
Universiteit Utrecht

Bachelor thesis Artificial Intelligence

Heterogeneity in psychiatric disorders:
Using machine learning to predict development of mood

disorders in bipolar offspring

Suzan Stempher
3865010

15 ECTS

1st supervisor
Dr. Hugo Schnack

2nd supervisor
Prof. dr. Yoad Winter

July 3, 2017

Abstract

Heterogeneity in psychiatric disorders complicates the application of machine learning tech-
niques in psychiatry. Various causes in the brain can lead to the same mental disorder,
partitioning the patient data into several groups. In a classification task, it may be impos-
sible to separate the patients from the rest with a linear boundary. Several methods with
potential to deal with heterogeneity in data were discussed and applied to simulated data
with a heterogeneous patient group. Support vector machines (SVMs) with a radial-basis
kernel and artificial neural networks (ANNs) were able to separate the groups well, using a
non-linear separation boundary.

As a proof of principle, these machine learning methods where then used in a regression
task performed on real-world data, aiming to predict age based on brain volumes (n =
501). Significant improvements compared to the linear method were found, with the best
model (ANN) having a mean absolute error of 4.3 years. Finally, classification models were
trained on a clinical data set of children of bipolar parents (n = 140) to predict development
of mood disorders and bipolar disorder in 12 years. The linear and non-linear machine
learning approaches performed similarly; this may be caused by a lack of heterogeneity in
this particular data set. Still, accuracies ranging from 71 to 77% in predicting mood disorders
and 76 to 80% in predicting bipolar disorder were reached. With follow-up research on new
data sets, these promising results may be improved in order to apply the prognosis models
in practice.

Keywords: machine learning, psychiatry, heterogeneity, bipolar disorder, brain age, support
vector machines, neural networks.

1

Contents

1 Introduction 3
1.1 Machine learning in psychiatry . 3
1.2 Problem of heterogeneity . 4
1.3 Place in artificial intelligence . 4
1.4 Thesis structure . 5

2 Different approaches 6
2.1 Support vector machines . 6
2.2 Artificial neural networks . 10
2.3 Hydra . 11
2.4 Normative modeling . 13
2.5 Conclusion . 14

3 Simulated data 15
3.1 Data set . 15
3.2 Method . 16
3.3 Results . 16
3.4 Interpretation of a 2-input network . 18
3.5 Discussion . 20

4 Brain volume data 22
4.1 Introduction . 22
4.2 Method . 22
4.3 Results . 24
4.4 Discussion . 28

5 Bipolar offspring data 31
5.1 Introduction . 31
5.2 Method . 31
5.3 Results . 37
5.4 Discussion . 44

6 Conclusion 49

References 50

A Additional results 51

B NNSVM User Manual 58

2

Chapter 1

Introduction

1.1 Machine learning in psychiatry

The field of psychiatry is relatively new to machine learning techniques. The first studies to
use pattern recognition were published around 1991 (Van der Knaap et al. [1], Maes et al.
[2]), but it took some years before this technique was picked up by other researchers. At the
moment, the use of statistical learning methods is a very promising approach for classification
tasks. These methods, like support vector machines and especially deep neural networks, are
growing in popularity when it comes to applying artificial intelligence.

With the rise of machine learning as a method to construct models which predict and clas-
sify automatically, scientists are exploring whether these promising techniques can contribute
to the psychiatric field as well. Currently, patients are being diagnosed by professionals that
weigh symptoms and use standardized questionnaires and guidelines to come to a conclusion.
One goal of applying machine learning to psychiatry is to improve diagnosis by making use
of classification models. Ultimately, such models could make diagnosing more accurate and
more efficient.

Another goal is to improve prognosis. For many psychiatric disorders, it is essential to
start treatment as early as possible. Using machine learning, we may be able to predict future
diagnoses and severeness of illness. Patients at high risk for a disease can then be monitored
and potentially start with medication to slow down the progression of illness.

Furthermore, research is being conducted towards acquiring more knowledge of the pos-
sible presence of biomarkers in the brain underlying the psychiatric disorders. With machine
learning, especially applied to neuroimaging, patterns in the brain may be discovered that
are hard to find otherwise.

However, these goals are not easy to achieve in the psychiatric field; it is a very challenging
domain for statistical learning. Many studies suffer from a relatively low sample size compared
to other areas. In well-known machine learning areas like image recognition or artificial
intelligence in games, large data sets are usually available. In psychiatry, in contrast, it is
costly and difficult to acquire data. Patients and controls willing to participate need to be
recruited, interviewed and possibly scanned. For longitudinal studies, follow-ups are required,
with the risk of participants dropping out of the study. Combining existing data sets can be
problematic, since designs and measurement standards vary between studies.

The true labels of psychiatric data, usually diagnoses defined by specialists, pose another
challenge. Due to differences in interpretation, differing guidelines and human error, we deal
with a silver standard rather than a gold standard. A percentage of at least 10% mislabeled
cases can be assumed when working with diagnoses, depending on the disease (Regier et al.
[3]). This is a limiting factor in the maximum accuracy that can be achieved with predictive
models. The symptom variables in clinical data are determined by human experts as well
and may also suffer from mislabeling.

Lastly, a problem that arises in the domain of psychiatry is the presence of heterogeneity

3

1.2. Problem of heterogeneity 4

in data. Different causes or abnormalities in the brain may lead to the same mental disease,
subtyping patients of the same illness into subgroups. These subgroups may be positioned
in a way that makes straightforward linear separation impossible, as shown in figure 1.1.

1.2 Problem of heterogeneity

The focus in this study will lie on how to deal with heterogeneity in psychiatric data when
it comes to classification tasks. Linear methods such as support vector machines and linear
regression are often used in psychiatry, as they suffer less from small sample sizes and are rel-
atively easy to interpret. They assume, however, that the classes in the data can be separated
linearly. Because of possible heterogeneity in the symptoms or causes of the disorders, this
does not have to be the case. The use of models that are capable of separating non-linearly
can improve the accuracy on heterogeneous data. It may also help to discover patterns in the
heterogeneous nature of the diseases, which are hard to detect by hand. Therefore, in this
study, different approaches to handle heterogeneity are investigated to study their potential
in improving classification.

(a) (b) (c)

Figure 1.1: Schematic view of the problem of heterogeneity. a) The situation that is often
assumed, where the patients and healthy controls are linearly separable. b) Situation with
multiple distinct disease groups, where the optimal separation between the groups is non-
linear. c) Situation where the patient subgroups overlap with each other and with the healthy
controls as well. This scenario is most likely the closest to reality.

1.3 Place in artificial intelligence

Machine learning, a technique part of the broad field of artificial intelligence, is applied to
a relevant and practical clinical problem in this thesis. Apart from the use of computer
science to construct models, psychological interpretation of the models plays an important
part. Also, the balance between requirements like performance, interpretability and the false
positive/negative ratio is more delicate than in most machine learning areas in artificial
intelligence. Since human data is involved, ethical issues are concerned as well. When is the
accuracy high enough to apply a model in practice? How many false positives are permitted
and what is the cost of a mistake? Also a few neuroscience topics are touched, especially in
chapter 4, where volumes of brain regions are used to train predictive models. So all in all,
this study combines issues from the cognitive and the technical side of artificial intelligence.

