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Abstract

Since 2015 the Victor J. Koningsberger building has been used by

multiple departments and faculties of Utrecht University to host their

lab sessions. To help with the scheduling of the lab sessions, we cre-

ated an algorithm to automatically create a timetable based on the

requests. In this work we describe how we modeled the problem. We

also show our algorithm, which is a version of Simulated Annealing,

and its components. Elaborate results are shown of our research to

�nd the best settings for our algorithm. Finally, we also take a look at

the GUI application that we created to allow course coordinators to �ll

in their demands and the central coordinator(s) to create a timetable

from those demands, using our algorithm.

Our method has already been used to create the timetables for the

�rst two quarters of the 2017�2018 academic year, and it has been

decided to use these timetables instead of the hand-made ones. More

recently, it has been decided that our GUI application and algorithm

will be used for the creation of the timetables for the third and fourth

quarter of the 2017�2018 academic year as well.
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1 Introduction

In this work, we will look at the timetabling of laboratory sessions in the Vic-
tor J. Koningsberger building of Utrecht University. The construction of the
Victor J. Koningsberger building was completed in 2015 and the building has
been used mostly by the Departments of Biology, Chemistry and Pharma-
ceutical Sciences since. The Faculty of Medicine/University Medical Center
Utrecht and the Faculty of Geosciences have also been using the building for
some of their lab sessions.

The Koningsberger building has 7 �oors. The ground, �rst and second
�oor are mostly �lled with study places for individuals and groups, and
computer rooms. The third �oor through the sixth �oor contain 17 lab
rooms and di�erent kinds of auxiliary rooms with devices that are required
for some lab sessions. The lab rooms are categorized into 4 di�erent types.
Some lab sessions need to happen in one speci�c type of room, others can be
held in multiple room types.

Before the building existed, the Departments of Biology, Chemistry and
Pharmaceutical Sciences all had their own lab rooms. Now, they have to
share lab rooms, which means they have to `merge' their timetables and
resolve any con�icts. So far, this merging was done by hand. This works,
but it does cost time. We will try to automate part of this process. The goal
is to make the merging possible even if the building usage gets higher in the
future. Another objective is to make the timetables better, with respect to
things like closeness of rooms used for the same lab session, and slack in the
timetable for setting up and clearing rooms.

Eventually, course coordinators should be able to request lab sessions (in
consultation with the department lab coordinator). These requests will in-
clude properties like the number of required rooms, the type of the rooms
and the preferred day and time the session should be held. Our solution
should then take all of the requests and �nd a good timetable. In reality, the
department lab coordinators might then have to make some adjustments, for
example if a session that has been moved from its preferred day/time really
cannot move there. In general though, the plan is to make lab session plan-
ning the �rst priority, over regular lectures (which are scheduled separately
in di�erent buildings/rooms), because lab rooms are far more scarce.

In section 2, literature regarding educational timetabling is reviewed. In
section 3 we describe how we modeled our problem. Section 4 describes the
approach we take to �nd a good timetable. Our approach is based on a
Simulated Annealing algorithm. Then, in section 5, we describe our research
to �nd the best settings for the algorithm and we compare timetables cre-
ated by our algorithm to hand-made timetables. Section 6 contains a short
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description of the GUI application we built such that the end user can easily
use our algorithm. Finally, section 7 concludes this work.
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2 Related Work

In this section we review literature about educational timetabling, the subject
of our research. Educational timetabling is often split into high school time-
tabling and university timetabling. We will focus on university timetabling
here. Traditionally, university timetabling has been divided into three dif-
ferent problems: examination timetabling, post enrollment course timetabling
and curriculum-based course timetabling.

The di�erence between the latter two is the way con�icts between courses
are set up. In post enrollment course timetabling, the con�icts come di-
rectly from the enrollment of students in courses. If a student attends two
courses, lectures of those courses cannot be scheduled at the same time.
In curriculum-based course timetabling, the con�icts come from curricula.
These are groups of courses which cannot be scheduled at the same time,
meaning students can attend courses in the same curriculum without having
con�icts in their schedule.

The division into three problems is a result of the Second International
Timetabling Competition (ITC-2007) [DSM07], which consisted of a contest
for each of these three problems. In this literature review we will focus on
curriculum-based course timetabling, because it is closest to our problem.
However, it is good to mention that curriculum-based and post enrollment
course timetabling are closely related. There was even a contestant who was
named a �nalist in each of the three competition tracks and won two of them
([Mül09]). A review of literature on all parts of educational timetabling was
written by Kristiansen and Stidsen [KrS13].

More information about ITC-2007 and a review of the literature on its
curriculum-based timetabling problem can be found in section 2.1.1. We
start o� section 2.1 with a review of some literature that was not directly
based on the ITC-2007 problem formulation. In section 2.2 we will look at
earlier work on the subject at Utrecht University.

2.1 Curriculum-Based Course Timetabling

In this section we review literature about curriculum-based course time-
tabling. First, we review two approaches that are not based on the ITC-
2007 problem formulation and then, in section 2.1.1, we will look at ap-
proaches for the ITC-2007 formulation. Surveys on the subject were written
by Kristiansen and Stidsen [KrS13], Bettinelli et al. [BCR15] and Babaei et
al. [BKH15].
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Integer Linear Programming Schimmelpfeng and Helber [ScH07] use
an Integer Linear Programming approach to improve the timetables at the
School of Economics and Management at the University of Hannover. The
timetables are equal for each week during a semester and a week consists
of 5 days with 6 prede�ned timeslots each day. The algorithm can handle
multiple teachers per meeting and the most basic hard constraints are there
to make sure each meeting is scheduled and no teacher is needed at two
meetings at the same time. Other hard constraints force certain meetings
to be scheduled in the same room directly after each other and force certain
pairs of meetings to be given in a speci�ed order during the week.

Rooms are grouped into room types and there is a soft constraint to make
sure no more rooms of every type are used concurrently than are available.
If this constraint is not satis�ed, certain costs are associated to this that
represent renting external rooms. Other soft constraints make sure some
courses are not taught at the same time or some meetings are taught at the
same time. Preferences of teachers regarding teaching hours are also included
in the objective function.

Results are shown of planning an actual semester at the school. According
to the authors the administrative sta� was surprised by the extent to which
the timetable was con�ict-free. Finally, the authors describe how they intro-
duced their new approach of timetabling to the teaching sta�. At �rst, the
administrative and teaching sta� were skeptical, but a questionnaire among
the teachers showed that after seeing the result, a large majority thought the
system should be kept in use.

Variable Neighborhood Search In their paper, Nguyen et al. [NNT11]
describe how they implemented and tested eight variants of Variable Neigh-
borhood Search for creating timetables at the Ho Chi Minh City University
of Science. For the VNS variants, they used 12 di�erent shaking strategies,
all aimed at changing the period assignment of meetings. The authors also
introduced two ways of ordering the di�erent shaking strategies and two ac-
ceptance criteria. All combinations of VNS variant, strategy ordering and
acceptance criterion are tested. The Fleszar-Hindi variant with static order-
ing and improvement only as acceptance criterion performs best.

2.1.1 ITC-2007

In 2002, the First International Timetabling Competition (ITC-2002) was
held. In this competition, participants had to design an algorithm to solve a
post enrollment course timetabling problem. This competition helped to cre-
ate a universal standard problem formulation, which meant research into this
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area was mostly aimed at the same problem. This way, di�erent approaches
could easily be compared using a set of test instances.

Because of this success, a new competition was organized, the Second
International Timetabling Competition (ITC-2007). This competition was
divided in three tracks, to accommodate di�erent types of timetabling at
universities. The tracks were examination timetabling, post enrollment course
timetabling and curriculum-based course timetabling. Like before, we will
focus on the curriculum-based timetabling here.

The problem is formulated by Di Gaspero et al. [DSM07]. In the problem,
a timetable has to be generated for one week. There are a number of days
(typically 5 or 6) and each day is split in a �xed number of timeslots. A
combination of a day and a timeslot is called a period. Each course has a
set number of lectures to be taught in the week, a set number of students
attending and a teacher teaching it. Each room has a capacity, but otherwise,
all rooms are equal. There are multiple curricula, which are groups of courses.
Lectures of courses in the same curriculum cannot be taught in the same
period.

There are four hard constraints that solutions have to comply with to be
feasible. Firstly, all lectures of each course must be scheduled, and must be
scheduled in di�erent periods. Secondly, no more than one lecture can be
scheduled in a room during a period. Thirdly, lectures of courses with the
same teacher or in the same curriculum cannot be taught in the same period.
And �nally, if a teacher is not available during a period, no lecture of their
course(s) can be scheduled in that period.

Of course, there are also some soft constraints. Violations of these con-
straints result in penalty points. The fewer penalty points, the better a
solution (as long as it is feasible with respect to the hard constraints). The
soft constraints are as follows. Firstly, each lecture must be scheduled in a
room with a capacity equal to or greater than the attendance. Furthermore,
courses can have a minimum number of days, which means the lectures must
be spread over at least that number of days. Additionally, lectures belonging
to the same curriculum should be scheduled in adjacent timeslots on a day.
Finally, all lectures of a course should be scheduled in the same room.

There are 21 instances, gathered from real data from the University of
Udine, provided by the authors. These instances are still used today to
benchmark algorithms for the curriculum-based timetabling problem. In
the remainder of this section we review some of the approaches that have
been taken to tackle the curriculum-based course timetabling problem, as
formulated by Di Gaspero et al. [DSM07] for ITC-2007.
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Genetic Algorithm In Abdullah et al. [ATM09] a Genetic Algorithm with
local search is used to tackle the course timetabling problem. The algo-
rithm is divided into two phases: the construction phase, in which an initial
population is constructed, and the improvement phase, in which a Genetic
Algorithm and local search are used with this population to �nd a better
solution.

In the construction phase, three algorithms are used to create each in-
dividual in the population. First a largest degree heuristic is used (where
the degree of a lecture refers to the number of con�icting lectures), then this
timetable is improved using Neighborhood Search and Tabu Search.

The constructed individuals are then used in a Genetic Algorithm. O�-
spring is created using mutation and crossover. The authors state that the
crossover used is single-point crossover, however they do not explain how the
individuals are represented as chromosomes. It seems logical that a chro-
mosome consists of the assigned period/room combination for each lecture.
After this crossover, the individuals may need to be repaired, because an
infeasible solution is created. After the o�spring is created, local search is
applied to it and the results of that are then used in the next generation of
the Genetic Algorithm.

Hybrid approach One of the best performing approaches in ITC-2007
was introduced by Müller [Mül09]. He used the same approach for all three
tracks (examination timetabling, post enrollment based course timetabling
and curriculum-based course timetabling). In every track, this approach was
named as a �nalist and it won the examination and curriculum-based tracks.

The approach uses as many as four di�erent algorithms in succession to
get a good result. First, a feasible solution is found using Iterative Forward
Search. Each iteration, an unassigned variable (i.e. a course's time and room
assignment) is assigned a value in its domain. If a hard constraint is violated
because of this assignment, other variables (i.e. other courses' time/room
assignments) are unassigned to get rid of this violation. Every time such a
violation occurs a counter is increased to make sure the algorithm does not
repeat bad assignments. This phase ends when all variables are assigned.

From this initial schedule, a Hill Climbing algorithm is used to �nd the
local optimum. Each iteration a random neighbor is selected and is applied
if it yields an improvement. This phase ends after a set number of iterations
without improvement. Then, the Great Deluge algorithm is applied. This
algorithm uses a slowly decreasing upper bound to limit the allowed decline
in solution quality. When this upper bound reaches a certain value, the Sim-
ulated Annealing phase is started. When Simulated Annealing is �nished,
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the approach goes back to the Hill Climbing algorithm and repeats the pro-
cess from there. For the examination timetabling track, Simulated Annealing
is never used and Great Deluge is repeatedly run (without returning to Hill
Climbing). The algorithm is stopped when the maximum runtime is reached.

The used neighborhoods di�er between the tracks. For the curriculum-
based track, the neighborhoods consist of moving a lecture in time, room or
both, moving all lectures of a course to the same room, spreading course lec-
tures over more days and moving lectures to times adjacent to other lectures
in the curriculum.

Adaptive Tabu Search In their work, Lü and Hao [LuH10] present an
algorithm called Adaptive Tabu Search. Their approach consists of three
phases. The �rst phase creates an initial feasible solution, using a greedy
heuristic. First a course is selected based on a small number of available
periods and a large number of unscheduled lectures. The lecture is then
assigned to the period which yields the smallest number of con�icts with
other unscheduled lectures. This is repeated until all lectures are scheduled.

The second and third phase are a combination of Tabu Search and Iter-
ated Local Search. In the second phase a Tabu Search algorithm is used to
improve the current solution. As neighborhood they use a token-ring of Sim-
pleSwap (swapping the periods and rooms of two lectures) and KempeSwap
(swapping multiple con�icting lectures from two periods) neighborhood op-
erators. The third phase is based on Iterated Local Search. The current
solution is perturbed to get out of a local optimum. These two phases are
applied alternatingly until time runs out or a �xed number of iterations is
reached.

During the iterations, the depth of the Tabu Search (how many iterations
will be done without improvement before stopping the phase) and the per-
turbation strength are gradually increased as long as no new best solution
is found. This way the algorithm does more and more intensi�cation and
more diversi�cation in the hope that eventually a better solution is found.
Experimental results show that the algorithm can compete with the �nalists
of ITC-2007, improving some of their scores, while getting close on all other
instances.

Neighborhood analyses Lü et al. [LHG11] analyze the quality of mul-
tiple neighborhood operators in local search. To do this, they test several
neighborhood operators on the curriculum-based course timetabling prob-
lem. They look at three known and one newly introduced operators. At �rst
they just test the results of the local search using each of these operators
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separately and report the quality of the timetables.
Then, they also look at combinations of the operators. Operators are

combined in two ways: as a union, where the neighborhoods are just merged
and the best neighbor is selected from this union, and as a token-ring. In
token-ring search, the local optimum is �rst found using one neighborhood.
Then the algorithm switches to the other neighborhood and �nds the local
optimum for that. This process is repeated until no improvement is possible
anymore using either neighborhood.

The performance of the operators is analyzed with three measures: per-
centage of improving neighbors, improvement strength, number of improving
iterations. Initially, the authors test using only a Steepest Descent algorithm,
but in the end they also test the operators using Tabu Search, Iterated Local
Search and Adaptive Tabu Search. With all these algorithms it turns out that
the token-ring combination of the SimpleMove and their newly introduced
KempeSwap operators performs best.

Arti�cial Bee Colony Bolaji et al. [BKA11] attempted to use an Arti�cial
Bee Colony algorithm for the problem. After initialization, a set of initial
solutions is generated. This is done randomly, using the saturation degree of
the lectures.

Then, repeatedly, the `employed bees' each randomly select a solution,
based on its �tness. Each employed bee now performs local search on the
selected solution. If the resulting solution is better than the original, the
original is replaced in the population. Then, `onlooker bees' each randomly
select (using tournament selection) a solution to improve. They improve the
solution using local search, but stop after a number of iterations without
improvement. At this point the associated employed bee turns into a `scout
bee'. These scout bees are then used to generate new, random solutions
which are added to the population. After a prede�ned number of iterations
of repeating these three steps, the algorithm stops. The best found solution is
remembered throughout the algorithm. This algorithm is designed to spend
more time improving promising solutions and discard solutions when it seems
they cannot be improved anymore.

It turns out the results of this method cannot keep up with the methods
that reached the �nal of ITC-2007. The authors, however, do see promise in
the results and have tried to improve the approach. We found two further
articles by the authors, but the results are still not near those of the ITC-2007
�nalists.

11



Ant Colony Optimization Thepphakorn et al. [TPH14] used an Ant Co-
lony Optimization approach to solve curriculum-based timetabling. Speci�-
cally they tried the Best-Worst Ant System and the Best-Worst Ant Colony
System algorithms.

An ant tour is created by going through all lectures that need to be
planned, sequentially. The lectures are processed in descending order of
number of students. For each lecture, one of the possible period/room com-
binations is selected randomly, with the probability for each combination
depending on the pheromones (left behind by ants in previous iterations)
and heuristic information.

The authors added to this process the use of local search. After a tour
is created local search is applied. Two local search types are introduced.
The �rst one attempts to make sure rooms are large enough and lectures of
the same course are held in the same room. It does this by interchanging
rooms for pairs of lectures in the same period. The second local search
type attempts to spread courses over more days (if necessary) and to make
lectures in the same curriculum be held in adjacent periods. Some lectures
that violate these soft constraints are selected and unscheduled. Then these
lectures are assigned to feasible period/room combinations that give the best
local �tness.

The results of this method were compared to other Ant Colony Optimiza-
tion approaches and proved to be better. The authors did not compare the
results to those of other techniques.

Simulated Annealing Bellio et al. [BCD13] introduced a simple Simu-
lated Annealing based approach to optimize curriculum-based course time-
tabling instances. They use a rather classical version of Simulated Annealing,
however they do not always decrease the temperature after a �xed number
of iterations, but also after a set number of successful neighborhood opera-
tions. That way more time can be spent in the later stages of the algorithm.
The algorithm is stopped after a �xed number of iterations (which more or
less corresponds to a �xed running time). The neighborhood operators used
are MoveLecture and SwapLectures. A description of these operators can be
found later in this paragraph.

Multiple parameter sets are generated using the Hammersley point set
[WLH97]. These parameter sets are then compared using a set of generated
instances, designed to resemble the ITC-2007 instances. The best parameter
set is then used for the ITC-2007 and even though the method is rather
simple, it comes up with good results.

In [BCD16], the same authors dive deeper into their Simulated Anneal-
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ing method. First, they explain their algorithm in more detail. Unlike other
methods, three out of four of the hard constraints are relaxed. The neigh-
borhood operators used in this method are MoveLecture, which changes the
period/room combination of one lecture, and SwapLectures, which swaps the
period/room combinations of two lectures. The ratio in which these two
operators are used is one of the parameters of the algorithm that are tuned.

After explaining the algorithm, the authors show their thorough process
of tuning the algorithm parameters. Once again, they have a separate, gener-
ated training set, to prevent over�tting on the training data. Twenty di�er-
ent parameter sets were tested, once again generated using the Hammersley
point set. Initial ranges for all parameters were determined in preliminary
experiments.

The twenty parameter sets were tested on the training set to �nd which
one was the best. In the process some parameters turned out to be either
not very important to the result (in which case an arbitrary value in the
range was chosen), or a very good value emerged from the results. These
parameters were then �xed and three parameters remained. The authors
decided to use a classi�cation forest, to predict the best parameter set for a
problem instance, based on instance characteristics like number of lectures
and average number of con�icts.

The method using the classi�cation forest was signi�cantly better than
always using the best parameter set (that emerged from the training set)
for only a couple of the tested instances. However, it was never signi�cantly
worse. Both approaches, using the best parameter set and using the classi�-
cation forest performed well on the ITC-2007 instances.

Graph Heuristics Wahid and Hussin [WaH16] focus on generating good
initial populations for the problem, using (combinations of) graph heuristics.
These populations are necessary in, among others, Genetic Algorithms. The
graph heuristics they use are largest degree, which looks at the number of lec-
tures each lecture con�icts with, weighted degree, which is like largest degree,
but incorporates the number of students involved in the con�icts, and satu-
ration degree, which takes into account the number of free valid period/room
combinations for each lecture. The authors also combine these heuristics.
It is not entirely clear how they do that, but it seems one heuristic is used
normally and the other is used as a tiebreaker.

The heuristic values are used to order the lectures. Lectures are then
each planned in a random valid slot in the heuristic's order. If a lecture
cannot be planned it is revisited at the end and some undescribed methods
are used to �x this. The di�erent (combinations of) heuristics are evaluated
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by attempting to generate 50 solutions for several test instances. The authors
compare how many of the found solutions are feasible for each heuristic and
test instance.

2.2 Previous Research at Utrecht University

Research was done into scheduling courses at Utrecht University before.
Kampman [Kam13] focused on planning all meetings at the university at
once. He tried to come up with a timetabling algorithm that works better
than the Syllabus Plus software that is still used by the university today and
which appears to be using a greedy algorithm for scheduling.

The method �rst splits up the set of meetings to be planned into two sets:
the regular meetings and the incidental meetings. The algorithm uses a two-
phase approach, �rst planning the regular meetings and then the incidental
ones. Meetings can be dependent on another meeting, which means they
have to be given within a certain time frame after the start of the meeting
they depend on. This can be used to make sure certain meetings are held at
the same time (e.g., a practical lecture of a course being held simultaneously
for two or more groups of students) or directly after each other (e.g., a normal
lecture followed by a practical lecture).

There are some more constraints that have to be ful�lled to get to a
good schedule: the room in which a meeting is scheduled must have enough
capacity for all participants to �t in, and must be part of the room set of the
meeting. This room set depends on the type of meeting (e.g. normal lecture,
computer practical) and the faculty that the course is part of. These room
sets are used to make sure meetings get scheduled in rooms that belong to
the faculty and that can host the meeting type. This also minimizes the use
of rooms that are far apart from each other, for the same course.

The objective function Kampman uses consists of four terms. The �rst
term is the quarter penalty, which penalizes scheduling meetings before 9:00
and after 17:00. It also encourages the algorithm to schedule meetings as
close to 13:00 as possible, because students prefer that time. There is also an
empty room penalty, which makes sure a certain amount of bu�er rooms is
always empty, so they can be used to reschedule meetings in case some rooms
are unavailable unexpectedly. Then, there is the room penalty, which penal-
izes the use of external rooms (usually rooms with very large capacity, which
the university does not have) for which the university has to pay. Finally, to
allow the algorithm to keep some meetings unscheduled (temporarily) with-
out making the solution invalid, there is a penalty for unscheduled meetings.

The algorithm created by Kampman uses the local search meta-heuristic
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Simulated Annealing. It is divided into two phases. The �rst phase creates
a `stamp', which is a schedule for one week, which only contains the regular
meetings. This stamp is created in two steps: �rst an initial stamp is created
using a greedy algorithm. Then, Simulated Annealing is used to optimize
the stamp.

