
UTRECHT UNIVERSITY

BACHELOR THESIS

School matching in Amsterdam:
Top Trading Cycles reconsidered

Author:
Simone VAN BRUGGEN

Supervisor:
Dr. J.M. BROERSEN

A 7.5 ECTS thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Faculty of Humanities

July 4, 2017

http://www.uu.nl
https://www.uu.nl/staff/JMBroersen/0
http://www.uu.nl

i

Abstract

Simone VAN BRUGGEN

School matching in Amsterdam:
Top Trading Cycles reconsidered

For years, the matching of students to schools in Amsterdam has been a tough chal-
lenge. Especially in 2015, when the matching algorithm DA-MTB was used, many
families were displeased with the results.

By running simulations using real data from the Amsterdam matching process,
the different matching mechanisms can be compared. Boston, DA-MTB, DA-STB
and TTC are analysed on their theoretical properties and performance on efficiency
and fairness.

The Boston mechanism performs best in placing students at their first choice, but
does place many students at a school they do not prefer. DA-MTB maximizes the
number of students assigned to a school in their top-5, but assigns the smallest num-
ber of students to their first choice. When comparing DA-STB and TTC, they create
a similar assignment, but TTC places more students at schools for every rank in the
preference list and creates a Pareto efficient assignment. TTC can be adapted to the
admission problem in which school-specific priorities exist by applying its assign-
ing process only to a subset of the students. TTC does create instances of justified
envy, but given its properties and results seems a better fit to the Amsterdam school
problem than DA-STB.

Keywords: school choice, allocation mechanism, Boston mechanism, Deferred Ac-
ceptance mechanism, Top Trading Cycles, strategy-proofness, Pareto efficiency, fair-
ness

ii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Context and A.I. 2

2 Theoretical background 3
2.1 Problem statement . 3

2.1.1 Properties . 3
2.1.2 Impossibility theorems and trade-offs 5

2.2 Overview algorithms . 5
2.2.1 Boston . 5
2.2.2 Deferred Acceptance . 6

3 Top Trading Cycles 7
3.1 Algorithm . 7
3.2 Objections to TTC . 8
3.3 Properties . 8
3.4 Restricting tradeable priorities . 9

4 Data modeling 10
4.1 Dataset . 10
4.2 Simulations . 10
4.3 Evaluation measures . 11

5 Results 12

6 Conclusion 14
6.1 Conclusion . 14
6.2 Future research . 15

Bibliography 16

A Python implementation 17

1

1 Introduction

1.1 Introduction

After graduating primary school, students have to make an important decision:
which secondary school do they want to attend? In Amsterdam, this choice is even
more difficult, since the capacities of popular schools are not sufficient for the num-
ber of applicants. This leads to the complicated issue of assigning students to schools,
which is one of the most studied problems in market design.

Mechanisms to match students to schools can be as simple as a lottery, but many
more sophisticated algorithms exist. A variation on a simple lottery was used in
Amsterdam for many years. The Boston mechanism1 assigns students to their school
of preference by drawing lots. If a student is not assigned in the first round, she has
to pick a preference from the schools that still have capacity and draw lots again.
This process continues until every student is assigned. This leads to many students
being placed at their favourite school, but being unlucky in the first round drasti-
cally restricts a student’s choice and often leads to being placed at a school they do
not prefer.

In 2015, a mechanism called Deferred Acceptance (DA) was implemented. In this al-
gorithm, which works similar to the Boston mechanism, students get placed based
on a lottery, which is different for each school. The main difference with Boston is
that the actual assigning is deferred until all students are placed. Thus, being chosen
in the first round does not guarantee a spot at that particular school. Because of the
working of DA, students need to hand in a list of preferences whereas Boston only
demands a single choice per round. Handing in an extensive preference list is more
demanding for students. For example, they have to visit more information days of
schools which is time-consuming.

The results of DA were mixed, as it placed many students at a school in their top-3,
but also left a notable part of the students unassigned. Furthermore, there was a
considerably large group of students who wanted to switch schools with each other.
This even led to a lawsuit. The judge decided that under no circumstances switching
should be allowed, since this would lead to strategic choosing of preferences in the
future. For many parents, this was hard to grasp, because the switching of places
seemed like an obvious thing to do and it is hard to see the consequences of switch-
ing without knowledge about the algorithms involved. Furthermore, many families
prefer to have some control over the outcome of the matching and do not view strate-
gising as a bad thing. This property of strategy-proofness, which simply means that
strategic choices do not lead to a better result, is a preferable property of matching
mechanisms as it makes the assignment process more clear. Giving true preferences
is the best strategy, which is useful for school boards and less stressful for students

1We will often refer to the Boston mechanism as Boston for brevity.

Chapter 1. Introduction 2

since they do not have to worry about their strategy. Therefore, strategy-proofness
was a strong requirement from the municipality for the matching mechanism [8].

Because the results of DA led to many complaints, OSVO2 initially decided to switch
back to Boston. This choice led again to protest from parents; they started a petition
for ‘matching 2.0’ [16] which OSVO accepted. Matching 2.0 is a version of Deferred
Acceptance in which students have one lottery number for every school. As a result,
more students got accepted on their most preferred school. Even though the results
of matching 2.0 were received as positive and promising, the mechanism still has its
shortcomings. More students than in 2015 got allocated on a school that is not in
their top-5 and a substantial number of students ended up at a school they did not
desire. Furthermore, parents and students found the system complicated and were
not satisfied with the long preference lists they have to come up with. Especially in
case of a low lottery number, students have to hand in lenghty preference lists.3

Apart from satisfying parents and students, the mechanism also needs to fit require-
ments imposed by the city counselor and the municipality. For example, they require
that the system leads to no strategic behaviour and true preference lists, and gives
no reason for students to switch their position in the resulting allocation.

