
UTRECHT UNIVERSITY

BACHELOR THESIS

Bottom-up parsing for the extended
typelogical grammars

Author:
Jaap JUMELET
4129962

Supervisor:
Prof. dr. Michael MOORTGAT

A 15 ECTS thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

School of Philosophy and Artificial Intelligence
Faculty of Humanities

July 11, 2017

http://www.uu.nl
https://www.linkedin.com/in/jaap-jumelet-7b62a1108/
https://www.linkedin.com/in/jaap-jumelet-7b62a1108/
https://www.uu.nl/staff/MJMoortgat/0
https://www.uu.nl/bachelors/kunstmatige-intelligentie
https://www.uu.nl/organisatie/faculteit-geesteswetenschappen

i

Contents

Introduction 1

1 From rules to types 2
1.1 Rewriting grammars . 2

1.1.1 Type-3: Regular Languages . 2
1.1.2 Type-2: Context-free languages 3
1.1.3 Type-1: Context-sensitive languages 3
1.1.4 Mildly context-sensitive languages 4

1.2 Extended Typelogical Grammars . 5
1.2.1 The Lambek calculus . 5
1.2.2 Categorial Combinatory Grammars 6
1.2.3 Extending the Lambek calculus 6
1.2.4 The Lambek-Grishin calculus . 7
1.2.5 Expressivity and complexity of typelogical grammars 7
1.2.6 The semantics of typelogical grammars 8

1.3 Axiomatizing the Lambek-Grishin calculus 9
1.3.1 sLG . 10
1.3.2 fLG . 11

2 Parsing as deduction for rewriting grammars 13
2.1 Parsing schemata . 13

2.1.1 Pure top-down parsing . 14
2.1.2 Pure bottom-up parsing . 14
2.1.3 Earley parsing . 14
2.1.4 CYK parsing . 15

2.2 Properties of parsing systems . 16

3 Bottom-up parsing fLG 18
3.1 Unfolding . 19

3.1.1 Unfolding L . 19
3.1.2 Unfolding fLG . 20

3.2 Parsing unfolded formulas . 25
3.3 Indexed fLG . 28

3.3.1 Parsing indexed fLG . 32
3.4 Partial Proof Trees . 33

4 A logic programming implementation 37
4.1 Overview of the parser . 37
4.2 Unfolding . 37
4.3 Unification of unfolded formulas . 39
4.4 Parsing . 39
4.5 Parsing efficiency . 42

4.5.1 Loop detection . 42

ii

4.5.2 Unification constraints . 43
4.5.3 Indexed fLG . 44

5 Conclusion 46

Bibliography 47

A Prolog parser 50

1

Introduction

Discovering the universal and underlying structures of natural languages has con-
cerned linguists for ages. The earliest written record of these endeavours dates back
as far as the 4th century BCE, when the linguist Pān. ini formulated a formal descrip-
tion of the Sanskrit language. Since then, the field of linguistics has developed into
a broad scientific field. This thesis will focus mainly on the field of formal language
theory, that studies the syntactic aspects of language (the form) and the relation of
syntax to the semantics of language (the meaning).

Computational linguistics studies language from a computational perspective, and
is an important sub-field of artificial intelligence. Processing language can be done
from a statistical or rule-based point of view, or a combination of these two approaches.
Formal language theory is mostly rule-based. The mathematician Richard Montague
formulated the connection between natural languages and formal, mathematically
defined languages as follows:

"There is in my opinion no important theoretical difference between natural lan-
guages and the artificial languages of logicians; indeed I consider it possible to
comprehend the syntax and semantics of both kinds of languages with a single
natural and mathematically precise theory."

In order to interpret a language it must be parsed. Parsing is the process of analysing
a string, given a formal set of rules (the grammar). By parsing a sentence, a parse tree
is obtained that provides a hierarchical structure of that sentence. It is desirable that
this process does not take too long, relative to the size of the input string. A feasible
parsing method for a natural language must therefore be able to parse its input in
polynomial time (as opposed to exponential time).

This thesis focuses on the typelogical grammars, that provide a logical approach to
the composition of natural language. The typelogical framework defines a grammar
as a logical system. Words are now assigned a formula, and inferences are made on
the basis of these formulas. Parsing a sentence then becomes analogous to a logical
deduction in our system. A semantic interpretation is derived following the same
inference steps that are made on a syntactic level, which allows us to interpret a
sentence in a compositional manner.

The structure of this thesis is as follows. In the first chapter a theoretical background
is presented, that places the typelogical grammars and its extensions in the context of
formal language theory. An overview of different parsing techniques is provided, as
well as a notion of a formal definition of a parsing procedure. Based on the concepts
introduced in the first two chapters, we establish a parsing method for a typelogical
formalism called the Lambek-Grishin calculus. It is yet unknown whether this sys-
tem can be parsed in polynomial time. The procedure that is presented here might
give more insight into the time complexity of the calculus. In the final chapter a logic
programming implementation of the parsing system is presented. The code for this
implementation can be found in the appendix.

2

Chapter 1

From rules to types

According to Chomsky (1957), a grammar for a language L is a formal device that
generates all of the grammatical sentences of L and none of the ungrammatical ones.
A language itself is then defined as the (finite or infinite) set of sentences that can be
derived by a set of production rules (the grammar), given a finite set of words or
symbols (an alphabet). Chomsky (1956) states that one of the linguist’s primary con-
cerns is to derive a properly formulated grammar describing the set of grammatical
sentences for a particular language, given a finite number of observed sentences.

1.1 Rewriting grammars

In (Chomsky, 1959) the Chomsky hierarchy is described, a system that classifies for-
mal languages based on their expressivity and complexity. This section will give
an overview of several classes of the Chomsky hierarchy. Most importantly, it will
show the strengths and weaknesses of each class in relation to natural languages.
The grammars that are addressed in this section are all rewriting systems: a pro-
duction rule of the form α → β defines how a string of one or more terminal and
non-terminal symbols (α) can be rewritten into a different string of terminal and
non-terminal symbols (β). A grammar formalism imposes certain restrictions on the
form of such a production rule. A terminal symbol is an elementary symbol of a
language, whereas a non-terminal can be rewritten according to a production rule.
A more in-depth overview can be found in (Kallmeyer, 2010) and (Hopcroft and
Ullman, 1979).

Type-3

Type-2

Type-1

Type-0

FIGURE 1.1: The Chomsky hierarchy. The dashed ellipse denotes
the set of mildly context-sensitive languages.

1.1.1 Type-3: Regular Languages

The set of regular languages is the set of languages that are accepted by a Finite State
Automaton (FSA). Informally, an FSA can be described as a finite set of states that
are connected by a transition function. The transition from one state to another (or

Chapter 1. From rules to types 3

to itself) is then determined by a given input string. If a final state is reached after
reading all the input symbols and starting at a start state, the input string is accepted.

Chomsky (1956) shows that regular languages lack the expressivity to handle cer-
tain syntactic patterns that are found in natural languages. For example, let S1 and
S2 be declarative sentences. Then the following pattern is a grammatical English
sentence: If S1, then S2. Because the sentences S1 and S2 can be of the form of this
if-else pattern too, an FSA would be unable to account for the dependency between
If S1 and then S2. Bounding the depth of such a recursive pattern would avoid this
shortcoming, but this would not offer a complete solution. We are, after all, trying
to establish a formal method that is able to express more complex patterns that are
found in natural languages. This does not imply that regular languages have no use
in natural language processing: morphology, for example, is a field of linguistics in
which regular languages play an important role.

1.1.2 Type-2: Context-free languages

As regular languages are unable to express certain phenomena that are found in
natural languages, we move on to a larger class of languages called the context-
free languages. This is the set of languages that can be described by a Context-Free
Grammar (CFG). A CFG consists of a finite set of productions (or rewriting rules)
of the form A → α, where A is a non-terminal symbol and α a (possibly empty)
sequence of terminal and non-terminal symbols. A lot of patterns that are found in
natural languages can be described by CFGs, due to the fact that the production rules
permit center embedded recursion. Center embedding occurs when a production
rule is of the form A → αAβ, where α and β are non-empty strings of terminal
and non-terminal symbols. The non-terminal A is thus embedded into the middle of
its own production rule. For example, the if S1 then S2 pattern that we saw before
could be described as the following CFG production rule: S → if S then S, where S
denotes a production rule for a declarative sentence.

1.1.3 Type-1: Context-sensitive languages

Since the 1980s it has been known that CFGs are not powerful enough to describe
all phenomena that are found in natural languages (Kallmeyer, 2010). Take, for in-
stance, the following Swiss German example, containing a cross-serial dependency
(the colours mark the dependencies between the verbs and the noun phrases):

. . . das mer d’chind em Hans es huus lönd hälfe aastriiche

. . . that we the childrenACC HansDAT houseACC let help paint

‘. . . that we let the children help Hans paint the house’

This cross-serial dependency can be described as the pattern abcabc. Iterating this
pattern amounts to the copy language {ww | w ∈ {a, b, c}+}, a language that is
not context-free. This shows that the Swiss German language is not context-free, as
proved by Shieber (1985). This was the first actual proof of the non-context-freeness
of a natural language1. An explanation of this proof can be found in section 2.1.1 of
(Kallmeyer, 2010).

1Although (Huybregts, 1984) showed that Dutch verb clusters contain cross-serial dependencies on
the semantic level.

Chapter 1. From rules to types 4

Context-sensitive languages are the next class in the Chomsky hierarchy: the set of
languages that can be described by a Context-Sensitive Grammar (CSG). In a CSG
production rules have the form αAβ → αγβ, where A is a non-terminal symbol, α
and β are (possibly empty) sequences of terminal and non-terminal symbols, and
γ is a non-empty sequence of terminal and non-terminal symbols. In other words,
a production rule for a non-terminal A now takes its context into account, unlike a
context-free production rule. CSGs are able to express patterns such as the cross-
serial dependencies in Swiss German, but the expressive power of CSGs is shown to
be larger than needed for natural languages. For instance, in (Hopcroft and Ullman,
1979) the language {a2i | i ≥ 1} is shown to be context-sensitive, but exponentially
growing structures will not be found in any natural language.

1.1.4 Mildly context-sensitive languages

In 1985, Aravind Joshi introduced the notion of mild context-sensitivity, a property
of a class of languages that is defined as follows in (Kallmeyer, 2010):

Definition 1.1.1 (Mildly context-sensitive).

1. A set L of languages is mildly-context sensitive iff

a) L contains all context-free languages.
b) L can describe cross-serial dependencies: There is an n ≥ 2 such that {wk | w ∈
T ∗} ∈ L for all k ≤ n.

c) The languages in L are polynomially parsable, i.e., L ⊂ PTIME.
d) The languages in L have the constant growth property.

2. A formalism F is mildly context-sensitive iff the set {L|L = L(G) for some G ∈ F}
is mildly context-sensitive.

In other words, a mildly context-sensitive language L has to be an extension of all
context-free languages. It must be able to describe patterns such as the Swiss Ger-
man example. Parsing the language must take no longer than O(nk), where n is the
input size and k some constant. And finally, if we would order the words of L ac-
cording to their length, the length would grow in a linear way (the constant growth
property).

Once Joshi formulated this notion of mild context-sensitivity, a wide range of gram-
mar formalisms extending CFGs has been established. A clear overview can be
found in (Kallmeyer, 2010). Among those formalisms are:

• Linear Indexed Grammars (LIGs): LIGs are a subset of the Indexed Grammars
(IGs). An IG looks like a CFG, but a stack of index symbols is attached to each
non-terminal symbol. Productions have the form A→ α, A→ Bf or Af → α,
where f is a string of index symbols. A production of A → α copies the stack
of A to each non-terminal in α. LIGs require a maximum of one non-terminal
in α to receive the stack of A. This restriction makes LIGs belong to the mildly
context-sensitive classes.

• Multiple Context-Free Grammars (MCFGs): in MCFGs a non-terminal can
yield multiple sequences of terminals that do not have to be concatenated ad-
jacently to each other. This means that their span can be discontinuous in the
input. A non-terminal of dimension k then derives k-tuples of terminal string
by a yield function f . The class of MCFGs is a superset of the class of LIGs, but
it still is a mildly context-sensitive formalism.

Chapter 1. From rules to types 5

• Range Concatenation Grammars (RCGs): RCGs are based on the yield func-
tions of MCFGs, but these functions are added to the production rules them-
selves. RCGs are not mildly context-sensitive, but by imposing certain restric-
tions on the production rules the class of the simple RCGs is established. Simple
RCGs are weakly equivalent to MCFGs.

• The typelogical and Combinatory Categorial Grammars that are addressed
in the next section, and Tree Adjoining Grammars that are compared to our
own system in section 3.4.

1.2 Extended Typelogical Grammars

We will now shift our focus to the Typelogical Grammars: substructural logics that
are well-suited for a compositional approach of natural language processing. Syn-
tactic constituents are now combined as functions and will be assigned a certain
linguistic category. Contrary to the deductive system for CFGs, inferences are now
made on the basis of the lexical items themselves. The formalisms that have been
covered so far were all rewriting grammars: a production rule (A→ α) defines how
a non-terminal A can be rewritten to the string α. The inferences of such a produc-
tion rule are independent of the non-terminal that is rewritten, i.e. the inference is
solely made on the basis of the rule itself. CFGs, for example, can be defined as a
deductive system, in which inferences are made by the Cut rule (Capelletti, 2007):

∆→ B Γ[B]→ C

Γ[∆]→ C (1.1)

Axioms have the form Γ → A, if Γ → A is a production rule in the grammar. Note
that Capelletti reverses the order of the production rules: A→ α becomes α→ A.

1.2.1 The Lambek calculus

The typelogical grammars (TLGs) that this thesis focuses on are one of the two main
varieties of the categorial grammars (Whitman, 2004), the other variety being the
Combinatory Categorial Grammars that are addressed briefly in the following sub-
section. These typelogical grammars are based on (Lambek, 1958) and (Lambek,
1961), in which Lambek introduced the method of parsing as deduction in linguis-
tics. Initially, there was not much interest for Lambek’s systems: it took until the
1980’s for the scientific community to develop them into a broader linguistic the-
ory. This can be attributed to two factors (Moortgat, 2014). Firstly, van Benthem
(1983) provided a clear homomorphic translation between typelogical derivations
and computational semantics, based on the Curry-Howard correspondence. And
secondly, the introduction of linear logic by Girard (1987) created a renewed interest
in substructural logics.

In the Syntactic Calculus, or more simply the Lambek Calculus L, lexical items are
assigned a logical formula (or type), instead of a traditional part of speech such as
noun, adverb or determiner. In the Lambek systems, a type is specified by (1.2) in
BNF, where p is an atomic type such as np or s. A\B is pronounced ’A under B’ and
B/A is pronounced ’B over A’. These types can best be understood as a type that
expects an argument of type A to its left (A\B) or to its right (B/A), to ’produce’ a
type B.

Types : A,B ::= p | A ⊗ B | A\B | A/B (1.2)

Chapter 1. From rules to types 6

The basic system NL is formed by two preorder laws (1.3: identity and transitivity)
and four residuation principles (1.4). The transitivity rule is also called the cut rule.
L is an extension of NL, by adding (global) associative properties to the ⊗ opera-
tor (1.5). Adding global commutativity (1.6) yields the calculus NLP, adding both
commutativity and associativity yields LP.

A→ A
id

;
A→ B B → C

A→ C
trans (1.3)

B → A \ C
A ⊗ B → C

A → C / B (1.4)

(A ⊗ B) ⊗ C ↔ A ⊗ (B ⊗ C) (1.5)

A ⊗ B ↔ B ⊗ A (1.6)

1.2.2 Categorial Combinatory Grammars

As stated earlier, the Combinatory Categorial Grammars (CCGs) (Steedman, 2000)
are the other main variety in the categorial framework. Similar to TLGs, inferences in
CCGs are made on the basis of the lexical items themselves. CCGs are a rule-based
approach, whereas TLGs are referred to as a deductive approach (Whitman, 2004).
The inference rules in TLGs are defined as a logical system, with a focus on logical
properties such as soundness and completeness. Inferences in CCGs are based on a
finite set of rules, based on the concepts of combinatory logic. Among those rules are
function application, type raising (or lifting), and function composition. It is possible
to lie a restriction on a rule in a CCG to apply only to certain categories, a useful
property of the system. This is not be possible in the classical typelogical systems.
In the next section, it is shown that extending our system with the technique of
multimodal control makes it possible to add structural control to our system that
only applies to certain categories. CCGs are mildly context-sensitive, and can be
parsed in polynomial time.

1.2.3 Extending the Lambek calculus

The systems L and NL recognize only the context-free languages, as was proved
by Pentus (1997) and (Kandulski, 1988), respectively. We therefore need to extend
these systems to provide a model with greater expressibility. Several extensions of
the Lambek calculus have been proposed. An overview of these extensions can be
found in (Moot, 2015). This thesis focuses on two different extensions:

1. The structural control modalities ♦ and �, that allow us to define specific pos-
tulates that only act on structures that consist of certain ♦ and � configurations.

2. The Lambek-Grishin calculus in which the Lambek systems are extended sym-
metrically by an extra set of operators. The succedent side of the sequent can
now consist of multiple conclusions. This allows for a concise integration of
continuation semantics to the typelogical system.

The structural control modalities are part of the multimodal Lambek calculus, that
allows us to define different structural rules for different modes by adding indices
to each connective. This makes it possible to add mixed associativity and mixed com-
mutativity to the calculus, thus restricting the occurrence of global associativity and
commutativity.

Chapter 1. From rules to types 7

Kurtonina and Moortgat (1997) propose the addition of a pair of unary connectives
♦ and � with their own corresponding structural rules. Associativity and commu-
tativity postulates can now be defined solely on structures that contain ♦ nodes. For
example, one might add the following postulates to the calculus (which will be re-
ferred to as P1 and P2 later on in chapters 3 and 4). These postulates allow us to
express phrases such as "student that Alice likes", in which the object student is dis-
connected from the object position of likes. This is a form of extraction. A derivation
for a phrase that contains such an extraction is shown in figure 1.4 at the end of this
chapter.

(A ⊗ B) ⊗ ♦C
P1−−→ A ⊗ (B ⊗ ♦C) (A ⊗ B) ⊗ ♦C

P2−−→ (A ⊗ ♦C) ⊗ B

The logical residuation law that allow for the interaction between the two unary
operators is defined as follows:

♦A→ B

A→ �B (1.7)

1.2.4 The Lambek-Grishin calculus

The other extension that this thesis focuses on is the Lambek-Grishin calculus (LG)
(Moortgat, 2009). The sequents of the traditional Lambek systems we have seen so
far do all have the form A1, ..., An → B, where A1, ..., An is a structure of formu-
las (a tree in the case of NL) and B is a single formula. In LG sequents are of the
form A1, ..., An → B1, ..., Bm. The motivation for this extension is that it allows us to
express evaluation contexts on the succedent side of the sequent, in the form of contin-
uations. This is achieved by enriching the product operation ⊗ and slash operations
of NL with the dual coproduct ⊕ and the residual co-implications � and ;. LG
extends the residual laws of (1.4) symmetrically, as is shown in (1.8). A � B is pro-
nounced "A minus B", B ;A "B from A". The Grishin connectives interact with the
Lambek connectives by four linear distributivity principles (1.18). The fragment of LG
without these principles is referred to as LG∅ and the fragment with them as LGIV .
LG without subscript usually refers to LGIV . Section 1.3 provides an overview of
the inference rules of LG.

C � A → B

C → B ⊕ A

B ; C → A (1.8)

1.2.5 Expressivity and complexity of typelogical grammars

As stated earlier, the systems L and NL are both context-free. Pentus (2006) shows
that the global associativity of L makes its derivability problem NP-complete, whereas
the derivability problem of NL is shown to be polynomial (e.g. in (Capelletti, 2007)).
van Benthem (1995) shows that LP recognizes all permutation closures of context-
free languages (π(CFL)). This is a class of languages that are all indexed languages
(Brough, Ciobanu, and Elder, 2014), a class that offers greater expressivity than is
needed for natural languages. LP is shown to be NP-complete (Kanovich, 1994).
Moot (2002) showed that the multimodal Lambek calculus without restrictions on
the structural rules is Turing complete, but that imposing certain restrictions let
us obtain a fragment that recognizes the context-sensitive languages and that is
PSPACE complete.

Chapter 1. From rules to types 8

The exact recognizing capacity of LG is yet unknown. LG∅ (without interaction prin-
ciples) is shown to be context-free (Bastenhof, 2010). Melissen (2009) provided a new
lower bound for LGIV , by showing that it recognizes all languages that are the inter-
section of a context-free language and the permutation closure of a context-free lan-
guage. This entails that LG recognizes languages such as the language that contains
any permutation of an equal number of a, b, and c′s, or the language an1 , ..., a

n
m ,

where ai is an alphabet symbol. Bransen (2012) proved that LGIV is NP-complete. It
is not clear yet whether LGIV falls in the class of mildly context-sensitive languages.

