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Abstract

Quantitative information resulting from PET scans, such as tumor volume and radionuclide

uptake, is crucial to radiologists for the diagnosis and staging of cancer, as well as for treatment

planning. In recent years, many advances have been made in the development of quantitative

reconstruction models for Positron Emission Tomography (PET). These reconstruction models

correct for quantitative effects such as absorption, scatter and random coincidences.

However, the possibilities to include respiratory motion correction in these quantitative

reconstructions models are still very limited and rely on the assumption that patient breathing is

stationary. It is however known from radiotherapy that patient breathing is highly variable. This

poses a major problem in quantitative PET, as respiratory motion causes image artifacts, such as

blurring of the tumor, which results in overestimation of the tumor volume and underestimation

of radionuclide uptake.

Therefore, the aim of this study was to develop a novel motion correction method for PET

acquisitions that can deal with breathing variability. This was achieved by incorporating a

model for the internal breathing motion in the iterative image reconstruction. The internal

breathing motion was assumed to correlate with certain indicators of the respiratory phase of

the patient (e.g. end-expiration), which could for instance originate from a respiratory belt.

This correlation is described by a motion model which, given such an indicator of the respirator

phase, predicts the internal motion. In this study, a linear motion model was used. The motion

model parameters were assumed to be constant during an acquisition. Given the perfect motion

model for a specific acquisition, the internal motion at each time is exactly known and can

perfectly be corrected for. However, in practice these motion models are not a priori known so

the motion model parameters are optimized during the iterative image reconstruction.

Internal motion can consist of motions such as translations, rotations and deformations.

This study focused on the correction of translational motion. As the motion of the liver mainly

consists of translations in the head-foot direction, this new model-based motion correction

method (MBC) was applied to the liver. MBC was tested for both variable and non-variable

breathing dynamics through simulations and experiments. Simulations and experiments were

also performed to test the behavior of the model error if the motion model parameters are not

constant during the acquisition.

All results were compared to state-of-the-art motion correction methods. In respiratory

gating, only the data that was acquired in a limited window of respiratory phases (e.g. around

end-inspiration) is used for image reconstruction. In another motion correction method, all of

the PET data is divided over a number (often five or eight) of such gating windows that are

reconstructed independently. These individual images can then be registered to form one final

motion corrected image.

The results showed that in the case of variable breathing, MBC performed similar to the



other methods in terms of lesion volume and mean radionuclide uptake. The contrast-to-noise

ratio (CNR) of MBC is always higher than or similar to those of the other methods. In the case of

non-variable breathing dynamics, all methods underestimated the CNR and radionuclide uptake

and overestimated tumor volume with respect to a completely motion-free reconstruction. This

was unexpected for MBC as it was hypothesized that, given a perfect estimate of the motion

model parameters, MBC would perform equally well for variable and non-variable breathing

dynamics. The problem is most likely caused by problems in the optimization of the motion

model parameters. If the parameter values resulting from the optimization highly deviate from

the correct parameter values, the internal motion cannot be fully corrected for, causing residual

motion to be present in the final reconstructed image.

The results show that the model error as a function of different model parameters is smooth

and convex and has a clear optimum near the perfect model parameter values, making it very

suitable for optimization. Contrary to expectation, the model error is not increased for acquisi-

tions with non-constant motion model parameters. This indicates that the current model error

cannot be used as an absolute measure to compare the amount of residual motion in different

acquisitions.

In conclusion, the results showed that it is feasible to optimize a motion model using PET

data. An abstract reporting this result that I contributed to was accepted for a poster presenta-

tion at the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference. A better

quantitative analyses should be performed to draw a definite conclusion about the performance

of model-based motion correction and its benefit in the case of variable breathing dynamics.

The chosen model error proved to be suitable for optimization of the motion model, but cannot

currently be used to compare the goodness of motion correction of different PET acquisitions.
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Chapter 1

Introduction

Positron Emission Tomography (PET) serves its main applications in oncology [2]. Image

quality and in particular quantitative information about tumors, such as tumor volume and ra-

dionuclide uptake, are crucial to the radiologist. These parameters can be used for the diagnosis

and staging of cancer, as well as treatment planning.

In radiotherapy for instance, quantitative PET is used to determine the required tumor

dose and target volume [3]. Accurate delineation of the tumor volume is required to avoid

irradiation of healthy tissue, as well as to improve tumor coverage [4]. Other applications

include radionuclide therapies, such as radioembolization. Radioembolization is a palliative liver

cancer treatment that uses micron-sized radioactive spheres that selectively irradiate tumors,

thus minimizing damage to healthy liver tissue [5]. In radioembolization, quantitative PET can

be used to determine the patient-specific microsphere distribution and tumor dose [6]. These

quantities can be used to optimize treatment planning, such as the amount of administered

activity [7, 8].

Quantitative models for PET image reconstruction are essential to determine these quantita-

tive parameters, such as radionuclide uptake and tumor volume, needed for the aforementioned

applications. These models correct for quantitative effects such as absorption, scatter and ran-

dom coincidences [9]. However, the possibilities to include respiratory motion correction in

these quantitative reconstructions models are still very limited. This poses a major problem

in quantitative PET, as respiratory motion causes image artifacts, such as blurring of the tu-

mor. Tumor blurring results in overestimation of the tumor volume and underestimation of

radionuclide uptake [10].

Several solutions to the problem of respiratory motion in quantitative PET have been pro-

posed. In respiratory gating the acquired data is retrospectively binned in several respiratory

phases or gates. Only one of these gates is reconstructed. This reduces motion artifacts, but

increases image noise. Moreover, due to the width of the bin motion is not fully removed from

the image. Another possibility is to reconstruct all gates independently and combine the result-
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CHAPTER 1. INTRODUCTION 2

ing images into one motion-corrected image using registration. This method has the advantage

of using all available statistics.

Both respiratory gating and registration of gated images rely however on the assumption

that patient breathing is stationary, but it is known from radiotherapy that breathing is patient

specific and highly variable, containing for instance amplitude and baseline drifts [11, 12]. Cur-

rently a common solution to overcome the problem of breathing variability is to coach patients

to breathe more regularly. However, for some patients coaching is not suitable due to their

medical condition or because they have difficulty following the coaching instructions [13, 14].

Therefore, the aim of this study was to develop a novel motion correction method for PET

that can deal with breathing variability. This will be achieved by explicitly modeling the

internal motion dynamics during the image reconstruction. The goal of this study is to test

the performance of such a model-based respiratory motion correction method in PET and

compare this with respiratory gating and registration of gated images through simulations and

experiments.

The remainder of this thesis is structured as follows. In Chapter 2, the principles of

radioembolization, Positron Emission Tomography (PET) and image reconstruction that are

relevant for this study are discussed. In Chapter 3, a brief overview is given of the literature

concerning respiratory motion compensation techniques and is concluded by motivating the aim

for this study. In Chapter 4, the respiratory motion compensation technique that is proposed

in this study is described, as well as how its performance was tested under variable breathing

dynamics using simulations and experiments. In Chapter 5 the results of the studies that were

performed are presented. In Chapter 6 the results of these studies are discussed, as well as

some limitations of the studies that were performed. In Chapter 7, some possible directions for

future research are discussed. In Chapter 8, this thesis is ended by presenting the conclusions.



Chapter 2

Background

This chapter discusses the required background for this study, starting with radioembolization

as this is an important possible application. This is followed by discussions of the working

principles of Positron Emission Tomography (PET) and image reconstruction techniques.

2.1 Radioembolization

Radioembolization is a liver cancer treatment that is mainly used in a palliative setting with

patients that suffer from unresectable liver cancer [15]. Radioembolization uses micron-sized

resin or glass spheres that contain the radioisotope yttrium-90 [16, 17]. These spheres are

administered in the hepatic artery via a catheter. The microspheres end up primarily in tumor

tissue, thus selectively irradiating tumor tissue over non-tumor tissue. This effect is caused by

the liver’s unique vascular system.

2.1.1 Vascular system of the liver

The liver’s vascular system consists of two blood supplying vessels: the portal vein and the

hepatic artery. The portal vein carries blood from the intestines and the stomach, to the liver.

This blood is rich in nutrients and is processed by the liver that filters it from toxins. The

hepatic artery is part of the normal blood circulation and supplies the liver with oxygenated

blood. All blood leaves the liver via the hepatic vein. Figure 2.1 shows the liver with the portal

vein, hepatic artery and hepatic vein.

2.1.2 Tumor to non-tumor (T/N) uptake ratio

Radioembolization is based on the fact that tumor tissue receives its blood primarily from

the hepatic artery, whereas normal liver tissue receives its blood primarily from the portal

vein. Therefore, administering the microspheres in the hepatic artery should lead to a higher

accumulation of microspheres in tumor tissue than in normal liver tissue [18]. The ratio between

3



CHAPTER 2. BACKGROUND 4

radionuclide uptake in tumor and non-tumor tissue (T/N ratio) will then be larger than 1.

Preferably the T/N ratio should be as large as possible, thus maximizing the damaging effect

on the tumor, while minimizing the radiation damage on healthy liver tissue.

Figure 2.1: The vascular system of the liver, showing the portal vein that carries blood from the

digestive tract to the liver and the hepatic artery that carries oxygenated blood from the heart to

the liver. The hepatic vein carries blood away from the liver, back to the heart [19].

2.1.3 Beta radiation

Tumor destruction is caused by radiation originating from the yttrium-90 decay in the micro-

spheres. Yttrium-90 has a half-life of 64.1 hours and its primary decay mode is the following

β−-decay to the ground state of Zirconium-90,

90
39Y → 90

40Zr + e− + ν̄e. (2.1)

Figure 2.2 shows the energy spectrum of the electrons resulting from the yttrium-90 decay.

These electrons have a mean energy of 930 keV with a maximum of 2270 keV. The electrons

interact with the tumor tissue, depositing their energy and thereby inducing radiation damage.

The mean range of the electrons in tissue is 2.5 mm with a maximum of 11 mm. It is important

that this range is not too high, as it limits the accuracy of dose deposition.
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Figure 2.2: Energy spectrum of the electrons resulting from the yttrium-90 decay [20]. The

electrons have a mean energy of 930 keV and a maximum energy of 2270 keV.

2.1.4 Patient eligibility

As mentioned before, not all microspheres end up in tumor tissue. Part of the microspheres end

up in healthy liver tissue, causing unwanted radiation damage. The amount of radiation damage

done to healthy liver tissue depends on the patient’s vascular system. Before the treatment, the

patient’s vascular system is therefore examined using pre-treatment imaging to assess its fitness

for the treatment.

Only a small number of patients is found to be unsuited for radioembolization, usually due

to vascular abnormalities or extensive lung shunting [5]. In the case of lung shunting, patients

have an abnormal, direct connection between blood vessels of the liver and the heart, causing

part of the microspheres to reach the lungs [15]. Patients with insufficient liver reserve are

also not suited for radioembolization, as they risk radioembolization induced liver failure and

treatment related morbidity due to the inevitable non-tumor dose [5]. The next section will

discuss how pre-treatment imaging is used to asses the fitness of a patient’s vascular system for

a radioembolization treatment.

2.1.5 Pre-treatment imaging

The screening procedure for radioembolization starts with angiography. Angiography is a tech-

nique that is used to visualize the blood vessels. This is achieved by making two scans using

X-ray based imaging techniques. The first scan is regular, but prior to the second scan a

radio-opaque contrast agent is injected into the blood vessels. By digitally subtracting the two

images, only the blood vessels remain. Angiography is used in radioembolization to determine

the optimal position for the catheter and find any vascular abnormalities that could compromise

the treatment.

After the angiography, a safety procedure is performed using Tc-99m MAA particles to

represent the microspheres. These particles contain the radionuclide technetium-99m, which

is a commonly used radionuclide in planar imaging. Tc-99m is a gamma emitter, where the
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‘m’ indicates that the radionuclide is metastable. The structure of the particles is provided by

macro aggregated albumin (MAA), which is a human albumin aggregate particle that is used

to resemble the resin or glass microspheres used for radioembolization. The final distribution

of the Tc-99m MAA particles is visualized using planar imaging. This way, the vascular system

of the liver can be tested and the amount of unwanted dose to the non-tumor tissue, as well as

the amount of lung shunting can be determined. In this process, the assumption is made that

the Tc-99m MAA distribution correlates well with the final Y-90 distribution after treatment.

Recent research has however shown that this assumption might be incorrect [21].

In some hospitals, a SPECT/CT scan is also made of the Tc-99m MAA distribution.

SPECT/CT has the advantage that it is much better at localizing extrahepatic depositions

[22, 23]. If no contraindications are found in the pre-treatment imaging, the patient is found

to be suitable for injection with yttrium-90 microspheres. The catheter position determined

during the angiography will be used to administer the spheres.

2.1.6 Post-treatment imaging

After the radioembolization treatment, some hospitals evaluate the treatment efficacy using

quantitative PET imaging. Treatment evaluation can for instance be used to investigate the

minimal effective tumor dose [24, 25]. The PET imaging is based on the existence of a very

small branching ratio of β+-decay to the zirconium-90 ground state. In these decays, yttrium-90

decays to an excited state of zirconium-90 while emitting an electron, as is shown in Figure 2.3.

Internal pair production causes a positron and an electron to be emitted while the zirconium-90

decays to its ground state. This transition is however very rare and occurs in only 32 of every 1

million decays of yttrium-90 [26]. Using this transition a post-treatment yttrium-90 PET scan

can be made. Treatment efficacy is then assessed by determining quantities like the microsphere

distribution, T/N ratio and tumor dose [6].

Figure 2.3: The decay scheme of yttrium-90, showing the large β−–branch that is used for

treatment and the much smaller branch of the transition containing internal pair production.

The latter gives rise to the positrons employed in post-radioembolization PET imaging [26].
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2.1.7 PET dosimetry based treatment planning

Currently, empiric methods are used to calculate the amount of activity that needs to be ad-

ministered in a radioembolization treatment. These methods take into account limited patient-

specific factors and have resulted both in ineffective patient doses, as well as 20 procedure

related deaths in one institution [27]. A few cases have been presented in which quantitative

PET imaging is used for activity calculation, which has the benefit of taking into account pa-

tient specific physiology such as T/N ratio [7, 8]. In these cases, activity calculation is based

on a quantitative PET scan that was either acquired after a previous treatment, or after part

of the activity of the current treatment was already administered for the purpose of activity

calculation. Activity calculation based on quantitative PET can then be used for the planning

of future treatments or for planning the second part of the current treatment, using patient

specific physiology.

2.2 Positron Emission Tomography (PET)

Radiologists specialize in using medical imaging techniques for diagnosis, treatment planning

and image-guided interventions. Many different imaging modalities exist, such as CT, MRI and

PET. All of these modalities rely on different physical principles for image formation, such as

nuclear decay or magnetic fields. They also serve different applications, such as anatomical or

functional imaging. Anatomical imaging is used to visualize the internal structure of a patient,

such as the locations of organs. Functional imaging is used to visualize functional information

about organs or tissue, such as blood flow or glucose metabolism.

Positron Emission Tomography (PET) uses radiotracers, which consist of biologically active

molecules that are labelled with a positron emitting radionuclide. The radiotracer is admin-

istered to the patient via injection, inhalation or ingestion. The radiotracer will then spread

through the body and naturally accumulate in locations that take up a lot of the biologically

active molecule. A commonly used radiotracer for diagnostic PET is fluorine-18-fludeoxyglucose

(F18-FDG), which consists of the radionuclide fluorine-18 and the glucose analog fludeoxyglu-

cose. This radiotracer will accumulate in locations with a high glucose metabolism, such as the

brain or a tumor. The final radiotracer distribution directly reflects biological activity, which

in the case of F18-FDG is the glucose metabolism. This distribution can be visualized using

tomographic image reconstruction.

PET serves its main applications in oncology, such as the diagnosis and staging of cancer

[2]. Other applications include the diagnosis of neurodegenerative diseases, dementia, epilepsy,

neurodevelopmental disorders and psychiatric disorders [28].
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2.2.1 Positron annihilation

Imaging of the radiotracer distribution is based on the annihilation of positrons that were emit-

ted in β+-decay. The positrons will interact with the surrounding tissue and lose their kinetic

energy through the ionization and excitation of atoms. After losing sufficient kinetic energy,

the positron can annihilate upon encountering an electron, releasing two gamma photons. An-

nihilation is schematically depicted as a Feynman diagram in Figure 2.4.

In the annihilation process, all positron and electron rest mass is converted into energy (the

gamma photons) according to the relativistic mass-energy relation E2 = m2c4 + p2c2, with m

the mass of the particle, c the speed of light in vacuum and p the momentum of the particle.

Due to momentum and energy conservation, the two gamma photons will be emitted under a

180◦ angle and will both have an energy equal to the electron rest mass (511 keV/c2).