Ideally, there exists an algorithm that manages to both satisfy the wishes of par-
ents and students, and the requirements given by the municipality. As we will see,
finding a ‘perfect’ system is impossible and trade-offs need to be made between
desirable properties. The aim of this thesis is to clarify the matching process and
the difficulties in finding an ultimate system. We will propose a different algorithm
called Top Trading Cycles to solve the matching problem, and we will analyze and
compare the various algorithms to provide more insight in their performance.

1.2 Context and A.I.

The matching of students to schools is a classic example of a problem in which mar-
ket design, game theory and social choice come together. Research about this subject
is also relevant for the field of artificial intelligence (A.I.), as it involves studying and
formalising human behaviour. The gap between the perfect mathematical world and
the real world makes it hard to predict how humans will behave in a game theoretic
setting, which ideally consists of rational agents. The behaviour of (intelligent) ratio-
nal agents is a well-studied subject in artificial intelligence. To understand the way
people react to and use a matching process such as in Amsterdam involves a deeper
understanding of the human rationale, which is also of great importance in artificial
intelligence research.

2OSVO (http://www.osvo.nl) is an association of school boards of secondary schools in Amster-
dam and is responsible for the central admission of new students.

3This topic was also discussed in the Dutch news and led to much criticism:
https://www.nrc.nl/nieuws/2016/03/18/schoolkeuze-amsterdam-is-studie-op-zich-1599569-
a785880

3

2 Theoretical background

In this chapter, the different ways of matching students to schools will be analysed
in more depth. We will look into the game theoretic properties of the mechanisms
involved and discuss the assignment process of these mechanisms.

2.1 Problem statement

Our school allocation problem is focused on assigning a finite set of students N =
{1...n} to a finite set of schools S, in which every school a has a capacity qa. Each
student i has a preference Pi over the schools in S. N is assigned to S using an
allocation mechanism.

Definition 2.1.1. (Svensson [15]), An allocation mechanism is a mapping f from U
to the set of allocations, i.e. every preference profile is mapped on an allocation of
indivisible goods.

An allocation mechanism creates an assignment of students to schools, based on a
many-to-one matching of students and schools. From now on, we will use assign-
ment and matching interchangeably.

2.1.1 Properties

Every allocation mechanism creates different (non-unique) matchings, due to their
assignment procedures. By distinguishing several well-studied properties for allo-
cation mechanisms, we can compare these mechanisms and predict the character of
their outcome. We discern several properties for allocation mechanisms, which are
formalisations of the intuitive features of these mechanisms. As we will see, these
properties are desirable but not compatible.

Strategy-proofness

A mechanism is strategy-proof if it cannot be manipulated by false preferences. In
such a mechanism, reporting true preferences is the dominant strategy.

Definition 2.1.2. A mechanism is called strategy-proof if it is impossible for a user
to get a better outcome by not giving their true preference.

If a school allocation mechanism is not strategy-proof, a student can be better off
handing in a preference list that differs from her true preference. This is gener-
ally viewed as an undesirable quality, because deciding on a preference list would
become even more time-consuming: not only would students have to choose the
schools of their preference, they would also need to decide on their strategy. Having
to choose strategically could also hurt students from disadvantaged backgrounds,
who might not get help from their parents in choosing in a strategic way. Moreover,
true preference lists are useful for schools and related parties, as these provide in-
sight in the actual numbers concerning applications. Strategic choosing can of course

Chapter 2. Theoretical background 4

also be viewed more optimistically. Students and parents feel like they have more
control of the outcome of the matching if they can end up at a different school when
choosing strategically. They don’t see the option for strategising as an unwanted
property, and favour this choice over the randomness of a lottery number.

Pareto efficiency

A matching is called Pareto efficient1 if there exists no other matching that Pareto
dominates it. For a matching to be Pareto dominated, there has to exist another
matching in which the outcome is just as good for all students and is better for at
least one student.

Definition 2.1.3. A matching µ Pareto dominates a matching ν if every student in µ
is at least as good off and there is some student i that is better off in µ than in ν.

Definition 2.1.4. An allocation µ is Pareto efficient if there exists no allocation ν that
Pareto dominates µ.

Simply put, if a matching is efficient, it assigns as many students as possible to the
school they prefer. Clearly, efficiency is a very appealing property for an allocation
mechanism. An inefficient matching gives rise to negative reactions among users,
since they feel there could have been a better result. Since this type of efficiency is
only concerned with the outcome, it is also referred to as ex-post efficiency. We also
define ex-ante efficiency. Ex-ante efficiency is efficiency as it is realised before any
lottery is instantiated.

Definition 2.1.5. (Abdulkadiroğlu et al. [1]) An allocation is ex-ante Pareto efficient
if it is impossible to reallocate probability shares of different schools in such a way
that expected utility of some students increases without reducing the expected utility
of other students.

Stability

When a students gets assigned to a school a but prefers another school b on which
she has higher priority than an assigned student on b, this results in an unwanted
outcome. This outcome is called unstable. Our intuitive notion of fairness for an
assignment corresponds with the more formal definition of stability.

Definition 2.1.6. (Gale and Shapley [14]) An assignment of applicants to colleges
will be called unstable if there are two applicants α and β who are assigned to col-
leges A and B, respectively, although β prefers A to B and A prefers β to α.