Formalism Generative capacity Complexity
NL CFL P
L CFL NP-complete
LP π(CFL) NP-complete
NL♦R CSL PSPACE
LG∅ CFL P
LGIV Lower bound: CFL ∩ π(CFL) NP-complete

Upper bound: unknown

FIGURE 1.2: An overview of several typelogical formalisms. The up-
per bound of LGIV is yet unknown.

1.2.6 The semantics of typelogical grammars

In the introduction of the Lambek Calculus it is stated that the computational se-
mantics can be derived by the Curry-Howard (CH) correspondence, as introduced
by van Benthem (1983). The interface between form and meaning is thereby based
on the concept of compositionality. The CH correspondence provides a clear homo-
morphic mapping h from a source language (a syntactic system, such as the Lambek-
Grishin calculus) towards a target language (the semantic interpretation of our syn-
tax). A homomorphism is a mapping that is structure-preserving.

Source Targeth

The source language can thus be interpreted in several ways, based on the homo-
morphism that is used to translate it. These interpretations can roughly be divided
into a set theoretical approach and a distributional approach.

The set theoretical approach is based on the framework that was established by Mon-
tague (1970). Relations between phrases can be expressed using the concepts of set
theory, and this approach provides a concise method to express phenomena such
as quantification and scope ambiguity. In the case of interpreting fLG, a translation
between fLG and a set theoretical interpretation might follow the scheme of figure
1.3, as described in (Moortgat and Moot, 2011).
Terms in ΛfLG are the encoding of the logical steps of a derivation, i.e. the structural
steps are ignored. The source logic is translated by the compositional interpretation
d·e, which sends the proof terms to a Natural Deduction proof in ΛMILL⊗,·⊥

. This is

Chapter 1. From rules to types 9

fLG
CH←−−→ ΛfLG

d·e−−−→ ΛMILL⊗,·⊥

(·)`−−−−→ ΛIL×,→

FIGURE 1.3: ΛfLG is a different presentation of the source logic
fLG, obtained by the Curry-Howard correspondence. ΛMILL⊗,·⊥

and
ΛIL×,→ are two target logics of fLG that are retrieved by a composi-

tional translation.

the linear lambda calculus of MILL⊗,·⊥ a fragment of the Multiplicative Intuitionis-
tic Linear Logic. The lexical items in a MILL term are still represented as a constant.
(·)` provides the final translation, by substituting the constants for a lambda term
that is defined in the lexicon.

This whole process is exemplified in (1.9), for the sentence Bob likes some teacher. The
bias of np and n is positive, and s negative. In the definition for some and likes below,
πiα denotes a projection from the tuple α to its ith element.

Bob np bob
teacher n teacher
some np/n λα0.(∃ λx2.((∧ (π1α0 x2)) (π0α0 x2)))
likes (np\s)/np λα0.(π

1π0α0 ((LIKES π1α0) π
0π0α0))

µα0.〈 some � (µ̃y0.〈 likes � ((bob \ α0) / y0) 〉 / teacher) 〉

λα0.(dsomee 〈λy0.(dlikese 〈〈dbobe, α0〉, y0〉), dteachere〉)

λα0.(∃ λy1.((∧ (TEACHER y1)) (α0 ((LIKES y1) BOB)))) (1.9)

We stated above that the source logical could also be interpreted following a dis-
tributional approach. Current research focuses on a distributional interpretation of
compositional models. Words can be described as vectors, and the compositional
nature of the categorial grammars could provide a method how these vectors are to
be combined. An introduction to these compositional distributional semantics can
be found in (Clark, 2015). A distributional interpretation for the Lambek-Grishin
calculus can be found in (Wijnholds, 2014).

1.3 Axiomatizing the Lambek-Grishin calculus

The residual laws of (1.4) and (1.8) result in the following expanding and contracting
patterns. Note the symmetries between the Grishin connectives, and the original
Lambek connectives.

A⊗ (A\B)→ B → A\(A⊗B) (B/A)⊗A→ B → (B ⊗A)/A

(B ⊕A)�A→ B → (B �A)⊕A A; (A⊕B)→ B → A⊕ (A;B) (1.10)

The expanding patterns of (1.10), in combination with the transitivity rule, will pose
difficulties if we want to define a decision procedure for an inference A → B. Lam-
bek overcame this by recasting the Syntactic Calculus into a Gentzen-style sequent

Chapter 1. From rules to types 10

calculus: causing the cut rule to become an admissible rule and the decision proce-
dure to be achieved efficiently by backward chaining. Backward chaining is a proof
search strategy that starts with a goal sequent, and tries to work back to the axiom
premises following the logical inferences of a system.

Moortgat and Oehrle (1999) propose a system that makes the cut rule (transitivity)
an admissible rule by adding the monotonicity rules of (1.11). This addition makes
the calculus more appropriate for proof search, as is shown in section 4.6 of (Moot
and Retoré, 2012).

A→ B C → D
A⊗ C → B ⊗D ;

A→ B C → D
B\C → A\B ;

A→ B C → D
C/B → D/A (1.11)

1.3.1 sLG

Moortgat and Moot (2011) introduce sLG, a presentation of LG that allows decid-
able proof search. This is done in the style of a Display Logic (Goré, 1998): for every
logical connective, there is a structural counterpart. They show that sLG is equiva-
lent to aLG (the arrow notation of LG). Sequents will be of the form I ` O, formed
by the following grammar (with F being a logical formula). Note that the ♦ and �
connectives are an extension of fLG, as described in section 1.2.3.

I ::= F | I · ⊗ · I | I · � · O | O ·; · I | 〈I〉
O ::= F | O · ⊕ · O | I · \ · O | O · / · I | [O] (1.12)

The rules of sLG can be divided into three groups:

1. The identity group: axiom and cut (1.13).

2. The structural group: the (dual) residuation rules (1.14), the postulates P1 and
P2 (1.17), and the Distributivity Postulates (1.18).

3. The logical group: rewrite rules (1.15) and monotonicity principles (1.16).

Structural variables are denoted as X,Y, ... and formula variables as A,B, ... in the
rules below. [·] and 〈·〉 denote the structural counterparts of � and ♦, respectively.
The system allows cut elimination, i.e. the cut rule is an admissible rule. The identity

group.

A ` A Ax
(
X ` A A ` Y

X ` Y Cut
)

(1.13)

The residuation rules.

Y ` X · \ · Z
X · ⊗ · Y ` Z

rp

X ` Z · / · Y
rp

Z · � · X ` Y

Z ` Y · ⊕ · X drp

Y ·; · Z ` X
drp

〈X〉 ` Y
X ` [Y]

rp
(1.14)

Rewrite rules: $ ∈ {⊗,;,�}, # ∈ {⊕, \, /}.

A · $ ·B ` Y
A $ B ` Y $L

X ` A ·# ·B
X ` A # B

#R

X ` [A]

X ` �A �R
〈A〉 ` Y
♦A ` Y ♦L (1.15)

Chapter 1. From rules to types 11

The monotonicity rules for each operator.

X ` A Y ` B
X · ⊗ · Y ` A⊗B ⊗R

A ` X B ` Y
A⊕B ` X · ⊕ · Y ⊕L

X ` A B ` Y
A\B ` X · \ · Y \L

X ` A B ` Y
X · � · Y ` A�B �R

X ` A B ` Y
B/A ` Y · / ·X /L X ` A B ` Y

Y ·; ·X ` B ;A
;R

A ` Y
�A ` [Y]

�L
X ` A
〈X〉 ` ♦A

♦R
(1.16)

The structural extensions of our system.

A · ⊗ · (B · ⊗ · ♦C) ` X
(A · ⊗ · B) · ⊗ · ♦C ` X P1

(A · ⊗ · ♦C) · ⊗ · B ` X
(A · ⊗ · B) · ⊗ · ♦C ` X P2 (1.17)

X · ⊗ · Y ` Z · ⊕ ·W
Z ·; ·X `W · / · Y G1

X · ⊗ · Y ` Z · ⊕ ·W
Y · � ·W ` X · \ · Z G3

X · ⊗ · Y ` Z · ⊕ ·W
Z ·; · Y ` X · \ ·W G2

X · ⊗ · Y ` Z · ⊕ ·W
X · � ·W ` Z · / · Y G4 (1.18)

1.3.2 fLG

Although we now have established a compact system that allows us to define a de-
cision procedure, there still is an unwanted side-effect possible. Namely spurious
ambiguity, a form of ambiguity where backward chaining proof search yields multi-
ple derivations that are considered the same proof. Moortgat and Moot (2011) show
that this can be overcome by introducing a focused version of sLG called fLG.

Focusing is a concept that has its roots in the Linear Logic, for example in (Andreoli,
1992). Sequents now have a focus: left: X ` Y , right: X ` Y or neutral: X ` Y .
The (dual) residuation rules (1.14), distributivity rules (1.18) and rewrite rules (1.15)
still operate on neutral sequents, and can be taken over from sLG. The monotonicity
and identity rules now involve focused sequents. (De)focusing a sequent is con-
strained by its polarity: the (⊗,�,;,♦) connectives are assigned a positive polarity
and the (⊕, /, \,�) connectives a negative polarity. Atomic formulas have an arbi-
trary polarity bias. However, the configuration of this bias can have major impli-
cations on the running time. Section 4.3 of (Chaudhuri, Pfenning, and Price, 2008)
shows an example of Fibonacci numbers in which a uniformly positive bias leads
to an exponential running time, while a uniformly negative bias results in a linear
running time.

Axiom, Co-axiom In the (Ax) case A has to be positive; in the (CoAx) case A must
be negative.

A ` A
Ax

A ` A
CoAx

(1.19)

Chapter 1. From rules to types 12

Focusing, Defocusing For the rules in the left column A has to be negative; for
those in the right column A must be positive.

A ` Y
A ` Y

↼
X ` A

X ` A
⇀

X ` A
X ` A

⇁ A ` Y
A ` Y

↽
(1.20)

Monotonicity rules The focus of a complex formula is shifted to its subpart(s).

X ` A Y ` B

X · ⊗ · Y ` A⊗B
⊗R

A ` X B ` Y
A⊕B ` X · ⊕ · Y

⊕L

X ` A B ` Y

A\B ` X · \ · Y
\L

X ` A B ` Y
X · � · Y ` A�B

�R

X ` A B ` Y

B/A ` Y · / ·X
/L

X ` A B ` Y
Y ·; ·X ` B ;A

;R
(1.21)

A ` Y
�A ` [Y]

�L
X ` A

〈X〉 ` ♦A
♦R

(1.22)

n2 ` n3

np0 ` np11

np0 ` np11
⇀

np0 ` np11
↽

n4 ` n1

np0/n1 ` np11 · / · n4
(/L)

np0/n1 ` np11 · / · n4
↼

n4 ` (np0/n1) · \ · np11
↽

n3\n4 ` n2 · \ · ((np0/n1) · \ · np11)
(\L)

np7 ` np8 s9 ` s5

np8\s9 ` np7 · \ · s5
(\L)

np6 ` np10

(np8\s9)/np10 ` (np7 · \ · s5) · / · np6
(/L)

(np8\s9)/np10 ` (np7 · \ · s5) · / · np6
↼

np6 ` ((np8\s9)/np10) · \ · (np7 · \ · s5)
↽

�np6 ` [(((np8\s9)/np10) · \ · (np7 · \ · s5))]
(�L)

�np6 ` [(((np8\s9)/np10) · \ · (np7 · \ · s5))]
↼

np7 · ⊗ · (((np8\s9)/np10) · ⊗ · 〈�np6〉) ` s5
rp

(np7 · ⊗ · ((np8\s9)/np10)) · ⊗ · 〈�np6〉 ` s5
P1

♦�np6 ` (np7 · ⊗ · ((np8\s9)/np10)) · \ · s5
(♦L)

np7 · ⊗ · ((np8\s9)/np10) ` s5/♦�np6
(/R)

np7 · ⊗ · ((np8\s9)/np10) ` s5/♦�np6
⇁

(n3\n4)/(s5/♦�np6) ` (n2 · \ · ((np0/n1) · \ · np11)) · / · (np7 · ⊗ · ((np8\s9)/np10))
(/L)

(n3\n4)/(s5/♦�np6) ` (n2 · \ · ((np0/n1) · \ · np11)) · / · (np7 · ⊗ · ((np8\s9)/np10))
↼

(np0/n1) · ⊗ · (n2 · ⊗ · (((n3\n4)/(s5/♦�np6)) · ⊗ · (np7 · ⊗ · ((np8\s9)/np10)))) ` np11
rp

FIGURE 1.4: The proof tree for the phrase "Some student that Alice
likes". Most of the structural residuation rules are omited, for the sake
of brevity. Note the P1 rule halfway at the right branch of the proof
tree, that inserts 〈�np6〉 next to the (np8\s9)/np10 formula. np and n

both have a positive bias, and s has a negative bias.

13

Chapter 2

Parsing as deduction for rewriting
grammars

In the following chapters we will formulate a bottom-up parsing method for fLG.
Because backward chaining expects its input to be structured, it does not actually
parse its input: it solely recognizes it. Bottom-up parsing provides a way to correctly
make a derivation for an unstructured input.

Parsing is the process of finding all parse trees that correspond to a given sentence
and grammar. A parse tree is a hierarchical and complete description of the phrase
structure of a sentence (Sikkel, 1993). Once such a parse tree is found for a sentence,
we are able to interpret it, i.e. we can assign a corresponding meaning. Ambiguity
manifests itself when multiple parse trees can be found for one sentence.

There are several approaches to parsing. For example, statistical parsing assigns
a probability to a parse tree, while dependency parsing finds a dependency structure
for a sentence (in contrary to a phrase structure). This thesis’ approach focuses on
the method of parsing as deduction: parsing algorithms are presented as deductive
systems.

2.1 Parsing schemata

Sikkel (1993) introduces the concept of parsing schemata, a formal definition of a
deductive parsing algorithm. A parsing algorithm is presented as a formally de-
fined parsing system. This thesis will follow his definition, alongside the work of
(Capelletti, 2007). Capelletti defines a parsing system as follows:

Definition 2.1.1 (Parsing system).
A parsing system D is a triple 〈I,A,R〉 where I is the set of items, A is the set of axioms of
D and R is the set of inferences whose premises and conclusions are items. The set of items
consists of a special goal item, that spans the input string with the start category.

An item is an intermediate parsing result, a concept that is central to Sikkel’s parsing
schemata. A parsing deduction succeeds if the goal item can be derived. Parsing
schemata make it easier to reason about deductive parsing systems: they offer a
high-level abstraction that enables us to separate the declarative and the procedural
properties of the system. Furthermore, this allows us to easily proof certain parsing
properties such as its correctness.

Parsing can essentially be done in two ways: top-down or bottom-up. In the next
two subsections we will provide a short overview of these methods, based on the
definitions of (Shieber, Schabes, and Pereira, 1995) and (Capelletti, 2007).

Chapter 2. Parsing as deduction for rewriting grammars 14

2.1.1 Pure top-down parsing

Top-down parsing is goal-driven: a derivation is constructed from the root symbol
(the goal) towards its leaves (the axioms). Recursive descent parsing is a pure top-
down parsing method. Given a context-free grammar and some inputwi ···wn, items
are of the form [•β, j], where j ≤ n. Such an item asserts that the substring up to
position j followed by a substring of type β forms a valid sentence in our language.
Parsing starts with an item [•S, 0] and is finished if a goal item [•, n] is deduced. The
system can be presented as a parsing system. Note that we adhere to the notion
where production rules are presented in the form of α→ A, as done by Capelletti.

I = {(•β, j) | β ∈ P∗, 0 ≤ j ≤ n}
A = {(•S, 0)}

R =



(•wj+1β, j)

(•β, j + 1) Scan

(•Bβ, j)
(•γβ, j)

γ → A ∈ P
Predict

At each step, we either expand a non-terminal by rewriting it following a production
rule in our grammar, or we read in a terminal symbol that corresponds with our in-
put string. If our grammar is highly ambiguous then this process is quite inefficient,
as many derivations are tried before the goal item is deduced.

2.1.2 Pure bottom-up parsing

Bottom-up parsing is data-driven: deductions are built up from premises (the input
data) to conclusion. A method for pure bottom-up parsing is the Shift-Reduce algo-
rithm. Items now have the form [α•, j]. This asserts that α ∗

=⇒ wi · · · wj , and can
be seen as the dual of the top-down items that were shown above. Shift-Reduce
works in an opposite fashion compared to the recursive descent algorithm: terminal
and non-terminal symbols α are contracted into one non-terminal A if there exists a
production rule α→ A. Parsing if finished if a [S•, n] is deduced.

I = {(β•, j) | β ∈ P∗, 0 ≤ j ≤ n}
A = {(•, 0)}

R =



(α•, j)
(αwj+1•, j + 1) Shift

(αγ•, j)
(αB•, j)

γ → A ∈ P
Reduce

2.1.3 Earley parsing

The Earley parser is based on a mixed parsing regime. It is based on the top-down
procedure of the recursive descent algorithm, but the Complete rule acts in a bottom-
up manner. The Earley parsing system for CFGs is defined as the following triple

Chapter 2. Parsing as deduction for rewriting grammars 15

〈I,A,R〉, given some input string w1, ..., wn:

I = {(i,Γ •∆→ C, j) | Γ∆→ C ∈ P, 0 ≤ i ≤ j ≤ n}
A = {(i− 1, wi, i) | 1 ≤ i ≤ n}

R =



(0, •Γ→ S, 0) for all Γ→ S ∈ P Init

(i,∆ • wΓ→ C, j) (j, w, j + 1)

(i,∆w • Γ→ C, j + 1) Scan

(i,∆ •AΓ→ C, j)
(j, •Λ→ A, j)

Λ→ A ∈ P Predict

(k,Λ• → A, j) (i,∆ •AΓ→ C, k)

(i,∆A • Γ→ C, j) Complete

Items can be interpreted as a triple (i,Γ •∆→ C, j) in which the index i denotes the
start position of the production rule that is currently being parsed, the • the current
position of the parsing process in the production rule Γ∆ → C (where Γ and ∆ can
be empty sequences), and j the index of the current position of the input string.
Note that I denotes the set of all possible items: not all of these items can actually be
deduced. In words the inferences of the parsing process can be described as follows.

Scan: Read in an input symbol if it corresponds with the next terminal symbol in the
current production rule.

Predict: Predict the corresponding rule of the next non-terminal symbol.

Complete: Complete the parsing of a non-terminal and move on to the next symbol.

Parsing is successful if we deduce an item (0,Γ• → S, n). The parsing process un-
folds itself as a depth-first search tree, and ambiguity emerges when multiple deriva-
tions can be found that lead to the final item. It is easy to see that this process be-
comes increasingly more complex if our grammar contains a lot of ambiguous rules.
The efficiency of Earley parsing is thus strongly dependent on the production rules
of the grammar. An advantage of the system is that it works with any CFG, i.e. the
productions don’t have be defined in some kind of normal form.

2.1.4 CYK parsing

An influential bottom-up parser is the CYK algorithm. It is not purely bottom-up:
just like the Earley parser it is based on a mixed regime of bottom-up and top-down
methods.

Chapter 2. Parsing as deduction for rewriting grammars 16

The CYK parsing system for CFGs (in Chomsky Normal Form1 without ε-productions)
is defined as the following triple 〈I,A,R〉, given some input string w1, ..., wn:

I = {(i, A, j) | A ∈ F , 0 ≤ i ≤ j ≤ n}
A = {(i− 1, A, i) | wi → A ∈ Lex}

R =

{
(i, B, k) (k,C, j)

(i, A, j)
if B C → A ∈ P Complete

F denotes the set of non-terminals, Lex denotes the lexicon of the grammar and P
denotes the set of production rules.

Compared to the Earley parser, the inference step of CYK parsing is relatively sim-
ple: at each step two non-terminals are combined if there exists a production rule of
that form in the grammar. Parsing is finished if an item (0, S, n) can be deduced, and
once again ambiguity arises if multiple derivations are found.

CYK parsing is usually combined with a form of tabulation, where intermediate re-
sults are stored in a tabel (also called a chart). This reduces a great amount of redun-
dancy, because once an item is encountered that is already stored in our chart, we
don’t need to parse this item again.

2.2 Properties of parsing systems

If we design a parser for a certain language, it is important to ensure that this parser
is able to parse all possible strings that belong to that language. This can be proved
formally. A parsing algorithm is sound if each input that is accepted by the parser
is an element of the language. It is complete if each element of the language is
accepted by the parser. Kallmeyer (2010) proved these properties for CYK as follows.
Soundness and completeness are proved by proving the following statement:

(i, A, j) iff A ∗
=⇒ wi+1 · · · wj

This can be shown by induction over the length l of the span, where l = j − i.

l = 1 This case is covered by our set A of axiom items.

l > 1 This is covered by the only inference rule in the parsing system. It can be as-
sumed that the induction claim holds, as the antecedent items have a smaller
span than the consequent item. Assume that (i, A, j) was obtained by the com-
plete rule. B C → A is then a production rule in our grammar. B ∗

=⇒ wi+1 · · ·wj

and C
∗

=⇒ wj+1 · · · wk gives us that A ∗
=⇒ wi+1 · · · wk. If A ∗

=⇒ wi+1 · · · wk,
where k > i + 1, then there must exist a production rule B C → A as above,
from which follows that (i, A, k).