Now, to create a complete timetable, consisting of all weeks, the stamp is
�rst `imported' into the complete schedule. This means all regular meetings
are now scheduled for the weeks they are supposed to be held. Next, inciden-
tal lectures are added to the timetable using a greedy algorithm. Finally, the
complete timetable is optimized using Simulated Annealing. In this step the
regular meetings are �xed, which means the local search can only reschedule
the incidental meetings.

The greedy algorithm to create an initial schedule, iterates over all meet-
ings and schedules them in the �rst possible room and period combination
they �t in. For the order in which meetings and rooms are considered, dif-
ferent variants are tested, based on number of participants/capacity (high
number of participant meetings/low capacity rooms are considered �rst) and
on 'popularity', which takes into account how many meetings can be sched-
uled in a room (according to the room sets).

For the local search, operators are needed. Kampman uses two simple and
three more complex operators. The simple operators insert a meeting into
the timetable and move a lecture to another room/time. The �rst complex
operator is a branch and bound heuristic. It selects a couple of meetings that
have the same timeslot, faculty and type, which means these meetings can
potentially clash. For the selected meetings a branch and bound algorithm
is used to �nd the best room/time assignments for them. The second more
complex operator shifts all planned meetings in a room as much towards
13:00 as possible. Finally, there is the chain reschedule operator, which tries
to move not just one but multiple dependent meetings at a time.

Using a test set obtained from the university's planning environment, Kamp-
man tested his algorithm to �nd the best combination of parameters and to
compare it to just a greedy algorithm. The result was very clear: the local
search outperformed the greedy algorithm by a big margin. Of course, the
runtime of the local search was a lot longer, but with 10�15 minutes, the
improvement of the schedule is de�nitely worth the wait.
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3 Model

In this section we will give a formal description of the problem. The goal is
to �nd a good timetable for one quarter of the academic year (called a block
from here on) for the lab sessions in the Victor J. Koningsberger building of
Utrecht University. Lab sessions of the Departments of Biology, Chemistry
and Pharmaceutical Sciences and the Faculty of Medicine/University Medical
Center Utrecht and the Faculty of Geosciences are held in the building.

The Koningsberger building has 4 �oors with lab rooms, for a total of 17
lab rooms of 4 di�erent types. We will be looking at 15 of those rooms, as the
two other rooms are scheduled separately by the Department of Chemistry.

To create a model, we �rst needed to get a clear view of the problem.
Therefore, we attended a meeting of the responsible project manager and
several lab coordinators of the involved departments and faculties. This gave
us an insight in part of the problem. After this, we had several meetings
with the project manager and a developer of the IT section of the Faculty of
Science. They gave a good overview of the problem.

It was clear that it was also necessary to speak to the lab coordinators
of the departments to get all the necessary details of the problem. We had
a meeting with each of the lab coordinators of the Departments of Biology,
Chemistry and Pharmaceutical Sciences. In these meetings we asked several
questions regarding the problem and the coordinators took their time to
answer them. The coordinators have years of experience scheduling the lab
sessions and their explanations gave a great insight into the problem. One
of the coordinators was nice enough to show me around the lab rooms of the
Koningsberger building, which also helped in understanding the problem.

After these meetings, we drafted the model. We consulted with the
project manager to make some adjustments and come up with the model
that is described in this section.

The input of the system is a list of requested meetings for each course. A
meeting is the term we use to indicate a lab session. The meeting requests
have multiple properties, like duration, preferred start moment and possible
room types. Meetings can take 1 to 4 periods (of 2 hours) on one day, or can
span over multiple days. Some meetings take as much as two weeks. In this
time the students are not always working, but the room cannot be used for
other meetings.

In section 3.1, we will �rst take a look at the terminology for di�erent units
of time in our model (e.g. block, week, period). After that, in section 3.2,
important speci�cs of the building's rooms are described. In section 3.3
we will look at the di�erent types of meetings and dependencies between
meetings. Then, in sections 3.4 to 3.7, the hard and soft constraints, the
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special constraints for improving a provided solution and the objective of the
model are explained.

3.1 Time terminology

In this problem we will look at the timetable for a full block, or a quarter
of the academic year. A block consists of ten weeks and in each week there
are 5 days on which the meetings can take place. Holiday and retake weeks
are left out of the problem altogether. Every day consists of four periods
of 1 hour and 45 minutes1. We will call the four possible periods of a day
times from now on. A period is a speci�c combination of a week, day of the
week and a time. Simple meetings (see section 3.3) take a number of periods,
between 1 and 4. Each simple meeting must be planned completely on 1 day
in consecutive periods.

The periods of each week are divided in four timeslots. These timeslots
are:

Timeslot A Monday 9:00�12:45 and Wednesday 9:00�12:45
(4 periods each week)

Timeslot B Tuesday 9:00�12:45, Thursday 13:15�17:00
(4 periods each week)

Timeslot C Monday 13:15�17:00, Tuesday 13:15�17:00,
Thursday 9:00�12:45 (6 periods each week)

Timeslot D Wednesday 13:15�17:00, Friday 9:00�17:00
(6 periods each week)

For almost all courses that use lab rooms in the Koningsberger building,
these timeslots are combined to timeslot AD and BC, resulting in two time-
slots that split up the 20 periods in the week evenly. Both of these timeslots
take half of the Monday and two full days.

Timeslot AD Monday 9:00�12:45, Wednesday 9:00�17:00,
Friday 9:00�17:00

Timeslot BC Monday 13:15�17:00, Tuesday 9:00�17:00,
Thursday 9:00�17:00

1Each day consists of four periods of 1 hour and 45 minutes. These periods are at

the following times: 9:00�10:45, 11:00�12:45, 13:15�15:00 and 15:15-17:00. If consecutive

periods are combined, the meeting will just go on in the time between the periods.
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Courses are usually assigned a timeslot in which they must hold all of
their meetings. This is done in order to allow students to choose courses that
do not have meetings at the same time. Some courses hold meetings in two
di�erent timeslots (e.g., AD and BC). Meetings are then held twice, once in
each timeslot, and students can then choose in what timeslot they follow the
course. It follows that it is imperative that meetings are scheduled in their
assigned timeslot.

3.2 Rooms

As mentioned in section 1, the Koningsberger building contains 17 lab rooms
divided over four �oors. All rooms but one have a capacity of 30 students.
Some rooms are next to each other and only separated by retractable walls.
This means they can be combined into `clustered' rooms with a capacity
of 60 or 90 students. Other rooms are connected to each other through
device rooms (see below). The rooms are split into four types, named type
1 through 4. Each of these room types serves a di�erent purpose, however
some meetings can be held in multiple types of rooms.

Type 1 are the simplest rooms, they contain very little special equipment.
Meetings that are usually scheduled here can normally also be held in type 2
rooms, because they do not require special equipment. There are 8 rooms of
type 1, divided over two clusters of three rooms and one cluster of two rooms.
There are �ve rooms of type 2, which are used for analysis. Compared to
type 1 rooms, they contain fume hoods on the side of the rooms and they
are located next to large device rooms, containing devices that are often
necessary for analysis. The three rooms of type 3 are specially designed
for making pharmaceutical drugs. This means they are subject to stricter
hygiene measures and therefore cannot be used for most other lab sessions.

There is only one room of type 4, which is used for chemistry. This is also
the only room with a capacity of 48 students instead of 30. The scheduling of
this room and the other room on the sixth �oor (type 2) are both left out of
our problem and their timetable is handled by the Department of Chemistry.
This is done, because these rooms are used di�erently than the other rooms.
For example, multiple meetings are held in the same room and the students
rotate between di�erent spots within a room over multiple weeks to perform
di�erent experiments.

3.2.1 Device Rooms

Besides regular lab rooms, the Koningsberger building also contains device
rooms. These are rooms that contain various types of devices and other
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equipment. These device rooms are situated next to one or two regular lab
rooms. If a meeting needs a certain type of equipment, it is important that it
is held in a room next to the relevant device room, to prevent that students
need to walk through the building (with samples) to the device room.

3.3 Meetings

There are two types of meetings: simple meetings and multi-day meetings. In
this section we will describe both types and the room and time dependencies
there can be between meetings of the same course. Both types of meetings
have the following properties: the number of necessary rooms, one or more
room types the meeting can be held in and the necessary devices. The
meetings of a course have a prede�ned order, which is important for the
dependencies. This order must be non-decreasing in preferred start period.

Simple Meetings Simple meetings are meetings that take a number of
periods on one day. The majority of the meetings is simple. These meetings
are de�ned by a timeslot, a preferred start period (week/day/time) and a
duration. The meeting can be moved to any moment in the preferred week
or the next week, as long as the entire meeting stays within the timeslot and
is planned on one day.

Multi-Day Meetings Multi-day meetings are meetings that are sched-
uled over multiple days. During this time, no other meeting can be held in
the room(s). This does not mean that the room will be in use constantly
throughout this time, but rather the room is not usable between meetings of
the course. This can be because of hygiene rules or because the room will
be completely �lled with materials for the course. Multi-day meetings are
de�ned by a start period and an end period. They can only be moved to
exactly one week later.

Room Dependencies Some meetings need to be held in the same room
as the previous meeting of the same course. This prevents having to move
materials to other rooms between meetings. Therefore, each meeting B can
have a room dependency on another meeting A (of the same course), if A
ends before B starts (with respect to preferred start/end periods). This
indicates that it is preferable that the meetings are held in the same room.
Each meeting can have only one room dependency on another meeting, but
multiple meetings can have a dependency on the same meeting. To have
a dependency between two meetings, the meetings must have at least one
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possible room type in common, otherwise it is impossible for them to be in
the same room.

Time Dependencies In a similar fashion to room dependencies, each
meeting B can have a time dependency on another meeting A (of the same
course), if A starts before or in the same period as B (with respect to pre-
ferred start periods). A time dependency indicates meeting B has to start
at least a given number of periods or days after meeting A. This number of
periods is typically either 0 to indicate meeting B has to start no earlier than
meeting A, or the number is equal to the duration of meeting A to indicate
meeting B has to start after meeting A has ended. It can also be set to 1
day, to indicate meeting B must start the day after meeting A, or later.

3.4 Hard Constraints

In this section we will go through all the hard constraints of our model.
Where necessary we will add some remarks or a motivation as to why the
constraint is necessary. To get a valid timetable, all hard constraints must
be satis�ed.

HC1: Each meeting must be scheduled in consecutive periods (and
on the same day if it is a simple meeting), in the same room(s).
This means it is not allowed to split a meeting into parts and hold those
parts at di�erent moments or in di�erent rooms.

HC2a: Each simple meeting must be scheduled in (a) period(s) of
its timeslot. It is very important to obey the timeslots, because otherwise
students may have multiple lectures/lab sessions at the same time.

HC2b: Each multi-day meeting must be scheduled at the requested
moment of the week. A multi-day meeting can only be moved by exactly
one week (if not exceeding the end of the block), it cannot be moved to other
periods within a week.

HC3: Each meeting must be scheduled in (a) room(s) of its possible
room types. Lab sessions may need equipment that is only available in
the requested room type. This means they absolutely have to be held in a
room of that type, otherwise the experiments cannot be done.
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HC4: Each meeting must be scheduled in the number of rooms that
it needs. All students have to �t in the rooms, otherwise dangerous situa-
tions can arise and the students cannot properly perform their experiments.

HC5: Only one meeting can be scheduled in each room in each
period. Even if the students of two meetings together might �t in one
room, it is still not practical to do this.

HC6: Each meeting must be scheduled in the requested week, or
the next week. We enforce this to make sure course schedules do not get
thrown o� too much. It is usually easier to hold a lab session a week later
than to hold it a week earlier, because lab sessions often need to be preceded
by some sort of introduction lecture. Therefore we do not allow meetings to
be held a week earlier. If a meeting is requested in the second last week of
the block, it must be scheduled in that week, because the last week of the
block is the exam week. Of course, if a meeting is requested in the last week
of the block it must be scheduled in that week.

HC7: No other meetings can be scheduled in a room when it is
under ML-I conditions. ML-I conditions are in e�ect for safety reasons
when certain types of samples are used. After these have been used, the
room has to be cleaned and inspected before it can be used again. We solve
this problem by making all ML-I sessions multi-day meetings, where the
requested time includes the cleaning and inspection.

HC8: In given periods of the block, no meetings can be scheduled.
For example, on holidays, all periods are unavailable. This does not apply
to multi-day meetings, they can be scheduled during unavailable periods.

3.5 Soft Constraints

In this section we will look at all the soft constraints of our model. For
each soft constraint, remarks and motivations are added where necessary.
We will also explain how violations of each constraint are penalized (see also
section 3.7).

SC1: All meetings must be scheduled. The �rst soft constraint is prob-
ably the most important one. A schedule is not complete until every meeting
has been scheduled. This constraints is a soft constraint, because this al-
lows us to have an initial feasible solution even though not all meetings have
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been scheduled yet. For each meeting that is not scheduled, a penalty of
NotScheduledPenalty is added.

SC2: Each meeting that needs multiple rooms, should be scheduled
in combinable rooms or rooms that are connected through a device
room. Combinable rooms (all type 1) are rooms that are split only by a
retractable wall (see section 3.2). Some other rooms (type 2 and 3) are
connected through a device room, which means going from one to another
does not involve walking through the hallways. If it is not possible to have
all rooms adjacent (e.g., because there are simply too many rooms needed),
they should be divided into balanced groups. For example, two clusters of
two rooms is better than a cluster of three rooms and one separate room. If
this is necessary the rooms should be on the same �oor.

For each meeting, a penalty of (#clusters−min(#clusters))×Cluster-
Penalty is added, where min(#clusters) is the minimum number of clus-
ters the meeting can be scheduled in. There will also be a penalty of
ClusterBalancePenalty, if one or more of the clusters are unbalanced, i.e. do
not contain b#rooms/#clustersc or d#rooms/#clusterse rooms. For each
cluster of more than one room, that is connected through (a) device room(s)
instead of (a) retractable wall(s), a penalty of ClusterDevRoomPenalty is
applied. A penalty of (#floors − min(#floors)) × ClusterF loorPenalty
is added as well, where min(#floors) is the minimum number of �oors the
meeting can be scheduled on.

SC3: Each meeting with a room dependency should be scheduled
in the same room(s) as the meeting it depends on. For each de-
pendency, if ∆ rooms are di�erent between the two meetings, a penalty of
∆×RoomDepPenalty is in�icted. If the two meetings do not need the same
number of rooms, ∆ is calculated as ∆ = min(#rooms) − #equalrooms,
where min(#rooms) is the minimum of the number of required rooms of
both meetings and #equalrooms is the number of rooms that host both
meetings.

SC4: Each meeting should be scheduled in the requested period(s).
The course coordinators make preliminary schedules for their courses. It is
desirable to deviate from those as little as possible, because otherwise the
coordinators have to change up other parts of their schedules as well. If
a simple meeting is moved to another period within the requested week, a
penalty of #rooms ×MovePeriodPenalty is added (where #rooms is the
number of rooms the meeting needs). If it is moved to exactly one week later,
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a penalty of #rooms×MoveWeekPenalty will be added to the total. And
if it is moved to another period in the next week, those penalties are both
added. If a multi-day meeting is moved to exactly one week later (which is
the only move possibility), this yields a #rooms×MoveMDPenalty penalty.

SC5: If the meeting requires one or more devices, it should be
held in a room adjacent to a device room containing (one of) the
device(s). For each cluster of rooms the meeting is scheduled in, a penalty
of #rooms×DevicePenalty is added if none of the rooms in the cluster are
adjacent to such a device room. If at least one of the rooms in the cluster is
adjacent to a relevant device room, a penalty of DeviceSecPenalty is added
for each room in the cluster that is not adjacent to a relevant device room.
This penalty should be small compared to the former penalty, and is added
to stimulate the planning of the meeting in two rooms on either side of a
necessary device room, over having it in one room next to the device room
and a room connected through another device room that is not necessary for
the meeting.

SC6: Each simple meeting that takes 2 periods, should not be
scheduled from 11:00 to 15:00. This is undesirable, because it clashes
with lunch time and it may make it more di�cult to plan other meetings
(like lectures) for the course on the same day. For each simple meeting that
is scheduled from 11:00 to 15:00 a penalty of #rooms× LunchPenalty will
be added.

SC7: For each room, there should be enough time to setup and clear
it and this time should be as close before and after each meeting
as possible. For some meetings, there needs to be time to put materials
in the room beforehand and to clear materials after the meeting. However,
there is very little information on how much time is needed for this for each
meeting. Therefore, we apply general penalties for each meeting to pursue
a good distribution of empty time over the rooms and over time. These
penalties are used as a rule of thumb, because (as mentioned before) there
is not much information available. These rules are only applied to simple
meetings. Multi-day meetings take care of their setup and clear time within
the requested duration.

For each meeting and each room it is scheduled in, we look at the num-
ber of periods the room is empty (EmptyPeriodsBefore) in the 12 peri-
ods (3 days) prior to the meeting. If this number is smaller than 6, we
apply a penalty of (6 − EmptyPeriodsBefore) × EmptyBeforePenalty.
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If the previous meeting in the room is of the same course, we apply no
penalty. We do the same for the number of empty periods after the meeting
(EmptyPeriodsAfter). We apply a penalty of (6−EmptyPeriodsAfter)×
EmptyAfterPenalty, unless the next meeting in the room is of the same
course.

For each meeting and each room it is scheduled in, we look at how many
days before the start of the meeting the last empty period in that room
was (LastEmptyDaysBefore). If a meeting starts at 9:00 and the room is
empty the last period of the day before, this counts as 0 days, otherwise it
is just the di�erence in days (disregarding time of the day completely). A
penalty is added of LastEmptyDaysBefore × LastEmptyPenalty. If the
previous meeting in the room is of the same course, no penalty is applied.
We do the same for the number of days between the end of the meeting and
the �rst empty period in the room (FirstEmptyDaysAfter), where (once
again) the di�erence between the last period of a day and the �rst period of
the next day is counted as 0 days. A penalty of FirstEmptyDaysAfter ×
FirstEmptyPenalty is applied, except if the next meeting in the room is of
the same course.

SC8: The time dependencies of all meetings have to be respected.
Often meetings of the same course have to be held during di�erent periods,
simply because they are attended by the same students and/or the same
sta�. The order of the meetings can be important because the results of
one meeting are used in the next. See section 3.3 for more details on time
dependencies. Unlike most other soft constraints, this one should absolutely
not be violated in the �nal solution, for the reasons mentioned before. The
reason this is a soft rather than a hard constraint is that it allows for more
�exibility in the solution during the search process. For each time dependency
that is violated, we apply a (high) penalty of TimeDepPenalty.

3.6 Additional Constraints for Optimizing an Initial So-

lution

The end user may provide the optimization program with an initial schedule.
This could be a handmade schedule, or a schedule that was created by our
program and then slightly tweaked. In this case we add some constraints to
make sure certain elements from the provided schedule are not changed, or
not changed too much.
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HC9: If a meeting is locked in a certain period and/or (a) certain
room(s), the period and/or room(s) cannot be changed. A meeting
can be locked in place, to prevent its position from being changed. For
example, if the end user has consulted with a course coordinator to �nd (a)
suitable period(s) for a meeting in a busy week, this selected period may
not be optimal. However it is necessary to keep the meeting in that selected
period. For this reason, the period can be locked. The same can be done
with the room(s) of a meeting.

SC9: No more than a given number of meetings can be moved. It is
possible to provide the application with a maximum numberMaxChanges of
meetings that can be moved from their position in the initial solution. If more
meetings' positions have changed, a penalty of (#moved−MaxChanges)×
ChangePenalty is applied. It is possible to select whether #moved is the
number of meetings with a changed period, or whether meetings with (a)
changed room(s) are also included. Each meeting will only be counted once
though, even if the period and room(s) have changed.

3.7 Objective

The objective of our model is to �nd the feasible timetable with the lowest
sum of all penalty points. A valid timetable consists of an allocation of a
start time and (a) room(s) for each scheduled meeting, that conform to all
hard constraints. In section 5.2 an overview is given of all parameters that
are used in the penalty calculations, together with the values that are used
during the experiments.

25



4 Approach

In this section we will give an overview of the approach we take to �nd a good
timetable. Our approach is based on the metaheuristic Simulated Annealing.
In section 4.1 our general approach is introduced, then, in section 4.2, the
main algorithm is described in detail. Finally, in sections 4.3 to 4.5 the
speci�c components of the Simulated Annealing algorithm are explained.

4.1 General Approach

Our method is based on a metaheuristic. We choose to use a metaheuristic
for several reasons. Firstly, metaheuristics performed well at the curriculum-
based course timetabling problem, which is similar to (although simpler than)
our problem. See section 2.1 and [ATM09] [Mül09] [LuH10] [BCD16].

Secondly, speed is important. The method does not have to be super fast,
but it must not be very slow, because the end users will not want to wait for
a long time for a solution. Especially if they want to make some changes to
the input and rerun the optimization, it will be annoying to wait for extended
periods of time. Besides that, it is not important to �nd the optimal solution
at all cost. The goal is to �nd a good solution, and a metaheuristic should
�nd a good solution in less time than for example an exact method.

The metaheuristic we will be using is Simulated Annealing. We choose for
Simulated Annealing because it has been applied to many varying optimiza-
tion problems with success. It has also been applied to the curriculum-based
course timetabling problem with success by Bellio et al. [BCD13] [BCD16].
Even though they used a very simple version of Simulated Annealing, with-
out restarting or reheating, the results were good. Our version of Simulated
Annealing does include restarting and reheating. Kampman [Kam13] used
Simulated Annealing to schedule course meetings for the entirety of Utrecht
University.

In the remainder of section 4 the components of our Simulated Annealing
algorithm are shown. In section 4.2 the main Simulated Annealing algorithm
is described. Then, in section 4.3, we show the preprocessing that happens
before the optimization is started and section 4.4 shows how the initial so-
lution is constructed. Finally, section 4.5 shows the neighborhood operators
that are used in the Simulated Annealing algorithm.

4.2 Main Algorithm

In this section we take a look at our main algorithm, which is a form of
Simulated Annealing [KiM03] [AKM14] [BCD16]. The pseudocode for the
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algorithm can be found in algorithm 1. The algorithm starts by getting an
initial solution. How we get this initial solution, is explained in section 4.4.
After that, we set the temperature to its initial value.

