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Abstract

The Quark-Gluon Plasma (QGP) is the object of study of the ALICE experiment. To
get a grip on some of its properties, the so-called flow harmonics are studied. In this
thesis the values of some of these harmonics, and the correlations between them are
estimated using data recorded with the ALICE detector from Pb-Pb collisions with
energies of

√
sNN = 2.76 TeV. An algorithm for the calculations needed to obtain

these correlations, as presented in Ref.[1], is tested. An overview of the detector used
to record the data, and of the mathematics used to estimate the flow harmonics and
their correlations is given. The results show that the harmonics themselves behave as
expected and that the algorithm did not produce accurate results. Some suggestions
are given as to why it didn’t and what could be done to improve the results.
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1 Introduction

In the field of high energy physics many different topics are being researched. Some of these
are the nature of sub-atomic particles or the nature of the early universe. One of the objects
of study is the so-called quark-gluon plasma, which is theorized to have been the state in
which our universe resided at times shorter than t ∼ 10−5 seconds and temperatures of at
least T ∼ 2× 1012K [2]. In the lab the quark-gluon plasma is created by colliding heavy ions
at very high energies, in the case of the LHC lead ions. How exactly this is done, will be
explained in Section 2. Many models exist that describe the way the quark-gluon plasma,
or QGP, behaves and do so quite successfully. The problem that remains is that the initial
conditions of these models can still be varied and produce accurate predictions of how the
QGP behaves. In order to further restrict these initial values we can calculate the correlations
between the flow harmonics. What these are and why they are important will be explained
in Section 3. The methods for calculating these correlations have already been developed to
some extent. In particular I will be looking at an algorithm which is introduced in Ref.[1]
and can be used in order to calculate these correlations. This then brings us to my research
question:

Is this algorithm a good method for calculating correlations in flow harmonics?

What defines a good method? In this case the algorithm can be considered good if, first,
it makes accurate calculations of what the correlations are. Second, if it is compact, so that
it does not need many lines of code to implement. And finally if it is fast, it is of little use
to have a fancy method for calculating the correlations if it takes really long to do so. With
this we can define several secondary questions:

• Is this algorithm fast?

• Is this algorithm compact?

• Is this algorithm accurate?

Whether or not this algorithm satisfies these conditions will be explored in this thesis. I
will start off with an explanation of the detector, focusing on the parts that were of most
importance to my research. Then I will explore the mathematics behind the flow harmonics,
starting off with integrated and differential flow, then moving on to the algorithm itself. After
that I will show the results for the integrated and differential flow, and those of the algorithm
itself. Finally I will draw conclusions and discuss the results in more detail, also giving some
suggestions for improvement or future research.
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2 Experiment

In order to calculate the correlations and test the algorithm data is needed. The data used in
this thesis was recorded by the ALICE detector, located at CERN near Geneva, Switzerland.
It is one of the experiments being conducted at the Large Hadron Collider, or LHC. The
LHC is a circular accelerator with a circumference of 27 km, and as such is currently the
largest and most powerful particle accelerator in the world. Currently the LHC has achieved
collisions with energies up to 13 TeV in the center-of-mass system [3].