If we would apply this to our goal item (0, S, |w|), we obtain soundness and com-
pleteness.

1In a CFG in CNF, all productions are of the form:

• AB → C, where A 6= S & B 6= S

• w → A, where w is a terminal symbol
• ε→ S

Chapter 2. Parsing as deduction for rewriting grammars 17

The complexity of a parsing algorithm is determined by the maximal number of dif-
ferent rule applications that are possible (Kallmeyer, 2010). Complexity is expressed
in big O notation, which describes an upper bound on the growth rate of a certain
function (or algorithm, in our case). The complexity of CYK parsing is determined
by the complete rule. In this rule there are three indices (i, j and k) that range over an
input string of length n. The maximal number of possible applications that are possi-
ble then becomes |P | ·n3, where |P | is the number of production rules. If we assume
that our grammar is fixed, then |P | can be treated as a constant and the complexity
of CYK becomes O(n3).

18

Chapter 3

Bottom-up parsing fLG

The next two chapters will focus on a procedure for bottom-up parsing fLG. They
are organized as follows: chapter 3 will provide a theoretical background and a
general overview of the parsing process. Furthermore a link between this procedure
and the Partial Proof Trees of (Joshi and Kulick, 1997) will be presented. Chapter
4 will discuss our computational implementation of this parser in Prolog, a logic
programming language.

Recall that a bottom-up parsing deduction is built up from the premises towards a
conclusion. In the case of our parser, these premises could be a list of lexical items
that are assigned a logical formula by a lexicon. By ‘combining’ these formulas using
the rules of fLG, we aim to achieve a (structured) goal sequent of the form A1 ⊗ ...⊗
An ` B1 ⊕ ...⊕Bm. The procedure that is presented here consists of two phases:

1. The unfolding phase. All input items are assigned a logical formula according
to a lexicon. These formulas are then unfolded, a form of partial deduction.
The idea of partial deduction is that the parsing phase is preceded by a compi-
lation of the lexicon (Hendriks, 1993): a partial proof tree is derived for each
item according to a set of logical rules. A partial proof tree is a proof tree that
contains holes: not every branch in the tree has to end with an axiom, but it
can end up in an unbound variable with certain unification constraints too.
These unfolded formulas will act as the items of the next phase. The unfolding
phase thus acts on the base logic of fLG: inferences are made on the basis of the
(logical) rules of fLG. This phase could be done off-line: instead of assigning
a lexical item to a logical formula, we could assign the item to an unfolded
formula that is derived beforehand by unfolding.

2. The parsing phase. The partial proof trees that were obtained by unfolding in
the previous phase are now combined by a set of residuation rules and unifi-
cation procedures in a bottom-up regime, until the goal sequent is derived and
there are no unfolded formulas left. This is a form of CYK parsing. A partial
proof tree is unified with another tree by inserting it on the position of a hole in
the other tree. The inferences of this phase are meta-logical: inferences are made
on the basis of the unfolded formulas, instead of the sequents themselves.

Because the two phases involve two different kind of logics, the whole system is said
to make use of a hybrid logic (Joshi, Kulick, and Kurtonina, 1998). This is similar to
the Partial Proof Trees that are described in section 3.4.

Chapter 3. Bottom-up parsing fLG 19

3.1 Unfolding

3.1.1 Unfolding L

The unfolding procedure presented here, is based on the concept of partial deduction
as described by (Hendriks, 1993) in section 5.1. Hendriks provides a concise formal
definition for the partial deduction of the fragment of L that consists only of the /
and \ operators. The functions that are defined by Hendriks will form the basis of
our system for fLG. Firstly, he defines a function A that returns the set of arguments
of a category, and a function AA that returns the set of arguments of the arguments
of a category.

A(at) = ∅;A(a/b) = A(b\a) = {b} ∪A(a)

AA(at) = ∅;AA(a/b) = AA(b\a) = A(B) ∪AA(a)

For a set of categories C, the set C+ is the set that contains C and all of the argu-
ments (and, recursively, all their arguments) of C. This set C+ is essential for the
unfolding process, as it defines the categories that need to be unfolded. (3.1) shows
the unfolding of (s/(n\s))\s, a case where C+ contains 2 elements.

Next, Hendriks defines a function f that ‘peels off the argument categories from the goal
category of the sequent to which it is applied’. This could be compared to the residuation
laws of (1.4). The semantic terms are omitted, as we are primarily interested in the
syntactic derivation.

f(T ` at) = T ` at
f(T ` a/b) = f(T, b ` a)

f(T ` b\a) = f(b, T ` a)

Finally, the function g actually partially deduces a category (semantic terms are ig-
nored again for the sake of clarity). In this definition, X and Y denote unstructured
sequences of formulas. These sequences are unstructured, because L allows global
associativity.

g(at) = at ` at

g(a/b) =
f(Tm ` b) σm · · · σ1

X, a/b, Tm+1,Y ` at

g(b\a) =
f(Tm ` b) σm · · · σ1

X, Tm+1, b\a,Y ` at

iff g(a) consists of the conclusion X, a,Y ` at and the premises σm, ..., σ1 (where m is
the number of arguments of a):

g(a) =
σm · · · σ1
X, a,Y ` at

Chapter 3. Bottom-up parsing fLG 20

The whole procedure is exemplified in the following unfolding of (s/(n\s))\s.

{(s/(n\s))\s}+ = {(s/(n\s))\s, n\s}

g((s/(n\s))\s) =
T1, n\s ` s

T1, (s/(n\s))\s ` s

g(n\s) =
T1 ` n

T1, n\s ` s
(3.1)

In both these cases, g(s) = s ` s, so the condition for g holds.

3.1.2 Unfolding fLG

The functions of Hendriks provide a solid basis for our unfolding procedure. In its
essence, the unfolding procedure for fLG is roughly based on the function g. The
Display Logic format, however, forces us to take on a slightly different approach.

First, I will give a formal definition of an unfolded formula. These unfolded formu-
las will behave as the items of our parser.

Definition 3.1.1 (Unfolded formula).
An unfolded formula is a tuple 〈p,H〉 where p is a partial proof tree, and H the set of holes.
An unfolded formula is closed ifH is empty, and open otherwise.

Note that ’unfolded formula’ and ’item’ are used interchangeably, but that ’partial
proof tree’ is not analogous to an unfolded formula, as it is a part of an unfolded for-
mula. A hole of an unfolded formula is a triple that contains an unbound variable
that is part of the partial proof tree p, that can be unified with other unfolded formu-
las. The other two elements of the triple define the constraints on the unification of
the unbound variable in the partial proof tree. It is defined as follows:

Definition 3.1.2 (Hole).
A hole h is a triple 〈s, v,Y〉where s is the sequent that corresponds with an unbound variable
v in the partial proof tree of an unfolded formula, and Y the set of hypothesis constraints.

If some unfolded formula u1 is unified with another unfolded formula u2 according
to some hole h1 in u1, a hypothesis constraint in h1 is a partial proof tree that must be
a sub-tree of the partial proof tree of u2. Furthermore, the sequent of h1 must match
with the sequent of u2. An example of an unfolded formula can be found in figure
3.1 (np and n both have a positive bias). A hypothesis constraint can be compared to
the vertical dots that represent a hypothesis relation in a proof tree, such as in figure
3.2.

The unfolding phase can be described formally as a collection of functions that are
formulated below. The hypotheses of a formula are unfolded too. The partial proof
tree of such a hypothesis can thus be found on two different locations: as a hypoth-
esis constraint of the original formula, and as the partial proof tree of the unfolding
of the hypothesis itself.

The first function that is defined is the function u (3.2) that returns a set of unfolded
formulas: the unfolded formula itself and all its unfolded hypotheses. This is a re-
cursive process: if a hypothesis contains hypotheses, they are unfolded too. Due to
the symmetric nature of LG, the side of the sequent we want to unfold is provided
as a parameter. This parameter is either in, for the left-hand side (lhs) of the sequent,
or out, for the right-hand side (rhs). {in, out} × F denotes the domain of u, where

Chapter 3. Bottom-up parsing fLG 21

〈
(np/n)⊗ n ` X,

x
(np/n)⊗ n ` X (⊗L), H

〉

H =
{
〈 (np/n) · ⊗ · n ` X, x,

{ y

np ` A
↽

B ` n

np/n ` A · / ·B
(/L)

np/n ` A · / ·B
↼

}
〉
}

FIGURE 3.1: The unfolding of (np/n)⊗ n, on the left-hand side of the
sequent. Note that the variable x in the partial proof tree corresponds
to the variable x that is the second element of the only hole of the

unfolded formula.

....
np ` A
np ` A

↽
B ` n

np/n ` A · / ·B
(/L)

np/n ` A · / ·B
↼

....
(np/n) · ⊗ · n ` X
(np/n)⊗ n ` X (⊗L)

FIGURE 3.2: An alternative representation of the unfolding of
(np/n) ⊗ n. Although this representation is more elegant than that
of figure 3.1, it turned out to be harder to define a unification proce-

dure in combination with the vertical dots.

F is the set of formulas in our lexicon, and the arguments of these formulas. L de-
notes our lexicon, and the function f the mapping from a word to its corresponding
formula. Note that this restricts the function to only operate on formulas that are
found in the lexicon. P(I) is the codomain of u, where I denotes the set of all the
possible unfolded formulas given our lexicon, which is the set of items of our sys-
tem. A definition for I will be provided later on. The function aa (3.3) returns all
the arguments of the arguments of a formula, similar to the function AA that was
defined by Hendriks. The items of aa and our input formula x are the formulas that
are to be unfolded.

F = { x | w ∈ L, x ∈ a(in, f(w)) ∨ x ∈ a(out, f(w)) }

u : ({in, out} × F)→ P(I)

u(io, x) = { g(io, x) } ∪ { g(io2, a) | 〈io2, a〉 ∈ aa(io, x) } (3.2)

The function aa returns, given some formula x, the set of formulas that are hy-
potheses of x, paired with the side of the sequent (in or out) on which the hy-
pothesis will be unfolded. The function a returns the input formula (and its ar-
guments) if the in or out argument of a is the logical side of the formula. The log-
ical side of a formula is the side for which its monotonicity rule is defined: the /
and \ operators, for example, have their logical side on the in position, whereas

Chapter 3. Bottom-up parsing fLG 22

the logical side of the ⊗ operator is on the out position. A formula that does not
occur on its logical side, is said to occur on its structural side. Note that at is an
atomic formula, such as s or np. For example: a(in, (n\n)/(s/♦�((np/n) ⊗ n))) =
{ 〈in, (n\n)/(s/♦�((np/n)⊗ n))〉 , 〈in, �((np/n)⊗ n)〉 , 〈in, np/n〉 }.

a : {in, out} × F → P({in, out} × F)

aa : {in, out} × F → P({in, out} × F)

a(in, at) = a(out, at) = aa(in, at) = aa(out, at) = ∅

a(in,A⊕B) = {〈in,A⊕B〉} ∪ aa(in,A) ∪ aa(in,B)

a(in,A/B) = {〈in,A/B〉} ∪ aa(in,A) ∪ aa(out,B)

a(in,B\A) = {〈in,B\A〉} ∪ aa(in,A) ∪ aa(out,B)

a(out, A⊗B) = {〈out, A⊗B〉} ∪ aa(out, A) ∪ aa(out,B)

a(out, A�B) = {〈out, A�B〉} ∪ aa(out, A) ∪ aa(in,B)

a(out, A;B) = {〈out, A;B〉} ∪ aa(out, A) ∪ aa(in,B)

a(in,�A) = {〈in,�A〉} ∪ aa(in,A)

a(out,♦A) = {〈out,♦A〉} ∪ aa(out, A)

a(out, A⊕B) = aa(out, A⊕B) = a(out, A) ∪ a(out,B)

a(in,A⊗B) = aa(in,A⊗B) = a(in,A) ∪ a(in,B)

aa(in,A⊕B) = aa(in,A) ∪ aa(in,B)

aa(out, A⊗B) = aa(out, A) ∪ aa(out,B)

a(out, A/B) = a(out,B\A) = a(in,B �A) = a(in,A;B) =

aa(out, A/B) = aa(out,B\A) = aa(in,B �A) = aa(in,A;B) = a(out, A) ∪ a(in,B)

aa(in,A/B) = aa(in,B\A) = aa(out,B �A) = aa(out, A;B) = a(in,A) ∪ a(out,B)

a(out,�A) = aa(out,�A) = a(out, A)

a(in,♦A) = aa(in,♦A) = a(in,A)

aa(in,�A) = aa(in,A)

aa(out,♦A) = aa(out, A) (3.3)

The function g actually creates an item. Recall that an item is a tuple 〈 p,H 〉, where
p is a partial proof tree, andH a set of holes. The function g consists of two auxiliary
functions:

1. The function s (3.6) creates an input or output structure that corresponds with
a formula. This structure, together with the input formula, forms the sequent
that is going to be unfolded.

2. The function p (3.7) returns a tuple. The first element of the tuple is the partial
proof tree of the unfolded formula. The second element is a list of all the holes
in the partial proof tree that is derived by p. The functions π1 and π2 return the
first and second element of a tuple, respectively.

g : ({in, out} × F)→ I
g(in, x) = 〈 π1p(x ` sout(x)), π2p(x ` sout(x)) 〉
g(out, x) = 〈 π1p(sin(x) ` x), π2p(sin(x) ` x) 〉 (3.4)

Chapter 3. Bottom-up parsing fLG 23

The function s returns an input or output structure, given a formula and the side of
the sequent we want the formula to be unfolded (in or out). The sequent for some
formula A then becomes: A ` sout(A) if we unfold the in or left-hand side (lhs),
and sin(A) ` A if we unfold the out or right-hand side (rhs). The definition of s
is based on the structure grammar of (1.12). A and B denote formula variables, X
denotes an unbound structure variable. The codomain of s is defined as SV (3.5).
This is the set of all possible input and output structures that consist of structure
variables. It is a finite set, as the depth of a structure is bounded by the number
of arguments of the formula in our lexicon L that has the most arguments. The
number of arguments of a formula is calculated by the function #, based on the
similar function that was defined by Hendriks. The function f maps a lexical item to
its corresponding formula. The function sv(n) returns all the structures that consists
of n arguments or less.

SV = sv(max
w∈L

(#(f(w))))

sv : N→ SV
sv(0) = {X}
sv(n) = {X} ∪ { s1 · $ · s2, | s1 ∈ sv(n− 1), s2 ∈ sv(n− 1)} ∪ {〈s1〉, [s1] | s1 ∈ sv(n− 1)}

Where $ ∈ {/, \,⊗,�,;,⊕}

#(at) = 0

#(A/B) = #(B\A) = #(A�B) = #(B ;A) = #(♦A) = #(�A) = #(A) + 1

#(A⊗B) = #(A⊕B) = max(#(A),#(B)) + 1

(3.5)

s : {in, out} × F → SV
s(out, at) = s(in, at) = X

s(out, A⊗B) = X

s(out, A/B) = s(out, A) · / · s(in,B)

s(out,B\A) = s(in,B) · \ · s(out, A)

s(in,A⊗B) = s(in,A) · ⊗ · s(in,B)

s(in,A/B) = X

s(in,B\A) = X

s(out,♦A) = X

s(out,�A) = [s(out, A)]

s(in,A⊕B) = X

s(in,A�B) = s(in,A) · � · s(out,B)

s(in,B ;A) = s(out,B) ·; · s(in,A)

s(out, A⊕B) = s(out, A) · ⊕ · s(out,B)

s(out, A�B) = X

s(out,B ;A) = X

s(in,♦A) = 〈s(in,A)〉
s(in,�A) = X

(3.6)

For example, sout((np\s)/s) = ((X · \ · Y) · / · Z), whereas sin((np\s)/s) = X and
sout(s/(np\s)) = X · / · Y .

Having obtained a bottom sequent, we can start with the actual unfolding process.
Recall that the rules of fLG (and sLG) can be divided into 3 groups (1.3.1): the iden-
tity, structural and logical group. For unfolding, we will only permit the rules of the
identity group (without cut!) and the logical group. Furthermore, we add the focus-
ing and defocusing rules of (1.20), as the original division of the three groups was

Chapter 3. Bottom-up parsing fLG 24

made for sLG. Unfolding then acts as a simple backward chaining proof search pro-
cedure: the sequent is deduced until a (co)axiom is reached, or a formula is situated
on its structural side of the sequent.

The structural and logical sides of a formula are determined by the structure gram-
mar of (1.12), as stated earlier. If, for example, the formula (np/n) ⊗ n occurs on
the lhs (the in-position), it is situated on the wrong side of the sequent to be eligible
for the monotonicity rules. By definition of s, a formula on its structural position
has only one corresponding structure variable on the other side of the turnstile. If
a formula is situated on its structural side, then the whole formula is rewritten to
its structural counterpart according to the rules of (1.15). However, if a formula is
encountered during this rewriting process that has its monotonicity rule on the side
of the sequent that is rewritten, it is unfolded and added as a hypothesis constraint.
In the example of (np/n)⊗ n ` X , (np/n) is a formula that has its monotonicity rule
on the lhs. The proof of the unfold of (np/n) is then added as a hypothesis constraint
to the initial hole, as shown in figure (3.1).

The function p returns, given a sequent, a tuple: the partial proof tree of a sequent
and the set of holes that corresponds with that partial proof tree. S is the domain
of p, and denotes the sequent space of our system, a concept that I address in the
next section. The inferences that are made during the computation are based on the
logical rules of fLG. Recall that the functions π1 and π2 return the first and second
element of a tuple, respectively. The function pol returns the polarity of a formula
(a structure has no polarity). A variable in a partial proof tree is represented by a
lower case letter: x, y, etc.. Note that the sequent of a hole is unfocused. The creation
of a hole consists of one auxiliary functions w. w rewrites a sequent to its structural
counterpart and returns the set hypothesis constraints for a hole.

p : S → (Pr × P(H))

p(S) =



〈
S

I, ∅
〉

if S
I, where I ∈ { (1.19) }

〈 π1(p(S′))
S

I, π
2(p(S′))

〉
if S′

S
I, where I ∈ { (1.20), (1.22) }〈 π1(p(S′)) π1(p(S′′))

S
I, π

2(p(S′)) ∪ π2(p(S′′))
〉

if S′ S′′

S
I, where I ∈ { (1.21) }〈

x, {〈π1(w(in, A)), x, π2(w(in, A))
〉

if S = A ` B and pol(A) = +〈
x, {〈π1(w(out, B)), x, π2(w(in, B))

〉
if S = A ` B and pol(B) = −

(3.7)

The function w is, like p, a function that returns a tuple. Its arguments are a sequent
position (in or out) and a formula. This is a formula that is located on its structural
side, which means that it can be rewritten to its structural counterpart following
the rewrite rules of (1.15). This rewriting occurs recursively, following the structure
grammar of (1.12). When a formula is encountered that has its monotonicity rule
on the given side of the sequent, the proof of that formula is computed using p
and added as a hypothesis constraint. The codomain of w is (St×P(Pr)), where St
denotes the set of possible structures in our system, and Pr the set of possible partial
proof trees.

Chapter 3. Bottom-up parsing fLG 25

w : ({in, out} × F)→ (St× P(Pr))

w(in, at) = w(out, at) = 〈 at, ∅ 〉

w(in, X) =



〈
π1w(in, A) · ⊗ · π1w(in, B), π2w(in, A) ∪ π2w(in, B)

〉
if X = A⊗B〈

π1w(in, A) · � · π1w(out, B), π2w(in, A) ∪ π2w(out, B)
〉

if X = A�B〈
π1w(out, B) ·; · π1w(in, A), π2w(out, B) ∪ π2w(in, A)

〉
if X = B ;A〈

〈π1w(in, A)〉, π2w(in, A)
〉

if X = ♦A〈
X, {π1p(X ` s(out, X))}

〉
if pol(X) = −

w(out, X) =



〈
π1w(out, A) · ⊕ · π1w(out, B), π2w(out, A) ∪ π2w(out, B)

〉
if X = A⊕B〈

π1w(in, B) · \ · π1w(out, A), π2w(in, B) ∪ π2w(out, A)
〉

if X = B\A〈
π1w(out, A) · / · π1w(in, B), π2w(out, A) ∪ π2w(in, B)

〉
if X = A/B〈

[π1w(out, A)], π2w(out, A)
〉

if X = �A〈
X, {π1p(s(in, X) ` X)}

〉
if pol(X) = +

(3.8)

3.2 Parsing unfolded formulas

Now that a solid definition for unfolding has been established, a method that actu-
ally parses our input can be constructed. In line with Capelletti and Sikkel, I will
provide a formal definition of the procedure in the form of a parsing system (as de-
scribed in section 2.1). Before I present this definition, I will provide an informal
description of the parsing process.