The algorithm consists of four nested loops. The outer loop, on lines 4�
18, is the �restart loop�. At the start of this loop the current solution s is set
to the best solution found so far (s̄). This loop stops (stop condition 1) after
a set number of iterations without an improvement of s̄. This set number is
de�ned by the #Restarts parameter.

The second loop (lines 6�17) is the �reheat loop�. At the end of this loop,
the temperature is reset to the reheat temperature. This means increases of
the solution's penalty value are accepted with a larger chance again, which
allows the algorithm to get away from a local optimum. This reset hap-
pens at the end of each iteration to allow for the reheat temperature to be
di�erent from the initial temperature. The loop ends (stop condition 2) af-
ter #Reheats consecutive iterations in which the penalty of s increases or
#ReheatsGlobal iterations without improvement of s̄.

The third loop (lines 7�15) is the main loop. This loop continues its
iterations (stop condition 3) until no improvement of the solution is found for
MainLoopCutoff consecutive iterations of the inner loop (lines 8�13). After
every InnerLoopIterations of the inner loop, the temperature is decreased
by multiplying it by CoolingRate. In the inner loop, a random operator is
applied (see below). The new solution is used from then on. If this new
solution is better than the best found solution so far, we save it to s̄. The
�restart loop�, �reheat loop� and the main loop are all also stopped if a time
or iteration limit is provided and it is reached.

How the operators are applied is shown in algorithm 2. First we get a
random operator. The operators all have an associated chance to be chosen.
In section 5 we research the best distribution of these chances. We run the
selected operator. This run can fail for several reasons. For example, if there
are no unscheduled meetings, the insert operator will fail. If this happens,
we return the previous solution. If the new found solution is better than the
previous one, or if the increase in penalty is accepted, we return the new
solution. If the penalty increase is declined, we return the previous solution.
An increase ∆ of the penalty is accepted with a probability of exp(−∆

T
). All

neighborhood operators are described in section 4.5.

4.3 Preprocessing

Before starting the optimization (or even creating an initial solution) we will
do some preprocessing on the input. For example, all rooms and all periods
get an index. This means we can create a 2D array containing �elds for
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Algorithm 1 Simulated Annealing

1: function SimulatedAnnealing()
2: s̄← GetInitialSolution() . s̄ keeps the best solution
3: T ← InitialTemp
4: while ¬stop condition 1 do
5: s← s̄
6: while ¬stop condition 2 do
7: while ¬stop condition 3 do
8: for all i ∈ {1, . . . , InnerLoopIterations} do
9: s← ApplyOperator(s, T )

10: if s < s̄ then . Compare penalties
11: s̄← s
12: end if
13: end for
14: T ← CoolingRate× T
15: end while
16: T ← ReheatTemp
17: end while
18: end while
19: return s̄
20: end function

Algorithm 2 Apply Operator

1: function ApplyOperator(s, T )
2: Operator← GetOperator()
3: s′ ← Operator(s)
4: if Operator failed then
5: return s
6: else if s′ ≤ s then
7: return s′

8: else if Random([0, 1)) < exp( s−s
′

T
) then

9: return s′

10: else
11: return s
12: end if
13: end function
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all possible period/room combinations in which we store the meeting that
is currently planned there (if any). For each meeting, we create a list of all
rooms that have the requested room type(s). If a meeting's rooms are locked,
only the selected rooms are added to this list, which means the meeting will
always be scheduled in these rooms (HC9, see section 3.6).

We also �nd all possible start periods for simple meetings. These periods
have to be within the requested week or the next week, and the entire meeting
must �t on that day and within the provided timeslot. We also make sure
that the meeting does not overlap with periods that are unavailable (HC8, see
section 3.4). For each possible start period, we precalculate the corresponding
penalties that only depend on the selected start period for the meeting (SC4
and SC6, see section 3.5). If a meeting's start period is locked, only the initial
start period will be added as possibility to the list of start periods (HC9).

For multi-day meetings, there are always two possible start periods, name-
ly the requested start period and the period exactly one week later (unless
this means the meeting gets moved into the exam week or outside the block).
After these steps of preprocessing, simple and multi-day meetings can be pro-
cessed almost equally, because both now have a set of possible start periods
and a duration. One exception to this is that some penalties are not applied
to multi-day meetings.

Another step of preprocessing that we apply is looking at the time de-
pendencies and eliminating all possible start periods that are not possible
because of those dependencies. For example, if meeting B has to start at
least a day after meeting A, all possible start periods of B that are not at
least a day after the �rst possible start period of A can be eliminated. Time
dependencies that no longer have any e�ect (last possible start period of
meeting A does not clash with �rst possible start period of meeting B) are
removed as well. If at the end of preprocessing there are meetings with no
possible start periods left, or with fewer possible rooms than the number of
rooms requested, those meetings are discarded. Of course, the penalties for
not scheduling them (SC1) will still be applied.

Under normal circumstances, meetings will never have to be discarded.
As long as the requested start periods respect the timeslots and the time de-
pendencies, there will always be a possible start period for each meeting (the
requested start period). Normally, the requests will respect this. However,
it could be that an end user locked a certain meeting in one place and that
placement makes the scheduling of another meeting impossible (HC9). In
this case the other meeting will not be scheduled. During our experiments,
however, this will never happen because of the way the test instances are
constructed. A shortage of possible rooms can only occur if more rooms are
requested than there are available of the necessary room type.
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4.4 Initial Timetable

At the start of the Simulated Annealing algorithm, an initial feasible solution
is needed (see line 2 of algorithm 1). Because the constraint that all meetings
must be scheduled, is a soft constraint, an obvious choice as initial solution is
an empty timetable. This was used during most of our experiments. However,
we also wanted to see if using a di�erent initial schedule could have a positive
e�ect on the resulting schedule or the runtime.

Therefore, a greedy algorithm was designed. [LuH10], [BKA11] and
[Kam13] all use a greedy algorithm to create one or more initial solutions,
whereas [WaH16] focuses speci�cally on di�erent heuristics that can be used.
Our greedy algorithm is shown in algorithm 3. Every iteration, one unsched-
uled meeting is selected based on a certain statistic. Then, every possible
start period/room(s) combination is checked for feasibility and for the e�ect
on the schedule. This e�ect is measured using yet another statistic. The best
combination is selected and the meeting is scheduled there. If there are no
feasible start period/room(s) combinations for the meeting, it is discarded
and will be left unscheduled.

Algorithm 3 Initial Greedy Scheduler

1: function InitialGreedyScheduler(s)
2: s′ ← s
3: M ← UnscheduledMeetings(s′)
4: while |M | > 0 do
5: m← SelectMeeting(M)
6: M ←M \ {m}
7: s′ ← ScheduleMeeting(s′,m)
8: end while
9: return s

10: end function

We will now look at what statistics were used to select the meeting on
line 5. Three di�erent statistics were tested, all aiming to select the meeting
that is hardest to schedule:

Available positions For each meeting, the number of �available positions�
is calculated, and the meeting with the least positions available is se-
lected. This heuristic is related to the saturation degree shown by
[WaH16]. Ties are broken using the schedule load statistic shown be-
low. The number of available positions indicates how many feasible
possible start period/room(s) combinations there are in the current
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schedule. It is calculated as follows (where Pm is the set of possible
start periods of m and Rm is the set of possible rooms of m):

AP(m) =
∑
p∈Pm

PAP

(
m,
∑
r∈Rm

IsFree(m, p, r)

)
(1)

PAP(m, f) =

{
f/NumRooms(m) if f ≥ NumRooms(m)

0 otherwise
(2)

IsFree(m, p, r) =

{
1 if m can be scheduled in room r at period p

0 otherwise

(3)
For each possible start period, the number of free rooms f is divided by
the number of requested rooms of the meeting. If there are not enough
rooms, the start period is not counted altogether.

Schedule load The schedule load of a meeting indicates the space a meeting
takes in the schedule. It is calculated as SL(m) = NumRooms(m) ×
Duration(m). The meeting with the highest load is selected, because it
is assumed to be the most di�cult to schedule. Ties are broken using
the available positions measure shown above.

Room load This measure is almost the same as the schedule load, but the
number of possible rooms for a meeting is also taken into account. The
room load is calculated as follows: RL(m) = NumRooms(m)/|Rm| ×
Duration(m). Once again, the meeting with the highest load is selected,
because it is assumed to be the most di�cult to schedule. Ties are
broken using the available positions measure shown above.

If both the main statistic and the tie breaker are equal, the tie is broken
at random. We used two di�erent measures to select the best possible start
period/room(s) combination (line 7):

Penalty This one is pretty straight-forward: whichever start period/room(s)
combination results in the lowest resulting solution penalty, is selected.

Total available positions This measure is based on the available positions
measure used to select meetings. The sum over all meetings (in M)
of the available positions for each meeting is taken and the start pe-
riod/room(s) combination that results in the highest sum is selected.
A higher value for this measure should indicate that there are more
possibilities to schedule the remaining meetings in M .
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In both cases, ties between start period/room(s) combinations are broken at
random.

Of course, it is also possible to start the algorithm with an existing time-
table. That timetable could, for example, result from a previous run of the
algorithm, but with a few lectures' positions altered. The greedy algorithm
can be applied on an existing solution as well.

4.5 Neighborhood Operators

The most important component of Simulated Annealing are the neighbor-
hood operators. They are imperative to the quality of the algorithm. In
this section we will go through all neighborhood operators we created. In
section 4.5.11 we describe how the penalty of a new solution is calculated
when a neighborhood operator is applied.

Each iteration of Simulated Annealing, one operator is selected randomly
and then applied. In section 5 we research what the best distribution of
probabilities is for the operator choice. We also show some statistics of the
operators' performances, like the percentage of improvements and the average
change in penalty value induced by the operators over the course of a run of
the algorithm.

4.5.1 Insert operator

The Insert operator is a simple operator, but is unmissable if the initial
solution is an empty timetable. If there is at least one unscheduled multi-
day meeting, a random unscheduled multi-day meeting is selected, otherwise
we select a random unscheduled simple meeting. Multi-day meetings are
inserted �rst to make sure there is space to insert them. They are a lot
harder to insert in a busy schedule than simple meetings, because they are
usually longer and have only two possible start periods.

The possible start periods of the selected meeting are either shu�ed ran-
domly or sorted in order of increasing penalty for SC4 and SC6 (see sec-
tion 3.5). In this order the start periods are considered. For a start period,
the possible rooms that are free are considered in random order. Once we
have found enough free rooms, we insert the meeting there. If there are not
enough free rooms, the next possible start period is considered. This op-
erator fails if there are no unscheduled meetings or if the selected meeting
cannot be inserted.
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4.5.2 Remove operator

As the name implies, the remove operator does the opposite of the insert oper-
ator. It gives simple meetings priority over multi-day meetings in its random
selection, to make sure there are never unscheduled multi-day meetings while
there are scheduled simple meetings. The selected meeting is removed from
the schedule. Obviously, this will (almost) never result in an improvement
of the solution, but it might be able to help the algorithm get out of a local
optimum when the temperature is still high. This operator fails if there are
no scheduled meetings.

4.5.3 Move Period operator

This operator is aimed at changing only the period a meeting starts in.
Like the Insert operator, we consider the possible start periods in either
random or sorted (by penalty for SC4 and SC6) order. For each start period
that is considered, �rst the rooms that the meeting is currently scheduled
in are checked. Each room that is unavailable for the new start period is
replaced by a random free room. If there are not enough free rooms, the
next possible start period is considered. Otherwise, the meeting is scheduled
in the selected start period and rooms. This operator fails if there are no
scheduled meetings, if the selected meeting has only one possible start period
or if there is no space in any of the other possible start periods.

4.5.4 Move Room operator

The Move Room operator changes one room of a meeting. One of the ran-
domly selected meeting's room is selected at random and replaced by another
of the possible rooms that is free. The operator fails if there are no sched-
uled meetings, if the selected meeting has no more possible rooms than the
number of rooms it needs or if none of the other possible rooms is free.

4.5.5 Move Cluster operator

The Move Cluster operator is more advanced than the previous operators.
Instead of selecting one room to move, it selects an entire cluster of rooms
(see section 3.2) and removes the meeting from those rooms. Then, a random
(free) replacement room is selected. Then, while not enough rooms have been
selected for the meeting yet, a new cluster is �grown� from the replacement
room. To do this, the rooms next to the cluster are checked (if they exist)
for availability and one of them is added to the cluster if available. If both
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are available, one is chosen at random. If no rooms are available next to the
cluster, a random room is selected and a new cluster is started from there.

4.5.6 Move Random operator

This operator is a remove and insert operator chained together. A randomly
selected scheduled meeting is removed from the schedule and then inserted
in the same way the insert operator works. This operator fails if there are
no scheduled meetings or if the selected meeting has only one possible start
period and only as many possible rooms as the number of rooms it needs to
be scheduled in, which would mean the meeting will always be inserted in
the place it was removed from.

4.5.7 Change Day Rooms operator

This operator is the most complicated one we implemented. This operator
aims to select (a) good room(s) for each meeting on a day, without changing
the period(s) in which the meeting is held. All meetings on the day that
can be moved to other rooms, are removed from the timetable and divided
into groups which do not con�ict with each other. Then, in some order, the
meetings of each group are placed back in the (combination of) room(s) that
gives the best resulting penalty value.

The pseudocode of the algorithm can be found in algorithm 4. We will
go through the algorithm here. Firstly, on lines 2�4, 9�11 and 19�21 the
operator fails, because there are no meetings that can be moved. On lines
5�7 a copy of the solution is made (in the pseudocode, this does not happen
in the actual program), a random day in the timetable is chosen and the
meetings scheduled on that day are fetched. On line 8, meetings that cannot
be moved to any other room(s) than the one(s) they are currently in are
discarded from this set. All meetings are then backed up and removed from
the timetable (lines 12�13).

In the loop on lines 14�18, each meeting's available rooms in the newly
cleared schedule are checked. If these are exactly the number of rooms the
meeting needs, the meeting cannot be moved and it will be put back in the
schedule in the rooms it was scheduled in before (which will be the exact
same rooms that are available for the meeting). This is repeated until no
meetings are removed from M , because placing back a meeting may restrict
the movement of other meetings.

Then, on line 22, the meetings are split into groups. Groups are split
into as many groups as possible, without violating the following rule: two
meetings that have at least one period and one room in common, must be

34



in the same group. The result is that meetings in di�erent groups can never
con�ict, i.e., they cannot both be placed in any room at the same time. We
can now treat all groups completely separately, because their assignments
will never con�ict.

Now, for each group (lines 23�36) we �rst order the meetings (line 24).
This can be done randomly, in descending order of the numbers of rooms
the meetings need or in descending order of the durations of the meetings.
In this order, we go through the group's meetings (lines 25�35). For each
meeting, we �rst get the available rooms in the schedule (line 26). If the
number of available rooms is smaller than the number of rooms the meeting
needs, the scheduling of this group is canceled, all of the group's meetings
are reset to their original positions and we move on to the next group (lines
28�31). Otherwise, we check all combinations of the available rooms and
�nd the one that induces the best penalty value (lines 32�33). On line 34,
we place the meeting in that combination of rooms.

If none of the groups resulted in a valid change of room assignments (i.e.,
all of the groups were reset by line 29 at some point), the operator fails.
Otherwise, s′ is returned.

4.5.8 Move Best Rooms operator

The Move Best Rooms operator, like the Change Day Rooms operator, looks
at all combinations of the available rooms to place a meeting. However, at
�rst it only randomly selects one simple meeting to move. The meeting's
start period is not changed, but all combinations of rooms that do not have
a multi-day meeting in them during the considered meeting are tested. The
combination that results in the best resulting penalty value is selected. Other
simple meetings that obstruct the selected rooms, are removed from the
timetable. The penalty change resulting from removing these meetings is
not included in the comparison of the room combinations.

The considered meeting is then moved to the selected rooms. The opera-
tor then attempts to reinsert all removed meetings in random order. For each
of the removed meetings, all possible start periods are considered, ordered
either randomly or by penalty for SC4 and SC6 (like the Insert operator).
The meeting is scheduled in the �rst start period that has enough rooms
available. The algorithm looks at all combinations of the available rooms.
The best combination of rooms is selected and the meeting is scheduled in
those rooms. If there is no start period in which enough rooms are available,
the meeting will be left unscheduled.

This operator fails if there are no scheduled simple meetings, if the se-
lected meeting only has as many possible rooms as the number of rooms
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Algorithm 4 Change Day Rooms operator

1: function ChangeDayRooms(s)
2: if |scheduled meetings| = 0 then
3: fail
4: end if
5: s′ ← s
6: day ← random day
7: M ← GetMeetings(day)
8: M ← {m | m ∈M, |PossibleRooms(m)| > NumRooms(m)}
9: if |M | = 0 then

10: fail
11: end if
12: backup← Backup(s′,M)
13: s′ ← Remove(s′,M)
14: repeat
15: M ′ ←M
16: M ← {m | m ∈M, |AvailableRooms(m)| > NumRooms(m)}
17: s′ ← Reset(s′,M ′ \M, backup)
18: until M = M ′

19: if |M | = 0 then
20: fail
21: end if
22: G← SplitGroups(M)
23: for all g ∈ G do
24: Mg ← OrderMeetings(Mg)
25: for all m ∈Mg do
26: R← AvailableRooms(m)
27: numRooms← NumRooms(m)
28: if |R| < numRooms then
29: s′ ← Reset(s′,Mg, backup)
30: break
31: end if
32: C ← Combinations(R, numRooms)
33: r ← argminc∈C Place(s′,m, c)
34: s′ ← Place(s′,m, r)
35: end for
36: end for
37: if all groups failed then
38: fail
39: end if
40: return s′

41: end function
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it needs to be scheduled in or if the only available rooms are the ones the
meeting is already planned in. From the experiments in section 5.11 onwards
and in the �nal version of the algorithm, not only simple meetings can be
randomly selected to be moved, but multi-day meetings can as well.

4.5.9 Move Period Best Rooms operator

The Move Period Best Rooms operator is very similar to the Move Best
Rooms operator. The only di�erence is that instead of just changing the
rooms, this operator also changes the start period. All possible start periods
except the currently selected one are considered, in either random order or
sorted by penalty for SC4 and SC6 (like the Insert operator). The �rst start
period where enough rooms are available (simple meetings will be removed to
�t in the meeting) is chosen. From there on the process is the same as for the
Move Best Rooms operator. Like for the Move Best Rooms operator, multi-
day meetings can be selected by this operator from section 5.11 onwards as
well.

4.5.10 Insert Best Rooms operator

This operator is a combination of Insert and Move Period Best Rooms. It is
used from the experiments in section 5.11 onwards and in the �nal version of
the algorithm. A random unscheduled meeting is selected and than inserted
in a similar way toMove Period Best Rooms. Like Insert, unscheduled multi-
day meetings are given precedence over unscheduled simple meetings. The
operator fails if there are no unscheduled meetings or if there is no position
in the schedule where the meeting �ts (simple meetings will be removed to
�t in the meeting).

4.5.11 Penalty Calculation

Every time a neighborhood operator is applied, the penalty of a solution
needs to be reevaluated. However, none of the penalties are global, i.e., when
moving a meeting, only penalties related to it and some other meetings have
to be reevaluated. For example, the penalties for deviating from the preferred
start period and for scheduling through lunch only need to be recalculated for
a meeting with a changed start period. On the other hand, the penalties for
SC7 (see page 23) may change for multiple meetings when just one meeting
is moved.

At the start of the program, the initial penalty of the empty solution is
set to #meetings×NotScheduledPenalty. All neighborhood operators are
built up from place and remove function calls. Those insert and remove a
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single meeting in/from the schedule, respectively. There is no function to
directly move a meeting; this has to be done by removing and then inserting
it. When a meeting is placed, the induced penalty change is calculated
and added to the solution's penalty value. This includes subtracting the
NotScheduledPenalty. The part of the penalties that are only dependent
on the meeting's start period and room(s) assignment (the penalties for SC1,
SC2, SC4, SC5, SC6, see section 3.5), is saved. This way those penalties do
not have to be calculated when removing the meeting. The other penalties
for removing the meeting are calculated in the same way as when inserting
and then negated.

In our implementation of the algorithm, there is only one solution object.
The best found solution is saved as a backup of the actual solution. When the
backup is restored, all meetings are put in the correct place in the schedule
and the penalty is simply reset to the backup's penalty value. Neighborhood
operators use partial backups. Before placing or removing a meeting, it is
added to the partial backup. If an operator fails or its result is declined, the
partial backup is restored, which works similar to a full backup, only with
just a (usually small) subset of the meetings.
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5 Experiments

In this section we give an overview of the research we performed to �nd
the best parameters for our Simulated Annealing algorithm. In sections 5.1
to 5.2, we �rst describe some of the preliminaries that had to be taken care
of before the experiments could be performed. Sections 5.3 to 5.5 describe
our experiments to �nd good parameters for the Simulated Annealing algo-
rithm and good probabilities of selecting each neighborhood operator in an
iteration.

Experiments regarding di�erent types of initial solutions for the algorithm
are shown in section 5.6. Then, in section 5.7, we show some statistics of
the used problem instances and, in section 5.8, we compare the results of our
approach to some handmade timetables. Section 5.9 contains a brief analy-
sis of the neighborhood operators' performances and section 5.10 shows the
results of additional experiments to tune the Simulated Annealing parame-
ters and the neighborhood operators' probabilities. Section 5.11 shows how
we improved the algorithm to make it better at moving multi-day meetings
and, �nally, section 5.12 describes the experiments we performed with initial
schedules with locked meetings.

5.1 Generated Problem Instances

Our problem is a real-world problem, so we do have real-life instances for the
�rst two blocks of the academic year 2017�2018. However, these instances are
not very di�cult to solve and we do want our method to be able to cope with
more di�cult instances as well. This way, the method will still be useful if
the building gets used more in the future. Therefore we built an application
that can generate problem instances. During our experiments we use three
generated instances consisting of courses that are made to resemble di�erent
types of real courses. Of course, these generated instances have more of these
courses than the real instances. Statistics of the three instances can be found
in section 5.7.

