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Abstract

In this essay a Compositional Distributional Semantic approach is re-
searched for studying two separate phenomena in the Dutch language.
Firstly a theoretical outline for the Compositional Distributional Seman-
tics is drawn, starting with the beginning of Distributional Semantics and
ending with the current research in the expanded Compositional Distri-
butional Semantics. Then a case study focussing on the two phenomena is
outlined, performed and discussed, all while taking into account the pre-
viously described theory. The case study results show that more research
into the field is necessary.
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1 Introduction

In this paper I will discuss the use of Compositional Distributional semantics on
Dutch language. Compositional Distributional semantics is an increasingly pop-
ular subject in the field of Computer Science and Artificial Intelligence. Within
the bachelor of KI it is mainly connected to the linguistic field and in particular
the Logical Grammars course. This extension of Distributional semantics cru-
cially increases the capability of the approach when it comes to understanding
natural language, which makes intelligent uses of natural language in computer
systems more successful. The field is still very much open for more research, not
only because it has mainly been used on the English language, but also because
so far there has not been one approach that has given all the desired results,
which is often caused by a lack of sufficient data. (Marelli et al., 2014) However
there are already some competent tool-kits available for practical research in
the field, and in this paper I will use these on a Compositional Distributional
approach towards Dutch language, focussing on two often occurring phenomena
within the Dutch language, the adjectively used present participle, for exam-
ple ‘slapende student’ (sleeping student), and the relative clause, for example
‘student who sleeps’ (student die slaapt). I will do this by firstly discussing
the theory of Distributional Semantics, since this is the basis behind the en-
tire essay. Then I will elaborate on the compositional extension of this theory,
making it the Compositional Distributional Semantics. After the theoretical
background this provides I will discuss my own case study pointed towards the
two phenomena. I will do this by first sketching the outline of the case study,
after which I will discuss the results of my research. I will end this essay with
a conclusion and some suggestions for further research on the subject.

2 The Theory of Compositional Distributional
Semantics

2.1 Distributional Semantics

Distributional Semantics is an area within linguistics that categorizes semantic
similarities between linguistic items (words or morphemes) using their distribu-
tional properties taken from large databases. The main idea of distributional
semantics can be found in the distributional hypothesis: “linguistic items with
similar distributions have similar meanings.” (Firth, 1957)

This hypothesis has certain implications, as stated by Lenci:

If this is true, by inspecting a significant number of linguistic con-
texts representative of the distributional and combinatorial behavior
of a given word, we may find evidence about (some of) its semantic
properties. (Lenci, 2008)

Lenci explains that for this hypothesis, there are weak and strong versions,
depending on whether we see this evidence for semantic properties as merely



correlations or as truly causal relations: a quantitative method for semantic
analysis and lexical resource induction (weak) or a cognitive hypothesis about
the form and origin of semantic representations (strong).

The idea distributional hypothesis suggests is that we can induce (aspects of
the) meaning of words from texts. Harris first explained this idea in 1954, using
the example of ‘oculist’ and ‘eye-doctor’. he pointed out that “oculist and eye-
doctor (...) occur in almost the same environment” and more generally that “If
A and B have almost identical environments we say that they are synonyms.”
(Harris, 1954)

Over the years distributional semantics has gained popularity within the area
of computational linguistics. Here, using the distributional approach, the mean-
ing of words are computed from the distribution of words around it. These dis-
tributions are generally represented as vectors with values related to the counts
in some way, often these vectors are based on a co-occurrence matrix.

Distributional semantics’ popularity can be ascribed in some part to it’s
success within the research fields it has been used in. The theory in itself is
rather intuitive which makes it easy to implement and use, yet there have been
more negative noises around as well. Distributional semantics computes the
meaning of a word based on the distribution of words around it, without looking
at grammatical or contextual aspects of the surroundings of the word. Through
this process we lose important information about the larger linguistic structure
the word is located in. This is the main critique on distributional semantics:
because it is a ‘bag of words’-model, it is often unsuccessful when it comes
to characterizing the semantics of entire sentences or phrases. To solve this,
there has been a recent rise in the interest towards compositional distributional
semantics.