Recall that the unfolded formulas are the items of our system, of the form 〈p,H〉,
with p the partial proof tree, and H the set of holes. Our input will have the form
A1, ..., Ai ` Bj , ..., Bn, with 1 ≤ i < j ≤ n. This input is then unfolded, fol-
lowing the functions of the previous section. The unfoldings of atomic formulas
are omitted during the parsing phase: they are unified at the end of the proce-
dure with the unbound structure variables of the final item. The unification phase
will only consist of inferences that are made from the structural group (the set I =
{ (1.14), (1.17), (1.18) }). This is possible because the unfolding of a formula starts
with an unfocused sequent, and either ends with a (co)axiom, or an unfocused se-
quent that is part of a hole. At each step there are three possible inferences that can
be made:

1. Make a logical inference on the basis of our bottom sequent and the set I .

2. Focus shift our item in case there are no closed items available. This method
is described below (3.2.2).

3. Unify two unfolded formulas: an unfolded formula u1 which has an empty
set of holes (closed) is unified with an open unfolded formula u2 that contains
a hole 〈s2, x2,Y2〉 that can be unified with u1. Unification is possible if the
bottom sequent of the partial proof tree of u1 can be unified with the sequent
s2, and if all hypothesis constraints Y2 are sub-trees of u1. When two items are
unified, the partial proof tree of u1 is ‘plugged into’ the partial proof tree of u2,
by substituting the variable of x2 in the partial proof tree of u2.

Chapter 3. Bottom-up parsing fLG 26

This whole process is a form of CYK parsing. Parsing is complete once one closed
item is deduced. The yield of the bottom sequent of this item (the formulas at the
leaves of the input and output structures) must correspond with the initial input
sequent. At this point, the atomic formulas are unified with the remaining open
structure variables. I will now provide several formal definitions of concepts that
are needed to arrive at a complete definition of the parsing system.

The first concept is the unfold system: a tuple that contains all the unfolded formu-
las at the start of the parsing process. They are divided into two sets, the closed and
open unfolded formulas. The set of open items is defined to be all items that are not
closed, by definition of the relative complement. Note that f is a function that maps a
lexical item to a formula, given some lexicon L.

Definition 3.2.1 (Unfold system). An unfold system U for a lexicon L and an input
w1, ..., wi ` wj , ..., wn, with 1 ≤ i < j ≤ n, is a tuple 〈C,O〉, where C is the initial
set of closed unfolded formulas and O the initial set of open unfolded formulas:

C = { 〈p, ∅〉 | 1 ≤ x ≤ i, 〈p, ∅〉 ∈ u(in, f(wx)) } ∪ { 〈p, ∅〉 | j ≤ x ≤ n, 〈p, ∅〉 ∈ u(out, f(wx)) }

O = ({ u | 1 ≤ x ≤ i, u ∈ u(in, f(wx)) } ∪ { u | j ≤ x ≤ n, u ∈ u(out, f(wx)) }) \ C

Focus shifting shifts the focus of a hole, to create a (co)axiom. Not every hole of an
item has to be unified with another item. If the hole is atomic, then it can be turned
into a (co)axiom. The structure variable is then substituted by the atomic formule.

Definition 3.2.2 (Focus shifting). The partial function fs is a function that turns an open
atomic hole (at ` X or X ` at, with at an atomic formula) into a (co)-axiom. The output of
the function is the proof tree presentation of a focus and (co)-axiom rule in fLG.

fs : S → Pr

fs(at ` X) = at ` X
Ax

at ` X
⇀

fs(X ` at) = X ` at
CoAx

X ` at
↼

In order to define our domain of items I, some notion of possible unfolded formulas
needs to be established. I propose the sequent space S of an unfold system U . It
is built up inductively from the initial set of bottom sequents. An initial sequent
is depicted as P

s
, that denotes that the sequent s is the bottom of a partial proof

tree P . Each initial sequent contains an n-amount of open structure variables, each of
which (theoretically speaking) could be unified with any other sequent in our unfold
system. However, the sequent itself can not be plugged into its own sequent, as an
item is always unified with another item. I ensure this by a function *, although I
leave its definition implicit. It can be read as ‘is not a subterm of ‘. The sequent that is
actually added to the set is the sequent that can be deduced from the unified sequent
by zero or more applications of the residual laws, depicted as

s
s′

Inl. Inl is a non-
looping sequence of structural rules, for which I provide a definition below. The
functions v and t are auxiliary functions, that help to overcome some of the clutter
that arises from the use of tuples. v returns, given a hole h, a tuple of a structure
variable and the sequent side that the variable occurs on in the sequent of h. V ar
denotes the codomain of structure variables. The function t receives a sequent side

Chapter 3. Bottom-up parsing fLG 27

io and a sequent s as input, and outputs the structure on the io side of s. St denotes
the set of possible structures in our system, like we saw earlier at the function w.

Definition 3.2.3 (Sequent space). The sequent space S of an unfold system U = 〈C,O〉 is
the set of sequents that can be deduced from the initial set of bottom sequents. This initial
set is the set Sinit, in which each initial bottom sequent is paired with a subset of the set of
structure variables in that sequent.

Sinit = {〈s, h〉 | 〈
P
s ,H1〉 ∈ C ∪ O, h ⊆ {v(x) | x ∈ H}}

v : H → ({in, out} × V ar)

v(〈A ` B, x,Y〉) =

〈in,A〉 if var(A)

〈out,B〉 if var(B)

S0 = {s′ | 〈s, ∅〉 ∈ Sinit,
s
s′

Inl}

S1 = {s′ | 〈s, {〈io1, v1〉}〉 ∈ Sinit, s1 ∈ S0\{s}, s′1 = t(io1, s1),
s[v1 := s′1]

s′
Inl} ∪ S

0

...
S = Sn = {s′ | 〈s, {〈v1, io1〉, ..., 〈vn, ion〉}〉 ∈ Sinit,

s1 ∈ Sn−1, s * s1, s
′
1 = t(io1, s1), ...,

sn ∈ Sn−1, s * sn, s
′
n = t(ion, sn),

s[v1 := s′1, ..., vn := s′n]

s′
Inl} ∪ S

n−1

t : {in, out} × S → St
t(in,A ` B) = A

t(out, A ` B) = B

A sequence IN of length n can be described as a function N → I , where each i ≤ n
maps to an element in the sequence.

Definition 3.2.4 (Structural rule sequence). A structural rule sequence Stn is a sequence
of n structural rules, such that n > 0 and Stn ∈ IN, where I = { (1.17), (1.14), (1.18) }
and IN the set of all structural sequences. A structural rule i ∈ I can be described as a
(partial) function from a sequent to a sequent i : S → S.

Definition 3.2.5 (Structural sequent sequence). Given a structural rule sequence Stn
and a sequent s, a structural sequent sequence Sqn is the sequence of sequents that is obtained
by applying each structural rule in Stn recursively and in order to s. A sequent sequence
Sqn is said to be looping iff ∃i . ∃j . i < j ≤ n ∧ Sqi(s, Stn) = Sqj(s, Stn). A non-
looping structural sequent sequence is a sequent sequence that is not looping, depicted as
(·)nl.

Sq : N× S × (N× I)→ S

Sq0(s, St) = s

Sqi(s, St) = Sti (Sqi−1(s, St))

Having established a firm foundation for our parsing system, we can move on to its
actual definition. A parsing system consists of a domain of items I, a set of axioms
A and a set of inferences R. I follows directly from the sequent space S of U . A

Chapter 3. Bottom-up parsing fLG 28

consists of all unfolded formulas that are either closed or can be focus shifted. R
corresponds to the three inference rules that I described at the beginning of this
section. Parsing is said to be finished once a closed item is deduced, of which the
yield must correspond with the initial input sequent. Figure 4.3 shows an example
of the parsing of the sentence "Everyone left".

Definition 3.2.6 (The parsing system fLGCYK). Let an unfold system U = 〈C,O〉 and an
input A1, ..., Ai ` Bj , ..., Bn be given. Let S be the sequent space of U. The parsing system
fLGCYK = 〈I,A,R〉 is defined as follows:

I = {〈π1p(s), π2p(s)〉 | s ∈ S}

A = {〈p,H〉 | 〈p,H〉 ∈ C ∨ (〈p,H〉 ∈ O ∧ ∀〈s′, x,Y〉 ∈ H . fs(s′))}

R =



〈 P
s i′, H

〉
〈 P

s i′

s′
i , H

〉 res if ∃i ∈ I. s
s′

i and i 6= i′−1

〈P,H〉
〈P [A := at, x := fs(s′)], ∅〉

fs if ∀〈s′, x,Y〉 ∈ H . s′ =

{
A ` at
at ` A

〈 P1
s1

,H
〉 〈 P2

A2 ` B2
, ∅
〉

〈 P1[x := P2]

s′1
,H\〈s2, x,Y〉

〉 un if ∃〈s2, x,Y〉 ∈ H . ∀y ∈ Y . y ⊆ P2

and s′1 =

{
s1[A := A2] if s2 = A ` B2

s1[B := B2] if s2 = A2 ` B

3.3 Indexed fLG

Our definition so far does not take the input order of the sequent into account. The
only constraint that is laid on the goal sequent is that its yield must correspond with
the initial input (in the correct order). This method is quite inefficient, because many
derivations are tried before it turns out the order of the final yield is not correct. For
example, the non-indexed unfolded formulas of the sentences Bob likes some teacher
and Some teacher likes Bob are equivalent. By keeping track of the span of an unfold
during the parsing process, the running time can be reduced by a great amount. I
will present a system here that is based on the position pairs that are used in (Moot,
2014).

A stringw can be represented as tuple 〈i, j〉 of string positions, which means thatw is
the string that spans position i to j. This approach can be applied to the rules of fLG:
inference rules are now manipulations of indices. A hole in an unfolded formula is
then paired with an index tuple that acts as a constraint on that hole.

Definition 3.3.1 (Indexed structure). An indexed structure iAj is a structure A that
spans position i to j in the input string.

Definition 3.3.2. We say a grammar is simple in the input string if for each input string
w1, ..., wn we have that wi spans positions i, i+ 1 (Moot, 2014).

The symmetrical nature of LG forces us to take on a slightly different approach than
that of Moot. A sequent in NL is linear in its input and in terms of position pairs

Chapter 3. Bottom-up parsing fLG 29

can be read as follows: 0A1
1 , ...,

n−1An
n ` 0Bn . The antecedent structure thus

spans the same position as the succedent formula. In the approach for fLG, both
sides of the sequent still span the same index (from 0 to n), but the lhs is split up in
different sub-spans than the rhs. A sequent (that is simple in the input string) then
becomes 0A1

1 , ...,
n−1An

n ` 0B1
n+1 , ...,

n−1Bn
2n . In a sequent that is not simple in its

input string, the number of formulas on each side of the turnstile does not have to
be equal, as long as the entire span of the antecedent and succedent are of the form
0An ` 0Bn . We could also choose for a symmetry that puts An adjacent to Bn+1:

A1, ..., An ` Bn+1, ..., Bm

However, this would pose difficulties for the monotonicity rules of ⊗ and ⊕, as I
show below. The co(axiom), (de)focusing, rewrite, and unary operator rules do not
shift the string positions and are left implicit.

Monotonicity rules The focus of a complex formula is shifted to its subparts.

iXj ` iAj jY k ` jBk

i(
X · ⊗ · Y

)k ` i(
A⊗B

)k ⊗R
iAj ` iXj jBk ` jY k

i(
A⊕B

)k ` i(
X · ⊕ · Y

)k ⊕L

iXj ` iAj iBk ` iY k

j(
A\B

)k ` j(
X · \ · Y

)k \L
iXk ` iAk jBk ` jY k

i(
X · � · Y

)j ` i(
A�B

)j �R

jXk ` jAk iBk ` iY k

i(
B/A

)j ` i(
Y · / ·X

)j /L
iXk ` iAk iBj ` iY j

j(
Y ·; ·X

)k ` j(
B ;A

)k ;R
(3.9)

jY k ` j(
X · \ · Z

)k
i(
X · ⊗ · Y

)k ` iZk
rp

iXj ` i(
Z · / · Y

)j rp

i(
Z · � · X

)j ` iY j

iZk ` i(
Y · ⊕ · X

)k drp

j(
Y ·; · Z

)k ` jXk
drp

(3.10)

The rules ⊗R and ⊕L act as string concatenation. Since the monotonicity rules for
both these operators combine the left argument on the lhs with the left argument
on the rhs (and vice versa), a cyclic reading that placed the last formula of the lhs
adjacent to the first formula of the rhs would raise difficulties how the subparts
of an ⊗ or ⊕ were to be combined. Graphically, the monotonicity rule of ⊗ could
be represented as follows, where the dashed line denotes the transition from the
antecedent (top part) to the succedent (bottom part).

iXj ` iAj jY k ` jBk

i(
X · ⊗ · Y

)k ` i(
A⊗B

)k ⊗R =
•
i

•
j

•
k

•
j

X Y

BA

Chapter 3. Bottom-up parsing fLG 30

The Grishin interaction postulates turned out to be problematic. As they add some
notion of mixed associativity to our system, determining the indices of the resulting
formulas is less trivial than we have seen above. G1 and G3 fit nicely into the cur-
rent model, and the symmetry is maintained. As �,;, /, \ can be seen as the string
subtraction of the argument from the functor, Z · ; · X (in the case of G1) then be-
comes the subtraction of 〈i, l〉 from 〈i, j〉 which yields 〈l, j〉. G3 is similar. G2 and
G4 are more problematic, as Z and Y , and X and W are not adjacent in our current
reading. For example, subtracting iZ l from jY k (from the left with ·; ·) forces us
to either assume that i := j to span 〈l, k〉, which entails that X is empty (as X spans
〈i, j〉), or that there is some non-empty part 〈i, j〉 to the left of Z. In the case of G2

the other side of the sequent then becomes l(
X · \ ·W

)k, because X was considered
to be empty:

i(iXi · ⊗ · iY k
)k ` i(iZ l · ⊕ · lW k

)k
l(
Z ·; · Y

)k ` l(
X · \ ·W

)k G2

We could also assume that Z is empty and that i := l, which would result in the
following inference step:

i(iXj · ⊗ · jY k
)k ` i(iZi · ⊕ · iW k

)k
j(
Z ·; · Y

)k ` j(
X · \ ·W

)k G2

X and Z could also be both empty. The problem of G2 and G4 is that is not possible
in our current reading thatX and Z are both non-empty. G4 acts in a similar manner
as G2. We therefore have to conclude that G2 and G4 lie certain restriction on the
composition of its structures. I therefore prefer to leave the indexing of the interac-
tion postulates open for discussion. The techniques that (Moot, 2014) raises for the
Displacement calculus might provide a solution for the issues that are encountered
here. Figure 3.3 gives an overview of the indexed postulates. Keep in mind that G2
and G4 are subject to the assumptions I stated above.

When unfolding a hypothesis, its position in the sentence is not fixed. I therefore
chose to give a hypothesis a span of two open variables. When the hypothesis is
unified with another unfold, the variable indices are then unified with the indices of
the other unfold. The unfolding for (np/n)⊗ n then becomes:

....
inpk6 ` iEk

inpk6 ` iEk
↽

jnkD ` jnk7

i(
np6/n7

)j ` i(
E · / · nD

)j (/L)

i(
np6/n7

)j ` i(
E · / · nD

)j ↼

....
0(

(np6/n7) · ⊗ · n8
)1 ` 0A1

Chapter 3. Bottom-up parsing fLG 31

i(iXj · ⊗ · jY k
)k ` i(iZ l · ⊕ · lW k

)k
l(
Z ·; ·X

)j ` l(
W · / · Y

)j G1

i(iXj · ⊗ · jY k
)k ` i(iZ l · ⊕ · lW k

)k
j(
Y · � ·W

)l ` j(
X · \ · Z

)l G3

i(iXj · ⊗ · jY k
)k ` i(iZ l · ⊕ · lW k

)k
l(
Z ·; · Y

)k ` j(
X · \ ·W

)k G2

i(iXj · ⊗ · jY k
)k ` i(iZ l · ⊕ · lW k

)k
i(
X · � ·W

)l ` i(
Z · / · Y

)j G4

(3.11)

i(iXj · ⊗ · jY k
)k ` i(iZ l · ⊕ · lW k

)k
=

•
i

•
j

•
k

•
l

X Y

WZ

FIGURE 3.3: The Grishin interaction postulates. Note that j does not
have to be equal to l, as the span of the antecedent might be divided

differently than the succedent.

Chapter 3. Bottom-up parsing fLG 32

The postulate P2 gives rise to similar issues that were encountered by the Grishin
interaction postulates. P1 is not problematic, as the order of the structures is not
changed:

i(iAj · ⊗ · j
(
jBk · ⊗ · k♦C l

)l)l ` iX l

i(i(iAj · ⊗ · jBk
)k · ⊗ · k♦C l

)l ` iX l
P1

With P2 the ♦C part is no longer adjacent toB: the structure has become discontinu-
ous. This faces us again with two options: we either assume that ♦C is a hypothesis
and therefore has an empty span, or we need to adapt our indexed model to handle
discontinuous structures. In my implementation I assume the former, and leave the
second option open for discussion.

i(i(iAj · ⊗ · x♦Cx
)j · ⊗ · jBk

)k ` iXk

i(i(iAj · ⊗ · jBk
)k · ⊗ · x♦Cx

)k ` iXk
P1

3.3.1 Parsing indexed fLG

Because the bottom sequent s of an item now contains a span (〈i, s, j〉), our items
become the triple 〈〈i, s, j〉, p,H〉. Our parsing system remains roughly the same as it
was without the indices, except the unfolding steps now follow the updated indexed
rules. I will refrain from rewriting each function that was established in the previous
sections, and leave the indices implicit. The goal item of our parsing system is now
defined as 〈〈0, s, n〉, p, ∅〉, where 〈0, n〉 is the span of the entire initial input. Our
parsing system ifLGCYK is defined as follows:

Definition 3.3.3 (The parsing system i-fLGCYK). Let an unfold system U = 〈C,O〉 and
an inputA1, ..., Ai ` Bj , ..., Bn be given. Let S be the unfold space of U. The parsing system
i-fLGCYK = 〈I,A,R〉 is defined as follows:

I = {〈π1p(s), π2p(s)〉 | s ∈ S}

A = {〈p,H〉 | 〈p,H〉 ∈ C ∨ (〈p,H〉 ∈ O ∧ ∀〈s′, x,Y〉 ∈ H . fs(s′))}

R =



〈 P
s i′, H

〉
〈 P

s i′

s′
i , H

〉 res if ∃i ∈ I. s
s′

i and i 6= i′−1

〈P,H〉
〈P [A := at, x := fs(s′)], ∅〉

fs if ∀〈s′, X,Y〉 ∈ H . s′ =

{
〈i, A, j〉 ` 〈i, at, j〉
〈i, at, j〉 ` 〈i, A, j〉

〈 P1

〈i, s1, l〉
,H
〉 〈 P2

〈j, A2 ` B2, k〉
, ∅
〉

〈 P1[x := P2]

〈i, s′1, l〉
,H\〈〈j, s2, k〉, x,Y〉

〉 un if ∃〈〈j, s2, k〉, x,Y〉 ∈ H . ∀y ∈ Y . y ⊆ P2

and s′1 =

{
s1[A := A2] if s2 = A ` B2

s1[B := B2] if s2 = A2 ` B

Chapter 3. Bottom-up parsing fLG 33

3.4 Partial Proof Trees

This section provides a link between the parsing method of fLG and the Partial Proof
Trees (PPTs) of Joshi and Kulick (1997). PPTs are based on lexicalized tree adjoining
grammars (LTAGs) (Joshi and Schabes, 1997), a formalism I will elaborate on briefly.

Tree adjoining grammars (TAGs) are tree rewriting systems. They consist of a finite
set of elementary trees that are combined to form larger trees. This can be done by
substitution (where a leaf is substituted by another tree) or adjunction (where a node
in a tree is replaced by another tree). In order to adjoin a tree into another tree, it must
be an auxiliary tree. This means that it contains exactly one leaf that is marked as the
foot node (marked by an *), which has the same label as the root node. A tree without
such a foot node is called an initial tree. In an LTAG, each tree is associated with a
lexical item, which is called the anchor of the tree. LTAGs are able to describe several
phenomena that are found in natural languages and can be parsed in polynomial
time.