2.1 The ALICE detector

In this section I will give a brief overview of the detector that recorded the data used in
this thesis, for a more detailed description see Ref.[4]. ALICE, a shorthand for A Large Ion
Collider Experiment, is a heavy-ion detector built in order to study the particles produced
during Pb-Pb collisions, which will originate from the expanding QGP created after the
impact of two ions. As such it capable of handling high multiplicities, being optimized for
dN /dη = 4000, but tested with simulations up to dN /dη = 8000. An overview of the layout
of the detector is given in Fig.1. Starting from the impact point, the innermost part of the
detector is the ITS, or inner tracking system. It consists of the Silicon Pixel Detector (SPD),
the Silicon Drift Detector (SDD) and the Silicon Strip Detector (SSD), having two layers
of each type starting with the SPD followed by the SDD and the SSD in that order. The
main tasks of the ITS are: to localize the impact point with a resolution better than 100
µm, to aid in the reconstruction of secondary decays, and to track and identify particles
with a momentum lower than 200 MeV/c. This is done to improve the momentum and
angle resolution of particles reconstructed by the Time Projection Chamber (TPC) and to
reconstruct particles traversing the dead regions of the TPC. It covers a pseudo-rapidity
range of |η| <0.9 for all vertices within the interaction diamond. This is region around the
interaction point with a length of 5.3 cm in either beam directions and 1 cm transverse
to the beam measured from the center of the interaction point, thus forming a diamond
shape. Directly surrounding the ITS is the TPC, this is the main tracking detector and it is
optimized to provide charged-particle momentum measurements. As such it has good two-
track separation, particle identification, and vertex determination. It can fully cover the entire
azimuthal plane, with the exception of some deadzones. It has a psuedo-rapidity range of
|η| <0.9 for full radial tracks (tracks with matches in the ITS, TRD and TOF detectors); it can
also cover reduced tracks (tracks that are not fully radial) up to |η|=1.5, and covers a large pT
range of about 0.1 GeV/c to 100 GeV/c with good momentum resolution. Further outward
there are more detectors, the Transistion Radiation Detector (TRD), the Time-Of-Flight
(TOF) detector, the High-Momentum Particle Identifcation Detector (HMPID), PHOton
Spectrometer (PHOS) and ElectroMagnetic CALorimeter (EMCAL). These detectors are
important to the research being conducted at ALICE, but are not of interest for this thesis,
for more information on these detectors see Ref.[4].
In the beam directions, both forward and back, several more detectors are found. For this
thesis the V0 detector is of the most interest, because it is used to estimate the centrality of
the collisions. It is a small angle detector consisting of two parts, V0A and V0C on opposite
ends of the interaction point. Each of these consists of arrays of scintillation counters. The
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Figure 1: Overview of the ALICE detector layout, with in the top right a close up of the
ITS. [5]

V0 serves several purposes, it provides triggers for the central barrel detectors, such as the
ITS and the TPC, in pp and A-A collisions. The V0 also serves as an indicator of the
centrality of the collision by recording the multiplicity of the event. Cuts can be made on the
total number of fired counters and on the total charge in order to achieve centrality triggers.
There are three different triggers using this method, the multiplicity, semi-central and central
triggers.

2.2 Data and data selection

For this thesis data recorded from a run in 2010, with Pb-Pb collisions with energies of√
sNN = 2.76 TeV, is used. In this thesis only the tracks of charged particles were being

analysed. The tracks that were used for analysis are those with hits in both the ITS and
TPC detectors. In particular tracks that originated from the primary vertex, and without any
kinks, having one or multiple kinks in the track would indicate a scattering or that a secondary
decay has occurred. The total number of events is a little under 16 million. The centrality
estimation was done using the V0 detector. Some further selection was made on the data in
the form of centrality and pseudo-rapidity cuts. For the correlations calculations were made
for centralities up to 70%. For higher centrality percentiles there is too much contamination
from secondary collisions such as beam-gas collisions, which will lead to inaccurate results. A
centrality cut already existed in the data around the 90% mark. Events with a centrality of
0% were also excluded, because many of these are events without any actual tracks, leading
to errors in the program when it ran. A further cut was made on the data via the pseudo-
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rapidity parameter, accepting only tracks with −0.8 < η < 0.8. This is mostly due to limited
coverage of the TPC which covers −0.9 < η < 0.9 for full radial tracks as mentioned above. A
cut was also made on the transverse momentum pT, accepting only tracks with 0.2 < pT < 50
GeV/c. For the calculation on the differential flow, as explained in Section 3, the same cuts
as before on pT and η were made. This time looking only at events with centralities between
20% and 30%.

2.3 Methods

Before we get into the theory from which the algorithm is derived, some explanation as to
how the data was processed is in order. For all the calculations ROOT was used. ROOT
is a modular scientific software framework. It provides all the functionalities needed to deal
with big data processing, statistical analysis, visualisation and storage. It is mainly written
in C++ but integrated with other languages such as Python and R, see also Ref.[6]. For this
thesis C++ was used. For the calculations of the flow harmonics new code was written, for
the calculation of the correlations between the harmonics using the algorithm, a code package
provided by the authors of the algorithm was used, for more information on the algorithm,
see Section 3.2.

3 Theory

In this section the mathematics for calculating the correlations will be covered. Starting off
with an explanation of integrated and differential flow as described in Ref.[7], then moving on
to the algorithm itself. In order to explain how I used this algorithm I will also be explaining
the way these correlations can be calculated directly.

