (the Catalan numbers [9]), there are n!
ways of of ordering the n labels and we have to execute Hopcroft Karp for each
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of the 2n − 1 nodes in each binary tree, our Naive MM-width algorithm runs in
O( (2n−2)!

n!·(n−1)! · n! · (2n − 1) · (m
√
n)), where n is the number of vertices in our graph

and m the number of edges. We can roughly reduce this to O(n! ·m · n ·
√
n) and

thus O∗(n!).
The performance of this algorithm is disappointing, as can be seen in the Results

section on page 66 and most clearly in �gure 58. The algorithm starts taking almost
half an hour to calculate the MM-width of graphs consisting of 8 vertices, over 12
hours to complete the calculation of the MM-width for graphs consisting of 9 vertices
and even crashes on execution on graphs of size 10 and beyond.

3.1 Naive Asynchronous MM-Width

The performance of Naive MM-width can be improved upon by utilizing the in-
dependence of each execution of the body of the inner foreach-loop. Because the
calculation of the MM-width of one of the binary decomposition trees does not de-
pend on any earlier calculation, we can calculate the MM-width of multiple binary
decomposition trees simultaneously. The di�culty of calculating MM-width naively
grows with a factorial factor, however. Even assuming the exponential processor
transistor growth implied by Moore's law [10] translates directly into exponential
computation speed growth and we assume su�cient process memory, future at-
tempts at using either version of Naive MM-width will remain stalling at small
graph sizes as factorials grow faster than exponentials.
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4 Initial Analysis of MM-Width

In order to understand MM-width better and to �gure out how to improve the cal-
culation of the MM-width of a graph, we will �rst look at how MM-width can be
calculated, which may help in creating an intuition for the MM-width of graphs.
Then we will look at how we can estimate the mm scores for a part of the decom-
position, further helping in creating an intuition.

4.1 Example of MM-Width

Say we have the graph G as seen in �gure 1. To calculate the MM-width of G,
we need to �nd the minimum mm-width over all the binary tree decompositions of
G. There are many di�erent binary tree decompositions possible for graph G, as
any binary tree with the same amount of leaves as the graph it is a decomposition
tree of, taken together with any function associating the leaves of the binary tree
to the vertices of the graph. is a binary tree decomposition of that graph. (T, δ),
as seen in �gure 2, is one of these possible decompositions and, as we need to �nd
the minimum mm-width over all of the decompositions, we need to calculate the
mm-width of this binary decomposition tree as well.

Figure 1: Graph G we are working with for our example.

The mm-width of a binary tree decomposition is the maximum over the result
of the function mm over all the possible Vn of the tree, where n is a node in the
tree, as we de�ned earlier. We demonstrate this by calculating the function mm
for one of the nodes in the tree. Let's denote the parent node of δ(A) in this
binary decomposition tree as v. As mm(Vv) = mm({A,E,D}), we will construct
G[{A,E,D}, {B,C, F}] as seen in �gure 3 and �gure out the size of a maximum
matching in this graph.

We can make exactly three matchings in G[{A,E,D}, {B,C, F}] at most at the
same time, meaning that mm(Vv) = 3. Doing this for each node of (T, δ), we can
see that the mm-width of (T, δ) is also three, as demonstrated in �gure 4.
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Figure 2: Binary decomposition tree (T, δ).

Figure 3: Graph G and G[{A,E,D}, {B,C, F}].
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Figure 4: (T, δ) with all nodes marked with their mm score.

Looking around some more, we can actually �nd a better binary decomposition
tree however, (T, δ)′ for example, as seen in �gure 5. As the highest mm score
found for any possible Vn of (T, δ)′ is two and we cannot �nd any better binary
decomposition trees for G, we know now that the MM-width of G two.

To understand why (T, δ)′ has a lower mm-width than (T, δ), we �rst look at
vertex F of the graph. The only vertex that vertex can match with is E. If we
�nd F descending the same vertices as E as much as possibly, we basically prevent
F from increasing the MM-width of the graph. Similarly, C can only match with
B and D, so if C �nds itself either descending the same vertices as B and D, we
prevent it from increasing the MM-width beyond what B and D add together. The
same happens if C �nds itself descending the same vertices as B and A, or D and
E.

4.2 Estimation of MM Scores of Nodes

When looking at a binary decomposition tree of a graph, some scores in the tree can
be easily estimated or given an upper bound.

For all nodes n in the binary decomposition tree (T, δ) of a graph G, the vertices
in Vn are placed on one side of the induced bipartite subgraph when we apply the
function mm, while the complement is placed on the other side. As vertices on the
same side of an induced bipartite subgraph can only match with vertices on the
other side, the maximum amount of matchings that can be made in the induced
bipartite subgraph is at most the amount of vertices on one side and at most the
amount of vertices on the other side.
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Figure 5: (T, δ)′ with all nodes marked with their mm score.

Thus, we know that for all binary decomposition trees (T, δ) of graph G we know
that ∀n ∈ V (T ) : mm(n) ≤ min(|Vn|, |V̄n|).

In addition, for all binary decomposition trees (T, δ) of graph G we �nd that the
following also holds:

For the root node r, as Vr = V (G) and V̄r = ∅, min(|V (G)|, 0) ≥ mm(r) = 0.
For a leaf node n, |Vn| = 1. Thus we know that 1 ≥ mm(n). To be more precise,

if δ(n) has degree at least 1, it will always be matched in mm({δ(n)}, V̄n), thus if G
is non-trivial, for a leaf node n, mm(n) = 1.
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5 Better Analysis of MM-Width

(Asynchronous) Naive MM-Width has a multitude of issues. The �rst of which is
clearly the running time of the algorithm on even small graphs. The second issue is
the fact that Naive MM-Width requires too much process memory, making it crash
at slightly larger, but still small graphs. We can �x these issues however by changing
our algorithm to not try every single possible decomposition tree in order. Before
we will introduce the other method in the next section however, we shall take a look
at a small improvement and analyze the properties of MM-width a bit further.

5.1 Calculation over Edges

First o�, we take a look at the de�nition of MM-width as we gave it earlier. In
this de�nition we de�ned the mm-width of a binary decomposition tree (T, δ) as
max
∀v∈V (T )

mm(Vv), with mm(A) the size of a maximum matching in G[A, Ā] for A ⊆

V (G).
Because the size of a maximum matching in a bipartite graph with no vertices

on one of the sides is always 0 and we are maximizing, we will never have to look
at the root of a binary decomposition for calculating the mm-width of it. Because
of this, we can rede�ne the mm-width of a binary decomposition tree as such:

De�nition 19. (Alternative mm-width)
The mm-width of a binary decomposition tree (T, δ) is max

∀e∈E(T )
mm(Pe), where Pe is

a partition over the vertices of G, which we get by removing edge e from T , then
looking at only one of the two connected components that we get and taking the the
vertices corresponding for the leaves in that connected component as one side of the
partition and the complement as the other side.

In this de�nition, instead of looking at nodes of the tree and looking at what
leaves have it as ancestor, we look at the edge connecting this node to its parent
and skip looking at the root node. After we remove the edge above node n, the
connected component containing n has exactly those nodes in it that have n as an
ancestor. Thus this alternative de�nition of mm-width is equivalent to the original
de�nition. We also �nd that this de�nition is usually a bit more helpful to reason
about the MM-width of graphs by hand.

All the analyses we made in the previous section also hold for this de�nition as
they work over partitions and the function mm. If an analysis works on a node, the
analysis will also work on the edge between that node and its parent (except for the
parent node, which we already reasoned to always have the mm score 0).

5.2 Equivalence of Edges to Root

Say we calculate the mm score of the left child node l of the root node of a binary
decomposition tree. The leaves with l as an ancestor are Ll and the MM-width of
this node is mm(Ll, L̄l). As Ll are exactly those leaves that are located in the left
subtree of the root, L̄l must be the leaves located in the right subtree of the root.
This means that, for the two children of the root, the mm score is always the same.

It follows that the exact location of where the root is in a binary decomposition
tree is not important to the mm-width of a binary decomposition tree, and the root
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node could technically be left out entirely. However, for many applications a tree
structure is very helpful and the de�nitions of MM-width in the literature and that
we give work on trees.

In addition, as the root is not important to the score, we can choose to remove
the root from the tree and then split any edge in the resulting graph to make a new
root node. Any tree constructed in this way from the original tree has the same
mm-width and is therefore equivalent to the tree it was constructed from.

5.3 Ordering of Siblings

As neither de�nition of MM-width uses anything related to whether a child is a
left or right child, siblings in binary decomposition trees are interchangeable. This
means that for each internal node of a decomposition tree, the tree resulting from
switching the left and right subtree is also equivalent to the original tree.

Together with the equivalence of the edges to the root node, the equivalence of
the di�erent ordering of siblings implies that many decomposition trees are equiva-
lent. Therefore, one important way of improving the e�ciency of the calculation of
f-widths of graphs is identifying and preventing calculation of equivalent decompo-
sition trees.
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6 Dynamically Programmed MM-Width

Using the insights of the better analysis of MM-width that we did in the previous
section, we can now improve upon the complexity of Naive MM-width by using dy-
namic programming. Dynamic programming is a method of saving on computation
time by solving subproblems and combining the results of these subproblems. More
can be read about dynamic programming in [11]. In our case we will be identifying
the subproblems we need to solve during the run of the algorithm and solving them
the �rst time we �nd them, while retrieving the solution from a table on subsequent
discoveries.

For our dynamic programming approach, we will be looking at subsets of the
vertices of the graph. Each of these subsets of the vertices directly implies a partition
as in our alternative mm-width de�nition. As there are 2n possible subsets of a set
of n vertices and calculating the mm score for one of these subsets for n vertices and
m edges with Hopcroft-Karp takes O(m ·

√
n), we can calculate the mm score of all

possible partitions of a graph in O(m ·
√
n · 2n), where n is the number of vertices

in the graph and m the number of edges.
Simply calculating the mm scores of all partitions is not enough though, we need

to know the mm-width of the best binary decomposition tree of the graph. To do
both these things in our algorithm, we will decide for every node, starting from the
root node, what subset of vertices will be placed in the left subtree of the node and
with that also what subset will be placed in the right subtree. This decision can be
made by calculating the mm scores of the resulting partitions, however we will also
be storing both the mm scores of the partitions and the optimal subtrees we have
already calculated. This means that the mm score of every partition is calculated
only once.

As there are (2n−2)!
n!·(n−1)! di�erent binary trees of n leaves, a dynamic programming

approach runs in O( (2n−2)!
n!·(n−1)! +m ·

√
n · 2n) which can be roughly reduced to O(n! +

m ·
√
n · 2n) and thus O∗(n!).

[We can analyze this di�erently as well: each step, except for the root, we are
technically trying to decide what leaves will be placed in the parent set, the left set
and the right set. This means that there are 3n possible choices for a node. This
implies this is a O∗(3n) algorithm.]

In the following algorithm, the global variable MMdict is a dictionary storing
the calculated optimal subtrees and the mm-width of these.

Algorithm 2: Dynamically Programmed MM-width

Data: a graph g
Result: MM-width of the graph and a binary decomposition tree of that

score
result←−MMdynamicRecurse(g, ∅);
return result
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Algorithm 3: MMdynamicRecurse

Data: a graph g
the set of vertices not in the subtree parentSet
SetToSplit←− parentSet.Complement();
if SetToSplit.Count = 1 then

return new Tuple(1, SetToSplit[0].Associated)

if SetToSplit.Count = 2 then
return new Tuple(1,
�(� + SetToSplit[0].Associated + �, � + SetToSplit[1].Associated + �)�)

BestScore←− int.MaxV alue;
BestTree←− � �;
foreach subset S of SetToSplit do

if S.Count = 0 or (S ∪ parentSet).Count = g.vertices.Length then
continue;

scoreSubL←− −1;
if MMdict.ContainsKey(S) then

scoreSubL←−MMdict[S].Item1;
tree←− “(′′+MMdict[S].Item2 + “,′′;

else
tupleL←−MMdynamicRecurse(g, S.Complement());
scoreSubL←− tupleL.Item1;
tree←− “(′′+tupleL.Item2 + “,′′;

leftEdge←− HopcroftKarp(G[S, S̄]);
scoreL←− leftEdge;
if scoreL < scoreSubL then

scoreL←− scoreSubL;

scoreSubR←− −1;
rightSubSet←− (S ∪ parentSet).Complement();
if MMdict.ContainsKey(rightSubSet) then

scoreSubR←−MMdict[rightSubSet].Item1;
tree←− tree+MMdict[rightSubSet].Item2 + “)′′;

else
tupleR←−MMdynamicRecurse(g, S ∪ parentSet);
scoreSubR←− tupleR.Item1;
tree←− tree+ tupleR.Item2 + “)′′;

rightEdge←− HopcroftKarp(G[rightSubSet, ¯rightSubSet]);
scoreR←− rightEdge;
if scorer < scoreSubR then

scoreR←− scoreSubR;

score←− scoreL;
if score < scoreR then

score←− scoreR;

if score < BestScore then
BestScore←− score;
BestTree←− tree;

result←− newTuple(BestScore,BestTree);
MMdict[parentSet.Complement()]←− result;
return result



7 MM-Width of Standard Graphs

Now that we have an algorithm with which we can more reliably calculate the MM-
width of graphs, we can start calculating the MM-widths of di�erent graphs. If
we can identify what kind of graph we are working with however, we may be able
to forgo having to calculate the MM-width altogether. To be able to do this, we
will analyze di�erent types of graphs and reason about those graphs to �gure out
how to construct an optimal binary decomposition tree directly, without having to
construct a large set of decompositions and choosing the minimum from those.

Earlier work towards quickly �nding MM-width was done by Jeong in [17] by
using a minor obstruction set, where they characterized graphs of MM-width ≤ 2.
We will approach �nding the MM-width of these standard graphs di�erently.

7.1 Single Vertex / Trivial Graph

A graph containing a single vertex is also known as a trivial graph. A trivial graph
has only one way of being decompositioned into a binary decomposition tree as
there is only one binary tree with a single leaf. In addition, using the original
de�nition of MM-width, when calculating the mm score of the single node of this
binary decomposition tree, the resulting induced bipartite graph will have a single
vertex on one of the sides and nothing on the other. Because of this, the mm-width
of the single possible binary decomposition tree for the trivial graph is 0.

Thus, for a trivial graph G, MM(G) = 0.

Figure 6: A trivial graph and the only possible tree decomposition of it.

7.2 Single Edge

A graph consisting of a pair of connected vertices has exactly two ways of being de-
compositioned into a binary decomposition tree, though these two trees are actually
equivalent trees with the order of siblings swapped. Both decomposition trees have
two edges, which both create the same partition when using the alternative de�ni-
tion of MM-width: P(δ(A),r) = P(δ(B),r) = {A : B}. The induced bipartite graph for
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Figure 7: A graph containing a single edge and one of the two possible tree decom-
positions of the graph.

this partition is the exact same as the original graph and has a maximum matching
of 1.

Thus, for a single edge graph G, MM(G) = 1. In addition, it is easy to see that
any graph containing at least one edge must have MM-width at least 1.

7.3 Path Graph / Linear Graph

A path graph, also known as a linear graph, is a graph with a single connected
component and in which all but two vertices have a degree of 2. Those two remaining
vertices are known as the terminal vertices and have a degree of 1.

Theorem 1. Let graph G be a path graph, then MM(G) = 1.

Proof. We can construct an optimal decomposition (T, δ)∗ for a path graph G as
such: In (T, δ)∗ we place a leaf node that is associated to one of the terminal vertices
v of G. We add an internal node to T and make it the parent of the node associated
to v. Then we add a leaf node δ(w) associated to the neighbor of v, w, as a left
child of the inner node.