PPTs are based on several principles of LTAGs, such as the adjunction operation.
PPTs, however, perform manipulations on proof trees, instead of simple phrase
structure trees. This is the first similarity between PPTs and the parsing system for
fLG. PPTs are divided into 2 distinct phases that together form a hybrid logic: a con-
struction phase (unfolding) and a combination phase (unification). This is similar to
what we have seen before.

A PPT is a λ-term that ranges over a proof tree. A variable denotes an unfilled
assumption in the proof tree, and can be compared to the open structure variables in
an unfolded formula. λ-abstractions are annotated with a label l or r, to constraint
the position of the argument (left or right). PPTs are paired with a type judg α,
specifying the category of the proof. I will illustrate this with two examples, and
compare them with similar unfoldings in the system for fLG.

PPTs are manipulated by three different operations. I will describe them briefly, and
compare each operation with a similar method for fLG.

1. Application: The conclusion of a PPT is linked with the assumption of another
PPT. This is similar to the basic unification of fLG. PPTs restrict the direction of
its arguments, a feature that is comprised by the fLG system by the introduc-
tion of indices.

2. Stretching: An interior node of a PPT is stretched up by inserting another PPT;
this is very much alike to the adjunction of TAGs. Not only the labels of the
node and the auxiliary PPT must match: they must also coincide on any undis-
charched assumptions (Joshi, Kulick, and Kurtonina, 1998). The stretching of
nodes is not an operation in the fLG system: this is handled slightly differ-
ent. In general, a PPT that is stretched by another PPT on a node of type A,
would be equivalent to the unification of an unfolded formula that contains
A as (sub)type with an unfolded formula of type A/A or A\A. In the case of
fLG where an unfolded formula u1 is unified with another unfolded formula
u2 that contains hypotheses, all the proofs of the hypotheses of u2 must be a
subterm of u1. This is, however, the only constraint on unification. It is shown
that a sentence such as "...book that John wrote and Bob read Ulysses" is not valid
in the PPT system (due to undischarged assumptions), whereas the (current)
fLG system lacks the expressivity to disallow such a sentence.

Chapter 3. Bottom-up parsing fLG 34

In the PPT case of likes [NP] passionately, the NP\S node of likes
would be stretched, to insert the proof tree of passionately . Items in our
system for fLG do not need te be stretched open in this case: to handle likes
[NP] passionately, the conclusion of likes (after residuating) is simply
unified with the hole of passionately (figures 3.4 & 3.5). Note that the unfolded
formulas are presented as partial proof trees in which a hole is represented by
vertical dots.

Joshi et al. describe that phrases with two adjectives such as "beautiful blue sky"
would give rise to a form of spurious ambiguity. The PPT of beautiful could be
stretched by the PPT of blue first, or the the PPT of sky could just be applied to
the PPT of blue and then to the PPT of beautiful. This ambiguity would occur
only at the composition of the trees: the two trees itself are equivalent. This
kind of spurious ambiguity is not possible in fLG, as (n/n) · ⊗ · (n/n) 0 n/n.

3. Interpolation: Similar to stretching, but this operation is already added to the
PPT during the unfolding phase and therefore an obligatory inference. Fur-
thermore, the PPT that is inserted by stretching has the same conclusion and
argument node, whereas the interpolated node can have a different conclusion.

To achieve this in the fLG system, we would lift the type that is interpolated.
If we were to interpolate a type A to a type B, the type in fLG would then
become (B/A)\B, or B/(A\B), depending on the direction of the argument.
A would then be a hypothesis of this lifted type. Figure 3.6 shows an example
of a PPT that contains interpolation, and an equivalent fLG unfold.

Trace assumptions in PPTs are represented similar to hypothetical reasoning. A
trace assumption must be discharged within the PPT in which it is assumed. An as-
sumption that is discharged can be expected on either side of the formula, which is
an example of the extended domain of locality of the PPTs. In our fLG system, assump-
tions are created during the unfolding phase, and their unfolding must be a subterm
of the complete proof once it is completely unified. Figure 3.7 shows the unfolding
of (s/(np\s))\s, an example which was shown earlier during the unfolding method
of Hendriks.
The link that has been shown between the two formalisms is an interesting connec-
tion, as it might provide an insight into the complexity of parsing fLG, as the PPTs
inherit polynomial parsing properties from the LTAG system. This link could be
studied in more detail. For example, the way PPTs constrain stretching on the basis
of undischarged hypotheses might be implemented into the framework for fLG.

Chapter 3. Bottom-up parsing fLG 35

λl1x.λr1y.


x

likes
(NP\S)/NP y

NP\S
S

 : {l1⇒ (judg NP), r1⇒ (judg NP)} → (judg S)

X ` np0 s1 ` Y

np0\s1 ` X · \ · Y
(\L)

Z ` np2

(np0\s1)/np2 ` (X · \ · Y) · / · Z
(/L)

(np0\s1)/np2 ` (X · \ · Y) · / · Z
↼

FIGURE 3.4: The unfoldings for likes. Note that the fLG unfolding does not con-
tait any holes: atomic formulas are only unified at the end of the parsing process.

λl1x.

(
x

passionately
(NP\S)\(NP*\S)

(NP*\S)

)
: {l1⇒ (judg NP\S)} → (judg NP\S)

....
X ` np0\s1
X ` np0\s1

⇁
Y ` np2 s3 ` Z

np2\s3 ` Y · \ · Z
(\L)

(np0\s1)\(np2\s3) ` X · \ · (Y · \ · Z)
(\L)

(np0\s1)\(np2\s3) ` X · \ · (Y · \ · Z)
↼

FIGURE 3.5: The unfoldings for passionately. The * in the PPT unfolding indi-
cates that this category is not unfolded. Note the similarity between the holes in

both unfoldings.

Chapter 3. Bottom-up parsing fLG 36

λi1z.λl1x.


x

walk(inf)
NP\Sinf
NP\S

(z)

S

 :

{
i1⇒ ({r1⇒ (judg NP\Sinf)} → (judg NP\S)),

l1⇒ (judg NP)

→ (judg S)

npE ` np2

....
sinf3 ` G
sinf3 ` G

↽

np2\sinf3 ` npE · \ ·G
(\L)

np2\sinf3 ` npE · \ ·G
↼

....
A ` (np0 · \ · s1) · / · (np2\sinf3)

A ` (np0\s1)/(np2\sinf3)
⇁

npB ` np4 s5 ` sC

np4\s5 ` npB · \ · sC
(\L)

((np0\s1)/(np2\sinf3))\(np4\s5) ` A · \ · (npB · \ · sC)
(\L)

((np0\s1)/(np2\sinf3))\(np4\s5) ` A · \ · (npB · \ · sC)
↼

FIGURE 3.6: The unfolding for walk. In the fLG unfolding walk is considered to
be the type np\sinf that is lifted by np\s.

λl1x.

x [NP\S]1

S
S/(NP\S)

[1]
(S/(NP\S))\S
S

 : {l1⇒ (judg NP)} → (judg S)

npD ` np1 s2 ` sE

np1\s2 ` npD · \ · sE
(\L)

np1\s2 ` npD · \ · sE
↼

....
A ` s0 · / · (np1\s2)

A ` s0/(np1\s2)
⇁

s3 ` sB

(s0/(np1\s2))\s3 ` A · \ · sB
(\L)

(s0/(np1\s2))\s3 ` A · \ · sB
↼

FIGURE 3.7: The unfolding for (s/(np\s))\s. The structure variables that are part
of a (co)axiom are already unified with their corresponding atomic formula. Note

that NP\S is the hypothesis in both unfoldings.

37

Chapter 4

A logic programming
implementation

This chapter provides an implementation of the parsing system of chapter 3, written
in the logic programming language Prolog. The declarative nature of Prolog turned
out to be perfectly suited for the deductive parsing method, and the way unification
is handled in Prolog is simple and elegant. Most of the programming methods that
are used can be found in (Pereira and Shieber, 2002) and (O’Keefe, 1990).

4.1 Overview of the parser

Parsing is once again divided into two distinct phases: the unfolding phase and
the parsing phase. These two phases are combined in the predicate parse/3, that
takes an initial focus and a list of formulas or lexical items as input and output: the
symmetrical nature of fLG permits us to parse both sides of the sequent. All input
formulas are unfolded, and added to a list of closed and open items. A goal is kept
separate if the input or output list contains only one item. The unfolding of this
goal is only added to the parsing system if all the other items have been unified,
and one closed item has been obtained: this reduces the running time by quite an
amount. Parsing itself is established by the complete traversal of the proof space
that is created by Prolog’s backtracking mechanism. This will be addressed more
extensively in section 4.3. All possible proofs are collected in a list by the built-in
findall predicate, and this list of proofs is converted to a LATEX-proof. The code
for this final step is omitted in the appendix, as it is largely a copy of the code by
Moortgat.

4.2 Unfolding

Recall that an unfolded formula in the indexed system was defined as a tuple 〈p,H〉,
with p the partial proof tree, and H the set of holes. In our implementation, proof
trees are represented as combinator proof terms. A combinator proof is a simple
term representation of the deductive steps of a parse tree, where each inference is
denoted by a single term. An inference that consists of two premises becomes a
term with two arguments. The sequents in a proof tree are not represented at each
step in a combinator proof, but can be obtained by forward chaining from the ax-
ioms of a proof towards a goal. In our system, the bottom sequent of a proof is
therefore added to an unfolded formula as a separate argument. In Prolog a tu-
ple is represented by a - symbol. An unfolded formula then becomes an object of
the form VDash-Proof-Holes, where VDash is the bottom sequent of the proof.

Chapter 4. A logic programming implementation 38

The indices of the sequent are attached to the antecedent and the succedent of a se-
quent: vdash(F, I-A-J, I-B-J), where F is the focus (0, l, or r). A hole was
defined as a triple 〈〈i, s, j〉, v,Y〉, with 〈i, s, j〉 the open sequent, v the open vari-
able in the proof p and Y the set of hypothesis constraints. In Prolog this becomes
VDash-Holes-Hyps. Sets are simply represented as lists. Unfolding is done by the
predicate unfold/4, that takes the sequent side (in or out) and a formula as input,
and outputs the unfolded formula, its unfolded hypotheses, and a list of axiom links.
An axiom link is a pair of atom labels that are part of a (co)axiom in the proof tree.

Unfolding closely follows the mathematical definition that was established in chap-
ter 3. The predicate unfold/4 is similar to the function u (3.2). The function s (3.6) is
defined as the predicate init_struct. The structure variables that are instantiated
at this point are represented as normal Prolog variables. This predicate also labels
the atomic formulas, using the dynamic predicate at_label/1. Labelling could be
done non-dynamically, but this method provides clarity by not having to pass on an
argument of the current label.

The functions g (3.4) and p (3.7) are combined in the predicate g/6. g is deterministic,
i.e. once the unfolding process is completed it is not possible to backtrack to find
other possible unfoldings. g takes a the sequent side that is unfolded and a sequent
as input arguments. It outputs the proof and a list of holes (similar to the function p),
a list of axiom links and a list of unfolded hypotheses (which is part of the function
u). The rules of fLG are encoded as predicate rules in the program. The left focusing
rule, for example, is represented as follows:

A ` Y
A ` Y

↼ Where A is negative

g(Pol, vdash(0, A, Y),fl1(Proof),Links, Holes, HypUnfolds) :-
\+var(A),pol(A,-),
g(Pol, vdash(l, A, Y),Proof, Links, Holes, HypUnfolds).

Once a (co)axiom is reached, the labels of the atoms are added to the list of axiom
links. Furthermore, if one of the formulas is some structure variable X, this variable
is unified with the term At/N, where At is the atomic formula and N the (yet un-
bound) label variable that is added to the axiom links. This ensures that the original
variable X in the bottom sequent is unified with At/N too, which prevents a lot of
unnecessary unifications later in the procedure.

If at some point a formula is encountered that has its monotonicity rule on the other
side of the sequent, it is transformed into its structural counterpart. If during this
rewriting process any formula is encountered that is situated on its logical it is un-
folded and its unfolding is added to a list of hypotheses. This is similar to the func-
tion w, and is done by the predicate findall_unfolds. A hole is created by the
following line, where HypConsts is a list of combinator proofs:

make_hyp_hole(Struct, ProofHole, HypConsts, [Struct-ProofHole-
HypConsts|H]-H).

Chapter 4. A logic programming implementation 39

4.3 Unification of unfolded formulas

In the above predicate, ProofHole is a Prolog variable and is instantiated on two
different positions: as a variable in the proof tree, and as the variable in the hole
that corresponds with the variable in the proof tree. This is powerful technique, as
these two variables are now linked during the computation. If at any point one of
the variables is unified, the other is too. This technique stems from the concept of
difference lists. A list can be viewed as a binary tree:

[1,2,3] = [1|[2,3]] = [1|[2|[3]]] = [1|[2|[3|[]]]] =

|

|

|

[]3

2

1

The empty list acts as the neutral element of the list building operator |. In a dif-
ference list, this neutral element is replaced by a variable. By keeping a separate
instance of this variable it is possible to unify this variable by another difference list.
List concatenation then simply becomes the unification of two lists, and the variable
of the second list is now the new variable of the tail of the list. The predicate conc
exemplifies this concept.

conc(A-B, B-C, A-C).
?- conc([1, 2|X]-X, [3, 4|Y]-Y, Z).
X = [3, 4|Y],
Z = [1, 2, 3, 4|Y]-Y.

This concept can be applied to other data structures too, and is essential to our par-
tial proof trees. A hole was defined as a triple, in which the second element is a
variable that also occurs in the proof tree. Unifying this variable with some other
proof automatically plugs that proof into the position of the variable.

4.4 Parsing

The parsing of the items is done by the predicate unify_all_open/5. Its first
argument is an index that is used for focus shifting, a feature that I address later.
The other three input arguments are the closed items, the open items, and the final
goal unfolding. Closed items are represented as tuples of the form Bottom-Proof:
the hole argument is omitted because a closed item does not contain any holes. The
unfolded atomic formulas are not part of the parsing process: they are unified at the
end once a final item is reached. Figure 4.3 showcases the process for the sentence
"everybody left".

The parsing process can be divided into several distinct cases, based on the list of
closed and open items. There are three different recursive cases:

1. The basic recursive case takes the head element from the list of closed items,
and residuates the bottom sequent of this item until it can be unified with an
item in the list of open items. Because each closed item has to be unified with
some open item at some point in the computation, and the number of holes

Chapter 4. A logic programming implementation 40

is decreasing (i.e. no new holes are created during the parsing phase), we can
necessitate the unification of an item as soon as it is closed. Once the closed
item is unified with an open item, it is added to the list of closed items if there
are no remaining holes. Otherwise it is appended to the end of the list of open
items.

The residuation and unification of an item is done by the predicate unify_open.
Unification is done by the built-in select/3 predicate. This is quite elegant:
by selecting the closed item that is to be unified, it is instantly unified with a
corresponding hole from a list of holes. The unification step is therefore done
simultaneously with the selection of a corresponding hole, a concept that is
based on the partial execution as described by (Pereira and Shieber, 2002) in
section 6.4. If no open item is found that can be unified, the closed item is
residuated following one of the structural rules that are defined by the rule
predicate.

2. It is possible that at some point during the computation there are no closed
items available. This is caused by the polarity bias of the atomic formulas. See
for example the unfolding of a transitive verb with s positive and np negative.
If the polarity would be reversed, the item would not contain any holes at all.

....
A ` np0
A ` np0

⇁

....
s1 ` B
s1 ` B

↽

np0\s1 ` A · \ ·B
(\L)

....
C ` np2
C ` np2

⇁

(np0\s1)/np2 ` (A · \ ·B) · / · C
(/L)

(np0\s1)/np2 ` (A · \ ·B) · / · C
↼

Focus shifting is a method that has been described in chapter 3. It is defined as
the predicate focus_shift in the code. Not every open item that can be focus
shifted, needs to be completely focus shifted! The open holes can be unified
with another item too, after all. This leads us to the final recursive step, that is
closely connected to focus shifting.

3. If there are no closed items available, we might want to skip the focus shifting
of an open item. However, to prevent spurious ambiguity we want to keep
track of the items that have been skipped. In the code this is done by the index
N. Updating this index turned out to be surprisingly complex. At the start of
parsing it is instantiated to be 0. This indicates that the 0th open item can still
be focus shifted. Once an open item is skipped, the index is incremented and
the next open item is selected using the built-in predicate nth0/4. If at some
point a focus shifted item is unified with an open item that contains multiple
holes and has been skipped from focus shifting earlier on, we need to add this
item to the end of the list of open items! This is due to the fact that focus
shifting is only possible if all holes are shifted, and now that one hole has been
unified with another item we might want to focus shift the remaining holes.
Figure 4.1 exemplifies this whole procedure.

The following six cases all mark a final step of the unfolding process. Each case is
based on the composition of the lists of open and closed items.

Chapter 4. A logic programming implementation 41

1 2 3 4 1 2 3 + 4
• • • • −→ • • •

↑ ↑

1 2 3 4 2 4 1 + 3
• • • • −→ • • •

↑ ↑ ← N - 1

FIGURE 4.1: Two different cases for updating the index of the list of
open items that have been focus shifted. ↑ denotes the current in-
dex. In the first case, the item that is focus shifted (3) is unified with
an open item that still can be focus shifted. In the second case, (3)
is unified with (1), an item that has been skipped for focus shifting.
However, we allow this new item to be focus shifted again, as the re-
maining holes might need to be shifted. The index is decremented, as

the first item of the list is now removed.

1. Both the lists are empty. This occurs when parsing a sequent such as np ` np,
because unfolded atomic formulas are omitted from the parsing process.

2. One closed item, an empty list of open items and no goal item. When parsing
two lists that both contain more than one item, there is no goal formula that is
kept separate. The final closed item is residuated until a sequent of the form
X · ⊗ · Y ` Z · ⊕ ·W is retrieved.

3. No closed items, one open item and no goal item. Similar to the previous case,
but now the open item must be focus shifted before we can residuate it. I will
address focus shifting in a later case.

4. One closed item, no open item and an open goal. The standard final step: the
closed item is simply unified with the open goal.

5. No closed items, one open item and one goal. In this case either the open item
or the open goal is focus shifted. The closed item that is returned by focus
shifting is then unified with the remaining open item.

6. No closed items, one open item, and one closed goal. The closed goal is unified
with the open item.

The final item is represented as vdash(0,0-A-n,0-B-n)-FProof. Once such an
item has been obtained, the predicates unify_in and unify_out walk through
the proof term and unify the atomic formulas that were omitted from the parsing
process.

The entire unification phase is performed in a cut-free manner. The cut is a powerful
tool, but if we want our program to rely on the backtracking mechanism of Prolog,
we can’t use it at all times. By never using a cut at any time during unification, a
proof search space is created automatically by Prolog’s backtracking mechanism, in a
depth-first search fashion. This search space can be optimized by a great amount, as
it can be seen easily that a lot of unnecessary partial parses are tried during parsing.
I propose several ways to optimize the parsing process.

Chapter 4. A logic programming implementation 42

4.5 Parsing efficiency

4.5.1 Loop detection

The first method concerns the way loop detection is handled. Since the residuation
rules are invertible, it is possible to get stuck in a loop. We could maintain a list
of visited sequents, and at each step check whether we have already visited that
sequent. This is a time-consuming task, and I propose a more efficient method.
Simply by checking whether the previous rule is not the inverse of the rule that is
currently checked, it is impossible to get stuck in a loop. This can be proved, based
on the definition of structural sequent sequence that is described in section 3.2.

Lemma 4.5.1. A structural sequent sequence Sqn(s, Stn) is looping on positions i and j,
where i < j, if and only if the sequence in Stn from position i+ 1 to j is a pattern of nested
rules, i.e. each rule is closed by its inverse in a nested manner.

Proof. Let Stn be a structural rule sequence of length n. Let s be a sequent and
Sqn the structural sequent sequence for s and Stn. The inverse of the inverse of a
structural rule is considered to be that structural rule itself, i.e. I−1

−1
= I . The

postulates P1 and P2 can not be inverted. The Grishin interaction postulates are
non-invertible too. Therefore, any structural sequence that contains at least one of
these postulates is non-looping, as there aren’t any other rules in our system that
contain associativity.

=⇒ As Sqn is looping, there exist an i and j, such that i < j and Sqi(s, Stn) =
Sqj(s, Stn).

The structural rules can be divided into 2 distinct groups: (1) the rules that shift
a structure from the lhs to the rhs, and (2) the rules that do this in the opposite
way. A rule from group (1) can only be followed by its own inverse, or a rule
from group (1); for group (2) vice versa. Each rule from either group peels off
a structure from one side of the sequent and adds it to the other, and the only
way a rule from one group can be followed by a rule from the other group is
by its own inverse. Therefore, the only way to obtain the same sequent after n
steps is by n applications of the inverses of the first n rules, in a reversed order.
During the application of these inverted rules it is possible to apply a rule that
is not an inverse, but this rule must then be inverted later on too to arrive at
the original sequent. This creates a nested pattern of rules and their inverses:

S ::= L | R | S S | ε
R ::= r R r−1 | ε where r ∈ group (1)

L ::= l L l−1 | ε where l ∈ group (2)

⇐= Stn forms a nested pattern of rules from position i + 1 to j. That means that
for each rule there is an inverted rule later in the sequence. If we were to apply
each rule in the sequence to Sqi(s, Stn), it would either shift a structure to the
rhs or the lhs. As the pattern is nested, each structure shift is undone later in
the sequence by its inverse, and after applying all the rules, we would obtain
the same sequent on position j, and thus the sequent is looping from position
i to j.