Figure 2.4: A positron annihilates with an electron, resulting in two gamma photons. The

horizontal axis represents time.

2.2.2 Photon interactions

Scatter, absorption and attenuation

The two gamma photons that were released in the annihilation process interact with various

types of tissue before they reach the detector. When interacting with tissue, or matter in general,

a photon can either be absorbed, transmitted or scattered. When a photon is scattered, its

direction of motion changes. These three effects can originate from various physical principles,

which will be discussed in a moment.

Absorption and scatter both cause photons to be attenuated, i.e. be removed from a beam

of photons. For a narrow mono-energetic beam of photons the attenuation is known to behave

exponentially as I(x) = I(0)e−µx, with I the beam intensity, µ the linear attenuation coefficient

and x the distance in the medium.

These effects of scatter and absorption are caused by the photons interacting with tissue.
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Photons can interact with tissue through three types of interactions: the photo-electric effect,

scatter and pair production. As pair production is not possible at the photon energies that are

relevant for medical imaging, only the photo-electric effect and scatter will be discussed.

Photo-electric effect

In the photo-electric effect, the incoming photon interacts with an orbital electron. This electron

fully absorbs the photon energy, causing it to be emitted and leaving a vacancy. For this process

the photon energy must at least be equal to the binding energy of the electron. All excess energy

is converted into electron kinetic energy. The repopulation of the vacancy that was created

causes a characteristic X-ray or Auger electron to be emitted.

Compton scatter

Different types of scatter exist, of which Compton scatter is the most relevant for medical

imaging and will thus be discussed here. In Compton scattering the incoming photon interacts

with a valence electron. The direction of the photon is diverted and part of its energy is absorbed

by the electron. Figure 2.5 shows the Feynman diagram that describes the process of Compton

scatter.

In 1923, an experiment conducted by A.H. Compton showed that the energy of a photon

that is scattered from a particle at rest is shifted. A photon with initial energy E0 leaves this

process with scattered energy

ESC =
E0

1 + E0
me

(1− cos(θ))
, (2.2)

with me the electron mass and θ the scatter angle [29]. For the interested reader, this formula

can also be derived by treating light as a particle of zero rest mass with energy given by Planck’s

equation and applying the laws of conservation of (relativistic) energy and momentum [30].

Figure 2.5: A photon can interact in tissue with orbital electrons through Compton scatter,

resulting in energy loss and a change of direction for the photon.
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Photo-electric effect vs. Compton scatter

Figure 2.6 shows the likelihoods of the photo-electric effect and Compton scatter as a function

of photon energy for absorbers of different atomic numbers. For the relevant range of atomic

numbers (Z � 80) the Compton effect clearly dominates for photons with an energy of 511

keV.

Figure 2.6: Photons can interact with matter via the photoelectric effect, Compton scattering

and pair production. For 511 keV photons the Compton effect dominates [31].

2.2.3 Detector system

After the two gamma photons traversed through tissue and possibly interacted through Comp-

ton scatter and the photo-electric effect, as described in the previous section, they reach the

PET scanner. A PET scanner consists of several rings of detectors surrounding the patient.

Figure 2.7 shows an example of a PET scanner, showing its cylindrical geometry. Each detector

in a ring has a scintillation crystal that is read out by a photomultiplier tube.

Figure 2.7: The Siemens Biograph TruePoint PET/CT scanner [32]. Patients lie on the bed

inside the cylindrical scanner.
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Scintillation crystal

A gamma photon that reaches a scintillation crystal will be absorbed by the photoelectric effect

and releases a photo-electron. This high-energy electron ionizes and excites thousands of other

electrons in the crystal, which lose their energy upon recombination or de-excitation. Most

of the energy is dissipated as lattice vibrations (i.e thermal energy). A part of the energy is

however released in the form of visible photons. The amount of light that is produced in a

scintillation crystal is proportional to the energy that was deposited by the gamma photon.

These visible photons are then transmitted to the photomultiplier tube.

Commonly used materials for scintillation crystals of PET scanners are bismuth germanium

oxide (BGO) and lutetium oxyorthosilicate (LSO). BGO has a high detection efficiency at a

photon energy of 511 keV. LSO is slightly less efficient than BGO at 511 keV, but may sometimes

be preferred over BGO if the counting rate is high, fast timing information is needed or small

scintillator elements are required. The LSO crystal is however expensive to grow [28].

Photomultiplier tube (PMT)

A photomultiplier tube (PMT) consists of a photocathode, several dynodes and an anode.

First, the visible photon reaches the photocathode. Due to the photoelectric effect, the photon

is absorbed and an electron is emitted from the cathode. Due to a positive potential, this

electron is accelerated and focused onto the first dynode, where it causes two to five low energy

electrons to be released. These electrons are accelerated to the second dynode, which is held at a

more positive potential than the first, and multiplied as well. This process keeps repeating itself

for up to 14 dynodes in a PMT. Overall, amplification factors of up to 109 can be achieved,

causing a current pulse in the anode that is easily detectable [33]. Figure 2.8 schematically

depicts the working principles of a PMT.

Figure 2.8: A photomultiplier tube (PMT) converts a visible photon coming from a scintillation

crystal into an electron. The electron is then multiplied up to a factor of 109 by the dynodes,

producing a measurable current pulse [34].
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Annihilation coincidence detection

If analysed correctly, these measurements of individual photons in a detector can be used to

reconstruct the annihilation site. The first step is to determine which photons might originate

from the same annihilation event. Since annihilation events produce two gamma photons under

an angle of 180◦, the simultaneous measurement of two photons in two opposing detectors

indicates a positron annihilation event.

Each measured photon therefore gets a time stamp, typically with a resolution of 1 to 2

nanoseconds. Photons that were detected within a certain timing window, typically 6 to 12

nanoseconds, are considered to originate from the same annihilation event. This timing window

is necessary to allow for different transmit times in the electronics, different travel distances

(and thus different arrival times) for the two photons and the finite timing resolution of the

detectors [28].

Line of response (LOR)

If two photons are considered to be coincident, the annihilation event must have taken place

somewhere along the path between the two detectors that measured these photons. This path is

called the line of response (LOR) and is schematically depicted in Figure 2.9. The PET scanner

does not just consist of two opposing detectors, but of a whole ring of detectors such that LORs

in all directions can be measured simultaneously. LORs with different directions will intersect

at the annihilation site and can thus be used for image reconstruction.

Figure 2.9: The coincident measurements of two annihilation photons in opposing detectors

allows the reconstruction of a line of response, along which the annihilation event must have

taken place [35].

2.2.4 Hybrid PET/CT scanners

PET scanners can be combined with anatomical modalities, such as MRI or CT, to profit both

from functional and anatomical imaging. In PET/CT, a PET and a CT scan are acquired inde-
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pendently but directly after each other without moving the patient. By overlaying information

from both scans, zones of high biological activity indicated by the PET scan can be located in

the body using the anatomical detail of the CT scan. Figure 2.10 shows an example of separate

PET and CT scans, as well as the result of superimposing these scans. High biological activity

does not necessarily indicate a functional anomaly. In this figure for instance, the lower black

spot is the bladder which lights up as all of the radiotracer that was not taken up elsewhere

accumulates in the bladder. Besides localization, the CT scan also contributes in correcting for

the aforementioned photon interactions that cause the annihilation photons to be attenuated.

Figure 2.10: Left: a CT scan showing anatomical details. Middle: a PET scan showing in black

zones of high biological activity. Right: the PET scan superimposed on the CT scan, showing

the locations of these active zones [36].

2.3 Image reconstruction

The LORs that were found using annihilation coincidence detection can be regarded as projec-

tions. By combining projections under several angles a 3D object can be reconstructed. As a

PET scanner consists of a ring of detectors and measures coincidences under all angles, this

information can be used to reconstruct a 3D image.

Mathematically, the projection data is described as a Radon transform. By applying the

inverse Radon transform to the projection data, an image of the original object can be recon-

structed. The Radon transformation is exact, so theoretically the reconstructed image exactly

resembles the underlying object.

However, in practice physical effects in the patient and the PET scanner such as noise,

scatter and absorption (see Section 2.2.2) influence the projection data. Due to these effects,

the projection data is not a perfect Radon transform of the patient that was imaged and the
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inverse Radon transform will thus not yield a perfect reconstruction of this patient. Therefore,

in practice images are not reconstructed using the inverse Radon transform.

In fact, these physical effects are too complicated to incorporate analytically into image re-

constructions. Therefore, images are instead reconstructed using iterative reconstruction algo-

rithms. All of the aforementioned physical effects are taken into account by explicitly modeling

them in the iterative reconstruction.

This section first discusses projection (i.e. a PET measurement) and also its inverse, back-

projection, in more detail. These concepts will then be of use for the discussion of iterative

reconstruction algorithms later in this section.

Figure 2.11: A projection p(s) is defined as the line integral of the image density over a path

perpendicular to the detector at detector position s (dashed lines). In this image, only the

light-gray disk had a non-zero (homogeneous) image density [37].

2.3.1 Projection

In projection, a three-dimensional volume is reduced to a two-dimensional volume by taking line

integrals over one of the directions. Structures that lie in the direction over which the projection

is integrated will thus be superimposed. An example of a projection is an X-ray image.

Mathematical description

Mathematically, a projection can be described as a line integral over the image density, also

called a Radon transform. In the case of a two-dimensional image, integrating over one direction

will result in a one-dimensional image and the detector is thus one-dimensional (i.e. a line).

For a detector that is placed under an angle θ, for each position s a line integral p(s, θ) of the

image density f(s, θ) is computed over the line perpendicular to the detector at that position.
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Mathematically, this can be expressed as

p(s, θ) =

∫ ∞
−∞

fθ(s, t)dt, (2.3)

with fθ the density distribution rotated clockwise by an angle θ (instead of rotating the detector

counter-clockwise) and t a parametrization of the line that is integrated over [37]. Figure 2.11

illustrates this principle using two two-dimensional disks.
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Figure 2.12: Projections p(s, θ) (left figure) for all detector positions s and all detector angles θ

can be combined in a sinogram (right figure). A point source traces out a sinus in a sinogram

[37].

Figure 2.13: The PET data that is measured along LORs with the same angle θ is all stored in

a column in the sinogram.
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2.3.2 Sinogram

By acquiring projections at all angles θ, a full set of projection data p(s, θ) is obtained. One

commonly used way to display such a full set of projection data is in the form of a matrix in

the (s, θ)-coordinate system called a sinogram. In such a sinogram, each column represents a

projection p(s, θ) under a specific angle θ. Each element in such a column corresponds to a

specific detector position s and is given by the value p(s, θ). Projections under different angles

are stacked together to form the matrix. Figure 2.13 illustrates where the PET data is stored

in the sinogram, depending on the angle of the LOR along which the data was measured.

Each pixel in the sinogram is usually represented on a gray scale, with black representing

the minimum voxel value and white the maximum value. Figure 2.12 shows an example of a

sinogram, in this case for a point source. The sinogram was named after the sinusoidal pattern

that a point source traces out in projection space. Figure 2.14 shows an example of a sinogram

of non-point source.

Figure 2.14: Left: a Shepp-Logan phantom. Right: a (noise-free) sinogram of the Shepp-Logan

phantom. Pixels are displayed on a gray-scale, with black the minimum pixel value and white

the maximum value.

Projections and sinograms in PET

We already stated that a measurement of a PET scanner is a projection. A detector pair

measures photons from annihilation events anywhere on the LOR connecting them without

localizing the exact event location. The measured coincidences are thus superimposed for each

LOR. All parallel LORs have the same ‘detector’ angle (in PET the detector is not actually

rotated as it is capable of measuring all angles at once). Each parallel LOR has however its
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own ‘detector’ position, as they are spatially separated. Each LOR therefore corresponds to

one sinogram element p(s, θ).

2.3.3 Backprojection

Figure 2.15: In a backprojection, the number of coincidences measured in each pair of detectors

is set back along the line of response. Backprojections (indicated in red here) will intersect in

annihilation sites.

The inverse process of projection is backprojection. Backprojections can thus transform a

projection back to image space and hence be used for image reconstruction. Since projections

are line integrals, the individual contributions from each pixel on that line are summed up.

The backprojection disentangles these contributions by assigning to each voxel in an LOR the

total number of photons that was measured along that LOR. Figure 2.15 schematically depicts

a typical backprojection.

Figure 2.16: Left: without TOF information the projection is backprojected along the entire

LOR. Right: a backprojection with TOF information can be constrained to only part of the

LOR. [38].

The mathematical description of a backprojection is the inverse Radon transformation, given

by

b(x, y) =

∫ π

0
p(s, θ)|

s=~x·~θ dθ, (2.4)
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Note that the Radon and inverse Radon transformations are exact. Theoretically, using infinite

integrals and infinitely small step sizes, no information is lost by applying both transformations

sequentially.

Time-of-Flight

The conventional backprojection can be improved by incorporating the arrival times of the two

photons. This is called time-of-flight and it is used to estimate the emission site of the two

photons along the LOR. Given the arrival times t1 and t2 of the two photons, the distance of

the emission site relative to the midpoint between the two detectors is given by

∆d =
∆t · c

2
, (2.5)

with ∆t = t2 − t1 and c the speed of light.

In practice, the arrival times are only known up to a few hundred picoseconds, which allows

localization to only within a few centimeters [28]. TOF therefore can be used to improve

the accuracy of reconstruction algorithms by constraining the backprojection to only a few

centimeters. Figure 2.16 illustrates the constrained backprojection.

2.3.4 Iterative reconstruction

Projections and backprojections are part of the process of image reconstruction. As mentioned

in the introduction of this section, it is analytically not possible to take into account physical

effects, such as absorption, scatter and noise in a reconstructions using backprojection or the

Radon transform (see Section 2.2.2). Therefore, images are instead reconstructed using iterative

reconstruction algorithms that can explicitly model these physical effects in the reconstruction.

The basic idea of iterative reconstructions algorithms is to iteratively find the image that

best compares with the measured PET data. The algorithm works as follows: choose an initial

guess, project this guess to a sinogram, compare this sinogram with the measured sinogram

and, based on their comparison, update the image guess. The comparison of the sinogram of

the guess and the measured sinogram is quantified in an update error. Iterative reconstruction

can then be mathematically described as

xnext = xcurrent · E
N
, (2.6)

with xcurrent the current image guess, E the update error resulting from the comparison, N a

normalization factor and xnext the resulting new image. The form of the update error E and

normalization factor N depends on the specific iterative reconstruction algorithm that is used.

By iterating through this process the image will compare better to the measurements with

every iteration. Figure 2.17 schematically depicts the principles of an iterative reconstruction

algorithm. The first guess does not need to resemble the imaged object, but can for instance be
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homogeneous. All of the voxel values of the first image guess can then for instance be chosen

to be 1.

Figure 2.17: Schematic depiction of an iterative reconstruction algorithm. All relevant physical

effects, such as absorption, scatter and noise, are modeled in the projection of the guess.

Physical effects such as scatter, absorption and noise are modeled in the projector that

converts the guess to a sinogram, which is then compared to the measured sinogram. This way,

if modeled correctly, both the sinogram of the guess and the measured sinogram contain the

same physical effects.

A reliable and robust iterative reconstruction algorithm is Maximum Likelihood Expectation

Maximization (MLEM). This algorithm will not be derived here, but for the interested reader

different derivations of the algorithm exist, such as the original statistical derivation of Shepp

and Vardi [39] and the optimization transfer approach by De Pierro [40]. In the case of MLEM,

the update error E and normalization N are given by

E = p−1
M

p(xcurrent)
(2.7)

N = p−1(1), (2.8)

with p the projection operator, p−1 its inverse and 1 a vector with elements of 1’s. The projection

operator p contains modeling of all relevant physical effects, such as scatter, absorption and

noise, in the patient and the PET scanner.

2.3.5 PET modes

A PET scanner consists of several rings of detectors, that are all centered around the patient. As

the coincident gamma photons “fly off” in all directions, coincidences cannot only be measured
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by pairs of detectors in the same ring, but also by pairs of detectors that are in different rings.

Taking into account different parts of all of these possible coincidences gives rise to the different

modes of PET: 2D and 3D.

(a) 2D mode (b) 3D mode

Figure 2.18: PET modes. a) In 2D PET, all of the detector rings are employed, but only coinci-

dences within one ring, or close neighbouring rings, are used for reconstruction. b) In 3D PET,

all detector rings and all possible coincidences between these rings are used for reconstruction.

[41]

2D

In 2D PET, all of the detector rings are used, but only coincidences that were measured within

one ring (or close neighbouring rings) are considered for reconstruction. All of the LORs now lie

in one of several axial planes. By reconstructing all of these slices independently and stacking

them behind each other a 3D volume can be acquired. Since for only a small part of the

coincidence pairs both photons will be detected in the same ring (or a neighbouring ring), most

coincidence pairs will not be used for the reconstruction in 2D mode.