As long as (T, δ)∗ does not contain an associated node for each vertex of G, we
add internal nodes and leaf nodes to (T, δ)∗ and to it we associate the vertex we
have not associated yet that neighbors the previous vertex that we added. The new
internal node becomes the parent node of the previously added internal node, while
the new leaf node associated to the vertex we are handling becomes the left child of
the new internal node. We �nish the construction when we have added the terminal
vertex on the other side of the path graph. The internal node without a parent, and
thus which left child is the leaf node associated to the terminal vertex, becomes the
root of the decomposition tree.

As each partition we can make over the vertices of G by removing one edge from
(T, δ)∗ either separates a single vertex from the rest of the vertices, or creates a
partition over V (G) where both sets of the partition contain a terminal vertex and
for each vertex in the same set as a terminal vertex all vertices on the path between
that vertex and the terminal vertex are in the same set, the MM-width of (T, δ)∗
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Figure 8: A path graph of length 7.

is 1. In addition, any graph containing at least one edge must have MM-width at
least 1, meaning that for a path graph G, MM(G) = 1.

Figure 9: A linear decomposition of the path graph in �gure 8, the induced partitions
of some of the edges of the decomposition tree and one of the induced bipartite
graphs of the partitions.
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Figure 10: A cycle graph consisting of 7 vertices.

7.3.1 Caterpillar Decomposition

A binary tree decomposition like (T, δ)∗ we constructed above is known as a cater-
pillar decomposition (or linear decomposition).

De�nition 20. (Caterpillar Decomposition)
A binary tree decomposition is a caterpillar decomposition if and only if each internal
node of the tree, including the root, has at least one leaf node as a child.

Because of the equivalence of ordering of siblings, we will assume that for each
of the internal nodes of a caterpillar decomposition, the left child is always a leaf
node, while the right node is either another internal node or the �nal leaf node. In
addition, when making this assumption, the leaf nodes have a natural order over
them from left to right.

7.4 Cycle Graph / Circular Graph

A graph consisting of a single cycle is known as a cycle graph. Such a graph consists
of a single connected component in which all vertices have a degree of 2. A cycle
graph consisting of n vertices is denoted with Cn. The smallest cycle graph following
this de�nition is C3.

Theorem 2. MM(C3) = 1.

Proof. C3 consists out of three vertices, thus |V (G)| = 3. For this graph, there are
two distinct ways of partitioning the vertices: either all three vertices are on the
same side of the partitioning, or there are two vertices on one of the sides and one
vertex on the other. As the latter of these will always occur in any decomposition
tree we can build for C3, the mm-width will always be 1 for any of these trees.
Therefore, MM(C3) = 1.

The same argument does not hold for cycle graphs with 4 or more vertices how-
ever. In fact, these graphs have a MM-width of 2.
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Figure 11: C3 and an optimal decomposition tree of it.

Theorem 3. Let graph G be a cycle graph, where |V (G)| ≥ 4, MM(G) = 2.

Proof. To construct an optimal binary tree decomposition (T, δ)∗ for G, we will use
a caterpillar decomposition. For the ordering of the leaf-vertex association, we will
start at a random vertex v ∈ V (G) and associate it to the �rst leaf node. Then we
take either of the neighbors of v and associate it to the next leaf node. We go around
the cycle until we reach the other neighbor of v, while associating each vertex to the
following leaf node.

To �nd the mm-width of (T, δ)∗, we will look at the partitions induced by the
edges of this tree: For the partitions with a single vertex in one of the sets, the
results of the function mm are 1. For the other partitions, there will be at least two
vertices in both sets. Because of the construction of (T, δ)∗, we know that for both
sets the induced subgraphs of the set must be connected, which in turn means that
there are exactly two edges with unique endpoints connecting vertices from one set
to the other, making the mm score of these edges equal to 2. Thus we know that
mm((T, δ)∗) ≤ 2 and MM(G) ≤ 2.

In addition, for cycle graphs containing at least 4 vertices, we know that when
making any decompositioning of the graph, there must be at least one partition
containing two vertices in one of the sets. Both of these vertices must have a unique
neighbor in the other set, meaning that there are two edges with unique endpoints
connecting vertices from one set to the other. Because of this, MM(G) ≥ 2.

In conclusion, for cycle graph G, if |V (G)| ≥ 4, MM(G) = 2. Otherwise,
MM(G) = 1.

7.5 Tree

We de�ned a tree earlier in the de�nitions section on page 4. We will be assuming
G is a rooted tree. If it is not a rooted tree, we will temporarily choose a vertex of

19



Figure 12: The cycle graph of 7 vertices and a caterpillar decomposition of it.

Figure 13: A linear decomposition of the cycle graph in �gure 12 and the partition
and induced bipartite graph of one of the edges of the decomposition tree.
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Figure 14: An example of a tree.

G to be the root node and establish parent and child links throughout the tree to
make it a rooted tree.

To �nd an optimal binary tree decomposition (T, δ)∗ of a tree G, we will be using
a gadget g. This gadget will replace each of the vertices vn ∈ V (G), where gadget
gn replaces vn. If vn is a leaf of G, then gn is a single leaf node associated to vn.
Otherwise, gn consists of two parts: a base part and a linking part. The base part
consists of an internal node and a leaf node associated to vn. The linking part is a
binary tree with a number of leaves equal to the amount of children of vn.

When linking the gadgets together, the leaves of the linking part are merged
with the highest nodes of the child gadgets, as can be seen in �gure 16.

Theorem 4. (T, δ)∗ constructed from a tree G by replacing each vertex vn with
gadget gn has mm-width 1 .

Proof. As the mm-width of a decomposition tree equals the maximum mm score over
all the edges, we will need to analyze all the edges we have introduced to construct
(T, δ)∗. Each of the edges that we have introduced were from the gadget we used,
thus we only need to look at the edges we �nd in the gadget.

As stated earlier, the gadget consists out of two parts: a base part and a linking
part. The base part consists out of two edges, of which one is incident to the leaf
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Figure 15: An example of one of the gadgets that we use to construct the tree
decomposition of the tree in �gure 14. We have indicated the base part and linking
part of the gadget.

Figure 16: How the gadget in �gure 15 links up to other gadgets.
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Figure 17: One of the possible tree decompositions of the tree in �gure 14.

node and one connects the leaf node's parent with the leaf node's sibling. We will
assume that we are looking at gadget gn. The edge incident to the leaf node has a
mm score of 1 as the induced partition only has vn in one of the sets.

The other edge induces a partition with in one set all vertices with vn as an
ancestor and in the other set all other vertices of the graph (including vn). This
edge must also have a mm score of 1 as vn, the only vertex of its set in the partition
that can match, can only match with one of its children.

In the linking part, we get a similar situation to the second edge of the base
part. Each edge induces a partition between some of the subtrees of the children of
vn and the rest of the graph. These edges must also have a mm score of 1, again
because it is the only vertex of its set in the partition that can match.

The gadgets that replace a leaf of G do not introduce any edges and therefore
do not have to be analyzed here.

In conclusion, all edges result in mm scores of 1, meaning that the MM-width of
(T, δ)∗ is 1.

7.6 Cactus Graph

A cactus graph can be seen as a tree where some of the edges have been replaced
with cycles. Any graph in which any two simple cycles have at most one vertex in
common is a cactus graph.

You can �grow� you own cactus graph G as such: Start with either a tree or a
cycle graph. Then, choose any vertex v ∈ V (G) and to it we attach either a path
or a cycle of any size. The paths and cycles are the features of the cactus graph.
Repeat choosing vertices and attaching parts to the graph. G remains a cactus
graph between adding features.

Seeing how cactus graphs consist out of trees and cycles, we would expect the
MM-width of these graphs to be at most 2 and this is exactly what we �nd. However,
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Figure 18: Rough example of a cactus graph

we will assume there is at least one cycle feature in the graph, as the graph is a tree
otherwise, meaning that the MM-width would be 1.

Theorem 5. Let graph G be a cactus graph containing at least one simple cycle,
then if at least one cycle feature of G contains at least 4 vertices MM(G) = 2, else
MM(G) = 1.

Proof. To construct (T, δ)∗ for G, we will be choosing a random vertex v on a cycle
in G. Starting at v, we will create a caterpillar decomposition of this cycle similar
to how we built a decomposition tree for a cycle graph. However, for each vertex w
in the cycle that has other features attached to it, we will do the following: we will
split the edge incident to the associated leaf of w to create a new internal node. If w
is the common vertex of more than two features, we will create a binary tree to with
a number of leaves equal to one less than the number of features w is the common
vertex of. Then, to each of the leaves of this binary tree, or the internal node in
case that w is the common vertex of exactly two features, we attach caterpillar
decompositions starting from w of the corresponding branching feature.

In each vertex of the additional caterpillar decompositions that is the common
vertex of multiple features, we will also split the edge and also attach additional
caterpillar decompositions. We continue doing this splitting and adding in new
caterpillar decompositions until all vertices of G have associated leaves in (T, δ)∗.
Finally, we contract all vertices of degree 2, except for the root, to make it a valid
binary decomposition tree.

We show a rough example of the construction of a cactus graph decomposition
in �gures 19 through 23.
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To �nd the mm-width of (T, δ)∗, we will again look at all the edges we have
created: For each edge incident to a leaf, the mm score is 1, as for each of these
there is only a single vertex in one of the sets of the induced partition. For each
edge we have created to connect the caterpillar decompositions together, the mm
score is also 1, as any two features in the graph have at most one vertex in common,
meaning that it can make at most 1 matching in the induced bipartite graph.

Finally, for the edges along the length of the caterpillar decompositions, the mm
score is 1 for the caterpillar decompositions that were made for path features, while
the mm score is ≤ 2 for the caterpillar decompositions that were made for cycle
features. This is so, because the partitions made on these edges divide the vertices
of G by removing a single edge of G for the path decompositions, while the partitions
divide G by removing two edges of G for the cycle decompositions. [If such a cycle
found in G has 3 vertices though, the two edges that the graph is partitioned are
directly adjacent, meaning only one matching can be made in the induced bipartite
graph and giving those edges of the tree decomposition mm score 1.

Thus, all edges of (T, delta)∗ have mm score ≤ 2, except when there is no cycle
of four vertices or more, in which case all edges of (T, δ)∗ have mm score 1.

Figure 19: We start with a caterpillar decomposition of one of the cycles.

Figure 20: We �nd two path features attached to the same vertex on this cycle and
thus split the edge incident to the leaf node associated to that vertex and make two
places to attach decompositions for the two path features.
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Figure 21: We attach both decompositions of the two path features to the decom-
position tree.

Figure 22: We also �nd a cycle feature and attach a decomposition for it.

Figure 23: Finally we also add a decomposition for the �nal feature.
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7.7 Clique Graph / Complete Graph

A clique graph is a graph where every vertex is connected with every other vertex.
Because every possible edge in the graph is present in the graph, it is also known as
a complete graph.

To �nd the MM-width of a clique graph, let us �rst look at the maximum match-
ing of a clique consisting of n vertices. Seeing how we can connect any of the un-
matched vertices to any other unmatched vertex, we would be able to make bn/2c
matchings, before we either end up with a single �nal unmatched vertex or all ver-
tices matched. This directly implies that for a clique graph G, MM(G) ≤ bn/2c.

We can actually give a stricter bound though, by using the structure of binary
decomposition trees.

Theorem 6. Let graph G be a clique graph, then MM(G) = dn/3e, where n =
V |(G)|.

Proof. First we divide the n vertices over three sets, A, B and C, such that A ∪
B ∪ C = V (G). We will put any dn/3e vertices in A, we will put d(n − dn/3e)/2e
vertices in B and C will contain the rest of the vertices. [Thus, if n is divisible by
three: |A| = |B| = |C|. Else if n + 1 is divisible by three: |A| + 1 = |B| = |C|.
Otherwise: |A| = |B| = |C| − 1.]

Then, to construct (T, δ), we will create a root node and make its left child the
root node of any binary tree decomposition over the vertices in set A. We also make
an internal node and make it the right child of the main root node. The left child of
this internal node will be the root node of any binary tree decomposition over the
vertices in set B and the right child the root node of any binary tree decomposition
over the vertices in set C.

For all the edges in the binary tree decomposition we built for set A, we know
that the result of the function mm will not be larger than dn/3e, because for all
the partitions induced by the edges there are at most dn/3e vertices on one of
the sides. Similarly, for all the edges in the binary tree decomposition we built
for set B the score will never exceed d(n − dn/3e)/2e and for all the edges in the
binary tree decomposition we built for set C the score will never be larger than
n− d(n− dn/3e)/2e − dn/3e.

The edges incident to the root and the internal node that we placed initially will
be the highest scoring edges in (T, δ), having the highest scores from the binary tree
decompositions we built for the sets: the two edges around the root will have score
dn/3e, the edge to the internal node's left child will have score d(n−dn/3e)/2e and
the edge to the internal node's right child will have score n−d(n−dn/3e)/2e−dn/3e.

Thus, each edge in (T, δ) has a mm score ≤ dn/3e, thus MM(G) ≤ dn/3e.

Now, say that we could construct a binary tree decomposition (T, δ)′ with
mm((T, δ)′) < dn/3e. This directly implies that there must be no edges in (T, δ)′

where the induced partition has dn/3e or more vertices in the smallest of the sets.
Say (u, v) ∈ E(T ) is the edge with the highest induced mm score of W < dn/3e

and say vertex u is on the side of (u, v) with W leaves. Then there must be n−W
leaves on v's side of (u, v). Now, denoting the edges incident to v as (u, v), (v, w)
and (v, x), the n−W must be divided over the the parts of the tree beyond w and
beyond x. As (u, v) has the highest mm score of the tree, (v, w) has at most W
leaves beyond it, leaving at least n− 2W leaves to be beyond (v, x).
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Figure 24: Example of the binary decomposition tree together with the partitions
induced by the central three edges. Each triangle indicates a binary decomposition
of a set.

If we assume we have W leaves beyond (v, w), then beyond (v, x) there are ex-
actly n−2W < n−2(dn/3e−1) = n+2−2dn/3e vertices. As n+2−2dn/3e > dn/3e,
(v, x) has a higher score than (u, v), leading to a contradiction. Meaning that we
cannot build a tree decomposition with mm-width < dn/3e

Because MM(G) ≤ dn/3e and MM(G) ≥ dn/3e, MM(G) = dn/3e.

7.7.1 Upper Bound to MM-width

Using what we have proven above, we are able to derive an upper bound on the
value of the MM-width of a graph.

Theorem 7. For graphs G, H; if H ⊆ G, MM(H) ≤MM(H).

Proof. Say we have constructed any binary decomposition tree (T, δ) of a graph
G and we have a graph H ⊆ G. If we also use (T, δ) as a binary decomposition
tree for H, each edge e ∈ E(T ) induces the same partition Pe over the vertices of
V (H) as it induces over the vertices of V (G), though H may miss some vertices
present in G. Assuming those vertices are present however, as E(H) ⊆ E(G),
mmH(Pe) ≤ mmG(Pe), where mmG is the function mm as applied over graph G
and mmH is the function mm as applied over graph H. The removal of the missing
vertices can also only decrease the number of matchings that can be made in the
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partitions, meaning that for all binary decomposition trees the mm-width must have
either lowered or stayed equal, meaning that the minimum binary decomposition tree
also followed that trend.

Theorem 8. The MM-width of any graph is less than or equal to dn/3e.

Proof. Assume we have any graph I with |V (I)| = n. As we can �nd a clique graph
J ⊇ I by adding edges between all vertices in I and we know that J has a MM-width
of dn/3e, MM(I) ≤ dn/3e.