3.1 Integrated and differential flow

In this section I will introduce the methods for calculating integrated and differential flow
as put forward in Ref.[7]. We begin with an explanation as to what flow is in the context
of this thesis. Flow gives a description of the collective expansion of the QGP in the plane
perpendicular to the beam; As such it is also known as transverse flow[8]. This transverse
flow can be split into two parts, central flow and anisotropic flow, the part we are interested
in is anisotropic flow. Anisotropic flow is a way to quantify the anisotropies in the azimuthal
distribution of final-state particles. One way to interpret these anisotropies is as a response
of the QGP to the anisotropies in the initial geometry, as such it is highly susceptible to the
properties of the QGP at an early time of its evolution. It can be characterized by coefficients
of a Fourier expansion of the azimuthal dependence of the invariant yield of particles relative
to the reaction plane:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy
[1 +

∞∑
n=1

2vn cos (n(φ−ΨRP))]. (1)

Here E is the energy of the particle, pT is the transverse momentum, φ is its azimuthal
angle, y is the rapidity, and ΨRP is the reaction plane angle; see Fig.2. In Eq.1 we see the
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Figure 2: Schematic overview of a non-central collision in the transverse plane. [7]

coefficients labelled vn, the first coefficient v1 is often called directed flow, and v2 is called
elliptic flow. These coefficients are what we call the flow harmonics. We can look at either
the pT dependence of these coefficients, in which case we talk about differential flow, or at
the centrality dependence, the so-called integrated flow. The values of these coefficients are
estimated using multi-particle azimuthal correlations. In order to calculate these correlations
without having to deal with non-flow contributions multi-particle cumulants are used. One of
the major problems in using these cumulants is the large amount of computing power needed
to go over all possible particle multiplets. So in order to avoid this problem we can express
the cumulants in terms of moments of the magnitude of the corresponding flow vector Qn,
defined as:

Qn ≡
M∑
i=1

einφi , (2)

where M is the number of particles. Using the approach put forward in Ref.[7] the cumulants
are calculated directly from the data without any approximations. As such they are called
direct cumulants or Q-cumulants. In this thesis all calculations of flow or flow correlations
were done using 2-particle and 4-particle correlations. They are obtained by first averag-
ing over all particles in a given event and then averaging over all events. This latter uses
weights depending on event multiplicity. Single-event average 2- and 4-particle correlations
are defined as:

〈2〉 ≡ 〈ein(φ1−φ2)〉 ≡ 1

PM,2

∑
i,j

′

ein(φi−φj), (3)

〈4〉 ≡ 〈ein(φ1+φ2−φ3−φ4)〉 ≡ 1

PM,4

∑
i,j,k,l

′

ein(φi+φj−φk−φl), (4)
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where Pn,m = n!/(n −m)!, and the prime in the sum, i.e.
∑
i,j,k,l

′
, means that i 6= j 6= k 6= l.

The second step involves averaging over all events:

〈〈2〉〉 ≡ 〈〈ein(φ1−φ2)〉〉 ≡

∑
events

(W(2))i〈2〉i∑
events

(W(2))i
, (5)

〈〈4〉〉 ≡ 〈〈ein(φ1+φ2−φ3−φ4)〉〉 ≡

∑
events

(W(4))i〈4〉i∑
events

(W(4))i
, (6)

the double brackets indicate an average, first over all particles and then over all events. W(2)

and W(4) are the event weights, which are used to minimize the effect of multiplicity variations
in the event sample on the correlations. The weights are defined as:

W(2) ≡M(M − 1), (7)

W(4) ≡M(M − 1)(M − 2)(M − 3). (8)

This definition of the weights takes into account the number of different 2- and 4-particle
combinations in an event with multiplicity M. Using the definitions above we can now define
the 2- and 4-particle cumulants, the 2-particle cumulant is simply the event averaged 2-
particle correlation defined in Eq.5:

cn{2} = 〈〈2〉〉, (9)

and the 4-particle cumulant is given by:

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2. (10)

From here we can now calculate the actual flow harmonics vn, we can use different order
cumulants to estimate the value of the same harmonic, in particular:

vn{2} =
√
cn{2}, (11)

vn{4} = 4
√
−cn{4}, (12)

where the number in braces behind the vn is used to denote the order of cumulant used for
estimation of the flow harmonic. Having defined all this we can now get into the theory of
integrated and differential flow.