3D

In 3D PET, coincidence pairs for which the two photons were detected in different rings that are

not close neighbours are also employed. Compared to 2D PET, this has both advantages and

disadvantages. 3D PET enhances the sensitivity, but a 3D reconstruction is also more complex

and time-consuming [41]. Due to the larger number of photons that is detected the number

of random coincidences in 3D PET is also larger. Random coincidences are discussed in more
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detail in Section 2.3.6. Figure 2.18 schematically depicts the working principles of both scan

modes.

2.3.6 Image degrading effects

Images consist of voxels (3D pixels) which, in the case of PET, have a size of typically a few

mm. Each voxel has a certain intensity, reflecting the amount of relative or absolute radiotracer

uptake in that volume. This radiotracer uptake distribution was reconstructed as described in

the previous section.

So far it was assumed that all measured coincidences originate from an annihilation event

somewhere on the reconstructed LOR. However, this is only the case for true coincidences.

Several effects will be discussed here that cause the mislocalization of LORs and thus limit

spatial resolution and compromise image quality.

Scattered and random coincidences

In a scattered coincidence one of the photons was Compton scattered and the assumed LOR

will be misplaced. In the case of a random coincidence, two photons originating from different

annihilation events were measured within the timing window and recorded as a coincident

event. This could happen if one photon of each annihilation event was absorbed. Figure 2.19

schematically depicts scatter and random coincidences.

Figure 2.19: Only in the case of a true coincidence the annihilation event is located on the

assumed LOR (left panel). In the case of a scatter or random coincidence the LOR does not

intersect the annihilation site (middle and right panel) [28].

Positron range, non-collinearity and DOI effect

LORs can also be misplaced due to the positron’s non-zero range, meaning that the positron

travels a few mm before it annihilates with an electron. The annihilation location is thus not

exactly equal to the radiotracer location.
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In addition, the positron can have residual kinetic energy upon annihilation. In that case,

due to momentum conservation, the angle between the annihilation photons will not be exactly

180◦. This effect, called non-collinearity, causes the LOR to be slightly misplaced.

Another effect is the depth of interaction (DOI) effect, which is caused by the fact that it

is not known at what depth in the detector the photons were measured. Due to this effect, the

angle of the assumed LOR will deviate from the angle of the true LOR. Figure 2.20 schematically

depicts the effects of the positron range, non-collinearity and the DOI effect on the LOR.

(a) Non-collinearity (b) Positron range (c) Depth of interaction

Figure 2.20: The spatial resolution in PET imaging is decreased by non-collinearity, the non-

zero positron range and the depth of interaction effect [42]. Figure 2.19 shows how the spatial

resolution can also be decreased by scatter and random coincidences.

Detector size, noise and respiratory motion

Not only the mislocalization of LORs, but also the finite detector size limits the spatial res-

olution, as structures smaller than the detector cannot be resolved. Moreover, Poisson noise

due to the statistical nature of radioactive decay causes images to look mottled. Next to these

physics and detector system related effects, the effective spatial resolution is also significantly

compromised by respiratory motion. PET systems can nowadays reach a spatial resolution of

2-5 mm, but the presence of respiratory motion can drastically decrease the effective spatial

resolution, especially in high resolution PET systems. For instance, for a PET scanner with a

system resolution of 5 mm, the effective resolution due to a motion amplitude of 10 mm will be

11.25, which is an increase of 125% [43].

2.3.7 Quantitative PET

Without quantification the voxels in a reconstructed PET image only represent relative values.

From these qualitative images it can be deduced that some regions in the patient body take

up more radiotracer than others, but no quantitative parameters can be extracted from the
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image. Quantification of PET images allows the radiologist to use quantitative parameters such

as tumor volume and radiotracer uptake for various applications.

However, accurate quantification requires corrections for the relevant (physical) quantita-

tive effects that were mentioned in the previous sections, such as scatter, randoms and crystal

efficiency. This section will describe how these effects can be incorporated into image recon-

struction, various applications of quantitative PET and the problems posed by the absence of

respiratory motion correction in image reconstruction algorithms.

Quantitative reconstruction models

Corrections for quantitative effects, such as scatter, are added to the reconstruction to obtain

a quantitative reconstruction model. This section will explain how these corrections can be

incorporated. Scattered coincidences are difficult to correct in PET due to its low energy

resolution. Scattered coincidences are therefore modeled using single scatter simulation and

then subtracted from the measured data.

Randoms correction can be achieved by delaying the arrival times of the photons that were

measured by one of the detectors. The delay should be significantly larger than the timing

window. Due to the delay, the two photons of a true coincidence will not be measured within

the timing window and will not be recorded as a coincidence. But one of the photons can

accidentally be recorded as coincident with a photon of another annihilation event within the

timing window. As all true coincidences were removed, the number of coincidences determined

with the delayed window technique gives an estimate of the number of random coincidences.

These can then be subtracted from the total number of measured coincidences .

Attenuation can be corrected for by acquiring a CT scan prior to the PET scan, as a CT

scan quantifies the amount of attenuation for each LOR. Each element of the sinogram data

corresponds to an LOR and can thus be corrected for its attenuation using a multiplicative

correction factor e
∑

i µLi , with µi the attenuation factor for tissue type i and Li the distance

that was traversed in that tissue.

Detector system related effects can be determined by measuring a point source in the PET

scanner. The measured number of counts for each LOR will deviate from the expected number

counts. This deviation is caused by detector related effects such as crystal efficiency. Each LOR

can then be individually corrected for these effects in sinogram space by using the measured

deviation for that LOR.

Applications

Quantitative parameters such as tumor volume and radionuclide uptake are of relevance for

various clinical applications. Tumor volume is for instance of high importance for radiotherapy,

where accurate delineation of the tumor is required to avoid irradiation of healthy tissue, as
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well as to improve tumor coverage [3, 4].

Other applications include radionuclide therapies, such as radioembolization. Current em-

piric activity calculation methods for radioembolization take into account limited patient-

specific factors and have resulted both in ineffective patient doses as well as 20 procedure

related deaths in a single institution [27]. If quantitative PET would be used in the activity

calculation, the patient-specific microsphere distribution could be determined as well as the

resulting tumor dose [6].

As mentioned before, cases have been presented in which PET dosimetry based on either a

previous treatment or the first part of the current treatment was used to adapt future treatment

planning [7, 8]. This way, patient-specific information can be taken into account by using

quantitative PET.

The problem of respiratory motion

As quantitative PET serves many applications and so many corrections have already been

incorporated in quantitative reconstruction models for PET, this sounds as a very promising

field. There is however one problem with these quantitative reconstruction models: patient

breathing is not taken into account. Although all the physics and detector related effects are

modeled, this is not yet the case for respiratory motion.

The diaphragm can move as much as 1 to 6 cm during an acquisition [10]. As a result, organs

in the thorax and abdomen will also undergo motion, which complicates imaging of the thorax

and abdomen. Organs can undergo translations, rotations and deformations due to respiratory

motion. Especially for the lungs, the amount of deformation cannot be neglected. The motion

of the liver however, which will be the focus of this study, mainly consists of translations in the

head-foot direction. Studies have reported a mean liver tumor motion amplitude of 10-25 mm

in the head-foot direction during shallow breathing. During deep breathing amplitudes of up

to 80 mm can be reached [44].

This poses a major problem, as respiratory motion causes image artifacts that can result

in reduced resolution, reduced tumor detectability, misalignment between the PET and CT

and attenuation correction artifacts [45]. An important artifact is blurring of the tumor, which

results in overestimation of the tumor volume and underestimation of radionuclide uptake. Liu

et al. [10] found in their study a mean tumor volume overestimation of 130% and a mean tumor

uptake underestimation of 28% for lung and liver tumors due to respiratory motion. It should

be noted, however, that the amount of over- or underestimation depends on many parameters,

such as tumor size and motion amplitude, and will thus differ per patient and tumor.

Several methods have been proposed for respiratory motion correction in PET, other imaging

modalities, and applications outside image acquisition such as radiotherapy. These will be

discussed in the next chapter.
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Respiratory motion compensation

Respiratory motion does not just pose a problem in PET imaging, but also in other imaging

modalities and in treatments such as radiotherapy and liver ablation [12, 46]. Various solutions

to the problem of respiratory motion have been proposed. This chapter will give a rudimentary

overview of motion correction techniques that have been presented in the literature.

3.1 Breath-hold

Breath-hold is a technique that solves the problem of respiratory motion by requiring the patient

not to breath during the scan. Breathhold is often used for CT scans that have an acquisition

time of up to 30 seconds, such as the CT that is acquired independently in PET/CT.

A drawback of breathhold is that the patient will not hold his or her breath in exactly

the same way in different acquisitions. This complicates the comparison of different scans,

for instance for the purpose of treatment evaluation. Moreover, for some patients with lung

problems it is not possible to hold their breath for such a long time. As a whole-body PET

scan takes 15-30 minutes, breathhold is not a suitable respiratory motion handling technique

for PET.

3.2 Respiratory gating

3.2.1 Description

In respiratory gating, the PET data is manipulated before the reconstruction to contain less

motion. After the acquisition, the PET data is binned into several gates based on the respiratory

phase of the patient. As the internal motion and thus the respiratory phase of the patient cannot

be measured directly, a surrogate is used. This surrogate signal can for instance originate from

a pressure sensitive elastic belt that is worn by the patient during the PET acquisition. This

surrogate signal is then assumed to correlate with the internal motion. Only the subset of the

26
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PET data that corresponds to one of the gates is used for the image reconstruction. This subset

of the data contains only a fraction of the total motion that was present in the entire data set.

Figure 3.1 shows an example of a simplified, sinusoidal surrogate signal that was gated

retrospectively using five gates. In respiratory gating, only the data from one of the gates will

be used for reconstruction. For instance only the data from the fifth gate is used, which was

acquired during end-expiration. It is also possible to use all of the gates for the reconstructed

image, as will be explained in Section 3.3

Figure 3.1: Using retrospective gating a simplified, sinusoidal respiratory signal was divided into

five separate gates. Only the PET data that falls into one of the gates will be reconstructed.

For instance only the PET data corresponding to the first gate, which was acquired during

end-inspiration.

3.2.2 Advantages

Respiratory gating reduces the amount of motion in the reconstructed image and hence reduces

motion artifacts. This is noticeable in the tumor volume and in the maximum Standardized

Uptake Value (SUVmax), which is a measure that is proportional to the maximum radiotracer

uptake per voxel. Studies have reported an increase in SUVmax due to respiratory gating of

30% to 83% and a decrease in tumor volume of 45% [47–50].

3.2.3 Disadvantages

Respiratory gating may reduce motion artifacts, but at the cost of lower count statistics, thus

increasing image noise. Due to this trade-off, the increase in image noise might unintentionally

decrease the image quality. For realistic patient surrogate signals, the data of each gate will

contain a different amount of noise and a different amount of residual motion. The trade-

off between image noise and residual motion determines which gate is best suited for image

reconstruction.

Moreover, the data that is used for reconstruction is not in the exact same respiratory



CHAPTER 3. RESPIRATORY MOTION COMPENSATION 28

phase, but rather an average over a small variation of respiratory phases due to the width of the

gate. This causes motion to not fully be removed from the image. Besides, the patient has to

wear a respiratory belt or some other device that indicates the respiratory phase, which can be

uncomfortable for the patient. For the clinical staff the addition of such devices in the clinical

protocal costs a lot of extra time. These devices are often difficult to use and can give problems

if the breathing dynamics of a patient deviate too much from the standard, for instance if the

breathing amplitude is much larger.

In addition, respiratory gating relies on the assumption that patient breathing is stationary,

but it is known from radiotherapy that breathing is patient specific and highly variable. A

patient’s breathing pattern can change both from treatment to treatment as well as within one

treatment. Changes include amplitude, frequency and baseline shifts [11] and can be caused

for example by the patient switching from thoracic to abdominal breathing [12]. Especially in

the case of non-stationary motion, such as baseline and amplitude drifts, the difference between

the minimum and maximum of the surrogate signal will be large. This causes the gates to be

stretched. Due to their increased width the gates will contain more residual motion, which will

reduce the image quality. This effect is illustrated in Figure 3.2, where each of the gate contains

almost half of a respiratory cycle. In the case of constant breathing dynamics however, each

gate contained only one fifth of a respiratory cycle (see Figure 3.1).

Another problem with breathing variability is that data of completely different respiratory

phases can end up in the same gate. Amplitude drifts can for instance cause mid-inspiration

data from one cycle and end-inspiration data from another cycle to have the same surrogate

signal value. This data will thus end up in the same gate. This data is then assumed to originate

from approximately the same respiratory phase, but in this case that assumption is incorrect.

This effect is illustrated in Figure 3.2, where the maximum of the first respiratory cycle, mid-

inspiration data of the second cycle and the minimum of the third cycle all fall into the third

gate. This gate thus contains both end-inspiration, mid-cycle and end-expiration data that is

all averaged.

Currently a common solution to deal with breathing variability is to control the variation.

Using audio or visual feedback the patient can be coached to breathe more regularly. However,

for some patients coaching is not suitable due to their medical condition or because they have

difficulty following the coaching instructions [13, 14].
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Figure 3.2: An example of retrospective gating of a surrogate signal in the case of variable

breathing dynamics. Each gate now contains almost half of a respiratory cycle, rather than one

fifth of a respiratory cycle.

3.3 Registration of gated images

3.3.1 Description

Another respiratory motion correction technique is registration of gated images, in which all of

the data is divided into a number of gates that are reconstructed independently. These recon-

structions will not be in the same average respiratory phase, but registration can transform the

images to a common respiratory phase. This transformation can include for instance transla-

tions, rotations and deformations. The resulting images can then be combined into one single

image.

3.3.2 Advantages

An advantage of registration of gated images is that more statistics are used for the final image,

hence increasing the ratio between the mean radiotracer uptake in the tumor and the noise

variation in the background (SNR). Registration of gated images also decreases the smearing

of the tumor. Thorndyke et al. [51] found in a similar approach an increase in SNR of 15% and

a decrease in tumor volume of 33% with respect to gated images.

3.3.3 Disadvantages

Although registration of gated images improves the SNR and reduces tumor smearing, the

final images still suffer from some of the same drawbacks as respiratory gating. In the case of

breathing non-stationarity, the gates will be stretched and the residual motion in each gated

image increases. The quality of the gated images in the case of non-stationary breathing is thus

suboptimal. Registration only guarantees that these suboptimal images are then registered in

the most optimal way. But if the quality of the gated images themselves is already suboptimal,
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this will affect the quality of the final image, which inevitably will also contain residual motion

to some extent.

3.4 Respiratory motion models

To overcome the drawbacks of respiratory gating and registration of gated images, a new class of

techniques has been developed in the past years that uses so called motion models. These motion

models are used to estimate the motion, but do not describe how the motion is corrected. This

Section will start with a description of motion models. This will be followed by a rudimentary

literature overview and a discussion of advantages and disadvantages of motion models.

3.4.1 Description

A motion model takes the surrogate signal of a patient as input and then produces an estimate

of the internal motion in the patient as output. This process is schematically depicted in Figure

3.3.

Figure 3.3: A motion model takes the surrogate signal st as input and then produces an estimate

of the internal motion rt as output

In general the motion model can depend on some parameters that we call ~A here. These

parameters can differ for different acquisitions, so they have to be optimized for each acquisition.

In the form of an equation the motion model can then be described as

~rt = φ
(
st, ~A

)
, (3.1)

with φ the motion model, st the surrogate signal at time t, ~A the motion model parameters and

~rt the estimate of the internal motion at time t.

Example: linear motion model

This Section will present an example of a motion model. We let the patient wear a pressure-

sensitive respiratory belt during the PET acquisition. The pressure that is measured by this
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belt can then be used as the surrogate signal st. An example of such a belt is shown in Figure

3.4.

Figure 3.4: A pressure-sensitive respiratory belt that can be worn by the patient during the PET

acquisition. The resulting pressure can be used as a surrogate for the internal motion.

Figure 3.5 shows in blue the surrogate signal st that was measured using this respiratory

belt. In orange it shows the internal motion rt that was present in the patient. There is clearly

a correlation between the surrogate signal and the internal motion. In this case, the correlation

can be described using a linear motion model with only one parameter A. This linear motion

model is given by rt = A·st, with rt the internal motion at time t, A the motion model parameter

and st the surrogate signal. The model parameter is A = 1.4 a.u. in this case.