7.8 K-Tree

One of the possible ways of generalizing trees is done by de�ning them through
cliques to create the de�nition of the k-tree. Following the de�nition from [12], a
graph G is a k-tree if it is either a clique of k vertices, or a graph that contains a
vertex v of which the neighborhood in G induces a subgraph that is a clique of k
vertices and the removal of v from G results in a k-tree.

Following this de�nition, the tree we de�ned earlier is a 1-tree: each of the leaves
of the tree has a neighborhood of size 1 (trivially a clique) and we can keep removing
vertices of degree 1 from the 1-tree until we end up with with a single vertex.

To construct a k-tree G, we follow the de�nition backwards: we start with a
clique graph consisting of k vertices. Then, we repeat the following an arbitrary
number of times: We add a new vertex v to G and select a vertex w ∈ V (G). Then
we select k − 1 vertices from N(w) (these automatically all neighbor each other as
well). Finally we connect v with each of these vertices and w with an edge.

Figure 25: An example of a 3-tree.
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In the constructed k-tree we can see the clique which we started with as the root.
While the root is a single node in a rooted 1-tree, in a rooted k-tree the root is a set
consisting out of k vertices. Similarly, we can also �nd leaves in k-trees. These are
single vertices with degree k as such vertices are removed successively in the k-tree
de�nition until a clique has been found. This means that the vertices of a k-tree that
are not in the root clique, nor have degree k can be seen as internal vertices/nodes.

Figure 26: For the 3-tree of �gure 25 we have indicated the leaf vertices in red and
the three vertices of one of the many possible roots in blue.

7.8.1 MM-width of a K-Tree

To �nd the MM-width of a k-tree, we will again be building a binary tree decompo-
sition. However, to construct this decomposition, we will be using a method using
an advancing front. This front will start around one of the leaves of the k-tree and is
moved over the graph. The vertices that are behind the front will have been added
to the tree decomposition, while the vertices that are in front of the front do not
have associated nodes in the binary tree decomposition yet.

This front that we will be using will be a clique separator, which is a special
variation of a separator. When it stops being a separator during the construction,
we have reached a terminating step.

De�nition 21. (Vertex separator)
A set of vertices S ⊂ V (G) for non-adjacent vertices u and v is a (u, v)-separator if
and only if in G[V (G) \ S] u and v are in di�erent connected components.

De�nition 22. (Separator)
A set of vertices S ⊂ V (G), where G is a graph consisting of a single connected
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component, is a separator if and only if for H = G[V (G) \ S] : ∃u, v ∈ V (H) such
that u and v are in di�erent connected components of H.

De�nition 23. (Clique separator)
A set of vertices S ⊂ V (G), where G is a graph consisting of a single connected
component, is a clique separator if and only if for H = G[V (G) \ S] : ∃u, v ∈ V (H)
such that u and v are in di�erent connected components and G[S] is a clique graph.

We will be proving that k-trees have MM-width of ≤ k. This means that for
k-trees with 3k or less vertices we do not have to prove anything more than we
already have, as we have proven earlier that all graphs have MM-width ≤ dn/3e.
To prove that the MM-width of a k-tree of at least 3k vertices is ≤ k, we will follow
an algorithm that we will �rst roughly sketch here:

The algorithm starts from one of the leaves of the k-tree. This vertex v will
immediately get an associated leaf in the binary tree decomposition (T, δ) we are
building and a parent node. Then we create the �rst front F for the algorithm: F
will contain exactly each vertex neighboring v at �rst. Due to the graph being a
k-tree, the neighbors of a leaf must be a clique, making F a clique separator.

The front F will be advancing over the graph during the algorithm, which means
that we will add vertices to the front while removing others. The basic advance of the
front goes as follows: when the front separates the graph in exactly two connected
components, then we will choose a vertex y that neighbors all of the vertices in the
front and is part of the connected component that does not contain the starting
vertex. We will assume for now that F ∪ {y} also separates the graph into exactly
two connected components. Next, we add y to F and choose a vertex x from F , such
that x 6= y and F \ {x} still separates the graph into two connected components,
then we remove x from F . We also add an extra leaf node to (T, δ) to associate
to x. This new leaf node becomes the other child of the highest internal node of
the decomposition tree and we add a new internal node as a parent to that internal
node.

Not all advances will be like the basic advance though: the terminating advancing
step for example. For the terminating advance, after adding the vertex to the front
but before removing the other vertex from it, the graph will not be separated into
multiple connected components. In this situation, we will just pick a random vertex
from the front to remove (as long as it is not the vertex we just added) and add
both an associated leaf and an extra internal node to the decomposition tree. This
extra internal node will become the root of (T, δ) and from the other child of the
root we will hang any binary tree of k leaves, where the k leaves are associated to
the vertices in the �nal front in any way.

The front can also split the graph in more than two connected components.
When this happens, we have found a branching point. To be precise, we have found
a clique of size k (the front), from where three or more branches sprout. We cannot
continue here as we would during a basic advance, as we would not associate the
vertices to leaves in at least one of these branches if we did so. To resolve this,
we select one of the branches to continue along and we will decomposition each
of the other branches in the same way that we decomposition k-trees. The reason
why we can decomposition the branches this way, is because each of the connected
components we made by separating the graph with our front is by itself a k-tree
when the front is attached to it:
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Theorem 9. ∀C ∈ CC(G \ F ), where F is a clique separator and G is a k-tree,
G[V (C) ∪ F ] is a k-tree.

Proof. After removing all vertices that are in the other branches, we end up with a
graph in which each vertex must have been added to k of its neighboring vertices
that were a clique. As any vertex in this branch was not connected to anything
outside this branch or the separator, these vertices do not lie outside the current
graph. Thus the branch can be constructed in the same way as a k-tree, which
means that G[V (C) ∪ F ] is a k-tree.

However, in this �sub-routine� of the algorithm we do need to enforce that we
choose to add and remove vertices from the front of the sub-routine, such that the
front of the sub-routine becomes the current front at some point. We do this to
prevent a terminating step during the sub-routine.

After decompositioning the extra branches, we need to add these decomposition
trees to (T, δ): For each of the branches we decompositioned, we �rst merge the
highest internal nodes of (T, δ) and that branch's decomposition tree and then we
add a new internal node as a parent to the merge node.

Finally, it is also possible that by a basic advance, F ∪ {y} separates the graph
into more than two connected components. When this happens, removing any of the
vertices of F from F ∪{y} can cause us to skip branches and we will need to resolve
the branches we will skip separately as well just before we remove a vertex that
connects the skipped branches to what we already decompositioned. We will do this
in a similar fashion to how we resolved the branches in the previous special case of
the advance. However, due to the structure of this type of branching point, during
the sub-routines we will need to work towards making the front of the sub-routine
consisting out of vertices from F ∪ {y}.

7.8.2 Example of K-Tree Decompositioning

To show how to construct the binary decomposition of a k-tree more clearly, we will
be walking through a small example, which is demonstrated in �gures 27 through
38 and a case not shown in this demonstration is shown in �gure 39.
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Figure 27: An example of a 2-tree and the k-tree we will be decompositioning for
this example.

Figure 28: We will start from vertex 0. The two vertices in the ellipse comprise the
front. We construct the tree on the right
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Figure 29: The �rst advance is a basic one. We add vertex 4 to the front and remove
vertex 3. An associated leaf for vertex 3 is also added to the decomposition tree.

Figure 30: The second advance is also basic, this time vertex 2 is added and vertex
1 removed. A leaf for 1 is added to the tree.

Figure 31: The third advance, another basic one, pushes a leaf for 2 to the tree.
The front now separates the graph into three connected components.
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Figure 32: We decided to decompose the branch containing vertex 10 �rst. An
additional front is used to decompose it.

Figure 33: Another basic advance, but the secondary front overlaps with the primary
front, so vertex 5 cannot be removed from it anymore.

Figure 34: After adding a leaf for vertex 6 to the tree, our primary and secondary
front are now equal...
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Figure 35: ...thus we connect the two separate trees and continue.

Figure 36: The leaf for vertex 4 is attached above this connection in the tree.

Figure 37: The �nal advance adds a leaf for vertex 5. Note that the front is now
not a separator anymore. For the two vertices of this front, 7 and 8, we construct
any binary decomposition tree and add that as the other child of the root.
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Figure 38: In this �gure, the red edges of the decomposition tree indicate edges of
mm score 2, the other edges have score 1.

Figure 39: For the other branching possibility (when an advance would skip a
branch) you also need to decompose the branches you skipped: Here we started
from vertex 0 and found a branching point when we added vertex 6 to the front.
Before we added a decomposition tree for the branch containing vertex 4 branching
from that branching point, we added a leaf for vertex 3 to the decomposition of the
main branch.
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7.8.3 MM-Width of the K-Tree

In a moment we will give a proof for the MM-width of the binary decomposition
trees we construct with this method, but the intuition for it is relatively simple: for
the basic advances, and the locations where the front separates the graph into more
than two connected components, we know that the vertices behind the front can
only match with vertices in the front. This means that at most k matches can be
made at those positions in the decomposition tree.

For the second non-basic advance, the one where F ∪ {y} separates the graph
into more than two connected components, the separator consists of the front and
an additional vertex, however each of the branches around this point except for one
is still separated from the rest by a separator of size k. The exception is the branch
we advanced from as the branch of the decomposition that contains the associated
leaves of this branch gains the vertex that was removed from the front during the
advance of the front that would have skipped the other branches. This additional
vertex removes one of the k matching locations from the branch it was added to
while adding a new matching location, making the size of the matchings also at
most k.

With this intuition, we can see that the MM-width of a k-tree would be at most
k, however the formal proof is found below.

7.8.4 Formal Proof

Theorem 10. Let graph G be a k-tree, then MM(G) ≤ k.

Proof. Let graph G be a k-tree and let vertex v be any vertex from G with degree
k. We start constructing the binary decomposition tree (T, δ) by adding a leaf node
for vertex v with a parent node r. Let F be a set of vertices that we will call the
current front, which will contain exactly all the vertices in N(v) at the start of the
algorithm. The current root node of (T, δ) will be denoted with r. Every step of
the algorithm, either the front separates the graph into more than two connected
components, exactly two connected components or it is not a separator; thus: either
(1) |CC(G \ F )| > 2, (2) |CC(G \ F )| = 2 or (3) |CC(G \ F )| = 1).

In case (1): Let C0 ∈ CC(G \ F ) be the connected component containing v and
let C1 be the connected component we will be advancing to. We will �rst need to
resolve the other connected components in the same way as we handle the rest of
the k-tree, but instead when the current front of this recursive call contains a vertex
from F , this vertex may not be removed from that current front anymore when
advancing. Then we make any binary tree with |CC(G\F )|−2 leaves and hang the
trees created by the recursive calls from the leaves of this tree and make the root of
this tree a child of r. Above r we create a new parent node for r, which becomes
the new root node of (T, δ) and thus also the new r. After doing this, we need to
advance the front as in case 2.

In case (2), we can advance the front F . Let C1 ∈ CC(G \ F ) be the connected
component of which no vertices have been added to (T, δ) yet. Let NF =

⋂
u∈F

(N(u)).

Remove a vertex x from F and pick a vertex y from NF ∩ C1 to add to F . Then
add a leaf for x as child of r to (T, δ), make r the child of a new node which will
become the new root of the tree and be denoted as r. If the connected components in
CC(G\F ) are the same as they were �rst, but the connected component containing
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v has increased in size by exactly 1, then you are done for this step and we can
look at the case distinction again. Else, we have skipped over at least one branch
by advancing the front and we will have to resolve the branches in the same way as
we handle the rest of the k-tree, but instead when the current front of this recursive
call contains a vertex from F ∪x, this vertex may not be removed from that current
front anymore when advancing. Merge the root of the recursive call with r and give
r a new parent, which becomes the new r. Now we can look at the case distinction
again. We will refer to a non-simple advance when we have to resolve other branches
to advance and a simple advance otherwise.

In case (3), we cannot advance the front any further. Make any binary decom-
position tree of F and hang this from r to �nish construction of (T, δ).

Now we have constructed (T, δ), we will deduce the mm-width of this binary
decomposition tree: First the edges in (T, δ) added to connect multiple branches
in case (1). These edges all have the separator that the branches branch out of
above it, meaning that each of the edges has mm-width at most k. As the branches
that branch from the same separator set hang from the same tree, these branches
compete with each other to match.

For every node added by simple advancing in case (2), the edge above the parent
of the node has at most mm-width k, as the front at that point, a size k clique
separator of the graph, is found completely beyond this edge, while all vertices of
the connected component containing the associated vertex of this node is found on
this side of the edge.

For a node n added by a non-simple advance in case (2), one that skipped over
at least one branch, we can see that the edge above the parent of n must also have
at most mm-width k, as originally in the branch that n was added to, ≤ k matching
could have been made, one of which would have to have been with δ(n). Adding n
to the tree makes it not possible to match with any more from the branch, instead
it will now be matching itself with another vertex, meaning that the edge above the
parent of n has mm-width at most k.

For all edges created by case (3), it is trivial to see that there are k vertices in
the front at all times and therefore these edges have mm-width at most k.

Thus, all vertices in k-tree G have a corresponding leaf in binary decomposition
tree (T, δ) and all edges in the binary decompostion tree (T, δ) have mm-width at
most k. Therefore G has mm-width at most k.
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8 Bounded DP MM-Width

We can improve on the performance of the dynamically programmed MM-width
algorithm by using upper and lower bounds. The dynamic programming already let
us skip mm-width calculations that we already have done, while the lower and upper
bounds will allow us to skip calculation of entire possible subtrees with a simple
check. We use a slightly adapted dynamically programmed MM-width algorithm
and add the checks on the upper and lower bounds to it. We also add an additional
dictionary to the algorithm that tracks the mm scores of speci�c partitions.

8.1 Lower Bound

As we move down the tree making decisions about the partitioning of the vertices,
we will now calculate the mm scores of the edges from the nodes directly. We will
keep track of the mm score of these edges and pass the largest mm score we have
gotten due to partitioning decisions downward into recursive calls with this node as
ancestor. Now, when we are calculating the optimal partitioning for a node, before
calculating any further mm score for this node we can quickly check whether the
mm-width of the subtrees can possibly be larger than what we know the mm-width
of the current binary decomposition tree is.

Assuming we calculate the left edge and left subtree of a node �rst, if we did not
skip the calculation of those, we can use also use the mm-width of the left subtree
of the node to act as a lower bound on the calculation of the right edge and subtree.

The quick assessment we will be using whether we have to continue down to
partition further for calculation will be based on the size of the set that we decided
is beyond the edge we will move down past. If it is smaller or equal to the largest
mm score we know we have in the tree, we also know that we can never have an
edge in that subtree with a mm score higher than that. In addition, we can just give
any binary decomposition tree over this subtree, saving on a lot of computations.

8.2 Upper Bound

For each of the edges we calculate the mm score of, we can also check whether or
not the score we �nd is higher than an upper bound. If so, we know we made a bad
decision for a partition that will increase our mm-width to above the upper bound.
Therefore, we do not have to recurse beyond this edge and we can try another
partitioning for this node.

There will be two upper bounds we will be considering in this thesis. The �rst
of these we have already given earlier and is based on the proof that any graph has
a MM-width of dn/3e or less. The second of these is linked to the MM-width of a
k-tree.

8.2.1 MM-Width versus Treewidth

Treewidth is a well known graph property and used in parameterized complexity
analyses of graph algorithms. In [1], the same work in which MM-width was intro-
duced, the value of MM-width was linked to treewidth and branch-width as follows:
1
3
(tw(G) + 1) ≤ MM(G) ≤ max(brw(G), 1) ≤ tw(G) + 1, where tw(G) is the
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treewidth of a graph G, brw(G) is the branch-width of a graph G and MM(G) is
the MM-width of a graph G.