1.4. Thesis structure 5

1.4 Thesis structure

In chapter 2, various machine learning approaches which may be suitable for tackling het-
erogeneity are described and analyzed in detail. In chapter 3 these methods are applied to
2-dimensional simulated data containing artificially added heterogeneity to test the poten-
tial of the approaches. The most promising techniques are thereafter applied to real-world
clinical data in chapters 4 and 5. Firstly, clinical brain volume data (n = 501) were used
to a person’s predict age as proof of principle of the proposed methods. Subsequently, the
prognosis of children at high familiar risk for bipolar disorder (n = 140) was predicted. In
each of these two chapters, the training process, results and implications are described in
terms of the method, results and discussion sections respectively.

In appendix A, additional tables with results from chapter 5 can be found for reference.
Appendix B consists of the user manual for the R script NNSVM that was written for the
purpose of this study and which may be reused in other machine learning studies in the
psychiatric domain.

Chapter 2

Different approaches

In this chapter, a number of classification approaches are discussed. Support Vector Ma-
chines, especially the linear ones, are widely used in psychiatry. Artificial Neural Networks
are popular in the general field of machine learning. Normative modeling and Hydra are
approaches that were specifically designed with the problem of heterogeneity in mind.

2.1 Support vector machines

Support vector machines (SVMs) are one of the most widely used machine learning technique
used in neuroimaging, especially for classifying schizophrenia (Wolfers et al. [4]). The concept
was proposed in 1992 (Boser, Guyon, and Vapnik [5]) and finds a decision boundary in feature
space, partitioning the space into two groups. Feature space in machine learning is defined
by the data columns (characteristics of the samples that are used to train a model). In figure
2.1 three examples of points in 2-dimensional feature space are shown. Each axis represents
one variable in the data.

SVMs find a decision boundary in feature space by fitting a hyperplane1 that has a
maximal margin around it containing no data points. Soft-margin SVMs allow some points
to lie within the margin under a certain penalty to allow for overlapping data. When a non-
linear decision boundary is necessary, the kernel trick can be used to transform the feature
space to higher dimensions. Since SVMs are easy to use, do not suffer from local minima and
have possibilities for both linear and non-linear classification, they are a popular method for
classification tasks.

(a) (b) (c)

Figure 2.1: Three possible linear separations, with their corresponding margins. The width
of the margin in (c) is the maximum possible in this example, which is considered optimal.

1n-dimensional generalization of a line

6

2.1. Support vector machines 7

2.1.1 Background

In this section, the basics of SVMs, kernels and cross validation are explained. Readers
familiar with these concepts may skip to a further section.

The idea of SVMs is based on the concept that a decision boundary should be chosen in
such way that the distance to the groups it is trying to separate is maximized. Since data
points are usually noisy and unseen data points may deviate from points in the training set,
this approach tries to leave as much space as possible between the decision boundary and the
groups. This concept is visualized in figure 2.1.

Only in figure (c) from 2.1 does the margin have a maximal width. The line cannot be
tilted in any way to increase the distance to the nearest data points. The points touching the
decision boundary that determine the margin are called the support vectors. In figure 2.1c,
three support vectors are present. The decision boundary is defined by a set of weights, one
for each feature in the data. The task is to find a set of weights that maximizes the margin
of the decision boundary.

Hard-margin SVM

Data points can be described as vectors in d-dimensional feature space. Let x ∈ Rd be a
data point vector where d is the amount of features, and let w ∈ Rd be the vector of weights
that needs to be learned. The intercept is called b, yielding a signal of wTx + b. If yn is the
correct label belonging to a data point xn, the point is classified correctly when

yn · (wTx + b) > 0.

The resulting weight vector is made unique by requiring that the minimum signal of the data
points is exactly 1:

min
n=1,...,N

yn · (wTx + b) = 1.

With this constraint, the size of the margin of the decision boundary is equal to 1
‖w‖ = 1√

wTw
.

To maximize the margin, 1
2wTw is minimized under the constraint of yn · (wTx + b) ≥

1 for n = 1, ..., N . The choices for 1
2wTw (easy to differentiate) and minimization (common

in optimization problems) are for convenience purposes. This minimization problem is convex,
allowing for solving with algorithms like gradient descent.

(a) (b)

Figure 2.2: a) A soft-margin SVM, allowing for points lying within the margin and possibly
for misclassifications (points lying beyond the decision boundary). The distance of points
located within the margin to the margin edges (drawn with dashed lines) is minimized by
the algorithm. b) The hinge loss function. The horizontal axis represents the distance of
a data point to the decision boundary (positive when located on the correct side, negative
otherwise), the vertical axis represents the penalty (black) and the classification error (pink).
The margin is 1 in this example.

2.1. Support vector machines 8

Soft-margin SVM

The described procedure only works for linearly separable data, while the vast majority of
data sets is not. To apply the concept of SVMs to data sets with possible overlap, it needs
to be extended and allow for misclassifications under a certain penalty.

In figure 2.2a an example of this concept is shown. There are four points that lie within
the margin, and one of them (blue) is classified incorrectly. Figure 2.2b shows the hinge loss
function, which penalizes data points for lying in the margin. Points lying outside the margin
(on the correct side) get no penalty, and the further away they get from the margin edge
closest to their group, the higher the penalty gets. The pink function shows the classification
error, which is equal to 1 when a data point lies on the wrong side of the decision boundary
and equal to 0 otherwise.

Let there be N data points and let ξn be the hinge loss of the nth data point. Now
C ·ΣN

n=1ξn, an estimated in-sample error multiplied by a parameter C, has to be minimized
in addition to 1

2wTw. So for the soft-margin SVM, the optimization problem is:

minimize
1

2
wTw + C ·

N∑
n=1

ξn

under the constraint yn · (wTxn + b) ≥ 1− ξn
ξn ≥ 0 for n = 1, ..., N

The parameter C controls the degree of regularization. A high C results in a smaller
margin, eventually approximating a hard-margin SVM. This reduces the error on the training
sample, but risks overfitting. A lower C allows for a larger margin, making the model typically
more generalizable, although it increases the error on the train data.

Kernels

The SVMs that were discussed until now are linear models, having a decision boundary
in the form of a linear hyperplane. Linear SVMs are often used because they are easy to
implement and robust to overfitting with their limited flexibility in fitting to the data. But
if the data is truly not linearly separable, models having more freedom to fit to the data
are preferred. Using a kernel function, it is possible to transform feature space to higher
dimensions, making the data points easier to separate. A linear hyperplane will still be used
to separate the groups, but it results in a non-linear decision boundary in the standard feature
space.

(a) Low γ (b) High γ

Figure 2.3: Schematic view of SVM classifiers with the RBF kernel for two different values
of γ. a) With a lower value of gamma, the classifier constructs a more generalizable model.
The lower the value, the more rigid the boundary becomes. Values extremely close to zero
approximate a linear SVM, making the use of the kernel redundant. b) Higher values make
the model fit to the data more precisely, where very high values result in ‘islands’ around the
points of one group, usually a case of strong overfitting.

2.1. Support vector machines 9

A commonly used non-linear kernel is the radial basis function kernelK(x, x′) = exp(−γ‖x−
x′‖2). Instead of just the cost parameter C, a second parameter γ has to be tuned. The
effect that γ has on a trained model is demonstrated in figure 2.3.