For a solution to be stable, it should simply not be unstable. In other words, there
should be no unmatched student-school pair (i, s) where student i prefers school
s to her assignment and school s prefers student i to one or more of its admitted
students. Clearly, since we are interested in secondary schools, it makes little sense
to talk about schools preferring students2. In combination with priorities, we can
reword the stability definition to: There should be no unmatched student-school
pair (i, s) where student i prefers school s to her assignment and she has higher
priority than some other student who is assigned a seat at school s [1].

1We will often state that a matching is efficient, which refers to Pareto efficiency.
2A few schools do prefer certain students (e.g. art schools), but they have their own selection of

students independently of the central admission.

Chapter 2. Theoretical background 5

Fairness

To decide if an assignment is fair, one can measure the occurrences of justified envy.

Definition 2.1.7. (Morrill [10]) A student i is said to have justified envy if there is a
school a such that i prefers a to her assignment, and i has higher priority at a than
one of the students assigned to a.

Definition 2.1.8. An assignment µ is called fair if no student in µ has justified envy.

In a stable matching, all occurrences of justified envy are eliminated and the assign-
ment is fair.

2.1.2 Impossibility theorems and trade-offs

Ideally, all of the properties above would be satisfied in an allocation mechanism.
However, Roth [13] shows that efficiency and fairness are incompatible. Further-
more, Kesten [6] shows that an allocation mechanism cannot be strategy-proof if it
is efficient and free of justified envy. Consequently, there can not exist a Pareto effi-
cient and strategy-proof mechanism that selects an efficient and justified envy-free
allocation if such an allocation exists. This means that the properties of strategy-
proofness, Pareto efficiency and fairness need to be balanced when choosing an al-
location mechanism. Depending on the needs and wishes of the users, an algorithm
that satisfies two of these three properties can be chosen.

2.2 Overview algorithms

Each allocation mechanism has its own subset of the aforementioned properties. We
will now discuss the different algorithms that have been implemented in Amster-
dam in the past years.

2.2.1 Boston

In 2005, Amsterdam started using an centralized application and admission system
based on the Boston allocation algorithm. The Boston algorithm runs as follows:

1. Every student hands in one preference. All students get placed at the school of
their preference. If the capacity of the school is insufficient for all applicants, a
central lottery decides which students are placed.

2. Students that are not yet placed, choose a new preference from schools that
still have capacity. In case there are too many applicants again, students get
placed or rejected based on their lottery number.

3. Step 2 is repeated until all students are assigned.

The results of the Boston mechanism were mixed. Many students got placed at their
first choice, but a considerably large group of students was not placed at a school
in their top-3. Furthermore, the Boston algorithm is known not to be strategy-proof.
Students expecting to have little chance of being accepted at a certain school might
want to apply for another school. As a result, the mechanism is not truth-telling. The
allocation is also not ex-post Pareto efficient, since users are likely to misrepresent
their preferences and thereby create an assignment that is not efficient. However,
Abdulkadiroğlu et al.[1] show that Boston is ex-ante efficient, as it gives students
the opportunity to express the intensity of their preferences by deciding whether or
not to make a strategic choice.

Chapter 2. Theoretical background 6

2.2.2 Deferred Acceptance

Based on a simulation by De Haan et al. [3], the Boston system got replaced by
a mechanism based on the Deferred Acceptance (DA) mechanism. Deferred Ac-
ceptance is the central concept used in the stable marriage algorithm proposed by
Gale and Shapley [14], which is based on men proposing to women to create sta-
ble matches. In each round, women defer accepting a proposal until the end of the
round, leading to more preferred choices. This algorithm has been widely applied
to college application. To use the algorithm for the school admission problem, a lot-
tery has to be used to create a preference order over students for each school. We
distinguish two types of lotteries: Single-Tie Breaking (DA-STB) and Multiple-Tie
Breaking (DA-MTB). Using Single-Tie Breaking, every student gets one lottery num-
ber which is used for every school, while in Multiple-Tie Breaking every student has
to draw lots for every school.

The DA algorithm, for both Single-Tie and Multiple-Tie Breaking, runs as follows:

1. Every student hands in her preference list. Every student gets placed on her
first choice. If the capacity of the school is not sufficient for the number of
applications, a lottery decides which students get rejected and which students
are placed provisionally.

2. Rejected students get assigned to the next school on their preference list.

3. In case of insufficient capacity a lottery decides who gets placed. In this lottery,
every student who was provisionally placed takes part.

4. Until all students are assigned, repeat step 2 and 3.

What is problematic about using DA for school allocation is the fact that the algo-
rithm is designed for a system in which both parties have a preference, as is the
case with marriages and college application. Since only the student preference is
important in our case, this leads to inefficient results. This is especially the case for
DA-MTB, which the unsatisfactory results of the matching in Amsterdam in 2015
confirmed. Only 74% of the students got assigned to their first choice [3].

7

3 Top Trading Cycles

Since the results of the DA mechanism are not optimal, we will try to apply a dif-
ferent solution to the school allocation problem. We have seen that a trade-off be-
tween strategy-proofness, efficiency and fairness needs to be made. DA is known to
be strategy-proof and fair, but efficiency is a desirable property that should not be
overlooked. In this chapter, we will introduce the Top Trading Cycles algorithm, a
mechanism that is proven to be strategy-proof and efficient.

3.1 Algorithm

Introduced by Shapley and Scarf [14], TTC was designed for the Shapley-Scarf hous-
ing market. Every student in this market already owns a house. To improve the
allocation, the following procedure is run:

1. Each student points to her favourite house.

2. Every house points to its owner.

3. Since there exists a finite number of students, there must exist a cycle. For
every cycle, assign the student to the house she is pointing to and remove the
student and house from the set.

