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Abstract

Weather influences people indirectly in many ways. Does this include criminal behavior? Pre-
vious research has shown a definite relationship between high temperatures and an increase in
violent behavior. This thesis attempts to determine and examine more complex relationships
with the use of both local and global machine-learning and data-mining models. The result-
ing global models perform only marginally better than simple baseline models. However, local
patterns built with the Patient Rule Induction Method yield interesting subgroups that are in
line with preceding research elsewhere.
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Chapter 1

Introduction

1.1 Research motivation

We all have had the experience of postponing tasks because it was raining outside. The weather
influences us in all sorts of ways, both psychologically and (therefore) behaviorally, such as
making us feel more energetic, to go outside or rather stay inside. With this in mind, are crim-
inals (and their victims) constrained by the same factors in their activities?

Before we can think of issuing warnings to the police about crime inducing weather condi-
tions there needs to be an established correlation between them, and if one exists, exactly how
and how strongly this correlation manifests itself. The relation between weather and crime
can only be indirect, so any possible relation will most likely be subtle and subject to a great
amount of noise. There exist two models that try to explain the cause of crime; the interac-
tional- and routine activity hypotheses.

According to the interactional hypothesis people have their own way of dealing with (envi-
ronmental) stress. Weather can be considered another stress-factor. When it is added to the
already existing daily stress it can be the final straw that pushes an individual ”over the edge”
and then to commit a crime [1].

The routine activity hypothesis states that certain changes in weather lead to changes in our
daily routines [2]. For instance, in the summer when the temperature is high, people tend to
spend more time outside. Having more individuals outside means more potential victims. A
larger number of open windows due to excess heat means more opportunity for a break in, etc.

According to these hypotheses there could be a relation between (certain) crimes and weather
types, but it is not known what that relation is. Different kinds of crimes might depend on
a variety of weather variables. We want to find whether, and if so, how crimes depend on
different weather variables.

1.2 Problem Definition

The goal is to establish whether and how the number of crimes in a crime category depends
on certain weather variables. Firstly, by determining if a statistical relationship between crime
and weather can be ascertained. Secondly, by building predictive models and testing them on
their ability to generalize to unseen data. Familiar techniques such as linear regression will be
used to determine the existence of a possible relationship between a particular crime category
and one or more weather variables.

However, other machine learning techniques could prove a better way to examine this hypo-
thetical dependency. These considerations broaden the scope to also examine, research and
possibly apply alternatives to linear regression such as Poisson regression models and support
vector machines. Next to global models we shall also make use of a local model, namely the
patient rule induction method. This work will also attempt to briefly explain the algorithms
that are used as to provide additional context to what operations are being performed.

3



1.3 Methodology

1.3.1 Project Life-cycle

Data mining is a very creative process which requires a number of different (domain specific)
skills to succeed. During the investigations it is often necessary to go back to a previous step
to redo or refine a specific element. For this reason the CRoss-Industry Standard Process for
Data Mining (CRISP-DM) was used in this project.

CRISP-DM is organized as a number of phases, each consisting of several generic tasks. This
allows for the possibility to try out different data mining and machine learning techniques in
a relatively consistent manner [3].

Figure 1.1 shows the general structure of the CRISP-DM cycle. Notice how the evaluation step
does not always lead to deployment but often to a new cycle of data understanding and mod-
eling. In practice it turned out that most time was spent going between the data preparation
and modeling phases. New insights into the data are fed back into the modeling process to
further refine and understand the underlying data.

Figure 1.1: CRISP-DM cycle

1. Business Understanding This phase focuses on understanding the project from a busi-
ness perspective. The objectives and requirements are used to construct a data mining
problem definition. This project is less focused on the business side as the research is
preliminary and has a strong exploratory character.

2. Data Understanding By becoming more familiar with the data it is possible to extract
hidden information and interesting subsets. Also problems in quality such as missing
values are determined here. In the case of this project much of the data was collected
and partly processed.

3. Data Preparation The final data sets that will be fed into the models are constructed
in this phase. This often requires merging, transforming, sorting, selecting subsets and
further cleaning. This task is usually performed many times over as new insights come
available.
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4. Modeling Various modeling techniques are used in the modeling phase to generate new
and interesting insights into the data. Often this requires to go back to the data prepara-
tion phase in order to reformat the data so it can be applied for some specific modeling
technique. This phase should give models that are high quality from a data mining per-
spective, e.g. they avoid things like overfitting.

5. Evaluation When the modeling phase generates interesting models that seem to fulfill
the business objectives they have to be critically evaluated. This means checking whether
some objective has been left out or not fully considered.

6. Deployment The knowledge gained in the previous phases has to be organized in a way
that is usable for the customer. This can range from writing a report to a fully imple-
mented business wide application. This project does not include the final deployment
phase in its scope except for the final report and the open source R package.

1.3.2 Software

The R programming language

The nature of this project requires a programming language that is ”natural” to use for applied
statistics techniques. R gives a solid base for using and building complex statistical models [4].
Many functionalities are already available via the Comprehensive R Archive Network (CRAN)
and don’t have to be developed from scratch. On the other hand, the software on CRAN was
developed by third party contributors and is not in all cases reliable or well tested. Therefore
the packages that were used in this work are those that have proven themselves as dependable
by their overwhelming usage in the R community.

Rstudio

The development environment for R that comes to mind first is Rstudio. Created as an open-
source initiative it is well suited for this project. It supports searching and downloading pack-
ages and dependencies from CRAN as well as the framework to develop your own package if
necessary. This functionality was welcome as part of this work a new R package was developed
and released on CRAN.

1.3.3 Global and local models

The main difference between global and local models is that global models try to approximate
a function that describes all the data best, while a local model will attempt to find a function
that only characterizes a (small) subset of the data. Therefore a global model can be used to
make predictions on the entire feature space of the data.

The local model can give us a description of its boundaries and a prediction value based on the
quality function (explained in chapter 4) used to construct it. Another advantage is that dur-
ing construction the decisions made to determine the boundaries of a box are not constrained
by having to take into account the observations that fall outside the box. It does, as previously
stated, only describe a proportion of the data. This deficiency with local models can be some-
what reduced by building many local models, each describing a different (overlapping) part of
the data.
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1.4 Related work

The established research shows that there are indeed relationships between weather phenom-
ena and violence. Certain ambient environmental features such as temperature (and even
smell) can have a negative impact on subject aggression. Laboratory research has shown that
high ambient temperatures can both increase and decrease aggression [5, 6]. This is usually
interpreted as a curvilinear relationship between temperature and aggression, i.e. as tempera-
ture increases so does aggression up to a point, after which aggression starts to decrease. These
laboratory conditions are somewhat suspect however, as a hot temperature is a salient and un-
usual condition. The subject might infer from this the experiment’s intent and work against
the supervisors in some effort of defiance. Although people often underestimate the effects of
situational factors, which may include temperature [7]. An additional difficulty for laboratory
experiments that it is hard to study criminal behavior in a laboratory setting where people
know they are being monitored.

It is of course trivial to postulate that a curvilinear relationship must exist because there always
is a point where it becomes too hot for humans to stay alive. The question is rather where this
inflection point occurs and if these conditions actually take place in the outside world.

Field studies have also been performed, usually in the United States. In one instance, several
riots were examined on the environmental conditions when and where they occurred. Here a
definite curvilinear relationship was found, the frequency of riots increased with temperature
up to around 30℃, then decreased as temperature rose more. However these results do not
take into account the interdependency of the variables, as there were fewer riots on very hot
days not because they were particularly uncomfortable but rather more likely because there
are fewer of such days [8]. Other examinations of assault and temperature consistently found
a positive relationship between the two [9, 10, 11, 12, 13].

Notably there was no relation found for robbery and temperature, perhaps due to the fact that
robbery is more motivated by economic need and not as much by aggression [5]. It will be
interesting to learn if the same pattern emerges in the Dutch weather and crime data.

With respect to seasonality there is a definite established relationship as well. As will be shown
in the exploratory analysis of this work (section 2.1.2), the Dutch crime data suggests a simi-
lar pattern as was previously found. This pattern is that violent crime rates peak during the
summer months, while property crime rates peak during the winter [14, 15].

In the vast majority of cases some sort of ordinary least-squares (OLS) model was used to
establish the relationships between weather conditions and crime rates. This is not always
appropriate when the rates for many of the units must be computed from small numbers of
events. As population decreases, a crime rate of zero will be observed for a larger proportion
of cases. So there is censoring at zero, depending on sample size [16]. In this thesis we also
attempt to solve this problem using Poisson based regression methods, including a more com-
plex two-step ”zero inflation” approach.