3.1.1 Integrated flow

We begin by showing how the integrated or reference flow is calculated, once again following
Ref.[7]. We begin by separating the diagonal and off-diagonal terms in |Qn|2:

|Qn|2 =
M∑
i,j=1

ein(φi−φj) = M +
∑
i,j

′

ein(φi−φj), (13)
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where the factor M in the last term appears for all instances that i = j, and the final sum
once again has i 6= j. From this we now easily obtain 〈2〉:

〈2〉 =
|Qn|2 −M
M(M − 1)

. (14)

We can now use Eq.5, Eq.9, and Eq.11 to find the 2-particle harmonics vn{2}. Something
similar to this can be done in order to obtain the event averaged 4-particle correlation, we
start with the decomposition of |Qn|4, for the full decomposition see Ref.[7]:

|Qn|4 = QnQnQ
∗
nQ
∗
n =

M∑
i,j,k,l=1

ein(φi+φj−φk−φl). (15)

From its decomposition we can now obtain the single-event averaged 4-particle correlation:

〈4〉 =
|Qn|4 + |Q2n|2 − 2 ·Re[Q2nQ

∗
nQ
∗
n]

M(M − 1)(M − 2)(M − 3)
− 2

2(M − 2) · |Qn|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
, (16)

from here we can obtain 〈〈4〉〉 by using Eq.6 and Eq.8. Using this and the 2-particle corre-
lation from Eq.5 we can now obtain the 4-particle cumulant cn{4} as defined in Eq.10, and
from it vn{4} using Eq.12.

3.1.2 Differential flow

Using the formulas from the previous section an estimation can be made of the integrated or
reference flow. The reason it is called reference flow is because it is used as a reference when
calculating the differential flow. In order to calculate the differential flow we need to label
some particles of interest (POIs) and reference flow particles (RFPs). In this thesis the POIs
were particles that fell within a given transverse momentum range. Starting with pT = 0.2
GeV/c and moving up in incremental steps to pT = 50 GeV/c, all calculations were done
for events within the 20-30% centrality range. The RFPs were simply all particles within
the same centrality range. Now we can estimate the differential flow of the POIs using the
reference flow calculated using the RFPs. For this section I will only cover the 2-particle
correlations, since these were the only ones I used for calculating the differential flow. We
start of by defining the reduced 2-particle azimuthal correlation:

〈2′〉 ≡ 〈ein(ψ1−φ2(〉 ≡ 1

mpM −mq

mp∑
i=1

M∑
j=1

′

ein(ψi−φj), (17)

where mp is the total number of POIs, which can also include some particles labelled as
RFPs. mq is the total number of particles that are both a POI and a RFP, so for this thesis
mp = mq, because all particles that are being looked at are RFPs. M is the total number of
particles labelled as RFP, some of which are also POIs. ψi is the azimuthal angle of the i -th
particle labelled as POI. φj is the azimuthal angle of the j -th particle labelled as RFP. The
prime after the summation sign once again denotes a sum with all indices taken different.
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The event averaged reduced 2-particle correlation is given by:

〈〈2′〉〉 ≡

∑
events

(w(2′))i〈2′〉i∑
events

(w(2′))i
, (18)

where the weights are defined as:

w(2′) ≡ mpM −mq. (19)

From this we now get the differential 2-particle cumulant dn{2}:

dn{2} = 〈〈2′〉〉. (20)

Now the 2-particle differential flow v′n{2} is given by:

v′n{2} =
dn{2}√
cn{2}

. (21)

Because the POIs in this thesis are selected based on their transverse momentum, I will
denote the differential flow with vn(pT).