Figure 3.5: Blue: the surrogate signal st that was measured using the pressure-sensitive respi-

ratory belt. Orange: the internal motion rt in the patient. There clearly exists a correlation

between the two signals.
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Using the model parameter A and the surrogate signal st the internal motion rt can be

calculated at each time t. The estimate of the internal motion can then be used for motion

correction. The latter can be done by binning the data into small time frames of, for instance,

0.5 seconds. The data of each time frame can then be corrected for the corresponding internal

motion rt. How this correction is performed exactly, can differ per imaging modality.

3.4.2 Literature overview

A limited overview of respiratory motion models φ, surrogate signals st and optimization meth-

ods for the model parameters ~A that exist in the literature will be presented here. For the

interested reader, McClelland et al. [12] gives an extensive overview. Motion models have been

developed for different applications, which can be divided in image-guided interventions and

image acquisition. The image-guided interventions include radiotherapy, cardiac interventions,

liver ablation and bronchoscopy [52–55]. In the case of image acquisition, motion models have

mainly focused on MRI, PET and CT [53, 56, 56, 57]. Motion models have been developed

for different organs, but mostly for the lungs, heart and liver. Some models have also been

presented that can be applied to the entire thorax or abdomen [56].

Different types of surrogate data have been used, which can in general be multi-dimensional

and even gradient and phase information of the surrogate signal can be employed. Choices for

surrogate data include the pressure on an elastic respiratory belt, chest or abdomen displacement

measured with an optical tracking system and air flow measured with a spirometer [58–60].

Using some high-resolution modalities, like CT and MRI, it is also possible to use the motion

of a clearly visible structure like the diaphragm as a surrogate for organ motion [56, 57]. The

choice of surrogate signal affects the accuracy of the motion model, as some types of surrogate

data correlate better with internal motion than others. It has for instance been shown that

spirometry correlates better with internal motion than abdomen displacement [61].

Motion models that are often used in the literature are linear, polynomial and b-spline

models [62–64]. A b-spline is a piecewise defined polynomial function. Examples of more

complicated models include Fourier series, neural networks, fuzzy logic and support vector

regression [65–67].

A common optimization method for the parameters ~A of a motion model is linear least

squares, where the optimal value of the model is a linear function of the parameters [62–64].

Other fitting methods include variants of linear least squares, principal component regression

and support vector regression [52, 59, 68].

It should be noted that the choices for the surrogate signal, motion model and optimization

method are not independent. The type of surrogate signal can for instance limit the amount of
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variation that can be modeled, whereas the type of motion model influences the optimization

method that could be used.

Although many motion models have been proposed, only a few have been proposed for

PET. These are often specifically proposed for PET/MRI, as the motion model is estimated

on the MRI data [56, 69]. In many clinics PET/MRI scanners are however not available.

In PET/CT the motion model could be estimated from the CT data by acquiring CT scans

at different respiratory phases [70]. This however increases patient dose and this solution is

therefore considered to be suboptimal.

3.4.3 Advantages

An advantage of a motion model is that all breathing variability is contained in the surrogate

signal. As long as the motion model is valid, it can be used to estimate the internal motion, which

will contain the same variability. Moreover, the model can be fitted on the entire data of the

PET scan, thus benefiting from all the information about motion dynamics that is available. In

this process, it is not necessary to average parts of the data, so the time resolution is higher with

respect to gating and registration of gated images. Furthermore, data from completely different

respiratory cycles is not averaged, which enables the possibility to model inter-cycle variation,

such as breathing non-stationarity. This makes a motion model possibly more accurate than

respiratory gating or registration of gated images.

3.4.4 Disadvantages

A disadvantage of motion compensation using motion models is that the assumption is made

that there is an underlying model that describes the internal motion dynamics. This model is

assumed to hold for the entire duration of the scan. Although studies have been performed to

test the validity of motion models, there is no guarantee that a certain model will hold for every

patient nor for the duration of a clinical scan [44, 65].

3.5 Research question

The aim of this project is to develop a novel motion correction method for PET that is based

on the PET data and can deal with inter-cycle breathing variability. In this method motion

will be estimated by explicitly modeling the internal motion dynamics given a surrogate signal.

Internal organ motion can consist of translations, rotations and deformations. This study will

focus on a motion model for translational motion. This will already enable us to, to a great

extent, describe the motion of the liver which mainly consists of translations in the head-foot

direction. Such a model might already be accurate enough to serve certain applications that

are specific to the liver, such as radioembolization. A quality measure will be assigned to the
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motion model, indicating its goodness of fit. For the reliability of this method it is important

that problems, such as an inaccurate motion model, will show up in this quality measure.

The goal of this study is to test the feasibility and performance of such a model-based

respiratory motion correction method in PET acquisitions of the liver. The results will be

compared with respiratory gating and registration of gated images through simulations and

experiments. In this study we assume that there is an underlying motion model relating the

internal motion to the surrogate signal. We will investigate the behavior of the quality measure

in the case that this assumption is incorrect and there is no constant underlying motion model.

In this case the quality measure is expected to increase, as the motion model that will be found

cannot be suited for the data and motion correction will thus be suboptimal.



Chapter 4

Method

The goal of this study was to develop a novel motion correction method for PET acquisitions of

the liver that can deal with breathing variability. This is achieved by modeling the entire motion

dynamics as a function of a surrogate signal. Given the perfect motion model parameters for

the motion model between the surrogate signal and internal motion, the motion at each time

will be exactly known. It would then be possible to perfectly correct for this motion during the

reconstruction. This chapter will start by explaining how motion correction can be incorporated

in the reconstruction, given a perfect motion model.

Unfortunately, in practice, the motion model is not known. We therefore propose to not

only optimize the unknown image, but also optimize the unknown motion model parameters

in the iterative reconstruction algorithm. How this is achieved will be explained in the second

section of this chapter.

The chapter will finish with a discussion of the simulations and experiments that were

performed. For the interested reader, some unsuccessful alternative techniques that were tried

before the final approach was established are discussed in Section A.

4.1 Motion correction

As described in the introduction, given a perfect motion model, the image can be perfectly

motion corrected during the reconstruction. Motion correction was based on the adaptation of

the update error of the regular MLEM algorithm as described in Equation 2.7. This update

error is calculated using both the sinogram of the current guess and the measured sinogram. As

the measured sinogram contains a different amount of motion for each time frame, the update

error was calculated for each time frame independently.

To incorporate motion correction in this update error, the image guess was transformed to

contain the estimated amount of motion before it was projected to a sinogram. The measured

sinogram was then compared to the sinogram of the transformed guess rather than the sinogram

35
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of the untransformed guess. This way, given the perfect motion model parameters, both sino-

grams contain exactly the same amount of motion. The comparison of these sinograms would

then no longer be influenced by the presence of motion, but it is only influenced by the quality

of the image guess. The update error was then backprojected just as in regular MLEM.

However, as the amount of motion that is now in both the measured and transformed guessed

sinogram differed per time frame, the backprojected update errors for the different time frames

were also calculated for different respiratory states. Therefore, the backprojected update errors

for each time frame had to be transformed back to a common respiratory state, before they

could be averaged. The resulting total backprojected error was used to update the image guess.

Figure 4.1 schematically depicts how the iterative reconstruction algorithm was adapted to

include motion correction.

Figure 4.1: In order to incorporate motion correction in the iterative reconstruction, the image

guess was transformed using the motion model before it was projected. Using this transformed

sinogram the update error was computed. The adaptations are indicated using green contours.

This algorithm was assumed to perfectly correct for respiratory motion, given a perfect

motion model, and is summarized in the following expression for the update error

Eupdate =
1

N

∑
t

T (−~rt)p−1
(
Mt

G̃t

)
, (4.1)

with N the number of time frames, p−1 the backprojection operator that converts a sinogram

to an image, T (~x) a transformation operator that shifts the image by an amount ~x, ~rt as

determined by the motion model in equation 3.1, Mt the measured sinogram in time frame t
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and G̃t the sinogram of the transformed guess, which can be obtained as

G̃t = pT (~rt)Gt, (4.2)

with Gt the untransformed image guess and p a projection operator that converts the image to

a sinogram.

Example: update error calculation

This example will illustrate how the update error is calculated. We will use the same linear

motion model model as in the example in Section 3.4 and the liver phantom of Figure 4.10.

We will assume we know the perfect model parameter to be A = 1.5. We can then use this

parameter value to adapt the update error Eupdate for a specific iteration in the aforementioned

way. We will assume that the sinogram of the measured PET data M was binned into three

time frames of 1 second. This gives us three measured sinograms Mt, one for each time frame t.

Now for each time frame we will calculate an error and in the end these errors will be averaged

to give the total update error. This example will show how the error is calculated for the first

time frame.

Figure 4.2a shows the measured sinogram for time frame 1 (M1). For the first time frame the

internal motion is calculated (using the motion model) to be rt = 10 pixels, in the y-direction.

The guessed image is then shifted this amount rt and projected, resulting in the sinogram of the

transformed guess for time frame 1 (G̃1 = pT (r1)G1), which is shown in Figure 4.2b. The ratio

of M1 and G̃1 is then calculated, as is shown in Figure 4.2c. This ratio is then backprojected to

image space and shifted with an mount of motion −rt, the result of which is shown in Figure

4.2d. Now this transformed and backprojected ratio was calculated for the first time frame.

By calculating this quantity for every time frame and averaging them, to total update error

can be obtained. This update error has the same shape as the image guess, such that each voxel

in the image guess will be multiplied with its corresponding motion corrected error in Equation

4.1.
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(a) The measured sinogram for time frame 1 (i.e.

M1).
(b) The sinogram of the transformed image guess

for time frame 1 (i.e. G̃1).

(c) The ratio M1/G̃1.

(d) The backprojected ratio M1/G̃1.

4.2 Motion estimation

Motion was estimated by modeling the internal motion dynamics using a motion model. This

motion model correlates the internal motion with the surrogate signal. Given the perfect motion

model, the image guess can be perfectly motion corrected during the reconstruction using the

method as described in the previous section.

However, the motion model is not a priori known and therefore we propose to optimize the

motion model parameters as part of the iterative reconstruction algorithm. A better motion
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estimation facilitates a better image guess, whereas a better image guess increases the accuracy

of motion estimation. Therefore, both the image guess and motion model are optimized in each

iteration of the reconstruction algorithm. This section focusses on describing the choices that

were made for the surrogate signal, motion model and optimization method.

4.2.1 Surrogate signal

The internal motion of the patient cannot be measured directly, so instead the measurement of

a surrogate signal is used. This surrogate signal is assumed to correlate with the internal motion

of the patient, and thus indicate the respiratory state of the patient. The surrogate signal can

be measured by hardware, such as a pressure sensitive respiratory belt that is put around the

patient’s abdomen. In the case of PET, the surrogate signal can also be calculated directly

from the raw data without loss of accuracy [71]. A benefit of a surrogate signal calculated from

the raw data is that it is fully automatic and no additional hardware is required, so the regular

scanning protocol does not need to be changed and the clinical staff does not have to perform

any extra tasks. It also makes the technique more accessible for hospitals that do not have such

hardware. Moreover, using a data-driven surrogate signal it is not necessary to synchronize the

surrogate signal with the PET data. For these reasons, the surrogate signal in this study was

also calculated from the raw data.

The surrogate signal was calculated using the center-of-mass method of Büther et al. [72],

who showed that the movement of the center-of-mass in the direction into the scanner bore

correlates with the signal ofs a respiratory belt and can thus also be used as a surrogate signal,

without loss of accuracy.

Figure 4.3: Definition of the coordinate system of the cylindrical PET scanner. The y-direction

is defined as the direction into the scanner bore.

In order to explain the principle behind this method, we will first define a coordinate system

for the cylindrical PET scanner as shown in Figure 4.3. To calculate the center-of-mass in the

y-direction (into the scanner bore), the total number of counts in the sinogram of each axial
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slice is determined. With Ny(i, t) the total number of counts in the sinogram of axial slice i at

time t, the center of mass in the y-direction can be calculated as

CMy(t) =

∑
i i ·Ny(i, t)∑

i i
. (4.3)

4.2.2 Motion model

A linear motion model was used as many studies have shown its use, such as for tumor tracking

in radiotherapy treatments [62, 63]. The linear motion model can be written as

~rt = ~A · st, (4.4)

with ~rt = (xt, yt, zt) the internal motion at time t, st the scalar surrogate signal at time t and

~A = (Ax, Ay, Az) the model coefficients.

In general, a linear motion model could also contain extra coefficients ~B for each direction,

the motion model would then become ~rt = ~A · st + ~B. However, since this extra term does not

depend on time, it does not add to modeling the internal dynamics and it will only shift the

entire image by a given amount. As this study focuses on just the liver, the absolute position

of this one organ is not relevant and these coefficients were excluded from the study.

4.2.3 Optimization method

For each patient and each different PET acquisition, the optimal model parameters ~A have to

be determined. Doing this for every acquisition and every patient allows taking into account

breathing variability between different image acquisitions. The optimization of the model co-

efficients was added at the start of each iterative reconstruction step, as indicated in Figure

4.4.

Each iteration, both the guessed image and the guessed motion model parameters will be

updated, resulting in a better image guess and a better guess for the motion model parameters.

A good image guess is needed to accurately estimate the motion model parameters, but likewise

accurate motion model parameters are needed to estimate a good, motion-free image. Therefore,

each iteration both the image and the motion model parameters are improved. Each iteration

the current estimate for the model parameters is used for motion correction.

The optimization step in the reconstruction algorithm consists of the minimization of an

error quantity that depends on the model coefficients, and is chosen to be minimal for the

perfect model coefficients. The next sections will describe the model error and minimization

algorithm that were used.



CHAPTER 4. METHOD 41

Figure 4.4: In order to optimize the model coefficients ~A, a model optimization step (red contour)

was added at the start of each iteration of the reconstruction algorithm.

Model error

A model error was constructed that could indicate the goodness of fit of the motion model

parameters. This model error was used to optimize the unknown motion model parameters,

and is different from the update error in Equation 4.1, that was used to optimize the unknown

image.

The model error was chosen to be the absolute difference between the measured sinogram

and the sinogram of the current transformed image guess. The measured data was divided

into short time frames, yielding a measured sinogram Mt for each time t. The time-resolved

sinograms can then be used to calculate the model error, which can mathematically be expressed

as

Emodel =
1

2N

∑
t,i

abs

(
Mt,i∑
jMt,j

− G̃t,i∑
j G̃t,j

)
, (4.5)

with N the number of time frames, Mt,i the i’th element of the measured sinogram in time

frame t and G̃t,i the i’th element of the current transformed guess (see Equation 4.2). The

factor 1
2N ensures that 0 < Emodel < 1.

It is important to be able to quantitatively compare different PET acquisitions, for instance

for treatment evaluation. Therefore, both Mt,i and G̃t,i were normalized, such that the model

error is influenced by the shape of the sinograms, but not the total number of counts in a sino-
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gram. Otherwise, it would be difficult to compare scans of different duration, as the sinograms

then contain a different number of counts.

Due to the size of the sinograms of typically tens of thousands of entries computing the

model error is currently a very computationally intensive step.

Example: model error calculation

This example will illustrate how the model error is calculated. We will use the same linear

motion model model as in the example in Section 3.4 and the liver phantom of Figure 4.10.

We will first calculate the model error for A = 1. Let’s say we have a measured sinogram M .

We bin the data in three time frames of 1 second. This gives us three measured sinograms Mt,

one for each time frame t. Each of these three sinograms is then normalized, by dividing the

sinogram Mt by the total number of counts in that sinogram (
∑

jMj). Figure 4.5 shows these

normalized sinograms.

Figure 4.5: The normalized measured sinograms Mt/
∑

jMt,j for all time frames.

Let’s say that the image guess of the current iteration in the reconstruction is given by

the image in Figure 4.6. For each time frame, this image guess needs to be transformed by

the amount of estimated motion rt, which is the same amount of motion that the measured

sinogram in that time frame is estimated to contain. Given the surrogate signal st and the

motion model φ, the motion model parameters imply an estimate for the internal motion rt for

each time frame (see Equation 3.1). For each time frame, the image guess is now shifted by an

amount rt, resulting in three shifted guesses T (rt)G. These shifted guesses are then projected to

a sinogram G̃t = pT (rt)G. These sinograms of the transformed guesses G̃t are then normalized

to one and are shown in Figure 4.7.
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Figure 4.6: The current image guess, that is used to calculate the model error.

Figure 4.7: The normalized sinograms of the transformed guess (G̃t/
∑

j G̃t,j) for all time

frames.

If the motion model parameter was guessed correctly, the internal motion rt was calculated

correctly for each time frame and the normalized sinogram of the transformed guess will contain

the same amount of motion as the measured sinogram. We therefore calculate the absolute

difference of these two sinograms for each time frame. These absolute difference sinograms

are shown in Figure 4.8. For each time frame, the total absolute difference can be determined

by summing over all the elements in the absolute difference sinogram. For the three absolute

difference sinograms that are shown here, this yields 0.34, 0.35 and 0.35 respectively. These

three values are then averaged and multiplied by 0.5. This yields for the model error the value

0.17.