If indeed these findings truly exist in the real world, ongoing processes like climate change
could have a large impact on the number of violent crimes. As temperature increases world-
wide, so would the number of non-economic crimes (perhaps also the amount of economically
motivated crimes) [17]; with great (financial) cost to society. Therefore understanding these
relationships could not only reduce crime in the short term, but also provide a better way to
mitigate the rise of crime in the long term.
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Chapter 2

Exploratory Analysis

2.1 Crime Data

The crime related data was provided by the WODC. (Wetenschappelijk Onderzoek- en Docu-
mentatiecentrum) This government organization is dedicated to doing research and collecting
statistical information on the topic of security and justice. It also cooperates with external
parties such as universities and research institutes.

2.1.1 Data Structure

The raw data comes in the form of 4.924.793 separate incidents in the period 2006 - 2015
(inclusive). All instances have been through the judicial process, this means that we have no
information on the number of reported incidents. The actual number of instances could there-
fore be much higher than reflected by the data. The information available per crime instance
is: the date, where the crime occurred (municipality), a description of the crime (category) and
the age, gender, nationality and country of origin of the person who committed the crime.

Crime Categories

577 Different crime categories are contained by the raw crime data. These are often too spe-
cific for our purposes because we need a sufficient number of instances per day per category.
Sometimes the same category is mentioned twice, once starting with a capital letter and once
without. At other times a specific category is made for the municipality of Almelo. In order to
have enough information per category on a daily basis they have been combined into 12 new
super-categories:

Assault Burglary Discrimination Domestic Violence
General Hard Drug Larceny Murder
Rape Robbery Soft Drug Vehicle Theft

Table 2.1: Combined crime categories

Many categories such as those associated with ’white collar’ financially motivated crime like
fraud, Ponzi-schemes and bribery have been excluded from the analysis. They most likely are
not or only minimally influenced by weather or occur over a longer time period where the
notion of weather becomes meaningless.1

Zero-day Data

Depending on the municipality and crime category, many - or even most - days do not have
any crimes associated with them. This can cause some machine learning algorithms like linear
regression to perform worse when taking these days into account. Likewise it can be regarded
as ’unfair’ to simply ignore them; As the weather conditions on those days could have been
precisely those that contributed to the low number in the first place!

1Please see table 8.1 in the appendix for a full overview of category allocation.
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We therefore include days with no crime in our analysis; and have to use methods like zero-
inflated models in order to deal with excess zero’s.

Aggregating by date and municipality

Further pre-processing was necessary in order to be able to merge the crime data with the
available weather data. Therefore we group the instances by municipality and date:

Date Municipality Crime type Crime count
01-01-2006 Amsterdam Robbery 4
01-01-2006 Rotterdam Assault 7

...
30-12-2015 Utrecht General 11
31-12-2015 Den Haag Larceny 11

Table 2.2: Crimes aggregated by municipality and date

Further analysis has been done using this aggregated form of the data.

2.1.2 Quirks and Anomalies

Long term crime trends

From figure 2.1 we can see that crime in the 12 categories listed in table 2.2 tends to decrease
over time until around 2010. Afterwards it remains stable for a few years and then increases
again. The final downwards trend in 2015 is due to cases still in due process and are therefore
absent from the data. Note again that this trend might not reflect an actual decrease in crime in
society in general as we can only report those cases that have been through the judicial process.

Missing values in the final period are especially noticeable among crime categories which typ-
ically take longer to solve, such as murder.
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Figure 2.1: National summed daily crime

When we look more closely at the contribution of several specific crime categories in figures 2.4
and 8.1, it becomes clear that they can affect the national trend dramatically. The distributions
of these sub-trends in turn are likely very much influenced by the policy of the Police and the
Department of Justice. Examples of such policy changes could be cracking down on previously
tolerated crimes and changing definitions and moving numbers under a new header.
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Periods of high variance

The high crime numbers in the period 2006 are not caused by more daily crime in general,
instead there are a number of ’spikes’ - days with a very large number of crimes - on a certain
location that together contribute to a higher average. It is unknown and unlikely that these
days reflect an actual very temporary increase. More likely is some quirk in documentation and
administration that caused these anomalies. Figure 2.2 shows how the variance dramatically
increases in the year 2006:
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Figure 2.2: Variance in daily crime

Seasonal crime trends

Certain types of crime like robbery show a strong seasonal trend. This is in line with what has
been found in previous research done in Chicago [6]. Figure 2.3 shows the average number of
robberies per day over time. Peaks in the number of robberies seem to fall in the late autumn
and early winter. Depending on the location this trend is largely maintained, although the
years 2014 and 2015 seem to break this trend. But as we shall see later, when looking more
closely at a single municipality such as Amsterdam there are also different trend-breaking
years.
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Figure 2.3: National average robbery count per day
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When we look at other crime categories in figure 2.4 they sometimes follow a similar seasonal
trend, though with peaks at different times. Additionally other types of crime are subject to
high variability among certain years. Notice the dramatic increase in the number of soft drug
related convictions starting in 2013 and the sharp drop-off in the number of murders in 2015.
These are most likely caused respectively by a change in policy and a backlog of unsolved
cases. Interestingly, many crime categories show a downwards trend.
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Figure 2.4: Monthly crime counts per category

Please consult figure 8.1 in the appendix for the distributions of the other crime categories.
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Holidays and celebrations

Certain days that tend to coincide with partying and heavy drinking such as January 1st (New
Year’s Day), April 30th (Queensday) and April 27th (Kingsday) show a strong increase in the
number of violence related crimes. In figure 2.5 we can see that the number of assaults rises
dramatically compared to the rest of the year on these particular days. The inclusion of these
days in the data could potentially influence the results of the analysis. Giving importance to
certain predictors that happen to be low or high during the celebrations.
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Figure 2.5: National daily number of assaults, New Year’s Day highlighted in green, Queen-
and Kingsday in blue

2.1.3 Weekday crime distributions

Certain crimes tend to happen more often during the weekend. Others like larceny show
a notable drop on Sunday. These effects could influence the results when looking at weather
parameters only. What if we predict high larceny but it just happens to be a Sunday too? These
societal effects are most likely stronger than those from the weather, unless it is particularly
extreme. 2
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Figure 2.6: Weekday crime counts per category

2Please refer to figure 8.2 in the appendix for the weekday distributions of the other categories.
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2.1.4 Compensating for population size

When comparing different municipalities it is useful to take the population size into account.
For this reason population data was obtained from the Dutch National Bureau of Statistics
(CBS) and combined with the crime data from the WODC. Difficulties in this approach were
that both parties have slightly different naming conventions for certain municipalities (such
as adding a period after an abbreviation of the province) and the fact that some municipalities
have been merged in the period of 2006-2015. These do not appear separately in the CBS data
but only in the years after they have been merged.

We calculate the crime density of a municipality by taking the total number of crimes com-
mitted and dividing it by the average population in that municipality over the ten year time
period. Using the sets of all municipalities M, all populations for each municipality P and all
daysD we calculate the total crime per municipality Cm, the crime densityDm and the fraction
of the municipality with the largest density Fm:

Cm =
∑
d∈D

cm,d (2.1)

Dm =
Cm
Pm

(2.2)

Fm =
Dm

max
m∈M

Dm
(2.3)

We can visualize the ’crime density’ per person as a ranking in figure 2.7. The municipality
with the highest crime-density is placed at 1 (in this case Amsterdam) and every other munic-
ipality is ranked as a percentage of the maximum. When compensating like this, certain cities
such as Amsterdam, Rotterdam and The Hague stay at their original rank while Utrecht drops
from fourth to sixteenth place.
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Figure 2.7: Municipalities ranked by crime density

These adjustments will be needed in future work to adjust for population size when munici-
palities other than Amsterdam are examined and compared.
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2.2 Weather Data

The KNMI has provided weather data from (almost) every day in period 2006 - 2015 from 32
high end weather stations. Interpolation is used in order to get the weather information from
all the municipalities that occur in the crime data. Methods used are mostly Kriging and Thin
Plate Splines [18].

2.2.1 Data Structure

The weather data units and ranges are given in table 2.3. Some of these units are in very differ-
ent scales, such as average temperature which has a range of (-14.79, 28.63) °C and radiation
with a range of (0, 3160.1) Watts per m2.

Predictor Unit Min value Max value
Temperature Degrees Celsius -14.79 28.63
Relative Humidity Percentage 31.26 101.04
Radiation Watts per m2 0 3160.1
Precipitation Millimeters 0 137.22
Pressure Millibar 972.6 1046.4
Sunshine Hours 0 17.209
Windspeed Meters per second 0.41 17.379
Wind Direction Degrees 0 360

Table 2.3: Weather data units and ranges

2.2.2 Centering and Scaling

Some methods of analysis such as linear regression and support vector machines can be sen-
sitive to these kind of differences in scale. In the case of linear regression it can be hard to
interpret the coefficients when one is of the scale 10−5 and others are much larger. When cal-
culating the distance between points we also don’t want it to be primarily determined by a
single predictor because it has a much larger range. In the case of support vector machines the
decision boundary should depend on the distribution of points and not their range. Similarly
certain gradient based optimization methods take longer to converge when the ”surface” is
highly stretched out due to very different scales in the predictors.