Although assigning houses differs from assigning schools, the algorithm can eas-
ily be changed to fit the school assignment problem. Since students do not own a
school, a school points at the student with the highest priority at the school. A stu-
dent points at her favourite school. The algorithm continues as described above.

We will look at an example that shows the difference between DA and TTC.

Pi Pj Pk �a �b �c

b a a i j k
a b b k k j
c c c j i i

TABLE 3.1: Preferences
and priorities

i

b

j

a

FIGURE 3.1: Cycle during
TTC assignment

Chapter 3. Top Trading Cycles 8

Solving this assignment using DA leads to the following assignment:

µ =
(
i j k
a b c

)
Solving the same assignment using TTC, we obtain two cycles. The first one is shown
in figure 3.1. After assigning this cycle, only k and c remain to be assigned.
This creates the assignment ν below. Because student i and j are better off in this
assignment than in µ and student k is just as well off, ν Pareto dominates µ.

ν =
(
i j k
b a c

)
This example shows the difference in efficiency between DA and TTC. TTC makes a
better outcome possible by trading the priorities of student i and j. Abdulkadirğlu
and Sönmez [1] give a general distinction between DA and TTC: when fairness is
more important than efficiency, DA is the better choice, and when efficiency is pref-
ered over the elimination of justified envy, TTC should be chosen.

3.2 Objections to TTC

Since it has been shown that TTC is not fair, this would seem like an obvious and
acceptable argument to choose a different algorithm. However, this seems to be a
minor concern among school boards when choosing an allocation mechanism. The
Amsterdam research group rejected TTC [4], because it would be unsuitable to han-
dle school-specific priorities given that these priorities are non-transmittable. For
example, the priority of a student who has siblings attending a certain school should
not get priority on another school. Morrill [11] has shown that by using an adapted
version of TTC this problem can be overcome. Furthermore, De Haan et al. state
that without priorities, TTC would be equivalent to a version of DA-STB [4]. This
claim does not seem to be supported by the existing literature1. It thus seems TTC
should not be ruled out and should mainly be chosen or rejected on its mathematical
properties.

3.3 Properties

We have argued that TTC is strategy-proof and Pareto efficient. These properties can
easily be shown.

Strategy-proofness

When a student gets assigned at the end of step i, we could say she leaves the algo-
rithm at step i. Since she points at the best available spot, she will get assigned to the
best possible school s when reporting her true preferences. Schools that she prefers
over s are no longer available in step i, as she would otherwise be pointing at those
schools. She cannot change the cycles that have formed before step i by handing
in false preferences, so these prefered schools will have left the algorithm at step i,
independently of reporting true or false preferences. As a result, she can only harm
herself by misrepresenting her preferences and reporting true preferences leads to
the best possible outcome.

1However, Abdulkadirğlu et al. show that in case of a single priority ordering (i.e. a single lottery)
TTC reduces to Random Serial Dictatorship [1], an algorithm which assigns students to schools in
order of priority using a central lottery.

Chapter 3. Top Trading Cycles 9

Pareto efficiency

A student leaving the algorithm at step 1 is assigned her first choice, and cannot be
better off. Subsequently, any student who leaves at step 2 is assigned her top choice
among the remaining schools. She can only create a better outcome by harming
someone who was assigned in step 1.
As this is the case for each step, no student can be made better off without hurt-
ing a student who was assigned in an earlier step. This means that there exists no
other assignment that Pareto dominates the outcome, and therefore that the created
assignment is Pareto efficient.

3.4 Restricting tradeable priorities

Since we can use any decision rule for the pointing of students and schools, we can
adapt our pointing rule for schools to restrict the trading of school-specific priorities.
If some school a has capacity qa and Sa are the qa highest ranked students at a, we
have a (possibly empty) subset of students, Ra ⊂ Sa, who should not be allowed
to trade their priority. We obtain a set of unrestricted students Sa \ Ra. Now we
let school a no longer point at the student with the highest priority at a, but at the
unrestricted student with the highest priority at a. Restricted students get assigned
to their prioritised school at the beginning of the algorithm, to prevent having them
distributed randomly in case of insufficient capacity. This effectively eliminates trad-
ing of school-specific priorities. Since we can solve this problem, TTC can be applied
to the Amsterdam assignment problem in a straightforward fashion.

10

4 Data modeling

To test the algorithms and ideas introduced in the previous chapters, we will run
simulations using real data from the Amsterdam matching process. The results of
these simulations using real data can be used to gain insight in how the allocation
mechanisms will perform in real life.

4.1 Dataset

The dataset used in the experiments is provided by OSVO. They collected the data
of all students who started secondary school in 2016. This was the year DA-STB was
first used in the actual assignment of the students. The resulting Excel file contains
the anonymized allocations and preferences of these students. It also contains infor-
mation about priorities, lottery numbers and preselection.

Before using the data for the simulations, several adjustments have been made.
School names have been substituted by IDs and the priority column is changed from
a string value to a binary value, since we are only interested in whether or not a stu-
dent has priority at her first school and not in the reason for this priority. Students
who are preselected are removed from the dataset, since they are not relevant for
our simulations.

4.2 Simulations

The simulations are run in Python, which is chosen both for its ease in handling data
sets and modeling our problem. The packages used for carrying out and analysing
these simulations are Pandas and Numpy.

Implementing the algorithms is quite straightforward. A minor challenge was mod-
eling the Boston mechanism using the available dataset. Since this dataset contains
the results of DA-STB, it contains the preference list students decided on beforehand.
Boston lets students decide again on their new preference if they are not selected in
the first round. To simulate this as accurately as possible, we use the first available
school on the preference list of a student who got rejected as their new choice, since
this would probably be the school they would prefer if they could choose again.
However, this does not completely cover the side effects that occur in reality, when
students can strategically choose a new school after the first round. For now, we will
assume that our simulations might differ from reality, but that the difference is small
enough to properly compare the algorithms.