Chapter 4. A logic programming implementation 43

Corollary 4.5.1.1. If a structural sequent sequence is looping, then there is at least one
point in the corresponding structural rule sequence where a rule is immediately followed by
its inverse.

This follows directly from the nested nature of a looping sequence: a left-shifting
pattern ends when L ::= ε, which yields a pattern ...l l−1.... A right-shifting pattern
yields at its centre: ...r r−1....

To prevent a loop, we can therefore simply check if the previous rule was the inverse
of the current rule.

4.5.2 Unification constraints

I implemented a method for constraining the unification of the atom labels. Take,
for example, the unfolding of (np\s)/np (with s negative and np positive):

npA ` np3 s4 ` sB

np3\s4 ` npA · \ · sB
(\L)

npC ` np5

(np3\s4)/np5 ` (npA · \ · sB) · / · npC
(/L)

(np3\s4)/np5 ` (npA · \ · sB) · / · npC
↼

A priori we can already tell that A will be unified with some i that is smaller than
3, and C with some j that is larger than 5. If we were to combine this item with
the unfolding of np0/n1 in a sentence such as "Some teacher likes Bob", then np0 can
not be unified with np5, as this would yield the sentence "Bob likes some teacher".
This constraint can be added easily using the built-in freeze predicate that takes a
variable and some Prolog goal as its arguments. Once the variable is unified, the goal
is called. By adding the constraints to freeze, and not to some list that is passed
on, the extra-logical nature of such constraints is kept separate from the logical flow.

This method improved the running time by a significant factor. For example, the
parsing of the sentence "Everyone thinks some teacher likes Bob" (with three different
proofs) costs 13,463 inferences without the label constraints, and only 3,505 infer-
ences with constraints1. Unfortunately, these constraints bring quite some issues
with them. First of all, if we were to add the postulates P1 and P2 to our system, it is
now possible to manipulate the structure of our input. It is then no longer necessary
for an atom to come from the expected direction. This can be solved by attaching a
special label to an argument of a ♦� construction, for which a constraint is ignored.
The case that made me convinced that this method is not optimal is the proof of

1For comparison, backward chaining this sentence (as a structured sentence tree) costs 1,718 infer-
ences.

Chapter 4. A logic programming implementation 44

(s0/(np1/n2)) · ⊗ · (np3/n4) ` s5:

s0 ` s5

np3 ` np1

np3 ` np1
⇀

np3 ` np1
↽

n2 ` n4

np3/n4 ` np1 · / · n2
(/L)

np3/n4 ` np1 · / · n2
↼

np3/n4 ` np1/n2
(/R)

np3/n4 ` np1/n2
⇁

s0/(np1/n2) ` s5 · / · (np3/n4)
(/L)

s0/(np1/n2) ` s5 · / · (np3/n4)
↼

The unfolding of np3/n4 would impose a constraint on the label that is matched
with n4. n4 is, however, matched with n2, as the whole np3/n4 is an argument of
(s0/(np1/n2)). This could be solved again by adding special labels to (np1/n2), but
that would only push us further from an elegant and generalized solution for our
constraints.

4.5.3 Indexed fLG

The indexed fLG system that was introduced in section 3.3 provided a major im-
provement in the running time of the parsing algorithm. Without the restriction on
the span of a hole, any possible combination is checked: only the unify_in and
unify_out predicates restricted the order of the final goal item. Adding the in-
dices to my code turned out to be an easy task. The structure of the parser remained
intact: only the unfolding and residuation rules had to be adjusted. Unfolding now
takes an extra argument that represents the span of the formula that is unfolded.
When unfolding a hypothesis, this span consists of two unbound variables. Figure
4.2 shows the unfolding of thinks, generated by the parser. Figure 4.3 shows the
unfolding and unification of the sentence "everyone left".

npC ` np0 s1 ` sD
Anp30 \ AsB1 ` Anp3C · \ · AsBD

(\L)

....
4EB ` 4sB2
E ` s2

⇁

3(
(Anp30 \ AsB1)

)B
/ 4sB2 ` 3(

(Anp3C · \ · AsBD)
)B · / · 4EB

(/L)

3(
(Anp30 \ AsB1)

)B
/ 4sB2 `

3(
(Anp3C · \ · AsBD)

)B · / · 4EB
↼

FIGURE 4.2: The unfolding of thinks, with type (np\s)/s. np is posi-
tive, s is negative.

Chapter 4. A logic programming implementation 45

npB ` np3 s4 ` sC
Anp33 \ As44 ` Anp3B · \ · As4C

(\L)

Anp33 \ As44 ` Anp3B · \ · As4C
↼

....
AnpB0 ` AIB

np0 ` I
↽

nH ` n1

AnpB0 / AnB1 ` AIB · / · AnBH

(/L)

AnpB0 / AnB1 ` AIB · / · AnBH
↼

....
3(A(

(AnpB0 / AnB1)
)A · ⊗ · CnD2

)4 ` 3E4

3(A(
(AnpB0 / AnB1)

)A ⊗ CnD2
)4 ` 3E4

⊗L

np0 ` np3 s4 ` s5

np3\s4 ` np0 · \ · s5
(\L)

np3\s4 ` np0 · \ · s5
↼

np0 · ⊗ · (np3\s4) ` s5
rp

np0 ` s5 · / · (np3\s4)
rp

np0 ` s5 · / · (np3\s4)
↽

n2 ` n1

np0/n1 ` (s5 · / · (np3\s4)) · / · n2
(/L)

np0/n1 ` (s5 · / · (np3\s4)) · / · n2
↼

(np0/n1) · ⊗ · n2 ` s5 · / · (np3\s4)
rp

((np0/n1) · ⊗ · n2) · ⊗ · (np3\s4) ` s5
rp

(np0/n1)⊗ n2 ` s5 · / · (np3\s4)
(⊗L)

((np0/n1)⊗ n2) · ⊗ · (np3\s4) ` s5
rp

FIGURE 4.3: The unfolding and unification for the sentence "everyone
left", where everyone has the type (np/n) ⊗ n and left np\s. Note that
the unfoldings (in red and blue) are connected by residual rules (in
black). The hypothesis of everyone is connected by a residual rule too.

46

Chapter 5

Conclusion

I have provided a parsing method for the focused Lambek-Grishin calculus that is
able to parse an unstructured input sequent in a bottom-up fashion. We achieved
this by dividing the parsing procedure into an unfolding and a parsing phase. The
whole procedure was presented as a parsing system, a formal notion that enabled
us to define the parsing steps in a clear and abstract manner. In the unfolding phase
each logical formula is transformed into a partial proof tree: a proof tree in which
some branches can be unified with other proof trees. This unfolding phase can be
computed independently of the parsing phase. The unfolding of a formula is a deter-
ministic process, which means that each formula can only be assigned to one partial
proof tree. After each formula has been unfolded, the obtained items are combined
in the parsing phase. This is done bottom-up: at each step we either combine two
items if they are eligible for unification, or we manipulate the partial proof tree of an
item by an inference rule in our logical system.

The method that was presented in section 3.2 did not take the input order into
account during parsing. Only at the end of the whole procedure it was checked
whether the derived logical structure corresponded with the initial input string.
Therefore I presented a system in which the span of a formula in the input string
was part of the unfolding and parsing process. This approach lead to a significant
amelioration of the efficiency of our parser.

The parsing system of chapter 3 was implemented in the logic programming lan-
guage Prolog. This implementation roughly follows the same parsing steps that
were defined formally. The declarative nature of Prolog turned out to be well-suited
for our deductive parsing approach, and the unification mechanisms of the language
provided an elegant solution to the combination of two unfolded formulas.

There is, however, a considerable amount of work left that needs to be finished.
First of all, an analysis of the time complexity of our system would provide more
insight into the complexity of a parsing procedure for the Lambek-Grishin calculus.
The soundness and completeness of the system should both be proved. The pre-
sentation of our parsing method as a formally defined parsing system will provide
a solid foundation for proving the correctness of our system. The link between the
Partial Proof Trees of section 3.4 might provide an insight into the properties of pars-
ing system. The parsing procedure was presented as a form of CYK parsing, which
means that a form of tabulation might be added to the system to increase its effi-
ciency. Extending the inferences of the calculus with the indexed span of a formula
left some issues open for discussion. The non-continuous nature of LG turned out to
be problematic for our indexed extension. By raising these issues, I aim to facilitate
the development of a complete indexed system.

47

Bibliography

Andreoli, Jean-Marc (1992). “Logic Programming with Focusing Proofs in Linear
Logic”. In: Journal of Logic and Computation 2.3, p. 297.

Bastenhof, Arno (2010). “Tableaux for the Lambek-Grishin calculus”. In: CoRR abs/1009.3238.

Benthem, Johan van (1983). “The semantics of variety in categorial grammar”. In:
Technical Report 83.29. Revised version in W. Buszkowski et al. (1988).

Bransen, Jeroen (2012). “The Lambek-Grishin calculus is NP-complete”. In: Formal
Grammar. Springer, Berlin, Heidelberg, pp. 33–49.

Brough, Tara, Laura Ciobanu, and Murray Elder (2014). “Permutations of context-
free and indexed languages”. In: CoRR abs/1412.5512.

Capelletti, Matteo (2007). Parsing with Structure-preserving Categorial Grammars. LOT
international series. LOT. ISBN: 9789078328339.

Chaudhuri, Kaustuv, Frank Pfenning, and Greg Price (2008). “A Logical Characteri-
zation of Forward and Backward Chaining in the Inverse Method”. In: Journal of
Automated Reasoning 40.2, pp. 133–177. ISSN: 1573-0670.

Chomsky, Noam (1956). “Three models for the description of language”. In: IRE
Transactions on Information Theory 2.3, pp. 113–124.

— (1957). Syntactic Structures. The Hague: Mouton and Co.

— (1959). “On certain formal properties of grammars”. In: Information and Control
2.2, pp. 137 –167.

Clark, Stephen (2015). “Vector Space Models of Lexical Meaning”. In: The Handbook
of Contemporary Semantic Theory. John Wiley and Sons, Ltd, pp. 493–522. ISBN:
9781118882139.

Dost, Sjoerd N. (2013). “Typelogical Proof Nets in Python-Graphical Lambek-Grishin
Calculus”. B.Sc. thesis.

Girard, Jean-Yves (1987). “Linear Logic”. In: Theoretical Computer Science 50.1, pp. 1–
102. ISSN: 0304-3975.

Goré, Rajeev (1998). “Substructural logics on display”. In: Logic Journal of IGPL 6.3,
pp. 451–504.

Hendriks, H. (1993). Studied Flexibility: Categories and Types in Syntax and Semantics.
ILLC dissertation series. Institute for Logic, Language and Computation, Uni-
versiteit van Amsterdam. ISBN: 9789074795012.

Hopcroft, John E. and Jeff D. Ullman (1979). Introduction to Automata Theory, Lan-
guages, and Computation. 1st. Addison-Wesley Publishing Company.

Huybregts, Rini (1984). “The weak inadequacy of context-free phrase structure gram-
mars”. In: Van Periferie naar Kern. Ed. by G. de Haan, M. Trommelen, and W.
Zonneveld.

BIBLIOGRAPHY 48

Joshi, Aravind K. and Seth Kulick (1997). “Partial Proof Trees as Building Blocks
for a Categorial Grammar”. In: Linguistics and Philosophy 20.6, pp. 637–667. ISSN:
1573-0549.

Joshi, Aravind K., Seth Kulick, and Natasha Kurtonina (1998). “An LTAG Perspec-
tive on Categorial Inference”. In: LACL. Vol. 2014. Lecture Notes in Computer
Science. Springer, pp. 90–105.

Joshi, Aravind K. and Yves Schabes (1997). “Handbook of Formal Languages, Vol. 3”.
In: ed. by Grzegorz Rozenberg and Arto Salomaa. New York, NY, USA: Springer-
Verlag New York, Inc. Chap. Tree-adjoining Grammars, pp. 69–123. ISBN: 3-540-
60649-1.

Kallmeyer, Laura (2010). Parsing Beyond Context-Free Grammars. 1st. Springer Pub-
lishing Company, Incorporated.

Kandulski, Maciej (1988). “Phrase Structure Languages Generated by Categorial Gram-
mars With Product”. In: Mathematical Logic Quarterly 34.4, pp. 373–383. ISSN:
1521-3870.

Kanovich, Max I. (1994). “The Complexity of Horn Fragments of Linear Logic”. In:
Ann. Pure Appl. Logic 69.2-3, pp. 195–241.

Kurtonina, Natasha and Michael Moortgat (1997). “Specifying Syntactic Structures”.
In: ed. by Patrick Blackburn and Maarten de Rijke. Stanford, CA, USA: Center for
the Study of Language and Information. Chap. Structural Control, pp. 75–113.
ISBN: 1-57586-085-6.

Lambek, Joachim (1958). “The Mathematics of Sentence Structure”. In: Americal Math-
ematical Monthly 65, pp. 154–170.

Lambek, Joachim (1961). “On the Calculus of Syntactic Types”. In: Structure of Lan-
guage and its Mathematical Aspects. Ed. by R. Jacobsen. Proceedings of Symposia
in Applied Mathematics, XII. American Mathematical Society.

Melissen, Matthijs (2009). “The Generative Capacity of the Lambek-Grishin Calcu-
lus: A New Lower Bound”. In: FG. Vol. 5591. Lecture Notes in Computer Science.
Springer, pp. 118–132.

Montague, Richard (1970). “Pragmatics and Intensional Logic”. In: Synthese 22.1/2,
pp. 68–94. ISSN: 00397857, 15730964.

Moortgat, Michael (2009). “Symmetric Categorial Grammar”. In: J. Philosophical Logic
38.6, pp. 681–710.

— (2014). “Typelogical Grammar”. In: The Stanford Encyclopedia of Philosophy. Ed. by
Edward N. Zalta. Spring 2014. Metaphysics Research Lab, Stanford University.

Moortgat, Michael and Richard Moot (2011). “Proof nets for the Lambek-Grishin
calculus”. In: CoRR abs/1112.6384.

Moortgat, Michael and Richard Oehrle (1999). “Proof nets for the grammatical base
logic”. In: Dynamic Perspectives in Logic and Linguistics. Ed. by V.M. Abrusci, C.
Casadio, and G. Sandri.

Moot, Richard (2002). “Proof Nets for Linguistic Analysis”. PhD Thesis. Utrecht Uni-
versity.

— (2014). “Extended Lambek Calculi and First-Order Linear Logic”. In: Categories
and Types in Logic, Language, and Physics: Essays Dedicated to Jim Lambek on the

BIBLIOGRAPHY 49

Occasion of His 90th Birthday. Ed. by Claudia Casadio et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 297–330. ISBN: 978-3-642-54789-8.

Moot, Richard (2015). “Comparing and evaluating extended Lambek calculi”. In:
CoRR abs/1506.05561.

Moot, Richard and Christian Retoré (2012). The Logic of Categorial Grammars: A De-
ductive Account of Natural Language Syntax and Semantics. FoLLI-LNCS. Springer,
p. 322.

O’Keefe, Richard A. (1990). The Craft of Prolog. Cambridge, MA, USA: MIT Press.
ISBN: 0-262-15039-5.

Pentus, Mati (1997). “Product-Free Lambek Calculus and Context-Free Grammars”.
In: Journal of Symbolic Logic 62.2, pp. 648–660.

— (2006). “Lambek calculus is NP-complete”. In: Theor. Comput. Sci. 357.1-3, pp. 186–
201.

Pereira, Fernando CN and Stuart M Shieber (2002). Prolog and natural-language anal-
ysis. Microtome Publishing.

Shieber, Stuart M. (1985). “Evidence against the context-freeness of natural language”.
In: Linguistics and Philosophy 8.3, pp. 333–343.

Shieber, Stuart M, Yves Schabes, and Fernando CN Pereira (1995). “Principles and
implementation of deductive parsing”. In: The Journal of logic programming 24.1,
pp. 3–36.

Sikkel, N. (1993). “Parsing Schemata”. PhD Thesis. University of Twente, p. 412.
ISBN: 90-9006688-8.

Steedman, Mark (2000). The Syntactic Process. Cambridge, MA, USA: MIT Press. ISBN:
0-262-19420-1.

van Benthem, Johan (1995). Language in Action: Categories, Lambdas and Dynamic Logic.
North-Holland. ISBN: 9780262720243.

Whitman, Neil (2004). Category neutrality: A type-logical investigation. Routledge.

Wijnholds, Gijs (2014). “Categorical foundations for extended compositional distri-
butional models of meaning”. M.Sc. thesis. Universiteit van Amsterdam.

50

Appendix A

Prolog parser

Parsing

% A bottom-up parser for the focused Lambek-Grishin Calculus (fLG)
2 % Bachelor thesis by Jaap Jumelet (2017)
% Under supervision of prof. dr. Michael Moortgat

4

:- dynamic at_label/1,constraints/1.
6 :- style_check(-discontiguous).
:- [unification],[unfolding],[latex],[lexicon].

8

10 :- retractall(at_label(_)),
assert(at_label(0)),

12 retractall(constraints(_)),
assert(constraints(false)).

14

reset_labels :-
16 retractall(at_label(_)),assert(at_label(0)).

18 no_constraints :-
retractall(constraints(_)),

20 assert(constraints(false)).
constraints :-

22 retractall(constraints(_)),
assert(constraints(true)).

24

/*===
26 Bottom-up Parsing

===*/
28

% example input:
30 % ?- sen(S), parse(0,S,s). "everyone thinks some teacher likes bob"

% ?- parse(0,dia(box(dia(box(a)))),dia(box(a))). <- 2 derivations
32

%%% parse(Focus, In, Out)
34 %%% =====================

%%%
36 %%% Focus ==> l,0, r (left, neutral, right)

%%% In, Out ==> 2 lists of lexical items or formulas, or a single structure/formula
38 %%%

40 parse(F, In, Out) :-
reset_labels,

42

Appendix A. Prolog parser 51

% Create all unfolded formulas
44 get_in_out(In, Out, In2, Out2, Sentence, IO-Goal),

get_unfolds(in, 0, In2, InUnfolds, InLinks-[]),
46

(IO = in ->
48 make_goal(IO-Goal, GoalUnfold, OpenHypGoals, ClosedHypGoals, GoalLinks-InLinks),

get_unfolds(out, 0, Out2, OutUnfolds, Links-GoalLinks)
50 ;

get_unfolds(out, 0, Out2, OutUnfolds, OutLinks-InLinks),
52 make_goal(IO-Goal, GoalUnfold, OpenHypGoals, ClosedHypGoals, Links-OutLinks)),

54 get_labeled_forms(in , InUnfolds , InLabeledForms),
get_labeled_forms(out , OutUnfolds , OutLabeledForms),

56 get_labeled_form(IO, GoalUnfold-_, LabeledGoal),

58 conc(InUnfolds,OutUnfolds,AllUnfolds-[]),
open_closed(AllUnfolds, OpenUnfolds-OpenHypGoals, ClosedUnfolds-ClosedHypGoals),

60

!, % Unfolding phase is deterministic
62 time(

% Unify all open gaps by linking them
64 findall(term(FinalProof,FinalLinks,UnifiedIn,UnifiedOut,SentenceTree),

((
66 unify_all_open(0, ClosedUnfolds,

OpenUnfolds,
68 GoalUnfold,

Links,
70 vdash(0, FinalIn, FinalOut)-CompleteProof-FinalLinks),

72 % Fill in the gaps that are left by atomic formulas, word order is preserved
unify_in(FinalIn, InLabeledForms, LabeledGoal, Sentence, UnifiedIn, SentenceTree,
[]-[]),

74 unify_out(FinalOut, OutLabeledForms, LabeledGoal, UnifiedOut, []),
add_init_focus(F, FinalIn, FinalOut, CompleteProof, FinalProof))),[P|Proofs])),!,

76

print_latex([P|Proofs]),tex_display.
78

80

82 % get_in_out(InitIn, InitOut, In, Out, Sentence, IOGoal-Goal)
% ==========

84 %
% For efficiency reasons, the final goal is separated from the other unfolds.

86 % IOGoal is used for the unfolding of the goal formula.

88 get_in_out([In], Out , In2 , Out2 , Sen , Goal) :-
!,get_in_out(In, Out, In2, Out2, Sen, Goal).