2.1.2 Double nested cross validation

K-fold cross validation (CV) is a common method for estimating the performance of a model.
The train set is partitioned into K equal subsets (called folds), and a model is trained K
times leaving out each of the folds once for validation (the left out folds). The process is
shown schematically in figure 2.4.

Figure 2.4: Schematic figure of double nested cross validation, with five outer loops and three
inner loops. A model is trained on the pink fold and validated on the blue left out fold five
times. During each of those training processes, another loop is performed on the pink data
fold to train with different parameters on the tune set and validate them on the validation
set.

Since different values of parameters influence the performance of the SVMs, tuning the
parameters is required. This can be done by training models with varying parameter values
on a train set and selecting the best performer on the test set. However, choosing parameters
based on the same data that the models are validated on may lead to overfitting. Therefore
parameters need to be tuned in a double nested cross validation loop. In each of the perfor-
mance measuring loops (called the ‘outer loops’), a new cross validation process is performed
on the train fold to make sure the parameter performance is not measured on the same data
as the overall model performance.

2.1.3 Conclusion

Linear support vector machines are models that are relatively easy to interpret, as the re-
sulting weight vector shows the precise linear relation between the input features and the
predicted outcome. Their robustness allows them to be used in situations with many fea-
tures. Non-linear kernels like the radial-basis function can be used in non-linear situations,
but will not result in an interpretable weight vector. They certainly have the potential to find
heterogeneous structure in the data however, and are therefore a good non-linear candidate
to compare to the linear SVMs.

2.2. Artificial neural networks 10

2.2 Artificial neural networks

Artificial neural networks are a well-known approach in machine learning. They gained wide
popularity in 1974 when the backpropagation algorithm was introduced (Werbos [6]). By
sending the error on the output back into the network, networks were now able to contain
multiple hidden nodes which enabled them to learn non-linear functions. Nowadays, neural
networks are still growing in popularity under the term of deep learning, which denotes
networks with multiple layers to model different abstraction levels of learned features.

Neural networks are relatively hard to interpret compared to other learning algorithms.
After the training process, all we get is a set of weights defining the strength of each connection
in the model. These connections do not have a one-to-one correspondence to the features,
like the weights in Support Vector Machines do. This makes it hard to determine which
features are important to the model. The model’s performance can be measured easily, but
how that performance is achieved is a more difficult question.

(a) Structure of a neural network with
n inputs, one hidden layer with m nodes
and a single output node.

(b) Input to a node. (c) Output from a
node.

Figure 2.5: A feed-forward neural network. a) Global architecture of a network. b) The input
to each node (except for the input nodes) is calculated by multiplying each of the outputs
of the nodes in the preceding layer with their corresponding weights and taking the sum. c)
The output from a node is calculated by applying the activation function to the node’s input.
The output is sent to each connection going away from the node.

2.2.1 Background

The basics and mechanics of feed-forward neural networks are described in this section.
The common architecture of a feed-forward network is shown in figure 2.5a. The network

has an input layer of n nodes (x1, ..., xn) and may have one or more hidden layers with nodes
(here one hidden layer with m nodes (h1, ..., hm) is present). The number of hidden nodes is
usually lower than the number of input nodes and in binary classification there is typically
one output node (node o in the figure). Each node, except for the output node, is connected
to all nodes in the next layer. Each connection between two nodes has a weight. The model
is trained by learning the values of all the weights in the network.

Neural networks learn a function that maps values x1, .., xn (n ∈ N) to one (or more)
output value o. For given inputs, the output of a network can be calculated by sending all
inputs and outputs of nodes from left to right through the network, hence the term feed-
forward. The bias nodes of each layer (here b1 and b2) do not have inputs, but send out a

2.3. Hydra 11

constant output of a single value. The nodes x1, ..., xn get the feature values as input and
output these unchanged.

All the hidden nodes take the sum of all the outputs of preceding nodes multiplied by their
weights (oi · wi in figure 2.5a) and apply a user defined activation function over it to create
an output value in the interval (0, 1) (though other intervals are possible). The sigmoid or
hyperbolic functions are commonly used as the activation function. The output nodes may
use the activation function as well, or just produce linear output in case of regression.

Before training, initial weights are chosen randomly or can be defined by the user. The
train examples are fed to the network, and the network output is compared to the correct
label. An error function is used, commonly 1

2 (y − y′)2 for true label y and predicted value
y′. The errors are propagated back to the network from right to left, updating the weights in
the opposite direction of the error derivative. This learning process is called backpropagation
(Werbos [6]).

The feeding of the training examples and updating of weights continues until the stopping
criterion is met. Examples of stopping criteria are a maximum amount of iterations or a
minimum decrease of the error.

2.2.2 Conclusion

In the psychiatry domain, not only the output of a model but also an understanding of
why it works and which features are informative is essential. We do not yet have a profound
understanding of the biomarkers underlying various mental diseases. A disadvantage of neural
networks is that they are relatively hard to interpret. They do not result in a vector of weights
which shows how the increase of a feature influences the output, like in linear SVMs. Neural
networks also have a tendency to suffer from overfitting. The number of features and hidden
layers used should be low enough compared to the amount of samples to get a reasonable
convergence. However, its high complexity grants the freedom to find more complex relations
in the data that are hard or impossible to detect by linear learning algorithms.

Though neural networks are harder to interpret, their great flexibility may be what is
necessary to find heterogeneous patterns in data. For data sets with a reasonable sample size
and number of features, they certainly have potential.

2.3 Hydra

An approach that was invented to deal with heterogeneity in data was presented by Varol,
Sotiras, and Davatzikos [7]. SVMs were extended to a more general framework in order
to do binary classification and and find subtypes in the patient data simultaneously. The
objective is not only to distinguish patients from the healthy controls, but also to model the
heterogeneous subgroups in the patient cohort.

2.3.1 General approach

The authors propose a non-linear semi-supervised machine learning algorithm called HYDRA,
which combines multiple SVM classifiers to create a convex polytope2 that separates the
healthy controls from the heterogeneous group of patients. The dimensions of heterogeneity
can be determined by varying the number of estimated hyperplanes.

The article explains that a regular linear SVM is capable of separating two homogeneous
groups, assuming there is a single pattern that distinguishes them. Since the real-world data
is likely to be heterogeneous instead, this will lead to a very small margin. Having more
freedom to fit to the data, a non-linear kernel may fix this. However, the use of such kernels
will not result in the identification of different subgroups in the disease that underlie the

2the n-dimensional generalization of a polygon

2.3. Hydra 12

heterogeneity. Therefore, according to the authors, single linear SVMs will not suffice if we
want to subtype the disorder.

Hydra considers all sets of K hyperplanes to use for separating the classes. The require-
ment is that every hyperplane classifies all the members of the positive class (the homogeneous
class, corresponding to the healthy samples) and at least one negative (heterogeneous class)
sample correctly. Every two negative samples that have been assigned to the same hyper-
plane are considered to be part of the same subgroup, augmenting the problem to a clustering
task. Figure 2.6a shows a schematic example of Hydra using two hyperplanes to seperate the
heterogeneous patient group from the healthy subjects.