To minimize the side effects of the random lottery for students which is used in
each algorithm, every simulation is run 100 times with different lottery numbers.
The results are based on the average of these simulations.

Chapter 4. Data modeling 11

The implementations of the algorithms can be found in Appendix A.

4.3 Evaluation measures

The algorithms will be measured and compared using the following metrics:

• Efficiency: measured by shares of students placed in one of their most-prefered
n schools.

• Fairness: measured by the number of occurrences of justified envy.

We will also measure the number of trades made by students with school-specific
priorities in the Top Trading Cycles algorithm. This analysis is omitted for the other
algorithms since they do not use the concept of trading priorities. As we are only
interested in the results of our simulations and the algorithms are sufficiently fast for
our purposes, the speed of our implementations is not examined in the experiments.

12

5 Results

In this section, we will discuss the performance of the algorithms Boston, DA-STB,
DA-MTB and TTC using simulations. The school assignment is simulated using the
data and implementation as discussed in chapter 4. First, the ex-post efficiency of
the algorithms is compared. This is done by comparing the shares of students placed
in one of their most-prefered n schools.

TABLE 5.1: Placement of students on rank of their assigned school as
percentage of total number of students

Boston DA-STB DA-MTB TTC

1st choice 0.865 0.831 0.735 0.844
2nd choice 0.057 0.102 0.165 0.087
3rd choice 0.024 0.028 0.058 0.033
4th choice 0.011 0.013 0.026 0.013
5th choice 0.008 0.008 0.011 0.012
6th choice 0.008 0.007 0.004 0.006
7th choice 0.007 0.006 0.001 0.006
8th choice 0.005 0.005 0.001 0.004

FIGURE 5.1: Distribution of students to schools on preference list

Chapter 5. Results 13

Figure 5.1 shows the cumulative shares for the different algorithms, based on the re-
sults from table 5.1. We see that Boston clearly outperforms the other algorithms in
placing students at their first choice school, but loses this lead and performs worse
than the other mechanisms in placing students in their top-n for n ≥ 2. Another im-
mediate observation is the low number of students placed at their first choice school
by DA-MTB. However, DA-MTB does run best in placing students in a school in
their top-n for n > 3. TTC and DA-STB perform similar, although TTC places more
students at schools for each rank in the preference list than DA-STB. TTC performs
0.62% better than DA-STB in placing students in their top-3. While this seems like
a small percentage, this does mean an additional 115 students get placed at one of
their top-3 choices in the 2016 Amsterdam matching. Both TTC and DA-STB run
worse than Boston for placing students at their first choice, but outperform Boston
in top-n for n ≥ 2. Based on our results, TTC gives the best average result of the
algorithms and is a better choice than DA-STB. Depending on specific wishes and
preferences, one of the other algorithms is preferable. Boston would be the best fit
if one were to maximise the number of students placed at their first choice, whereas
DA-MTB is preferable if the highest possible number of students should be assigned
to a school in their top-5.

To evaluate the fairness of the algorithms, we measured the number of instances
of justified envy. Since there were no instances of justified envy for Boston and both
the DA mechanisms in the simulations, we omitted these algorithms from our results
table. As we can see in the results in table 5.2, the number of instances of justified
envy grows after restricting the school-specific trades. In the unrestricted version of
TTC, we consider all students for trading and assigning. When restricting the mech-
anism, we consider only a subset of these students. Hence, it makes sense to have a
larger number of occurrences of justified envy. In total, the occurrences of justified
envy increased with 15.9%.

TABLE 5.2: Average number of trades and occurrences of justified
envy before and after restricting of trading

Before restricting After restricting
School-specific priority trades 31 0
Occurrences of justified envy 29.5 34.2

The biggest concern in not considering TTC turns out not to be a frequent is-
sue: in our simulation, only 2.9% of the students with non-tradeable priorities got
assigned to a school where they did not have priority, which is 0.46% of all stu-
dents. Even though this is a small part of the students, it is still an undesirable effect
which we managed to eliminate using the restricted variation of TTC. No instances
of trading of school-specific priorities took place, in exchange for a small increase in
occurrences of justified envy.

14

6 Conclusion

6.1 Conclusion

The problem of assigning students to schools has proven to be a difficult challenge,
for which unfortunately no ideal solution exists. Our main conclusion would there-
fore be a safe one, namely that each of the algorithms we have discussed and anal-
ysed has its benefits and disadvantages and that there exists no ideal solution to the
Amsterdam school admission problem.

However, as we have seen, given certain choices, some mechanisms perform better
than others. When fairness is desired, Deferred Acceptance with Single-Tie Break-
ing seems to be the best choice. DA-STB has good overall results and is a useful
compromise between DA-MTB and Boston. If one were to maximise the number
of students admitted to their first choice school, the Boston mechanism would lead
to the best results. Following from its theoretical properties and the results of our
simulation, Boston has quite some disadvantages but clearly outperforms other al-
gorithms in assigning students to the school of their first choice. In terms of politics,
the Boston mechanism would correspond with a conservative liberal view of school
assignment, in which a great outcome for most students is prefered over having a
moderate result for all students, despite harming a small group. Another scenario
might be that as many students as possible should be assigned to a school in their
top-5, even if this means less students are assigned to their first choice; in this case,
Deferred Acceptance with Multiple-Tie Breaking should be chosen. This could be
seen as a more social approach to the matching process.