For these reasons the data has been centered and scaled beforehand when the statistical method
used demands it. By centering the data we transform it to have a mean of zero and scaling
simply means dividing by the standard deviation.

xcentered = x − x̄ (2.4)

xscaled =
x
sdx

(2.5)

However the interpretation of coefficients can become much harder when applying these trans-
formations. Centering affects the intercept but not the units. Whether one cares about this de-
pends on the problem at hand. When scaling, the unit information is lost so we are suddenly
no longer talking in degrees in the case of temperature. It does, however, make possible the
comparison between coefficients.
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2.2.3 Quirks and Anomalies

In the weather data, too, there are some anomalies. Notice that in table 2.3 above the maximum
relative humidity is 101.04 percent! Luckily these anomalies do not occur often and the error
is small. These values are left in without correction.

Highly correlated predictors

As one might suspect, many weather effects are highly correlated. More radiation generally
means a higher value of sunshine. Similarly the three measures of temperature: minimum,
maximum and average rise and fall in unison. Since methods like linear regression measure
the proportional increase and all three are in the same units it can be safe to leave all but one
out.

avgTemp maxTemp radiation sunshine precipitation humidity windSpeed windDirection pressure
minTemp 0.948 0.870 0.445 0.175 0.156 -0.210 0.028 0.140 -0.132
avgTemp 0.977 0.630 0.378 0.078 -0.383 -0.113 0.089 -0.042
maxTemp 0.720 0.502 0.029 -0.474 -0.205 0.042 0.013
radiation 0.867 -0.177 -0.730 -0.244 -0.065 0.177
sunshine -0.264 -0.706 -0.210 -0.144 0.266
precipitation 0.204 0.240 0.098 -0.340
humidity -0.002 0.149 -0.132
windSpeed 0.123 -0.335
windDirection -0.078

Table 2.4: Weather parameter correlations for full weather data-set

2.3 Combining weather and crime data

Some preliminary research was done to determine the viability of doing a more in depth in-
vestigation.

2.3.1 Distributions of high crime days

In order to see if days with particularly high crime tend to have specific weather conditions we
divide the data into two groups: one consisting of ’normal’ days and the other having all days
where the number of crimes is equal or higher than one standard deviation above average.
For instance take the set of all days y which consists of the number of crimes of a particular
category, say assault, on that day. With a total of n days we can say y = {y1, y2, yi , . . . , yn}. This
includes days where there is no crime, so where for some day i: yi = 0. Now we map the data
into a new set consisting of two categories; ∆ = {δ1,δ2,δi , . . . ,δn} where δi ∈ {Red,Green} using
the following rule:

δi =

Red if yi ≥ ȳ + sdy
Green otherwise

(2.6)
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Figure 2.8 shows the results of applying this operation on the number of assaults in Amster-
dam per day.3 Taking the whole data-set gives uninteresting overlapping distributions. The
data is further subdivided by season to see whether for instance sunshine matters more in the
summer than it does in the winter. Note how especially for the average temperature (fourth
row) the distributions are shifted towards warmer days for the high crime (red) subset. The
effect is strongest in the spring and summer where the means are about 5 degrees apart and
disappears in the winter and autumn.
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Figure 2.8: Amsterdam assault distributions per season and weather parameter

3Please see figure 8.3 in the appendix for the distributions for robbery, used later in the Amsterdam case study.
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Chapter 3

Global Models

Global models try to approximate a function which can describe the entire feature space. This
would be the most straightforward way to make predictions using new data.

3.1 Theoretical Descriptions

Before the results are shown we shall briefly describe the theoretical aspects of the algorithms
used.

3.1.1 Linear Regression

The method of linear regression is a way of modeling the relationship between a dependent
(response) value y and one or more explanatory values x with the addition of random noise,
captured in ε. With the additional constant of x0 = 1 we can write the expression more com-
pactly as the product of two vectors:

y ≡ F (x) + ε

F (x) = βᵀx
(3.1)

The objective is to find some value of β (called β̂) which minimizes the difference between the
predicted values ŷ and the actual values y. With this in mind, we define the ”cost” of some
estimate b as:

J(b) =
1

2m

m∑
i=1

(bᵀxi − yi)2 (3.2)

where m is the number of observations in the data set. We can now write the minimization
objective more succinctly as:

β̂ = argmin
b

J(b)

ŷ = β̂ᵀx
(3.3)

There are a variety of ways to find the minimum. There is an analytic solution called the
normal equation but there also are iterative algorithms such as gradient descent (and its many
variants) and L-BFGS. Usually a numerical solution is applied as it scales much better with the
number of predictors: O(kn2) instead of O(n3) for the normal equation, where k is the number
of iterations and n is the number of features [19].

3.1.2 Logistic Regression

It is possible to modify the equations of Linear Regression to get a classification model which
describes the probability of an observation belonging to class 1:

ŷ = P̂ (y = 1 | x; β̂) = 1− P̂ (y = 0 | x; β̂) (3.4)
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Where y ∈ {0,1}. The algorithm needs to output a number in the range (0 < ŷ < 1) instead of
ŷ ∈R. For this we only need to wrap the former linear combination β̂ᵀx in the sigmoid function:

ŷ =
1

1 + e−β̂ᵀx
(3.5)

we change the cost function to include both cases for y:

J(B) = − 1
m

m∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (3.6)

The intuition here is that the cost goes to infinity when ŷ approaches 1 while y = 0 and also
when ŷ approaches 0 while y = 1. In other words when the algorithm makes a very wrong
prediction. Because the sigmoid function has a range of (0,1), the resulting cost is always
finite, i.e. log(0) will never occur.

3.1.3 Count Models

Poisson Distributions

Because the data used in this project is essentially count data (the number of crimes on a
certain day) it is natural to look for models which inherently have these assumptions built in.
One such model is the Poisson model:

Poisson Regression Model

The Poisson model predicts the number of occurrences of an event. The dependent variable
is a count (a non-negative integer). This makes sense in our case because you cannot have
a negative number or a fraction of crimes on a day. For a Poisson distribution with a rate
parameter µ, the probability that dependent variable Y will be equal to a certain number
y ∈N is:

p(Y = y) =
e−µµy

y!
(3.7)

Where the Poisson regression assumption is that µ is dependent on the dot product between
the parameters β and observations x:

µ = eβ
ᵀx (3.8)

The Poisson model has two important properties that are relevant here:

1. Equidispersion property: For the Poisson regression model it holds that the mean and
variance are equal.

E(y|x) = var(y|x) = µ (3.9)

This property tends to be very restrictive and often fails to hold in practice. When the
variance is greater than the mean it is called overdispersion, this is usually the case in real-
life data. There is also underdispersion, where the counted outcome is mostly 0 or 1 [20].
In these instances it could be advisable to use a negative binomial model, explained
below. Interestingly, the crime data shows both over- and underdispersion, depending
on the crime category and municipality.

2. Excess zero problem: Usually the Poisson model will predict fewer zero’s than are present
in the data. It would be better to use a zero inflated Poisson or zero inflated negative bi-
nomial model when this situation arises.
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Negative binomial distributions

In the case of over- or underdispersion of the data, a negative binomial model can be used.
It is less restrictive than the Poisson model. An additional parameter α is introduced which
characterizes the amount of overdispersion in the data.

var(y|x) = µ+αµ2 (3.10)

When α is equal to zero we are left with the same equation as in the Poisson distribution above.
Otherwise it is recommended to use the negative binomial model instead.

α = 0 =⇒ Poisson model

α > 1 =⇒ overdispersion

α < 1 =⇒ underdispersion

Hurdle Models

In the case of excess zero’s in the data one can specify a separate process that is responsible for
generating the zero’s and another one that will determine the count if the first process gives a
”non-zero” answer. In other words, a Bernoulli probability distribution governs whether the
outcome is zero or positive and a truncated at zero count model determines the distribution
of the positives. This second count model could be, but is not limited to, a Poisson model or a
negative binomial model.

When we define the process that generates the zero’s as f1(.) and the process generating the
non-zero positive answers as f2(.) the hurdle model is as follows:

g(y) = P (Y = y) =

f1(0) if y = 0
1−f1(0)
1−f2(0)f2(y) if y ≥ 1

(3.11)

Note that the process f2(.) is zero-truncated, it still generates zero’s but these are removed with
the density function slightly modified to ensure that probabilities sum to unity [20]. An intu-
itive description is that first a ”hurdle” must be overcome before the outcome is positive and a
separate process is responsible for determining whether the hurdle is overcome or not.

Zero inflation

In the case of hurdle models we assumed that a separate process is responsible for determining
zero or positive results. This may not be the case as the decision could come from two sources.
Even though the first hurdle is overcome the result could still be zero for some other reason
determined by the second process.