5.2 Penalty Parameter Values

Another thing that needs to be taken care of before any experiments can
be done, is setting the values of the penalty parameters (see section 3.5).
We �rst set initial values based on the importance of the soft constraints as
indicated by the departments' lab coordinators and using inspection of the
resulting timetables.
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Even though the parameters of the algorithm had not been optimized
yet, we were able to use the algorithm to generate timetables for the real-
life instance of the �rst quarter of the next academic year using multiple,
slightly tweaked, penalty parameter sets. We showed these timetables to the
project manager and the lab coordinators, in order to �nd a set of penalty
parameters that represent the importance of all soft constraints.

We had a meeting with the project manager and one of the lab coordina-
tors. With them, we tweaked the parameters to get the �nal parameter set.
The penalty parameter values of the �nal set are shown in table 1. Despite
the fact that the algorithm was not yet optimized, the project manager and
lab coordinator were already happy with the quality of the shown schedules
compared to the handmade schedules. Because the deadline of submitting
the �nal schedules was very close at that time, it was decided to use the
generated schedules (using the �nal penalty parameter set) for the �rst two
quarters of the 2017�2018 academic year over the handmade schedules.

5.3 Experiments for Initial Simulated Annealing Pa-

rameters

In this section we show and discuss the results of our experiments to �nd
good initial parameters for our Simulated Annealing algorithm. We need to
�nd good values for two groups of parameters: the operator chances and the
Simulated Annealing parameters. In the next section, we look into �nding
a good distribution of the operator probabilities. After that, we will look
into good Simulated Annealing parameters. To perform the experiments for
the former, however, we do need reasonable Simulated Annealing parameters.
Therefore we �rst perform some experiments to �nd those initial parameters.

The results of these experiments can be found in appendix A. Table 24
shows the initial parameter values that we found using trial-and-error during
the development of our approach. We start with these values, and change
one or two parameters. We test multiple values and decide which performs
best. We then use this best value in the following experiments and move on
to changing another parameter.

All experiments were run on a PC running Windows 7, with an Intel Core
i7 4770K (3.5 GHz, quad-core) CPU and 16 GB DDR3 RAM. To speed up the
experiments, we always start three experiments at the same time. Although
this a�ects the runtime of the algorithm, this increase is only between 1% and
4%, because of the quad-core CPU used. Since we do not look very strictly
at runtime during our research, this should not a�ect the results signi�cantly.

The �rst parameter we varied was the CoolingRate. The results can be
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Table 1: The 18 parameters used for the penalties applied by the soft con-
straints. The soft constraint that uses each parameter is listed, as well as the
value used during the experiments.

Parameter name Soft constraint Value

NotScheduledPenalty SC1 6000

ClusterPenalty SC2 150

ClusterBalancePenalty SC2 90

ClusterDevRoomPenalty SC2 50

ClusterF loorPenalty SC2 80

RoomDepPenalty SC3 150

MovePeriodPenalty SC4 300

MoveWeekPenalty SC4 400

MoveMDPenalty SC4 600

DevicePenalty SC5 200

DeviceSecPenalty SC5 20

LunchPenalty SC6 30

EmptyBeforePenalty SC7 15

EmptyAfterPenalty SC7 10

LastEmptyPenalty SC7 15

FirstEmptyPenalty SC7 15

TimeDepPenalty SC8 3000

ChangePenalty SC9 3000
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found in table 25. These experiments were run with a time limit of 15 min-
utes. This time limit is applied because the �nal algorithm must not take
hours to complete its task. Considering that the PC used for these experi-
ments is probably quite a bit faster than those of the end users, 15 minutes
is the absolute maximum time the algorithm can take. This limit will be set
to more strict values later. For problem instance 1, 0.97, 0.95 and 0.90 are
close in average penalty. However, 0.90 results in a way lower average run-
time. For instance 2, once again the huge di�erence in runtime overshadows
the increase in average penalty. For instance 3, 0.90 and 0.85 show a clear
advantage in both average penalty and average runtime. Therefore, we select
a CoolingRate of 0.90 for further use.

We now look at the InitialTemp and ReheatTemp parameters. We de-
cided to give these parameters an equal value during this phase of the exper-
iments. The results of these experiments can be found in table 26. With the
new value for CoolingRate, the runtime has gone down signi�cantly. There-
fore we use a time limit of 10 minutes from here on. However, this time
limit was never hit during the remainder of the experiments in this subsec-
tion. A value of 750 for InitialTemp and ReheatTemp is clearly the best
here, resulting in the best average and a competitive runtime for all three
instances.

The next parameter we look at is MainLoopCutoff . One would expect
that a higher value of this parameter gives a better average penalty, at ex-
pense of a higher runtime. However, the results, shown in table 27, do not
show this. Values of 5000 and 10000 result in close penalty averages, but
20000 is always worse than 10000. We keep this parameter at 10000 for
now, but will experiment with a larger range of possible values in the later
experiments.

#Restarts, #Reheats and #ReheatsGlobal are the next parameters to
be checked. The test results can be found in table 28. The set with values
2, 2 and 3 is the only one that results in a competitive penalty average for
every instance. Once again, one would expect that only increasing values
would give a better average penalty at the expense of a higher runtime.
However, there are multiple sets of values with that have one of the values
increased from 2, 2 and 3 and leave the other two values untouched, yet they
result in worse average penalties. We will try the larger values for #Reheats
and #ReheatsGlobal again in the later experiments for these parameters.
#Restarts will be set to ∞, with a stricter time limit.

The last tested parameter is PreprocessT imeDeps. This parameter indi-
cates whether or not the time dependencies are considered during preprocess-
ing. If they are, possible start periods for meetings are removed if they will
always result in a time dependency violation. Disabling this preprocessing
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results in more freedom to move meetings around, but in the end only the
viable start periods are chosen, because violating a time dependency yields
a large penalty. Table 29 shows the results for turning on or o� this pre-
processing. Having the preprocessing on gives a better result for all three
instances.

Table 2 gives an overview of the initial and new values of the Simulated
Annealing parameters. The new values will be used in the experiments in
the next section, to �nd a good distribution of the operator probabilities.

Table 2: The initial and new values of the Simulated Annealing parameters.
The new values are used during the operator probabilities experiments.

Parameter name Initial value New value

InitialTemp 1500 750
ReheatTemp 1500 750
CoolingRate 0.95 0.90

InnerLoopIterations 10000 10000
MainLoopCutoff 10000 10000
#Restarts 2 2

#Reheats 2 2
#ReheatsGlobal 3 3
PreprocessT imeDeps Yes Yes

5.4 Neighborhood Operators' Probabilities Experiments

Every iteration of the inner loop of our Simulated Annealing algorithm (see
algorithm 1) one neighborhood operator is selected at random and applied
to the solution. Not all operators are chosen with an equal probability. For
example, the Change Day Rooms operator is a lot more powerful than the
Move Room operator, but it is also a lot slower. Change Day Rooms moves
meetings to the best combination of rooms in some order, and applying it
once gives a large chance of improving the solution's penalty value (unless the
room assignment is already very good on the selected day). Move Room, on
the other hand, relies on trying a lot of random room moves. The majority of
those moves will not yield an improvement of the solution, but some of them
will. Therefore, it makes sense to give the Move Room operator a higher
probability of being chosen than the Change Day Rooms operator.

Some operators have multiple variants. The Insert, Move Period, Move
Best Rooms and Move Period Best Rooms operators all have two variants:
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one where the possible start periods of a meeting are considered in a random
order, and one where they are considered in order of ascending penalty value
(for the SC4 and SC6 soft constraints). Change Day Rooms has three vari-
ants: one where meetings are placed back in the schedule in random order,
one where they are considered in order of descending number of rooms, and
one where they are considered in order of descending duration.

We assign a weight wo to each operator variant o. The probability with
which variant o is chosen is then Pr(o) = wo/

∑
o′∈O wo′ , where O is the set

of all operator variants. We are looking to �nd a good assignment of the
operators' weights. In this section the experiments to �nd this assignment
are discussed. The results of the experiments can be found in appendix B.

Table 31 shows the weights that were used in previous experiments and
the initial weights that will be used in the next two experiments. The di�er-
ence is that all variants of Change Day Rooms are set to be (almost) equal,
keeping the total at 800. The previously used weight were set rather arbitrar-
ily during the development of the algorithm and we chose to give all variants
of each operator an equal probability to start with.

Before doing any experiments, we looked at the statistics of the operators
from the previous experiments (in section 5.3) and we found that the Remove
operator always came up with a worse schedule, and that the resulting sched-
ule was (almost) never accepted. Therefore, some experiments were run with
the weight of Remove set to 0. The result are shown in table 32. There is
no signi�cant di�erence in average penalty and the average runtime is lower.
Because the Remove operator does not seem to add anything, we decided to
not use it from here on.

Of course, if all weights are multiplied by the same factor, all probabilities
stay the same. Therefore we decided to �nd a good value for the weights of
the variants of Insert and keep its total weight �xed after that. The results
for the di�erent weights for the two variants can be found in table 33. At
this point the weights of the two variants are kept equal. Weights of 4 and
5 are among the best for every instance. We select weights of 4 for use in
further experiments, because they have a very slight edge over weights of 5.

Table 34 gives an overview of the new weights. It also shows the weight
ranges that we will search for each of the operator variants. These ranges
start at 0 and end at two times the current value. It is important to note
that the sum of the weights of the two Insert variants will be kept at 8.
This means there will be no symmetric weight sets, where all weights are
multiplied by the same factor.

Selecting a number of possible values for each weight and then trying all
possible combinations will result in way too many weight sets to test. It is
also not a good idea to test multiple possible values for one or a couple of
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weights at a time. This way covariance between two weights may not be
exploited properly. Therefore 24 weight sets are generated using a Halton
sequence [WLH97]. A Halton sequence is a low-discrepancy sequence, which
means that its values are spread evenly across the search space, without
leaving large gaps in the search space. Bellio et al. [BCD16] successfully use
a Hammersley point set, which is closely related to a Halton sequence, to
generate parameter sets.

A Halton sequence uses a prime number for each dimension of the search
space to generate values. We use a leaped Halton sequence, which means we
take only every Lth value of the sequence, where L is a prime larger than
all primes used to generate values for each dimension. This is necessary to
make sure the values are well spread when taking a low amount of values
compared to the highest prime used. For example, if the prime 19 is used
(which is necessary if there are 8 dimensions) and only 9 values from the
normal Halton sequence are taken, that will only spread about half of the
space in the associated dimension.

We tested the 24 sets of weights that were generated using the Halton
sequence. The Simulated Annealing parameters were set to the new values
in table 2 and the time limit was set to 5 minutes. We choose this time
limit because we think, on the relatively fast hardware that was used, it
should take no longer to generate a schedule. The end user might be using
signi�cantly slower hardware and it is undesirable that they have to wait for
an hour to get a good schedule. Each test was repeated 9 times and once
again we ran 3 tests in parallel on the same PC.

The results for each of the three problem instances are shown in tables 35
to 37. For each weight set, we calculate how far its average is above the best
found average, expressed in a percentage. All these values are accumulated
in table 3, where the average percentage and maximum percentage are shown
for each set. For use in further experiments, we select the set with the lowest
maximum percentage, which is set #03.

The weights of set #03 are shown in table 38. It also shows new search
ranges, which start at 0.7 times the value of the weight in set #03 and end
at 1.3 times the weight in set #03. The search is re�ned to this space and
another 12 weight sets are generated using the Halton sequence. Together
with set #03, these 12 sets are tested in the same way the �rst 25 sets were
tested.

The results of these experiments for each problem instance can be found
in tables 39 to 41 and the overview of the results in table 4. Weight set
#31 had both the lowest average and maximum percentage and its weights
are therefore used for all further experiments. The weights and associated
probabilities are shown in table 5.
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Table 3: The aggregate results of running the algorithm for all three in-
stances, with di�erent sets of weights for the neighborhood operators. Num-
bers in bold face indicate the best result for that statistic. For each weight
set, the results for each of the three instances are shown, expressed as the
percentage the weight set's average penalty is above the best average penalty.
The % above lowest, avg. column shows the average of those three percent-
ages, and the % above lowest, max column shows the highest percentage.
More elaborate results for each instance can be found in tables 35 to 37 in
appendix B.

Weight
set

% above
lowest,

instance 1

% above
lowest,

instance 2

% above
lowest,

instance 3

% above
lowest,

avg.

% above
lowest,
max

#01 1.15% 1.57% 0.46% 1.06% 1.57%
#02 2.73% 6.68% 0.99% 3.46% 6.68%
#03 0.52% 0.99% 0.99% 0.83% 0.99%
#04 0.82% 2.33% 0.00% 1.05% 2.33%
#05 0.98% 4.97% 4.22% 3.39% 4.97%

#06 0.79% 2.12% 6.60% 3.17% 6.60%
#07 1.46% 1.70% 6.20% 3.12% 6.20%
#08 0.00% 5.87% 1.43% 2.43% 5.87%
#09 0.51% 3.31% 0.01% 1.28% 3.31%
#10 1.04% 5.79% 1.15% 2.66% 5.79%

#11 0.48% 5.50% 0.39% 2.12% 5.50%
#12 0.28% 0.00% 1.64% 0.64% 1.64%
#13 1.52% 6.60% 0.65% 2.92% 6.60%
#14 0.03% 6.65% 0.96% 2.55% 6.65%
#15 0.27% 1.80% 0.16% 0.75% 1.80%

#16 1.48% 3.49% 6.51% 3.83% 6.51%
#17 2.16% 1.78% 0.66% 1.53% 2.16%
#18 1.25% 0.29% 1.57% 1.04% 1.57%
#19 1.29% 21.35% 1.77% 8.14% 21.35%
#20 0.71% 2.30% 0.91% 1.31% 2.30%

#21 0.51% 3.54% 1.12% 1.72% 3.54%
#22 0.28% 0.99% 2.28% 1.18% 2.28%
#23 1.80% 3.61% 0.76% 2.05% 3.61%
#24 0.08% 8.40% 1.56% 3.35% 8.40%
#25 0.10% 1.48% 1.77% 1.12% 1.77%
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Table 4: The aggregate results of running the algorithm for all three in-
stances, with the second group of weight sets for the neighborhood opera-
tors. Numbers in bold face indicate the best result for that statistic. For each
weight set, the results for each of the three instances are shown, expressed
as the percentage the weight set's average penalty is above the best average
penalty. The % above lowest, avg. column shows the average of those three
percentages, and the % above lowest, max column shows the highest percent-
age. More elaborate results for each instance can be found in tables 39 to 41
in appendix B.

Weight
set

% above
lowest,

instance 1

% above
lowest,

instance 2

% above
lowest,

instance 3

% above
lowest,

avg.

% above
lowest,
max

#03 0.85% 4.39% 5.36% 3.53% 5.36%
#26 2.27% 5.65% 0.37% 2.76% 5.65%
#27 0.61% 7.53% 0.30% 2.81% 7.53%
#28 0.43% 2.73% 0.00% 1.05% 2.73%
#29 1.95% 7.02% 0.36% 3.11% 7.02%

#30 1.59% 3.25% 0.46% 1.77% 3.25%
#31 1.20% 0.00% 0.69% 0.63% 1.20%
#32 0.23% 2.89% 0.40% 1.18% 2.89%
#33 1.54% 2.25% 0.21% 1.33% 2.25%
#34 0.72% 5.71% 1.55% 2.66% 5.71%

#35 0.39% 4.43% 0.50% 1.78% 4.43%
#36 0.00% 3.13% 6.11% 3.08% 6.11%
#37 1.24% 19.53% 0.18% 6.98% 19.53%
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Table 5: The initial and new values of the neighborhood operators' weights
and the probabilities induced by the new values. The new values are from
weight set #31 and are used during all further experiments.

Operator name (Variant) Initial
weight

New
weight

Proba-
bility

Insert (Random) 4 7 0.018%
Insert (Sorted) 4 1 0.003%
Remove 4 0 0.000%
Move Period (Random) 4000 6566 16.487%

Move Period (Sorted) 4000 3235 8.123%
Move Room 8000 19268 48.382%
Move Cluster 8000 5293 13.291%
Move Random (Random) 400 279 0.701%

Move Random (Sorted) 400 364 0.914%
Change Day Rooms (Random) 268 280 0.703%
Change Day Rooms (Sort #Rooms) 266 147 0.369%
Change Day Rooms (Sort Duration) 266 17 0.043%

Move Best Rooms (Random) 800 1379 3.463%
Move Best Rooms (Sorted) 800 1689 4.241%
Move Period Best Rooms (Random) 800 733 1.841%
Move Period Best Rooms (Sorted) 800 567 1.424%
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5.5 Simulated Annealing Parameters Experiments

With the neighborhood operators' probabilities �xed, we now look at the
Simulated Annealing parameters again. We did some experiments to �nd
good initial values for the parameters, as described in section 5.3. We now
hope to �nd an even better set of values. The initial values of the parameters
can be found in table 43 in appendix C. The table also shows the search range
for each parameter for the next experiment. These search ranges are based
on the previous experiments in section 5.3.

There are multiple parameters that, when increased, should give an im-
provement of the average penalty, at the expense of a longer runtime. These
parameters are MainLoopCutoff , #Restarts, #Reheats and #Reheats-
Global. Because we do not want the algorithm to run for longer than 5 min-
utes (as explained in section 5.4) and because we need one clear statistic to
decide which parameter set is best (the average penalty, in this case), we set
a time limit of 5 minutes and set the #Restarts parameter to ∞. This way,
increasing any of the MainLoopCutoff , #Reheats or #ReheatsGlobal pa-
rameters, will result in a decreased number of restarts within the time limit
as a trade-o�. This means we can make a fair comparison of the average
penalties for all parameter sets.

Once again, we start with testing the initial parameter set and 24 param-
eter sets generated using a leaped Halton sequence. The operators' proba-
bilities were set to the new values shown in table 5. Each test was repeated
9 times and 3 tests were run in parallel on the same PC.

The results for the three problem instances are shown in tables 44 to 46.
Once again, we calculated the di�erence between each set's average penalty
and the best average penalty for the instance, expressed in a percentage of
the best average. The results for all instances are shown in table 6. The
initial set of parameters (set #01) turns out to have the best average and
maximum percentage.

The search ranges are reduced to the intervals shown in table 47 and 12
new parameter sets are generated using a leaped Halton sequence. These 12
sets are tested together with set #01 in the same way the �rst 25 sets were
tested. The results per instance are shown in tables 48 to 50 and table 7 shows
an overview of the results. These parameter sets produce the best average
and minimum penalty for each problem instance of all con�gurations that
were run 9 times. Parameter set #34 performs the best and is therefore used
in all further experiments. The values of set #34 are shown in table 8.
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Table 6: The aggregate results of running the algorithm for all three in-
stances, with di�erent sets of parameters for the Simulated Annealing algo-
rithm. Numbers in bold face indicate the best result for that statistic. For
each parameter set, the results for each of the three instances are shown,
expressed as the percentage the parameter set's average penalty is above the
best average penalty. The % above lowest, avg. column shows the average
of those three percentages, and the % above lowest, max column shows the
highest percentage. More elaborate results for each instance can be found in
tables 44 to 46 in appendix C.

Parameter
set

% above
lowest,

instance 1

% above
lowest,

instance 2

% above
lowest,

instance 3

% above
lowest,

avg.

% above
lowest,
max

#01 0.41% 0.50% 0.89% 0.60% 0.89%
#02 1.48% 0.00% 0.90% 0.79% 1.48%
#03 1.74% 1.44% 0.40% 1.19% 1.74%
#04 0.99% 1.04% 0.00% 0.68% 1.04%
#05 0.93% 6.30% 1.87% 3.03% 6.30%

#06 0.48% 4.31% 0.49% 1.76% 4.31%
#07 0.68% 17.45% 0.81% 6.31% 17.45%
#08 1.02% 7.72% 0.87% 3.20% 7.72%
#09 0.91% 1.43% 0.92% 1.09% 1.43%
#10 1.80% 1.08% 1.22% 1.37% 1.80%

#11 1.76% 15.34% 0.61% 5.90% 15.34%
#12 0.65% 1.25% 0.54% 0.81% 1.25%
#13 1.68% 18.40% 2.02% 7.37% 18.40%
#14 1.36% 20.16% 1.75% 7.76% 20.16%
#15 1.15% 1.04% 1.23% 1.14% 1.23%

#16 0.67% 1.35% 2.24% 1.42% 2.24%
#17 0.31% 2.38% 0.80% 1.17% 2.38%
#18 1.91% 4.85% 0.61% 2.45% 4.85%
#19 2.10% 6.86% 0.88% 3.28% 6.86%
#20 0.30% 4.22% 0.75% 1.76% 4.22%

#21 1.10% 7.72% 10.56% 6.46% 10.56%
#22 0.00% 19.80% 5.25% 8.35% 19.80%
#23 1.68% 17.45% 1.15% 6.76% 17.45%
#24 0.77% 2.80% 1.32% 1.63% 2.80%
#25 0.32% 6.16% 0.44% 2.31% 6.16%

50



Table 7: The aggregate results of running the algorithm for all three in-
stances, with the second group of parameter sets for the Simulated Annealing
algorithm. Numbers in bold face indicate the best result for that statistic.
For each parameter set, the results for each of the three instances are shown,
expressed as the percentage the parameter set's average penalty is above the
best average penalty. The % above lowest, avg. column shows the average
of those three percentages, and the % above lowest, max column shows the
highest percentage. More elaborate results for each instance can be found in
tables 48 to 50 in appendix C.

Parameter
set

% above
lowest,

instance 1

% above
lowest,

instance 2

% above
lowest,

instance 3

% above
lowest,

avg.