The research on matching procedures in Amsterdam did not even take the Top Trad-
ing Cycles algorithm into account. Since our results are promising, it would be very
useful for future research and simulations to consider this algorithm. The objection
that TTC would not be suitable for the matching in Amsterdam because of the pos-
sibility of trading of school-specific priorities can easily be overcome by using the
adapted restricted variation of TTC we proposed. The mechanism has some valu-
able properties, most notably its Pareto efficiency. Based on the results of our simu-
lations, TTC is a very interesting contender for DA-STB. The idea behind TTC might
also be easier to grasp for parents and students, as its basic idea is quite intuitive.

Apart from the theoretical limits of these mechanisms, another challenge lies in find-
ing a solution that unites the ideal theoretical world of mathematics and game the-
ory, and the messy everyday world in which these mechanisms are used. In the real
world, users are not necessary predictable agents who always behave rational. We
cannot expect users not to make strategic choices and give true preferences, simply
by using a strategy-proof system. If a user is convinced that they can alter the results
of a strategy-proof system, they will do so. Likewise, using a system in which strate-
gising is possible does not mean that people will make strategic choices. They might
not receive the best possible outcome, but might not even be aware of this. This

Chapter 6. Conclusion 15

kind of behaviour is not something game theorists or, more specifically, researchers
of this school admission problem can predict. This (possible) irrationality makes the
design of an optimal system even more difficult.

Finally, an important solution to the matching problems in Amsterdam lies in ca-
pacity. In the end, since there exists no ideal key to this problem in game theory,
there lies a task for school boards and the municipality of Amsterdam to come up
with solutions for the growing number of applicants and the insufficient capacities
of schools.

6.2 Future research

Given the extensive literature and research in the market design and social choice
area, there are many ideas that can still be applied to the school admission problem
and specifically tested on the Amsterdam case.

One recommendation would be to further analyze the Top Trading Cycles algorithm.
The basic variant, as it is implemented in this thesis, makes more trades than abso-
lutely necessary because some students that have high priority at their most pref-
ered school can be assigned immediately and can skip the trading process. Clinch
and Trade is a variation of TTC which eliminates unnecessary trades [11].

Other solutions to the school admission problem might also be found in other ar-
eas, such as mathematical optimisation [12]. Results from optimisation are less di-
rected at the theoretical properties such as in game theory, but focus on maximising
the outcome of an algorithm. Clearly, this might very well be useful in assigning as
many students as possible to their prefered schools. Because its focus differs from
the game theoretic approach, this may lead to different and interesting results. The
school admission problem could be modeled as a bipartite graph consisting of stu-
dents and schools, in which students and schools are connected by weights of their
preferences. Finding the shortest path with minimum cost, using for example the
Hungarian Algorithm [7], would lead to a complete assignment with lowest cost in
preferences. It would be interesting to investigate how a result like this corresponds
to the formal definitions and properties of game theory.

It may also be interesting to study in more detail how the capacities of schools should
be altered to minimise rejecting students. Simulations of the matching process in
which the capacities of popular schools get extended could be of aid for school
boards to see if increasing the capacities is a feasible solution.

Finally, an important part of research lies in bridging the gap between research and
the public understanding of the matching process. Questionnaires could be useful
in gaining a deeper insight in the public opinion and can lead to a solution to the
admission problem that better fits the ideas and views of its users. For example, it
would be interesting to ask families which properties of the matching mechanisms
they value most. As we have stated in our conclusion, part of the difficulty of finding
a solution to the school admission problem is the irrationality of users of the system.
Because users decide a great deal of the result of a matching, studies in areas such as
sociology and philosophy can be useful in understanding the human rationale and
can lead to better predictions of human behaviour in a game theoretical setting.

16

Bibliography

[1] Abdulkadiroğlu, A. and Sönmez, T. “School Choice: A Mechanism Design Ap-
proach”. In: American Economic Review 93.3 (June 2003), pp. 729–747.

[2] Abdulkadiroğlu, A. et al. “Minimizing Justified Envy in School Choice: The
Design of New Orleans’ OneApp”. In: NBER Working Paper w23265 (2017).

[3] De Haan, M. et al. Schoolkeuze voorgezet onderwijs in amsterdam: Verslag van
een simulatiestudie. 2014. URL: http://www.verenigingosvo.nl/wp-
content/uploads/2014/04/RapportSimulaties.pdf.

[4] Gautier, P. et al. “The performance of school assignment mechanisms in prac-
tice”. In: (2016).

[5] Gautier, P. et al. Wie gaat naar welke school – en waarom? 2015. URL: https:
//www.onderwijsconsument.nl/dit- de- regie- die- ouders-
willen-hebben/.

[6] Kesten, O. “School choice with consent”. In: Quarterly Journal of Economics 125
(2010), pp. 1297–1348.

[7] Kuhn, H.W. “The Hungarian Method for the Assignment Problem”. In: Naval
Research Logistics Quarterly 2 (1955), pp. 83–97.

[8] Kukenheim, S. Uitkomst Evaluatie en Tevredenheidsonderzoek Matching PO-VO.
2015. URL: http://www.stichtingvsa.nl/pdf/20151006/bijlage_
1_20151005_WH_brief_evaluatie_matching_PO-VO.pdf.

[9] Morrill, T. Making Efficient School Assignment Fairer. 2013.

[10] Morrill, T. “Making just school assignments”. In: Games and Economic Behavior
92 (2015), pp. 18–27.

[11] Morrill, T. Two Simple Variations of Top Trading Cycles. 2014.

[12] Roberts, F.S. and Tesman, B. Applied Combinatorics. Chapman and Hall/CRC,
2009.

[13] Roth, A.E. “The Economics of Matching: Stability and Incentives”. In: Mathe-
matics of Operations Research 7.4 (1982), pp. 617–628.