In some sense this distinguishes between ”true” and ”false” zero’s. Where the true zero’s are
those generated by the failure to overcome the hurdle in the first place. The false zero’s could
in some sense be positive or belong to the non-zero event group.

As with the hurdle model the zero inflated model can be defined with the two processes f1(.)
and f2(.):

g(y) = P (Y = y) =

f1(0) + (1− f1(0))f2(0) if y = 0

(1− f1(0))f2(y) if y ≥ 1
(3.12)

For this thesis, the MASS R package [21] was used for negative binomial models and the PSCL
[22] package for the zero inflated models.
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3.1.4 Support Vector Machines

Another approach of doing both classification and regression is using a Support Vector Ma-
chine (SVM). The essential idea in an SVM is the concept if margin maximization, where the
decision boundary is placed in such a way that the distance between the points closest to the
decision boundary is maximized. In figure 3.1 we can see an example of two decision bound-
aries; both separate the data but one provides a larger margin than the other [23].
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Figure 3.1: Support Vector Machine margins

Basic workings in binary classification

We would like to find the decision boundary that optimally separates the data-set. Begin by
assuming that the data is linearly separable. Imagine a vector w that is perpendicular to the
decision boundary and pointing in the direction of the ”positive” points. We can write the
decision boundary in terms of some vector w and scalar b:

wᵀx+ b = 0 (3.13)

Where wᵀx+b < 0 for ”negative” points and wᵀx+b > 0 for ”positive” points. To make it more
convenient we introduce an extra variable yn (the label of the point n):

yn =

+1 for positive samples

−1 for negative samples
(3.14)

We can now write the constraint as a single equation. This is the same as saying that all
points fall on the correct side of the dividing hyperplane. In other words, the data is linearly
separable:

∀n : yn(wᵀxn + b) ≥ 0 (3.15)

Lets define our notion of a margin. The margin γ̂ with respect to a training example n can
simply be written as:

γ̂n = yn(wᵀxn + b) (3.16)
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The intuition goes that, for a confident prediction, in the case of positive examples wᵀx + b
needs to be a large positive number and for negative examples it needs to be a large negative
number. At this point there is a small problem: γ̂ is not a good measurement for confidence.
Because yn depends only on the sign, we can scalew and b and make γ̂ arbitrarily large without
really changing anything meaningful. This implies that we need to put in some sort of normal-
ization condition. There is more than one way to do this. Here we shall define the normalized
margin γ with respect to a training example n to be of value 1 for the closest points [24]:

γn =
yn(wᵀxn + b)
||w||

(3.17)

With the updated constraint:
∀n : yn(wᵀxn + b) ≥ 1 (3.18)

The width of the margin is defined as 2
||w|| . Our optimization objective will be to maximize this

quantity, which is the same as minimizing ||w||2:

max
2
||w||

=⇒ min
1
2
||w||2 (3.19)

Our new objective now is to find what w and b should be. We minimize the more convenient
form 1

2w
2 while respecting the constraints by using dual form and Lagrange multipliers:

L(w,b,α) =
1
2
w2 −

N∑
n=1

αn
[
yn(wᵀxn + b)− 1

]
(3.20)

To find the minimum we take the partial derivative with respect to w and set it to zero:

∇wL = w −
N∑
n=1

αnynxn = 0 (3.21)

Which implies that:

w =
N∑
n=1

αnynxn (3.22)

We also take the partial derivative with respect to b and set it to zero:

∂L
∂b

= −
N∑
n=1

αnyn = 0 (3.23)

Which implies that:
N∑
n=1

αnyn = 0 (3.24)

Now we can plug the results from the two partial derivatives back into L and simplify:

L =
N∑
n=1

αn −
1
2

N∑
n=1

N∑
m=1

αnαmynymx
ᵀ
nxm (3.25)
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The new optimization objective is to find the maximum of L. This can be done with quadratic
programming. Additionally, we figured out that the optimization depends only on the dot
product of pairs of samples xn and xm. The quadratic programming software hands us back
some vector α and it turns out most of the values (unless we’re really unlucky) in α are zero.
Where α is not zero, this corresponds to a support vector.

αn > 0 =⇒ xn is a support vector (3.26)

In figure 3.1, these are the three left most points; the points that lie exactly on the margin
boundary.

Finding w now depends solely on the support vectors SV . The size of SV is often a lot smaller
than the total number of observations:

w =
∑

xn ∈ SV
αnynxn (3.27)

Determining b is also easy. Just take any support vector xk , plug it in and solve for b:

yk(w
ᵀxk + b) = 1 (3.28)

Up to this point the assumption has been that the data is perfectly linearly separable. This is
obviously almost never the case. It is possible to allow some small errors by using a soft margin.
Basically it gives the constraint some ”slack” to move around. How much error is acceptable
can be tweaked with a new parameter c.

Kernels

Another way to create a situation where the data is linearly separable is to apply some trans-
formation φ to the data into a new space where it in fact is linearly separable and then use
the mathematics described above in exactly the same way. This is possible because the opti-
mization depends solely on combinations of pairs of samples xn and xm. It is not necessary to
actually do the transformation, by replacing the dot product with another function (called a
kernel) it is possible to implicitly do the transformation. This is called the Kernel trick.

Therefore it is not even necessary to ”visit” this higher dimensional space. Interestingly it
is possible to transform the data to a new space with an infinite number of dimensions, po-
tentially without paying the costs of overfitting. Because in the end only a small number of
support vectors define the decision boundary in the transformed high dimensional space.

Using no kernel at all is called the linear kernel. Some other popular kernels are:

Polynomial Kernel

Intuitively the polynomial kernel looks for combinations (sometimes called interactions) of
features. A degree d polynomial is defined as:

K(xn,xm) = (xᵀnxm + c)d (3.29)
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Radial Kernel

Another very popular kernel is the radial (or Gaussian) kernel. It can be seen as a similarity
measure on the range (0,1) with value 1 when both points are the same and value 0 when they
are infinitely far apart:

K(xn,xm) = exp
(
− ||xn − xm||

2

2σ2

)
(3.30)

A nice feature of the radial kernel is that it has an infinite number of dimensions since e can
be written out as an infinite sum of terms. In the case of σ = 1:

K(xn,xm) = exp
(
− 1

2
||xn − xm||2

)
=
∞∑
j=0

(xᵀnxm)j

j!
exp

(
− 1

2
||xn||2

)
exp

(
− 1

2
||xm||2

)
(3.31)

The SVM’s applied in this work all made use of the radial kernel.

3.1.5 Support Vector Machine Regression

It is possible to use a Support Vector Machine for regression by introducing a new parameter
for tolerance called ε, where all residuals are smaller than or equal to ε. In figure 3.2 the blue
band is 2ε wide. Points that fall outside the range are marked as x [25, 24].
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Figure 3.2: Support Vector Machine regression with ε margin

The same concept can be written as an extra set of constrains:

∀n : |yn −wᵀxn + b | ≤ ε (3.32)

Similarly as with the soft margin classifiers mentioned before, it is possible to add a slack
variable to allow some points to fall outside the ε margin. In this project, the e1071 R package
[26] was used.
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3.2 Setup of Experiments

3.2.1 Model Validation

Train-Test split

The data is split into two disjoint sets. One is used to train the model while the other is used to
validate it. Due to the time series like character of the data and how future applications would
use these models (use information from the past to make predictions about the future), it was
decided that instead of a random sample, the data is split on January 1st 2012. This results in
the years 2006 - 2011 being used for training and the years 2012 - 2013 being used for testing.
The final three years (2014, 2015, 2016) were removed from the data set because they showed
signs of being incomplete. All the global models make use of this particular split on January
1st 2012.

3.2.2 Performance Metrics

Of course we want to compare the model to some sort of baseline in order to see how well it’s
doing. Additionally we’d like a way of comparing different models with each other in a way
that is independent of model complexity. We consider Root Mean Squared Error and R-squared
when evaluating the regression models and we shall use Precision, Recall, F-Score and the true
positive/negative rates to determine the performance of classification models.

Root Mean Squared Error

In order to compare between the different models we use a metric called root mean squared
error. This number is simply a function of the difference between the predicted and actual
values:

RMSE =

√√
1
m

m∑
i=1

(ŷi − yi)2 (3.33)

This means it does not depend on the model complexity on the test set. However it is still in
the units of the dependent variable and can therefore obfuscate the true error rate. One way
of fixing this is to simply take the error as a percentage of the range of the dependent variable:

NRMSE =
RMSE

max(y)−min(y)
(3.34)

We will include this normalized root mean squared error as the basis of comparing the efficacy
of the different models discussed below.