This means �rst o� that if we know the Treewidth of a graph, we can both use
the lower bound of 1

3
(tw(G) + 1) in addition to what mm scores we �nd during the

algorithm and tw(G) + 1 as an upper bound, if it is stronger than the clique bound
of dn/3e. However, using our analysis of the MM-width of a k-tree, we can improve
on the link between the MM-width and treewidth parameter.

De�nition 24. (Tree Decomposition [Treewidth Decomposition])
For a graph G a tree decomposition, which we will name a treewidth decomposition
to prevent confusion with binary decomposition trees, is a pair ({Xi | i ∈ I}, T =
(I, F )), with {Xi | i ∈ I} a collection of subsets of V (G) and T a tree such that:

•
⋃
i∈I
Xi = V (G)

• ∀(u, v) ∈ E(G)∃i ∈ I, v ∈ Xi AND u ∈ Xi

• ∀i, j, k ∈ I, if i lies on the path between j and k in T , then Xj ∩Xk ⊆ Xi

The width of a treewidth decomposition ({Xi | i ∈ I}, T = (I, F )) is max
∀i∈I
|Xi| − 1.

De�nition 25. (Treewidth)
The treewidth of a graph G is the minimum width over all treewidth decompositions
of G and is denoted as tw(G).

Alternatively, one can de�ne treewidth by means of partial k-trees :

De�nition 26. (Partial K-Tree)
A graph G is a partial k-tree if and only if G is the subgraph of a k-tree.

In addition, one can prove that a graph G is a partial k-tree if and only if the
treewidth of G is at most k. (See [2], [13] and [14])

This leads us to the following:

Theorem 11. For any graph G, MM(G) ≤ tw(G).

Proof. Let us take any graph G and let H be a k-tree such that G ⊆ H and k is
as small as possible. As H is a k-tree, we know that MM(H) = k by theorem and
thus that MM(G) ≤ k by theorem . As G is a partial k-tree, G has treewidth at
most k. As we chose H to be a k-tree with smallest possible k, tw(G) = k.

In conclusion, we know that MM(G) ≤ k = tw(G), thus for any graph G,
MM(G) ≤ tw(G).

This improves on the bound given by Vatshelle in [1], though both our new
bound and the old bound can be used to let treewidth be an upper bound in our
algorithm or maximum matching width a lower bound on treewidth.
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8.3 The Algorithm

Bounded Dynamically Programmed MM-Width is very similar to Dynamically Pro-
grammed MM-Width, but it has slightly reordered and extended logic to facilitate
the addition of the upper and lower bounds. In addition to the global dictionary
MMdict which stores optimal binary subtrees with their associated scores for par-
titions, we are now also using a global UBSkipDict which stores the mm scores of
partitions. We also use Math.Max as a function that returns the maximum value of
the two inputs.

(Please note that due to the length of the pseudo code of the algorithm, we had
to split it to not fall o� the page, meaning that the algorithm is now presented over
two pages. To do this split in a natural location and useful location, we had to split
inside of the ForEach loop.)

Algorithm 4: Bounded DP MM-width

Data: a graph g
treewidth of graph g treewidth
Result: MM-width of the graph and a binary decomposition tree of that

score
cliqueMax←−Math.Ceiling(g.vertices.Length/3);
result←− BMMDPRecurse(g, ∅,−1,Math.Min(treewidth, cliqueMax));
return result
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Algorithm 5: BMMDPRecurse

Data: a graph g
the set of vertices not in the subtree parentSet
largest score we forced upon ourselves largestScore
upper bound UB
SetToSplit←− parentSet.Complement();
if SetToSplit.Count = 1 then

return new Tuple(1, SetToSplit[0].Associated)

if SetToSplit.Count = 2 then
return new Tuple(1,
�(� + SetToSplit[0].Associated + �, � + SetToSplit[1].Associated + �)�)

BestScore←− int.MaxV alue;
BestTree←− � �;
foreach subset S of SetToSplit do

if S.Count = 0or(S ∪ parentSet).Count = g.vertices.Length then
continue;

scoreSubL←− −1;
scoreL←− 0;
skippedLCalc←− false;
if S.Count > 2andS.Count ≤ largestScore then

skippedLCalc←− true;
tree←− AnyTree(S);
scoreL←− S.Count;

else
if UBSkipDict.ContainsKey(S) then

leftEdge←− UBSkipDict[S];

else
leftEdge←− HopcroftKarp(G[S, S̄]);
UBSkipDict[S]←− leftEdge;

if leftEdge > UB then
continue;

if MMdict.ContainsKey(S) then
scoreSubL←−MMdict[S].Item1;
tree←− “(′′+MMdict[S].Item2 + “,′′;

else
largerScore←−Math.Max(largestScore, leftEdge);
tupleL←− BMMDPRecurse(g, S.Complement(), largerScore, UB);
scoreSubL←− tupleL.Item1;
tree←− “(′′+tupleL.Item2 + “,′′;

scoreL←−Math.Max(leftEdge, scoreSubL);

[algorithm continues in this ForEach on the following page]
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Algorithm 5: BMMDPRecurse (continued)

scoreSubR←− −1;
scoreR←− 0;
rightSubSet←− (S ∪ parentSet).Complement();
if rightSubSet.Count > 2and(rightSubSet.Count ≤
largestScoreornot(skippedLCalc)andrightSubSet.Count ≤ scoreL)
then
tree←− tree+ AnyTree(rightSubSet);
scoreR←− rightSubSet.Count;

else
if UBSkipDict.ContainsKey(rightSubSet) then

rightEdge←− UBSkipDict[rightSubSet];

else
rightEdge←− HopcroftKarp(G[rightSubSet, ¯rightSubSet]);
UBSkipDict[rightSubSet]←− rightEdge;

if rightEdge > UB then
continue;

if MMdict.ContainsKey(rightSubSet) then
scoreSubR←−MMdict[rightSubSet].Item1;
tree←−MMdict[rightSubSet].Item2 + “)′′;

else
largerScore←−Math.Max(largestScore, rightEdge);
tupleR←− BMMDPRecurse(g, rightSubSet.Complement(), largerScore, UB);
scoreSubR←− tupleR.Item1;
tree←− tupleR.Item2 + “)′′;

scoreR←−Math.Max(rightEdge, scoreSubR);

score←−Math.Max(scoreL, scoreR);
if score < BestScore then

BestScore←− score;
BestTree←− tree;

result←− newTuple(BestScore,BestTree);
MMdict[parentSet.Complement()]←− result;
return result
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9 Kernelization of MM-Width

As a �nal improvement on our exact algorithms, we will be using kernelization
rules. Such rules are used to �nd something called a kernel, which can be seen as
the tough part (or parts) of the graph that actually involve the issues that need to be
considered speci�cally to calculate things about the graph. This kernel is generally
a smaller graph than the original graph. Because we end up with only the di�cult
parts of the graph, kernelization is part of the preprocessing part of algorithms.

To facilitate reading the kernelization rules, we have added �gures showing
graphs and decomposition trees marked to indicate the important vertices and nodes.

9.1 Rule 0: Separate Components

Up until now, we have assumed all graphs we were decompositioning consisted of
a single connected component. To be more complete, and because we are going to
need to be able to handle multiple connected components for some later rules, we
need to �gure out how to handle multiple connected components in a graph.

Theorem 12. For G a graph with two connected components C0 and C1, where
G[C0] is the subgraph of G containing only the vertices in C0 and G[C1] only the
vertices in C1, MM(G) = max(MM(G[C0]),MMG[C1]).

Proof. Let (T, δ)C0 be an optimal binary tree decomposition of G[C0] and (T, δ)C1

be an optimal binary tree decomposition of G[C1]. We will now construct (T, δ)′, a
binary tree decomposition of G, by adding a new node r and making its left child
the root of (T, δ)C0 and its right child the root of (T, δ)C1 .

Each cut that can be made below the right edge of r will create a partition in
which all vertices in C0 fall in the same set: these vertices can thus not be matched
to any vertex, meaning that the mm scores of these cuts are equal to the scores
of the corresponding cuts in (T, δ)C1 . Similarly, each cut below the left edge of r
gives an equal score to the corresponding cut in (T, δ)C0 . Both cuts directly below
r will give a mm score of 0 as all vertices of C0 will be in one set and all vertices
of C1 in the other and no edges exist between the two connected components. As
the score of a binary decomposition tree is the maximum score found over all cuts,
mm((T, δ)′) ≤ max(mm((T, δ)C0),mm((T, δ)C1)).

Say that it is possible to �nd a better binary decomposition tree forG than (T, δ)′,
namely (T, δ)∗, with mm((T, δ)∗) < mm((T, δ)′). We can now construct (T, δ)∗C0

by
removing all leaves associated to vertices of the other connected component and
then contracting the nodes with less than two children. As the vertices no longer
represented in this tree did not have edges connected to anything in C0 they can
not have increased the score for C0. Idem for C1. Thus, either mm((T, δ)∗C0

) <
mm((T, δ)C0), mm((T, δ)∗C1

) < mm((T, δ)C1), or both are true.
However, as (T, δ)C0 and (T, δ)C1 were the optimal binary tree decompositions

of G[C0] and G[C1] respectively, we have found a contradiction, thus we cannot �nd
a better binary decomposition tree for G than (T, δ)′.

Thus mm((T, δ)′) = max(mm((T, δ)C0),mm((T, δ)C1)) and
MM(G) = max(mm(G[C0]),mm(G[C1])).

This proof can be extended to any number of connected components and shows
that the MM-width of a graph can be found by calculating the MM-width of each
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connected component of a graph separately �rst. As this is a preprocessing step but
does not really change the graph, we will consider this the zeroth step.

Because we can �nd all connected components in a graph in O(|V (G)|) time by
using either depth �rst search or breadth �rst search, a singular application of the
zeroth rule takes linear time.

Figure 40: A graph consisting of two connected components, A and B, is decom-
positioned into a binary tree consisting of the decomposition trees of the separate
connected components.

9.2 Rule 1: Dangling Vertices

The �rst rule we would want to have is one dealing with vertices of degree 1. We
�gured out in section that 1-trees all have a MM-width of 1. Removing a vertex
of degree 1 from a 1-tree creates either a single vertex or another 1-tree. Now, we
already know that the MM-width of a graph consisting of a single vertex is 0 as
seen in section 7. This means we cannot reduce a graph to the single vertex graph
without the MM-width dropping to 0. This implies we are not allowed to remove
vertices of degree 1 if their single neighbor has degree 1 as well. Any other vertex
of degree 1 can be removed safely.

Theorem 13. For G a graph with v ∈ V (G) a vertex of degree 1 with ∀w ∈
N(v)degree(w) > 1, MM(G) = MM(G[V (G) \ {v}]).

Proof. Say you have an optimal binary decomposition tree (T, δ)′ of graph G \ v.
Now construct (T, δ) from (T, δ)′ by putting an additional node n between δ(u) and
the parent of δ(u). Also, add a second child to n and associate it with the vertex v.
Now (T, δ) is a binary decomposition tree of G. Each partition induced by edges of
(T, δ)′ has a corresponding partition induced by (T, δ), but (T, δ) has two additional
cut locations, namely between δ(u) and n, and between δ(v) and n. For all cuts
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in (T, δ)′, in the corresponding cut in (T, δ) u and v will be in the same set of the
partition, meaning that no match can be made between u and v and that the score
of each cut in (T, δ)′ and the corresponding cut in (T, δ) is the same. For the two
new cut locations, either u is all by himself in a set or v is, meaning that the scores
of these cuts are at most 1. As G \ v contains at least one edge, MM(G \ v) ≥ 1,
thus MM(G) ≤MM(G \ v).

Because G \ v is a subgraph of G, the width of G \ v can not be greater than G.
Thus MM(G) = MM(G \ v).

Figure 41: A graph with a degree 1 vertex v connected to a degree 2 vertex w. v is
removed from the graph to decompose the graph more easily. It is then reinserted
and δ(v) is inserted into the binary decomposition tree to create a decomposition of
the original graph.

Using this proof, it is possible to give alternative proofs for both the MM-width
of a path graph and 1-trees by removing vertices of degree 1 until we are left with
a single edge graph.

We can �nd whether there are vertices of degree 1 eligible for deletion in the
graph and remove them in O(|V (G)|) time. However, removing a vertex of degree
1 means its singular neighbor may also become a vertex of degree 1. Thus, we can
test each vertex of the graph at �rst and when we remove a vertex from the graph,
we also check whether the neighbor of the vertex has become a vertex of degree
1 neighboring a vertex of degree > 1. If so, we also remove that vertex and check
again, otherwise we go back to testing the next vertex. This way, we test each vertex
at most once in the main loop and for each vertex we remove we test their neighbor.
Thus it also takes O(|V (G)|) time to remove all dangling vertices from a graph until
there are none left.

Finally, we call these degree 1 vertices �dangling� vertices because they are at-
tached to a larger graph and connect to that graph through a single vertex.
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9.3 Rule 2: Dangling Triangles

Logically, the next rule we would want is about vertices of degree 2. The problem
is that such vertices can be in more di�erent situations than vertices of degree 1, so
we will �rst look at dangling vertices again. Now, we can't have a vertex of degree
2 attach to a larger graph through a single vertex by itself, so we will have to add
at least one additional vertex. If this additional vertex has degree 1, we can simply
handle the vertex by applying rule 1 twice. Let us therefore say this additional
vertex has degree 2 and is connected to both the vertex we want to remove and the
vertex from which it dangles, forming a triangle.

Figure 42: A graph with a dangling triangle.

Theorem 14. For G a graph with v ∈ V (G) a vertex of degree 2 with ∃u,w ∈
N(v) : degree(u) = 2 and degree(w) > 2, MM(G) = MM(G[V (G) \ {v}]).

Proof. Say you have an optimal binary decomposition tree (T, δ)′ of graph G \ v.
Now construct (T, δ) from (T, δ)′ by putting an additional node n between δ(u)
and the parent of δ(u). Also, add a second child to n and associate it with the
vertex v. Now (T, δ) is a binary decomposition tree of G. Each partition induced
by edges of (T, δ)′ has a corresponding partition induced by (T, δ), but (T, δ) has
two additional cut locations, namely between δ(u) and n, and between δ(v) and
n. For all cuts in (T, δ)′, in the corresponding cut in (T, δ) u and v will be in the
same set of the partition, meaning that no match can be made between u and v. In
addition, in the partitions that w is in the other set than u and v are, at most one
of both will be able to match with w. Thus the score of each cut in (T, δ)′ and the
corresponding cut in (T, δ) is the same. For the two new cut locations, either u is
all by himself in a set or v is, meaning that the scores of these cuts are at most 1.
Thus MM(G) ≤MM(G \ v).

As G \ v is a subgraph of G, the width of G \ v will not be greater than G. Thus
MM(G) = MM(G \ v).

After the removal of this vertex, we now have a dangling vertex that we can apply
the �rst rule on. This means that we could also remove both vertices of degree 2 of
the dangling triangles from the graph for the second rule, though we have decided
on this variation of the rule as it is the simplest variation of the rule.

Finding all vertices of degree 2 in a graph takes O(n) time. Checking for each of
the found vertices whether one of their neighbors has degree 2 and the other degree
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Figure 43: A graph with a dangling triangle. v is removed from the graph to
decompose the graph more easily. It is then reinserted and δ(v) is inserted into the
binary decomposition tree to create a decomposition of the original graph.