3.2 The algorithm

In the previous section we explored the definitions of integrated and differential flow as
presented in Ref.[7]. Now I will introduce the algorithm used to calculate the correlations
between different order harmonics. This algorithm is the second of two algorithms introduced
in Ref.[1]. In order to explain it, we begin with the definition of the weighted single-event
averaged multi-particle correlation:

〈m〉n1,n2,...,nm ≡ 〈ei(n1φk1+n2φk2+···+nmφkm )〉

≡

M∑
k1,k2,...,km=1

′
wk1wk2 · · ·wkmei(n1φk1+n2φk2+···+nmφkm )

M∑
k1,k2,...,km=1

′
wk1wk2 · · ·wkm

,
(22)

where n1, n2, . . . , nm are the harmonics to be correlated, M is the multiplicity of the event, φ
labels the azimuthal angles of the particles, and w labels the particle weights. In this thesis
weights were not used, but they are needed for proper construction of the general framework.
The prime behind the summation signs once again indicates no repeated indices. Since for
this theory weights are used, I will also introduce the weighted Q-vector:

Qn,p ≡
M∑
k=1

wpke
inφk , (23)
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where n denotes the order of harmonic, and p the power of the weights. Now we can define the
algorithm, starting with some shortcuts for ease of writing. We split Eq.22 into its numerator
and denominator:

N〈m〉n1,n2,...,nm ≡
M∑

k1,k2,...,km=1

′

wk1wk2 · · ·wkmei(n1φk1+n2φk2+···+nmφkm ), (24)

D〈m〉n1,n2,...,nm ≡
M∑

k1,k2,...,km=1

′

wk1wk2 · · ·wkm = N〈m〉0,0,...,0. (25)

Because the denominator is easily obtained from the numerator by setting all harmonics to
zero, it is omitted in further discussion on the algorithm. The innermost sum can be rewritten
without the constraint of not being equal to any other index as the following:

N〈m〉n1,n2,...,nm =
M∑

k1,k2,...,km−1=1

′
wk1wk2 · · ·wkm−1e

i(n1φk1+n2φk2+···+nmφkm−1
)

×(
M∑

km=1

wkme
inmφkm −

m−1∑
j=1

wkje
inmφkj ).

(26)

This can be expanded into the following recursive formula:

N〈m〉n1,n2,...,nm = Qnm,1N〈m− 1〉n1,n2,...,nm−1 −N〈m〉n1+nm,n2,...,nm−1

−N〈m− 1〉n1,n2+nm,...,nm−1 − . . .−N〈m− 1〉n1,n2,...,nm−1+nm ,
(27)

from this the algorithm can be derived. The authors of Ref.[1] have provided a code package
that can be used with ROOT to implement this algorithm for calculations up to and including
m = 8, the URL to download the package can be found in their paper. The algorithm is
outlined in pseudo-code below, initially all ci = 1:

N〈1〉′n1
({c1}): return Qn1,c1

N〈m〉′n1,...,nm
({c1, . . . , cm}):

C ← Qnm,cm×N〈m− 1〉′n1,...,nm−1
({c1, . . . , cm−1})

if cm ≤ 1 then
for i← 1,m− 1 do

C ← C − ci×N〈m− 1〉′n1,...,ni+nm,...,nm−1
({c1, . . . , ci + 1, . . . , cm−1})

end for i
end if
return C .

(28)

More details on the algorithms and their derivation and implementation can be found in
Ref.[1]. One other important concept from this paper are the so-called standard candles
(SC). It starts off with the following four-particle correlation:

〈〈cos(mφ1 + nφ2 −mφ3 − nφ4)〉〉, (29)
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then the constraint m 6= n is imposed. The isotropic part of the four-particle cumulant is
given by:

〈〈cos(mφ1 + nφ2 −mφ3 − nφ4)〉〉c = 〈〈cos(mφ1 + nφ2 −mφ3 − nφ4)〉〉
− 〈〈cos[m(φ1 − φ2)]〉〉〈〈cos[n(φ1 − φ2)]〉〉

= 〈v2mv2n〉 − 〈v2m〉〈v2n〉
= 0.

(30)

The double brackets once again indicate averaging over all events. Due to the condition that
m 6= n, a lot of terms which appear in the general cumulant expansion, such as 〈〈cos[m(φ1−
φ2)]〉〉, are non-isotropic, because of this they average to zero when averaged over all events. If
the values of vm and vn are fixed over all events, the four particle cumulant as defined above is
zero by definition. The same thing happens when these two harmonics are uncorrelated, since
the expression 〈v2mv2n〉 can then be factorized. Taking all of this into account, this four-particle
cumulant is non-zero only if the event by event fluctuations of vm and vn are correlated.
Therefore, measurement of this standard candle can be used to estimate the correlations
between two different flow harmonics. By combining this concept with the algorithm above,
we get a method for calculating the SC’s without using direct calculations. The notation for
these correlations is SC(m,n) with m and n representing the different harmonics, so SC(4,2)
would be the correlation between v2 and v4.