% above
lowest,
max

#01 0.96% 18.69% 1.03% 6.89% 18.69%
#26 0.47% 19.65% 1.45% 7.19% 19.65%
#27 0.84% 1.63% 1.07% 1.18% 1.63%
#28 0.85% 18.17% 0.80% 6.60% 18.17%
#29 0.00% 3.65% 5.06% 2.90% 5.06%

#30 1.65% 1.15% 0.46% 1.09% 1.65%
#31 0.69% 3.23% 0.00% 1.31% 3.23%
#32 0.73% 3.42% 0.80% 1.65% 3.42%
#33 1.02% 19.49% 0.60% 7.04% 19.49%
#34 1.24% 0.00% 0.21% 0.48% 1.24%

#35 0.39% 5.17% 1.25% 2.27% 5.17%
#36 0.64% 4.05% 0.62% 1.77% 4.05%
#37 0.96% 2.70% 0.37% 1.34% 2.70%
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Table 8: The initial and new values of the Simulated Annealing parameters.
The new values are from parameter set #34 and are used during all further
experiments. There is no value for #Restarts, because it was set to ∞ and
the tests were stopped using a time limit instead.

Parameter name Initial value New value

InitialTemp 750 660
ReheatTemp 750 740
CoolingRate 0.90 0.917

InnerLoopIterations 10000 10000
MainLoopCutoff 10000 21461
#Restarts 2 -

#Reheats 2 2
#ReheatsGlobal 3 3
PreprocessT imeDeps Yes Yes

5.6 Initial Greedy Solutions Experiments

As described in section 4.4, we designed a greedy algorithm to create an
initial timetable to start the Simulated Annealing algorithm with. In this
section we describe the experiments that were performed to �nd out their
e�ect on the initial and �nal solutions' penalty values.

Once again, a time limit of 5 minutes was used. The runtime of the greedy
algorithm is not included in this limit. Although the greedy algorithm is not
optimized for fast performance, it still never took more than 5 seconds to run
during the experiments (depending on the settings used). An extra runtime of
5 seconds is not a problem when the algorithm is being used by the end user.
Therefore, we decided to not optimize the greedy algorithm and just leave
it out of the time limit. We are certain that optimization of the algorithm
would lead to a runtime of less than a second for all settings.

We tried all combinations of statistics to select a meeting and to select
the meeting's start period/room(s), which are described in section 4.4, and
compared them to running the algorithm with an empty initial schedule. The
results of the experiments can be found in table 52 in appendix D.

If just comparing the result of the greedy algorithms without running
the Simulated Annealing algorithm, the available positions/penalty settings
perform best. They get the best result for instance 1 and 2 and are close to
the best result for instance 3.

However, this does not translate to a good penalty value after running the
Simulated Annealing algorithm. For instance 1, the penalty average is very
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close to starting with an empty schedule, but for the other two instances,
the result is far o�. Therefore, it seems best to stick to an empty schedule
as initial solution. An overview of the results can be found in table 9.

Table 9: The aggregate results of running the algorithm for all three in-
stances, with di�erent settings of the initial greedy algorithm. The di�erent
settings refer to the measure for selecting and scheduling meetings respec-
tively, as shown in section 4.4. Numbers in bold face indicate the best result
for that statistic. For each set of settings, the results for each of the three
instances are shown, expressed as the percentage the set's average penalty
is above the best average penalty. The % above lowest, avg. column shows
the average of those three percentages, and the % above lowest, max column
shows the highest percentage. More elaborate results for each instance can
be found in table 52 in appendix D.

Greedy
algorithm
settings

% above
lowest,

instance 1

% above
lowest,

instance 2

% above
lowest,

instance 3

% above
lowest,

avg.

% above
lowest,
max

- 0.00% 0.00% 0.00% 0.00% 0.00%
AP/Pen. 1.48% 10.50% 31.69% 14.56% 31.69%
AP/TAP 2.27% 14.35% 60.23% 25.61% 60.23%
SL/Pen. 1.82% 10.17% 40.08% 17.36% 40.08%
SL/TAP 69.08% 16.01% 47.56% 44.22% 69.08%
RL/Pen. 0.69% 14.73% 28.12% 14.52% 28.12%
RL/TAP 74.56% 14.25% 55.36% 48.06% 74.56%

A possible reason for the bad performance of the Simulated Annealing
algorithm after using the greedy algorithm could be that some meetings,
notably multi-day ones, are very hard to move in a full schedule. Therefore, if
they are in a bad position, that cannot be �xed anymore. When starting from
scratch and slowly inserting meetings while executing other neighborhood
operators in between, simple meetings that are inserted early can force a
multi-day meeting towards a good position while there is still room to move
it. To get this e�ect in the greedy algorithm, it would be required to optimize
the schedule between insertions, which would defeat the purpose of the greedy
algorithm.

Another factor is that the Simulated Annealing parameters are optimized
for starting with an empty solution. Optimizing them for starting with a
schedule created by the greedy algorithm might improve the performance.
Unfortunately, there was no time to run experiments for this.

We also tried to run the algorithm with lower time limits. This might
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show an advantage for starting with a non-empty schedule, because there is
already a somewhat reasonable schedule to start with. The results of running
the experiments with time limits of 5, 4, 3, 2 and 1 minutes are shown in
table 53.

Once again, starting with an empty timetable is the best for any time
limit. It might not be the best for even lower time limits (it certainly is not
for a time limit of 0 minutes), but we do not think it is necessary to go below
1 minute. The end user will probably not mind waiting for one or a few
minutes to get a good timetable and an even lower time limit is not worth
the possible loss in solution quality.

These results show something interesting though: the average penalties
for running the algorithm with an empty initial solution do not seem to go
up much when the time limit is set to lower values. More extensive results
are shown in table 10. For each instance, we compared the time limits to the
time limit of 5 minutes, using an unpaired t-test. A signi�cance level of 5%
was used.

As can be seen in the table, time limits of 1, 2 and 4 minutes perform
signi�cantly worse for instance 1 than the time limit of 5 minutes. The 3
minutes time limit also has a worse average, but the di�erence is not sta-
tistically signi�cant. For problem instance 2, the 5 minutes time limit did
not perform best, but there are no signi�cantly better or worse time limits
here. For instance 3, all time limits are worse than 5 minutes, but only the
2 minutes time limit is signi�cantly worse.

Because the time limits of 1, 2 and 4 minutes are signi�cantly worse than
the 5 minutes time limit and the 3 minutes time limit always has a worse
average, we decided to use the limit of 5 minutes for the end user application.
We will not actually use a time limit in the application, but rather an iteration
limit which corresponds with the time limit of 5 minutes on the PC that was
used for running the experiments. This way, the performance of the algorithm
does not depend on the PC that it is used.

To verify our claim that multi-day meetings make life hard for the algo-
rithm to improve an initial greedy solution, we ran the algorithm with edited
instances. These instances are based on the three previously used instances,
but all multi-day meetings have been removed. For instance 1, this meant
removing 10 of the 147 meetings, for instance 2, 6 of the 175 meetings were
removed, and for instance 3 this meant removing 5 of the 156 meetings. The
experiments were run with time limits of 5 and 2 minutes. We used two set-
tings for the initial greedy algorithm: Available positions/Penalty and Room
load/Penalty (see section 4.4).

The results of the experiments are shown in table 11. We can see that per-
formances with and without initial greedy algorithm are very close now that
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Table 10: The results of running the algorithm for all three problem instances,
with a time limit of 1 to 5 minutes. The Signi�cant di�erence? column
indicates whether the di�erence with the 5 minute time limit is statistically
signi�cant, according to an unpaired t-test with a signi�cance level of 5%.
All experiments were run 9 times, with the #Restarts parameter set to ∞.

Instance 1
Time limit

(min)
Penalty avg. Penalty SD Penalty min Signi�cant

di�erence?

5 32207 243 31970 -
4 32698 639 32190 Yes
3 32370 338 32110 No
2 32532 117 32345 Yes
1 32634 310 32305 Yes

Instance 2
Time limit

(min)
Penalty avg. Penalty SD Penalty min Signi�cant

di�erence?

5 43982 2231 41760 -
4 42926 2062 41055 No
3 44102 2379 41770 No
2 44740 2840 41495 No
1 42997 1789 41410 No

Instance 3
Time limit

(min)
Penalty avg. Penalty SD Penalty min Signi�cant

di�erence?

5 23965 408 23695 -
4 23971 298 23695 No
3 24230 410 23755 No
2 24361 362 23755 Yes
1 24244 181 23980 No
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the multi-day meetings are gone, so our claim seems correct. We performed
t-tests for all instance/time limit combinations to compare both greedy algo-
rithm settings sets to not using a greedy algorithm, and none of the di�erences
were signi�cant with a signi�cance level of 5%.

Running an initial greedy algorithm has no clear advantage over starting
with an empty solution for both time limits of 2 and 5 minutes without
any multi-day meetings. Therefore, we see no reason to try and adapt the
greedy algorithm to give better results with multi-day meetings, because it is
unlikely that will give an advantage over just running Simulated Annealing
with an empty initial schedule. However, in section 5.11 we will attempt
to make the algorithm better at moving multi-day meetings, which is also
helpful when the end user provides the algorithm with an initial solution.

5.7 Statistics of the three used instances

In this section we give an overview of some statistics of the three instances in
the experiments and of the best found solution for each instance, using the
selected parameters. The overview is shown in table 12. For instance 2, two
meetings remain unscheduled in the best found timetable, probably because
it is really hard or even impossible to schedule all meetings.

5.8 Comparison to Hand-Made Timetables

In this section we compare the timetables our algorithm produces for the �rst
two blocks of the 2017�2018 academic year to the hand-made ones for those
blocks. The hand-made schedules were made by the project manager, who
consulted with department lab coordinators and course coordinators. The
same request information was used for the generated timetables. Table 13
shows that all of the 9 runs for each instance resulted in better penalty values
than the penalty for the hand-made schedule.

Tables 14 to 15 show a more in-depth comparison of the hand-made sched-
ules and the best found schedules by the algorithm for both blocks. All but
one statistic are in favor of the algorithm's best found solution. The hand-
made schedule for block 2 is better than the algorithm's schedule at one
point: it has no moved (simple) meetings, whereas the algorithm's timetable
has one. However, it sacri�ces the quality of other parts of the timetable.
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Table 11: The results of running the algorithm for all three edited problem
instances. These instances are based on the previously used instances, but
all multi-day meetings have been removed. The experiments were run for
di�erent settings of the initial greedy algorithm and for time limits of 5 and
2 minutes. With a signi�cance level of 5% none of the results with an initial
greedy solution were signi�cantly di�erent from the results with an empty
solution for the same instance and time limit. All experiments were run 9
times, with the #Restarts parameter set to ∞.

Instance 1 (without multi-day meetings)
Greedy
algorithm
settings

Time
limit
(min)

Initial
penalty

avg.

Penalty
avg.

Penalty
SD

Penalty
min

- 5 822000 24351 62 24260
AP/Pen. 5 37724 24332 53 24260
RL/Pen. 5 44833 24362 68 24270

- 2 822000 24391 101 24280
AP/Pen. 2 37653 24458 129 24260
RL/Pen. 2 44835 24399 104 24325

Instance 2 (without multi-day meetings)
Greedy
algorithm
settings

Time
limit
(min)

Initial
penalty

avg.

Penalty
avg.

Penalty
SD

Penalty
min

- 5 1014000 20728 49 20635
AP/Pen. 5 29679 20712 52 20620
RL/Pen. 5 28504 20731 47 20665

- 2 1014000 20804 106 20650
AP/Pen. 2 29580 20809 125 20650
RL/Pen. 2 29404 20755 76 20665

Instance 3 (without multi-day meetings)
Greedy
algorithm
settings

Time
limit
(min)

Initial
penalty

avg.

Penalty
avg.

Penalty
SD

Penalty
min

- 5 906000 16110 3 16105
AP/Pen. 5 27119 16117 20 16105
RL/Pen. 5 27233 16144 66 16105

- 2 906000 16207 122 16105
AP/Pen. 2 27183 16229 120 16105
RL/Pen. 2 26991 16226 139 16105
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Table 12: Statistics of the three instances used in the experiments. The top
part of the table shows the �xed instance statistics. The bottom part shows
the statistics of the best found solution, using the selected parameters (see
table 5 and table 8), an empty initial solution and a time limit of 5 minutes.
For each instance, the algorithm was run 18 times using these settings.

Instance 1 Instance 2 Instance 3

Total number of meetings 147 175 156
Number of simple meetings 137 169 151
Number of multi-day meetings 10 6 5
Number of time dependencies 62 112 84
Minimum number of clusters 181 192 173

Unscheduled simple meetings 0 2 0
Unscheduled multi-day meetings 0 0 0
Violated time dependencies 0 0 0
Number of clusters 182 192 176
Floor penalties 12 8 6

Room dependency penalties 6 9 6
Moved simple meetings 20 14 18
Moved multi-day meetings 1 0 0
Clusters with device penalty 1 16 2
Setup/clearing penalty total 6330 2940 3695

Total penalty 31970 41410 23695

Table 13: The results of running our algorithm on the real-life instances for
the �rst two quarter of the 2017�2018 academic year. The penalty value
of the hand-made schedules for the two quarters is also shown. For each
instance, the experiment was run 9 times with a time limit of 5 minutes.

Block Hand-made
penalty

Penalty
avg.

Penalty
SD

Penalty
min

Penalty
max

Block 1 18885 12093 207 11825 12495
Block 2 10815 8604 505 8350 9495
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Table 14: A comparison of some statistics of the hand-made timetable for
block 1 of the 2017�2018 academic year and the best found schedule by our
algorithm.

Hand-made Algorithm

Total number of meetings 120 120
Number of simple meetings 112 112
Number of multi-day meetings 8 8
Number of time dependencies 74 74
Minimum number of clusters 125 125

Unscheduled simple meetings 0 0
Unscheduled multi-day meetings 0 0
Violated time dependencies 0 0
Number of clusters 135 125
Floor penalties 2 2

Room dependency penalties 26 16
Moved simple meetings 3 2
Moved multi-day meetings 0 0
Clusters with device penalty 11 7
Setup/clearing penalty total 6055 4245

Total penalty 18885 11825
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Table 15: A comparison of some statistics of the hand-made timetable for
block 2 of the 2017�2018 academic year and the best found schedule by our
algorithm.

Hand-made Algorithm

Total number of meetings 97 97
Number of simple meetings 72 72
Number of multi-day meetings 25 25
Number of time dependencies 57 57
Minimum number of clusters 108 108

Unscheduled simple meetings 0 0
Unscheduled multi-day meetings 0 0
Violated time dependencies 0 0
Number of clusters 121 117
Floor penalties 12 10

Room dependency penalties 10 7
Moved simple meetings 0 1
Moved multi-day meetings 0 0
Clusters with device penalty 6 5
Setup/clearing penalty total 3415 2010

Total penalty 10815 8350
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5.9 Analysis of the Neighborhood Operators' Perfor-

mances

In this section we give a brief analysis of the performance of each of the
neighborhood operators, based on the statistics shown in appendix E. A
description of the charts and tables can be found at the beginning of the
appendix. The statistics are based on one run of the algorithm, namely best
run for problem instance 1, using the selected settings. Instance 1 was chosen
because, of the three instances, it has the median best found penalty value.
In most charts, only the �rst 7.2 million iterations are shown, to make the
charts more easily understandable.

One thing to make clear before going through the operators is that wors-
ening the solution is not always bad. Even if an operator increases the penalty
value more than it decreases it, it can still cause variation in the schedule,
which allows other operators to make improvements.

Figures 1 to 4 show the penalty and temperature values throughout the
algorithm run. Tables 54 to 55 (at the end of the appendix) show operator
statistics summed over the entire run of the algorithm.

Insert operator (2 variants, �gs. 5 to 8) The �rst thing that stands
out here, is that the results charts for both variants show a lot of the white
background. This happens because the probabilities for the operators to
be chosen are so low, that some times they are not called at all during the
10,000 iterations. During the beginning of the run, most insertions succeed
and are an improvement. Later on, a lot of insertions fail, probably because
the schedule is already very full at that point.

During the later stages of this part of the run, the result is almost always
not possible, because all meetings have already been inserted. Some operators
(Move Best Rooms and Move Period Best Rooms) can remove meetings from
the schedule, which explains why some times an insertion still happens during
this stage. The change in penalty caused by the operator is almost exclusively
negative (negative is good, in this case), because insertions almost never cause
a worsening of the schedule.

Move Period operator (2 variants, �gs. 9 to 12) Most of the calls
to this operator result in a declined worsening of the schedule. Not very
surprising, because this operator is the type of operator that is fast, but
needs a high volume of calls to �nd improvements. We can see that during
most of the run, the Sorted variant, on average, improves the solution. The
Random variant does not improve the solution on average throughout the
run, but it does during the second half of the �rst reheat loop iteration.
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And one can see that this does not mean the operator only makes worsening
changes, but also makes big improvements.

Move Room operator (1 variant, �gs. 13 to 14) This operator, com-
pared to Move Period, has a lot more calls that result in an accepted change
of the schedule (be it an improvement or worsening). However, if we look
at the other charts, we can see that the average change in penalty is smaller
than Move Period. One could say that this operator makes smaller but
steadier steps. Although this operator makes a net positive change of the
penalty (which is bad, in this case), we suspect it provides other room mov-
ing operators (e.g., Move Best Rooms) with the possibility to make bigger
improvements.

Move Cluster operator (1 variant, �gs. 15 to 16) This is much the
same story as the previous operator, although the average change in penalty
is a bit better, probably because there are fewer destructive moves that, for
example, split one cluster into three.

Move Random operator (2 variants, �gs. 17 to 20) The Random
variant really just picks a random new start period/rooms combination for a
meeting. Therefore, it should not come as a surprise that most of its changes
are declined. The large number of calls that results in an equal penalty
probably comes from cases where the starting position of a meeting is the
only possible position for that meeting. The net penalty change is slightly
above 0 throughout most of the algorithm, but when an improvement is
made, the average change is around or below -200 for most of the run. The
Sorted variant does not really do the name of the operator justice, because
the start periods are sorted by increasing penalty. Therefore, the average
penalty change is better and there are even more calls that result in an
equal penalty, because the best start period was already selected before the
operator was applied.

Change Day Rooms (3 variants, �gs. 21 to 26) This operator is much
slower than all previous operators, but it has the performance to back it up.
It has a very high percentage of improvements throughout the �rst half of
every reheat loop iteration. Besides that, its average accepted change in
penalty is below 0 throughout the run and the average improvement is larger
than the average worsening as well. Of the three variants, the Sort Duration
variant seems to perform best, although this could also be caused by the low

62



number of calls that are being made to it. A higher number of calls could
result in diminishing returns.

Move Best Rooms (2 variants, �gs. 27 to 30) This operator is another
�slow� one, although to a lesser extent than Change Day Rooms. Once again,
this is backed up by an average improvement of the penalty value and a
good portion of improvements. By far the largest number of calls results
in an equal penalty, probably caused by meetings already being in the best
rooms for them. The two variants of this operator show almost no di�erence
in their statistics, because the di�erence between the variants only comes
into play when a meeting has to be moved for the selected meeting to be
placed in its best possible rooms.

Move Period Best Rooms (2 variants, �gs. 31 to 34) This is an
operator that has a very high number of declined changes. Yet the average
change in penalty for Random variant hovers around 0 and the average for
the Sorted variant is below 0 almost all the time. This operator would need a
lot of calls, like the Move Period operator, but because it is one of the slower
operators, that would cause a large decrease in calls to the other operators.
Yet, we think this operator is important, because, unlike any other operator,
it has the ability to move a meeting to a start period even though there's no
space for the meeting at that period.

5.10 Parameter Experiments with Additional Instances

So far, the neighborhood operators' probabilities and Simulated Annealing
parameters have been tuned using three problem instances. To avoid over�t-
ting, we performed additional experiments with di�erent problem instances.
We �rst tested 23 new weight sets for the neighborhood operators' proba-
bilities on �ve new generated problem instances. Then, we tested 23 new
Simulated Annealing parameter sets on �ve other new generated problem
instances.

We generated 23 new weight sets using a Halton sequence. The set de-
noted as #01, is the previously found best set (see columns New weight and
Probability in table 5). The other sets were generated using ranges of 0.7 to
1.3 times the weights' values in set #01. The results of these experiments
are shown in table 16. Once again, we select the best weight set based on
the lowest maximum percentage, in this case set #15.

With weight set #15 for the neighborhood operators' probabilities, we re-
peated this approach for the Simulated Annealing parameters. Parameter set
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Table 16: The aggregate results of running the algorithm for the �ve in-
stances 7�11, with the new group of weight sets for the neighborhood oper-
ators. Numbers in bold face indicate the best result for that statistic. For
each weight set, the results for each of the �ve instances are shown, expressed
as the percentage the weight set's average penalty is above the best average
penalty. The % above lowest, avg. column shows the average of those �ve
percentages, and the % above lowest, max column shows the highest percent-
age.

% above lowest, instances
Weight
set

#7 #8 #9 #10 #11 %
above
lowest,

avg.

%
above
lowest,
max

#01 0.04% 0.24% 0.00% 1.42% 2.68% 0.87% 2.68%
#02 0.13% 0.28% 0.06% 1.06% 0.00% 0.30% 1.06%
#03 0.05% 0.25% 0.01% 0.83% 3.67% 0.96% 3.67%
#04 0.08% 0.45% 0.09% 2.07% 2.95% 1.13% 2.95%
#05 0.07% 0.19% 0.04% 0.03% 1.68% 0.40% 1.68%
#06 0.22% 0.31% 0.04% 0.89% 4.03% 1.10% 4.03%
#07 0.05% 0.48% 0.16% 1.08% 6.12% 1.58% 6.12%
#08 0.07% 0.17% 0.02% 0.25% 3.18% 0.74% 3.18%
#09 0.08% 0.44% 0.03% 0.96% 3.09% 0.92% 3.09%
#10 0.05% 0.46% 0.04% 1.99% 4.08% 1.32% 4.08%
#11 0.09% 0.22% 0.01% 2.05% 3.14% 1.10% 3.14%
#12 0.00% 0.21% 0.03% 1.04% 2.41% 0.74% 2.41%
#13 0.03% 0.25% 0.01% 0.65% 4.13% 1.02% 4.13%
#14 0.06% 0.84% 0.02% 0.40% 3.87% 1.04% 3.87%
#15 0.05% 0.44% 0.02% 0.98% 0.50% 0.40% 0.98%
#16 0.10% 0.42% 0.07% 0.63% 2.26% 0.70% 2.26%
#17 0.09% 0.52% 0.05% 0.03% 3.67% 0.87% 3.67%
#18 0.07% 0.00% 0.03% 0.60% 4.34% 1.01% 4.34%
#19 0.09% 0.25% 0.08% 1.45% 3.37% 1.05% 3.37%
#20 0.05% 0.16% 0.00% 1.22% 5.13% 1.31% 5.13%
#21 0.05% 0.23% 0.11% 0.00% 2.40% 0.56% 2.40%
#22 0.05% 0.29% 0.07% 0.68% 4.48% 1.11% 4.48%
#23 0.05% 0.23% 0.05% 0.18% 5.67% 1.23% 5.67%
#24 0.03% 0.31% 0.05% 0.83% 3.43% 0.93% 3.43%
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#01 is the previously found best set (see column New value in table 8). The
other 23 sets were generated using the Halton sequence. For each parameter,
we used the same range size as shown in table 47, but centered the range
around the value in set #01. An exception to this is MainLoopCutoff , for
which a range of [16000, 27000] was used. The results are shown in table 17.
We select the best parameter set based on the lowest maximum percentage,
which is set #02.