[14] Shapley, L. and Scarf, H. “On Cores and Indivisibility”. In: Journal of Mathe-
matical Economics 1 (1974), pp. 23–37.

[15] Svensson, L. “Strategy-proof allocation of indivisible goods”. In: Social Choice
and Welfare 16 (1999), pp. 557–567.

[16] Task group ’Petitie voor matching’. Geen loting, maar aangepaste matching voor
middelbare scholen in Amsterdam. 2015. URL: http://www.onderwijsconsument.
nl / wordpress / wp - content / uploads / Position - paper - voor -
aangepaste-matching.pdf.

http://www.verenigingosvo.nl/wp-content/ uploads/2014/04/RapportSimulaties.pdf
http://www.verenigingosvo.nl/wp-content/ uploads/2014/04/RapportSimulaties.pdf
https://www.onderwijsconsument.nl/dit-de-regie-die-ouders-willen-hebben/
https://www.onderwijsconsument.nl/dit-de-regie-die-ouders-willen-hebben/
https://www.onderwijsconsument.nl/dit-de-regie-die-ouders-willen-hebben/
http://www.stichtingvsa.nl/pdf/20151006/bijlage_1_20151005_WH_brief_evaluatie_matching_PO-VO.pdf
http://www.stichtingvsa.nl/pdf/20151006/bijlage_1_20151005_WH_brief_evaluatie_matching_PO-VO.pdf
http://www.onderwijsconsument.nl/wordpress/wp-content/uploads/Position-paper-voor-aangepaste-matching.pdf
http://www.onderwijsconsument.nl/wordpress/wp-content/uploads/Position-paper-voor-aangepaste-matching.pdf
http://www.onderwijsconsument.nl/wordpress/wp-content/uploads/Position-paper-voor-aangepaste-matching.pdf

17

A Python implementation

Classes
class Student(object):

def __init__(self, id, preferenceList , lotNr, priority, priorityID):
self.id = id
self.preferenceList = preferenceList
self.preferences = list(preferenceList)
self.lotNr = lotNr
self.priority = priority
self.priorityID = priorityID
self.placed = False
self.randomAllocation = False
self.points_to = 0
self.currentPoint = 0
self.averageRank = 0

class School(object):
def __init__(self, schoolID , capacity):

self.schoolID = schoolID
self.capacity = capacity
self.students = []
self.proposals = []
self.lottery = []
self.points_to = 0
self.currentPoint = 0

class Matching(object):
def __init__(self, students , schools):

self.students = students
self.schools = schools

Shared functions
def proposeFav(student, schools):

preference = student.preferenceList[0]
if not np.isnan(preference):

school = schools[int(preference)−1].proposals
student.preferenceList.pop(0)
if school.capacity > len(school.students:

school.append(student)
else:

return None
return (schools, student)

Appendix A. Python implementation 18

def randomAssign(notPlaced , schools):
for s in notPlaced:

randomSchool = np.random.choice(schools)
s e a r c h new r a n d o m s c h o o l u n t i l s c h o o l w i t h c a p a c i t y i s f o u n d
while len(randomSchool.students) >= randomSchool.capacity:

randomSchool = np.random.choice(schools)
randomSchool.students.append(s)
s.randomAllocation = True

return schools

Implementation Boston mechanism
def boston(students, schools):

notPlaced = []
allStudentsAssigned = False
i = 1
while(not allStudentsAssigned and i < 15):

match = matchingRound(students, schools, notPlaced)
allStudentsAssigned = True
numberNotAssigned = 0
for student in students:

if not student.placed:
allStudentsAssigned = False
numberNotAssigned += 1

i+=1
schools = randomAssign(notPlaced , schools)
return Matching(match.students , match.schools)

def matchingRound(students , schools, notPlaced):
for school in schools:

school.proposals = []
for s in students:

if not s.placed:
if s.preferenceList:

proposal = proposeFav(s, schools)
while proposal is None:

proposal = proposeFav(s, schools)
schools = proposal[0]
s = proposal[1]

else:
notPlaced.append(s)

for school in schools:
a d d s t u d e n t s t h a t h a v e p r i o r i t y
for s in school.proposals:

if s.priorityID == school.schoolID and s.priority == 1:
school.students.append(s)
s.placedSchool = school.schoolID
school.proposals.remove(s)
s.placed = True

a d d s t u d e n t s i n o r d e r o f p r i o r i t y u n t i l t h e c a p a c i t y i s r e a c h e d
school.proposals.sort(key=lambda x: x.lotNr, reverse=True)

Appendix A. Python implementation 19

for i in range(0, school.capacity − len(school.students)):
if i < len(school.proposals):

school.students.append(school.proposals[i])
school.proposals[i].placed = True

print school.schoolID, len(school.students)
return Matching(students , schools)

Implementation Deferred Acceptance Single-Tie Breaking mechanism
def daStb(students, schools):

notPlaced = []
allStudentsAssigned = False
for i in range(0,20):

match = matchingRound(students, schools, notPlaced)
allStudentsAssigned = True

schools = randomAssign(notPlaced , schools)
return Matching(match.students , match.schools)

def matchingRound(students , schools, notPlaced):
for school in schools:

school.proposals = []
for s in students:

if not s.placed:
if s.preferenceList:

proposal = proposeFav(s.preferenceList , s, schools)
schools = proposal[0]
s = proposal[1]

else:
notPlaced.append(s)

for school in schools:
a d d a l l s t u d e n t s b a c k t o t h e p r o p o s a l −p o o l
proposals = school.students + school.proposals
for student in proposals:

student.placed = False
school.students = []

a d d s t u d e n t s t h a t h a v e p r i o r i t y
for s in proposals:

if s.priorityID == school.schoolID and s.priority == 1:
school.students.append(s)
proposals.remove(s)
s.placed = True

a d d s t u d e n t s i n o r d e r o f p r i o r i t y u n t i l t h e c a p a c i t y i s r e a c h e d
proposals.sort(key=lambda x: x.lotNr, reverse=True)
for i in range(0, school.capacity − len(school.students)):

if i < len(proposals):
school.students.append(proposals[i])
proposals[i].placed = True

return Matching(students , schools)