The aim is to maximize the average margin of all involved SVMs, as opposed to just the
margin of a single SVM. After training the classifier, we can predict the class of a new sample
x by taking the sign of the minimum of the prediction scores for all classifiers:

y∗ = sign(min
j

wT
j x + bj)

Since positive samples are classified as such by every hyperplane and negative samples are
assigned to the hyperplane with the lowest prediction score, taking the minimum will yield
desirable classifications for each sample. Multiple runs with different initializations of the
algorithm are necessary due to local minimums, arising from the non-convex nature of the
problem.

2.3.2 Application

In the article, the Hydra algorithm has been tested on both simulated and real-world data.
Using Hydra on the simulated data, a significant performance improvement was found when
using three hyperplanes instead of one. For higher numbers of planes, the performance
decreased very slightly, which suggests that Hydra discovered correctly that the data consisted
of three subgroups, according to the authors.

On the real-world data (n = 300), using Hydra did not result in significant performance
improvement compared to fitting a single hyperplane. On the other hand, the aim of increas-
ing the margin was achieved which suggests the Hydra model was more robust. The article
states that this implicates that Hydra had successfully found heterogeneous structures in the
data.

While the Hydra method might help to identify those patterns, the reported results on the
clinical data did not show improvement over regular linear SVMs. High performances (AUC)
were achieved on a decent sample size, but the classifier should be tested on an independent
test sample to see whether the high performance and increased margin will be maintained.
An independent sample may contain more or different degrees of heterogeneity than the set
used in the article.

The authors used the Rand index3 to look for the optimal number of hyperplanes. The
highest stability in clustering was found when using three planes, suggesting that the patient
group consisted of three subgroups. For higher numbers, these groups were only divided
into smaller clusters, implying a hierarchy. Backing the claim of three subgroups, distinct
brain patterns for these groups were found in the MRI, suggesting they represent different
variations of the disease.

2.3.3 Conclusion

The use of the Hydra algorithm has not shown an increase of the performance on clinical
data. It needs more investigation and should be applied to varying sorts of data sets before a
conclusion can be drawn. Though the additional information on group structure in the data
is beneficial, a disadvantage is that the value of K for the amount of hyperplanes must be

3The adjusted Rand index gives the similarity between different data clusterings. A high index means
that the variance in clusterings was low, yielding a more stable clustering.

2.4. Normative modeling 13

chosen beforehand. It should be guessed by looking at the data, or various values must be
tried adding another tuning task with dangers of overfitting.

(a) Hydra (b) Normative modeling

Figure 2.6: Schematic view of normative modeling and Hydra approach. a) Hydra combines
multiple linear SVMs to better accommodate to heterogeneity. Each patient can be assigned
to the closest hyperplane to obtain structure in the patient group. b) With normative mod-
eling, by default the healthy cohort will be modeled. Outliers to this model are considered
patients.

2.4 Normative modeling

To handle heterogeneity in clinical groups, Marquand et al. [8] propose a modeling which
rejects the classical notion of case and control groups and judges all individuals against the
same scale. The approach aims for a mapping of variation within the whole sample and treats
outliers on the scale as pathological as patients.

The authors argue that the classic, widely used case-control approach is not ideal in the
domain of psychiatry because of the heterogeneity in the data. Since biological tests for
diagnosing mental diseases are not available in this domain, clinical classification is used
where patients are classified according to their deviations from patterns in healthy subjects.
The case-control approach assumes two well-defined, distinguishable groups which might in
fact not exist in many psychiatric disorders. In practice, groups overlap, are composed of
subgroups with different properties or are completely diffuse (fig 1.1).

2.4.1 General approach

The proposed normative modeling approach can be applied to a study population consisting
of both healthy and clinical subjects, or healthy subjects entirely. Having disease symptoms
should correspond to having extreme values within the distribution on an individual level.

The first step of composing a normative model is using clinical features to predict brain
structure or functions, using Gaussian process regression. Measures of confidence for these
prediction are computed, which can be used to determine how well a subject fits the norm.
The predicted norm shows the typical trajectory while the measures of confidence translate
to contour lines around it. Subsequently, a normative probability map is computed for
each individual, in which for every brain region the deviation from the normative model is
determined. Every subject is then summarized by its extreme values, namely those that differ
most from the normative trajectory. The computational details can be found in the article
as well as a visual overview of the described approach (fig 2, page 554).

Figure 2.6 shows a very schematic view of the concept of normative modeling. The
population is modeled such that the healthy people fall on the typical trajectory (blue area)
and the outliers from this norm are classified as patients (pink area).

2.5. Conclusion 14

2.4.2 Application

To study the normative approach in practice, the authors used a large group of healthy
samples (n = 288) who completed a functional MRI task and were measured on having clinical
symptoms. In the article, the means of the extreme values of each subject are compared to
their symptoms. Having higher extreme values corresponds to having a larger deviation from
the normative model according to the theory. Most subjects fitted the normative model well,
as expected from a healthy sample group. Some of those, however, did have high symptoms
but still fitted the norm.

It can be debated whether the subjects which had high symptoms should actually have
deviated from the model and classified as belonging to the disease group, or whether they are
examples of heterogeneity in the healthy group. The results show some interesting structure
in the group, but no overall correlation between deviating from the normal spectrum and
having symptoms was found; this correlation was only present in subgroups of the data.

2.4.3 Conclusion

The proposed notion of normative modeling is a very interesting view and should be explored
further. The results were not completely convincing yet, but the approach is a good step in
the direction of handling heterogeneity. The concept that case and controls groups are not
well-defined and may exist as a spectrum should be kept in mind. Though for classification
and diagnosing purposes, our goal remains to decide between being healthy and heaving a
disease. Normative modeling can be used to reveal structure in a healthy or mixed population
and to find the degree of heterogeneity, but the shown results are not stable enough to use
for classification alone.

2.5 Conclusion

All four discussed methods are able to deal with heterogeneity in a certain way. SVMs
with RBF kernels and neural networks are capable of producing curved decision boundaries,
Hydra classifies by placing several linear hyperplanes around the healthy class and normative
modeling lets go off the notion of two distinguishable groups altogether and applies a norm
based on the healthy group to the whole sample population. While the latter approach
introduces a promising concept for modeling heterogeneity, it does not hold much potential
for constructing classifiers yet. Since a goal of this study is to improve the accuracies of the
classification of mental disorders, the other three methods will be assessed further in the next
chapter to evaluate their potential on heterogeneous data.

Chapter 3

Simulated data

Before subjecting the proposed classification approaches to real-world clinical data, a gen-
erated data set was used to simulate the idea of heterogeneity and to discover whether the
non-linear methods are capable to use their freedom to fit to these heterogeneous groups.

3.1 Data set

A data set with two Gaussian distributed features was generated, containing 200 healthy
control samples (‘H’), and 200 (schizophrenia) patients. The patient group was divided into
two subgroups (‘SZ1’ and ‘SZ2’) to simulate heterogeneity and to make the ideal separation
boundary non-linear. The patients were labeled 1 regardless of which subgroup they belong
to, while the healthy subjects were given label -1. The data was randomly divided into a
train set (70%) and a test set (30%), containing respectively 280 and 120 samples.

mean sd

x y x y

H 1.00 1.00 0.28 0.28
SZ1 1.45 0.15 0.15 0.15
SZ2 1.30 0.40 0.15 0.15

(a) Means and variances of each group in the
data (both train and test), for Gaussian dis-
tributed variables x and y.