4 Results

Now that we have covered how the data was recorded and how it was analysed, we can get
into the results. I will begin by showing the results of the estimations of the integrated and
differential flow. The integrated flow was calculated for the 2nd, 3rd and 4th order harmonics,
the differential flow was calculated only for the 2nd order harmonic. The integrated flow is
plotted in Fig.3, and the differential flow is plotted in Fig.4. We can see in Fig.3 that the 2nd

order harmonics is the largest, followed by the 3rd and 4th order. There is also an increase in
the value of all three harmonics as the centrality increases. In Fig.4 we see an initial increase
in the value of v2{pT} with pT up to a value of 3.75 Gev/c, then it starts to decrease. As
a side note, the errors on these values are smaller than the marker size. Now we get into
the results of the algorithm, shown in Fig.5. Here we can see that the flow harmonics have
much smaller correlations according to the estimation made by the algorithm, in comparison
to estimations made by the authors of Ref.[9]. They only estimated the correlations between
the 2nd and 4th, and the 2nd and 3rd order harmonics, so there are no results that can be used
to compare the estimation of SC(4,3) to.
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Figure 3: 2nd, 3rd and 4th order integrated flow harmonics, as a function of the centrality,
with 0.2 < pT < 50 GeV/c and |η| < 0.8.
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Figure 4: 2nd order harmonic differential flow in the 20-30% centrality range and |η| < 0.8.
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Figure 5: The estimations for the correlations between the flow harmonics as function of
the centrality, as estimated by the algorithm from Section 3.2. The solid markers are the
values as estimated by the algorithm, the open markers, if present, are values for the same
correlations as calculated by the authors of Ref.[9].
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5 Conclusions, discussion, and outlook

Now that we have covered all the topics needed to answer the research question, we can get
to answering it and discussing the possible reasons why the algorithm failed or succeeded.
Some suggestions for possible future research into this topic are also made.

5.1 Conclusions

We start of by drawing conclusions on the results obtained and the answering the research
question. The question that was asked at the beginning of this thesis was:

Is this algorithm a good method for calculating correlations in flow harmonics?

The criteria for this algorithm had to fulfil before we could call it good, were the following:

• Is it compact?

• Is it fast?

• Is it accurate?

The most important of these three conditions is accuracy. It is of little use to have a fast and
compact algorithm, if it does not produce accurate results. As we can see from the results, it
is not accurate. The estimations it made for the SC’s are nowhere near the values found in
previous research. As such the conclusion here is that, no, the algorithm is not accurate. As
for the other two criteria, the algorithm was reasonably compact. There were multiple files
needed to implement it, but it did not require many lines of code to use it, compared with
using direct calculations. As for its speed, there wasn’t really anything for me to compare it
to, but it ran the calculations on the entire set of 16 million events in a little under 6 hours.
This allowed me to do multiple runs on the data to optimize my code, and to correct some
possible errors that were made during implementation. So the answer to the main question
is, no, this algorithm is not a good method for calculating correlations in flow harmonics.
The reason for this is that it failed to produce accurate estimations of the correlations.
On the other hand, the estimation on the flow harmonics themselves did show trends that
match the expectations, both for the integrated, and the differential flow. The expectations
for the integrated flow were an increase with centrality due to the more elliptical nature of
the impact area of two colliding particles when the centrality increases. These results for the
flow harmonics show that the data that was recorded is good, and that the fault with the
estimations of the algorithm most likely lies in its implementation.