R-squared

In the case of linear regression we also have access to R-squared. This number signifies the
proportion of the variance in the dependent variable (in this case y) that is explained by the
model. Usually this number lies on the interval (0, 1). It is always on this interval on the
train sample, but in some cases it can be negative; for instance when the model predictions are
worse than always predicting the average of y - denoted here as ȳ.
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R-squared is the inverse of the ratio between the total variance (SST) and the residual sum of
squares (SSR):

SSR =
m∑
i=1

(ŷi − yi)2 (3.35)

SST =
m∑
i=1

(ȳ − yi)2 (3.36)

R2 = 1− SSR
SST

(3.37)

Where m is the number of observations, ȳ =
1
m

m∑
i=1

yi and ŷ is the predicted value

Precision, Recall and F-Score

The classification models use precision, recall and F-Score instead of something more simple
such as accuracy because a number like accuracy might be very deceptive. For instance, with
a data set in which the vast majority of cases are classA and only very few belong to B, simply
predicting A regardless of any additional information would yield a very high accuracy.

• Precision
This is the fraction of correctly classified observations of a certain class among all ob-
servations classified as such. So of all the points that the algorithm classified as class A,
what fraction actually was class A?

• Recall
The fraction of correctly classified observations of a certain class. In other words, of all
the points belonging to class A, what fraction did the algorithm classify as A?

• F-Score It is sometimes convenient to combine precision and recall into a single number.
This is what the F-Score does, it is the harmonic mean between the two:

F = 2 ·
precision · recall
precision+ recall

(3.38)

True positive/negative rates and Accuracy

The true positive and -negative rates are perhaps the most easy to understand: All they do
is give us the proportion of correctly classified positives and negatives. In most cases (unless
there is perfect separation of classes) there is a trade off between these two values. The true
positive rate is in fact the same as recall described above. Accuracy is of course the fraction of
correctly classified observations.
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3.2.3 Baseline Models

As a comparison for the trained regression models we use two simpler models:

1. Always predicting the mean:
As a simple baseline of comparison we can look at the root mean squared error of pre-
dicting a constant on the test sample, namely the mean of the dependent variable in the
train sample. We would expect a model which is more complex than only predicting a
constant (having more than just an intercept term) to do at least as well as this. Calcu-
lating the baseline is easy, with n observations in the train sample and m observations in
the test sample:

RMSEmean =

√√
1
m

m∑
i=1

(ȳ − yi)2

ȳ =
1
n

n∑
j=1

yj

(3.39)

2. Predicting the value of a cyclical model:
As we found in the data exploration phase, the number of crimes tends to fluctuate dur-
ing the course of the year. For this reason we build a model that serves as a more re-
alistic hypothesis: Crime simply goes through an annual cycle and is independent of the
weather. This model lies between simply predicting the average and using a lot of com-
plex weather related features. Firstly we calculate the period p of the dependent variable
y by using the spectrum function in R. We would expect this to be 365.25 yet it turns out
to be 364.5. This is probably due to missing days in the weather data set. Then we fit a
linear regression model in R using the following formula:

ŷ = sin
2π

364.5 t
+ cos

2π
364.5 t

(3.40)

3.2.4 Transformations of the Dependent Variable

For some models doing a transformation on the dependent variable y could result in an in-
crease in performance. Therefore the following basic transformations were attempted:

• Exponential
Regression equation: logy = βᵀx
Predicted value: ŷ = eβ

ᵀx

• Quadratic
Regression equation:

√
y = βᵀx

Predicted value: ŷ = (βᵀx)2

• Reciprocal
Regression equation: 1

y = βᵀx

Predicted value: ŷ = 1
βᵀx
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3.2.5 Regression Data Structure

The structure of the data which has been used as the basis for predictions in Amsterdam is
shown in table 3.1. With the explanatory variables (X) and dependent variable (y) given in
solely numerical form.

X y
Avg Temp Humidity Radiation Precipitation Pressure Sunshine Windspeed Count

21.61430 82.33254 2101.5171 8.800305 1015.346 6.759527 3.475456 4
20.01682 74.45690 2245.8752 0.000000 1013.581 10.481544 5.847099 2

...
...

17.41780 75.74595 1686.4503 0.000000 1016.878 7.328043 4.539718 0
16.38394 81.26223 1797.6301 6.653288 1008.539 8.188468 4.202404 6

Table 3.1: Weather and crime data used for regression

3.2.6 Classification Data Structure

In the case of classification the class we are trying to predict is whether the day is a high crime
day or not. The definition of a high crime day is the same as in figure 2.8 with class = 1 if the
number of crimes is one standard deviation above the mean.

X y
Avg Temp Humidity Radiation Precipitation Pressure Sunshine Windspeed Class

21.61430 82.33254 2101.5171 8.800305 1015.346 6.759527 3.475456 1
20.01682 74.45690 2245.8752 0.000000 1013.581 10.481544 5.847099 0

...
...

17.41780 75.74595 1686.4503 0.000000 1016.878 7.328043 4.539718 0
16.38394 81.26223 1797.6301 6.653288 1008.539 8.188468 4.202404 1

Table 3.2: Weather and crime data used for classification
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3.3 Results of Experiments

3.3.1 Regression

The following tables give the results of fitting a linear regression model to the data. Three
different data-models are used:

• Daily: This is the most simple model, using only daily weather as shown in table 3.1

• History: Instead of the daily weather we take the mean of the three previous days as the
predictor. This is more in line with the stress hypothesis where it takes a few days of
uncomfortable weather to tip the balance and increase crime.

• Seasonal: By adding a season factor the model is trained using the weather variables
per season. Because weather itself is highly seasonal it might have different effects de-
pending on the time of year, e.g. relative coldness might be relaxing in the summer but
debilitating in winter.

In table 3.3 we see the r-squared values of all the different data-models and transformations
and, coincidentally, that they’re not that great. The seasonal column gives us the best results
at 4% explained variance.

Daily History Seasonal
No Transformation 0.015 0.011 0.035
Exponential 0.017 0.013 0.046
Quadratic 0.018 0.015 0.048
Reciprocal 0.008 0.007 0.030

Table 3.3: R-squared for Linear Regression

When we look at the root mean squared errors the reciprocal transformation in combination
with linear regression performs best with a reduction of about 16% over the baseline.

avg sin glm nb zinb svm

Root Mean Squared Error
No Transformation 4.003 4.078 4.107 4.317 4.101 3.808
Exponential 3.537 3.767
Quadratic 3.690 3.770
Reciprocal 3.415 3.793

Normalized RMSE
No Transformation 0.020 0.019 0.020 0.021 0.020 0.019
Exponential 0.017 0.018
Quadratic 0.018 0.018
Reciprocal 0.017 0.018

Relative RMSE
No Transformation 1 1.005 1.012 1.064 1.011 0.939
Exponential 0.872 0.927
Quadratic 0.910 0.928
Reciprocal 0.842 0.932

Table 3.4: Amsterdam Assault Daily
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As shown in table 3.5, in the case of the history data-model there is a very slight but negligible
increase in performance. The reciprocal transformation performs best in combination with the
seasonal data-model. Interestingly in all cases linear regression has the minimum error and
only in the case of no transformation the support vector machines do better.

Additionally the zero inflated model failed to converge in the seasonal case, perhaps due to a
lack of zero cases or numerical instability in the data.

History data-model

avg sin glm nb zinb svm

Root Mean Squared Error
No Transformation 4.056 4.078 4.055 4.317 4.054 3.833
Exponential 3.528 3.808
Quadratic 3.673 3.810
Reciprocal 3.411 3.816

Normalized RMSE
No Transformation 0.020 0.019 0.019 0.022 0.019 0.018
Exponential 0.018 0.018
Quadratic 0.018 0.018
Reciprocal 0.018 0.018

Relative RMSE
No Transformation 1 1.005 1 1.064 0.999 0.945
Exponential 0.870 0.939
Quadratic 0.906 0.939
Reciprocal 0.841 0.941

Seasonal data-model

Root Mean Squared Error
No Transformation 4.003 4.078 4.220 4.585 NA 3.709
Exponential 3.613 NA 3.710
Quadratic 3.803 NA 3.717
Reciprocal 3.456 NA 3.685

Normalized RMSE
No Transformation 0.020 0.021 0.021 0.022 NA 0.018
Exponential 0.018 NA 0.018
Quadratic 0.019 NA 0.018
Reciprocal 0.017 NA 0.018

Relative RMSE
No Transformation 1 1.005 1.054 1.065 NA 0.914
Exponential 0.891 NA 0.915
Quadratic 0.938 NA 0.916
Reciprocal 0.852 NA 0.908

Table 3.5: Amsterdam Assault History and Seasonal
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3.3.2 Classification

Below in figures 3.3a and 3.3b we can see the result of using the logistic regression algorithm
on the data set. All the performance metrics are plotted as a function of cutoff : at which
probability-value output we say an observation belongs to the class 1.