90 get_in_out(In ,[Out], In2 , Out2 , Sen , Goal) :-
!,get_in_out(In, Out, In2, Out2, Sen, Goal).

92 get_in_out(In , Out , In2 , Out2 , In , _-[]) :- is_list(In), is_list(Out),!,
get_forms(In, In2),

94 get_forms(Out, Out2).
get_in_out(In , Out , In2 , [] , In , out-Out) :- is_list(In) , \+is_list(Out),!,

96 get_forms(In, In2).
get_in_out(In , Out , [] , Out2 , [In], in-In) :- is_list(Out),!,

98 get_forms(Out, Out2).

Appendix A. Prolog parser 52

get_in_out(In , Out , [] ,[Out2], [In], in-In2) :-
100 get_form(In, In2) ,

(pol(In2,+) ;atomic(In2),atom_pol(In2/_ ,+)),
102 get_form(Out, Out2).

get_in_out(In , Out , [In2], [] , [In], out-Out2) :- get_form(Out, Out2), (pol(Out2,-);
atomic(Out2),atom_pol(Out2/_,-)), get_form(In, In2).

104

106 % get_unfolds(InOut, Focus, Input, Unfolds, AxiomLinks)
% ===========

108 %
% unfolds a list of formulas, and returns a difference list of unfolds and axiom links.

110

get_unfolds(_, _, [], U-U, L-L).
112 get_unfolds(IO, I, [Form], [Unfold|U]-U, Links) :-

unfold(IO, I-n, Form, Unfold, Links).
114 get_unfolds(IO, I, [Form|Forms], [Unfold|Unfolds]-U, LinksA-LinksC) :-

J is I+1,
116 unfold(IO, I-J, Form, Unfold, LinksA-LinksB),

get_unfolds(IO, J, Forms, Unfolds-U, LinksB-LinksC).
118

120 % get_forms(Input, Formula)
% =========

122 %
% Returns a formula if the input is in the lexicon, otherwise it returns the input itself

.
124

get_forms(In, Forms) :-
126 maplist(get_form, In, Forms).

get_form(Word, Formula) :-
128 lex(Word, Formula).

get_form(Formula, Formula) :-
130 \+lex(Formula, _).

132

% get_labeled_forms(IO, Unfolds, LabeledForms)
134 % =================

%
136 % Returns a list of labeled formulas, given a list of unfolded formulas.

138 get_labeled_forms(IO, [F|Fs]-_, [L|Ls]) :-
\+var(F),

140 get_labeled_form(IO, F, L),
get_labeled_forms(IO, Fs-_, Ls).

142 get_labeled_forms(_, U-U, []).

144

get_labeled_form(in, vdash(_, F, _)-_-_-_, F).
146 get_labeled_form(out, vdash(_, _, F)-_-_-_, F).

get_labeled_form(_, []-_ , []).
148 get_labeled_form(_, I-(F/M)-J, I-(F/M)-J).

150

% open_closed(Unfolds, OpenUnfolds, ClosedUnfolds)
152 % ===========

%

Appendix A. Prolog parser 53

154 % Returns 2 difference lists of open & closed unfolds.
% Closed formulas have an empty set of holes and no hypotheses.

156 % Atomic formulas are discarded at this point.

158 open_closed([], O-O, C-C).
open_closed([A-B-[]-[]|Unfolds], Open, [A-B|ClosedRest]-C) :-

160 open_closed(Unfolds, Open, ClosedRest-C).

162 open_closed([_-(_A/_M)-_|Unfolds], Open, Closed) :-
open_closed(Unfolds, Open, Closed).

164

open_closed([U-Hyps|Unfolds], [U|Open]-O, Closed-C) :-
166 open_closed(Hyps, OpenHyps-O, ClosedHyps-C),

open_closed(Unfolds, Open-OpenHyps, Closed-ClosedHyps).
168

170 % make_goal(IO-Goal, GoalUnfold, GoalOpen, GoalClosed, GoalLinks)
% =========

172 %
% Creates the unfold of the goal formula.

174 % Unfolding depends on whether the goal is compound or atomic.

176 make_goal(_-[], [], [], [], L-L).
make_goal(IO-Goal, GoalUnfold, GoalOpen, GoalClosed, GoalLinks) :-

178 compound(Goal),
make_compound_goal(IO, Goal, GoalUnfold, GoalOpen, GoalClosed, GoalLinks).

180 make_goal(IO-Goal, GoalUnfold, [], [], L-L) :-
atomic(Goal),

182 make_atomic_goal(IO, Goal, GoalUnfold).

184 make_compound_goal(IO, Goal, GoalUnfold, OpenGoals, ClosedGoals, GoalLinks) :-
unfold(IO, 0-n, Goal, GoalUnfold-Hyps, GoalLinks),

186 open_closed(Hyps, OpenGoals-[], ClosedGoals-[]).

188 make_atomic_goal(out, Goal, vdash(0, 0-X-n, 0-Goal/M-n)-H-[vdash(0, 0-X-n, 0-Goal/M-n)-H
-[]]) :-
get_label(M).

190 make_atomic_goal(in, Goal, vdash(0, 0-Goal/M-n, 0-Y-n)-H-[vdash(0, 0-Goal/M-n, 0-Y-n)-H
-[]]) :-
get_label(M).

192

194 % add_init_focus(Foc, In, Out, Proof, FinalProof)
% ==============

196 %
% Adds the initial focus of the sequent at the bottom of the proof.

198 % An initial focus for a proof that is brought into that focus already,
% means we can remove that step in the derivation.

200

add_init_focus(0, _In, _Out, Proof, Proof).
202 add_init_focus(l, _, _, fl1(Proof),Proof).

add_init_focus(r, _, _, fr1(Proof),Proof).
204

add_init_focus(l, In, _Out, Proof, fl(Proof)) :- pol(In,+).
206 add_init_focus(r, _In, Out, Proof, fr(Proof)) :- pol(Out,-).

208

Appendix A. Prolog parser 54

% unify_in(InStruct, InForms, Goal, SenList, FinalInStruct, SenStruct, Rest)
210 % ========

%
212 % unify_in/7 unifies the atomic formulas of the input (InForms) with the

% structure that is derived during the parsing process. It also builds up
214 % the sentence structure: e.g. alice*(likes*bob).

216 % If the input formula is the final goal, it is separated from the input list at
% the beginning of the parsing process.

218 unify_in(I-Goal-J, [], I-Goal-J, [W], Goal2, W, []-[]) :-
remove_indices(Goal,Goal2).

220

unify_in(I-In-J, [I-In-J|InRest], _, [W|SenRest], In2, W, InRest-SenRest) :-
222 remove_indices(In,In2).

unify_in(_-otimes0(X, Y)-_,I, _, S, otimes0(IX, IY), SX*SY, InRest2-SenRest2) :-
224 unify_in(X, I, _, S, IX, SX, InRest-SenRest),

unify_in(Y, InRest, _, SenRest, IY, SY, InRest2-SenRest2).
226

% unify_out(OutStruct, OutForms, Goal, FinalOutStruct, Rest)
228 % =========

%
230 % Similar to unify_in/7, but for out-structures (on the rhs).

232 unify_out(I-Goal-J, [], I-Goal-J, Goal2, []) :-
remove_indices(Goal,Goal2).

234 unify_out(I-Out-J, [I-Out-J|OutRest], _, Out2, OutRest) :-
remove_indices(Out,Out2).

236 unify_out(_-oplus0(X, Y)-_,O, _, oplus0(OX, OY), OutRest2) :-
unify_out(X, O, _, OX, OutRest),

238 unify_out(Y, OutRest, _, OY, OutRest2).

240

remove_indices(At/N, At/N).
242 remove_indices(_-F-_, F2) :-

remove_indices(F,F2).
244

% This could be simplified by =.., but that is heavier on computation.
246 remove_indices(otimes(A,B), otimes(A2,B2)) :-

remove_indices(A, A2),
248 remove_indices(B, B2).

remove_indices(over(A,B), over(A2,B2)) :-
250 remove_indices(A, A2),

remove_indices(B, B2).
252 remove_indices(under(A,B), under(A2,B2)) :-

remove_indices(A, A2),
254 remove_indices(B, B2).

256 remove_indices(oplus(A,B), oplus(A2,B2)) :-
remove_indices(A, A2),

258 remove_indices(B, B2).
remove_indices(oslash(A,B), oslash(A2,B2)) :-

260 remove_indices(A, A2),
remove_indices(B, B2).

262 remove_indices(obslash(A,B), obslash(A2,B2)) :-
remove_indices(A, A2),

264 remove_indices(B, B2).

Appendix A. Prolog parser 55

266 remove_indices(box(A), box(A2)) :-
remove_indices(A, A2).

268 remove_indices(dia(A), dia(A2)) :-
remove_indices(A, A2).

270

272 % aux preds

274 lift(F, under(over(s, F),s)).
form(1, under(over(s, under(np, s)),s)).

276 form(2, over(under(np, s),np)).
form(3, over(under(n, n),over(s, dia(box(np))))).

278 sen([everyone, thinks, some, teacher, likes, bob]).

280 conc(A-B,B-C,A-C).

282 printlist([]).
printlist([H|T]) :-

284 print(H),nl, nl, printlist(T).

286 % polarity: negative: mono left ; positive: mono right

288 % Polarity for indexed formulas
pol(_-X-_,P) :- pol(X,P).

290

pol(box(_),-).
292 pol(oplus(_, _),-).

pol(over(_, _),-).
294 pol(under(_, _),-).

296 pol(dia(_),+).
pol(otimes(_, _),+).

298 pol(oslash(_, _),+).
pol(obslash(_, _),+).

300

pol(A/_, Pol) :- atom_pol(A/_, Pol).
302

% atom_pol/2: choose bias for atoms (adapt to your own liking)
304

atom_pol(A/_, Pol) :- A=s -> Pol=(-) ; Pol=(+).
306

% Prints the latex output of unfolding In.
308 % Note: does not work for a hole with more than one hypothesis.

latex_unfold(IO,In) :-
310 % reset_labels,

(lex(In,Form);Form = In),!,
312 unfold(IO, 3-4, Form, U, _),

print_unfold(U),
314 tex_display,!.

Appendix A. Prolog parser 56

Unfolding

1 /*===
Unfolding

3 ===*/

5 :- style_check(-discontiguous).

7 %%% unfold(InOut, Formula, VDash-Proof-Holes-Hyps, Links)
%%% ==

9 %%%
%%% InOut ==> in, out: determines which side of the sequent is unfolded

11 %%% Formula ==> The formula that is unfolded
%%%

13 %%% VDash <== The bottom sequent with labeled atoms
%%% Proof <== The proof of the unfolded formula

15 %%% Holes <== List of holes in the proof.
%%% Holes are of the form of: VDash-Hole-Hyp,

17 %%% where Hyp is a list of hypothesis constraints.
%%% Hyps <== List of unfolded hypotheses

19 %%% Links <== A difference list of axiom links

21 unfold(_, I-J, Atom, I-Atom/M-J, L-L) :-
atomic(Atom),!,

23 get_label(M).

25 unfold(in, I-J, Formula, vdash(0, LabeledFormula, Structure)-UnfoldedProof-Holes-
HypUnfolds, Links) :-
compound(Formula),

27 init_struct(in, I-Formula-J, LabeledFormula, Structure),!,
g(in, vdash(0, LabeledFormula, Structure),UnfoldedProof, Links, Holes-[], HypUnfolds
-[]).

29

unfold(out, I-J, Formula, vdash(0, Structure, LabeledFormula)-UnfoldedProof-Holes-
HypUnfolds, Links) :-

31 compound(Formula),
init_struct(out, I-Formula-J, LabeledFormula, Structure),!,

33 g(out, vdash(0, Structure, LabeledFormula),UnfoldedProof, Links, Holes-[], HypUnfolds
-[]).

35 % Labeling of atoms uses a dynamic predicate at_label/1.
get_label(M) :-

37 at_label(M),
N is M+1,

39 retractall(at_label(_)),
assert(at_label(N)).

41

is_struct(otimes0(_,_)).
43 is_struct(over0(_,_)).

is_struct(under0(_,_)).
45 is_struct(oplus0(_,_)).

is_struct(oslash0(_,_)).
47 is_struct(obslash0(_,_)).

49 % init_struct(InOut , Symbol , Formula , LabeledFormula , Structure)
% ===========

51 %

Appendix A. Prolog parser 57

% Creates an input or output structure.
53 % The symbol is used later in the computation during the creation of the constraints.

55 % When a hypothesis is unfolded, its atoms are already labeled
init_struct(_, I-(I-At/M-J)-J, I-At/M-J, I-_VAR-J).

57

init_struct(IO, I-(I-Form-J)-J, LabeledForm, Struct) :-
59 init_struct(IO, I-Form-J, LabeledForm, Struct).

61 init_struct(IO, I-Form-J, I-LabeledForm-J, I-Struct-J) :-
get_bi_struct(IO, IOA-IOB, (I-Form-J)-A-B, LabeledForm-L_A-L_B, Struct-X-Y),

63 init_struct(IOA, A, L_A, X),
init_struct(IOB, B, L_B, Y).

65

init_struct(IO, I-Form-J, I-LabeledForm-J, I-Struct-J) :-
67 get_un_struct(IO, (I-Form-J)-A, LabeledForm-L_A, Struct-X),

init_struct(IO, A, L_A, X).
69

% Atom labeling
71 init_struct(_, I-At-J, I-At/M-J, I-_VAR-J) :-

atomic(At),
73 get_label(M).

75 % Structures matching an in-formula
get_bi_struct(in, in-in , (_-otimes(A, B)-_)-(_-A-_)-(_-B-_) , otimes(L_A, L_B)-L_A-L_B ,

VAR--_).
77 get_bi_struct(in, in-out, (I-over(A, B)-J)-(I-A-K)-(J-B-K) , over(L_A, L_B)-L_A-L_B ,

over0(X, Y)-X-Y).
get_bi_struct(in, out-in, (J-under(A, B)-K)-(I-A-J)-(I-B-K) , under(L_A, L_B)-L_A-L_B ,

under0(X, Y)-X-Y).
79

get_bi_struct(in, in-in , (I-oplus(A, B)-K)-(I-A-J)-(J-B-K) , oplus(L_A, L_B)-L_A-L_B
, oplus0(X, Y)-X-Y).

81 get_bi_struct(in, in-out, (_-oslash(A, B)-_)-(_-A-_)-(_-B-_) , oslash(L_A, L_B)-L_A-L_B
, _VAR-_-_).

get_bi_struct(in, out-in, (_-obslash(A, B)-_)-(_-A-_)-(_-B-_) , obslash(L_A, L_B)-L_A-L_B
, _VAR-_-_).

83

get_un_struct(in, (_-dia(A)-_)-(_-A-_) , dia(L_A)-L_A , _VAR-_).
85 get_un_struct(in, (I-box(A)-J)-(I-A-J) , box(L_A)-L_A , box0(X)-X).

87 % Structures matching an out-formula
get_bi_struct(out, out-out, (I-otimes(A, B)-K)-(I-A-J)-(J-B-K) , otimes(L_A, L_B)-L_A-L_B

, otimes0(X, Y)-X-Y).
89 get_bi_struct(out, out-in , (_-over(A, B)-_)-(_-A-_)-(_-B-_) , over(L_A, L_B)-L_A-L_B

, _VAR-_-_).
get_bi_struct(out, in-out , (_-under(A, B)-_)-(_-A-_)-(_-B-_) , under(L_A, L_B)-L_A-L_B

, _VAR-_-_).
91

get_bi_struct(out, out-out, (_-oplus(A, B)-_)-(_-A-_)-(_-B-_) , oplus(L_A, L_B)-L_A-L_B
, _VAR-_-_).

93 get_bi_struct(out, out-in , (I-oslash(A, B)-J)-(I-A-K)-(J-B-K) , oslash(L_A, L_B)-L_A-
L_B , oslash0(X, Y)-X-Y).

get_bi_struct(out, in-out , (J-obslash(A, B)-K)-(I-A-J)-(I-B-K) , obslash(L_A, L_B)-L_A-
L_B , obslash0(X, Y)-X-Y).

95

get_un_struct(out, (I-dia(A)-J)-(I-A-J) , dia(L_A)-L_A , dia0(X)-X).

Appendix A. Prolog parser 58

97 get_un_struct(out, (_-box(A)-_)-(_-A-_) , box(L_A)-L_A , _VAR-_).

99

%%% g(InOut, Sequent, Proof, Symbol-Links, Holes, HypUnfolds)
101 %%% ===

%%%
103 %%% g is (originally) based on Herman Hendriks (1993) unfolding procedure.

%%% It creates a complete unfold for a given sequent, i.e. a proof,
105 %%% a dlist of axiom list, a dlist of open holes and a list of unfolded hypotheses.

107 %%% MONOTONICITY RULES %%%
g(InOut, vdash(F, Ant, Suc), Proof, LinksA-LinksC, HolesA-HolesC, HypUnfoldsA-HypUnfoldsC

) :-
109 \+var(Ant),\+var(Suc),

111 g_LGf(InOut, vdash(F, Ant, Suc), InOutA-A, InOutB-B, Proof, ProofA-ProofB),

113 g(InOutA, A, ProofA, (LinksA-LinksB), HolesA-HolesB, HypUnfoldsA-HypUnfoldsB),
g(InOutB, B, ProofB, (LinksB-LinksC), HolesB-HolesC, HypUnfoldsB-HypUnfoldsC).

115

g_LGf(in, vdash(l, I-oplus(A, B)-K, I-oplus0(X, Y)-K) , in-vdash(l, A, X) , in-vdash(l,
B, Y) , oplus(ProofA, ProofB), ProofA-ProofB).

117 g_LGf(in, vdash(l, I-over(B, A)-J , I-over0(Y, X)-J) , in-vdash(l, B, Y) , out-vdash(r,
X, A) , over(ProofA, ProofB) , ProofA-ProofB).

g_LGf(in, vdash(l, J-under(A, B)-K, J-under0(X, Y)-K) , out-vdash(r, X, A) , in-vdash(l,
B, Y) , under(ProofA, ProofB), ProofA-ProofB).

119

g_LGf(out, vdash(r, I-otimes0(X, Y)-K , I-otimes(A, B)-K) , out-vdash(r, X, A) , out-
vdash(r, Y, B) , otimes(ProofA, ProofB) , ProofA-ProofB).

121 g_LGf(out, vdash(r, I-oslash0(X, Y)-J , I-oslash(A, B)-J) , out-vdash(r, X, A) , in-
vdash(l, B, Y) , oslash(ProofA, ProofB) , ProofA-ProofB).

g_LGf(out, vdash(r, J-obslash0(Y, X)-K, J-obslash(B, A)-K) , in-vdash(l, B, Y) , out-
vdash(r, X, A) , obslash(ProofA, ProofB) , ProofA-ProofB).

123

% box L, dia R
125 g(in, vdash(l, I-A-J, I-Y-J), box(Proof),Links, Holes, HypUnfolds) :-

\+var(A) , \+var(Y) ,
127 A = box(A2) , Y = box0(Y2) ,

g(in, vdash(l, A2, Y2),Proof, Links, Holes, HypUnfolds).
129

g(out, vdash(r, I-X-J, I-A-J), dia(Proof), Links, Holes, HypUnfolds) :-
131 \+var(X) , \+var(A) ,

X = dia0(X2) , A = dia(A2) ,
133 g(out, vdash(r, X2, A2),Proof, Links, Holes, HypUnfolds).

135 %%% (DE)FOCUSING %%%
g(Pol, vdash(0, A, Y), fl1(Proof), Links, Holes, HypUnfolds) :-

137 not_var(A), pol(A,-),
g(Pol, vdash(l, A, Y),Proof, Links, Holes, HypUnfolds).

139 g(Pol, vdash(r, X, A),fr(Proof), Links, Holes, HypUnfolds) :-
not_var(A), pol(A,-),

141 g(Pol, vdash(0, X, A),Proof, Links, Holes, HypUnfolds).

143 g(Pol, vdash(0, X, A),fr1(Proof),Links, Holes, HypUnfolds) :-
not_var(A), pol(A,+),

145 g(Pol, vdash(r, X, A),Proof, Links, Holes, HypUnfolds).
g(Pol, vdash(l, A, Y),fl(Proof), Links, Holes, HypUnfolds) :-

Appendix A. Prolog parser 59

147 not_var(A), pol(A,+),
g(Pol, vdash(0, A, Y),Proof, Links, Holes, HypUnfolds).

149

151 %%% (CO)AXIOMS %%%
% Ax - N is unbound

153 g(in, vdash(l, I-(At/M)-J, I-(At/N)-J), idl(At, M, N), [M/N|L]-L, H-H, Hyps-Hyps) :-
\+var(M),

155 atom_pol(At/M,-).

157 % CoAx - M is unbound
g(out, vdash(r, I-(At/M)-J, I-(At/N)-J), idr(At, M, N), [M/N|L]-L, H-H, Hyps-Hyps) :-

159 \+var(N),
atom_pol(At/N,+).