2.2 Compositional Distributional Semantics

To explain the theory of compositional distributional semantics I will discuss
the overview article by Stephen Clark et al. (Clark et al., 2016) This article
discusses important research and findings in the area of compositional distribu-
tional semantics from several researchers.

Previous attempts at the integration of formal and distributional semantics
start with the logic of formal semantics and fill the gaps with distributional
semantics. However Clark et al. themselves start with the framework of distri-
butional semantics (which is vector-based, as we saw in the previous section) and
uses operations that come natural to vectors to take care of the compositional
processes combining words into larger phrases and sentences. These processes
are for example compositionality, quantification, negation, conjunction and in-
ference. (Clark et al., 2016, p.1-2)



There are some works using simple operators on vectors, such as addition
and element-wise multiplication. These operations do not take in account word
order, because they are commutative. Yet there are many works about how these
operations can still be used for phrasal composition.(Clark et al., 2016, p.3) One
of these is the work of Mitchell and Lapata from 2008 and 2010 (Mitchell and
Lapata, 2010) (Mitchell and Lapata, 2008). Their addition function is somewhat
more elaborate and has the form p = au + fv, where o and  are weights
prescribed to the word vectors u and v. This allows for some syntax to be taken
account of: “for example, if u is the vector representation for an adjective, and
v the vector representation for a noun, v may be given a higher weight since
it provides the linguistic head for the resulting noun phrase; whereas if u is an
intransitive verb and v a noun, u may be weighted more highly.” (Clark et al.,
2016, p.4)

Mitchell and Lapata’s multiplicative model uses element-wise multiplica-
tion on vectors. These multiplicative models have previously performed well
on various phrasal composition tasks, despite the fact that these models are
intersective, so that any vector p only has a non-zero component at index i,
p;, under multiplication when the values that were multiplied to create p; are
both non-zero. Addition does not have this aspect, which means that “vector
addition emphasizes components common to u and v” (Clark et al., 2016, p.4)
( where u and v are the u and v from their addition function).

Despite the fact their simplicity, these methods have worked surprisingly well
in many occasions. Despite the “theoretical reasons to believe that the simple
nature of vector addition [...] could not hope to capture the subtleties of natural
language semantics” (Clark et al., 2016, p.5), it is difficult to create datasets
and tasks “in which vector addition does not provide an extremely competitive
baseline.” (Clark et al., 2016, p.5)

Apart from the works using the simpler operators, there have also been works
using “neural networks architectures which introduce the notion of matrices
acting as operators on pairs of vectors given as input.” (Clark et al., 2016, p.3)
For example, Socher et al. (Socher et al., 2010) use recursive neural networks
for parsing. To make this recursion possible in their neural networks, “the
output of the composition operation is a vector in the same space as the input
vectors”. (Clark et al., 2016, p.6) This makes it easier to compare words and
phrases with different syntactic types, however, the neural network loses some
of it’s flexibility when it comes to the composition operator, which means that
all word pairs, whatever their syntactic combination, are combined using the
same matrix.

This model has been extended by parametrising the combination matrix by
the type of combination to solve this flexibility problem (Hermann and Blun-
som, 2013), which has thereafter again been extended by introducing separate
matrix operators for every word and phrase. (Socher et al., 2012) Because every
word and phrase have both a matrix and a vector representation, they introduce
‘matrix-vector spaces’: “The matrix operators can be thought of as capturing



how words or phrases affect the meanings of other words or phrases, whereas
the vectors are the meanings of the words or phrases themselves.” (Clark et al.,
2016, p.7) The task handled by Socher et al. is “not syntactic parsing but pre-
dicting the sentiment of adverb-adjective pairs” (Clark et al., 2016, p.8), so that
their findings can be used on new data and give a prediction of their meanings.