With these additional tests using ten new instances, over�tting should
be less of an issue. Weight set #15 and parameter set #02 were selected
and parameter set #02 will be used in the �nal version of the algorithm
that is included with the GUI application. The �nal weight set is selected in
section 5.11, but is partially the same as weight set #15. Tables 18 to 19 show
an overview of the previous and new neighborhood operators' probabilities
and Simulated Annealing parameters.

5.11 Moving Multi-Day Meetings

In section 5.6 we found that moving multi-day meetings is a problem when
not starting from an empty timetable. The solution in that section was to not
use the greedy initial algorithm, but just stick with a empty initial timetable.
However, if the end user provides a timetable to start from, the issue might
still pose a problem.

To �x this issue, we edited two operators and created an additional one.
Firstly, we edited the Move Best Rooms and Move Period Best Rooms op-
erators to also work for multi-day meetings. This means multi-day meetings
can be moved much more easily. Secondly, the Insert Best Rooms operator
was created. See section 4.5 for a description of the operator. This operator
makes sure it is possible to insert meetings into the schedule even if there is
little space.

Initial tests indicated that these changes seem to �x the problem. Before
doing some tests to show the e�ect, we �rst ran some experiments to tune
some of the operator weights, namely for Insert, Move Best Rooms, Move
Period Best Rooms and Insert Best Rooms. Once again we generated 12 sets
using a Halton sequence. For the Move Best Rooms and Move Period Best
Rooms operators we used ranges from 0.7 to 1.3 times the previously found
weight. For Insert and Insert Best Rooms we set ranges of 0 to 8 for all
variants.

Weight set #01 has the weights shown in table 18, with the weights for
the variants of Insert Best Rooms set to 4. We used �ve (randomly selected)
instances from the instances 7�16 that were used in section 5.10. The results
can be found in table 20. Weight set #13 was selected as the �nal weight
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Table 17: The aggregate results of running the algorithm for the �ve instances
12�16, with the new group of parameter sets for the Simulated Annealing
algorithm. Numbers in bold face indicate the best result for that statistic.
For each parameter set, the results for each of the �ve instances are shown,
expressed as the percentage the parameter set's average penalty is above the
best average penalty. The % above lowest, avg. column shows the average
of those �ve percentages, and the % above lowest, max column shows the
highest percentage.

% above lowest, instances
Param-
eter
set

#12 #13 #14 #15 #16 %
above
lowest,

avg.

%
above
lowest,
max

#01 0.09% 1.88% 5.05% 0.56% 4.66% 2.45% 5.05%
#02 0.05% 0.73% 1.57% 0.71% 1.71% 0.95% 1.71%
#03 0.07% 0.00% 0.75% 0.59% 3.66% 1.01% 3.66%
#04 0.05% 1.08% 4.03% 0.16% 1.88% 1.44% 4.03%
#05 0.05% 0.97% 4.36% 0.35% 2.34% 1.62% 4.36%
#06 0.05% 0.68% 1.43% 0.13% 3.45% 1.15% 3.45%
#07 0.06% 1.90% 1.64% 0.00% 3.70% 1.46% 3.70%
#08 0.06% 0.32% 3.30% 0.29% 2.41% 1.28% 3.30%
#09 0.05% 0.37% 2.08% 0.48% 3.44% 1.28% 3.44%
#10 0.00% 3.09% 3.97% 0.70% 1.81% 1.91% 3.97%
#11 0.05% 1.57% 2.10% 0.13% 1.83% 1.14% 2.10%
#12 0.06% 0.37% 2.21% 0.43% 3.44% 1.30% 3.44%
#13 0.05% 2.43% 3.95% 0.03% 3.93% 2.08% 3.95%
#14 0.05% 1.21% 0.94% 0.40% 7.03% 1.93% 7.03%
#15 0.04% 1.81% 2.71% 0.13% 0.00% 0.94% 2.71%
#16 0.04% 1.60% 3.26% 0.50% 2.00% 1.48% 3.26%
#17 0.09% 0.95% 0.00% 0.86% 1.76% 0.73% 1.76%
#18 0.05% 0.84% 4.93% 0.11% 5.68% 2.32% 5.68%
#19 0.10% 2.51% 4.87% 0.32% 4.62% 2.48% 4.87%
#20 0.03% 1.62% 1.02% 0.31% 2.73% 1.14% 2.73%
#21 0.06% 1.93% 2.55% 0.35% 5.16% 2.01% 5.16%
#22 0.06% 0.89% 2.60% 0.11% 3.01% 1.34% 3.01%
#23 0.06% 2.46% 4.20% 0.59% 4.20% 2.30% 4.20%
#24 0.06% 0.43% 3.48% 0.21% 6.41% 2.12% 6.41%
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Table 18: The previous and new values of the neighborhood operators'
weights and the probabilities induced by the new values. The new values
are from weight set #15.

Operator name (Variant) Previous
weight

New
weight

Proba-
bility

Insert (Random) 7 7 0.020%
Insert (Sorted) 1 1 0.003%
Remove 0 0 0.000%
Move Period (Random) 6566 5619 16.315%

Move Period (Sorted) 3235 3777 10.967%
Move Room 19268 13654 39.645%
Move Cluster 5293 5302 15.394%
Move Random (Random) 279 335 0.973%

Move Random (Sorted) 364 433 1.257%
Change Day Rooms (Random) 280 321 0.932%
Change Day Rooms (Sort #Rooms) 147 112 0.325%
Change Day Rooms (Sort Duration) 17 20 0.058%

Move Best Rooms (Random) 1379 1688 4.901%
Move Best Rooms (Sorted) 1689 1960 5.691%
Move Period Best Rooms (Random) 733 806 2.340%
Move Period Best Rooms (Sorted) 567 406 1.179%

Table 19: The previous and new values of the Simulated Annealing parame-
ters. The new values are from parameter set #02.

Parameter name Previous value New value

InitialTemp 660 690
ReheatTemp 740 771
CoolingRate 0.917 0.922

MainLoopCutoff 21461 19134
#Reheats 2 3
#ReheatsGlobal 3 3
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set and will be used in further experiments and in the �nal version of the
algorithm. The weights of set #13 are shown in table table 21.

Table 20: The aggregate results of running the algorithm for the �ve in-
stances, with the new group of weight sets for the neighborhood operators.
Numbers in bold face indicate the best result for that statistic. For each
weight set, the results for each of the �ve instances are shown, expressed
as the percentage the weight set's average penalty is above the best aver-
age penalty. The % above lowest, avg. column shows the average of those
�ve percentages, and the % above lowest, max column shows the highest
percentage.

% above lowest, instances
Weight
set

#8 #10 #11 #13 #16 %
above
lowest,

avg.

%
above
lowest,
max

#01 0.15% 0.79% 0.48% 0.13% 0.32% 0.38% 0.79%
#02 0.17% 2.53% 1.24% 0.05% 0.26% 0.85% 2.53%
#03 0.09% 0.68% 1.17% 0.03% 0.00% 0.40% 1.17%
#04 0.16% 1.37% 1.39% 0.01% 0.57% 0.70% 1.39%
#05 0.00% 1.62% 1.27% 0.10% 0.23% 0.64% 1.62%
#06 0.03% 0.48% 0.42% 0.01% 0.23% 0.23% 0.48%
#07 0.19% 1.42% 0.29% 0.00% 0.59% 0.50% 1.42%
#08 0.12% 0.91% 1.36% 0.04% 0.12% 0.51% 1.36%
#09 0.30% 0.70% 0.89% 0.20% 0.42% 0.50% 0.89%
#10 0.16% 1.26% 0.23% 0.15% 0.26% 0.41% 1.26%
#11 0.11% 1.04% 0.56% 0.15% 0.81% 0.53% 1.04%
#12 0.26% 1.76% 0.00% 0.11% 0.13% 0.45% 1.76%
#13 0.14% 0.00% 0.23% 0.11% 0.42% 0.18% 0.42%

To test the e�ect of the changes made, we will rerun the �rst experiment of
section 5.6 regarding the use of a greedy initial algorithm. The results of the
�rst run can be found in table 9 and table 52 (appendix D). Using a greedy
initial algorithm did not work, because the Simulated Annealing algorithm
had trouble moving around multi-day meetings from their position in the
initial schedule to their ideal position.

The new results are shown in table 22. It is clear that the changes to the
algorithm have a big impact on these results. All averages are now very close
to each other and starting with an initial empty solution is not always the
best choice anymore.
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Table 21: The previous and new values of the neighborhood operators'
weights and the probabilities induced by the new values. The new values
are from weight set #13.

Operator name (Variant) Previous
weight

New
weight

Proba-
bility

Insert (Random) 7 2 0.006%
Insert (Sorted) 1 6 0.017%
Remove 0 0 0.000%
Move Period (Random) 5619 5619 16.273%

Move Period (Sorted) 3777 3777 10.938%
Move Room 13654 13654 39.542%
Move Cluster 5302 5302 15.355%
Move Random (Random) 335 335 0.970%

Move Random (Sorted) 433 433 1.254%
Change Day Rooms (Random) 321 321 0.930%
Change Day Rooms (Sort #Rooms) 112 112 0.324%
Change Day Rooms (Sort Duration) 20 20 0.058%

Move Best Rooms (Random) 1688 1776 5.143%
Move Best Rooms (Sorted) 1960 2158 6.250%
Move Period Best Rooms (Random) 806 600 1.738%
Move Period Best Rooms (Sorted) 406 408 1.182%
Insert Best Rooms (Random) 0 3 0.009%
Insert Best Rooms (Sorted) 0 4 0.012%
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Table 22: The results of running the algorithm for the three problem in-
stances 1�3, with di�erent settings of the initial greedy algorithm. The dif-
ferent settings refer to the measure for selecting and scheduling meetings
respectively, as shown in section 4.4. The hyphen means that an empty ini-
tial solution was used. All experiments were run 9 times, with a time limit
of 5 minutes for each run and with the #Restarts parameter set to ∞.

Instance 1
Greedy
algorithm
settings

Initial
penalty avg.

Penalty avg. Penalty min % above
lowest avg.

- 882000 32121 32025 0.00%
AP/Pen. 50544 32124 32045 0.01%
AP/TAP 254391 32157 32085 0.11%
SL/Pen. 59420 32147 32000 0.08%
SL/TAP 251615 32139 32045 0.06%
RL/Pen. 61471 32122 32025 0.00%
RL/TAP 268469 32133 32045 0.04%

Instance 2
Greedy
algorithm
settings

Initial
penalty avg.

Penalty avg. Penalty min % above
lowest avg.

- 1050000 41495 41380 0.10%
AP/Pen. 63715 42318 40675 2.09%
AP/TAP 320822 41493 41410 0.10%
SL/Pen. 73947 41453 41410 0.00%
SL/TAP 317284 41512 41410 0.14%
RL/Pen. 63306 41473 41410 0.05%
RL/TAP 317599 41523 41410 0.17%

Instance 3
Greedy
algorithm
settings

Initial
penalty avg.

Penalty avg. Penalty min % above
lowest avg.

- 936000 23835 23695 0.37%
AP/Pen. 43038 23773 23695 0.11%
AP/TAP 292821 23786 23695 0.16%
SL/Pen. 51327 23855 23695 0.45%
SL/TAP 299282 23775 23695 0.12%
RL/Pen. 41699 23747 23695 0.00%
RL/TAP 300473 23867 23695 0.51%
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In section 5.12 we look at instances with existing initial schedules with
part of the meetings locked. To also test how the new operators work on
existing initial schedules, we ran the same experiments without the locks.
The results of this are shown in table 23 in the Avg. w/o locks column. If we
compare these results to the results with an initial empty schedule (Normal
avg. column), we can see that the di�erences are small, even though the
initial schedules have very high penalty values (Start penalty column).

Looking at these two tests it seems that editing the Move Best Rooms
and Move Period Best Rooms operators to include multi-day meetings and
creating the Insert Best Rooms operator have solved the issue of not being
able to move around multi-day meetings, that was found in section 5.6. Even
though a greedy initial algorithm will not be used in the end product (because
there are no clear advantages over starting with an empty timetable), this
is still a useful development if the end user provides the algorithm with
an existing initial timetable. The algorithm should now be able to better
optimize such an initial schedule.

5.12 Experiments on Optimizing Initial Schedules with

Locks

We created three instances to test the algorithm when it has to improve an
initial schedule with locked meetings. The instances were generated in the
same way the previous instances were created. We then let the algorithm
create a schedule for them, but with changed penalty parameters. Parame-
ters like MovePeriodPenalty, MoveWeekPenalty, MoveMDPenalty and
DevicePenalty were decreased to create a non-optimal schedule for the orig-
inal penalty parameters. After creating these schedules, each meeting's start
period was locked with a probability of 10%.

With these initial schedules we ran experiments to optimize them (using
the original penalty parameters). The results can be found in table 23.
Of course, these optimized schedules can never be as good as the �normal�
optimized schedules, because of the locked meetings, which are not in the
optimal position. However, the initial schedules are all greatly improved and
the resulting schedules come close to the �normal� schedules.
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Table 23: The results of running the algorithm with an initial schedule with
10% of the start periods of the meetings locked. Three di�erent instances
were tested. The Normal avg. column shows the average penalty after op-
timizing the schedule for the instance with an initial empty schedule (thus
without locked meetings). The Start penalty column shows the penalty of
the initial solution. The Avg. w/o locks column shows the average penalty
after optimizing this initial schedule, without taking the locks into account.
The Avg. w/ locks and SD w/ locks columns show the average and standard
deviation of the penalties after optimizing the initial schedule for the instance
with 10% of the start periods locked. All experiments were run 9 times, with
a time limit of 5 minutes for each run and with the #Restarts parameter set
to ∞.

Instance Normal
avg.

Start
penalty

Avg. w/o
locks

Avg. w/
locks

SD w/
locks

#4 22522 103525 22524 26439 34
#5 26768 104535 26845 32249 61
#6 27619 133060 27145 35991 122
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6 GUI application

To allow university sta� to use our algorithm e�ciently, we designed a GUI
application. Screenshots of the application can be found in appendix F. The
application can be used by course coordinators and department lab coordi-
nators to enter the requested meetings for each course and after the requests
have been entered, the application can be used to automatically generate a
timetable using our algorithm and to tweak the generated timetable where
necessary.

The application is divided into three tabs. The Project tab (�g. 35)
allows the user to select the block settings. The block settings determine the
number of weeks in the block, the associated calendar week numbers and the
periods in the block that are unavailable (i.e., when no (simple) meetings can
be held).

The Requests tab (�g. 36) shows, for each course, the requested meetings.
Courses can be added, edited and removed. Both simple and multi-day
meeting requests can be added, edited and removed as well. The requests
of a course are displayed in a grid with rows for each week and columns for
each period of a week.

Finally, the Schedule tab (�gs. 37 to 38) shows the complete schedule
for the block. At �rst all meetings are unscheduled. The tab contains three
buttons to run our scheduling algorithm. The �rst button discards the previ-
ous schedule and makes the algorithm start from scratch. The second button
runs the algorithm starting with the current schedule, trying to improve upon
it. The third button does the same as the second one, but gives the option
to limit the number of start period and/or room changes (see section 3.6).

Three equal instances of the algorithm with di�erent seeds for the random
number generator are always run in parallel, and the best resulting schedule
is loaded into the GUI application. The algorithm is run with the selected
parameters (see section 5) and with #Restarts set to∞. To keep the quality
of the resulting schedules equal across di�erent PCs, we did not use a time
limit, but rather an iteration limit. We took the average number of iterations
per 5 minutes of all 99 runs that were done using the selected parameters
and rounded that up to an iteration limit of 17 million.

The Schedule tab contains a grid for every week of the block, showing
the meetings scheduled in the week, positioned according to their scheduled
periods and rooms. Each meeting can be selected and then edited using the
edit panel (shown at the bottom of �g. 38). In this panel the start period and
rooms for the meeting can be selected. The meeting's start period and/or
rooms can also be �xed (see section 3.6). The right side of the panel shows
information about the request, like the timeslot and the number of rooms of
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the meeting and the devices that are needed.
There is a con�guration option to hide the Schedule tab. The application

can be delivered using this con�guration to (for example) the course coordi-
nators, who are not involved with the �nal schedule, but rather just need to
enter the requests for their own course. There is also a button to export the
schedule as an HTML �le, so it can be sent to people who do not have our
GUI application on their PC.
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7 Conclusion

Since 2015, the Victor J. Koningsberger building has been used by the De-
partments of Biology, Chemistry and Pharmaceutical Sciences, the Faculty of
Medicine/University Medical Center Utrecht and the Faculty of Geosciences
for (part of) their lab sessions. This means these departments and faculties
have to work together to create a timetable for the building's lab rooms.

Our project aimed to help the people responsible in two ways: by creating
an algorithm to �nd a good schedule automatically and by creating a GUI
application in which course coordinators can request their lab sessions and
which the central coordinator can use to import all these request and create
a timetable using our algorithm. The GUI application can also be used to
edit the timetable and to improve on an existing timetable.

Our algorithm to �nd a good schedule is based on Simulated Annealing.
Our version of Simulated Annealing uses both restarting, where the current
solution is reset to the best found solution and the temperature is reset,
and reheating, where only the temperature is reset. We created 9 di�erent
neighborhood operators, some with 2 or 3 slightly di�erent variants. We also
created a greedy algorithm which creates an initial timetable, but this had no
advantages over starting the Simulated Annealing algorithm with an empty
timetable and actually made the resulting timetable quality worse.

Our research was mainly focused on �nding the best settings for our
algorithm. We had two groups of parameters: the neighborhood operators'
probabilities to be chosen during an iteration and the Simulated Annealing
parameters (e.g., starting temperatures, cooling rate, cuto�). We tested a
total of 60 di�erent Simulated Annealing parameter sets and 73 di�erent
sets of neighborhood operators' probabilities, generated using the Halton
sequence, and we selected the best performing set to be used in the �nal
version of our algorithm that is included with the GUI application.

Before our search for the best algorithm settings, we were already able to
�nd good timetables for the �rst two quarters of the 2017�2018 academic year
using our algorithm. The project manager and department lab coordinators
found these timetables better than the hand-made ones that were made for
those quarters, and decided to use our timetables instead. More recently, it
has also been decided to use our GUI application and algorithm to gather
all requests for the third and fourth quarters of the 2017�2018 academic year
and to create the timetables.
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A Results of Initial Simulated Annealing Pa-

rameters Experiments

Table 24: The initial values of the Simulated Annealing parameters.
PreprocessT imeDeps indicates whether or not time dependencies are con-
sidered in preprocessing to eliminate possible start periods that will always
lead to a time dependency violation. The other parameters are explained in
section 4.2.

Parameter name Initial value

InitialTemp 1500
ReheatTemp 1500
CoolingRate 0.95

InnerLoopIterations 10000
MainLoopCutoff 10000
#Restarts 2

#Reheats 2
#ReheatsGlobal 3
PreprocessT imeDeps Yes
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Table 25: The results of running the algorithm with di�erent values for the
CoolingRate. All experiments were run 3 times, with a time limit of 15
minutes for each run. � indicates the initial parameter value, * indicates the
value that was selected to be used in further experiments.

Instance 1
CoolingRate Penalty avg. Penalty SD Time avg. (s)

0.97 32350 223 681
�0.95 32402 328 520
*0.90 32830 589 211
0.85 33790 1594 115

Instance 2
CoolingRate Penalty avg. Penalty SD Time avg. (s)

0.97 43740 1864 381
�0.95 42415 375 340
*0.90 43277 2231 96
0.85 42820 96 122

Instance 3
CoolingRate Penalty avg. Penalty SD Time avg. (s)

0.97 27323 5278 716
�0.95 27810 6658 646
*0.90 24157 547 282
0.85 24058 266 203
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Table 26: The results of running the algorithm with di�erent values for
InitialTemp and ReheatTemp. All experiments were run 3 times, with a
time limit of 10 minutes for each run. � indicates the initial parameter value,
* indicates the value that was selected to be used in further experiments.

Instance 1
InitialTemp / ReheatTemp Penalty avg. Penalty SD Time avg. (s)

500 32398 427 174
*750 32297 78 168
1000 33495 1376 181

�1500 32830 589 211
2000 33865 1810 231

Instance 2
InitialTemp / ReheatTemp Penalty avg. Penalty SD Time avg. (s)

500 46130 762 121
*750 42717 51 114
1000 43985 2925 106

�1500 43277 2231 96
2000 43827 1713 123

Instance 3
InitialTemp / ReheatTemp Penalty avg. Penalty SD Time avg. (s)

500 23943 188 223
*750 23880 270 236
1000 24028 304 276

�1500 24157 547 282
2000 24112 362 275
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Table 27: The results of running the algorithm with di�erent values for
MainLoopCutoff . To test with a value of MainLoopCutoff = 5000, we
lower the value InnerLoopIterations to 5000 as well. The cuto� is only
checked after every InnerLoopIterations iterations, and if we do not lower
that, the e�ect of lowering MainLoopCutoff will be less apparent. To make
sure the temperature goes down at an equal rate, we set CoolingRate to√

0.9 ≈ 0.949. All experiments were run 3 times, with a time limit of 10
minutes for each run. � indicates the initial parameter value, * indicates the
value that was selected to be used in further experiments.