> 2 does not increase this complexity. In the variation of the rule that we remove
only a single vertex, we can not create new situations in which we can delete more
vertices by this rule. In the variation that we delete both vertices however, the
vertex the removed triangle dangled from can become a vertex that is part of a new
dangling triangle. Similarly to the �rst rule, we can again remove all the dangling
triangles as we �nd and create them without gaining additional complexity.

9.4 Rule 3: Size 1 Separators

We can handle dangling triangles by utilizing rule 2 followed by rule 1, however we
can also handle them by splitting the graph on the vertex the triangle dangles from.
This results in two connected components: A cycle of three vertices (a triangle) and
the graph which we would have gotten if we had removed the vertices by rule 2 and
1. As the graph are now two separate connected components, this implies that the
MM-width of the graph is now max(mm((T, δ)C3),mm((T, δ)H)) where (T, δ)C3 is
an optimal binary decomposition of the triangle and (T, δ)H is an optimal binary
decomposition of the the graph we get after removing the two vertices. As the MM-
width of a cycle of three vertices is 1 and the MM-width of the rest of the graph must
be at least 1, max(mm((T, δ)C3),mm((T, δ)H)) = max(1,MM(H)) = MM(H),
which is correct as we have seen before.

In fact, we can prove a more general rule for any separator of size 1. If we have
a graph G with a separator S of size 1 in it, the MM-width of G is the maximum
over the two connected components of G \ S with the separator added back to
it. But to prove this, we need the following proof �rst about �rebalancing� binary
decomposition trees:

Theorem 15. For G a graph, (T, δ) an optimal binary decomposition tree of G and
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Figure 44: A graph with a dangling triangle is split into two components, this results
in the same score as proven before.

v ∈ V (G), (T, δ)v is an (optimal) binary decomposition tree of G with mm((T, δ)) =
mm((T, δ)v) and one of the children of the root of (T, δ)v is δ(v). We call (T, δ)v

v-rebalanced.

Proof. We can construct (T, δ)v from (T, δ) as follows: Remove the root node and
its two incident edges from (T, δ), then connect the nodes that were originally the
root node's children with an edge. This new edge induces the same partition as the
two edges we removed, meaning that (T, δ) still has the same MM-width. Then �nd
δ(v) in (T, δ) and split the edge incident to δ(v). The new vertex will now be the
new root node of (T, δ), while the two new edges have the mm score as the edge
they were created from, meaning that (T, δ) still has the same score.

As (T, δ) is still an optimal binary decomposition tree and δ(v) is now a child of
the root node, we have now constructed (T, δ)v.

Theorem 16. For G a graph and S a separator of size 1, MM(G) =
max

H∈CC(G\S)
(mm((T, δ)G[H∪S])), where (T, δ)A is an optimal binary tree decomposition

of graph A.

Proof. For each connected component H ∈ CC(G \S) we can construct an optimal
binary tree decomposition (T, δ)G[H∪S]. For the one vertex v ∈ S, we will v-rebalance
(T, δ)G[H∪S] and we remove the root node and δ(v). Then, we create any binary tree
with |CC(G \S)| leaves and connect one of the binary tree decompositions for each
of the connected components to each of the leaves. Finally, we create a root node
to make the parent of the full tree and make δ(v) one of the children of the root.
This new tree is now a binary tree decomposition (T, δ) of G.

As each subgraph G[H ∪ S] only has interaction with the others through S,
all edges in the connecting binary tree in (T, δ) and the two edges incident to
its root have a mm score of 1. In addition, all edges in the subtrees of the sub-
graphs still have the same score as they had before, meaning that mm((T, δ)) =
max

H∈CC(G\S)
(1,mm((T, δ)G[H∪S])). We know that any graph with at least one edge has

a MM-width of 1, so we can simplify this tomm((T, δ)) = max
H∈CC(G\S)

(mm((T, δ)G[H∪S]))

Now say that it is possible to �nd a better binary decomposition tree for G
than (T, δ), namely (T, δ)∗ with mm((T, δ)∗) < mm((T, δ)). We can now construct
(T, δ)∗G[H∪S] by removing all leaves associated to vertices not in V (H ∪ S) and con-
tracting all nodes with less than two children. As the vertices no longer represented
in this tree did not have edges connected to anything in H, they could not have in-
creased the score for H. Idem for each H ∈ CC(G\S). Thus, for at least one of the
H ∈ CC(G \ S), mm((T, δ)∗G[H∪S]) < mm(((T, δ)G[H∪S]), which is a contradiction,

thus we cannot �nd a better binary decomposition tree for G than (T, δ).
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Figure 45: The graph is split on the separator of size 1 and the two components are
decompositioned and rebalanced on the single vertex in the separator. Connecting
the two trees creates the optimal decomposition tree for the original graph.

Therefore, MM(G) = mm((T, δ)) = max
H∈CC(G\S)

(mm((T, δ)G[H∪S])).

Testing whether or not a vertex is a separator takes O(|V (G)|) time, so testing
this for each vertex in the graph takes O(n2) time, where n is the number of vertices
in the graph. So, even though this is a more general rule than the second rule, it is
also more expensive. Meaning that both rules are applicable in their own way.

9.5 Rule 4: Cycles of 4 or Greater

Another possible situations for vertices of degree 2 to be in, is part of a cycle. We
have already shown how cycle graphs of four or more vertices have MM-width 2,
meaning that we can only reduce cycles of �ve or more vertices without possibly
lowering the MM-width of our graph.

For this rule, we will be looking at �ve consecutive vertices t, u, v, w, x ∈ V (G),
where u, v and w each have degree 2 and both t and x have degree at least 1. As
these vertices are consecutive, u ∈ N(t), t, v ∈ N(u), u,w ∈ N(v), v, x ∈ N(w) and
w ∈ N(x). We will remove vertex v from G to create G[V (G) \ {v}].

Theorem 17. For graph G with vertices t, u, v, w, x ∈ V (G) consecutively on a path,
u, v and w each of degree 2 and there is a path from t to x that does not go through
u, then MM(G) = MM(G[V (G) \ {v}]).
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Figure 46: The �ve consecutive vertices t, u, v, w and x. The dotted line indicates
a path between t and x not through u, as the �ve vertices must be on a cycle.

Proof. To construct an optimal binary tree decomposition (T, δ)′ for G from an
optimal binary tree decomposition (T, δ) for G[V (G) \ {v}] we do the following:
rebalance (T, δ) such that δ(w) is not a child of the root, then identify the path
through (T, δ) between δ(w) and δ(x). We will insert δ(v) �next� to δ(w) on the
other side as where the path between δ(w) and δ(x) goes. We will denote the edge
in (T, δ) we split to add δ(v) as b and the edge incident to δ(w)'s parent (but not
incident to δ(w) itself) that lies on the path between δ(w) and δ(x) as a. Then a′ is
the same edge as a but in (T, δ)′ and b′ and c′ are the two edges created by splitting
b, where c′ is the edge between the parents of δ(w) and δ(v).

To �gure out the mm-width of (T, δ)′, we need to analyze the edges of the
decomposition trees and the partitions they induce. Now, there are many di�erent
possible ways for the associated leaves to be placed around the trees and we will be
analyzing the di�erent ways they may be and the e�ects. We will case separate on
the cases where w and its two neighbors are located:

(a) First o�, say that that Pa = (A,B), where x ∈ A and w, u ∈ B (We will
for now shorten this to Pa = [u,w;x]). Then we know that Pb = [u;w, x] and this
means that Pa′ = [x; v, w, u], Pc′ = [x, v;w, u] and Pb′ = [x, v, w;u].

In this situation, mm(Pa) = mm(Pb) and mm(Pa′) = mm(Pc′) = mm(Pb′),
because the amount of matchings remain the same in the graph that can be made
by changing between these partitions. However, the addition of v and δ(v) in these
locations mean that the amount of matchings also remain the same, thus mm(Pa) =
mm(Pa′). So in this situation the MM-width remains the same.

(b) Otherwise, Pa = [u, x;w], Pb = [u,w, x; ], Pa′ = [u, x; v, w], Pc′ = [u,w, x; v]
and Pb′ = [u, v, w, x; ]. In this situation, mm(Pa) = mm(Pb) + 1 as in Pa w and u
can match, this matching is lost in Pb and no other matching is formed, unless t is
in the other set than u, in which case mm(Pa) = mm(Pb). Thus we will need to
distinguish cases on where t is in the partition:

(b1) Let us �rst assume Pa = [u, x; t, w], Pb = [u,w, x; t], Pa′ = [u, x; t, v, w],
Pc′ = [u,w, x; t, v] and Pb′ = [u, v, w, x; t]. Now we can see that on all edges between
δ(u)'s parent and δ(t)'s parent in (T, δ) (including a and b), there is a matching
between t and u because of how the vertices on the path are now in the two sets
alternately increasing the score on these edges. However, this local increase is unnec-
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Figure 47: The decomposition notation in the �gure can be read as follows: the leaf
nodes are marked with the associated vertex. The parts of the tree of which the
exact structure is not important or not known are beyond the double lines, next to
which is indicated which leaves can be found in the part. In the �gure we have also
indicated the edges we have denoted speci�cally above.

essary and there must be another optimal binary decomposition tree of G[V (G) \ v]
where t is in the same set as u in these partitions, so take that decomposition tree
instead.

(b2) Thus we now know that Pa = [t, u, x;w], Pb = [t, u, w, x; ], Pa′ = [t, u, x; v, w],
Pc′ = [t, u, w, x; v] and Pb′ = [t, u, v, w, x; ]. Now either w is the last element that is
being added from this cycle to the partitioning, or x has at least one other neighbor
(on the cycle) that is not in the same set as x.

(b2.1) If x has at least one neighbor y other than w that is not in the same set
as x, then we have the same issue as in (b1): we have vertices in alternating sets.
To be precise, u and t are in the same set as x, but w (and v) in another. There
must thus be another optimal binary decomposition tree of G[V (G) \ {v}] where x
has no neighbors other than w not in the same set in these partitions, so take that
decomposition instead.

(b2.2) If w is the last element to be added from this cycle to the partition, then
Pa can have one more matching than Pb, however at some point the cycle must
have added at least 2 to the score. In addition, Pa′ actually gives two matching
opportunities, one with w and one with v, so this partition does not exceed what
the cycle adds elsewhere. Similar for Pc′ and Pb′ .

All together, we can see that the MM-width of the graph did not increase by
changing G[V (G)\{v}] to G. Logically, the MM-width does not decrease by adding
the vertex, so MM(G) = MM(G[V (G) \ {v}]).

Unfortunately, to use this rule to simplify the graph to solve a simpler form and
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Figure 48: Situation (a).

Figure 49: Situation (b).

then �nding the decomposition graph of the larger tree can not be easily done with
the rule as we present it above, as a few of the possible situations the graph could
be in requires us to take another optimal binary decomposition tree of our graph
and we can not guarantee that optimal binary decomposition trees we construct are
locally optimal as we require to be able not to do that. However, the rule can still
be used to �nd the MM-width of the graph after kernelization.

Because it is non-trivial to construct the optimal binary decomposition tree of
the the larger graph, we did not implement it ourselves for any algorithms. However,
applying this rule takes linear time to reduce the size of the graph. We can �nd a
vertex of degree 2 in linear time and check in constant time whether it is applicable
for removal. We can then check whether a neighbor is also applicable for removal in
constant time, meaning that we can remove all occurrences of places to apply this
rule in O(n) time.

9.6 Further Rules: Larger Separators

We can actually generalize rule 3 to work for larger separators. If we use a separator
S that is larger than one vertex, we can still construct a binary decomposition
tree (T, δ) of graph G from each of the binary tree decompositions (T, δ)G[H∪S] for
H ∈ CC(G \ S), similar to how we did so in the rule with a single separator.
However, now we must balance all the binary tree decompositions for a single vertex
v ∈ S.

As an example, we will work with two connected components A, B and a sep-
arator S = v, w of size 2. If we use a separator of size 2, the MM-width of the
resulting decomposition must be at least 2. We will v-balance both (T, δ)A and
(T, δ)B, leaving the leaf δ(w) in a random position in both decomposition trees.
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Figure 50: Situation (b1).

Figure 51: Situation (b2).

When we connect the two trees up however, we also need to remove δ(w) from one
of the two decomposition trees, as the resulting tree can only have one associated
leaf for each vertex in the graph. As δ(w) is now in a possibly sub-optimal position
for the decomposition tree we removed it from, the MM-width of the tree we deleted
δ(w) from can has increased by 1.

This means that the MM-width of (T, δ) is eithermax(mm((T, δ)A),mm((T, δ)B)+
1) or max(mm((T, δ)A) + 1,mm((T, δ)B)) and at least 2. In fact, if mm((T, δ)A) >
mm((T, δ)B) we can simply choose to add the increase in score to (T, δ)B and if if
mm((T, δ)A) < mm((T, δ)B) we can simply choose to add the increase in score to
(T, δ)A. Thus, we know thatMM(G) ≤ max(min(max(mm((T, δ)A),mm((T, δ)B)+
1),max(mm((T, δ)A) + 1,mm((T, δ)B))), 2).

To �nd a separator of size s we must select s vertices of G. This means that
the complexity of �nding all possible separators of that size is O(n! − (n − s)!).
Testing whether one of those separator is an actual separator then takes linear time
for each of those, making the complete complexity of �nding a place to apply this
rule O(n · (n!− (n− s)!)). Next, �guring out which of the vertices of the separator
to rebalance the decomposition trees with and where the associated leaves of the
rest will be in the trees then takes O(2n). This makes this rule quite expensive if
you were to use it. Using it for limited size separators is thus a good idea, though
we did not implement this beyond separators of size 1.

Note that for these rules we can technically use any size separator, however
the mm-width of a solution using such a separator tends to the size of the sepa-
rator. For implementing such rules, reading relevant material may be helpful. [3]
uses separators for preprocessing for treewidth, while [16] uses clique separators for
decompositioning of graphs for divide-conquer algorithms.
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Figure 52: To decomposition the graph with separator of size 2 we decompose the
sides of the separator. Then we rebalance and connect the trees and remove duplicate
leaves.

9.7 Polynomial Kernels

Something we aimed to do at the start of this project, but were sadly not able to
achieve, was to produce a polynomial kernel. A polynomial kernel is a kernel which
has a provable size. Because of this provable size, you can give a strict(er) bound on
the calculation of graph problems. It is also often a step used for �xed-parameter
tractability to be able to give a problem a parameterized complexity, which is a
complexity bound on the calculation measured in a function of multiple parameters
of the input or output. You can read more about parameterized complexity and
kernelization for di�erent widths in [4], [5] and [6].

9.8 Application of Kernelization Rules

When applying the kernelization rules, start with applying rule 0 to separate the
graph into separate graphs for each of its connected components. For each of these
connected components, apply the �rst and second rule (and possibly the fourth rule)
to reduce their size until that is no longer possible. Then apply rule three to �nd
a separator of size 1. If one is found, replace the bigger graph with the smaller
graphs and go back to apply the earlier rules again. Possibly apply rules for larger
separators if no smaller separators found and apply earlier rules. Continue until no
rules can be applied any more. This can substantially reduce the size of the graph
because of the application of rules one, two and four. However, the third rule and
any further separator based rules technically increase the amount of vertices of the
graph. The running time of a subsequent run of an algorithm will however still
speed up, as these rules split the graph in two, reducing the number of vertices in
the separate calls.
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10 MM-Width by Optimization Algorithms

We have constructed a few variants of an exact algorithm in the previous sections.
These di�erent algorithms perform are e�ective, but are sadly also quite slow and
take far too much time even on what we would consider small graphs. What if,
instead of trying to guarantee �nding the optimal decomposition, we try to �nd as
good a decomposition tree as possible, without looking over all the possible solutions.
This will of course not tell us what the MM-width of a graph is as we will not have
looked at every possible solution, but it can often be used to give a strict upper
bound for our bounded MM-width algorithm, to reduce the running time. To do
this, we will start with using local search at �rst. We will also look at the possibility
of using evolutionary computing to �nd solutions.