This process can be repeated for different values of the model parameter, which will thus
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Figure 4.8: The absolute difference of the normalied measured sinogram Mt/
∑

jMt,j and the

normalized sinogram of the transformed guess G̃t/
∑

j G̃t,j, for each time frame.

imply different values of the estimate of the internal motion rt for each time frame. The most

optimal value of A will have the lowest model error, so by minimization of the model error the

most optimal model parameter can be found.

If we choose a different value for A, for instance A = 2, the same process can be applied as

for A = 1. For A = 2 the model error was found to be 0.21, whereas for A = 1 it was 0.17.

A = 1 is thus a more optimal parameter value than A = 2 in this case.

Minimization algorithm

The model error was minimized using Powell’s method, which is a minimization algorithm

for multi-variable functions [73]. Powell’s method performs a sequence of line minimizations

that each minimize only one variable, or model parameters in this case. For this, any line

minimization method could be used. Powell’s method then chooses the successive directions

in the parameter space spanned by the model parameters to perform these line minimizations

on. Many iterations through all directions are avoided by choosing a few good directions in the

parameter space.

Powell’s method starts by initializing the set of N directions ui to the unit vectors,

~ui = ~ei i = 1, ..., N. (4.6)

After this, the following steps should be repeated until the function that is to be minimized

stops decreasing [73].

1. Save the starting point as ~P0.
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2. Minimize the function along all directions ~ui successively.

3. Determine the direction ~ud that contributed most to the decrease of the function.

4. Discard ~ud from the set of directions.

5. Add the displacement vector ~PN − ~P0 to the end of the list of directions.

6. Move ~PN to the minimum along direction ~uN and call this point ~P0.

Powell’s method computes the model error typically a few tens of times for every iteration

of the reconstruction, making the minimization step very computationally intensive. Without

the optimization step, a reconstruction with 10 iterations takes only a few minutes. With the

optimization step included the entire reconstruction takes 2-3 days.

4.3 Simulations

4.3.1 Overview

The goal of this study was to develop a respiratory motion correction method for PET that

can deal with breathing variability. Simulations were therefore performed for both variable and

non-variable breathing dynamics to test whether the method performed equally well in both

cases. Figure 4.9 shows the surrogate signals that were used for stationary and non-stationary

breathing dynamics. Simulations were also performed to test the behavior of the model error.

In these simulations, the value of one of the model coefficients was changed halfway through the

simulation. The internal motion could then no longer be accurately described with the same

motion model for both halves of the PET data. As the optimization method assumes that the

motion model is constant, motion can then not be perfectly corrected and the hypothesis was

that the residual motion could be detected due to an increase in the model error. A simulation of

a static phantom was also included, as this can serve as a reference for perfect motion correction.

Table 4.1 summarizes these three simulations.

Table 4.1: The simulations that were performed to test the performance of the model-based

motion compensation method.

Simulation Motion Breathing dynamics Model parameters

1 None N/A N/A

2 2D-translational Stationary Constant

3 2D-translational Non-stationary Constant

4 2D-translational Stationary Ay changed at half the scan time
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(a) Stationary (b) Non-stationary

Figure 4.9: The stationary and non-stationary surrogate signals that were used for the simula-

tions.

For comparison, all simulations were reconstructed four times, with different motion correc-

tion techniques:

1. No motion correction;

2. Gating;

3. Registration of gated images;

4. Model-based correction.

Model-based correction using motion models, as proposed in this study, was compared with the

other correction techniques. The uncorrected reconstruction was used to test whether correction

improved the image quality at all. Gating and registration of gated images are included for

comparison as these are state-of-the-art motion correction techniques. All reconstructions were

compared quantitatively, using the analyses described in Section 4.5.

4.3.2 Phantom

Simulations were performed with a 2D liver-like phantom, which is shown in Figure 4.10. The

phantom was created such that it resembles the shape of a liver. A smaller and larger sphere

were added to represent tumors of sizes 2 and 4 cm. The ratio between the voxel intensity in

the tumors and in the background was 8.5:1.
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Figure 4.10: The liver-like phantom that was used for the simulations.

4.3.3 Motion

Motion dynamics were simulated by generating a series of 18 phantoms that were shifted with

respect to each other with a one- or two-dimensional sinusoidal motion. The 18 time frames

covered two periods of the sine function. The motion amplitude was 5 voxels, or 1 cm in terms

of physical dimensions. As discussed in Section 2.3.7, a motion of 10-25 mm is realistic for liver

tumors. Non-stationary breathing patterns were simulated by shifting the second period of the

sine function upwards by two amplitudes.

In the simulations, the surrogate signal was not computed by the center-of-mass method as

this method cannot be applied with just one axial slice. The surrogate signal was assumed to

be known instead.

4.3.4 Projection and backprojection

For projection and backprojection the Radon and inverse Radon transforms were used, respec-

tively. These are the mathematical transforms that describe a projection and backprojection, as

described in Sections 2.3.1 and 2.3.3. Since these are mathematical transformations, they does

not include a detector response model. Two different approaches that did include modeling the

detector were found unsuitable for this study and are described in more detail in Appendix A.

4.3.5 Noise

Poisson noise was added to the simulated measurements. In order to make sure that the

amount of noise that was added was realistic, the sinograms were scaled such that they contain

a realistic number of counts. This is an important step as the standard deviation of the Poisson

distribution is
√
N with N the average number of counts. The sinograms of the experiments

contain a realistic number of counts, including effects such as attenuation and crystal efficiency,

and these were thus used to scale the simulated measurements.

4.3.6 Attenuation

Attenuation can easily be modeled by multiplying each element in the measured sinogram with

an attenuation factor. As mentioned before in Section 2.3.2, each element in the measured
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sinogram corresponds to a certain LOR. Therefore, the attenuation of an element of a sinogram

corresponds to the amount of attenuation that was encountered along that LOR. The attenu-

ation factor is thus e
∑

i µiLi , with i the different tissue types that were encountered along the

corresponding LOR, µi the attenuation coefficient of that tissue and Li the distance that was

traversed in that tissue (see Section 2.2.2).

4.3.7 Iterative reconstruction

The reconstruction consisted of ten iterations in total. The first three iterations were regular

MLEM iterations, without motion estimation and correction. This was done such that the first

guess that is used for motion model optimization already starts to resemble the (motion-blurred)

image object.

4.4 Experiments

4.4.1 Overview

Six different setups were used to test the performance of the proposed model-based motion

correction method. For the same reasons as mentioned in Section 4.3.1, the PET data of each

of these setups was reconstructed four times, each with one of the following motion correction

techniques:

1. No motion correction;

2. Gating;

3. Registration of gated images;

4. Model-based correction.

All reconstructions were compared quantitatively, using the analyses described in Section 4.5.

The first setup was a scan of a static phantom. As the phantom did not move during the

scan, this scan could serve as a reference for a reconstruction with perfect motion correction.

All motion corrected reconstructions of other experiments could then be compared to this scan

to determine the quality of motion correction. Unfortunately, due to practical problems with

the PET scanner the data of this scan was lost.

The second setup was used to test the hypothesis that it is feasible to optimize motion

model parameters in a PET reconstruction. In this setup, the phantom moved sinusoidally in

the y − direction (into the scanner bore, see Figure 4.3). The motion was stationary.

The third setup is similar, except that the phantom now moved in both the x- and y-

direction. Using this setup it could be tested whether it is feasible top optimize the motion

model parameters for motion in two directions. The optimization method used is suitable for
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both one- and multi-dimensional problems, so different results from setups 2 and 3 were not

expected.

The fourth setup was used to test the hypothesis that model-based motion correction per-

forms better than gating and registration of gated images in the case of variable breathing

dynamics. This setup also used two-dimensional motion, but the difference with the third setup

is that the motion was now non-stationary to simulate variable breathing dynamics. Just as

for the simulations, for non-stationary breathing dynamics the amplitude of the sine function

was shifted by two amplitudes after the first respiratory cycle.

The fifth setup served to test the behavior of the model error if the assumption that the

model parameters are constant throughout an acquisition is no longer valid. This setup is

similar to the third setup, except that the values of the motion model parameters were changed

after the first respiratory cycle. This was achieved by changing the direction of motion after

the first respiratory cycle. As the surrogate signal was computed as the center of mass in the

y-direction, the motion in the y-direction still correlated equally with the surrogate signal after

the change in direction. The motion model thus retained the same model parameter value in

the y-direction after the change in direction. However, the motion in the x-direction correlated

with the surrogate signal through a different parameter value. The aforementioned assumption

of constant motion model parameters was thus no longer valid. Therefore, assuming a motion

model with constant parameters in the motion estimation, motion correction could not be

accurate. It was thus expected that there would be residual motion in the reconstruction and

the model error would therefore increase.

The sixth setup was used to test how well the current motion model, that only explicitly

models translational motion, could correct for rotational motion. This setup used periodic,

stationary, rotational motion. Table 4.2 summarizes these six setups.

The PET scan of each setup had a duration of 10 seconds and was performed on a Siemens

mCT PET/CT scanner. In order to be able to model the motion dynamics, the raw data from

the PET scanner was binned into sinograms with a time width of 0.5 seconds 1. For each

reconstruction, ten iterations were performed. Motion was not estimated nor corrected in the

first three iterations, for reasons mentioned in Section 4.3.7.

1This was achieved using an in-house developed software platform.
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Table 4.2: The setups that were used to test the performance of the proposed model-based motion

compensation method.

Setup Motion Breathing dynamics Model coefficients

1 None N/A N/A

2 1D-translational Stationary Constant

3 2D-translational Stationary Constant

4 2D-translational Non-stationary Constant

5 2D-translational Stationary Changed at half the scan time

6 1D-rotational Stationary Constant

4.4.2 Phantom

A 1.4 L liver-like phantom was used. The compartment of the phantom was filled with water

mixed with fluorine-18 FDG, a radiotracer frequently used in diagnostic PET imaging. To

represent tumors in the liver, an 8 and a 20 mL sphere were also added to the compartment.

The larger of the spheres had a cavity inside, such that it represents a necrotic tumor. In a

necrotic tumor, part of the tumor tissue is dead, for instance in the center of the tumor. This

can be caused by for instance fast growth of the tumor. The volume of 20 mL of the larger

sphere is without the cavity. The spheres were also filled with water mixed with fluorine-18

FDG. The larger sphere contained 8.4 MBq of F18-FDG, the smaller sphere contained 4.7 MBq.

The background was filled with 69.8 MBq, although an unknown amount of activity was leaked

in the process. The small sphere was filled with a 11.8:1 activity concentration ratio with respect

to the background, for the large sphere the ratio was 8.4:1 (not taking into account the leaked

activity).

4.4.3 Surrogate signal

The surrogate signal was computed from the data using the center-of-mass method as described

in Section 4.2.1.

4.4.4 Projection and backprojection

For the reconstruction of the experiments it is desirable to have a realistic projector and backpro-

jector based on the specific scanner that was used. Therefore, the projector and backprojector

from STIR reconstruction software specifically designed2 for a Siemens PET scanner were used

[74].

2The projector and backprojector were not designed by myself.
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4.4.5 Translational motion setup

The setup for translational motion consists of an Arduino attached to a stepper motor, which

was programmed to perform a sinusoidal motion with a frequency of 0.2 Hz and an amplitude of

10 mm. These are realistic values for liver tumors in adults [44]. The stepper motor was attached

to a movable platform that holds the phantom and can perform a translational motion. Figure

4.11 shows this setup. To simulate non-stationary breathing, the baseline of the sinusoidal

motion was shifted by two amplitudes after the first cycle.

Figure 4.11: The setup for translational motion consisted of a stepper motor that drives the

motion of the phantom. The stepper motor was connected to an Arduino and was programmed

to perform a sinusoidal motion.

4.4.6 Rotational motion setup

This setup is similar to the translational motion setup. However, the Arduino was now connected

to a rotational motor that was programmed to perform a periodic motion of 0.2 Hz with a

constant speed. The rotational motor drives a turntable that rotates with an angular deviation

of about 20 degrees. The phantom was placed on the turntable, with the smaller sphere closer

to the center of the turntable than the larger sphere. Figure 4.12 shows the rotational setup.
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Figure 4.12: In the rotational motion setup, the Arduino was connected to a rotational motor

that drives a turntable that holds the phantom.

4.5 Quantitative analysis

This section describes the quantitative parameters that were used to assess and compare the

image quality of the reconstructions of the simulations and experiments.

4.5.1 Mean Standardized Uptake Value

The Standardized Uptake Value (SUV) of a lesion is often used in PET imaging. It describes

the ratio between the radiotracer concentration in the tumor and the average radiotracer con-

centration in the patient. The SUV at time t is given by

SUV (t) =
c(t)

D/m
, (4.7)

with c(t) the radioactivity concentration in the tumor tissue (decay corrected to t = 0), D the

injected dose at t = 0 and m the mass of the patient. As we are only interested in the relative

SUV, in order to compare different reconstructions, we were able to put D = m = constant.

The SUV of a voxel is then just equal to the radiotracer concentration in that voxel, i.e. the

voxel intensity. For each tumor, the mean SUV was computed over the tumor volume.

4.5.2 Tumor volume

To compute the volume of a tumor, first the maximum SUV in that tumor is determined.

This maxixum SUV can then be used to determine the tumor volume using a technique called

thresholding. All voxels that are above a certain percentage of the maximum SUV are considered

te belong to the tumor. In this study, a threshold of 40% was used [75].
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The maximum SUV is rather sensitive to random noise, as it is determined by only one

voxel. Therefore, rather than just taking one voxel, an average SUV over a few voxels was

computed. These voxels are the voxel containing the maximum SUV and its direct neighbors.

The resulting mean SUV, called the SUV peak in this thesis, was used for thresholding instead of

the maximum SUV. This reduces the influence of random noise in the quantitative comparison

of different reconstructions.

4.5.3 Contrast-to-Noise Ratio (CNR)

Two important measures for image quality are contrast and noise. Contrast is defined as

the difference in intensity between parts of the image. Noise describes the random statistical

fluctuations in the rate of nuclear decay and causes the images to look mottled. A higher contrast

relative to the noise variation makes it easier to distinguish an object from the background.

The Contrast-to-Noise Ratio (CNR) quantifies how well an object can be distinguished from

the background and can be defined as

CNR =
It − Ib
σb

, (4.8)

with It the average voxel intensity in the tumor, Ib the average voxel intensity in the background

and σb the standard deviation of the voxel intensities in the background due to noise. The Rose-

criterion states that the critical value for distinguishing an object from the background is a CNR

of 5 [76].

In order to calculate the CNR, a tumor volume and background volume were defined. The

previous section described how the tumor volume was segmented. In choosing the background

we were presented with several options. The background was chosen to be a ten-voxel band

around the segmented tumor, such that the CNR would be calculated locally. This way any

smearing of the tumor that was not segmented into the tumor volume, called spill-out, would

significantly change the mean and standard deviation of the background. The presence of spill-

out would therefore show up in the CNR. Several other options were tried for the background

volume as well and are described in Appendix A.

4.5.4 Reference values

For the simulations, these quantitative parameters were compared with their reference values

obtained from the simulation of a static phantom. For the experiments, the static scan was

unavailable due to technical problems with the PET scanner. Instead, the volumes of the

spheres were measured by weighing the spheres both unfilled and filled with water. For the

CNR, a reference value is not necessary. The optimal CNR, in the case of zero noise, would be

infinite. A higher CNR is thus by definition more optimal. The mean SUV was not calculated

for the experiments, as there was no reference value available for comparison.
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Results

The performance of model-based motion correction (MBC) was tested in both simulations and

experiments. The results were compared with respiratory gating and registration of gated

images. This Section will first discuss the results of the simulations and then the results of the

experiments.

5.1 Simulations

The first part of this Section shows the results of a very simple simulation that was performed

without Poisson noise. This simulation was used to test the method before the actual simulations

were performed. The rest of the Section shows the results of the simulations that were listed

in Section 4.3.1. In this part, first the image reconstructions are discussed, then the model

parameters optimization and it ends with the results of the quantitative analyses that was

performed. As mentioned in Section 4.3.1, simulations were performed using both stationary

and non-stationary breathing dynamics.

5.1.1 Noise-free simulations

The noise-free simulations were performed with stationary motion in two directions, constant

model parameters and without Poisson noise. Figure 5.1 shows the reconstruction that was

corrected using model-based motion correction and a reconstruction of the same phantom that

contained no motion at all. These reconstructions contain no visible differences.

Figure 5.2 shows the model errors. For each iteration, the model error was grid sampled as

a function of the slope Ay. This grid sampling is indicated by the colored lines. The dashed

black line indicates the correct value of the slope Ay. The red dots indicate the slope Ay that

was estimated in each iteration.