Note that in all cases the algorithm gives a very low probability - [0%, 3%) for assault and
[0%, 16%) for robbery - to any observation belonging to class 1, i.e. being a high crime day.
This also occurred when fitting a support vector machine to the same data. Even with a radial
kernel and a lot of room to fit a complex decision-boundary the resulting fit always predicted
class 0 on the test set.

Luckily the probability-like output of logistic regression provides us with some wiggle room
to see how the algorithm performs on new data. There is as usual a trade-off between the
true negative and true positive rates and where they intersect is also the point where f-score
is maximized. This comes at a cost however, as we might capture most of the high crime days
there are a lot of false positives.

For assault the maximum f-score is about 13% and for robbery it is a little less than 25%. This
could indicate that robberies are easier to classify than assaults, which is in contradiction to
what one would expect from the figures 2.8 and 8.3.
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Chapter 4

Local Models

Subgroup discovery is a well established data mining technique for finding descriptions of
subsets of the data according some property of interest, formalized by a quality function,
where interestingness is defined as a distributional unusualness with respect to some property of
interest [27]. A common search strategy in subgroup discovery is to start with complete data
and then iteratively add conditions and remove observations, using beam-search to find high
quality subgroups.

4.1 Patient Rule Induction Method

The Patient Rule Induction Method (PRIM) is characterized by a very ”patient” approach, i.e. it
is not greedy and only removes a tiny bit of the data at each step while having a beam-width of
1. The property of interest (i.e. the quality function) is defined as the mean of some designated
target variable. Note that in the general case, the quality function could be anything. PRIM
can be applied for obtaining an overview of the relations in the data, for automatic hypothesis
generation and for data exploration. Typically the resulting patterns are easy to interpret
by users and domain experts [28]. Where each box Bk is a sub region consisting of logical
conditions [29], for example:

Bk =


13.6 ≤ temperature ≤ 21.3 &

...

precipitation ≤ 0.5

(4.1)

In the case of PRIM, these algorithms go through a number of phases where the boxes are
found, slightly edited and then validated. These phases are discussed below.

4.1.1 Top-down Peeling

Starting out with a box B that covers all of the data, at each iteration a small sub-box b within
the current box B is removed. The number of observations which satisfy the box conditions
is also called the support. This process is repeated until the support of B has reached some
minimum quantity β0. The sub-box b that is chosen is the one which maximizes the quality
function.

For real valued inputs there are two possible sub-boxes, which take away the lower or upper
portion of the subset. For some value of α and the jth input, the two eligible boxes are:

bj− = {x | xj < xj(α)}
bj+ = {x | xj > xj(1−α)}

(4.2)

Where xj(α) is the α-quantile of the xj-values in the current box. In the case of a categorical
feature xj there exists a candidate sub-box for each of its values sjm within the current box:

bjm = {x | xj = sjm} (4.3)
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Algorithm 1 gives the pseudo-code for the peeling process. With arguments:

1. minimum support β0

2. quality function Q (the mean in the case of PRIM)

3. the data set X

4. target variable y

Algorithm 1 Top-down Peeling

1: procedure peel(β0, Q, X , y)
2: C ← ∅ . empty set of conditions
3: while |X | ≥ β0 do
4: c← C(X ) . calculate a set of candidate conditions for current X
5: c∗← argmaxcQ(y) . choose the condition that maximizes the quality function
6: X ←X \X [c∗] . remove the observations that match the condition from X
7: y← y \ y[c∗] . remove the observations that match the condition from y
8: C← C ∧ c∗ . add the condition to C

return C as the optimal box

Note how a set of conditions C is returned instead of a set of (indexes of) observations b, as
we are not particularly interested in the observations that fall into a box but more so the
conditions that are required to construct it.

4.1.2 Bottom-up Pasting

The resulting box from the peeling process has been determined by the particular values that
happened to define that sub-box at the various stages of the process. The decisions made in
these stages were made without knowledge of later peels that further refined the the bound-
aries. Essentially the pasting process is the reverse of the peeling algorithm, a small sub-box
b is added to the box B. Again the sub-box b which maximizes the quality function is chosen,
provided that quality increases.

4.1.3 Validation

After a box has been constructed it has to be checked against unseen data to make sure that the
reported high quality is not the product of overfitting. To validate a box, we simply go through
all the conditions that were constructed during the learning process and apply them one by
one on a new data set. In figure 4.1 this process is visualized. The validated box consists of all
the conditions up to and including the one that gives maximum quality.

4.1.4 Covering

In subgroup discovery it is customary to follow a so-called covering strategy. This means that
the rule construction algorithm is applied sequentially to subsets of the data. First a rule is
generated on the entire data set, afterwards all observations that fall into that box are removed.
This process is repeated until the quality of the remaining subset becomes smaller than the
overall quality. A pseudo code example is given in Algorithm 2.
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For the covering procedure the arguments are:

1. minimum support β0

2. quality function Q (the mean in the case of PRIM)

3. the data set X

4. target variable y

Algorithm 2 Covering strategy

1: procedure cover(β0, Q, X , y)
2: q∗←Q(y) . global quality
3: B←∅ . empty set of boxes
4: while Q(y) ≥ q∗ do
5: b← peel(β0, Q, X , y) . calculate the optimal box for current X
6: B← B∪ b . report b as one of the covering boxes
7: X ←X \ b . remove the observations that fall into box b from X
8: y← y \ b . remove the observations that fall into box b from y

return the covering boxes B

In a slight abuse of notation, in algorithm 2 we let the peel procedure return references to
specific observations. These can of course be trivially determined when the conditions defining
a box are known.
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4.2 Subgroup Discovery Package

Due to a lack of available transparent and well performing implementations of PRIM it was
decided to code a new version in R. The most natural way of doing this is in the form of an
R package, which also gives the possibility of releasing it on the Comprehensive R Archive Net-
work (CRAN). The package was officially submitted and accepted by CRAN and can be used by
anyone who wants to do subgroup discovery using the PRIM algorithm [30]. One advantage of
this package is that it is written purely in R and has no dependencies on third party packages
and is not simply a wrapper for existing libraries written in other languages.

There are a few differences with the pure PRIM description, namely the package has been
written to be more generic and allow any quality function. Ties in quality while finding the
best box are broken by the support of the boxes.

Additionally the package has many more features such as running parts in parallel, overcom-
ing overfitting by giving a ”2 standard errors below the optimum” option and constraining the
greediness even more when dealing with logical and categorical inputs. Besides the covering
strategy there is also a diversification algorithm, discussed below.

Currently the package does not include bottom-up pasting due to time constraints. The au-
thors of PRIM also note that this strategy has a limited effectiveness in increasing the quality
of a box [29]. Planned features are the bottom-up pasting algorithm and more subgroup dis-
covery methods besides PRIM.

4.2.1 Training & Validation

Below in figure 4.1 we see an example of the training and validation code at work. Note that in
this case the peeling process paints a very optimistic picture where the quality almost always
goes up. The validation process shows us that we have in fact been overfitting and stopping
earlier will yield a more generalized box. The horizontal dotted line shows the cutoff position
when the ”2 standard errors below the optimum” (2se) parameter is used. Of course the option
to simply pick the highest quality box is also available.
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Figure 4.1: Training and validating the PRIM model
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4.2.2 Diversification

In addition to the covering strategy, another possible approach of finding a diverse and in-
teresting set of subgroups is to simply generate many independent random test-train splits of
equal size and find the best box (according to whatever metric and cutoff point specified) on
each one. This is a process that can easily be optimized by computing them in parallel. After
all the boxes have been calculated, we only keep those that dominate the other boxes. In figure
4.2a we see all dominated boxes as crosses while the non-dominated boxes are labeled dots. (A
point p ∈ S is said to be non-dominated if there is no other point q ∈ S whose coordinates are
all greater than or equal to the corresponding coordinates of p.) To compare the ”sameness”
between boxes A and B we calculate a score by using the Jaccard index:

J(A,B) =
|A∩B|
|A∪B|

(4.4)

This equation causes the score to be close to 1 when the boxes both describe nearly the same
subset and near 0 when almost no observation occurs in both A and B. Interestingly, at least
in case of the weather and crime data set, boxes that are close in quality and support also have
a high similarity score. This is more clearly visible in figures 4.2a and 4.2b.
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Figure 4.2: Comparing diversification sameness scores

Intuitively, if we suppose that points in figure 4.2a that are nearly equal in quality and sup-
port, also describe the same data, we would predict that in figure 4.2b the region around the
diagonal line would be much brighter than the corners. As we can see this is indeed the case,
in fact there is even some clustering going on. This could be an interesting direction for future
work as these clusters describe different ”ways” of being optimal. 1

These results give us more confidence that the top scoring boxes have much in common and
they are not simply sitting in their respective local maximums. Still, picking the best perform-
ing box is not always the best option. For instance in figure 4.2b, the two best performing
boxes (lower left corner) sit in their own little cluster. We therefore prefer the third best box
as it sits in a much larger cluster while still being very close to optimal and at the same time
having a higher support.