(b) Simulated train data set (H = 143, SZ1 =
64, SZ2 = 73)

Figure 3.1: Generated data set.

15

3.2. Method 16

The data set is visualized in figure 3.1. The small overlap between the heterogeneous
subgroups is exaggerated; groups in real-world clinical data are likely to overlap more. The
healthy group has a higher variance than each patient group. The means and variances used
to generate the data can be found in table 3.1a.

In the next sections, linear SVMs, RBF SVMs, neural networks and simulation of Hydra
will be trained and validated on this data to assess their potential on heterogeneous data
and visualize the differences between their decision boundaries. Subsequently the resulting
models will be tested on the test set that was kept aside to make a final comparison.

3.2 Method

The LibSVM library for R (called e1071) was used to train SVMs with linear and RBF kernels.
For the neural networks, the library neuralnet was used. Functionality for cross validation
and validation of the models was added. All models were trained with 11-fold cross validation,
with an additional double nested 5-fold loop for the SVMs to tune the parameters C and γ
(of which the latter only applies to RBF kernels). The odd number 11 was chosen to possibly
allow for taking medians1 instead of means. The parameter ranges for tuning of both C and
γ were powers of 2, ranging from 2−3 to 23. The SVM with the best performing parameters
in the inner loop was selected to predict the label of the left out fold in the outer loop.

The neural networks were feed-forward networks with a single hidden layer containing
two hidden nodes. The sigmoid function θ(s) = 1

1+e−s was used as the activation function,
applied to the output of all the hidden layer node except for the output node. Resilient back-
propagation with weight backtracking (Riedmiller and Braun [9]) was used, as implemented
in the library neuralnet. The start weights were randomly initialized by the algorithm in
every repetition. The threshold of the partial derivatives of the error function was set at 0.01
as a stopping criterion, which means the algorithm kept training until the error of the model
did not reduce with more than 1% at every iteration step.

Additionally, two linear SVMs were trained, where each was given all the healthy subject
data and only one of the patient subgroups to simulate the idea of Hydra. Each of these
two SVMs was trained using 11-fold cross validation. The resulting two hyperplanes were
then combined to one model by classifying all points that were labeled 1 by at least one of
them as belonging to the patients. The results may differ from a real Hydra implementation,
but will likely be similar given the distinct separation between the patient subgroups in this
particular data set.

Since cross validation does not result in a single ready to use model, model selection was
carried out looking at the 11 trained models in the cross validation process and picking the
one having the median (middle scoring) performance on its left out fold. Considering that
the best performance usually is due to a stroke of luck on the validation data, the median
performer is a more robust choice. Therefore the median model of each approach was selected
to be evaluated on the test set.

3.3 Results

The validation accuracy (mean of the accuracies on the left out CV folds) of the linear SVMs
was 0.843 (SD=0.06). The model with the median performance had an accuracy of 0.840 on
its left out fold and 0.825 on the test data set, with parameter setting C = 2. The non-linear
RBF SVMs achieved a validation accuracy of 0.935 (SD=0.05). Their median SVM scored
0.960 on its left out fold and 0.917 on the test set, with parameters C = 0.5 and γ = 8.
The parameter choices that were made in the tuning process were fairly steady among the
11 folds. During the training of the linear SVMs, C = 2 was chosen 7 times and in the RBF
SVMs C = 0.5 was chosen 5 times and γ = 8 in all 11 models.

1The median value of data is the central value, located in the middle when the values are sorted. Half of
the values are smaller than the median, and half of the values are greater.

3.3. Results 17

(a) Linear SVM, 0.825 (b) RBF SVM, 0.917

(c) ANN, 0.908 (d) Hydra, 0.891

Figure 3.2: Simulated test data points with fitted decision boundary of the four attempted
approaches. The accuracies of the shown models on the test data are shown. The dark gray
areas were labeled -1 by the models, the light gray areas 1. The non-transparent points were
classified correctly.

3.4. Interpretation of a 2-input network 18

The Hydra simulation model achieved an accuracy of 0.891 on the test set. The validation
accuracies of the two individual (median) Hydra SVMs were 0.900 and 0.989, trained on SZ1
and SZ2 respectively. The extremely high accuracy on the SZ2 group shows shows that those
patients were easy to separate from the healthy subjects, which is also visible in the train
data (fig 3.1b). The neural networks had a validation accuracy of 0.911 (SD=0.06), with the
median network (shown in figure 3.3) performing 0.920 on its left out fold and 0.908 on the
test set.

Figure 3.2 visualizes the decision boundaries of the discussed median models on the test
set. The one linear model (a) lacked freedom to to fit to the heterogeneity present in the
patient group. In order to classify most of the patients correctly, many healthy subjects were
classified as patients as well. In contrast, the RBF SVM (b) was capable of fitting directly
to the patient group. It formed two islands, leaving space between the two patients groups,
unlike the neural network (ANN) and Hydra simulation did ((c), (d)). The close fit to the
patient group of the RBF SVM was most likely caused by the high γ value (γ = 8) that
was chosen in the inner CV loops. The decision boundary of the neural network was similar
to that of the Hydra simulation, with a slightly different slope and an added curve. The
difference in slopes made the ANN classify two more data points correctly (one healthy and
one SZ1 subject).

Figure 3.3: Network corresponding to the model presented in figure 3.2c. The weights were
rounded to the nearest half for convenience.

3.4 Interpretation of a 2-input network

As discussed earlier, the interpretation of a classifier is important in psychiatry. In this
section, the neural network in figure 3.3 will be analyzed to get an impression of how the
network and its weights form the decision boundary shown in figure 3.2c. In order to do this,
the network was split into three parts (fig 3.4): a) the first layer with its connections to the
first hidden node, b) the first layer with its connections to the second hidden node and c)
the hidden layer with all connections to the output node. The equations that are produced
by nodes H1 and H2 and how they are combined in the output node O will be examined.

Every hidden and output node (H1, H2 and O) takes the sum of its inputs multiplied by
their corresponding weights. The hidden nodes also apply the sigmoid activation function
θ(s) = 1

1+e(−s) to scale the input sum to a value in the interval (0, 1).

3.4. Interpretation of a 2-input network 19

(a) H1 = θ(11x+ 8.5y − 25) (b) H2 = θ(26.5x− 47.5y − 3) (c) O = 2H1 + 2H2 − 1.
The label is +1 when H1 > 0.5
or H2 > 0.5.

Figure 3.4: The network in figure 3.3 split into three parts. a) All nodes with connections to
node H1. b) All nodes with connections to node H2. c) All nodes and connections directly
linked to the output node O. This shows how the output of a) and b) are combined into the
final output.

Nodes H1 and H2 both compute a function with two variables as can be seen in figure 3.4a
and 3.4b. The outputs of these functions are then combined in figure 3.4c. In this particular
example, both the outputs of H1 and H2 are weighted equally with weights 2, and a bias
of -1 is added. The labels H1, H2 and O will from now on denote the output values of the
corresponding nodes, giving rise to the following formula for the total output O:

O = 2H1 + 2H2 − 1 (3.1)

The predicted classification label will be sign(O), with the decision boundary lying at
O = 0. What values of H1 and H2 will result in a classification of +1? If we equate O (3.1)
to zero and then rewrite the formula, we find the equation

H2 =
1

2
−H1 (3.2)

which is shown in figure 3.5a. Points in the purple area denote a positive output O, since
H2 >

1
2−H1 and therefore 2H1 +2H2−1 = O > 0, and points in the blue area get a negative

output value analogously. When either H1 or H2 is greater than 0.5, the predicted label will
always be positive as shown in the bright purple area. This means that the network displayed
in 3.4c represents the OR function, on the assumption that an output of 0.5 or higher for a
hidden node encodes for a positive label.