For each iteration, the sampled model error is smooth and convex and has an optimum near

the correct value of the slope Ay. For consecutive iterations, the model error decreases and

54
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(a) Model-based correction (b) No motion

Figure 5.1: The final reconstructions for the noise-free simulation that were a) corrected with

model-based correction and b) contained no motion.

its shape becomes more convex. For all iterations, the estimated parameter value was within

0.34% of the correct parameter value.

Figure 5.2: The normalized model errors for all iterations as a function of the slope Ay (in

pixels). The black dashed line indicates the correct slope. The red dots indicate the parameter

value that was estimated in each of the iterations. The colored lines represent the grid sampling

of the parameter space that was performed for each iteration.

Figure 5.3 shows the parameter optimization as a function of the iteration number for the

x-axis. The dashed black line indicates the correct parameter value. The red dots indicate the

parameter value that was found for each iteration. For all iterations, the correct parameter

value was found to within 1.02%.
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Figure 5.3: The recovered motion amplitude as a function of iteration number for the noise-free

simulation.

5.1.2 Image reconstructions

Stationary breathing dynamics

Figure 5.4 shows the image reconstructions that were obtained of the liver-like phantom under

stationary dynamics, as well as the static reconstruction that serves as a reference for perfect

motion correction (i.e. simulations 1 and 2, see Section 4.3.1). Figure 5.4b shows that for

the reconstruction that was not motion corrected, the two spheres are clearly enlarged with

respect to Figure 5.4a, indicating the presence of residual motion in the reconstruction. Figures

5.4c-e show the reconstructions that were corrected by using either gating, registration of gated

images or model-based motion correction (MBC). These reconstructions do not clearly show

visible residual motion when compared to Figure 5.4a.

For the reconstructions in Figure 5.4 the assumption was made that the model parameters

are constant throughout the simulation. In simulation 4, this assumption was invalid, in order

to test what the influence of an invalid assumption would be on the image quality. Simulation

4 was compared with simulation 2, for which the assumption did remain valid throughout the

simulation. Figure 5.5 shows the reconstructions that were obtained for simulations 2 and 4,

using MBC. No clearly visible residual motion is present in either of the reconstructions.
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(a) No motion (b) No correction (c) Gating

(d) Registration of gated images (e) Model-based correction

Figure 5.4: Reconstructions of the liver-like phantom with stationary dynamics that either con-

tained no motion, were not motion corrected or were motion corrected using either gating,

registration of gated images or model-based motion correction.

(a) Constant model parameters (b) Changing model parameters

Figure 5.5: Reconstructions of the liver-like phantom under stationary dynamics using model-

based correction. Left: the model parameters were constant throughout the simulation. Right:

the model parameters changed halfway through the simulation.

Non-stationary breathing dynamics

Figure 5.6 shows the image reconstructions that were obtained of the liver-like phantom under

non-stationary dynamics, as well as the reconstruction that contained no motion (i.e. simu-

lations 1 and 3). Figure 5.6b shows the reconstruction that was not motion corrected. The
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two spheres are clearly enlarged with respect to Figure 5.6a, indicating the presence of residual

motion in the reconstruction. Figures 5.6c-e show that, just as in the case of stationary dynam-

ics, the three reconstructions that used either of the three motion correction techniques do not

clearly show visible residual motion.

(a) No motion (b) No correction (c) Gating

(d) Registration of gated images (e) Model-based correction

Figure 5.6: Reconstructions of the liver-like phantom with non-stationary dynamics that either

contained no motion, were not motion corrected or were motion corrected using either gating,

registration of gated images or model-based motion correction.

5.1.3 Model parameters optimization

The model parameters optimization of the model-based motion corrected image reconstructions

will be discussed in this Section. The parameter space was characterized using grid sampling in

order to determine if the model error is suitable for optimization. Figure 5.7 shows an example

of a sampling of the parameter space at the start of the 10’th iteration of a reconstruction

containing model-based motion correction. This shows that the model error is smooth and

convex. The model error also has a clear optimum near the correct value of the model parameter

(Ay = 1.4).

As mentioned before, simulations 2 and 4 used constant and changing model parameters

respectively. Figure 5.8 discusses the obtained optimal model parameters for each iteration for

simulations 2 and 4. In this Figure not the model parameters themselves are shown on the



CHAPTER 5. RESULTS 59

Figure 5.7: Grid sampling of the normalized model error at the start of the 10’th iteration of

a reconstruction containing model-based motion correction. The shape of the model error is

smooth and convex and has a clear optimum near the correct parameter value (Ay = 1.4).

vertical axis, but the total motion amplitude rt =
√
x2t + y2t of the first respiratory cycle that

is implied by these parameter values through Equation 3.1. The amplitude of the first cycle

is used here, because this amplitude is equal for both stationary and non-stationary surrogate

signals. The dashed black line indicates the correct total motion amplitude.

Figure 5.8a shows that in the case of constant parameters, the total motion amplitude is

found to within 3 mm at the first iteration. For further iterations, the total estimated motion

amplitude converges to within one pixel size (2mm) of the correct value. Figure 5.8b shows that

in the case of changing model parameters, the total motion amplitude is estimated to within

about one pixel size at the first model optimization and remains approximately constant for

future iterations. This was an unexpected result.

Figure 5.9 shows the obtained model parameters for each iteration of a reconstruction under

non-stationary dynamics that was corrected using MBC. The results shows that at the first

model optimization only half of the total motion amplitude was recovered. For further iterations

the total motion amplitude converges to within a pixel size of the correct value.

Figure 5.10 shows the time-resolved model error for simulations 2 and 4. In simulation 2,

the model parameters were constant, whereas in simulation 4 the model parameters Ay changed

halfway through the simulation. The model errors of simulation 2 and 4 are of comparable size

and are both relatively constant as a function of time.
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(a) Constant parameters (b) Changing parameters

Figure 5.8: The recovered motion amplitude as a function of iteration for the simulations with

a) constant model parameters (simulation 2) and b) one of the parameters changed halfway

through the simulation (simulation 4).

Figure 5.9: The recovered motion amplitude as a function of iteration for the simulations with

non-stationary breathing dynamics.
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(a) Constant parameters (b) Changed parameters

Figure 5.10: The model error for the reconstructions of simulations 2 and 4 using model-based

motion correction. Simulations 2 and 4 used constant and changing model parameters respec-

tively.
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5.1.4 Quantitative analyses

Figure 5.11 shows the mean SUV, CNR and segmented volume for both lesions under both

stationary and non-stationary breathing dynamics. The black line indicates the reference values

as obtained from the reconstruction without motion (see Section 4.3.1). The blue and red bars

represent the reconstructions that used stationary and non-stationary motion respectively (i.e.

simulations 2 and 3 respectively).

Figures 5.11a and 5.11b show the mean SUV of the large and small lesion respectively for all

reconstructions. These results show that the reconstruction without motion correction strongly

underestimates the mean SUV, both for the large and the small lesion. The mean SUV values

of the reconstructions that were corrected using gating, registration of gated images and MBC

are all much closer to the reference value. For non-stationary breathing the mean SUV is lower

than for stationary breathing.

Figures 5.11c and 5.11d show the volumes of the large and small lesion respectively for

all reconstructions. As expected, the reconstruction without motion correction overestimates

the lesion volume both for the small and the large lesion. The lesion volume is overestimated

more for non-stationary breathing dynamics than for stationary breathing dynamics. All three

motion correction methods reduce the tumor volume to within ten pixels of the reference value.

For these three motion correction techniques, the lesion volume does not significantly differ for

stationary and non-stationary breathing dynamics.

Figures 5.11e and 5.11f show the contrast-to-noise ratios (CNR) of the large and small

lesion respectively for all reconstructions. For the large lesion the CNRs of the reconstructions

that were corrected with registration of gated images or MBC were higher than those of the

reconstructions that were corrected with gating or not motion corrected. For the small lesion,

all CNRs were similar, except that the CNR of the reconstruction without motion correction

under non-stationary breathing had a significantly lower value. Both for the large and small

lesion the CNR of the reconstructions with non-stationary dynamics is lower than the CNR of

the reconstructions with stationary dynamics.

Figure 5.12 shows the mean SUV, segmented volume and CNR for the reconstructions of sim-

ulations 2 and 4 corrected with MBC. Simulation 2 had constant motion model parameters,

whereas in simulation 4 the model parameter Ay changed halfway through the simulation. No

significant differences were observed for these parameters between simulations 2 and 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: The mean SUV, lesion volume and CNR were determined for all of the reconstruc-

tions under both stationary (blue) and non-stationary (red) breathing dynamics.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Comparison of the quantitative analyses of simulations 2 and 4, which had constant

(blue, “stable”) and changing (red, “unstable”) motion model parameters, respectively.
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5.2 Experiments

The results of the simulations are divided in four parts. First the measured surrogate signals

are shown, then the image reconstructions are discussed, followed by the model optimization

and the section ends with discussing the quantitative analyses that was performed.

5.2.1 Surrogate signals

Figure 5.13 shows the surrogate signals that were measured using the center-of-mass method

for each of the experimental setups (see Section 4.4.1 for an overview of the setups). Figures

5.13a and 5.13b show the surrogate signals for experimental setup 2 and 3, that used 1D and

2D stationary, translational motion respectively. As expected, both surrogate signals have

a sinusoidal shape. Figure 5.13c shows the surrogate signal for setup 4, that used 2D non-

stationary, translational motion. This surrogate signal shows that after the first respiratory

cycle, the sinusoidal function was shifted down by two amplitudes. Figure 5.13d shows the

surrogate signal for setup 5, that used 2D translational motion with changing motion model

parameters. Due to the changed motion model parameters for the second respiratory cycle, the

surrogate signal was shifted up and the amplitude slightly decreased. This was expected, due

to the change in direction of the setup. Figure 5.13e shows the surrogate signal for setup 6,

that used rotational motion. As expected, this surrogate signal is periodic, but not sinusoidal.
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(a) Setup 2 (1D stationary, translational motion) (b) Setup 3 (2D stationary, translational motion)

(c) Setup 4 (2D non-stationary, translational mo-

tion)

(d) Setup 5 (2D translational motion with chang-

ing coefficients)

(e) Setup 6 (rotational motion)

Figure 5.13: The surrogate signals that were measured using the center-of-mass method for each

of the five experimental setups.
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5.2.2 Image reconstructions

For all reconstructions only a slice parallel to the (x, y)-plane (see Figure 4.3) is shown, as the

motion in both the x- and y-direction is visible in these planes. Figures 5.14-5.16, 5.18, 5.20

show the four image reconstructions for experimental setups 2-5. First, the similarities of the

reconstructions of different experiments will be discussed. Then each experiment and its unique

results will be discussed separately.

Figures 5.14a-5.16a, 5.18a, 5.20a show the reconstructions that were not motion corrected for

all experiments. In all reconstructions, enlarged lesion volumes are clearly visible, as expected.

Figures 5.14b-5.16b, 5.18b, 5.20b show the reconstructions that were motion corrected using

gating. As expected, all of these gated reconstructions are much noisier than the other recon-

structions. The reconstructions also clearly contain less motion than the reconstructions that

were not motion corrected. Figures 5.14c-5.16c, 5.18c, 5.20c show the reconstructions that were

corrected using registration of gated images. These reconstructions also clearly contain less

motion than the reconstruction that was not motion corrected. Moreover, the reconstructions

contain much less noise than the gated reconstructions, but still slightly noise more than the

reconstructions that were not corrected or corrected using MBC. Figures 5.14d-5.16d, 5.18d,

5.20d show the reconstructions that were corrected using MBC. Together with the reconstruc-

tions that were not motion corrected, the MBC corrected reconstructions contain the least noise.

The MBC corrected reconstructions also clearly contain less motion than the reconstructions

that were not motion corrected.

Figure 5.14 shows all reconstructions for experimental setup 2 (see Table 4.2). This experiment

was performed using 1D stationary, translational motion. Figure 5.14a shows the reconstruction

without motion correction. It clearly shows residual motion in only one direction, as expected.

Figure 5.15 shows all reconstructions for experimental setup 3, that was performed using

2D stationary, translational motion. Figure 5.15a shows the reconstruction without motion

correction, which in this case clearly shows residual motion in two directions.

Figure 5.16 shows all reconstructions for experimental setup 4. This experiment was per-

formed using 2D non-stationary translational motion. The MBC reconstructions in Figure 5.16d

stand out as they seem to contain more residual motion than the MBC reconstructions of the

similar experiment using stationary motion in Figure 5.15d. For better comparison, Figure 5.17

shows the MBC reconstructions for stationary and non-stationary motion side-by-side. This

reveals that indeed the reconstruction of the experiment with non-stationary motion contains

slightly more residual motion than the reconstruction of the experiment with stationary motion.

This was an unexpected result.

Figure 5.18 shows the reconstructions for experimental setup 5. This experiment used 2D
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(a) No correction (b) Gating (c) Registration (d) MBC

Figure 5.14: Experimental setup 2 (1D stationary, translational motion) was reconstructed with-

out motion correction and using three different motion correction techniques for comparison. For

all reconstructions only a slice parallel to the (x, y)-plane is shown. The first row shows the large

lesion, the second row shows the small lesion.

(a) No correction (b) Gating (c) Registration (d) MBC

Figure 5.15: Experimental setup 3 (2D stationary translational motion) was reconstructed with-

out motion correction and using three different motion correction techniques for comparison.
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(a) No correction (b) Gating (c) Registration (d) MBC

Figure 5.16: Experimental setup 4 (2D non-stationary translational motion) was reconstructed

without motion correction and using three different motion correction techniques for comparison.

Figure 5.17: Reconstructions using model-based motion correction. Left: the reconstructions of

experimental setup 3, that used 2D stationary, translational motion. Right: the reconstructions

of experimental setup 4, that used 2D non-stationary, translational motion.

stationary, translational motion, but halfway through the acquisition the value of the model

parameter Ay was changed. The MBC corrected reconstruction of the small lesion in Figure
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5.18d clearly contains residual motion. The MBC corrected reconstruction of the large lesion also

seems to contain residual motion. For a good comparison, Figure 5.19 shows both experimental

setups 3 and 5 side-by-side. These experiments only differ in the fact that they used constant

and changing model parameters respectively. In this Figure it is clear that not only the small

lesion, but also the large lesion contains more residual motion in the case of changing model

parameters.

Figure 5.20 shows the reconstructions for experimental setup 6. This experiment used

stationary, rotational motion rather than translational. Figure 5.20a shows that the motion

amplitude of the small lesion was much larger than the motion amplitude of the larger lesion.

The MBC corrected reconstruction of the small lesion in Figure 5.20d clearly contains a lot of

visible residual motion. The reconstructions that were corrected using gating and registration

of gated images, in Figures 5.20b and 5.20c respectively, contain far less residual motion than

the MBC corrected reconstruction.

(a) No correction (b) Gating (c) Registration (d) MBC

Figure 5.18: Experimental setup 5 (2D stationary translational motion with changing coeffi-

cients) was reconstructed without motion correction and using three different motion correction

techniques for comparison.
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Figure 5.19: Reconstructions using model-based motion correction. Left: the reconstructions of

experimental setup 3, that used 2D stationary, translational motion with constant motion model

parameters. Right: the reconstructions of experimental setup 5, that also used 2D stationary,

translational motion, but in this setup the value of the model parameter Ay changed half-way

through the acquisition.

(a) No correction (b) Gating (c) Registration (d) MBC

Figure 5.20: Experimental setup 6 (rotational motion) was reconstructed without motion cor-

rection and using three different motion correction techniques for comparison.
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5.2.3 Model parameters optimization

Figure 5.21 shows the optimization of the model parameters as a function of iteration for all

experiments. Just as for the simulations, not the model parameters themselves are shown on the

vertical axis, but the total motion amplitude rt =
√
x2t + y2t of the first respiratory cycle that

is implied by these parameter values through Equation 3.1. The dashed black lines indicate the

correct motion amplitude of the phantom. For experimental setups 2-5 that used translational

motion (Figures 5.21a-5.21d) the correct motion amplitude was 10 mm. For experimental setup

6 that used rotational motion (Figure 5.21e), the correct motion amplitude was not indicated

as the translational amplitude was different for both of the spheres. This is due to the fact that

both spheres were located at a different distance from the center of the turntable.

Figures 5.21a-5.21c show the results of experimental setups 2-4. In these experiments we

expected that the total motion amplitude would be recovered. The results show that in the

first model parameters optimization (during iteration 4) the total motion amplitude is already

recovered to within the size of a voxel (2x2x2 mm3). For consecutive iterations the estimate of

the model parameters converges towards the correct motion amplitude. This is not in agreement

with the MBC reconstructions, as these showed more residual motion in the MBC reconstruc-

tions of experimental setup 4 (Figure 5.16d) than in the MBC reconstructions of experimental

setups 2 and 3 (Figures 5.14d and 5.15d respectively). Figures 5.21a and 5.21c show the pres-

ence of discontinuous jumps in the optimization of the model parameters at iterations 5 and 9

respectively. These jumps are significantly larger than the size of a voxel.