The research area of compositional distributional semantics gained popular-
ity after “the perceived failure of distributed models” (Clark et al., 2016, p.8),
which was also discussed in the previous section on distributional semantics.
Clark et al. present an extension to the discussed approaches, which should
be a better performing model on compositional semantics. This extension in-
troduces the use of multi-linear algebra to represent words with more complex
syntactic types. This extension makes it possible for semantic word functions to
have more than one argument. For this extension, they use the compositional
framework from Coecke at al. (Coecke et al., 2010). In this framework, different
interpretations of distributionality are possible, not only the classical distribu-
tional where vectors are readily interpretable because their values depict the
word counts found in certain data immediately. The models also do not have
to be contextual and the distributional vector spaces may be modified.

Clark et al. set up a tensor-based use of the Compositional framework from

Coecke et al. discussed in the previous section, where they use CCG, Com-
binatory Categorial Grammar, to represent the grammatical structures they
will discuss. (Steedman, 2000) The set-up of this framework mainly includes
discussing some of the operations on grammatical structures that are possible
within this structure. These operations are exactly the kind of operations that
make this approach to semantics more complete than a merely distributional
approach, because with these operations we can take account of the contextual
and grammatical environments words are in.
Next to these operations, the tensor-based semantics ask for a translation of
the CCG types. The syntactic types provided by the CCG are translated into
semantic types using a tensor operator, to represent the fact that these semantic
types are, just like the syntactic types, functions. This translation means “re-
place all slash operators in the syntactic types with tensor product operators”.
So for example, translating the syntactic type for a transitive verb in CCG to
a tensor-based semantic type gives us the tensor S ® N ® N. To relate this
to the matrices discussed in the previous section, a transitive verb would be a
particular 3rd order tensor, in the tensor product space S ® N ® N. Here, the
function S ® N ® N, can be thought of as taking a vector in N to the right,
followed by another vector in N, returning a vector in S.

In table 1 the translations for the types in CCG grammar to semantic types,
so vector-spaces in the tensor-based framework are given. The translations for
the CCG rules to tensor-based rules are given below.



Syntax | Semantic
h(NP) | N

h(S) S

h(A/B) | h(A) ® h(B)
h(B\A) | h(B) ® h(A)

Table 1: Syntax to semantic interpretation

One of the operations on grammatical structures in their framework is com-
position. Here, composition is the operation of putting words together in such
a way that together they become a meaningful whole. In their article they use
the example of ‘red car’, where the composition of ‘red” and ‘car’, leads to the
coming together meaningfully of ‘red car’. The way their proposed framework
takes care of the composition operation is through matrix multiplication. The
usefulness of this way of composition is explained through the ‘red car’ exam-
ple. In CCG the syntactic type of an adjective in English is N/N; “an adjective
requires a noun as an argument to the right, and once it has found such a noun,
will return another noun as the result.” (Clark et al., 2016, p.10) This syntactic
type is a function, and here Clark et al. make a link towards functions in linear
algebra, in which linear maps are represented as matrices. This link was previ-
ously made by Baroni and Zamparelli (Baroni and Zamparelli, 2010), proposing
to represent meanings of adjectives as matrices. Using this idea, their composi-
tion operation multiplies the context vector for the noun with the matrix for the
adjective, creating the vector for the result noun. These matrices for adjectives
should be learned from large enough data through linear regression techniques,
which makes it possible for the generalisation of adjective-noun combinations
to appear, so that even combinations not previously seen in training data can
be meaningfully interpreted.

Next to composition, another important CCG-rule for the tensor-based frame-
work is application. In CCG, there is forward and backward application.

Forward application:
A/ BB — A
Backward application:
B®B\A —- A

These two rules are translated into tensor-contraction, which is the operation
used in the tensor-based semantics. In tensor-contraction, the Einstein summa-
tion notational convention is used. This convention simplifies equations because
it ‘implicitly assumes summations over the relevant range on every component
index that occurs twice’. (Clark et al., 2016, p.13) This convention does not
change anything in the actual operations, only in the notation of the operations.
Through summation according to this convention the tensor-contraction oper-
ation then reduces the tensor-rank by 2. The translations for application into
tensor-contraction work the same for both forward an backward application,



which results in, for example for an intransitive verb, the following transforma-
tion:

NP  NP\S
S

becomes:

N N®S
S

If this phrase containing an intransitive verb would for example be ‘student
sleeps’ (student slaapt), the Einstein summation convention’s workings can be
made visual as such:

Zi Student; sleeps;; = Student; sleeps;; = Student sleeps;

The framework we have described derives a sentence vector for any
syntactic derivation resulting in S, including those which use the
additional combinatory rules of CCG, providing a complete recipe
for the meaning composition process for any sentence. (Clark et al.,
2016, p.19)

2.2.1 Composition operations

To show that this is not the only possible approach to calculating the vectors,
the four possible ways of computing are discussed below. The first is a simple
additive model, where the vector of a phrase is found by summing up all the
vectors of the words it contains. (Paperno et al., 2014) The second is the
also simple multiplicative model, where the vector for phrases are produced
by component-wise multiplication of the vectors that belong to the words that
the phrase contains, like in figure 5. In Paperno et al., two more complicated
composition-models are described, the first being lexical function:

For the 1f (lexical function) model, we construct functional ma-
trix representations of adjectives, determiners and intransitive verbs.
These are trained using Ridge regression with generalized cross vali-
dation from corpus-extracted vectors of nouns, as input, and phrases
including those nouns as output. (Paperno et al., 2014, p.6)

The second of these more complicated models is introduced in this paper by
Paperno et al. and is called the practical lexical function. This model differs in
practice from the lexical function model by also building proposition matrices
and preparing separate subject and object matrices. They introduce this model
because the lexical function model has some known issues where, if we do not
want to lose any useful information embedded in the data, tensor dimensions
can get impractically high. They resolve this issue by designing their model so



that ‘a functional word is not represented by a single tensor of arity-dependent
order, but by a vector plus an ordered set of matrices, with one matrix for each
argument the function takes.” (Paperno et al., 2014, p.7) These last two models
use regression learning to find vectors and matrices, which means they need to
be trained and, afterwards, tested, in order to be used. They are also based on
the previously discussed tensor-contraction operation by Clark et al.

These more difficult models are more elaborate than the simpler models,
however they have the obvious downside that training and testing takes generally
more time than simple addition or multiplication, which can be a good reason to
choose for the simpler models if the data allows it. On top of this downside, there
is also the fact that the models that use regression learning do not automatically
always perform better than the simple models. Therefore, it is not always the
natural choice to use the more elaborate models for composition.

2.3 Lambek Calculus

In the Clark et al. article, the CCG grammar is used. For my essay, [ will
be using their theory and framework, however, I will do this using the Lambek
Calculus. The Lambek Calculus is a logical framework, therefore in stead of
rules, like in CCG, it is based on theorems. The theorems for composition and
combination work similarly to the rules of the CCG grammar. (Moot and Re-
toré, 2012) The types for words are also the same, however the notation of the
composition through the theorems is different. The inference rules for Lambek
calculus are shown below:

Axiom

ara 19

Theorems

A B CHD
A ®CF BeD

(Mon®)

AFB  CHD
B\C - A\D

(Mon\)

AFB  CHD
C/B+ D/A

(Mon/)

BF A\C

AeBrC (ee)

A®BFC

R
BF A\C (Resg))



(Moortgat and Oechrle, 1999)

The two phenomena I will be looking at in the case study are those of the
adjectively used present participle and the relative clause. Examples for the re-
spective phenomena are ‘sleeping student’ (slapende student) and ‘student who
sleeps’ (student die slaapt). Because the rest of the essay will focus on these two
types of phrases, I will give their derivation in Lambek Calculus as examples
for how the theorems in Lambek Calculus work below.