1For a more clustered overview of figure 4.2b where the ordering has changed to put boxes with a high sameness
score closer together please view figure 8.4 in the appendix.
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4.3 Setup of Experiments

The data used for the local models is almost exactly the same as that for the global models: 10
years of daily weather for Amsterdam combined with daily sums of crimes. The only change is
that the average temperature has been replaced by the minimum and maximum temperatures.
This was done to make the final analysis easier to interpret.
Both the covering and diversification strategies were applied. To avoid overfitting, the optimal
box was chosen using the ”2se” rule and in the case of diversification, 100 different train-splits
were attempted. All models have been validated using a test set that was not involved in
training. These validated models where then applied on the whole data set. To further guard
against overfitting, the final reported result is not the one with the best quality, but the optimal
box in a well performing cluster, i.e. one with a high quality and (relatively) high support.

4.4 Results of Experiments

Both assault and robbery were analyzed for interesting local patterns and the results are de-
scribed below. The subgroups found have a substantially larger average number of crimes per
day while still describing around 275 days. For future work it will be trivial to include more
crime categories due to the generic nature of the R package.

4.4.1 Assault

In figure 4.3 we can see the results of the covering (left) and diversification (right) strategies.
The covering algorithm terminates quickly because the quality of the leftover observations
after subtraction of the first box falls below the global average. We can think about this as
removing a large fraction of the high crime days and being left with the normal days.
The diversification result yields many dominating boxes ranging from just above average but
covering around 70% of the data to a very high 44% above average while only covering 7% of
the data. Figure 4.2b has been constructed using the diversification data and can be consulted
to find a good box. The first two best performing boxes have much in common, but they stand
out from the others, we therefore pick the best box from the second cluster, box number two.
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Figure 4.3: Results of applying PRIM to assault
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Table 4.1 shows us the details of box nr 2 after validation from the diversification process. The
quality is 1.4 times the global average and 287 days fall into the box (9% of the entire data set).
As we would expect from a high performing box, the number of conditions is quite large and
all 8 variables are used.

relative absolute
Box quality 1.4 8.48
Box support 0.09 287

Conditions
humidity ≤ 75.29

8.73 ≤ maxTemp
3.19 ≤ minTemp

precipitation ≤ 0.11
1009.71 ≤ pressure ≤ 1027.97
1313.74 ≤ radiation

7.54 ≤ sunshine
1.96 ≤ windspeed ≤ 7.99

Table 4.1: Box nr 2 specifications
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Looking at table 4.1 it is not straightforward how to interpret the result, i.e. what kind of day is
described here? Therefore the box is visualized in figure 4.4 by taking the density function for
each variable over the 10 years of observations in Amsterdam, where the red areas are those
that fall into the box. We can see that in some cases, as with windspeed, a tiny slice at the
left tail of the distribution is not covered. This shows us that this technique always requires
someone to look at the result and decide whether this rule makes sense. In this case we might
safely include the days with almost no wind, the bottom-up pasting process could help us here
by enlarging the box and thereby removing some of the more spurious conditions.
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Figure 4.4: Rules of box nr 2 highlighted for assault

It is clearly visible that these distributions depict warm, dry and long days. This is in line with
the related literature, which found a clear relation between temperature and violent crime [6].
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4.4.2 Robbery

We do the same for robbery, this time box nr 6 is picked because boxes with the absolute best
quality tend to introduce spurious conditions (e.g. removing a very small section from one tail
of the distribution) which do not contribute to a better understanding of the subject material.

Covering yields a similar result with the first box having approximately the same quality as
the best performing diversification boxes. Interestingly there are two more covers until the
mean drops below the global average. This would suggest that the optimal box did not remove
all the high quality observations.
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Figure 4.5: Results of applying PRIM to robbery

In this case we can get an even better quality of 1.47 times the global average while covering
10% of the data, as is visible in table 4.2.

relative absolute
Box quality 1.47 2.27
Box support 0.1 344

Conditions
73.96 ≤ humidity ≤ 94.22

8.42 ≤ maxTemp ≤ 15.88
0.99 ≤ minTemp ≤ 10.08

precipitation ≤ 16.68
1003.26 ≤ pressure ≤ 1028.95

radiation ≤ 892.86
sunshine ≤ 6.19

2.64 ≤ windspeed ≤ 9.84

Table 4.2: Box nr 6 specifications
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Again we can visualize this box by overlaying it on the variable distributions. Figure 4.6 shows
us that in the case of robbery, a different pattern emerges. It are now dark and short days where
the temperature never goes below freezing but it is not warm enough for a lot of people to go
outside. We could speculate that this is due to a need for a minimum number of potential
victims while constraining the maximum amount of witnesses. 2

0.00

0.01

0.02

0.03

0.04

0.05

40 60 80 100

humidity

de
ns

ity

0.00

0.02

0.04

0 10 20 30

maxTemp

de
ns

ity

0.00

0.02

0.04

0.06

−20 −10 0 10 20

minTemp

de
ns

ity

0.0

0.2

0.4

0 20 40

precipitation

de
ns

ity

0.00

0.01

0.02

0.03

0.04

970 990 1010 1030

pressure

de
ns

ity

0e+00

2e−04

4e−04

6e−04

0 1000 2000 3000

radiation

de
ns

ity

0.00

0.05

0.10

0 5 10 15

sunshine

de
ns

ity

0.00

0.05

0.10

0.15

0.20

5 10 15

windSpeed

de
ns

ity

Figure 4.6: Rules of box nr 6 highlighted for robbery

2Please refer to table 8.1 in the appendix for an overview of which crimes are classified as robbery
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4.5 Enhancing global models with local patterns

We can use the results from PRIM as an extra predictor in our global models. For this we
shall first find two PRIM subgroups using the training set of the global models. One subgroup
maximizes the average number of crimes and the other tries to minimize it. Then the new
predictor becomes whether some observation falls into a box, for both of the PRIM boxes that
were found.

Now we train the global models again but this time with the extra two variables (we shall call
this the enhanced model). In table 4.3 we can see the coefficients and p-values of the log-
linear (exponential) OLS model, trained on the assault data, both with and without the new
explanatory variables. As expected for violent crime, temperature comes up as significant in
both cases. In the enhanced model, precipitation almost becomes significant while both new
PRIM variables are (highly) significant.

Looking at the estimated coefficients those with a very high p-value (low significance) often
have the wrong sign, e.g. both radiation and sunshine should increase the number of as-
saults. However the more relevant and statistically significant predictors do have the correct
sign: temperature increases the number of assaults and both PRIM predictors have their cor-
responding sign.

Estimate P r(> |t|)
(Intercept) 3.955e − 01 0.802
avgTemp 7.482e − 03 0.016
radiation 7.762e − 06 0.871
sunshine 2.659e − 03 0.734
precipitation −4.407e − 03 0.135
humidity −2.274e − 03 0.338
pressure 1.551e − 03 0.305
windSpeed −5.285e − 04 0.946

Estimate P r(> |t|)
(Intercept) 2.670e − 00 0.1114
avgTemp 7.207e − 03 0.0198
radiation −1.957e − 05 0.6842
sunshine 3.236e − 03 0.6776
precipitation −5.209e − 03 0.0778
humidity −1.112e − 03 0.6435
pressure −7.367e − 04 0.6478
windSpeed −2.138e − 03 0.7847
prim.maxTRUE 1.305e − 01 0.0228
prim.minTRUE −2.008e − 01 5.61e − 05

Table 4.3: Log-Linear Linear Regression coefficients

When we look at the changes in R-squared in table 4.4, a noticeable improvement is apparent.
We can however still only account for a tiny fraction of the variance.

Regular Enhanced
No Transformation 0.015 0.025
Exponential 0.017 0.021
Quadratic 0.018 0.024
Reciprocal 0.008 0.010

Table 4.4: R-squared for Linear Regression on daily assaults
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The RMSE performance is of the enhanced models is shown in table 4.5. Sadly there is a
minimal change, which might indicate that there is a generalization problem. The SVM’s do
slightly better while the other models perform about the same.

avg sin glm nb zinb svm

Root Mean Squared Error
No Transformation 4.056 4.078 4.056 4.333 4.052 3.807
Exponential 3.541 3.767
Quadratic 3.683 3.770
Reciprocal 3.433 3.817

Normalized RMSE
No Transformation 0.020 0.019 0.020 0.022 0.020 0.019
Exponential 0.017 0.018
Quadratic 0.018 0.018
Reciprocal 0.017 0.019

Relative RMSE
No Transformation 1 1.005 1.000 1.068 0.999 0.939
Exponential 0.873 0.929
Quadratic 0.908 0.929
Reciprocal 0.846 0.941

Table 4.5: Amsterdam Assault Daily Enhanced
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Chapter 5

Discussion

5.1 Global Models

It seems that the effects of weather on crime are very limited and difficult to describe using a
global model. The amount of noise compared to the signal is very large. Partly this is caused
by how the crimes were processed and reported by the police and the ministry of security and
justice. The other part of the noise is more natural and mostly due to unpredictable human
behavior. Opportunities for potential crimes are distributed randomly.