Thus for the hidden node outputs H1 and H2, the value 0.5 is a threshold defining the
decision boundary:

H1 = θ(11x+ 8.5y − 25) = 0.5 (3.3)

H2 = θ(26.5x− 47.5y − 3) = 0.5 (3.4)

The lines corresponding to these equations have been plotted in figure 3.5b. As expected,
these lines are the main components of the decision boundary. Again, in the purple areas
H2 >

1
2 − H1 holds, while in the bright purple area additionally H1 > 0.5 ∨ H2 > 0.5

holds. The curve between these lines in the true decision boundary (black curve in fig 3.5a)
is determined by values of H1 and H2 that are both smaller than 0.5 but still lie above the
decision boundary (the dim purple area in fig 3.5b).

3.5. Discussion 20

(a) H2 >
1
2
−H1 yields label +1, otherwise

we get -1. When H1 > 0.5 or H2 > 0.5, label
+1 is guaranteed.

(b) The decision boundary O = 0 (black),
which is composed by the lines H1 = 0.5 and
H2 = 0.5 (gray).

Figure 3.5: Relation between the hidden node outputs H1 and H2 and the decision boundary.

So in conclusion, the network with two hidden nodes has learned two separating lines,
which were combined into one non-linear decision boundary by the weights on connections
to the output node. Parallels can be drawn between this process and the Hydra method
described in section 2.3, which also works with decision boundaries that are a combination
of linear hyperplanes. An advantage of the neural network approach over Hydra is that the
number of hyperplanes does not have to be selected in advance: if the user provides enough
hidden nodes for the network to find a good fit to the data but not too many to prevent
overfitting, neural networks will find the optimal boundary themselves. Also, multiple bends
in different directions are possible, whereas Hydra is only capable of constructing a convex
polytope around the healthy controls to separate them from the rest.

3.5 Discussion

On both the train data (CV) and the test data set, the RBF SVM had the highest accuracy.
The ANN model came as a close second. It is however impossible to determine which method
is the most suitable based only on this 2-feature data. The results do show that improvement
of performance can be achieved by using non-linear methods on heterogeneous data. The
proposed approaches were able to fit to non-linear patterns in the data.

All the methods (except for the Hydra simulation that was not assessed with CV) per-
formed poorer on the test set than during cross validation. This may be caused by some
remarkable differences in the random placement of the data points. In the train data, several
healthy subjects were placed between the two patient subgroups, which did hardly occur
in the test set. Additionally, the SZ2 group happened to be separated very well from the
healthy controls in the train set (as was pointed out by the extremely high accuracy of the
SZ2 SVM in Hydra), while this was not the case for the test set. Furthermore, due to small
dependencies in the cross validation process, performances tend to drop slightly on test sets.

The difference between decision boundary of the RBF SVM and the other boundaries is
the most profound. The RBF model isolated the two patient groups, creating three areas
in the (visible) space, while the other methods divided the space into two areas and kept
a connection between the patient groups. It is hard to say which approach is preferable,
especially since this a simulated case. It depends on the expected amount of healthy subjects
lying between the patient groups and on the interpretation of the feature variables. The RBF

3.5. Discussion 21

SVM seems to have the most fitting freedom in this case. Adding more hidden nodes to the
ANN will allow it to fit more degrees of non-linearity, but again at risk of overfitting.

It should be noted that the notion of heterogeneity present in the data set was strongly
idealized. In real-world clinical data, subgroups may exist but will not be as distinct and
overlap more with both each other and the healthy subjects. It is plausible that non-linear
patterns caused by heterogeneity are present in real-world data, but most likely not in the
form of easy identifiable groups.

3.5.1 Conclusion

On a simplified simulated data set with a heterogeneous patient group, the use of non-linear
methods in a binary classification task improved the accuracy considerably (from roughly
83% to 91%). The best performer was the RBF SVM, which also showed the most fitting
freedom in its resulting model. Hydra, in contrast, did not outperform any of the other non-
linear methods. The neural networks were able to construct a similar model with a relatively
small amount of nodes. Furthermore, Hydra produces rather unnatural decision boundaries
with sharp cuts while the other methods do not suffer from this.

The potential of RBF SVMs and neural networks as possible solutions for the heterogene-
ity problem in clinical data will therefore be investigated further on real-world data in the
next chapters.

Chapter 4

Brain volume data

4.1 Introduction

As a proof of principle of the proposed methods, a clinical data set was used to evaluate
whether these approaches are feasible and may yield promising performances on real-world
data. In a regression task, a set of brain volumes was used to predict a person’s age. A
similar task was performed by Schnack et al. [10], using neuroimaging data (MRI scans) to
construct a brain age model based on healthy subjects. This model was then applied to
schizophrenia patients, showing that these patients have older brains (3.36 years on average)
and also suffer from accelerated brain aging.

In this study, brain volume data was used instead of the MRI data to see if models based
on a few features (instead of the thousands present in neuroimaging) are able to achieve
similar performance in predicting age. The volume of the brain is known to decrease with
age. The process of gray matter loss starts at early adulthood, while shrinkage of white
matter areas typically start around middle age (Fotenos et al. [11]). Accordingly, a set of the
volumes of these brain areas may be informative enough to perform an age regression task.

4.2 Method

4.2.1 Data

The brain volume data set describes the volumes of brain areas in healthy subjects (n = 503)
aged between 9 and 68 years old, discriminating between big brain, small brain (both white
and gray matter) and ventricles. Additionally, sex and total iq were available as well. All
the variables that were present in the data set are presented in table 4.1a, along with the
abbreviations that will be used further on in this chapter.

The volume data was normalized using z-transformation, which consists of subtracting
the mean and dividing by the standard deviation of the variables to get means that are
approximately zero and standard deviations of one. The iq was transformed by (iq−100)/15
and age by (age − 15)/55). The data set was then randomly split into a train set (n=400)
and a test set (n=103), ensuring that the sets had similar distributions for age (figure 4.1b).

22

4.2. Method 23

ic intra-skull volume (intracranium)
tb total brain volume
bb big brain (cerebrum) volume
bbgm big brain gray matter volume
bbwm big brain white matter volume
cb small brain (cerebellum) volume
cbgm small brain gray matter volume
cbwm small brain white matter volume
vlat lateral ventricle volume
v3 third ventricle volume
age age in years
sex 0 female, 1 male
iq total iq

(a) Features in the volume data set. All volumes
are in cm3.

(b) Boxplots of age variable in train data and
test data sets.

Figure 4.1: Features and distribution of age in the data set.

4.2.2 Training

To compare the different algorithms, linear SVMs (Lin), RBF SVMs (RBF) and neural
networks (ANN) were trained on the volume data set. 11 identical runs were performed,
each consisting of an 11-fold cross validation procedure. This resulted in models consisting
of 11 sets of 11 CV models, making a total of 121 models per algorithm (Lin, RBF, ANN).