The deduction tree for the phrase ‘sleeping student’, where ‘sleeping’ has the
type np/np and ‘student’ has the type np:

npy — NP3  Npz — NP1
npo/np1 — nps/np2
(npo/np1) @ npa — nps3

(Mon/)
(Res/g)

The deduction tree for the phrase ‘student that sleeps’; ‘student’ has the type
np, ‘that’ has the type (np/np)/(np\s) and ‘sleeps’ has the type np\s:

npo — Np1 NP2 — NP7 np3 —» NP5 S — S4
np1\npz — npo\npz nps\s¢ — np3\s4
(np1\np2)/(np3\ss) — (npo\np7)/(nps\se)
((np1\np2)/(nps\sa)) ® (nps\ss) — npo\npr

npo ® (((np1\npz2)/(nps\sa)) ® (nps\ss)) — npz

(Mon) (Mon))
(Mon/)
(Res/g)

(Res\g))

The Lambek calculus indeed allows us to make a sound deduction for phrases
that should indeed reduce to a noun-phrase, a N P-type, as the above exam-
ples should convince us to believe. The above examples also contain indices for
the types. These indices are ascribed to each unique type and can be followed
through the derivation to later be used in the tensor-contraction, since these
indices are used in the Einstein summation convention.

In the previous section, the tensor-based semantics from Clark et al. was
discussed. The translation for this tensor-based semantics works similarly for
the Lambek Calculus types as the CCG types. For example, a verb, np\s, re-
sults in the translated function np ® s, a function that takes a vector in np to
the left and returns a vector in s. This works the same for the other types
that consist of multiple atomic types and are therefore translatable into these
functions.



Two of the combinatory functions for the tensor-based semantics are appli-
cation and composition. These are similar to the CCG rules of function appli-
cation and composition, however here I will not show them in relation to the
CCG-grammar. In the tensor-based semantics, both of these functions reduce
to tensor-contraction, an example for which is given below, with the natural
language words combined with their tensor-based types:

Student,,, sleeps (npws)

licati
Student sleepsg (application)

As shown in the example, tensor contraction reduces the amount of tensors
in the resulting type. This can be done as well for larger sentences than this
very simple example, following the same rules. As well as being used for larger
sentences, the tensor-contraction operation can also be used as the translated
operation for other operations in CCG and Lambek calculus.

3 Case Study: Present Participle and Relative
Clauses in Dutch

3.1 Outline

The above described theory of the combination of distributional and composi-
tional semantics has been researched and put into practical use by an increasing
amount of researchers the past years, however most of these instances have been
studying the effectiveness of the theory on the English language. The point of
this essay is to see how effective the theory is on Dutch language, and to study
this, I will be looking at one specific aspect of Dutch language; the similarity
of meaning between the following two phenomena, the adjectively used present
participle (bijvoeglijk gebruikt tegenwoordig deelwoord), and relative clauses
containing intransitive verbs (bijvoeglijke bijzin). An example:

Slapende student (adjectively used present participle)
Student die slaapt (relative clause)

So far, the theory of compositional distributional semantics has been discussed
with examples of short phrases consisting of a few words. The semantic value
of these phrases can be found by combining the semantic values of the words
it consists of in some manner. These semantic values will come in the form of
vectors or matrices, which are based on co-occurrence counts. The combination
of these semantic values can be done using several different composition models,
as discussed in section 2.2.1, however in this case study I will be using the tensor-
based approach by Clark et al and compare it to the simple multiplicative model.
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3.1.1 Data

The data for this case study will consist of phrases containing the phenomena
mentioned above. For each of the phenomena, an approach to finding the vector
interpretations of the entire word combination will be needed, for this will be
the end-product of the study.

For the adjectively used present participle type, this can be done rather sim-
ply by finding the vector of the words it consists of, for example ‘slapende’ (an
adjectively used present participle, which I will treat as an adjective) and ‘stu-
dent’ (noun), and combining these vectors through multiplication, producing
the combined vector of the phrases. For the adjectives in this type, I will be
using the theory that nouns are a simpler type, they will be vectors, and that
adjectives will be represented by matrices, which was also briefly discussed in
the section on the Clark et al. article. (Baroni and Zamparelli, 2010) This is
based on the idea that words are not simple loose elements, but rather functions
that take arguments to give a certain result.