Appendix A. Python implementation 20

Implementation Deferred Acceptance Multiple-Tie Breaking mecha-
nism
def daMtb(students, schools):

notPlaced = []
allStudentsAssigned = False
studentsToAssign = students
lotteryArray = range(students[−1].id+1)
c r e a t e random l o t t e r y f o r e a c h s c h o o l
for school in schools:

school.mtbLottery = random.sample(lotteryArray , len(lotteryArray))
for i in range(0,30):

match = mtbMatchingRound(studentsToAssign , schools, notPlaced)
studentsToAssign = match.students

schools = randomAssign(notPlaced , schools)
return Matching(match.students , match.schools)

def mtbMatchingRound(students , schools, notPlaced):
for school in schools:

school.proposals = []
for s in students:

if not s.placed:
if s.preferenceList:

proposal = proposeFav(s.preferenceList , s, schools)
schools = proposal[0]
s = proposal[1]

else:
notPlaced.append(s)

for school in schools:
proposals = school.students + school.proposals
for student in proposals:

student.lotNr = school.mtbLottery[student.id]
student.placed = False

school.students = []

a d d s t u d e n t s t h a t h a v e p r i o r i t y
for s in proposals:

if s.priorityID == school.schoolID and s.priority == 1:
school.students.append(s)
proposals.remove(s)
s.placed = True

a d d s t u d e n t s i n o r d e r o f p r i o r i t y u n t i l t h e c a p a c i t y i s r e a c h e d
proposals.sort(key=lambda x: x.lotNr, reverse=True)
for i in range(0, school.capacity − len(school.students)):

if(i < len(proposals)):
school.students.append(proposals[i])
proposals[i].placed = True

return Matching(students , schools)

Appendix A. Python implementation 21

Implementation Top Trading Cycles mechanism
def ttc(students, schools):

i n i t a l i z a t i o n
studentsToAssign = students
priorityStudents = []
for student in studentsToAssign:

if student.priority == 1:
priorityStudents.append(student)
studentsToAssign.remove(student)

for student in priorityStudents:
priorityAssign(student, schools)

lotteryArray = range(len(studentsToAssign))
for school in schools:

school.lottery = random.sample(lotteryArray , len(lotteryArray))
school.points_to = studentsToAssign[school.lottery[0]]

for student in studentsToAssign:
student.points_to = student.preferenceList[0]

allStudentsAssigned = False
notPlaced = []
while(not allStudentsAssigned):

notPlaced += point(studentsToAssign , schools)
for student in studentsToAssign:

node = findCycle(student, studentsToAssign , schools)
if(not node is None):

assignCycle(node, studentsToAssign , schools)
allStudentsAssigned = True
for student in studentsToAssign:

if not student.placed:
allStudentsAssigned = False

randomAssign(notPlaced , schools)
return Matching(students , schools)

def priorityAssign(student, schools):
school = schools[student.preferenceList[0]−1]
school.students.append(student)

def point(students, schools):
notPlaced = []
for student in students:

if student.placed:
continue

s t u d e n t s k e e p p o i n t i n g t o s a m e s c h o o l i f i t h a s c a p a c i t y
school = schools[int(student.points_to)−1]
while school.capacity <= len(school.students):

if student.currentPoint + 1 > (len(student.preferenceList) − 1):
notPlaced.append(student)
students.remove(student)
for school in schools:

school.lottery.remove(max(school.lottery))
break

Appendix A. Python implementation 22

else:
student.currentPoint += 1
student.points_to = student.preferenceList[student.currentPoint]
school = schools[int(student.points_to)−1]

for school in schools:
while school.points_to.placed and school.currentPoint < len(school.lottery)−1:

school.currentPoint += 1
nextStudent = school.lottery[school.currentPoint]
if nextStudent < len(students):

school.points_to = students[nextStudent]
return notPlaced

r a n d o m l y f i n d c y c l e i n g r a p h and r e t u r n f i r s t s t u d e n t i n c y c l e
def findCycle(firstNode , students, schools):

cycleFound = False
node = firstNode
nodesSeen = []
while not cycleFound:

if node.placed:
return None

nodesSeen.append(node.id)
node = nextNode(node, students , schools)
if node.id in nodesSeen:

cycleFound = True
return node

def nextNode(node, students , schools):
return schools[int(node.points_to)−1].points_to

def assignCycle(node, students , schools):
nextStudent = node
startReached = False
while not startReached:

school = schools[int(nextStudent.points_to)−1]
school.students.append(nextStudent)
nextStudent.placed = True
nextStudent = school.points_to
if nextStudent == node:

startReached = True

	Introduction
	Introduction
	Context and A.I.

	Theoretical background
	Problem statement
	Properties
	Impossibility theorems and trade-offs

	Overview algorithms
	Boston
	Deferred Acceptance

	Top Trading Cycles
	Algorithm
	Objections to TTC
	Properties
	Restricting tradeable priorities

	Data modeling
	Dataset
	Simulations
	Evaluation measures

	Results
	Conclusion
	Conclusion
	Future research

	Bibliography
	Python implementation