Several methods of pattern recognition have been applied where linear regression gives at best
a 10% decrease in error over the baseline model. Only a small fraction of the variance could
be explained, namely 1-4%. Other methods such as support vector machines and zero inflated
negative binomial models did not do better.

Most likely important predictors are missing which could better explain the variance. Finding
these explanatory variables could be a difficult task in itself. Human beings are influenced by
many factors with people reacting differently to the same stimulus. At this point being able to
accurately predict Kingsday is a much more effective way of curbing crime.

5.2 Local Models

The performance of the patient rule induction method seems to exceed those of any global
model. This could be because a local model does not need to optimize for the entire feature
space and can instead focus on one specific subset. The subsets found with the highest quality
consistently boasted a 40-50% increase over the global quality while still containing a substan-
tial number of days.

The results are in line with previous research, the subset we found with many violent crimes
consists mainly of warm, summer days. Meanwhile the subset for economically motivated
crimes (such as robbery) has many typical Dutch late autumn days.

Of course the question still remains how directly the weather can really influence crime. More
likely the weather influences people’s behavior which in turn influences crime. Addition-
ally certain cultural phenomena occur during specific times of the year and could imply a
false relationship between particular weather conditions and crimes, i.e. they are confounding
variables.
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Chapter 6

Future Work

6.1 Peak Matching

Instead of predicting the actual number of crimes per day or per month, more accuracy could
be gained from predicting when crime goes up or down. Essentially turning it into a classifi-
cation problem. In this case, algorithms like support vector machines seem to be bad at pre-
dicting the correct absolute number but are good at following the general peaks and troughs.
However it is questionable how much information could be gained from this method. It would
not be known by how much crime will rise, only that it will.

Another more complex variation of above idea is to predict the derivative or slope on a point
in time. This would also tell us by how much crime will rise or fall, but still not an absolute
amount because the starting conditions are unknown.

6.2 Extreme Weather Conditions

Storms and heatwaves could contribute to a real change in the number of daily crimes. It could
be interesting to tell which effects they have on specific types of crime. For instance during
storms most people stay indoors. During a heatwave perhaps many people open their windows
which allows for easy access for burglars. Of course at this point this is just speculation.

6.3 Clustering PRIM Results

The PRIM diversify output lends itself well to a clustering analysis. Then one box from each
cluster could be chosen and analyzed. This would yield more information on the different
ways of being a high quality subset. For instance some of these clusters could represent days
with extreme conditions mentioned before. Figure 8.4 in the appendix shows us a start on a
method of extracting the clustering information.

6.4 Generalization of Subgroup Discovery Package

The current version of subgroup discovery is a limited generalization of the PRIM method
where different quality functions can be chosen other than the mean. Further abstraction can
yield a more general form of beam search subgroup discovery where PRIM is simply running
the program with beam width set to 1 and quality function set to the mean.
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6.5 Additional Data

6.5.1 Police Crime Data

The data used for this project was collected by the Dutch ministry of Security and Justice and
only includes cases that have been through the entire court process, i.e. a judge has ruled
on a verdict. This filtering limits the number of data points available and can obfuscate the
true underlying processes. Are we for instance only capturing and convicting a certain type of
criminal? An analogy to this problem would be interviewing people on the bus or train about
their experiences on public transport; these answers cannot give you the full picture as you
only gather data on subjects who made use of it in the first place.

6.5.2 Higher Resolution Data & More Complex Features

Including the time and postcode of a crime can yield more possibilities other than simply
being more accurate on the weather conditions. We could for instance think of a heat stress
index, a new feature constructed out of variables like temperature, humidity and pressure on
a specific time.

6.5.3 Non-Weather Data

Data from other sources could be used in combination with weather data. Given a better res-
olution of when and where a crime took place this could be matched with facts about the
general area such as income and wealth distribution and population density or even the num-
ber of trees and greenery.
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Chapter 7

Conclusions

The goal of this research was to investigate how the number of crimes in a crime category de-
pends on certain weather variables. Firstly by determining if a statistical relationship between
weather and crime can be ascertained and secondly by building and testing predictive models.

The results gained from the global models show a definite but very weak signal which is hard
to distinguish from the noise present in the data. At most a 16% increase in predictive per-
formance over simple baseline models can be achieved when working with the assault crime
category. Generalizing to new data was difficult for these models.

On the other hand, local models faired much better at finding high quality subgroups with
characteristics that are in line with research elsewhere. A 50% increase in the average number
of daily crimes was reached in the best performing subgroups while still describing a relevant
fraction of the available days (±10%).

The results from these local models could be used to better inform law enforcement organi-
zations about at what times of the year the number of crimes in a certain crime category are
maximized.
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Chapter 8

Appendix

Assault Murder Burglary
Mishandeling Overige moord en doodslag Inbraak in bedrijf / kantoor
Mishandeling - algemeen Moord en doodslag Inbraak in school
Mishandeling / GSB Moord en doodslag - algemeen Inbraak in woning
Mishandeling - horecagew. arrond.
Almelo

Moord en doodslag - horecagew.
arrond. Almelo

Inbraak overige objecten

Mishandeling - willekeurig geweld Moord en doodslag - willekeurig geweld Woninginbraak
Overige mishandeling Rape Insluiping woning
Openlijke geweldpleging Verkrachting Larceny
Openlijke geweldpleging - algemeen Aanranding Diefstal
Openlijke geweldpleging / GSB Overig sexueel Diefstal af / uit overige voertuigen
Openlijke geweldpleging - horecagew.
arrond. Almelo

Zedendelicten Diefstal uit bedrijf

Openlijke geweldpleging - willekeurig
geweld

Zedendelicten Algemeen Diefstal uit overige objecten

Overige openlijke geweldpleging Zedendelicten / GSB Diefstal uit / vanaf auto
Geweld tegen ambtenaren Zedendelicten - willekeurig geweld Diefstal uit woning
Geweld tegen beroepsbeoefenaar
ambulance

Zedenzaak overig Brandstofdiefstal

Geweld tegen beroepsbeoefenaars
ambulance Domestic Violence Eenvoudige diefstal

Geweld tegen beroepsbeoefenaars
brandweer

Huiselijk geweld Kentekenplaatdiefstal

Geweld tegen beroepsbeoefenaars OV Huiselijk geweld kindermishandeling Koperdiefstal
Geweld tegen beroepsbeoefenaars
overig

Huiselijk geweld oudermishandeling Ladingdiefstal

Geweld tegen beroepsbeoefenaars
politie

Huiselijk geweld overig Overige diefstal

Geweld tegen beroepsbeoefenaars
ziekenhuizen

Huiselijk geweld partnermishandeling Overige diefstallen

Geweld tegen een politie-ambtenaar Robbery Overige diefstallen / GSB
Geweld tegen medew. Airport
Security/Douane/KMAR

Straatroof Overig eenvoudige diefstal

Geweld tegen Politie Straatroof (waaronder tasjesroof) Overig gekwalificeerd diefstal
Zware mishandeling Diefstal met geweld Winkeldiefstal

Vehicle Theft Hard Drug Soft Drug
Autodiefstal Harddrugs Softdrugs
Diefstal brom-/snorfiets Harddrugs / GSB Softdrugs / GSB
Diefstal brom-/ snorfiets Harddrugs overig handel en smokkel Hash handel en smokkel
Diefstal overige vervoermiddelen Harddrugs overig productie Hash productie
Diefstal overige vervoermiddelen / GSB Overige harddrugs Coffeeshop gerelateerd

Diefstal van auto Synthetische drugs
Handelingen i.h.k.v. exploitatie
coffeeshop

Diefstal van fiets Cocaine handel smokkel
Handelingen i.h.k.v. exploitatie
coffeeshop

Diefstal van fiets / GSB Heroine handel smokkel Discriminatie
Diefstal van motor Herone/Cocane Discriminatie antisemitisme

Overige motorvoertuigendiefstal Straathandel / drugsrunners
Discriminatie godsdienst /
levensovertuiging

Vaartuigdiefstal Overige drugsdelicten”
Discriminatie godsdienst/
levensovertuiging

Werkvoertuigdiefstal General Discriminatie handicap
Overige Discriminatie overig
Overige wetten Discriminatie ras

Discriminatie seksuele gerichtheid

Table 8.1: Crime super-category allocation
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Figure 8.1: Monthly crime counts per category
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Figure 8.2: Weekday crime distributions per category
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Figure 8.3: Amsterdam robbery distributions per season and weather parameter
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Figure 8.4: PRIM diversification clustering for assault
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