For the relative clause type, the combination of the vectors might be slightly
more complicated, due to the occurrence of a relative pronoun; ‘die’ in for
example ‘student die slaapt’ (student that sleeps). Intuitively, the vector of
‘student that sleeps’ should describe the intersection of ‘students’ and ‘things
that sleep’. To find this intersection we would ideally want to use multiplication,
but the relative pronoun will have a type too complex to use this simple function
on due to the amount of dimensions it’s matrix will have. Therefore, for this
phrase type, I will be looking at the relative pronoun as a logical constant,
describing a combinatory function. This will make it possible to use the tensor-
contraction composition model and end up with a vector in the right space.

For this to work I need to find a hand-crafted value for the relative pronoun
that will work with all the data. In these type of phrases, there is a verb, which
in Lambek Calculus will be of the type np\s (this counts for intransitive verbs,
transitive verbs are of the type (np\s)/np, however for the sake of simplicity in
this essay I will be looking only at intransitive verbs). So the verb takes an np
(noun) to produce an s (sentence). We have this noun (np) on the other side
of the relative pronoun. However, we still have the relative pronoun in the way,
preventing the easy combination of the two.

We want the entire phrase to live in the same vector space as the noun, so in
NP-space, because the type of the entire combination (noun, relative pronoun
and verb) is in fact a noun phrase, an NP. However, the verb-type introduces
the phrase to the S vector-space, taking the phrase out of the NP vector-space
we want it to be in. Therefore, a logical constant value for the relative pro-
noun should take care of this problem, making the S-space disappear within
the relative clause. The logical constant that will resolve this, is of the type
(np\np)/(np\s), which will leave the phrase in the NP-space, where we want it
to be, so this will be the type for the word ‘die’.
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The semantic types in Lambek calculus for all the other word-types are
shown below. The adjectively used present participle word combination con-
sists of the following two types:

- The adjective: np/np

- The noun it modifies: np

The relative clause word combination consists of the following types:
- The verb in the subordinate clause: np\s

- The noun it modifies: np

- The relative pronoun: (np\np)/(np\s)

The composition models give a way to combine the meaning of the words
into phrase meanings. However, for this to be possible, we will first need to find
the meaning of the words themselves. These meanings are represented in the
vectors and matrices that result after manipulating the co-occurrence counts of
the words in the phrases through learning techniques. This technique will be
used to learn values for all the words in the data. (However I will not be using
the result for the relative pronoun, because of the logical constant value that
will be used for this.)

I will do this with the TensorFlow tool-kit, using their models to find word
vectors and then using these in regression learning. This is based on the idea
that the non-atomic types are in fact functions that can be learned. (Grefen-
stette et al., 2013) This learning means that the matrix for ‘sleeping’ (slapende)
will be learned from the vectors that represent ‘student’ and ‘slapende student’.
The vectors representing ‘student’ and ‘slapende student’ can be extracted from
the corpus, using TensorFlow’s word2vec model. (Abadi et al., 2016) This is
the distributional part of the case study, based on the intuition stated in section
2.1; “linguistic items with similar distributions have similar meanings.” (Firth,
1957) The learning of the matrix values is compositional.

To be able to find any reliable outcome, a large database is necessary. There-
fore, I will be using the tokenised, POS-tagged and lemmatized corpus of Dutch
sentences called Lassy Groot. (van Noord et al., 2013) This database will be
filtered for the sentences containing the mentioned phenomena using XPath
queries, which will result in a new database for each of the phenomena. The
used XPath queries are shown below.

Adjectively used present participle:
//node[@cat=*‘np’ and node[@wvorm="‘0d’ and @positie=‘prenom’] and
node[@rel=‘hd’ and @pt="n’]|
Relative clause:
//node[@cat=‘np’ and node[@Qrel=‘hd’ and @pt=*‘n’] and node[@Qrel=‘mod’
and @Qcat="‘rel’ and node[@rel=‘rhd’ and @pt="‘vnw’] and node[@rel=‘body’
and Qcat=‘ssub’ and node[@rel=‘hd’ and Qpt="ww’]]]]

These sentences will then be the input for TensorFlow. In table 2 the sizes
of the new databases are shown.
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Adjectively used present participle | Relative Clause
261402 384771