You can read more about local search algorithms and genetic algorithms in [15].

10.1 Local Search Basics

To use local search optimization techniques, we are going to need to be able to move
to a neighboring solution from a current solution. The solution we are working
with is a binary tree decomposition of the graph in our case. We are also going to
need local search operators. These operators change a solution into another valid
solution, possibly with a di�erent score. We have seen earlier that many of the
binary decomposition trees are equivalent, so these operators should not just change
a solution into an equivalent solution. Preferably, it should not have any equivalent
solutions in the neighbor space.

10.1.1 Starting Solution

For the starting solution, we can either create a random binary decomposition tree,
or create a random binary decomposition tree balanced around one of the inner
nodes to create a tree that will automatically be an optimal decomposition of a
clique graph.

To create a random tree for a graph, we can do the following: create a tree
consisting of only a root node. Then choose a random node in the tree that does
not have any children and give that node two new child nodes, which increases the
amount of leaves of the tree by one. Repeat increasing the leaves of the tree until
we are left with a leaf node for each vertex of the graph. Finally, randomly associate
the vertices of the graph with the leaf nodes of the tree.

We can use the above method to also create a random binary decomposition tree
balanced around one of the inner nodes, by subdividing the vertices of the graph into
three balanced sets, then creating a tree for each of those sets and �nally attaching
these three trees to each other by the root.

10.1.2 Swap Operator

One of the two operators we will use on solutions, is the swap operation. To execute
the swap operator, we need to select two subtrees of the current binary decomposi-
tion tree that do not have any nodes in common. We can easily select these subtrees
by selecting a root node from the solution for the �rst subtree. All nodes in the full
binary decomposition tree with that node as an ancestor then forms the subtree.
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Figure 53: Demonstration of a single step to extend the random tree.

The second root node now has to be selected from all nodes that are not part of the
�rst subtree to create the second subtree in this same way. It should be clear that
we cannot select the root node of the full binary decomposition tree for either of
these subtrees, as the other subtree then will always have nodes in common with it.

With these two root nodes of the subtrees, we can execute the swap operation
by doing the following: Name the two subtrees A and B and denote the parent node
of A's root as a and the parent node of B's root as b. Now make b the parent of A's
root node and a the parent of B's. The resulting tree is our new solution.

We can revert this operator by simply executing it again on the same nodes.

Figure 54: Demonstration of the swap operator.

10.1.3 Move Operator

The other operation we will be using is the move operation. For this one, we also
need to select two nodes from the current binary decomposition tree. For the move
operator, while the �rst of these nodes is still the root node of a subtree of the full
binary decomposition tree, the second node indicates the edge we will be splitting
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to insert the subtree. To be precise: the second node may again not overlap with
the nodes in the subtree we picked to move, nor may the second node be a parent
or sibling of the root of the subtree, and the edge between the node and its parent
is the actual edge we have selected.

Execution of the move operation goes as follows: Name the subtree A and the
second node v. Denote the parent node of A's root as a and v's parent node as u.
Now, if a is not the root of the binary decomposition tree, then denote the sibling of
A's root b and a's parent as c. Remove node a from the tree and make b's parent c.
Then add a new node n to the tree and make n's parent u and v's parent n. Finally,
make n the parent node of A's root.

Figure 55: Demonstration of the move operator.

In the situation that a is the root of the binary decomposition tree, we also need
to make sure we update what node is considered the root node of the full binary
decomposition tree, as the root node of the the tree is removed. As we remove a
node and create a new one, we can also technically recycle the node we remove as
the new node by simply changing the links around it.

Finally, to revert the move operator, we need to remember the original position
of the subtree so we can move the recycled node back to where it came from and
reattach the edges as they were.

10.1.4 Score of Solution

We need to score our solutions to �nd the solution with the lowest mm-width.
However, simply using the mm-width of the decomposition tree will result in low
granularity, as often neighboring solutions have similar mm-width, which means
there is almost no steering when searching through the neighborhood.

To improve the searchability of the solution space, we will need to increase the
granularity. To do this, we will instead use the sum of all mm scores of the edges in
the decomposition tree in the solution. This means that minimizing the score still
tries to minimize the scores on the edges. We want to make sure the highest edge
in the decomposition tree is as small as possible though, which is not guaranteed
to happen. Because we do want to guarantee that, we will add a component to the
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evaluation function for the mm-width of the solution. This component should always
outweigh the sum of all the edges. Finally, because the edges incident to the root
of the solution always induce the same partition and this would mean optimization
would prefer solutions where on of the children of the root is a leaf, we will subtract
the score of the left edge incident to the root from the evaluation.

The maximum score of any edge in the binary decomposition tree is bn/2c, as
this is the maximum amount of matching that can be made in any graph of n
vertices. In addition, there are 2n − 1 edges in a binary tree of n leaves, meaning
that the sum over all the edges is always lower than n2. In total, the we will consider
the score of one of the solution binary tree decompositions (T, δ) of graph G to be
eval((T, δ)) = mm((T, δ)) · |V (G)|2 +

∑
e∈E(T )(mm(Pe))−mm(P(T.root,T.root.left)).

Using this function, we know that solutions with a lower mm-width will always
have a better score, while we also try to minimize the total sum of the edge scores.

10.1.5 Faster Score Calculation

We do not have to calculate our score from scratch when �nding a new solution.
Instead, we simply need to �gure out what edges of the solution have been changed
or could have a changed mm score and calculate the mm score of those edges. We
simply copy the scores of the other edges of the previous solution to �nd the score
of the rest of the edges. To �gure out which edges changed, we need to �nd out
what edges induce a di�erent partition.

It is simple to see that the edges that induce a di�erent partition in the new
solution after making a swap operation are the edges on the path between the
parents of the roots of the subtrees. For the move operation, we change the partitions
induced by all edges between the original parent of the subtree's root and the new
parent of the subtree's root. In addition, we also need to score a few edges that
have been newly created, although these can be quickly inferred from what we knew
before about the mm scores of the edges.

10.2 Hill Climbing (Iterative)

The �rst local search algorithm we will be looking at will be Hill Climbing. When
Hill Climbing, we optimize our solution by �nding improvements until we can no
longer �nd a better neighboring solution. The iterative variant of this algorithm
always goes through the possible improvements in the same order. To be precise,
we �rst try all move operations before trying all swap operations. We then list all
nodes of our current solution by an in-order traversal and pick any node from it that
is not the root. For each node we pick for the selected node, we list all nodes in
our current solution eligible to be the second selected node under the current chosen
operator. Finally, we calculate the score we get from applying the operator on the
solution on the two chosen locations.

A well known caveat of Hill Climbing algorithms is that it will not necessarily
�nd the optimal solution to a problem and instead the algorithm will �nd a local
optimum. A local optimum is a situation where a single operation can not change
the solution to anything better and instead multiple operations have to be executed
to move the algorithm from the local optimum, through worse solutions, to a place
where optimization can continue. The iterative variant of Hill Climbing can be
considered even worse though, as it will always �nd the exact same local optimum
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for a problem when starting from the same position. This means that starting from
a random solution is useful to increase the search space covered by this algorithm.

10.3 Hill Climbing (Randomized)

To �x always �nding the same local optimum, we will try random changes to the
solution instead of trying the operations in the same order at all times. We can
either scramble the orders of the nodes we are looping over and what operation we
do, or we can choose a random operation and locations to apply it on. We have
chosen the latter as it is the simpler variation. Note that we do now have to put
a limit on how many changes we try without �nding an improvement to make sure
our algorithm does terminate.

10.4 Multi-Start Hill Climbing

The issue that we may get stuck in a local optimum is still present however. We
can solve this by starting Randomized Hill Climbing multiple times, possibly from
di�erent starting solutions. This means that we can end up in multiple local optima,
one of which may be the global optimum. Note however, multi-start algorithms are
completely equivalent to simply running your solver multiple times and taking the
best result, which we can do for any of our algorithms, even a multi-start algorithm.

10.5 Iterated Local Search

A di�erent way to still use our Hill Climbing algorithms, but prevent getting stuck
in the �rst local optimum we �nd, is to add an ability to move the current solution
away from the local optimum to enable the algorithm to reoptimize and possibly
�nd a better solution. If we do this, we have constructed a variant of Iterated Local
Search. With Iterated Local Search we only accept improvements until we can no
longer �nd an improvement, then we execute a number of random operations on our
current solution irregardless of the resulting score. These random operations push
the solution away from the local optimum and is called a perturbation. We put a
limit on the number of perturbations we do to make sure our algorithm terminates
and keep track of the best solution we have seen at any point of the algorithm as
we are now able to lower the score of our current solution.

It is possible that a problem we are executing Iterated Local Search on has very
pronounced local optimum peaks, making it di�cult for a series of random changes
to push the current solution out of the space that will return to the local optimum.
We will therefore increase the number of changes we make during a perturbation
if we were unable to push ourselves away from the local optimum (found the same
local optimum after hill climbing). We can also choose to increase our perturbation
size if we were not able to improve our best solution, though you should note that
you then want to make the perturbation from the previous local optimum.

We have to watch out with setting the perturbation size too high though, because
if the perturbation size is too large, we may lose too much of the structure that made
the previous local optimum so good. This would then destroy all the hard work the
algorithm did to �nd an optimum, making it essentially a Multi-Start Hill Climbing
algorithm.
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10.6 Simulated Annealing

Instead of only accepting improving changes to the current solution as in the Hill
Climbing algorithms, we could also accept some changes that do not improve the
solution. We have to watch out however that we do not simply accept any and all
changes, because we do want to �nd a better solution.

To prevent our algorithm from being a RandomWalk through the solution space,
we will accept all improvements we �nd but only a fraction of the non improving
changes. We want this fraction of worsenings we accept to become smaller as we
continue, so our algorithm starts optimizing more as we run and �nding better
solutions over time. The less worsenings we start accepting however, the less changes
we have of moving out of subspaces that converge to certain local optima and into
other such subspaces. To change the fraction of worsenings we accept, we will use
a temperature variable that we will lower as we continue executing the algorithm.
This temperature is often made to decay exponentially, which resembles how metals
cool and is therefore the reason why this algorithm is called Simulated Annealing.

Instead of simply changing the fraction of worsenings that we accept, we also
want to have a lower chance of accepting worsenings that lower the score more as we
do want to optimize in general. This leads us to the following formula to calculate
the acceptance chance of a solution:

Paccept =

{
if eval(Snext) ≤ eval(Scurrent) 1

otherwise e−(
eval(Snext)−eval(Scurrent)

T
)

In this formula, T indicates the current temperature, evalnext is the score of the
solution we are possibly moving to and evalcurrent is the score of the solution we
are currently at. As we want to minimize our score and accept any improvement,
we return a chance of 1 of accepting the new solution if it is lower. Otherwise, we
calculate a chance that becomes smaller the worse the di�erence between our current
and possible new score is and also becomes smaller the lower our temperature gets.

It should be clear that the value range of the temperature is very important for
the functioning of the algorithm. If the temperature starts out too low, our Simu-
lated Annealing approach is not much di�erent from a Hill Climbing algorithm as
worsenings we then accept don't make much di�erence and we don't accept very
many worsenings either. If our temperature starts o� too high however, we essen-
tially start o� with a RandomWalk through the search space before our temperature
drops to a better level, which wastes time.

In addition to the temperature and the evaluation function we use, there are a
few other parameters we need to �nd values for: We need to determine how strong
we cool for our cooling scheme and we need to determine at which points we let the
temperature drop. In addition, we are going to need to decide what our terminating
condition is.

If our terminating condition is a minimum temperature and we are using expo-
nential decay for our cooling scheme, these parameters relate as such: T · αk = t
and k = i/Q where T is the starting temperature, k is the amount of times we have
cooled, t the current temperature, i the iteration we are on and Q the number of
iterations between each drop. This means that if we know the starting temperature,
what value we use in our cooling scheme, the number of iterations we want to do at
most and at what temperature we want to end on, we can calculate the number of
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steps we should do between each time we cool as follows: Q = imax/ logα( tend

T
)

10.6.1 Simulated Annealing with Di�ering Evaluations

During our experiments with Simulated Annealing as we described above we had
di�culty �nding good values that would make simulated annealing optimize graphs
better than the other local search solutions. One of the issues we discovered we
had with simulated annealing, was that values that allowed the algorithm to �nd
relatively good solutions in the solution space had a lot of di�culty getting away from
such solutions. This led us to making adjustments to the algorithm in addition to
adjustments to the parameters. We reasoned that the algorithm does not like moving
to a solution with higher MM-width because in the cost function we wrote made
the MM-width of the solution guaranteed the most important factor. However, the
amount of times we change the MM-width of a solution is far less than the amount of
times we change the the sum part of the score. This means that our temperature is
thus balanced around changing the score of the sum part, making it so that making
the MM-width of our solution worse is near impossible.

To �x this, we will use a second evaluation function:
eval2((T, δ)) =

∑
e∈E(T )(mm(Pe)) −mm(P(T.root,T.root.left)). We use this additional

evaluation function to determine whether we worsen our score, were we originally
used the evaluation function we gave earlier, giving us the following acceptance
chance formula:

Paccept =

{
if eval(Snext) ≤ eval(Scurrent) 1

otherwise e−(
eval2(Snext)−eval2(Scurrent)

T
)

Using this acceptance formula in our Simulated Annealing algorithm, we were
able to �nd parameters that allowed Simulated Annealing to �nd better solutions,
though we were generally not able to �nd solutions as good as our other algorithms
give us, nor were we able to �nd these solutions any faster. Though some of the best
solutions found for graphs were found by Simulated Annealing. Finding solutions
as good as those was not easily repeatable though.

10.7 Evolutionary Algorithms

There are many more di�erent means of optimization, one of which is the use of Evo-
lutionary Algorithms. Evolutionary Algorithms are algorithms inspired by nature
that use a population of solutions, selects solutions from this set to be used to create
new solutions, evaluate these new solutions and then �ll/replace the population for
the next iteration.

To evaluate the solutions in our population, we will be using the same evaluation
function we used for the evaluation of solutions during our local search algorithms.

10.7.1 Selection

There are many di�erent ways to select solutions that we use to create new solutions.
The simplest of these is to simply sort the solutions by evaluation score and take a
number of solutions with the lowest score. This is called truncation selection.
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The problem with truncation selection is that solutions with a worse evaluation
score have only a small chance of remaining part of the population, disallowing
the algorithm to climb out of local optima. We can resolve that by also keeping
some higher score solutions in the population, though we should still optimize by
mainly selecting better solutions. We can do this by selecting solutions to keep in
the population by means of chance, where a better evaluation score gives a higher
chance of being selected. This roulette wheel selection works as follows: give every
solution in the population a portion of the �roulette wheel� corresponding to the
evaluation score of the solution. Then spin the wheel as often as you want to select
a solution, selecting the solutions the wheel lands on. In this roulette wheel you can
choose to allow the same solution to be selected multiple times or remove an entry
from the wheel as soon as it is picked.

Note that in our optimization problem we want to minimize, meaning that we
can't base the chance of selection directly on the evaluation score. Instead we will
�gure out which solution in our population has the highest score eval(Sworst). The
size of a portion of the roulette wheel for a solution S is then 2 · vworst − eval(S).