Instance 1
MainLoop-

Cutoff
InnerLoop-
Iterations

Cooling-
Rate

Penalty
avg.

Penalty
SD

Time avg.
(s)

5000 5000 0.949 32513 171 201
�*10000 10000 0.900 32297 78 168
20000 10000 0.900 32400 208 193

Instance 2
MainLoop-

Cutoff
InnerLoop-
Iterations

Cooling-
Rate

Penalty
avg.

Penalty
SD

Time avg.
(s)

5000 5000 0.949 42607 449 102
�*10000 10000 0.900 42717 51 114
20000 10000 0.900 43262 2269 106

Instance 3
MainLoop-

Cutoff
InnerLoop-
Iterations

Cooling-
Rate

Penalty
avg.

Penalty
SD

Time avg.
(s)

5000 5000 0.949 23875 159 293
�*10000 10000 0.900 23880 270 236
20000 10000 0.900 24072 26 194
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Table 28: The results of running the algorithm with di�erent values for
#Restarts, #Reheats and #ReheatsGlobal. All experiments were run 3
times, with a time limit of 10 minutes for each run. � indicates the initial
parameter value, * indicates the value that was selected to be used in further
experiments.

Instance 1
#Restarts #Reheats #Reheats-

Global
Penalty

avg.
Penalty

SD
Time avg.

(s)

5 0 0 32495 311 202
4 1 1 32390 43 119
4 2 3 32502 134 302
3 2 2 32407 410 205
3 2 3 32350 190 267

�*2 2 3 32297 78 168
2 2 5 32315 48 221
1 5 5 32353 243 230

Instance 2
#Restarts #Reheats #Reheats-

Global
Penalty

avg.
Penalty

SD
Time avg.

(s)

5 0 0 45568 3420 67
4 1 1 42503 597 83
4 2 3 45882 2682 152
3 2 2 44758 3368 103
3 2 3 47760 5458 105

�*2 2 3 42717 51 114
2 2 5 45072 3060 159
1 5 5 44278 2686 182

Instance 3
#Restarts #Reheats #Reheats-

Global
Penalty

avg.
Penalty

SD
Time avg.

(s)

5 0 0 24042 14 201
4 1 1 28505 7526 179
4 2 3 24285 356 327
3 2 2 24018 249 235
3 2 3 23917 252 283

�*2 2 3 23880 270 236
2 2 5 23910 322 426
1 5 5 23833 190 308
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Table 29: The results of running the algorithm with di�erent values for
PreprocessT imeDeps. PreprocessT imeDeps indicates whether or not time
dependencies are considered in preprocessing to eliminate possible start pe-
riods that will always lead to a time dependency violation. All experiments
were run 3 times, with a time limit of 10 minutes for each run. � indicates
the initial parameter value, * indicates the value that was selected to be used
in further experiments.

Instance 1
PreprocessT imeDeps Penalty avg. Penalty SD Time avg. (s)

Yes*� 32297 78 168
No 32410 320 141

Instance 2
PreprocessT imeDeps Penalty avg. Penalty SD Time avg. (s)

Yes*� 42717 51 114
No 45697 3076 89

Instance 3
PreprocessT imeDeps Penalty avg. Penalty SD Time avg. (s)

Yes*� 23880 270 236
No 24013 248 339

Table 30: The new values of the Simulated Annealing parameters. These
values are used during the operator probabilities experiments.

Parameter name New value

InitialTemp 750
ReheatTemp 750
CoolingRate 0.9

InnerLoopIterations 10000
MainLoopCutoff 10000
#Restarts 2

#Reheats 2
#ReheatsGlobal 3
PreprocessT imeDeps Yes
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B Results of Neighborhood Operators' Proba-

bilities Experiments

Table 31: The operator weights used previously (during the initial Simulated
Annealing parameters experiments) and the new weights that will be used
initially for the experiments to �nd good weights. The probability for each
operator to be chosen in an iteration of the Simulated Annealing algorithm,
is given by its weight divided by the sum of all weights. Some operators
have multiple variants. For ChangeDayRooms, the variant indicates in which
order the meetings are placed back into the schedule. For the other operators,
the variant indicates the order in which possible start periods of a meeting
are considered.

Operator name (Variant) Previous weight Initial weight

Insert (Random) 4 4
Insert (Sorted) 4 4
Remove 4 4
Move Period (Random) 4000 4000

Move Period (Sorted) 4000 4000
Move Room 8000 8000
Move Cluster 8000 8000
Move Random (Random) 400 400

Move Random (Sorted) 400 400
Change Day Rooms (Random) 400 268
Change Day Rooms (Sort #Rooms) 200 266
Change Day Rooms (Sort Duration) 200 266

Move Best Rooms (Random) 800 800
Move Best Rooms (Sorted) 800 800
Move Period Best Rooms (Random) 800 800
Move Period Best Rooms (Sorted) 800 800
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Table 32: The results of running the algorithm with di�erent weights for the
Remove operator. All experiments were run 6 times, with a time limit of 10
minutes for each run. � indicates the initial parameter value, * indicates the
value that was selected to be used in further experiments.

Instance 1
Remove weight Penalty avg. Penalty SD Time avg. (s)

�4 32508 429 252
*0 32569 215 198

Instance 2
Remove weight Penalty avg. Penalty SD Time avg. (s)

�4 43963 2243 147
*0 43194 1296 93

Instance 3
Remove weight Penalty avg. Penalty SD Time avg. (s)

�4 24018 242 254
*0 24229 449 233
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Table 33: The results of running the algorithm with di�erent weights for the
two variants of the Insert operator. All experiments were run 6 times, with a
time limit of 7.5 minutes for each run. � indicates the initial parameter value,
* indicates the value that was selected to be used in further experiments.

Instance 1
Insert (Random) / Insert

(Sorted) weights
Penalty avg. Penalty SD Time avg. (s)

1 36393 3404 179
2 32907 1427 175
3 32410 314 219

�*4 32569 215 198
5 32531 304 163
6 32392 232 169
8 32449 336 215

Instance 2
Insert (Random) / Insert

(Sorted) weights
Penalty avg. Penalty SD Time avg. (s)

1 211533 410768 135
2 45048 2434 100
3 44906 2384 121

�*4 43194 1296 93
5 43495 2246 93
6 44938 2360 120
8 44349 3574 116

Instance 3
Insert (Random) / Insert

(Sorted) weights
Penalty avg. Penalty SD Time avg. (s)

1 328856 470295 179
2 24113 245 238
3 24222 366 266

�*4 24229 449 233
5 24333 386 257
6 24253 452 231
8 24650 805 365
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Table 34: The new operator weights that are used as a base for further
experiments. The search range for the following experiment is also shown.
Each operator's weight will be in the range from 0 to 2 times its current
weight. The Remove operator will not be used. The sum of the weights of
the two variants of Insert will always be set to 8, i.e., one weight is chosen
in the range [0, 8] and the other weight is set to 8 minus the �rst weight.

Operator name (Variant) New weight Search range

Insert (Random) 4 [0, 8]
Insert (Sorted) 4 [0, 8]
Remove 0 0
Move Period (Random) 4000 [0, 8000]

Move Period (Sorted) 4000 [0, 8000]
Move Room 8000 [0, 16000]
Move Cluster 8000 [0, 16000]
Move Random (Random) 400 [0, 800]

Move Random (Sorted) 400 [0, 800]
Change Day Rooms (Random) 268 [0, 533]
Change Day Rooms (Sort #Rooms) 266 [0, 533]
Change Day Rooms (Sort Duration) 266 [0, 533]

Move Best Rooms (Random) 800 [0, 1600]
Move Best Rooms (Sorted) 800 [0, 1600]
Move Period Best Rooms (Random) 800 [0, 1600]
Move Period Best Rooms (Sorted) 800 [0, 1600]
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Table 35: The results of running the algorithm for problem instance 1,
with di�erent sets of weights for the neighborhood operators. Weight set #01
has the weights as shown in table 34. The other weight sets were generated
using the Halton sequence with the ranges in table 34. Numbers in bold face
indicate the best result for that statistic. The % above lowest avg. column
shows how far the set's average penalty is above the lowest average penalty.
All experiments were run 9 times, with a time limit of 5 minutes for each
run.

Weight
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 32806 773 172 32215 1.15%
#02 33318 1476 159 32250 2.73%
#03 32603 319 177 32220 0.52%
#04 32698 640 139 32160 0.82%
#05 32753 456 167 32235 0.98%

#06 32689 558 254 32085 0.79%
#07 32908 745 131 32290 1.46%
#08 32433 248 279 32105 0.00%
#09 32598 837 188 32190 0.51%
#10 32772 499 143 32115 1.04%

#11 32589 272 282 32240 0.48%
#12 32524 349 201 32070 0.28%
#13 32926 699 205 32115 1.52%
#14 32442 451 160 32165 0.03%
#15 32522 340 220 32095 0.27%

#16 32913 1476 234 32110 1.48%
#17 33133 2384 138 32200 2.16%
#18 32838 423 182 32190 1.25%
#19 32853 658 122 32225 1.29%
#20 32664 373 268 32150 0.71%

#21 32597 296 204 32190 0.51%
#22 32524 278 241 32235 0.28%
#23 33016 1744 255 32090 1.80%
#24 32461 300 123 32125 0.08%
#25 32467 222 248 32260 0.10%
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Table 36: The results of running the algorithm for problem instance 2,
with di�erent sets of weights for the neighborhood operators. Weight set #01
has the weights as shown in table 34. The other weight sets were generated
using the Halton sequence with the ranges in table 34. Numbers in bold face
indicate the best result for that statistic. The % above lowest avg. column
shows how far the set's average penalty is above the lowest average penalty.
All experiments were run 9 times, with a time limit of 5 minutes for each
run.

Weight
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 43586 2301 105 41425 1.57%
#02 45776 3921 106 41560 6.68%
#03 43334 1913 97 41605 0.99%
#04 43912 3279 87 41480 2.33%
#05 45042 2359 99 42255 4.97%

#06 43821 1883 178 41800 2.12%
#07 43641 2286 73 41520 1.70%
#08 45431 3320 179 41835 5.87%
#09 44332 2795 111 41695 3.31%
#10 45394 3459 75 41605 5.79%

#11 45270 3436 175 41525 5.50%
#12 42911 1527 129 41420 0.00%
#13 45741 2874 89 41715 6.60%
#14 45766 2398 109 41985 6.65%
#15 43685 2247 117 41850 1.80%

#16 44409 2900 133 41940 3.49%
#17 43673 1885 90 42075 1.78%
#18 43037 1690 108 41830 0.29%
#19 52071 21073 82 41530 21.35%
#20 43897 2004 219 41930 2.30%

#21 44430 2648 110 41540 3.54%
#22 43336 2449 185 41480 0.99%
#23 44458 3189 136 41540 3.61%
#24 46514 3969 73 41605 8.40%
#25 43546 2070 150 41480 1.48%
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Table 37: The results of running the algorithm for problem instance 3,
with di�erent sets of weights for the neighborhood operators. Weight set #01
has the weights as shown in table 34. The other weight sets were generated
using the Halton sequence with the ranges in table 34. Numbers in bold face
indicate the best result for that statistic. The % above lowest avg. column
shows how far the set's average penalty is above the lowest average penalty.
All experiments were run 9 times, with a time limit of 5 minutes for each
run.

Weight
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 23994 214 257 23695 0.46%
#02 24119 292 270 23755 0.99%
#03 24121 421 277 23740 0.99%
#04 23884 194 169 23695 0.00%
#05 24892 2228 192 23755 4.22%

#06 25461 4202 320 23695 6.60%
#07 25364 3741 162 23695 6.20%
#08 24226 291 313 23965 1.43%
#09 23887 119 270 23755 0.01%
#10 24159 206 162 23820 1.15%

#11 23977 198 310 23695 0.39%
#12 24275 451 276 23935 1.64%
#13 24038 332 237 23695 0.65%
#14 24113 199 199 23755 0.96%
#15 23922 215 268 23695 0.16%

#16 25438 4139 271 23695 6.51%
#17 24041 140 226 23865 0.66%
#18 24259 533 275 23790 1.57%
#19 24306 253 189 24050 1.77%
#20 24102 89 311 23935 0.91%

#21 24152 308 262 23790 1.12%
#22 24428 901 300 23755 2.28%
#23 24064 389 280 23695 0.76%
#24 24257 465 176 23755 1.56%
#25 24307 437 301 23755 1.77%
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Table 38: The operator weights of weight set #03, that are used as a base
for the next experiment. The search range for the following experiment is
also shown. Each operator's weight will be in the range from 0.7 to 1.3 times
its current weight. The sum of the weights of the two variants of Insert will
always be set to 8, i.e., one weight is chosen in its range and the other weight
is set to 8 minus the �rst weight.

Operator name (Variant) Set #03 weight Search range

Insert (Random) 6 [4, 8]
Insert (Sorted) 2 [0, 4]
Remove 0 0
Move Period (Random) 5860 [4102, 7618]

Move Period (Sorted) 2893 [2025, 3761]
Move Room 15767 [11036, 20498]
Move Cluster 4640 [3248, 6032]
Move Random (Random) 237 [165, 309]

Move Random (Sorted) 493 [345, 641]
Change Day Rooms (Random) 375 [262, 488]
Change Day Rooms (Sort #Rooms) 191 [133, 249]
Change Day Rooms (Sort Duration) 22 [15, 29]

Move Best Rooms (Random) 1142 [799, 1485]
Move Best Rooms (Sorted) 1517 [1061, 1973]
Move Period Best Rooms (Random) 900 [630, 1170]
Move Period Best Rooms (Sorted) 635 [444, 826]
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Table 39: The results of running the algorithm for problem instance 1,
with the second group of weight sets for the neighborhood operators. Weight
set #03 has the weights as shown in table 38. The other weight sets were
generated using the Halton sequence with the ranges in table 38. Numbers in
bold face indicate the best result for that statistic. The % above lowest avg.
column shows how far the set's average penalty is above the lowest average
penalty. All experiments were run 9 times, with a time limit of 5 minutes for
each run.

Weight
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#03 32546 683 188 32150 0.85%
#26 33004 798 172 32205 2.27%
#27 32469 334 193 32115 0.61%
#28 32413 365 141 32105 0.43%
#29 32903 690 183 32090 1.95%

#30 32784 582 252 32170 1.59%
#31 32659 750 182 32115 1.20%
#32 32348 149 209 32190 0.23%
#33 32769 643 142 32215 1.54%
#34 32507 458 176 32075 0.72%

#35 32400 429 220 32070 0.39%
#36 32273 144 227 32040 0.00%
#37 32674 623 180 32180 1.24%
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Table 40: The results of running the algorithm for problem instance 2,
with the second group of weight sets for the neighborhood operators. Weight
set #03 has the weights as shown in table 38. The other weight sets were
generated using the Halton sequence with the ranges in table 38. Numbers in
bold face indicate the best result for that statistic. The % above lowest avg.
column shows how far the set's average penalty is above the lowest average
penalty. All experiments were run 9 times, with a time limit of 5 minutes for
each run.

Weight
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#03 44550 2245 124 42600 4.39%
#26 45089 3389 123 41625 5.65%
#27 45892 3375 133 42670 7.53%
#28 43842 2402 93 41750 2.73%
#29 45671 2191 93 42690 7.02%

#30 44066 3129 148 41420 3.25%
#31 42677 1570 94 41100 0.00%
#32 43911 2565 127 41470 2.89%
#33 43639 2158 108 41775 2.25%
#34 45116 2057 114 42730 5.71%

#35 44569 2796 137 41480 4.43%
#36 44012 2363 138 41715 3.13%
#37 51011 19668 127 41815 19.53%
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Table 41: The results of running the algorithm for problem instance 3,
with the second group of weight sets for the neighborhood operators. Weight
set #03 has the weights as shown in table 38. The other weight sets were
generated using the Halton sequence with the ranges in table 38. Numbers in
bold face indicate the best result for that statistic. The % above lowest avg.
column shows how far the set's average penalty is above the lowest average
penalty. All experiments were run 9 times, with a time limit of 5 minutes for
each run.

Weight
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#03 25199 3990 246 23695 5.36%
#26 24004 210 243 23695 0.37%
#27 23989 193 242 23695 0.30%
#28 23917 273 221 23695 0.00%
#29 24003 229 237 23695 0.36%

#30 24027 269 280 23695 0.46%
#31 24081 340 245 23775 0.69%
#32 24013 142 258 23755 0.40%
#33 23967 179 257 23695 0.21%
#34 24288 560 200 23790 1.55%

#35 24037 373 260 23695 0.50%
#36 25377 3817 264 23695 6.11%
#37 23959 273 210 23695 0.18%
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Table 42: The operator weights of weight set #31 and the induced probabil-
ities. These weights are used for all further experiments.

Operator name (Variant) Set #31 weight Probability

Insert (Random) 7 0.018%
Insert (Sorted) 1 0.003%
Remove 0 0.000%
Move Period (Random) 6566 16.487%

Move Period (Sorted) 3235 8.123%
Move Room 19268 48.382%
Move Cluster 5293 13.291%
Move Random (Random) 279 0.701%

Move Random (Sorted) 364 0.914%
Change Day Rooms (Random) 280 0.703%
Change Day Rooms (Sort #Rooms) 147 0.369%
Change Day Rooms (Sort Duration) 17 0.043%

Move Best Rooms (Random) 1379 3.463%
Move Best Rooms (Sorted) 1689 4.241%
Move Period Best Rooms (Random) 733 1.841%
Move Period Best Rooms (Sorted) 567 1.424%
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C Results of Simulated Annealing Parameters

Experiments

Table 43: The Simulated Annealing parameters used previously (during the
neighborhood operators' probabilities experiments). The search range for the
following experiment is also shown. These ranges are selected based on the
experiments shown in section 5.3 and appendix A. #Restarts is set to ∞,
because all runs will keep going until the time limit of 5 minutes is reached.

Parameter name Initial value Search range

InitialTemp 750 [500, 1000]
ReheatTemp 750 [500, 1000]
CoolingRate 0.90 [0.80, 0.95]

InnerLoopIterations 10000 10000
MainLoopCutoff 10000 [10000, 50000]
#Restarts 2 ∞
#Reheats 2 [0, 5]
#ReheatsGlobal 3 [0, 5]
PreprocessT imeDeps Yes Yes
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Table 44: The results of running the algorithm for problem instance 1,
with di�erent sets of parameters for the Simulated Annealing algorithm. Pa-
rameter set #01 has the parameter values as shown in table 43. The other
parameter sets were generated using the Halton sequence with the ranges in
table 43. Numbers in bold face indicate the best result for that statistic. The
% above lowest avg. column shows how far the set's average penalty is above
the lowest average penalty. All experiments were run 9 times, with a time
limit of 5 minutes for each run and with the #Restarts parameter set to∞.

Parameter
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 32357 328 305 32065 0.41%
#02 32703 658 305 32115 1.48%
#03 32785 797 306 32150 1.74%
#04 32543 424 307 32105 0.99%
#05 32524 599 304 32070 0.93%

#06 32379 322 303 32105 0.48%
#07 32444 335 307 32085 0.68%
#08 32553 746 302 32040 1.02%
#09 32518 511 311 32125 0.91%
#10 32804 901 304 32065 1.80%

#11 32791 910 303 32065 1.76%
#12 32433 407 305 32050 0.65%
#13 32767 692 303 32115 1.68%
#14 32663 648 309 32155 1.36%
#15 32596 363 305 32210 1.15%

#16 32440 543 302 32065 0.67%
#17 32324 192 307 32140 0.31%
#18 32838 860 305 32085 1.91%
#19 32901 615 306 32120 2.10%
#20 32321 296 305 32065 0.30%

#21 32579 684 303 32095 1.10%
#22 32224 132 305 32030 0.00%
#23 32766 832 303 32130 1.68%
#24 32474 382 307 32040 0.77%
#25 32328 361 304 32050 0.32%
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Table 45: The results of running the algorithm for problem instance 2,
with di�erent sets of parameters for the Simulated Annealing algorithm. Pa-
rameter set #01 has the parameter values as shown in table 43. The other
parameter sets were generated using the Halton sequence with the ranges in
table 43. Numbers in bold face indicate the best result for that statistic. The
% above lowest avg. column shows how far the set's average penalty is above
the lowest average penalty. All experiments were run 9 times, with a time
limit of 5 minutes for each run and with the #Restarts parameter set to∞.

Parameter
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 42964 1417 303 41750 0.50%
#02 42749 812 304 41470 0.00%
#03 43363 2102 302 41335 1.44%
#04 43193 2567 305 41375 1.04%
#05 45443 2683 303 41470 6.30%

#06 44593 2574 302 41605 4.31%
#07 50208 18546 304 41495 17.45%
#08 46048 3232 301 41480 7.72%
#09 43359 2057 305 41730 1.43%
#10 43209 1733 302 41510 1.08%

#11 49306 18751 301 41480 15.34%
#12 43283 2418 304 41410 1.25%
#13 50617 18274 303 42175 18.40%
#14 51367 19836 307 41070 20.16%
#15 43194 2154 303 41115 1.04%

#16 43325 2272 302 41410 1.35%
#17 43768 2218 303 41085 2.38%
#18 44821 3209 303 41540 4.85%
#19 45680 3458 305 41470 6.86%
#20 44554 2471 302 41470 4.22%

#21 46049 3491 302 41730 7.72%
#22 51211 18146 302 41510 19.80%
#23 50210 20258 302 41470 17.45%
#24 43944 2181 306 41410 2.80%
#25 45381 2622 302 41550 6.16%
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Table 46: The results of running the algorithm for problem instance 3,
with di�erent sets of parameters for the Simulated Annealing algorithm. Pa-
rameter set #01 has the parameter values as shown in table 43. The other
parameter sets were generated using the Halton sequence with the ranges in
table 43. Numbers in bold face indicate the best result for that statistic. The
% above lowest avg. column shows how far the set's average penalty is above
the lowest average penalty. All experiments were run 9 times, with a time
limit of 5 minutes for each run and with the #Restarts parameter set to∞.