The linear and RBF SVMs were trained with parameter ranges of 0.001, 0.0025, 0.0075,
0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2, ..., 10 for both C and γ. Due to random
tie breaking in the inner cross validation loop (where the parameters are tuned), identical
runs of the algorithm do not necessarily have to result in identical performances, though the
variation is expected to be less in the SVMs than in the neural networks that work with
random initialization.

The neural networks were feed-forward networks using resilient backpropagation with
weight backtracking. They had one hidden layer with two nodes and a threshold of 0.0005
as a stopping criterion (or a maximum of 400000 steps). Random weights were chosen at the
initialization of each network, resulting in different networks each run of the algorithm.

4.2.3 Performance measures

The error that a model makes is the (absolute) difference between its predicted age and the
true age of a subject. The performance was measured with the Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), linear correlation coefficient (corr) and R2, which
denotes the amount of variance present in the true labels that is explained by the model. All
these measures were calculated on the models’ predictions on the left-out folds to assure that
validation was only carried out on unseen data points.

4.2.4 Feature selection

Not all features present in the data set were suitable or informative for the purpose of pre-
dicting age. The iq is usually not an indicator for age and was left out during training due to
mediocre effects on the results. As a separate feature, sex is not an informative feature for
age either, but it may be in combination with other brain volumes. The total brain, cerebrum
(‘big brain’) and cerebellum (‘small brain’) features were left out since they do not hold any
extra information when their respective gray and white matter volumes are already present
in the data.

The first models were trained using all eight features that remain, namely ic, bbgm, bbwm,
cbgm, cbwm, vlat, v3 and sex. Trying all 28− 1 non-empty subsets of these eight would take

4.3. Results 24

too much time and is out of the scope of this study. By solely looking at the validation
results, different combinations of features were attempted, to see which feature set was the
most informative in predicting age. The performances of the best feature sets are shown in
the results. Based on these results, a final choice of features was made to train a model on
the full train set and apply it to the test set.

4.2.5 Weights

To reveal which features influenced the predictions the most, the weights of the final models
are reported in the result section. For linear SVMs, a weight for each feature follows directly
from the model. Since RBF SVMs do not yield meaningful weights due to the nature of
the radial-basis kernel, no RBF weights are reported. Neural networks have weights on their
connections, but they cannot be interpreted in the same linear way as the linear SVM weights.

To still get an idea of the features’ influence on the networks, ANN weights were calculated
by taking the sum of the weights on connections going from a feature’s input node to the
hidden layer (in figure 3.3 this would be 11+26.5 for x and 8.5-47.5 for y). A problem with
this approach is that the sign of the weights may be flipped further in the network by a
negative weight going from the hidden node to the output. Therefore, the sign of that weight
was considered, flipping the sign of the original weight if it was negative.

The weights of both the linear SVMs and the ANNs were scaled to a sum of 100 (ignoring
minus signs) to make sure the proportions were equal between models. The mean was taken
over the absolute values of these weights to get an idea of the average influence each feature
had and to prevent positive and negative weights canceling each other out. To still show
which features had a mostly positive or negative influence on the model output, the result
section will show which features had more negative weights than positive ones.

4.2.6 Ensembles

In many machine learning applications, the primary issue is to show the performances of a
model. But if it is our aim to eventually apply the models practice, a final model that is
ready to use is required. Cross validation does not yield a single applicable model, but it is
possible to select one (like the approach in chapter 3) or to construct an ensemble.

Each execution of the training algorithm resulted in 11 models, trained on 10
11

th
parts of the

train data. For linear SVMs it is possible to average the weights and combine these models
into one, but this is not the case for the RBF kernel and the neural networks. Therefore
ensembles were composed; a subject was classified by taking the predictions of the models
that were not trained on that particular subject. Every run contains exactly one such model,
in which the subject was part of the validation fold. The mean or median of those 11
predictions was taken to get a more robust model. Extreme predictions (less than 0 or more
than 80 years) were omitted out before taking the median or mean. These values occurred
sporadically and only in the neural networks, typically when the input of a node fell on the
steep part of a sigmoid function that was approximating a step function.

4.3 Results

There were two feature sets that performed particularly better than other combinations,
namely the feature set with all eight features (section 4.2.4) and a set with six features that
omitted the ventricle volumes (vlat and v3). Results for both these sets (referred to as the
8-feature and 6-feature sets) are presented in this section.

4.3.1 Validation results

In figure 4.1 the validation scores of the three learning algorithms can be found, for both
feature sets. The performances are based on all validation predictions of each run, averaged

4.3. Results 25

over all 11 runs.
The RBF and ANN models performed significantly better than the linear model (p < .05,

over 11 runs) on all values. The RBF model outperformed the ANN, but only significantly
so on the correlation and R2 values and the 8-feature RMSE. These validation scores suggest
that the RBF SVM produced the best models on this data set, with a mean absolute error
of 4.332 years over the validation predictions. The standard deviation over the MAEs of the
11 runs was 0.022.

Comparing the results of the different feature sets does not reveal which one is superior.
The correlation and R2 values were very similar between the sets and did not differ signif-
icantly. The only significant differences were found on the RMSE and MAE values of the
Lin and RBF models. There was no overall pattern of improvement or decline visible in the
performances between the sets.

Validation results
RMSE MAE Cor R2

8-feature set
Lin 6.419 4.677 0.866 0.751
RBF 6.045 4.329 0.882 0.777
ANN 6.200 4.342 0.875 0.765

6-feature set
Lin 6.400 4.698 0.867 0.751
RBF 6.081 4.283 0.881 0.776
ANN 6.127 4.332 0.877 0.770

Table 4.1: Average validation scores of the linear (Lin) and RBF SVMs (RBF) and the
neural networks (ANN), over the validation predictions of cross validation 11 runs. The
RMSE and MAE values are measured in years.

The results do show that leaving out the ventricle volumes (vlat and v3) does not diminish
the performances significantly (except for the Lin MAE and RBF RMSE). These volumes
were apparently not informative enough, which can be explained by the fact that these values
tend to suffer from measuring noise more than the other volumes. Their means in the data
were 12.79 and 0.84 cm3 respectively, while the other means range from 46.38 (cbgm) to values
as large as 1474.71 (ic). Therefore slight measuring errors of the same order had a greater
impact on the ventricle volumes than on the large volume regions. This makes the ventricles
less reliable for predicting purposes. The correlation between the strength of the linear SVM
weights (discussed in the next section) and the means of their corresponding features in the
data was 0.839, even though the data was scaled before training. This shows indeed that the
volumes of larger brain areas were generally of greater influence in the models.

4.3.2 Weights

The influence of the weights of each feature is shown in figure 4.2. For both feature sets,
ic and bbgm were the two most important features, though this pattern was clearest in the
linear models. The decrease of these feature weights in the ANN models was compensated
by the sex feature, which was far more prominent there.

As expected from the linear model, the weights were very consistent between the 121
models, with standard deviations ranging from 0.26 for the 6-feature vlat to 1.19 for the
8-feature bbgm. The sex feature was the only one that did not have the same sign for all
weights, being positive in 78 cases (6-feature) and 99 cases (8-feature) out of the 121 models.

4.3. Results 26

.