10.7.2 Crossover Operator

To create new solutions during our evolutionary algorithm, we will be using a
crossover operator that creates a new solution from two parent solutions. Our
crossover solution selects a random subtree from the �rst of these parents. Then we
copy the second parent and remove all leaves from this tree of which the associated
vertex has an associated leaf in the subtree we selected, after which we contract
nodes in the tree to construct a binary tree. Finally, we connect the subtree and
the created tree with a new root node.

This new solution has a lot in common with mainly its �rst parent. For this �rst
parent, all edges found in the subtree have the same mm score in both the parent
and the child solution. For the second parent however, only the relative order of the
leaves we did not remove remains the same.

Before we use the crossover operator, we randomly order the selected population
and then split the set into pairs of parents. Each pair of parents then creates two
children, using both parents as the �rst parent once.

10.7.3 Representation of Solution

An important issue for Evolutionary Algorithms, and Genetic Algorithms in partic-
ular, is the way the solutions are represented. We decided to use the actual binary
decomposition trees as representation for our solutions as this is the natural repre-
sentation for trees and both our optimization algorithms as exact algorithms also
represent the decomposition trees. There are also other representations possible
however that allow for di�erent crossover operators that preserve di�erent proper-
ties of the parents. One such option is presented in [7], we did not investigate other
representations however.
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Figure 56: Demonstration of the crossover operator. The chosen subtree of parent
A is highlighted in blue.

Figure 57: Result of the crossover operator in �gure 56.
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11 Results

Without testing it is not easy to know how the exact algorithms and optimization
algorithms perform, therefore we implemented the algorithms we have discussed
in this thesis in C# and used a computer with an Intel i7 processor and 8 GB
of RAM to run experiments on these algorithms. A set of representative results of
these experiments can be found in this section, where we will �rst compare the exact
algorithms to each other. Then we compare the exact algorithms to the optimization
algorithms, after which we look at the performance of the optimization algorithms.

11.1 Exact algorithms

First o�, we will be comparing the performance of our exact algorithms to each
other. The algorithms we want to compare mostly are Naive MM-Width (MM-
Naive), Dynamically Programmed MM-Width (MMDP) and Bounded Dynamically
Programmed MM-Width (BMMDP), though we have also chosen to look at the im-
pact of the upper and lower bounds on the performance of Dynamically Programmed
MM-Width by running BMMDP without using the upper bound in it (MMDP lb)
and running BMMDP without using the lower bound in it (MMDP ub).

We decided to compare the algorithms on clique graphs of increasing size and
looking at the amount of time that was needed for the algorithm to �nish. Note
that we decided to not test an algorithm on a higher size clique graph if a size of
clique graph took more than 15 minutes on average to complete, as the order of
time needed increases exponentially to complete each larger size of graph, leading
to hours of calculations per graph alone. The reason why we decided to show the
results of the algorithms on clique graphs, is because these graphs scale in size most
naturally and allow us to compare the amount of needed computations. However it
may not be as representative for the upper and lower bound comparison. We will
compare performance of these further later on.

For Naive MM-Width, the algorithm crashes due to a lack of process memory at
K10 and beyond which we could have �xed by changing how the algorithm �gures
out what it should calculate next, though this hardly matters as K9 takes over 12
hours to complete its calculation as it is.

To generate the entries in the table, we ran each algorithm 10 times on each
of the graphs to generate an average running time for each entry in the table. For
the upper bound in MMDP ub and BMMDP we use dn/3e. The treewidth of these
graphs is n− 1, meaning that we can't use that for a better upper bound here.

We can see a better representation of the data in �gure 58. In this �gure we
can indeed see that Dynamically Programmed MM-Width improves on the perfor-
mance of Naive MM-Width, while Bounded Dynamically Programmed MM-Width
improves on the performance of both algorithms. To be precise, we can see that
MMNaive follows roughly a more than exponential grow before it starts crashing.
The other algorithms seem to follow a straight line in the �gure though, indicating
an exponential growth in running time for these.

Interestingly, we can see a wave-like pattern in both the running time of MMDP
ub and BMMDP. These waves are at the highest at the points where the MM-Width
of the clique graphs increases by 1 and thus correlate directly to when our upper
bound of dn/3e goes up by 1. It is therefore not surprising that these waves exist,
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MMNaive MMDP MMDP lb MMDP ub BMMDP

K2 00:00,0076 00:00,0016 00:00,0022 00:00,0017 00:00,0020
K3 00:00,0095 00:00,0035 00:00,0056 00:00,0036 00:00,0056
K4 00:00,0484 00:00,0040 00:00,0061 00:00,0039 00:00,0058
K5 00:00,2031 00:00,0062 00:00,0061 00:00,0059 00:00,0058
K6 00:01,2632 00:00,0151 00:00,0074 00:00,0103 00:00,0071
K7 00:40,5523 00:00,0505 00:00,0108 00:00,0466 00:00,0114
K8 25:53,7098 00:00,1780 00:00,0204 00:00,1189 00:00,0173
K9 * 00:00,6286 00:00,0498 00:00,3205 00:00,0298
K10 ** 00:02,2391 00:00,1390 00:01,6465 00:00,1219
K11 ** 00:08,1472 00:00,4215 00:04,7263 00:00,2650
K12 ** 00:28,1353 00:01,2887 00:12,7372 00:00,5961
K13 ** 01:39,0747 00:04,0661 01:03,8125 00:02,8893
K14 ** 05:43,6491 00:12,7677 02:59,5473 00:06,8782
K15 ** 18:39,5527 00:40,6122 08:20,3293 00:16,1941
K16 ** * 02:10,4348 38:11,7188 01:20,1502
K17 ** * 06:54,8677 * 03:16,1813
K18 ** * 24:05,1403 * 07:47,9445
K19 ** * * * 39:04,3952

Table 1: Comparing the performance of our exact algorithms on clique graphs.
* We did not run this experiment.
** Algorithm crashes due to lack of memory.

as the amount of subtrees the two algorithms have to work through increases by a
lot when the upper bound is heightened.

We can also see here that (for clique graphs), the addition of upper bounds has
a lesser e�ect on run times than the addition of lower bounds. This also holds for
random graphs of random sizes as we can see in table 2 and �gure 59.

graph size MMDP MMDP lb MMDP ub BMMDP

8 00:00,129 00:00,014 00:00,117 00:00,013
9 00:00,447 00:00,042 00:00,289 00:00,027
10 00:01,551 00:00,129 00:01,394 00:00,115
11 00:05,285 00:00,410 00:03,964 00:00,295
12 00:18,838 00:01,252 00:10,851 00:00,657
13 01:06,996 00:04,038 00:53,714 00:03,150

Table 2: Comparing the performance of using upper and lower bounds.

To create table 2 and �gure 59, we created a random graph with 13 vertices,
connecting each new vertex being added with randomly one to three random other
vertices already in the graph. This gave us graph 1, which we present in DIMACS
representation on page 78. Then we ran each of the four algorithms 10 times on
this graph, giving us the four averages found on the row in table 2 preceded by �13�.
Removing the highest numbered vertex and all edges connected to it from the graph
and running the four algorithms 10 times on the resulting graph then gives us the
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Figure 58: The datapoints in table 1 set against each other on a logarithmic scale.

the averages found on the other rows, each preceded by the number of vertices in
the graph at that time.

We can see again that the addition of upper bounds gives a less pronounced
di�erence in performance than the addition of lower bounds. We gain very similar
results with other random graphs of the same size, irregardless of changing the
number of connections we make for each new vertex. The results in these graphs and
�gures tell us that the lower bound, which updates while running the algorithm as
we make choices to partition our vertices, has a far bigger e�ect than the strict, non-
changing upper bound that we �gure out at the start of the algorithm. We should
be able to improve further on the upper bound performance if we could discover a
way to update it as the algorithm runs. Finding improvements for estimating the
lower bound however would also make the performance of BDPMM better.

11.2 Optimization algorithms

Before we compare the optimization algorithms to each other, lets �rst compare
them to our exact algorithms. To do this, we �rst created another random graph of
size 18, creating graph 2 found on page 78. Then we ran both Bounded Dynamically
Programmed MM-Width on it 10 times and a few of the more basic optimization
algorithms: Iterative and Random Hill Climbing and Iterated Local Search. For
each of these we used a random decomposition tree as start solution. For Random
Hill Climbing we used 10000 for the maximum amount of tries without a change.
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Figure 59: The datapoints in Table 2 set against each other on a logarithmic scale.

We also used this value for the maximum amount of tries without a change for the
Iterated Local Search, while for the number of perturbations we used 4 and the
base perturbation size and increase in perturbation size we used 4. For Simulated
Annealing we have tried many di�erent parameters, but settled on using a starting
temperature of 1.6, an ending temperature of 1, a cooling factor of 0.98 and a
maximum of one million steps. This because we didn't want Simulated Annealing
to simply be Random Hill Climbing and wanted to give the algorithm enough time to
�nd good solutions. For the evolutionary algorithm, we both ran it with truncation
selection on a population of size 100 and roulette wheel selection of a population of
size 1000. We ran the optimization algorithms 20 times on the graph each.

Algorithm Best MM-width Average MM-width Average Time

BMMDP 4 4 13:40,81
Iterative HC 4 4,55 00:02,69
Random HC 4 4,6 00:04,27
Iterated LS 4, 4 4 4,2 00:15,72
SimAnn 4 4 01:12,39
Truncation100 4 4,7 00:02,14
Roulette1000 4 4,8 00:26,04

Table 3: Comparison of the optimization algorithms on a graph of size 18.

Looking at these results, we can see that with each of the optimization algorithms
we were able to �nd the same MM-width as BMMDP and thus an optimal binary
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decomposition tree, though they were not guaranteed to �nd one. In the situations
that they did not �nd one, they did �nd a solution with MM-width 5 though, which
could be used as an upper bound when running BMMDP as this improves on the
clique bound of dn/3e = 6, which would then decrease the running time of the exact
algorithm.

Comparing the running times of the algorithms, we can see the optimization
algorithms perform a lot faster than our exact algorithms. To be precise, we could
run our Iterated Local Search algorithm about 52 times during the time that it
took to run BMMDP once, which will only increase the more vertices the graph has
that we want to know the MM-width of. Running the Iterated Local Search as a
Multi-Start algorithm would have given us an extremely high chance of �nding at
least one optimal binary decomposition tree here.

With the evolutionary algorithms we can see that we can �nd the optimal decom-
position relatively quickly as well, however not every time. Increasing the population
size to 1000 does help the truncation selection variant to �nd the optimal decompo-
sition almost every time here, however this population size does not help the roulette
wheel selection here.

Simulated Annealing always found an optimal solution for us here, though it
took quite a bit longer to run than the other algorithms.

However, we would like to use the optimization algorithms to �nd good binary
decomposition trees for graphs that are too large for our exact algorithms. To test
this, we will be looking at some bigger graphs and looking at the performance and
results of our optimization algorithms. First o�, we wanted to test our algorithms
on a graph of size 32. Instead of generating a random one, we retrieved a graph of
this size from http://treedecompositions.com/ and chose one with a treewidth
base bound gap and no exact solution yet. Graph 3 can be found in DIMACS
representation in the graph appendix on page 78.

To generate the following graph we used the same parameters as earlier for
Random Hill Climbing, Iterated Local Search and Simulated Annealing. We ran
each algorithm ten times on the graph.

Algorithm
Best

MM-width
Best
score

Average
MM-width

Average
score

Average time

Iterative HC 5 5231 5,2 5437,2 00:47,0
Random HC 5 5229 5 5230,4 00:18,2
Iterated LS 4, 4 5 5229 5 5229,2 00:59,9
SimAnn 6 6271 6 6272,6 04:01,8
Truncation1000 5 5228 5 5231,6 01:02,2
Roulette1000 6 6278 6,8 7098,2 01:06,8

Table 4: Comparison of optimization algorithms on a graph of size 32.

As you can see in the table, we consistently found the MM-width of the graph to
be 5 with the three �basic� optimization algorithms, although Iterative Hill Climbing
got stuck on a MM-width of 6 in one instance. Each of the basic algorithms also
found these score in less than a minute on average, with Random Hill Climbing
never going above 30 seconds.

Simulated Annealing however did not perform well here at all. Each time it
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quickly moved towards MM-width scores of 8, after which it would slowly work its
way to 6. After arriving at that score, it never found any solution with a MM-
width higher than 6. In addition, the scores of each of the found solutions was
very similar, even though we gave it quite a lot of time to work on �nding better
solutions. Making further changes to the temperatures or cooling factor either had
the e�ect of Simulated Annealing not accepting any worsenings, making it perform
very similar to Random Hill Climbing, or the algorithm �nding higher MM-widths
to stabilize at.

For the evolutionary algorithms, we made the population size for both selection
methods to 1000. With the truncation selection, this made us �nd the same score as
we found consistently with the �basic� optimization algorithms, but with the roulette
selection we were unable to �nd a score of 5, even when we increased our population
size or amount of generations.

We can see similar performance on other graphs of similar sizes. However, as
the size of the graph increases, we can also see the performance of the optimization
algorithms dwindle in both the run time and the accuracy. The reason why the run
time performance dwindles should be clear, as even the Hopcroft Carp algorithm
we use to calculate the mm scores of the edges starts taking more time and it is the
most called part of the entire algorithm, making it important that we save time by
only recalculating the edges that could have actually changed value.

The accuracy on the other hand dwindles because of both the sheer amount of
di�erent changes that can be made to the solutions at each point and the local
optima that become deeper as the amount of vertices in the graph increase. It
appears as if deep local optima are lot more di�cult to get out of in our optimization
problems as compared to what we see in other optimization problems. This could be
because in our main evaluation function, the mm-width of the solutions is extremely
important and if one or multiple drops in mm-width are found in the local optimum
well, it becomes extremely di�cult to climb out. We resolved this partially for our
Simulated Annealing algorithm by using a second evaluation function, though if you
keep �nding those better mm-width solutions while climbing out of the well, you
keep falling back into the well.

As a demonstration of some of the problems we get in with a too large graph,
we will use a graph of size 64, again from http://treedecompositions.com/ and
found as graph 4 in DIMACS representation in the graph appendix on page 78.
We decided to use the same settings for the algorithms as in the experiments on
the smaller graphs as the settings did not seem to have a lot of in�uence on the
performance here.

Something that is directly clear from this table, is that working on this graph
takes a lot of time for both Iterative Hill Climbing and Simulated Annealing. For
iterative Hill Climbing this is because just enumerating all possible options and
calculating the new scores takes a lot of time and every time it found an improvement
it had to start all over again. Each time it found a solution with the same MM-
width though. These solutions of this score seem to have a very attractive subspace
around it as Random Hill Climbing and Iterated Local Search both ended up in these
solutions over and over, even when we changed the perturbation size and amount of
Iterated Local Search to larger values.

The evolutionary algorithm did not �nd the same attractor however, probably
because we use a di�erent operator to search through the space, though it still keeps
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Algorithm
Best

MM-width
Best
score

Average
MM-width

Average
score

Average time

Iterative HC 22 90464 22 90464 30:17
Random HC 22 90464 22 90464 03:24
Iterated LS 4, 4 22 90464 22 90464 12:35
SimAnn 21 86417 21,9 90059,3 56:41
Truncation1000 22 90472 22 90472 16:36
Roulette1000 22 90567 22 90567 16:30

Table 5: Comparison of optimization algorithms on a graph of size 64.

arriving at a mm-width of 22.
Interestingly, Simulated Annealing did �nd one better solution for this graph

during our experiments, one with a MM-width of 21, but it took around an hour
to complete that run, with the entire set of the Simulated Annealing runs varying
between half an hour and two hours. The other runs of simulate annealing all found
solutions with the same score that we have seen over and over. This means that this
graph has at most a MM-width of 21, in addition to the reported upper bound to
the treewidth of this graph of 25. We were also able to �nd a solution of mm-width
20, which can be seen in the list of known MM-widths of graphs on page 75
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12 Conclusion

In this thesis we have improved the link between the value of MM-width and
treewidth and given both exact algorithms and approximation algorithms for calcu-
lating the MM-width of a graph.