Table 2: Sizes of the databases in amount of phrases

After finding these learned vectors and matrices for the data, I will be com-
bining them using the tensor-contraction compositional models. The scripts
I will be using for this finds the tensor interpretations for the words based on
their deduction chain in Lambek calculus, so this takes the syntactical derivation
of the phrases in account when computing. I will be using code made by M.J.
Moortgat and G.J. Wijnholds (Moortgat and Wijnholds, 2017). The code makes
a deduction in Lambek calculus of a phrase, keeping track of the axioms in the
deduction. These axioms hold information about what types belong together.
Keeping track of these axioms makes it possible to link the axioms, therefore
link the types. After linking these axioms, the linked axioms can be reduced
using the Einstein notation to get a much smaller result term, whereas without
this axiom linking the resulting map would be much larger and less easily usable.

The code as it is written by Moortgat and Wijnholds takes an arbitrary
matrix for each word to begin with, however I will use the numeric values for
these matrices that I learned through regression learning. The dimensions I will
be using are based on the dimensions used in another study on Compositional
Distributional Semantics for Dutch (Tulkens et al., 2016). In their research they
use a dimension of 160 or 320 for all types, however due to the time for and size
of this research I will be using dimensions of 160 for my types. The numeric
values are the results gained from the TensorFlow scripts. It also takes a lexi-
con containing the words and their semantic types as they are in the Lambek
Calculus, which are the ones named above for each word type.

When I have found these tensor interpretations I will look at the similar-
ity of the results between the phenomena to produce an answer to the ques-
tion whether the method has given us any results worth looking further into.
Intuitively, the expected outcome is that for example the ‘slapende student’
and ‘student die slaapt’ phrases both produce similar result vectors, since their
meaning in natural language is similar as well.

3.2 Results

Firstly I have calculated the prediction-based vectors for each noun with Tensor-
Flow from my data, as well as the vectors for the noun-verb and noun-adjective
combinations. I calculated the vectors for these combinations by taking the
words it consists of and adding them together as one word, so that the Ten-
sorFlow algorithm would view them as a whole. For example, the combination
‘volgende commissie’ and ‘commissie die volgt’ would be adapted to be respec-

13



tively ‘volgende_commissie’ and ‘commissie_die_volgt’. Then I learned the ma-
trices for the verbs and adjectives based on the co-occurrence vectors. Every
atomic type has a dimension of 160, so every non-atomic type has a dimension
of (160,160), because both the verb and adjective non-atomic types consist of
two atomic types.

The value for the relative pronoun has to be hand-crafted as I stated in the
previous section, and it cannot simply be an identity matrix. This is due to
the fact that the verb lives in a np\s space, so an identity matrix would not
be able to take care of taking away the s space from the whole. Previously,
this problem has been solved by discarding the relative pronoun all together
and deciding that the s space may very well be comparable to the np space.
However, there have been some developments recently about how to handle
this problem. These developments centre around the idea of using a Frobenius
operation to let the information flow freely from the noun to the relative clause.
(Sadrzadeh et al., 2013)

In a practical sense for my case study, this means that the value for the
relative clause will be dependent on the verb that it contains, manipulating
it’s vector through the uncopying operation. This operation encodes vectors of
higher dimensions into vectors of lower dimensions into by copying the values
of the diagonal of the higher dimension vector into the lower dimension vector.

I used the Moortgat and Wijnholds code to compute the vectors for word
combinations for several examples of both phenomena, based on random test
sampling, to study their similarities.

The result vectors will be of a size 160, because the end-type will always be
np for each of the phrase-types. The test-examples I used for my sample are
the following phrases:

1. Pastoor die loopt

2. Lopende pastoor
Kinderen die schrijven
Schrijvende kinderen

Commissie die volgt

A A S

Volgende commissie

The combinations of 1 and 2, 3 and 4, 5 and 6, should have similar outcomes,
since their meaning is the same in natural spoken Dutch. The vector for the
noun is the same every time it is used, so for the outcome to be somewhat
similar, the vectors for the adjective and the verb should already be somewhat
similar. These are the vectors that have been learned from the data, and they
will make the most difference in how close the results will be to each other.
However, since they are learned from the existing data, their outcomes rely on
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the size of the example-database they are learned from. In table 3 these sizes
are shown and their differences should be taken into account when reviewing
the results.