Figures 5.21d and 5.21e show the results of experimental setups 5 and 6. In these experi-

ments we did not expect that the total motion amplitude would be recovered. In experimental

setup 5 the model coefficients were not constant throughout the acquisition. As the optimiza-

tion of the motion model parameters assumes that the parameters are constant, it would thus

not be possible to find the perfect model parameters and the corresponding correct total am-

plitude. Figure 5.21d shows that the optimization of the model parameters for this experiment

is alsmost constant for consecutive iterations, just as for experimental setups 2-4. The values

of the total motion amplitude are slightly smaller than for experimental setups 2 and 3, which

is in agreement with the MBC reconstructions that showed more residual motion for experi-

mental setup 5 (Figure 5.18d) than for experimental setups 2 and 3 (Figures 5.14d and 5.15d

respectively). Moreover, in the first model parameters optimization (during iteration 4) the

total motion amplitude is already recovered to within one voxel size.

Figure 5.21e shows the recovered total motion amplitude for experimental setup 6 that used

rotational motion. The results show the recovered total motion amplitude was approximately

constant for consecutive iteration. The results also show that only a very small amount of

motion of was recovered. This is in agreement with the MBC reconstruction of this experiment

that showed a lot of residual motion.
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(a) Experimental setup 2 (1D stationary, transla-

tional motion)

(b) Experimental setup 3 (2D stationary, transla-

tional motion)

(c) Experimental setup 4 (2D non-stationary,

translational motion)

(d) Experimental setup 5 (2D stationary, transla-

tional motion with changing coefficients)

(e) Experimental setup 6 (rotational motion)

Figure 5.21: The recovered motion amplitude as a function of iteration of the MBC reconstruc-

tions of all experiments.

Figure 5.22 shows the time-resolved model error for all five experimental setups. The model

errors were normalized between 0 and 1. All model errors lie between 0.9 and 1. The model
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errors of experimental setups 2,5 and 6, indicated in Figures 5.22a, 5.22d and 5.22e respectively,

are constant over time and are all of comparable size. The model errors of experimental setups

3 and 4, indicated in Figures 5.22b and 5.22c respectively, are not constant over time. For

experimental setup 4 the model error seems to reach values above 1, which was not supposed

to be possible.
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(a) Experimental setup 2 (1D stationary, transla-

tional motion)

(b) Experimental setup 3 (2D stationary, transla-

tional motion)

(c) Experimental setup 4 (2D non-stationary,

translational motion)

(d) Experimental setup 5 (2D translational motion

with changing coefficients)

(e) Experimental setup 6 (rotational motion)

Figure 5.22: The time-resolved errors of the model-based corrected reconstructions for all exper-

imental setups.
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5.2.4 Quantitative analyses

Figure 5.23 shows the volumes of the large and small sphere for all experimental setups and all

reconstructions. The black lines indicate the reference value for the volume that was obtained

by measuring the sphere both without water and filled with water. The results show that

in the reconstructions without motion correction, the lesion volume is overestimated for all

experimental setups, except for the volume of the small lesion in experimental setup 3 (Figure

5.23b) and the volume of the large lesion in experimental setup 4 (Figure 5.23c). Experimental

setup 3 used 2D stationary, translational motion, and experimental setup 4 used 2D non-

stationary, translational motion. Overestimation of the lesion volume is in agreement with the

residual motion that was seen in the reconstructions in Figures 5.14-5.20.

The results for all experimental setups show an overestimation of the volume of the large

sphere for all reconstructions, except for the reconstruction without motion correction of exper-

imental setup 4 (Figure 5.23c).

For most setups the volumes of the reconstructions that were corrected with gating, regis-

tration of gated images and MBC are of similar size. This is not the case for the volume of the

small lesion in the reconstructions of experimental setup 5 (Figure 5.23d), where the volume of

the reconstruction that was corrected using registration of gated images is much smaller than

the other volumes, but closer to the reference value. Experimental setup 5 used 2D stationary,

translational motion with changing model parameters. And it is also not the case for the vol-

umes of both the small and large lesions in the reconstructions of experimental setup 6 (Figure

5.23e), where the volume of the reconstruction that used registrations of gated images is much

larger than the reference value for the large lesion and slightly smaller than the reference value

for the small lesion. Experimental setup 6 used rotational motion.

Figure 5.24 shows the volumes of all reconstructions of experimental setups 3 and 4 in one

Figure, side-by-side, for better comparison. These experiments used both used 2D translational

motion, but for experimental setup 3 the motion was stationary whereas for setup 4 the motion

was non-stationary. The results show that for non-stationary motion, the volumes of the MBC

reconstruction and the reconstruction that was corrected using registration of gated images

are always higher than for stationary motion. The results for MBC are in agreement with

the residual motion in the reconstructions in Figure 5.17. For the gated reconstruction and the

reconstruction without motion correction, the volume of the reconstruction of the non-stationary

experiment is not always higher than the volume of the stationary experiment.

The quantitative analyses of the MBC reconstruction of experimental setup 5 (Figure 5.23d)

shows a large overestimation of the volumes of the small and large lesions. This is in agreement

with the residual motion that was visible in the MBC reconstruction in Figure 5.18d.

The quantitative analyses of the MBC reconstruction of experimental setup 6 (Figure 5.23e)

shows that both the volumes of the small and large lesion were similar to those of the recon-
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(a) Experimental setup 2

(b) Experimental setup 3

(c) Experimental setup 4

(d) Experimental setup 5

(e) Experimental setup 6

Figure 5.23: The segmented volumes of the large and small lesion for all experimental setups.
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Figure 5.24: The volumes of the large and small lesion for experimental setups 3 (red) and 4

(blue)

struction that was not motion corrected. This is in agreement with the large amount of residual

motion visible in the reconstructions in Figure 5.20d.

Figure 5.25 shows the contrast-to-noise ratios of the large and small lesion for all experimen-

tal setups and all reconstructions. Figures 5.25a and 5.25b show the results for experimental

setup 2, that used 1D stationary, translational motion, and experimental setup 3, that used

2D stationary, translational motion, respectively. For the large lesion in both experimental

setups, the MBC reconstruction had the highest CNR, followed by the reconstruction that was

corrected using registration of gated images, the gated reconstruction and the reconstruction

that was not motion corrected. For the small lesion, the same pattern applies, except that the

gated reconstruction now has a slightly lower CNR than the reconstruction that was not motion

corrected.

Figure 5.25c shows the results for experimental setup 4, that used 2D non-stationary, trans-

lational motion. The same pattern applies for the volumes of the large and small lesions as for

experimental setups 2 and 3, except that the MBC reconstruction now has a slightly smaller

CNR than the reconstruction that was corrected using registration of gated images. For a

better comparison of experiments 3 and 4, Figure 5.26 shows the CNRs of these experiments

side-by-side, with experiment 3 in red and experiment 4 in blue. The results show that for the

gated reconstruction, the reconstruction that was corrected using registration of gated images

and the MBC reconstruction the CNR is always smaller for non-stationary motion than for

stationary motion. This is in agreement with the residual motion in the MBC reconstruction

for non-stationary motion that was seen in Figure 5.17.

Figure 5.25d shows the CNRs for experimental setup 5, that used 2D stationary, translational

motion with changing model parameters. Again, for the large lesion the MBC reconstruction

has the highest CNR, followed by the reconstruction that was corrected using registration of

gated images, the gated reconstruction and the uncorrected reconstruction. For the small

lesion, the reconstruction that was reconstructed using registration of gated images has the

highest CNR, followed bij the MBC reconstruction, the uncorrected reconstruction and the
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(a) Experimental setup 2

(b) Experimental setup 3

(c) Experimental setup 4

(d) Experimental setup 5

(e) Experimental setup 6

Figure 5.25: The CNRs of the large and small lesion for all experimental setups.
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Figure 5.26: The CNRs of the large and small lesion for experimental setups 3 (red) and 4

(blue), that used stationary and non-stationary motion respectively.

gated reconstruction. Figure 5.27 compares these results of experimental setup 5 (in blue)

with the results of experimental setup 3 (in red). These two setups only differed in the fact

that setup 3 used constant motion model parameters, whereas setup 5 used changing motion

model parameters. The results show that the CNR is always smaller for the experiment with

changing parameters, for all reconstructions. This is an indication of more residual motion in

the reconstructions in the case of non-stationary experiments. This is in agreement with the

residual motion that is seen in the reconstructions in Figure 5.19.

Figure 5.27: The CNRs of the large and small lesion for experimental setups 3 (red) and 5

(blue), that used constant and changing motion model parameters respectively.

Figure 5.25e shows the CNRs for experimental setup 6, that used rotational motion. The

CNRs for the large lesion are of similar size to those of the other experimental setups, indicating

that there was not much more residual motion for the large lesion in this experiment than in

the other experiments. For the small lesion however, the CNRs of all reconstructions are clearly

lower than those of the other experiments. This indicates the presence of more residual motion

than in the other experiments for the small lesion. Especially the MBC reconstruction has a

low CNR. These results are in agreement with the small and large amounts of residual motion

that were seen for the large and small lesion, respectively, in Figure 5.20.



Chapter 6

Discussion

The aim of this study was to develop a novel motion correction method for PET acquisitions of

the liver that can deal with breathing variability and can be assessed through a quality measure.

The performance of this novel method was tested and compared with respiratory gating and

registration of gated images and the behavior of the quality measure was investigated.

The results of the simple, noise-free simulation showed that there was no visible difference

between the MBC reconstruction and the reconstruction without motion in Figure 5.1. This

means that a lot of the motion was corrected for during the reconstruction. The grid sampling

of the model error as a function of the slope Ay for each iteration in Figure 5.2 shows that the

shape of the model error is smooth and convex and has an optimum at the right parameter

value. This model error is therefore very suitable for optimization of the model parameters.

It also shows that the model error decreases for successive iterations. This is caused by the

fact that each iteration the image guess gets closer to the optimal (motion-free) image guess,

therefore decreasing the model error. Figures 5.2 and 5.3 show that for both Ax and Ay the

correct model parameters are found with great accuracy in each model iteration. This simple,

noise-free simulation thus showed that using the method we propose it is possible to optimize

a motion model in these simulations.

The reconstructions without motion correction in Figures 5.4, 5.6 and 5.14-5.16, 5.18 and

5.20 clearly show the presence of residual motion. As expected, this residual motion causes

overestimation of the tumor volume (Figure 5.11). Because the activity of the lesions was

smeared out over a larger volume, the intensity of the lesions in the reconstructions was reduced.

Therefore the mean SUV and CNRs of the lesions were also reduced (Figure 5.11). Both the

reconstructions and the quantitative analyses thus show that there is a significant amount of

residual motion present in the uncorrected reconstruction, as expected. This is harmful for

applications such as radiotherapy, where accurate delineation of the tumor volume is needed to

avoid irradiation of healthy tissue and improve tumor coverage.

The results show that in the case of stationary translational breathing (experimental setups 2
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and 3 and simulation 2), model-based motion correction (MBC) performs similarly to respiratory

gating and registration of gated images in terms of lesion volume and mean SUV, as can be

seen in Figures 5.11 and 5.23. Figures 5.11 and 5.25 show that the CNR of MBC is always

higher than or similar to those of respiratory gating and registration, indicating less smearing

of the lesion in the case of MBC. This means that for stationary motion, model-based motion

correction removes more motion from the reconstruction than gating and registration of gated

images.

This can be explained by the higher time resolution of MBC with respect to gating and

registration of gated images. In MBC, the data was binned into 0.5 seconds time frames. These

time frames were used individually, so none of them were averaged. In gating however, the

amplitude bins are quite large, causing much more than 0.5 seconds of sequential PET data to

end up in a gate. So due to the large width of the bins in gating, there will always be residual

motion in a gate, causing the CNR to be smaller than for MBC. So although the motivation

in this study to investigate the possibility to apply motion models to PET reconstructions

originated from the fact that gating is not suitable for patients with non-stationary breathing

dynamics, motion models also proved to be beneficial in the case of stationary dynamics.

The original motivation of this study, to investigate the benefit of model-based motion

correction for non-stationary breathing dynamics, was investigated in experimental setups 3

and 4, as well as in simulations 2 and 3. These experiments and simulations differ only in the

fact that they used stationary and non-stationary dynamics. Figures 5.11, 5.24 and 5.26 show

that in the non-stationary case gating, registration of gated images and model-based correction

tend to underestimate the CNR and mean SUV and overestimate tumor volume. These all

indicate the presence of more residual motion in the case of non-stationary dynamics. This is in

agreement with the results in Figure 5.17, which clearly shows that the residual motion in the

MBC reconstruction of the experiment that used non-stationary dynamics (setup 4) is increased

with respect to the MBC reconstruction of the experiment that used stationary dynamics (setup

3).

For gating and registration of gated images this was an expected result. The non-stationary

dynamics had a total amplitude range of 20 mm, whereas the stationary dynamics had a total

amplitude range of 10 mm. In both cases, the surrogate signal was binned into 5 gates based

on amplitude. In the case of non-stationary dynamics, these bins were thus twice as large

as for the stationary dynamics, causing more residual motion to be present in a single gate.

Registration only spatially aligns the individual gated reconstructions, but cannot remove the

residual motion that is still in a gated reconstruction.

For MBC however, it was hypothesized that it would perform equally well under stationary

and non-stationary breathing dynamics. It was thus not expected that there would be more

residual motion in the MBC reconstruction under non-stationary dynamics. Figure 5.21c shows
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the total recovered motion amplitude for the MBC reconstruction of the experiment using non-

stationary dynamics. The first eight iterations the recovered amplitude is within one voxel size

(2x2x2 mm3) of the correct value, and comparable to the recovered amplitude in the stationary

experiment (Figure 5.21b). At the ninth iteration however, for the non-stationary experiment

the recovered motion amplitude suddenly jumps to about half of its value. This causes the

motion correction at this iteration to not correct for all of the respiratory motion, and part

of the motion is brought back into the reconstruction. This happens one iteration before the

reconstruction is finished, and it us thus very likely that this extra motion will not have been

removed from the reconstruction in the final iteration.

The residual motion in the experiment using non-stationary breathing is thus probably

caused by this discontinuity in the optimization, rather than by the nature of the breathing

dynamics. The fact that up until the eight iteration the recovered motion amplitude of the non-

stationary experiment resembles that of the stationary experiment (Figures 5.21c and 5.21b

respectively) supports this hypothesis. A more stable optimization method is thus needed to

draw a definite conclusion on the performance of model-based motion correction in the case of

non-stationary breathing dynamics.

For the motion model it was assumed in the optimization that the model parameters were

constant throughout the acquisition. In experimental setup 5 however, this assumption was

not valid, and its effect on the image quality of the resulting reconstruction was investigated.

Figure 5.23 shows that when comparing the volumes of the model-based reconstructions of

experimental setups 3 and 5, that used constant and changing model parameters respectively,

the volumes of the lesions were increased in experimental setup 5. This indicates the presence

of residual motion. This was expected in the case of non-constant parameters. Because in the

optimization method the model parameters were assumed to be constant, the correct parameter

values could not be found. Figures 5.21b and 5.21d also show that the total motion amplitude

that was recovered was less for setup 5 than for setup 3. This result emphasizes the necessity

of a plausible model for the relation between the surrogate signal and incorrect motion. An

incorrect model will result in residual motion in the reconstruction, and reduce image quality.

The simulations in Figure 5.12 do not show this effect.

In the case of rotational motion (experimental setup 6), residual motion is clearly visible in

the reconstruction in Figure 5.20, especially for the small lesion. Less residual motion is visible

in the gated and registered reconstructions, indicating that gating and registration of gated

images clearly outperform MBC in the case of rotational motion. This was expected, as MBC

describes the motion of both lesions with the same linear motion model. Since both spheres

were at a different distance from the center of the turntable, they had the same angular motion

amplitude but not the same translational motion amplitude. Therefore it is not possible to

accurately describe the motion of both spheres by the same motion model parameters for the
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motion model that was proposed in this study. Model-based motion correction was therefore

very inefficient in the case of rotational motion. Gating and registration of gated images on

the other hand are able to correct rotational motion quite well, as the motion was periodic and

stationary. Therefore there is relatively less residual motion in the gated PET data.

The model error was hypothesized to quantify the amount of residual motion in the recon-

struction, such that it can be used to assess the goodness of fit of the motion model parameters.