We have shown that the dynamic programming approach does really improve on
the naive approach to �nd the MM-width of a graph, in addition to the improvement
in performance from adding upper and lower bounds to the algorithm. We have also
proven the MM-width to some standard variations of graphs, including cactus graphs
and k-trees.

There are also still questions related to MM-width open. A selection of those
questions brought up from writing this thesis are:
� Does there exist a polynomial kernel for MM-width?
� Can we improve on the upper and lower bounds used in Bounded Dynamically
Programmed MM-Width to speed up calculation further?
� Can �nd an algorithm to approximate MM-width from below?
� Are there other, stricter links between MM-width and the other width parameters?
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13 List of Known MM-Widths of Graphs

Finally, mainly for illustration we will list a collection of MM-widths of graphs. We
decided to keep this list to all MM-width results of all connected graphs of size 5
and below as the amount of di�erent connected graphs with a certain number of
vertices grows exponentially. In addition, we have listed all best results we have
found for the graphs found in the graphs appendix on page 78 together with a string
representation of the corresponding binary tree decomposition of that MM-width.

13.1 All Connected Graphs of Size ≤ 5

Graph MM-Width

Trivial graph 0
K2 1
P3 1
K3 1
P4 1
K1,3 1
3-pan 1
C4 2
Diamond graph 2
K4 2
P5 1
Fork/chair graph 1
K1,4 1
C5 2
4-pan 2
Cricket graph 1
Bull graph 1
(3, 2)-tadpole graph 1
House graph 2
Kite graph 2
Dart graph 2
Gem graph 2
Kite-dart graph 2
W5 2
K5 − e 2
K5 2
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13.2 Graphs from Graph Addendum

Graph MM-Width Decomposition

Graph 1 3 (0, (3, (7, (8, (10, (((1, 2), (4, (6, 9))), (5, (11, 12))))))))

Graph 2 ≤ 4
( ( 11, ( ( 13, 12), ( ( ( ( ( 2, 8), 6), ( 15, ( 7, 9))),
( ( 5, 14), ( 17, ( 16, ( 10, 3))))), ( 4, 0)))), 1)

Graph 3 ≤ 5

( ( ( ( ( ( 5, 13), ( ( 16, 2), ( 11, ( 26, ( 0, 12))))),
( ( ( 25, ( 20, 9)), ( 10, 27)), ( ( ( ( 22, 19), 8),
( ( 31, 18), 7)), ( 24, 29)))), ( ( ( 30, 15), 4),
( 3, 28))), ( ( 6, 23), ( 14, 17))), ( 21, 1))

Graph 4 ≤ 20

( ( ( ( ( ( 43, ( 15, 20)), ( 30, ( 29, 27))), ( ( 45, 42),
( 24, 21))), ( ( ( 0, 3), ( 6, 12)), ( ( 1, 4), ( 18, 35)))),
( ( ( ( 40, 28), ( 19, 31)), ( ( 7, 16), ( 22, 34))),
( ( ( 5, ( 2, 11)), ( ( 26, 14), ( 23, 17))), ( ( 25, 32),
( 39, 36))))), ( ( ( ( ( 57, 9), ( 50, 58)), ( ( 51, 54),
( 48, 55))), ( ( ( 13, 10), ( 46, 53)), ( ( 33, 8),
( 37, 56)))), ( ( ( ( 44, 49), 52), ( 38, 41)),
( ( ( 47, 59), 60), ( 61, ( 62, 63))))))
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14 Algorithms Appendix

Algorithm 6: AllBinaryTrees

Data: number of leaves required n
Result: a set containting all binary trees with that number of leaves
result←− emptyset;
if n = 1 then

result.Add(newNode());
return result

for i←− 1ton− 1 do
left←− AllBinaryTrees(i);
right←− AllBinaryTrees(n− i);
foreach lefttree in left do

foreach righttree in right do
node←− newNode();
node.leftchild←− lefttree;
lefttree.parent←− node;
node.rightchild←− righttree;
righttree.parent←− node;
result.Add(node);

return result

Algorithm 7: AllOrdersOfLength

Data: length of orders required n
Result: set containting all possible orderings of the numbers 0 through n - 1
return AllOrdersRecurse( { 0, 1, .. n - 1} )

Algorithm 8: LabelTree

Data: tree to label tolabel
list of labels labels
Result: set containting all possible orderings of the numbers 0 through n - 1
LabelTreeRecurse(tolabel, labels, 0);
return tolabel
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Algorithm 9: AllOrdersRecurse

Data: set of elements to give all orders of input
result←− emptyset;
if input.Count = 2 then

result.Add(input.Copy());
result.Add({input[0], input[1]});

foreach element in input do
rest←− input.Copy();
rest.Remove(element);
foreach tail in AllOrdersRecurse(rest) do

tail.Insert(0, element);
result.Add(tail);

return result

Algorithm 10: LabelTreeRecurse

Data: tree to label tolabel
list of labels labels
index of next label to use next
Result: index of next label to use
if tolabel.leaf then

tolabel.label←− labels[next];
return next + 1

tolabel.label←− −1;;
next←− LabelTreeRecurse(tolabel.left, labels, next);
next←− LabelTreeRecurse(tolabel.right, labels, next);
return next

Algorithm 11: TreeScorer

Data: a graph g
a labeled tree labeledtree
Result: mm-width of the tree
if labeledtree.leaf then

return -1
left←−MMTreeTester(g, labeledtree.left);
right←−MMTreeTester(g, labeledtree.right);
scoreleft←− HopcroftKarp(G[Vlabeledtree.left, ¯Vlabeledtree.left]);
scoreright←− HopcroftKarp(G[Vlabeledtree.right, ¯Vlabeledtree.right]);
result←− left;
if right > result then result←− right;
if scoreleft > result then result←− scoreleft;
if scoreright > result then result←− scoreright;
return result
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15 Graphs Appendix

Graph 1:
p edge 13 22
e 1 4 e 1 7
e 1 9 e 1 12
e 2 3 e 2 5
e 2 7 e 3 4
e 3 10 e 3 12
e 4 6 e 4 8
e 4 12 e 5 6
e 5 10 e 5 13
e 6 7 e 6 11
e 7 13 e 8 9
e 9 11 e 11 13

Graph 2:
p edge 18 36
e 1 2 e 1 3
e 1 4 e 1 5
e 1 7 e 1 11
e 2 3 e 2 6
e 2 9 e 2 13
e 3 4 e 3 8
e 3 9 e 3 11
e 4 5 e 4 6
e 4 17 e 4 18
e 5 9 e 5 14
e 6 7 e 7 8
e 7 10 e 7 11
e 7 12 e 8 10
e 8 16 e 9 12
e 10 12 e 10 16
e 11 15 e 11 17
e 12 13 e 12 14
e 12 15 e 13 14

Graph 3:
p edge 32 43
e 1 13 e 1 27
e 2 14 e 2 24
e 3 17 e 3 27
e 4 6 e 4 17
e 4 18 e 4 31
e 5 16 e 5 31
e 6 23 e 7 18
e 7 24 e 8 20
e 8 30 e 9 20
e 9 23 e 10 21
e 10 26 e 11 21
e 11 30 e 12 13
e 12 14 e 12 19
e 13 32 e 14 15
e 15 16 e 15 18
e 16 17 e 19 20
e 19 21 e 22 23
e 22 24 e 22 25
e 25 26 e 25 28
e 26 27 e 28 29
e 28 32 e 29 30
e 29 31

Graph 4:
p edge 64 536
e 1 2 e 1 3
e 1 5 e 1 16
e 1 17 e 1 19
e 1 20 e 1 23
e 1 24 e 1 37
e 1 41 e 2 3
e 2 4 e 2 5
e 2 8 e 2 12
e 2 13 e 2 14
e 2 15 e 2 16
e 2 17 e 2 18
e 2 19 e 2 20
e 2 21 e 2 23
e 2 37 e 2 38
e 2 41 e 2 42
e 3 4 e 3 5
e 3 6 e 3 8
e 3 13 e 3 16
e 3 17 e 3 20
e 3 37 e 3 40
e 3 41 e 3 42
e 3 43 e 3 44
e 3 46 e 4 5
e 4 6 e 4 7
e 4 8 e 4 9
e 4 10 e 4 11
e 4 12 e 4 13
e 4 14 e 4 16
e 4 17 e 4 18
e 4 21 e 4 34
e 4 37 e 4 38
e 4 39 e 4 41
e 4 42 e 4 43
e 4 45 e 4 49
e 4 58 e 4 64
e 5 6 e 5 7
e 5 8 e 5 9
e 5 12 e 5 13
e 5 16 e 5 43
e 6 7 e 6 8
e 6 43 e 6 44
e 6 45 e 6 47
e 7 8 e 7 9
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Graph 4 (cont.):
e 7 12 e 7 43
e 7 45 e 7 64
e 8 9 e 8 10
e 8 11 e 8 12
e 8 13 e 8 15
e 8 16 e 8 17
e 8 42 e 8 43
e 9 10 e 9 11
e 9 12 e 9 13
e 9 14 e 9 15
e 9 16 e 9 43
e 9 63 e 9 64
e 10 11 e 10 12
e 10 13 e 10 14
e 10 15 e 10 17
e 10 18 e 10 34
e 10 38 e 10 39
e 10 41 e 10 42
e 10 43 e 10 45
e 10 46 e 10 49
e 10 52 e 10 56
e 10 58 e 10 59
e 10 60 e 10 61
e 10 62 e 10 63
e 10 64 e 11 12
e 11 13 e 11 14
e 11 15 e 11 18
e 11 38 e 11 58
e 11 59 e 11 61
e 11 63 e 11 64
e 12 13 e 12 14
e 12 15 e 12 16
e 12 17 e 12 19
e 13 14 e 13 15
e 13 16 e 13 17
e 13 18 e 13 21
e 13 34 e 13 37
e 13 38 e 13 39
e 13 40 e 13 41
e 13 42 e 13 43
e 13 49 e 13 58
e 14 15 e 14 16
e 14 17 e 14 18
e 14 19 e 14 21
e 14 22 e 14 26
e 14 31 e 14 34
e 14 37 e 14 38
e 14 39 e 14 42

Graph 4 (cont.):
e 14 49 e 14 52
e 14 56 e 14 57
e 14 58 e 14 59
e 14 61 e 14 62
e 14 63 e 15 16
e 15 17 e 15 18
e 15 19 e 15 20
e 15 22 e 15 58
e 16 17 e 16 18
e 16 19 e 16 20
e 16 23 e 16 37
e 16 38 e 16 42
e 17 18 e 17 19
e 17 20 e 17 21
e 17 22 e 17 24
e 17 26 e 17 30
e 17 31 e 17 34
e 17 37 e 17 38
e 17 39 e 17 40
e 17 41 e 17 42
e 17 43 e 17 49
e 17 58 e 18 19
e 18 20 e 18 21
e 18 22 e 18 26
e 18 28 e 18 30
e 18 31 e 18 34
e 18 37 e 18 38
e 18 58 e 19 20
e 19 21 e 19 22
e 19 23 e 20 21
e 20 22 e 20 23
e 20 24 e 20 26
e 20 30 e 20 37
e 20 38 e 20 41
e 21 22 e 21 23
e 21 24 e 21 25
e 21 26 e 21 27
e 21 28 e 21 30
e 21 31 e 21 32
e 21 33 e 21 34
e 21 37 e 21 38
e 21 41 e 21 58
e 22 23 e 22 24
e 22 25 e 22 26
e 22 31 e 22 34
e 22 58 e 23 24
e 23 25 e 23 26
e 24 25 e 24 26

Graph 4 (cont.):
e 24 27 e 24 30
e 24 31 e 24 33
e 24 37 e 25 26
e 25 27 e 25 30
e 25 31 e 26 27
e 26 28 e 26 29
e 26 30 e 26 31
e 26 33 e 26 34
e 26 37 e 26 38
e 26 58 e 27 28
e 27 29 e 27 30
e 27 31 e 27 32
e 27 33 e 28 29
e 28 30 e 28 31
e 28 32 e 28 34
e 28 57 e 28 58
e 29 30 e 29 31
e 29 32 e 29 33
e 29 35 e 29 36
e 29 55 e 30 31
e 30 32 e 30 33
e 30 34 e 30 36
e 30 37 e 30 38
e 31 32 e 31 33
e 31 34 e 31 35
e 31 37 e 31 38
e 31 57 e 31 58
e 32 33 e 32 34
e 32 35 e 32 36
e 32 54 e 32 55
e 32 56 e 32 57
e 32 58 e 33 34
e 33 35 e 33 36
e 33 37 e 33 38
e 33 40 e 33 54
e 34 35 e 34 36
e 34 37 e 34 38
e 34 39 e 34 42
e 34 49 e 34 52
e 34 56 e 34 57
e 34 58 e 34 59
e 34 60 e 35 36
e 35 37 e 35 38
e 35 39 e 35 40
e 35 49 e 35 50
e 35 52 e 35 53
e 35 54 e 35 55
e 35 56 e 35 57
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Graph 4 (cont.):
e 35 58 e 36 37
e 36 38 e 36 39
e 36 40 e 36 41
e 36 49 e 36 50
e 36 54 e 37 38
e 37 39 e 37 40
e 37 41 e 37 42
e 37 49 e 37 58
e 38 39 e 38 40
e 38 41 e 38 42
e 38 49 e 38 52
e 38 56 e 38 57
e 38 58 e 38 62
e 39 40 e 39 41
e 39 42 e 39 46
e 39 47 e 39 48
e 39 49 e 39 50
e 39 52 e 39 53
e 39 54 e 39 56
e 39 58 e 39 60
e 39 62 e 40 41
e 40 42 e 40 46
e 40 49 e 40 50
e 41 42 e 41 43
e 41 46 e 41 49
e 42 43 e 42 44
e 42 46 e 42 49
e 42 50 e 42 52
e 42 56 e 42 58
e 43 44 e 43 45
e 43 46 e 43 47
e 43 48 e 43 49
e 43 64 e 44 45
e 44 46 e 44 47
e 44 48 e 44 50
e 45 46 e 45 47
e 45 48 e 45 51
e 45 62 e 45 63
e 45 64 e 46 47
e 46 48 e 46 49
e 46 50 e 47 48
e 47 49 e 47 50
e 47 51 e 47 62
e 48 49 e 48 50
e 48 51 e 48 52
e 48 56 e 48 60
e 48 61 e 48 62
e 48 63 e 48 64

Graph 4 (cont.):
e 49 50 e 49 51
e 49 52 e 49 53
e 49 54 e 49 56
e 49 57 e 49 58
e 49 60 e 49 61
e 49 62 e 50 51
e 50 52 e 50 53
e 50 54 e 50 56
e 50 62 e 51 52
e 51 53 e 51 56
e 51 62 e 52 53
e 52 54 e 52 55
e 52 56 e 52 57
e 52 58 e 52 59
e 52 60 e 52 61
e 52 62 e 53 54
e 53 55 e 53 56
e 53 60 e 53 62
e 54 55 e 54 56
e 55 56 e 55 57
e 55 60 e 56 57
e 56 58 e 56 59
e 56 60 e 56 61
e 56 62 e 57 58
e 57 59 e 57 60
e 57 61 e 57 62
e 58 59 e 58 60
e 58 61 e 58 63
e 59 60 e 59 61
e 59 62 e 59 63
e 60 61 e 60 62
e 61 62 e 61 63
e 62 63 e 63 64
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