Parameter
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 24089 319 306 23755 0.89%
#02 24090 349 309 23695 0.90%
#03 23972 155 305 23695 0.40%
#04 23876 149 314 23695 0.00%
#05 24322 863 305 23695 1.87%

#06 23992 175 306 23695 0.49%
#07 24069 352 306 23695 0.81%
#08 24083 249 305 23695 0.87%
#09 24097 330 314 23755 0.92%
#10 24168 277 307 23800 1.22%

#11 24022 160 304 23755 0.61%
#12 24004 359 307 23695 0.54%
#13 24358 696 307 23755 2.02%
#14 24295 488 314 23755 1.75%
#15 24169 480 305 23695 1.23%

#16 24410 837 304 23890 2.24%
#17 24068 357 311 23755 0.80%
#18 24022 281 306 23695 0.61%
#19 24086 321 311 23695 0.88%
#20 24054 291 306 23755 0.75%

#21 26398 4913 305 23755 10.56%
#22 25129 3766 306 23695 5.25%
#23 24151 391 305 23755 1.15%
#24 24192 438 314 23695 1.32%
#25 23981 213 306 23695 0.44%
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Table 47: The Simulated Annealing parameters of parameter set #01, that
are used as a base for the next experiment. The search range for the following
experiment is also shown. These ranges are selected based on the experiments
shown in section 5.3 and appendix A, but are set to smaller intervals com-
pared to the previous experiment. #Restarts is set to ∞, because all runs
will keep going until the time limit of 5 minutes is reached.

Parameter name Set #01 value Search range

InitialTemp 750 [650, 850]
ReheatTemp 750 [650, 850]
CoolingRate 0.90 [0.88, 0.92]

InnerLoopIterations 10000 10000
MainLoopCutoff 10000 [10000, 25000]
#Restarts - ∞
#Reheats 2 [1, 3]
#ReheatsGlobal 3 [2, 4]
PreprocessT imeDeps Yes Yes
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Table 48: The results of running the algorithm for problem instance 1, with
the second group of parameter sets for the Simulated Annealing algorithm.
Parameter set #01 has the parameter values as shown in table 47. The other
parameter sets were generated using the Halton sequence with the ranges in
table 47. Numbers in bold face indicate the best result for that statistic. The
% above lowest avg. column shows how far the set's average penalty is above
the lowest average penalty. All experiments were run 9 times, with a time
limit of 5 minutes for each run and with the #Restarts parameter set to∞.

Parameter
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 32503 367 306 32105 0.96%
#26 32345 218 305 32145 0.47%
#27 32466 407 305 32170 0.84%
#28 32467 389 304 32060 0.85%
#29 32194 117 304 32105 0.00%

#30 32724 510 304 32075 1.65%
#31 32415 310 306 32115 0.69%
#32 32429 368 304 32090 0.73%
#33 32524 685 306 31995 1.02%
#34 32595 538 307 32045 1.24%

#35 32319 283 304 32130 0.39%
#36 32399 363 306 32030 0.64%
#37 32502 408 304 32095 0.96%
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Table 49: The results of running the algorithm for problem instance 2, with
the second group of parameter sets for the Simulated Annealing algorithm.
Parameter set #01 has the parameter values as shown in table 47. The other
parameter sets were generated using the Halton sequence with the ranges in
table 47. Numbers in bold face indicate the best result for that statistic. The
% above lowest avg. column shows how far the set's average penalty is above
the lowest average penalty. All experiments were run 9 times, with a time
limit of 5 minutes for each run and with the #Restarts parameter set to∞.

Parameter
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 50102 18493 303 41760 18.69%
#26 50509 18366 303 41410 19.65%
#27 42901 1876 304 41285 1.63%
#28 49883 18622 303 41420 18.17%
#29 43754 2927 303 41520 3.65%

#30 42699 1803 303 41420 1.15%
#31 43578 2902 304 41065 3.23%
#32 43656 2531 302 41410 3.42%
#33 50443 21446 303 41055 19.49%
#34 42214 1542 303 41410 0.00%

#35 44396 2029 303 42635 5.17%
#36 43923 2441 305 41420 4.05%
#37 43352 2124 303 41345 2.70%
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Table 50: The results of running the algorithm for problem instance 3, with
the second group of parameter sets for the Simulated Annealing algorithm.
Parameter set #01 has the parameter values as shown in table 47. The other
parameter sets were generated using the Halton sequence with the ranges in
table 47. Numbers in bold face indicate the best result for that statistic. The
% above lowest avg. column shows how far the set's average penalty is above
the lowest average penalty. All experiments were run 9 times, with a time
limit of 5 minutes for each run and with the #Restarts parameter set to∞.

Parameter
set

Penalty
avg.

Penalty
SD

Time avg.
(s)

Penalty
min

% above
lowest
avg.

#01 24087 293 308 23755 1.03%
#26 24187 439 308 23695 1.45%
#27 24098 344 309 23755 1.07%
#28 24033 328 308 23695 0.80%
#29 25049 2420 309 23950 5.06%

#30 23953 329 309 23695 0.46%
#31 23842 162 307 23695 0.00%
#32 24033 160 305 23775 0.80%
#33 23986 323 308 23695 0.60%
#34 23892 225 305 23695 0.21%

#35 24141 350 307 23755 1.25%
#36 23991 166 308 23695 0.62%
#37 23930 183 306 23695 0.37%
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Table 51: The Simulated Annealing parameters of parameter set #34. These
values are used for all further experiments. There is no value for #Restarts,
because the tests were stopped using a time limit instead.

Parameter name Set #34 value

InitialTemp 660
ReheatTemp 740
CoolingRate 0.917

InnerLoopIterations 10000
MainLoopCutoff 21461
#Restarts -

#Reheats 2
#ReheatsGlobal 3
PreprocessT imeDeps Yes
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D Results of Initial Greedy Solutions Experi-

ments
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Table 52: The results of running the algorithm for all three problem instances,
with di�erent settings of the initial greedy algorithm. The di�erent settings
refer to the measure for selecting and scheduling meetings respectively, as
shown in section 4.4. The hyphen means that an empty initial solution was
used. All experiments were run 9 times, with a time limit of 5 minutes for
each run and with the #Restarts parameter set to ∞.

Instance 1
Greedy
algorithm
settings

Initial
penalty avg.

Penalty avg. Penalty min % above
lowest avg.

- 882000 32207 31970 0.00%
AP/Pen. 52693 32685 32205 1.48%
AP/TAP 253342 32938 32250 2.27%
SL/Pen. 59961 32793 32070 1.82%
SL/TAP 247905 54454 32280 69.08%
RL/Pen. 62076 32429 32180 0.69%
RL/TAP 266749 56219 32930 74.56%

Instance 2
Greedy
algorithm
settings

Initial
penalty avg.

Penalty avg. Penalty min % above
lowest avg.

- 1050000 43982 41760 0.00%
AP/Pen. 62996 48599 43795 10.50%
AP/TAP 326167 50292 49130 14.35%
SL/Pen. 73743 48457 46365 10.17%
SL/TAP 313786 51024 45965 16.01%
RL/Pen. 64747 50462 46270 14.73%
RL/TAP 313587 50250 46110 14.25%

Instance 3
Greedy
algorithm
settings

Initial
penalty avg.

Penalty avg. Penalty min % above
lowest avg.

- 936000 23965 23695 0.00%
AP/Pen. 48715 31558 23755 31.69%
AP/TAP 291346 38399 32960 60.23%
SL/Pen. 55299 33571 23875 40.08%
SL/TAP 297278 35364 31820 47.56%
RL/Pen. 45722 30705 23695 28.12%
RL/TAP 292852 37232 32380 55.36%
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Table 53: The results of running the algorithm for all three problem instances,
with di�erent settings of the initial greedy algorithm and with a time limit
of 1 to 5 minutes. The di�erent settings refer to the measure for selecting
and scheduling meetings respectively, as shown in section 4.4. The hyphen
means that an empty initial solution was used. All experiments were run 9
times, with the #Restarts parameter set to ∞.

Instance 1
Greedy
algorithm
settings

Penalty
avg., 5

min

Penalty
avg., 4

min

Penalty
avg., 3

min

Penalty
avg., 2

min

Penalty
avg., 1

min

- 32207 32698 32370 32532 32634
AP/Pen. 32685 32952 32482 33418 33346
AP/TAP 32938 33969 33385 34062 35229
SL/Pen. 32793 32846 32977 33311 34014
SL/TAP 54454 54298 53956 59217 62341
RL/Pen. 32429 32885 32967 33099 33921
RL/TAP 56219 59382 64999 64001 59681

Instance 2
Greedy
algorithm
settings

Penalty
avg., 5

min

Penalty
avg., 4

min

Penalty
avg., 3

min

Penalty
avg., 2

min

Penalty
avg., 1

min

- 43982 42926 44102 44740 42997
AP/Pen. 48599 48773 48889 48052 47971
AP/TAP 50292 51263 51347 50868 52735
SL/Pen. 48457 48424 49859 48289 49588
SL/TAP 51024 49372 50288 50478 50604
RL/Pen. 50462 49237 50447 49412 49694
RL/TAP 50250 51447 51375 51890 50818

Instance 3
Greedy
algorithm
settings

Penalty
avg., 5

min

Penalty
avg., 4

min

Penalty
avg., 3

min

Penalty
avg., 2

min

Penalty
avg., 1

min

- 23965 23971 24230 24361 24244
AP/Pen. 31558 30658 28289 28259 27628
AP/TAP 38399 35194 36053 37428 36309
SL/Pen. 33571 28692 34031 34795 32079
SL/TAP 35364 36211 33761 36062 37932
RL/Pen. 30705 32001 34126 31801 30246
RL/TAP 37232 39864 35754 36301 37659
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E Statistics of the Neighborhood Operators

In this appendix we show charts and tables with statistics from one run of
our algorithm. The run we selected is the best run of the algorithm with the
selected settings, for problem instance 1. Instance 1 was chosen because, of
the three instances, it has the median best found penalty value. Some global
stats of the instance and this speci�c run, can be found in table 12.

All charts in this appendix show the values of one or more statistics
throughout the 16,530,000 iterations of the algorithm run. The run is divided
in blocks of 10,000 iterations, and the values of a statistic in each block are
aggregated into one value.

The �rst chart (�g. 1) shows the penalty value of the current and best
found solution through the run. The best found solution was found between
iterations 6,460,000 and 6,470,000. When a reheat happens, the current
penalty goes up enormously, after which it goes down again. A restart is also
visible in the chart: the current penalty value is �rst set to the best penalty
value, to immediately go up, and then go down again. An example of this can
be seen after just under 8 million iterations. The second chart (�g. 2) shows
the Simulated Annealing temperature throughout the run. Since the vertical
axis has a logarithmic scale and the temperature goes down exponentially,
this graph consists of straight lines.

To make the remainder of the charts clearer, they do not show the values
throughout the entire run, but rather stop at 7,200,000 iterations, which is
exactly 1 iteration of the reheat loop (see section 4.2) after the best solution
was found. Figures 3 to 4 show the same statistics as the �rst two charts,
but only throughout the �rst 7.2 million iterations.

Figures 5 to 34 show statistics for each of the neighborhood operators
separately. For each operator, there are two charts. The �rst chart shows
the distribution of the results of the calls to the operator. Improved means
that the resulting schedule had a better penalty value than before and equal
penalty means the penalty is equal. Worse, accepted means the resulting
timetable was worse, but Simulated Annealing accepted the change nonethe-
less, whereas worse, declined means the applied change was discarded. Failed
means the operator selected an operand, but the operation still failed (e.g.,
the Insert operator selected an unscheduled meeting, but there was no po-
sition in the timetable to schedule it). Finally, not possible means that the
operator could not be executed, because there were no available operands
(e.g., the Insert operator is called, but there are no unscheduled meetings).

The second chart for each operator shows the average change in penalty
induced by an accepted change made by the operator (i.e., for all accepted
changes made by the operator, the change in penalty is taken and of all those
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values the average is calculated). The chart also shows the average change
in penalty induced by calls that resulted in improvement of the penalty and
by calls that resulted in a worsening of the penalty, but were accepted by
Simulated Annealing. These are not shown for the Insert operator, because
it almost exclusively results in improvements. The values in these charts
(second chart for each operator) display a sliding average over 30,000 itera-
tions per data point, rather than the raw values for 10,000 iterations. This is
done to make the graph more readable, but for peaks of just one data point,
the value should be tripled.

Finally, tables 54 to 55 show these operator statistics summed over the
entire run of the algorithm.
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Figure 1: The penalty value of the current schedule (s in algorithm 1) and the
penalty value of the best found schedule (s̄ in algorithm 1) throughout the
run. The best solution was found between iterations 6,460,000 and 6,470,000.

Figure 2: The Simulated Annealing temperature throughout the run. The
vertical axis has a logarithmic scale, so the exponential temperature function
appears as straight lines.
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Figure 3: The penalty value of the current schedule (s in algorithm 1) and the
penalty value of the best found schedule (s̄ in algorithm 1) throughout the
�rst 7.2 million iterations of the run. The best solution was found between
iterations 6,460,000 and 6,470,000.

Figure 4: The Simulated Annealing temperature throughout the �rst 7.2
million iterations of the run.
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Figure 5: The distribution (over 10,000 iterations) of the results of the Insert
(Random) operator, throughout the �rst 7.2 million iterations.

Figure 6: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Insert (Random) operator, throughout the �rst 7.2
million iterations.
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Figure 7: The distribution (over 10,000 iterations) of the results of the Insert
(Sorted) operator, throughout the �rst 7.2 million iterations.

Figure 8: The average change in penalty of the timetable (over 10,000 it-
erations) induced by the Insert (Sorted) operator, throughout the �rst 7.2
million iterations.
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Figure 9: The distribution (over 10,000 iterations) of the results of the Move
Period (Random) operator, throughout the �rst 7.2 million iterations.

Figure 10: The average change in penalty of the timetable (over 10,000 it-
erations) induced by the Move Period (Random) operator, throughout the
�rst 7.2 million iterations, for improving results, accepted worsening results
and in total.
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Figure 11: The distribution (over 10,000 iterations) of the results of theMove
Period (Sorted) operator, throughout the �rst 7.2 million iterations.

Figure 12: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Move Period (Sorted) operator, throughout the �rst
7.2 million iterations, for improving results, accepted worsening results and
in total.
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Figure 13: The distribution (over 10,000 iterations) of the results of theMove
Room operator, throughout the �rst 7.2 million iterations.

Figure 14: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Move Room operator, throughout the �rst 7.2 million
iterations, for improving results, accepted worsening results and in total.
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Figure 15: The distribution (over 10,000 iterations) of the results of theMove
Cluster operator, throughout the �rst 7.2 million iterations.

Figure 16: The average change in penalty of the timetable (over 10,000 itera-
tions) induced by the Move Cluster operator, throughout the �rst 7.2 million
iterations, for improving results, accepted worsening results and in total.
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Figure 17: The distribution (over 10,000 iterations) of the results of theMove
Random (Random) operator, throughout the �rst 7.2 million iterations.

Figure 18: The average change in penalty of the timetable (over 10,000 it-
erations) induced by the Move Random (Random) operator, throughout the
�rst 7.2 million iterations, for improving results, accepted worsening results
and in total.
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Figure 19: The distribution (over 10,000 iterations) of the results of theMove
Random (Sorted) operator, throughout the �rst 7.2 million iterations.

Figure 20: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Move Random (Sorted) operator, throughout the �rst
7.2 million iterations, for improving results, accepted worsening results and
in total.
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Figure 21: The distribution (over 10,000 iterations) of the results of the
Change Day Rooms (Random) operator, throughout the �rst 7.2 million it-
erations.

Figure 22: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Change Day Rooms (Random) operator, throughout
the �rst 7.2 million iterations, for improving results, accepted worsening re-
sults and in total.
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Figure 23: The distribution (over 10,000 iterations) of the results of the
Change Day Rooms (Sort #Rooms) operator, throughout the �rst 7.2 million
iterations.

Figure 24: The average change in penalty of the timetable (over 10,000 itera-
tions) induced by the Change Day Rooms (Sort #Rooms) operator, through-
out the �rst 7.2 million iterations, for improving results, accepted worsening
results and in total.
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Figure 25: The distribution (over 10,000 iterations) of the results of the
Change Day Rooms (Sort Duration) operator, throughout the �rst 7.2 million
iterations.

Figure 26: The average change in penalty of the timetable (over 10,000 itera-
tions) induced by the Change Day Rooms (Sort Duration) operator, through-
out the �rst 7.2 million iterations, for improving results, accepted worsening
results and in total.
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Figure 27: The distribution (over 10,000 iterations) of the results of theMove
Best Rooms (Random) operator, throughout the �rst 7.2 million iterations.

Figure 28: The average change in penalty of the timetable (over 10,000 itera-
tions) induced by the Move Best Rooms (Random) operator, throughout the
�rst 7.2 million iterations, for improving results, accepted worsening results
and in total.
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Figure 29: The distribution (over 10,000 iterations) of the results of theMove
Best Rooms (Sorted) operator, throughout the �rst 7.2 million iterations.

Figure 30: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Move Best Rooms (Sorted) operator, throughout the
�rst 7.2 million iterations, for improving results, accepted worsening results
and in total.
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Figure 31: The distribution (over 10,000 iterations) of the results of the
Move Period Best Rooms (Random) operator, throughout the �rst 7.2 million
iterations.

Figure 32: The average change in penalty of the timetable (over 10,000 itera-
tions) induced by theMove Period Best Rooms (Random) operator, through-
out the �rst 7.2 million iterations, for improving results, accepted worsening
results and in total.
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Figure 33: The distribution (over 10,000 iterations) of the results of the
Move Period Best Rooms (Sorted) operator, throughout the �rst 7.2 million
iterations.

Figure 34: The average change in penalty of the timetable (over 10,000 iter-
ations) induced by the Move Period Best Rooms (Sorted) operator, through-
out the �rst 7.2 million iterations, for improving results, accepted worsening
results and in total.
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Table 54: The distribution of the results of all operators over all 16,530,000
iterations of the run.

Operator name
(Variant)

Im-
proved

Equal
penalty

Worse,
ac-

cepted

Worse,
de-

clined

Failed Not
possi-

ble

Insert (Random) 5,3% 0,0% 0,0% 0,2% 16,2% 78,2%

Insert (Sorted) 2,9% 0,0% 0,0% 0,0% 14,1% 83,0%

Move Period
(Random)

1,9% 0,3% 2,5% 69,2% 26,2% 0,0%

Move Period
(Sorted)

3,9% 0,4% 2,9% 66,5% 26,2% 0,0%

Move Room 5,2% 3,0% 7,9% 54,4% 29,6% 0,0%

Move Cluster 6,1% 4,2% 7,6% 52,5% 29,6% 0,0%

Move Random
(Random)

2,5% 23,3% 3,8% 70,4% 0,0% 0,0%

Move Random
(Sorted)

6,4% 40,4% 5,4% 47,8% 0,0% 0,0%

Change Day
Rooms (Random)

23,6% 63,4% 1,0% 5,9% 6,1% 0,0%

Change Day Rooms
(Sort #Rooms)

23,6% 62,9% 1,0% 6,5% 6,0% 0,0%

Change Day Rooms
(Sort Duration)

24,1% 64,0% 1,2% 3,3% 7,4% 0,0%

Move Best Rooms
(Random)

12,9% 74,8% 0,8% 7,6% 3,7% 0,1%

Move Best Rooms
(Sorted)

12,9% 74,8% 0,9% 7,5% 3,8% 0,2%

Move Period Best
Rooms (Random)

2,6% 0,3% 2,5% 83,7% 10,8% 0,1%

Move Period Best
Rooms (Sorted)

4,8% 0,3% 3,1% 80,8% 10,8% 0,1%
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Table 55: The number of calls to all operators and the average change in
penalty induced by each operator, for improving results, accepted worsening
results and in total, aggregated over all 16,530,000 iterations of the run.

Operator name (Variant) #Calls Im-
proved:
penalty
change

avg.

Worse,
accept-

ed:
penalty
change

avg.

Accept-
ed

penalty
change

avg.

Insert (Random) 2900 -4380 +220 -4350
Insert (Sorted) 382 -5048 +0 -5048
Move Period (Random) 2722806 -341 +399 +75
Move Period (Sorted) 1343197 -436 +369 -88

Move Room 7998231 -150 +199 +49
Move Cluster 2198294 -162 +184 +24
Move Random (Random) 115920 -244 +319 +20
Move Random (Sorted) 151227 -303 +220 -14

Change Day Rooms (Random) 116123 -388 +177 -102
Change Day Rooms (Sort
#Rooms)

60824 -394 +138 -105

Change Day Rooms (Sort
Duration)

7051 -389 +143 -103

Move Best Rooms (Random) 572213 -322 +195 -45
Move Best Rooms (Sorted) 701119 -321 +196 -45
Move Period Best Rooms
(Random)

304131 -434 +365 -37

Move Period Best Rooms
(Sorted)

235582 -624 +350 -236
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F Screenshots of the GUI Application

Figure 35: This screenshot shows the Project tab of the application. Here
the block settings can be selected. These settings determine the number of
weeks in the block, the associated calendar week numbers and the unavailable
periods.
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Figure 36: This image shows the Requests tab. Courses can be added, edited
and removed and for each course, the requested meetings can be added, edited
and removed. The grid shows all of the selected course's requests, positioned
according to their preferred start period and duration. The bottom of the
image shows the panel where the selected meeting request can be edited, in
this case for a simple meeting.
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Figure 37: The Schedule tab of the application is shown in this �gure. There
are buttons to automatically generate a timetable using our algorithm and
for each week a grid shows the meetings scheduled in that week, positioned
according to their scheduled periods and rooms.
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Figure 38: The is another �gure of the Schedule tab, this time showing the
panel to edit the scheduled start period and rooms of a meeting. It is also
possible to �x a meeting's start period and/or rooms (see section 3.6). The
right side of the panel shows information about the request.
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