Type of combination | Amount of combinations
’..._die_loopt’ 143

"lopende._... 1329

’..._die_schrijven’ 3

"schrijvende._...’ 45

’..._die_volgt’ 48

'volgende._...’ 40448

Table 3: Sizes of example-databases

To be able to compare their similarities, I calculated the cosine spatial dif-
ference between all vectors. This calculates the angle between the vectors,so
the lower this value, the more the result vectors of the phrases are alike. These
results are based on the more elaborate regression learning compositional ap-
proach, however, to see whether this more elaborate approach indeed gives us
more promising outcomes, I will also compare them to the results gained from
the simple multiplicative model. These results I gained by simply multiplying
the vectors for their parts, so for example for ‘student sleeps’, the multiplicative
result is gained by multiplying the vectors for ‘student’ and ‘sleeps’. The results
are in table 4 below:

Sentence combination

Regression Learning

Simple multiplication

1 and 2

1.01503573096

0.815702607733

3 and 4

0.915613827026

0.766193557366

5 and 6

0.860043399952

0.761181701691

Table 4: Cosine spatial differences between the sentences, using different com-
positional methods

The outcomes for the sentence combinations are better when they are closer
together (when their cosine spatial difference is lowest), because in natural lan-
guage, the phrases mean the same. Since their numerical results are an abstract
portrayal of their meaning in natural language, these should be also the same, or
at least similar. So according to these results, the more elaborate model based
on Clark et al.’s framework does not necessarily give us the best outcome.

This is not necessarily surprising, since it has previously been found in other
research as well that the results from simple additive and multiplicative models
are often hard to beat. However in this case, the better results for the mul-
tiplicative model can perhaps be somewhat explained by the relatively small
example datasets used for the regression learning. As stated above, the sizes
of these datasets should be taken into account when looked at the results, so
keeping in mind that the training sets for the learning of the vectors were not
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only sometimes small, but also in-consequent in size, the lower-scoring regression
learning results can be at least partly explained.

4 Conclusion

After finding the results to my own case study I firmly believe in the need for
larger case studies in the field of Compositional Distributional semantics. The
tools that were within my reach were promising, comprehensible and usable
with my data, but despite the theoretic outline of my case study being sound,
the results show that more elaborate models do not always give better results.
However, the results were also not entirely negative towards these models, con-
sidering the fact they continue to raise interesting questions that have not yet
been answered.

The theory behind the case study has been more elaborated and researched
within the field than the practical aspect, especially for the Dutch language.
However, some of the less expanded parts of the practical aspect of Composi-
tional Distributional semantics can be traced back towards some unanswered
questions within the theoretical background of the field. The main example of
these unanswered questions is the discussion around the most successful compo-
sition models, which proved to be relevant again in my own case study. There
is need for more research to give a definite answer to whether the simple multi-
plication and addition methods are significantly superior compared to the more
elaborate learning methods, and if not, why they sometimes give better results
anyway. Despite the fact that it is of course possible to try each one out for
every task within the compositional distributional semantics, I suggest more
research focussed on when each compositional method is most useful. If there
is a more conclusive answer, we might be able to decide which method to use
depending on the kind of data is being studied.

Within the practical part of the field, there is a need for larger studies on
larger databases, for multiple languages apart from English and using multiple
tools to see how their performances may differ. Currently there are different
tools for Compositional Distributional Semantic studies, however there seems
to not yet be a clear way to distinguish which tools are most successful for which
studies.

Research in the field of Compositional Distributional Semantics has so far
provided some promising results for how useful it could become for the natural
language programming task within Artificial Intelligence. Through more elabo-
rate and expansive research, the field should prove very successful not only for
a better understanding of the computability of the English language, but for all
intelligent uses of all languages in computer systems.
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