5.2 Discussion and suggestions

The one thing that caused me the most problems was the actual implementation of the
algorithm itself. This was mostly to do with my inexperience with coding, and partly with
the comments provided to explain the code that I tried to implement. From this code itself it
also wasn’t entirely clear which quantity it calculated. Whether this was the entire SC itself
or only 〈v2mv2n〉 wasn’t clear. The results shown in this thesis were calculated in assumption
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of the latter. Multiple attempts were made to find out what quantity it calculated but all of
these did not produce accurate results. The results shown were chosen mostly because they
seemed to be the most promising when testing the code on a toy Monte-Carlo model, the steps
taken during this testing can be found in Appendix A. One other missed opportunity was
the use of particle weights, that can be used to correct for non-uniform track reconstruction
efficiency. They were not used in this thesis but they might have produced different results,
which in turn could have been more similar to what was found in previous research. One
other option would have been to consult the authors of the algorithm, however, time did not
allow for this.
So some suggestions can be made to improve the results from this thesis, or for future research
to be done. A more in depth look at the structure of the code provided could offer some
clarity on the results it produces, which could lead to a different implementation and better
estimations of the SC’s. Using particle weights could also improve these estimations. When
the algorithm does prove to be successful it could be used for calculations of correlations
with more than 4 particles, it is there that the most profit could be gained from using this
algorithm opposed to using direct calculations, which become quite cumbersome for many
particles. This could lead to more accurate estimations of the correlations, that could give rise
to a better understanding of how the anisotropies observed are linked to the initial conditions
of high energy heavy ion collisions.
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A Toy Monte Carlo simulations

As mentioned before in Section 5, the results that are shown were chosen because of their
promising results during testing with a Monte-Carlo (MC) model, that was used in order to
develop the code and test different ways of implementing the algorithm. In this section we
will discuss which steps were taken, and what the results were.
First some explanation on the implementation of the algorithm is in order. To use the algo-
rithm in order to calculate the SC’s first the harmonics had to be defined. This was done
using vectors, for example, the vector (2,2,4,4) was used for calculating SC(4,2). These vec-
tors are then used to define the Q-vectors that store the information on the particle tracks.
At first the Q-vectors were defined by setting the maximum number of harmonics involved
and the maximum power of weights. Using this method however caused the SC(4,3) to have
values in the order of ∼ 10253 causing them to not be plotted at all, when the change was
made to use the harmonic vectors to define the Q-vectors this issue was resolved. Having
properly defined both the harmonic vectors and the filled Q-vectors, the correlations can be
calculated. In this simulation the value of v2{2} was distributed continuously between 0.1
and 0.2. The values of v3{2} and v4{2} were then generated using a Gaussian distribution
with an average of −v2{2} and v2{2} respectively, both with a standard deviation of 0.01.
These values for the harmonics are then used to generate a set of angles which represent the
tracks in the actual data.
After the first run over real data, it seemed that the SC’s it calculated had the wrong sign.
As a first step the order of harmonics in the vector were changed to see if this made a dif-
ference. So instead of defining the vector as (2,2,4,4) it was defined as (4,4,2,2) or some
other permutation of these numbers. This seemed to make a difference at first, but when the
MC was run using more events and tracks the estimations once again appeared to have the
wrong sign. Up until this point it was assumed that the results that the algorithm produced
were the SC’s as defined in Eq.30. However, considering that the MC model did not produce
the expected results and that the order in which the harmonics were defined did not seem
to make a difference this was probably wrong. Finally, it was assumed that the value it
calculated using the mixed 4-particle harmonic was not the SC, but instead 〈v2mv2n〉 as seen in
the second to last line in Eq.30. So then 2-particle harmonics were also defined and used to
calculate 〈v2m〉. Using all this the SC’s were finally calculated using the method from Eq.30.
This then produced results that matched the expectations, as seen in Fig.6.

The final simulation was run using six different harmonic vectors, three defining the har-
monics used in the 4-particle mixed harmonic correlator 〈v2mv2n〉, constructed as (m,n,m, n),
and three defining the harmonics for the 2-particle correlators 〈v2m〉. Using the 4-particle
harmonic vectors three different Q-vectors were defined. Each one for storing the data for
estimating a different SC. This was done to ensure that each of the Q-vectors was constructed
as appropriate for the mixed harmonic it was defined from. The 2-particle correlations were
also calculated from these Q-vectors, simulations were run to test whether or not using a
different Q-vector made a difference, but this proved not to be the case. Using these six
harmonics and three Q-vectors the SC’s were estimated using Eq.30. These are also the
settings used for generating the results from Fig.5.
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Figure 6: The results of the final MC simulation, with the SC’s being calculated using
multiple harmonics and Q-vectors.


	Introduction
	Experiment
	The ALICE detector
	Data and data selection
	Methods

	Theory
	Integrated and differential flow
	Integrated flow
	Differential flow

	The algorithm

	Results
	Conclusions, discussion, and outlook
	Conclusions
	Discussion and suggestions

	Toy Monte Carlo simulations