161

163 %%% OPEN SUBPROOFS / HYPOTHESES %%%
% Negative structure on an out-position (RHS of the sequent)

165 g(out, vdash(0, X, Y), ProofHole, Links, Hole, HypUnfolds) :-
is_var(X),

167 pol(Y,-),
findall_unfolds(out, Y, StructY, Links, HypUnfolds, HypConsts-[]),

169 make_hyp_hole(vdash(0, X, StructY), ProofHole, HypConsts, Hole).

171 % Positive formula on an in-position (LHS of the sequent)
g(in, vdash(0, X, Y), ProofHole, Links, Hole, HypUnfolds) :-

173 is_var(Y),
pol(X,+),

175 findall_unfolds(in, X, StructX, Links, HypUnfolds, HypConsts-[]),
make_hyp_hole(vdash(0, StructX, Y), ProofHole, HypConsts, Hole).

177

179 % make_hyp_hole(Sequent, ProofHole, Consts, Hole)
% =============

181 %
% Adds the hypotheses constraints to the complete hole.

183

make_hyp_hole(Struct, ProofHole, HypConsts, [Struct-ProofHole-HypConsts|H]-H).
185

187 % findall_unfolds(InOut, Sym, Sequent, Structure, Links, Unfolds, Consts)
% ===============

189 %
% Finds and unfolds all formulas that are situated on a position (in/out) on which

191 % they can be unfolded. Also returns an updated list of axiom links and a list of
% hypotheses constraints that are added to the hole of the initial unfold.

193

findall_unfolds(in, I-dia(A)-J, I-dia0(X)-J, Links, Unfolds, Consts) :-
195 findall_unfolds(in , A, X, Links, Unfolds, Consts).

findall_unfolds(out, I-box(A)-J, I-box0(X)-J, Links, Unfolds, Consts) :-
197 findall_unfolds(out, A, X, Links, Unfolds, Consts).

findall_unfolds(IO, I-Form-J, I-Struct-J, LinksA-LinksC, UnfoldsA-UnfoldsC, ConstsA-
ConstsC) :-

199 \+var(Form),
get_arg(IO, Form-A-B, Struct-X-Y, IOA, IOB),

201

findall_unfolds(IOA , A, X, LinksA-LinksB, UnfoldsA-UnfoldsB , ConstsA-ConstsB),

Appendix A. Prolog parser 60

203 findall_unfolds(IOB , B, Y, LinksB-LinksC, UnfoldsB-UnfoldsC , ConstsB-ConstsC).

205 findall_unfolds(out, I-Form-J, I-Form-J, HypLinks, [Bottom-Proof-Holes-Hyps|U]-U, [Proof|
P]-P) :-
is_compound(Form),pol(Form,+),

207 unfold(out, I-I, Form, Bottom-Proof-Holes-Hyps, HypLinks).

209 findall_unfolds(in, I-Form-J, I-Form-J, HypLinks, [Bottom-Proof-Holes-Hyps|U]-U, [Proof|P
]-P) :-
is_compound(Form),pol(Form,-),

211 unfold(in, I-I, Form, Bottom-Proof-Holes-Hyps, HypLinks).

213 findall_unfolds(_, I-At/M-J, I-At/M-J, L-L, U-U, P-P).

215

get_arg(in, otimes(A, B)-A-B , otimes0(X, Y)-X-Y , in , in).
217 get_arg(in, oslash(A, B)-A-B , oslash0(X, Y)-X-Y , in , out).

get_arg(in, obslash(A, B)-A-B , obslash0(X, Y)-X-Y , out , in).
219

get_arg(out, oplus(A, B)-A-B , oplus0(X, Y)-X-Y , out , out).
221 get_arg(out, under(A, B)-A-B , under0(X, Y)-X-Y , in , out).

get_arg(out, over(A, B)-A-B , over0(X, Y)-X-Y , out , in).
223

% Indexed structure vars.
225 is_var(_-X-_) :- var(X).

not_var(_-X-_) :- \+var(X).
227

% Labeled atoms are compound too (e.g. np/0)
229 is_compound(Compound) :-

compound(Compound),
231 Compound \= _/_.

Appendix A. Prolog parser 61

Unification

1 /*===
Unification

3 ===*/

5 :- style_check(-discontiguous).

7 %%% unify_all_open(N, Closed, Open, Goal, FinalBottom-FinalProof-FinalLinks)
%%% ==

9 %%%
%%% N ==> Index to prevent spurious ambiguity, and adds efficiency

11 %%% Closed ==> List of closed unfolds
%%% Open ==> List of open unfolds

13 %%% Goal ==> The unfolded goal formula. Only added when
%%% there is just one closed or open unfold left.

15 %%%
%%% FinalBottom-FinalProof-FinalLinks

17 %%% <== Tuple of the completely unified proof,
%%% final bottomsequent and list of axiom links.

19

% Case for atomic axioms like np |- np.
21 unify_all_open(_, [], [], vdash(0,0-A-n,0-B-n)-FProof-GHoles, Links, vdash(0,0-A-n,0-B-n)

-FProof-FLinks) :-
focus_shift(vdash(0,0-A-n,0-B-n)-FProof-GHoles, Links, FLinks).

23

% The cases when there isn’t one unfolded goal, but two lists as input/output.
25 unify_all_open(_, [CBottom-CProof], [], [], FLinks, vdash(0,0-A-n,0-B-n)-FProof-FLinks)

:-
residuate(CBottom-CProof, vdash(0,0-A-n,0-B-n)-FProof).

27

unify_all_open(_, [], [Bottom-Proof-OHoles], [], Links, vdash(0,0-A-n,0-B-n)-FProof-
FLinks) :-

29 focus_shift(Bottom-Proof-OHoles, Links, FLinks),
residuate(Bottom-Proof,vdash(0,0-A-n,0-B-n)-FProof).

31

% Keeps resididuating until a sequent of the form
33 % otimes0(A,B) |- oplus0(C,D) is obtained.

residuate(vdash(0, 0-otimes0(A,B)-n, 0-oplus0(X,Y)-n)-P, vdash(0, 0-otimes0(A,B)-n, 0-
oplus0(X,Y)-n)-P).

35 residuate(vdash(0, A, B)-Proof, vdash(0,0-A-n,0-B-n)-FProof) :-
rule(vdash(0, A, B),vdash(0, A2, B2),Proof, NewProof),

37 residuate(vdash(0, A2, B2)-NewProof, vdash(0,0-A-n,0-B-n)-FProof).

39 % Final step with one closed unfold left, which is unified with the open Goal.
unify_all_open(N, [CBottom-CProof], [], Goal, FLinks, vdash(0,0-A-n,0-B-n)-FProof-FLinks)

:-
41 open_goal(Goal),

unify_open(N, _, CBottom, [Goal], CProof, FLinks, vdash(0,0-A-n,0-B-n)-FProof-[]-[]).
43

% One open unfold left, that is focus shifted.
45 unify_all_open(N, [], [OBottom-OProof-Holes], Goal, Links, vdash(0,0-A-n,0-B-n)-FProof-

FLinks) :-
open_goal(Goal),

47 focus_shift(OBottom-OProof-Holes, Links, FLinks),
unify_open(N, _, OBottom, [Goal], OProof, FLinks, vdash(0,0-A-n,0-B-n)-FProof-[]-[]).

49

Appendix A. Prolog parser 62

% An open goal has a non-empty set of holes.
51 open_goal(_-_-[_|_]).

53 % The goal formula can contain holes too, and can be focus shifted.
unify_all_open(N, [], [Open], GBottom-GProof-[GH|GHoles], Links, FinalBottom-FinalProof-

FinalLinks) :-
55 focus_shift(GBottom-GProof-[GH|GHoles], Links, FinalLinks),

unify_open(N, _, GBottom, [Open], GProof, FinalLinks, FinalBottom-FinalProof-[]-[]).
57

% Closed goal that is unified with an open unfold.
59 unify_all_open(N, [], [Open], GBottom-GProof-[], FinalLinks, FinalBottom-FinalProof-

FinalLinks) :-
unify_open(N, _, GBottom, [Open], GProof, FinalLinks, FinalBottom-FinalProof-[]-[]).

61

% Recursive case: the closed unfold is unified and the updated list of unfolds is passed
on.

63 unify_all_open(N, [ClosedBottom-ClosedProof|ClosedRest], [O1|AllOpen], Goal, Links,
Unified) :-
unify_open(N, N1, ClosedBottom, [O1|AllOpen], ClosedProof, Links, NewUnified-
NewOpenRest),

65 new_closed_open(NewUnified, ClosedRest, NewOpenRest, NewClosed, NewOpen),
unify_all_open(N1, NewClosed, NewOpen, Goal, Links, Unified).

67

% If there are no closed unfolds left, an open unfold is chosen using the index N.
69 % If this unfold can be focus shifted (ergo it becomes a closed unfold),

% it is then unified with the other open unfolds.
71 unify_all_open(N, [], [O1, O2|AllOpen], Goal, Links, Unified) :-

73 nth0(N, [O1, O2|AllOpen], Bottom-Proof-Holes, OpenRest),

75 focus_shift(Bottom-Proof-Holes, Links, NewLinks),

77 unify_open(N, N1, Bottom, OpenRest, Proof, NewLinks, (NewBottom-NewProof-NewHoles)-
NewOpenRest),

79 new_closed_open(NewBottom-NewProof-NewHoles, [], NewOpenRest, NewClosed, NewOpen),

81 unify_all_open(N1, NewClosed, NewOpen, Goal, NewLinks, Unified).

83 % Not every open sequent can be focus shifted, and not every open sequent
% that can be shifted, has to be shifted.

85 unify_all_open(N, [], [O1, O2|AllOpen], Goal, Links, Unified) :-
N1 is N+1, length([O1, O2|AllOpen], L),N1<L,

87 unify_all_open(N1, [], [O1, O2|AllOpen], Goal, Links, Unified).

89 % New unfolds are added to the end of the list of open unfolds
% if they still contain holes.

91 new_closed_open(Bottom-Proof-[], Closed, Open, [Bottom-Proof|Closed], Open).
new_closed_open(Bottom-Proof-[H|Holes], Closed, Open, Closed, NewOpen) :-

93 append(Open, [Bottom-Proof-[H|Holes]], NewOpen).

95

% focus_shift(Unfold, OldLinks, NewLinks)
97 % ===========

%
99 % Focus shifts all holes of an open unfold, and updates the links.

Appendix A. Prolog parser 63

101 focus_shift(_-_-[], L, L).
focus_shift(Bottom-Proof-[vdash(0, _-At/M-_, _-At/N-_)-fr1(idr(At, M, N))-[]|Holes],

Links, [M/N|NewLinks]) :-
103 \+var(M),

atom_pol(At/M,+),
105 focus_shift(Bottom-Proof-Holes, Links, NewLinks).

focus_shift(Bottom-Proof-[vdash(0, _-At/M-_, _-At/N-_)-fl1(idl(At, M, N))-[]|Holes],
Links, [M/N|NewLinks]) :-

107 \+var(N),
atom_pol(At/M,-),

109 focus_shift(Bottom-Proof-Holes, Links, NewLinks).

111

%%% unify_open(N, N1, Sequent, Open, SubProof, Constraints, NewUnfold-OpenRest)
113 %%% ==

%%%
115 %%% N, N1 ==> Indices used for efficient focus shifting

%%% Sequent ==> Sequent that is unified to an open unfold
117 %%% Open ==> List of open unfolds

%%% SubProof ==> Proof that corresponds to the Sequent that is unified
119 %%% Constraints ==> Difference list of constraints

%%%
121 %%% NewUnfold-OpenRest

%%% <== The unified unfold and the list of open unfolds that are left.
123

unify_open(N, N1, vdash(F, A, B), Open, SubProof, _Links, VDash-Proof-NewHoles-OpenRest)
:-

125 nth0(I, Open, VDash-Proof-ProofHoles, OpenRest),
select(vdash(F, A, B)-SubProof-Hyps, ProofHoles, NewHoles),

127 check_hyps(Hyps, SubProof),
update_index(I, N, N1).

129

131 update_index(I, N, N) :- I >= N.
update_index(I, N, N1) :- I < N, N1 is N-1.

133

check_hyps([], _).
135 check_hyps([Hyp|Hyps], SubProof) :-

contains_hyp(SubProof, Hyp),
137 check_hyps(Hyps, SubProof).

139 % contains_term/2 in the occurs library is not sufficient:
% contains_term(test(1),over(A)) is true, as the variable A is simply unified with the

subterm.
141 % A hypothesis must be a concrete subterm of its parent argument, so I wrote my own

version.
contains_hyp(P, Hyp) :-

143 \+var(P),
P =.. [_|Args],

145 contains_hyp2(P, Args, Hyp).

147 contains_hyp2(X, _Args, Hyp) :- Hyp = X.
contains_hyp2(X, Args, Hyp) :-

149 Hyp \= X,
contains_hyp3(Args, Hyp).

151 contains_hyp3([Arg], Hyp) :-
contains_hyp(Arg, Hyp).

Appendix A. Prolog parser 64

153 contains_hyp3([Arg1, Arg2], Hyp) :-
contains_hyp(Arg1, Hyp) ->

155 true
;

157 contains_hyp(Arg2, Hyp).

159

% If unification fails, the actual structural rules of LGs are applied.
161 % Sequents are ’varred’, to prevent undesirable unification.

unify_open(N, N1, vdash(0, A, B),Open, Proof, Links, NewUnfold) :-
163 make_var(A, A2),

make_var(B, B2),
165 rule(vdash(0, A2, B2),vdash(0, A3, B3),Proof, NewProof),

unify_open(N, N1, vdash(0, A3, B3),Open, NewProof, Links, NewUnfold).
167

make_var(I-X-J, I-var(X)-J) :- var(X).
169 make_var(I-X-J, I-X-J) :- \+ var(X).

171 unvar(I-var(X)-J,I-X-J).
unvar(I-X-J, I-X-J) :- X \= var(_).

173

% rp1
175 % variables are ’unvarred’ after each rule

rule(vdash(0, X2, I-over0(I-Z-K, Y)-_), vdash(0, I-otimes0(X, Y)-K,I-Z-K), F, beta1(F))
:-

177 F \= beta(_),
unvar(X2, X).

179 rule(vdash(0, Y2, _-under0(X, I-Z-K)-K), vdash(0, I-otimes0(X, Y)-K,I-Z-K), F, gamma1(F))
:-
F \= gamma(_),

181 unvar(Y2, Y).

183 % drp1
rule(vdash(0, _-obslash0(Y, I-Z-K)-K, X2), vdash(0, I-Z-K, I-oplus0(Y, X)-K), F,

gammaplus1(F)) :-
185 F \= gammaplus(_),

unvar(X2, X).
187 rule(vdash(0, I-oslash0(I-Z-K, X)-_, Y2), vdash(0, I-Z-K, I-oplus0(Y, X)-K), F, betaplus1

(F)) :-
F \= betaplus(_),

189 unvar(Y2, Y).

191 % Postulates P1 & P2 (for rightward extraction)
rule(vdash(0, I-otimes0(I-A-J, Y)-K, Z2),vdash(0, I-otimes0(I-otimes0(I-A-J, J-B-K)-K,X-

dia0(C)-X)-K,Z),F, xr1(F)) :-
193 \+var(Y),

Y = J-otimes0(J-B-K, X-dia0(C)-X)-K,
195 unvar(Z2, Z).

rule(vdash(0, I-otimes0(Y, J-B-K)-K,Z2),vdash(0, I-otimes0(I-otimes0(A, B)-K,X-dia0(C)-X)
-K,Z),F, xr2(F)) :-

197 \+var(Y),
Y = I-otimes0(I-A-J, X-dia0(C)-X)-J,

199 unvar(Z2, Z).

201 % Display postulates for box/diamond.
rule(vdash(0, X2, I-box0(Y)-J),vdash(0, I-dia0(X)-J,Y), F, alpha1(F)) :-

203 F \= alpha(_),

Appendix A. Prolog parser 65

unvar(X2, X).
205 rule(vdash(0, I-dia0(X)-J, Y2),vdash(0, X, I-box0(Y)-J),F, alpha(F)) :-

F \= alpha1(_),
207 unvar(Y2, Y).

209 % rp
rule(vdash(0, I-otimes0(I-X-J, Y)-_, Z2), vdash(0, I-X-J, I-over0(Z, Y)-J), F, beta(F))

:-
211 F \= beta1(_),

unvar(Z2, Z).
213 rule(vdash(0, _-otimes0(X, J-Y-K)-K, Z2), vdash(0, J-Y-K, J-under0(X, Z)-K), F, gamma(F))

:-
F \= gamma1(_),

215 unvar(Z2, Z).

217 % drp
rule(vdash(0, Z2, I-oplus0(I-Y-J, X)-_),vdash(0, I-oslash0(Z, X)-J,I-Y-J), F, betaplus(F)

) :-
219 F \= betaplus1(_),

unvar(Z2, Z).
221 rule(vdash(0, Z2, _-oplus0(Y, J-X-K)-K),vdash(0, J-obslash0(Y, Z)-K,J-X-K),F, gammaplus(F

)) :-
F \= gammaplus1(_),

223 unvar(Z2, Z).

225 % g1, g2, g3, g4
rule(vdash(0, I-otimes0(I-X-J, J-Y-K)-K , I-oplus0(I-Z-L, L-W-K)-K),

227 vdash(0, L-obslash0(I-Z-L, I-X-J)-J, L-over0(L-W-K, J-Y-K)-L), F, gr1(F)).
rule(vdash(0, I-otimes0(I-X-J, J-Y-K)-K , I-oplus0(I-Z-L, L-W-K)-K),

229 vdash(0, L-obslash0(I-Z-L, J-Y-K)-K, J-under0(I-X-J, L-W-K)-K), F, gr2(F)) :-
I = J;

231 I = L.
rule(vdash(0, I-otimes0(I-X-J, J-Y-K)-K , I-oplus0(I-Z-L, L-W-K)-K),

233 vdash(0, J-oslash0(J-Y-K, L-W-K)-L , J-under0(I-X-J, I-Z-L)-L), F, gr3(F)).
rule(vdash(0, I-otimes0(I-X-J, J-Y-K)-K , I-oplus0(I-Z-L, L-W-K)-K),

235 vdash(0, I-oslash0(I-X-J, L-W-K)-L , I-over0(I-Z-L, J-Y-K)-J), F, gr4(F)) :-
J = K;

237 L = K.

Appendix A. Prolog parser 66

Sample lexicon

1 /*===
Sample lexicon

3 ===*/
% Semantic terms are ignored, but could be added here.

5

lex(alice, np).
7 lex(bob, np).

9 lex(that, over(under(n, n),over(s, dia(box(np))))).
lex(about, over(under(n, n),np)).

11 lex(everyone, otimes(over(np, n),n)).
lex(someone, otimes(over(np, n),n)).

13 lex(some, over(np, n)).
lex(every, over(np, n)).

15 lex(teacher, n).
lex(student, n).

17 lex(unicorn, n).
lex(left, under(np, s)).

19 lex(likes, over(under(np, s),np)).
lex(thinks, over(under(np, s),s)).

21 lex(someone2, obslash(oslash(s, s),np)).
lex(everyone2, over(s, under(np, s))).

23 lex(today,under(under(np,s),under(np,s))).
lex(and,over(under(s,s),s)).

25 lex(beautiful,over(n,n)).
lex(blue,over(n,n)).

27 lex(sky,n).

29 lex(seems_to,over(under(np,s),under(np,sinf))).
lex(walk,under(over(under(np,s),under(np,sinf)),under(np,s))).

31 lex(walk2,under(np,sinf)).

	Introduction
	From rules to types
	Rewriting grammars
	Type-3: Regular Languages
	Type-2: Context-free languages
	Type-1: Context-sensitive languages
	Mildly context-sensitive languages

	Extended Typelogical Grammars
	The Lambek calculus
	Categorial Combinatory Grammars
	Extending the Lambek calculus
	The Lambek-Grishin calculus
	Expressivity and complexity of typelogical grammars
	The semantics of typelogical grammars

	Axiomatizing the Lambek-Grishin calculus
	sLG
	fLG

	Parsing as deduction for rewriting grammars
	Parsing schemata
	Pure top-down parsing
	Pure bottom-up parsing
	Earley parsing
	CYK parsing

	Properties of parsing systems

	Bottom-up parsing fLG
	Unfolding
	Unfolding L
	Unfolding fLG

	Parsing unfolded formulas
	Indexed fLG
	Parsing indexed fLG

	Partial Proof Trees

	A logic programming implementation
	Overview of the parser
	Unfolding
	Unification of unfolded formulas
	Parsing
	Parsing efficiency
	Loop detection
	Unification constraints
	Indexed fLG

	Conclusion
	Bibliography
	Prolog parser