Figure 5.7 shows that the chosen model error as a function of one of the model parameters is

smooth and convex and has a clear optimum, so the model error is very suitable for optimization

of the model parameters. Figures 5.10 and 5.22 however do not show a significant increase in

error if the model parameters are not constant, which was the case for experimental setup 5 and

simulation 4, even though in the MBC reconstruction of experimental setup 5 residual motion

was clearly visible in Figure 5.18. Also in the case of rotational motion (experimental setup 6),

a significant increase in model error is not shown in Figure 5.22, although significant residual

motion was visible in the reconstructions in Figure 5.20. Moreover, the absolute value of the

model error in the simulations varies around 0.4 and differs greatly from the model error of the

experiments that varies around 0.95, although the simulations and experiments used similar

phantoms and similar motion dynamics. All of this suggests that the model error is not very

sensitive to the residual motion in the reconstruction, but that its value is mainly driven by

other effects. Chapter 7 discusses some effects that might cause this behavior and how these

hypotheses might be tested.

However, all of the previous observations rely on the quality of the reconstructions and the

quantitative analyses. When comparing the reconstructions of the experiments and simulations,

those of the simulations clearly contain less noise although the sinograms of the simulations were

scaled such that they contain approximately the same number of counts as a similar sinogram

in the experiments. The difference might be that random and scatter coincidences were not

modelled in the simulations. In the case of random coincidences, the reconstructed LOR can be

placed anywhere. This will decrease contrast and thus image quality. The LORs of scattered

coincidences also decrease the image quality.

Furthermore, when comparing simulations and experiments something that stands out is

the fact that in the simulations the destructive effect of a model with non-constant parameters

is not noticeable. Most likely the model instability in the simulations was too small, as the

difference in internal motion amplitude between the first and second half of the simulation was

only 2.5 pixels. Due to all of these unintentional differences between the simulations and the

experiments, the experiments were performed in a more realistic setting than the simulations

and the results of the experiments are therefore more valuable.

Another factor that could limit the reliability of the MBC reconstruction is the optimization

method that was used. The results in Figure 5.21 show the performance of the optimization as
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a function of iteration number. At the first model iteration the model parameters are already

estimated to within one voxel size (2x2x2 mm3) of the corrected value. This indicates that it is

not necessary to re-optimize the model parameters for every iteration of the reconstruction. If

the model parameters are not optimized in an iteration, the model parameters from the previous

iteration can still be used for motion correction. It might be sufficient to optimize the model

parameters only once or twice during the reconstruction, which would drastically reduce the

computation time for MBC reconstructions.

For experimental setups 2 and 4, the value of the parameters at iteration 5 and 9, respec-

tively, deviate by a large amount with respect to the values at the other iterations. For these two

experimental setups, the variation is much larger than the size of one voxel and can therefore

not just be regarded as random variations. For setup 4 it was already hypothesized that this

discontinuity in the optimization caused more residual motion to be present in the final recon-

struction. Wrong model parameters cause a wrong amount of motion to be corrected, which

directly influences the amount of residual motion in the reconstruction. It is therefore important

that the model parameters converge towards the correct values without any discontinuities.

These discontinuities in the optimization could indicate that the optimization method is

not functioning properly. In the case of Powells method, the problem could originate from

local minima or discontinuities, although given the shape of the model error as a function of

the parameters this might not be very likely. The optimization can be checked by redoing

the reconstruction and rather than using Powell’s method for optimization, grid sampling the

parameter space and just choosing the optimum. This will reveal whether Powell’s method was

not able to find the optimum, or the optimum was not in the expected place. The problem could

also originate from the model error, which might not be chosen in the most effective way. More

research is needed to pinpoint the cause of this unexplained behavior in the model parameter

optimization.

The quantitative analyses and its reliability also demand some attention. In the analyses,

the lesion volumes were segmented using an arbitrary threshold of 40% and then compared

with the known, measured volumes of the lesions. Figure 5.23 shows that for the large lesion

the volume is always overestimated. It also shows that for experimental setup 4 the volume of

the non-corrected reconstruction is smaller than those of the other reconstructions, and even

slightly smaller than the measured reference value. This is unexpected, as motion correction

should reduce the lesion volume and the presence of motion increases tumor volume. These are

all indications that the segmentation method that was used might not be optimal. Moreover,

the segmentation method was not validated and it can thus not be guaranteed that even for a

static reconstruction this method would yield the correct volume. Therefore, it is not optimal

to compare volumes that were segmented with this method with a volume that was actually

measured. Unfortunately there was not enough time available in this study to thoroughly vali-
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date the segmentation method.

Our study had some limitations. All of the experimental results in this study were obtained

using a scan duration of 10 seconds due to the large amount of computation time needed for an

MBC reconstruction. In a clinical setting ,a scan time of 1-3 minutes per bed position is used.

Due to the longer scan time, the reconstructions in a clinical setting would contain less noise

which will mainly affect the quality of respiratory gated and registered reconstructions. The

qualities of these reconstructions would increase, therefore decreasing the difference in perfor-

mance between those methods and MBC, although MBC is still expected to perform similarly

to or better than both respiratory gating and registration of gated images in terms of lesion

volume, mean SUV and CNR.

Another limitation of this study is that no attenuation correction was included in the recon-

struction. Attenuation correction is performed by using the attenuation map that is acquired

using the CT scan. Attenuation is however spatially dependent. The center of the phantom

will therefore appear darker on the PET scans and the edges will appear brighter, as photons

coming from the center have a higher chance of being attenuated. As the positions of the dif-

ferent tissues are time-dependent in the case of motion, the attenuation correction should also

be adapted to include these dynamics.

Furthermore, the current motion model that is used in MBC was not designed for the

correction of rotational motion. The results confirm this model is not able to correct rotations.

It is therefore necessary to adjust the motion model accordingly. Likewise, the motion model

should also be adjusted to include other types of motion, such as scaling and deformations, that

are not included in the current motion model.

It was also shown that the current model error does not behave as an absolute error in

the sense that its value does not reflect the amount of residual motion that is present in the

reconstruction, limiting the use of the model error. Because the sinograms were binned in 0.5

second time frames, most of the elements in a sinogram contain 0 counts, some may contain 1 or

maybe slightly more counts. In the calculation of the model error such a sinogram is subtracted

from the forward projection of the image guess, which is often not 0 and therefore contributes

to the model error. Our hypothesis is therefore that the current model error mainly reflects

these low count statistics and only a very small part of the model error actually reflects the

amount of motion in the reconstruction. A possible solution to this problem will be discussed

in Chapter 7



Chapter 7

Outlook

For future research, the priority should be in optimizing the model error in order to obtain an

absolute quality measure. As mentioned in Chapter 6, the problem might originate from low

count statistics. In these low count regimes, noise has a large influence. A possible solution

might be to compute the absolute difference of small regions rather than single voxels in the

computation of the model error. By averaging over a small region the effect of noise will be

reduced. The model error is however computed in sinogram space. By generating a binary

mask of such a region in image space and projecting this binary mask to sinogram space it

can be determined which parts of the sinogram contribute to that specific image space region.

Further simulations and experiments should shed more light on this, perhaps by first testing the

current model error in completely noise-free simulations to see if the model error then behaves

as expected and noise is indeed the problem.

In order to test such a new error measure an experiment will have to be performed including

a quantitative analyses. This experiment could also be used to re-assess the performance of

model-based correction under non-stationary breathing dynamics, by using a more suitable

optimization method and a more reliable quantitative analyses. The quantitative analyses can

be improved upon by first of all adding the data of a static scan as a reference. Variations

between different experiments can be reduced by taking an absolute value for thresholding of

the tumor volume rather than determining a different threshold for each experiment.

Both in the model optimization and in the motion correction, attention should be paid to

the boundaries of the field of view, as activity is moving out there at one end and volume of

which no information is acquired is moving in at the other. This affects the computation of

the model error and should therefore be corrected for. A possibility is to disregard the part

of the sinogram of which no information is available in the computation of the model error.

These voxels should then also be disregarded in the calculation of the model error. In other

words, in Equation 4.5 the indices i and j should only run over the voxels on which information

is available. In this study, the problem was avoided by constraining the motion such that the
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entire image remained in the field of view of the detector.

A very important aspect of realistic data is that it comprises more than just a liver, usually

(part of) a patient body. But as not all parts of the body move in the same way, the motion

model will be spatially dependent. This spatial dependence cannot be modelled with the cur-

rent motion model. Other classes of models exist that can intrinsically model such a spatial

dependence, such as models that use motion vector fields. These motion vector fiels describe for

each voxel the motion between different time frames [77]. The sinogram of each individual time

frame is however rather noisy in PET, which might make it difficult to estimate motion vector

fields. A solution to this problem might be to combine voxels into small areas that contain

more counts, rather than estimating a motion vector per voxel. This is the same solution as we

proposed in this Chapter to possibly reduce the influence of noise on the model error.

Once the method contains an absolute quality measure, the boundaries of the field of view

are taken into account and different parts of the patient body can be modeled independently, the

method will be suitable to apply on patients that are treated with radioembolization. Patient

studies can then be performed and using the absolute quality measure different motion models

can be compared for different patients and different (stadia of) pathologies. This will give a

sense of the robustness of the proposed method. For instance, if a patient has had a liver

ablation treatment and consequently misses part of the liver, the motion of the liver will be

different. It is still an open question whether this will influence the correctness of the motion

model and whether the motion model can be applied to all patients.

The next step could be to extend the method to other organs that undergo more complex

motion, such as the lungs. For the lungs specifically this would enable better quantification

of the lung shunt fraction in radioembolization. In general, extending the model to different

organs will open up the possibility to apply MBC to PET imaging of any organ for which a

surrogate signal can be acquired. For these purposes, the motion model should be extended

such that it contains rotations and deformations.

This study focused on respiratory motion compensation in PET. The method could however

also be used for respiratory motion compensation in SPECT imaging, as the two modalities are

very similar. In SPECT imaging, the acquisition of the different projection angles is performed

sequentially rather than simultaneously. This poses problems for respiratory gating. If a gating

window contains more counts from certain projection angles, the reconstruction will contain

artifacts [78].

In SPECT, gating is also applied to cardiac motion, using an electrocardiogram as a surro-

gate signal. In dual gated SPECT, the data is both cardiac gated and respiratory gated, such

that even more data has to be ignored in order to correct for the different number of counts

measured under each projection angle. MBC could be applied to cardiac motion once rotations

are included in the motion model. Both problems could then be solved at once by optimizing
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separate motion model parameters for cardiac and respiratory motion, and all available data

could be used for the reconstruction.



Chapter 8

Conclusions

In conclusion, simulations and experiments have shown that it is feasible to optimize a motion

model using PET data. Although the current model error is shown to be suitable for opti-

mization, it does not serve as an absolute quality measure to compare the residual motion in

different PET acquisitions. More research is needed to redesign the model error such that it can

be used as an absolute quality measure. Simulations and experiments suggest that model-based

motion correction performs similarly to respiratory gating and registration of gated images for

stationary as well as non-stationary breathing dynamics. The latter was not expected, and

might be attributed to unexpected behavior in the model parameter optimization. The pa-

rameter optimization should be better understood in order to draw a definite conclusion about

the performance of model-based motion correction and its benefit for non-stationary breathing

dynamics. The current motion model is not able to correct for rotational motion and should be

adjusted accordingly for rotational motion.
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Appendix A

Unsuccessful techniques

As a documentation for future research, this section will list some of the techniques that were

not (yet) successful or for some other reason were not included in the proposed method.

Reconstructions

Before using the Radon and inverse Radon transform as projector and backprojector in the

simulations, we also tried to program a simple, one-ring PET detector. This was however

rather complicated and takes a lot of time. Given the limited amount of time available for this

project, it was considered not worth the time.

The second attempt for the simulations was to use STIR reconstruction software [74]. This

however gave a lot of practical problems and unphysical values in the reconstruction. The prob-

lems seemed to arise from the motion model and transforming the image in the reconstruction.

Although these problems could be worked around, it was not very convenient to have to deal

with this while learning to do reconstructions in general. Therefore, the choice was made to

continue the simulations in Python using the Radon transforms, to be sure that errors did not

arise from software issues. STIR was however used for the reconstructions of the experiments,

but only the projector and backprojector were used, as these were specific for the Siemens mCT

PET/CT and did not cause the aforementioned problems.

GATE simulations

At the time when we still tried to use the STIR reconstruction software for the simulations, it was

also tried to use GATE simulations. These output ROOT files and we attempted to reconstruct

the ROOT data in STIR. However, STIR cannot handle ROOT files so these had to be converted

to Interfile format. Despite two different attempts, we did not succeed in this necessary step.

The GATE PET 2 STIR platform only produced empty Interfiles, both on Linux and Windows.

The conv GATE row ECAT projdata to interfile function of STIR was not used successfully
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either, due to unclear documentation and confusion about the input parameters. By choosing

to use the mathematical Radon transform rather than STIR reconstruction software for the

reconstructions, the physical GATE simulations were no longer necessary and simulations could

be performed in Python.

Post-radioembolization PET experiment

At the start of the project, an experiment was performed to characterize the image quality of

a static post-radioembolization Y-90 PET scan. The image quality of a normal reconstruction

and a gated reconstruction were compared. However, in practice there was no time left during

this project to test the method under circumstances that are realistic for radioembolization,

such as a very low count rate. This experiment was thus no longer of use for this project.

Optimization algorithms

Different optimization algorithms for motion compensation were used during this project. The

first was brute force optimization by grid sampling the complete parameter space, which works

but is rather slow. This was replaced by the Broyden-Fletcher-Goldfarb-Shanno algorithm, a

type of quasi-Newtonian algorithm that estimates the Hessian [79]. This algorithm needs to be

passed the Jacobian. However, if the Jacobian is not analytically available, the Jacobian will

be calculated numerically.

For our model error it turned out that the Jacobian wasn’t estimated correctly, which

resulted in suboptimal performance of the algorithm. To circumvent this problem, the algorithm

was replaced by Powell’s method, which is slightly slower, but does not make use of derivative

information and therefore performs better for the optimization of the model error.

Phantoms

Different simulation phantoms were tried throughout the project. We started with a block

phantom, but this turned out to be inconvenient. The symmetry and small amount of detail of

a block complicated noticing errors in the reconstruction.

Therefore, the block phantom was replaced by a Shepp-Logan phantom (see Section 2.3.2),

since this phantom is not spherically symmetric and contains more detail. A drawback of the

Shepp-Logan phantom is however that it doesn’t resemble a liver. It is the exact opposite: it

is a head phantom for CT, so most of the “activity” is located at the border of the phantom,

rather than concentrated in a sphere somewhere in the middle.

When we discovered that the model error wasn’t as sensitive as expected, we hypothesized

that this was due to the fact that motion of 10-20 pixels (which was used at the time) is relatively
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small compared to the size of the phantom. Due to the normalization, the model error wouldn’t

be influenced enough by such a small relative error. Therefore, it was decided to switch to a

more realistic liver phantom.

More realistic (moving) phantoms of the human torso, such as the XCAT phantom, exist.

This phantom is however only available in 3D and our simulations were in 2D. A new phantom

was therefore created in such a way that it resembles a liver.

Hysteresis

Hysteresis is an effect that we looked into when we were looking for a new research topic. In

the case of an hysteresis, the breathing motion does not follow the same path during inhale and

exhale. We did a literature study on this effect and how it could be incorporated in a motion

model.

Before fully implementing the method that we proposed to solve “the problem of hysteresis”,

we found some of the few papers that describe the size of this effect in the liver. Hysteresis is

on average 1 mm in the liver and is therefore not relevant for PET scanners that have a spatial

resolution of a few mm. Instead, we decided to take the model error as a new research topic

and investigate its behavior and use the model error to investigate the limitations of our current

method.

Contrast-to-Noise Ratio (CNR)

In the case of the CNR, various choices were presented in choosing the background. This choice

was complicated by the fact that the background is not homogeneous, due to attenuation and

motion. It was tried to chose a fixed volume, at a fixed, homogeneous (for as far as possible)

location and use this volume as the background for both spheres in the calculation of the CNR.

However, due to the inhomogeneity of the background the CNR strongly varies when a different

location for the background volume is chosen. It is thus not clear what volume should be chosen

and how the value of the CNR should then be interpreted.

To overcome this problem, the entire liver could be segmented and then all of the liver

volume excluding the two segmented tumors could be used as background. The CNR would

then primarily indicate whether or not the two tumors can be distinguished from this large

background. This is however not yet refined enough for our purpose. We do not just want

the tumors to be visible, we also require their volumes to be motion corrected. If part of the

smeared tumor would not be in the segmented tumor, it will end up in the background instead.

This effect is called spill-out. But if the background is very large, this effect will be small and

it will barely be noticeable that there was spill-out.
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Therefore, in this case the background was chosen to be a ten-voxel band around the lesion.

This way the CNR was calculated locally and local spill-out would be reflected in the CNR.
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