(a) 8-feature models (b) 6-feature models

Figure 4.2: Scaled absolute weights of the features of the Lin and ANN models. RBF models
do not produce meaningful weights and are therefore not included. The absolute weights
of all 121 models were scaled to a sum of 100 and then averaged and scaled again. The
minuses show which features had a negative weight in at least half of the 121 models. The
Lin weights show how much the model output increases in terms of the feature inputs, in
contrast to the ANN weights that cannot be interpreted linearly and were computed in a
custom way, described in the method section.

Much more variation was present in the ANN model weights, with standard deviations
ranging from 4.18 for v3 to 15.9 for sex (both 8-feature). This shows that the proportions
between weights variated a lot between networks. When looking at the absolute values of the
weights among the 121 models, the correlation between ic and bbgm was 0.74 in the 8-feature
models while the correlation of sex with these was -0.70 for both. This means that ic and
bbgm tended to have a big or small influence together and that sex filled in this gap in models
where they had low weights.

4.3.3 Ensembles

Using the approach described in the method section, ensembles were used as well to calculate
validation scores. Taking the mean instead of the median of the 11 predictions yielded the
best results, therefore the performances are shown for the mean ensembles. See table 4.2.

Ensemble validation scores
RMSE MAE Cor R2

8-feature set
Lin 6.417 4.675 0.867 0.751
RBF 6.028 4.308 0.882 0.779
ANN 5.919 4.102 0.886 0.785

6-feature set
Lin 6.399 4.697 0.867 0.751
RBF 6.053 4.260 0.882 0.778
ANN 5.980 4.236 0.883 0.780

Table 4.2: Ensemble validation scores. The predictions were acquired by taking the left
out fold predictions of all 11 runs and taking the mean for each subject. These performances
therefore represent one value, so no significance tests were carried out. The RMSE and MAE
values are measured in years.

4.3. Results 27

The neural networks have improved themselves the most compared to the single model
scores in table 4.1, as was expected given their high variation in models. They also performed
best on all measures for both feature sets, with the best mean absolute error being 4.102 years.
The RBF ensemble follows closely, leaving a gap to the linear model which did not benefit
from the ensemble, as expected from its low variation between runs.

Based on the results of both the individual and ensemble models, the non-linear models
are the best performers on this data set. The results do not show a clear superiority of one
feature set over the other, though the 8-feature set performed slightly better on the ensembles.
Following the principle of Occams Razor, the simplest model should be preferred in cases of
similar performance. Therefore the 6-feature model will be used to produce the final models.

4.3.4 Test results

Using the 6-feature set, RBF SVMs and ANNs were trained on the full train data set (n =
400), without cross validation. They were then subjected to the previously unused test set
(n = 103) to get an idea of the generalizability to unseen data. Again, 11 times 11 models
were trained to give rise to 11 ensembles combining 11 models each. Both the performances
of the 121 individual models and the 11 ensembles are displayed in table 4.3.

Test scores
RMSE MAE Cor R2

Individual models
Lin 7.170 4.876 0.844 0.712
RBF 6.584 4.349 0.871 0.758
ANN 6.630 4.493 0.867 0.752

Ensembles
Lin 7.170 4.876 0.844 0.712
RBF 6.575 4.342 0.871 0.759
ANN 6.416 4.342 0.876 0.767

Table 4.3: Test scores of the RBF SVM (RBF) and the neural networks (ANN), on 11
models assessed on the test set (n=103). The individual model scores are an average over
the 121 models.

The performances have dropped compared to the validation results, with decreases of
one to two tenths of years in mean absolute errors. This relatively slight drop compared
to the validation performances suggests that the models are fairly capable of generalizing,
though it must be stated that this test set is not a fully independent set and does not contain
between-sample heterogeneity. Apart from that, similar patterns to those in the validation
scores are visible, with the ANN being the best performer and the linear SVM having the
weakest performance.

Using the ensemble has made the performances more stable, especially for the ANNs. The
standard deviation of the RMSE values of the individual ANN models was 0.72, while it was
only 0.09 for the ensemble RMSEs. Also, the ANN was the only method with a significant
(p < .05) improvement when using ensembles compared to individual models. All differences
between ensemble method scores were significant for given measures as well, except for the
MAE of the RBF and ANN. Note that the linear model performed identically on both the
individual models and the ensembles up to three decimals, but there were differences beyond
these decimals.

4.4. Discussion 28

.

(a)

Figure 4.3: The predicted age plotted against the true age of 103 test samples, together with
the regression line (blue) and the ideal y = x line (purple). The predictions were based on the
first ANN ensemble model. RMSE=6.32 years, MAE = 4.30 years, sd of absolute difference
= 4.66.

Figure 4.3 shows a plot of the predictions made by the first ANN ensemble model, com-
pared to the true chronological age of the 103 test set samples. The relatively large group of
9 year olds was predicted well, with predictions ranging from 8.3 to 13.9 years and an MAE
of only 1.49 compared to 5.20 for all the other subjects. At higher ages, more deviation from
the true age is visible; especially after the age of 50 the predictions were consistently too low
(ranging 36.0-46.9). Moreover, the highest prediction that was made was 50.7 years, while
the oldest subject present in the train set was 64.9 years old.

4.4 Discussion

4.4.1 Performance differences due to age

The plot in figure 4.3 showed that the ANN ensemble is better at predicting children (aged 9
to 17) than adults. This can be explained by looking at the big brain gray matter volumes and
dividing them by the intracranial volumes to compensate for skull sizes. Figure 4.4 plots these
values against age. The curved, non-linear trend of the gray matter loss could explain why
the non-linear models outperformed the linear ones. The figure also shows that the children
and especially the 9 year olds had significantly more gray matter than the older subjects and
were easier to predict using this feature. The regression curve shows the trend of the gray
matter volume loss, which stagnates around the age of 40. After this age, the amount of
gray matter hardly decreases anymore. In follow-up studies, models could be trained on data
with exclusively adult subjects to find out whether this will enable the models to improve
performance on these subjects.

4.4. Discussion 29

Figure 4.4: The big brain gray matter volumes divided by the intracranial volumes (bbgm/ic)
of the 103 subjects, plotted against their age. Linear correlation coefficient=-0.81.

4.4.2 Weight interpretation

Though the intracranial volume ic hardly had any effect on age by itself (correlation coefficient
of -0.003), it had a high positive influence in the models, having the second highest weight. It
is likely that ic works as a compensator for the brain volumes, since having a bigger cranial
volume indicates that the brain was probably larger to begin with and has reduced more
compared to people with smaller ic volumes. Remarkably, the ic influence is of similar size
of bbgm in both the Lin and ANN models, though they both decreased considerably in the
ANN models. This suggests that the compensating effect of ic is mostly linked to big brain
gray matter.

In most of the models, sex had a positive weight. This is most likely due to the fact
that women have a smaller head on average, with an ic volume of 1392 compared to 1539 for
men (a significant difference, p < .05). This means that when two persons of different sex
have the same brain volumes, the man is presumably older since his brain would have had to
shrink more to get to the same stage. Also note that the males present in the data set had
an average age of 24.2 while the women were 22.5 years old, which is another reason for the
sex weight to be positive; a form of overfitting that is hard to avoid.

Omitting the ventricle volumes vlat and v3 from the feature set did not change the
distribution of the weights heavily. Their role was replaced by cbwm in the Lin models and
sex and bbwm in the ANNs.

Overall, the weights show that there are definitely differences in the weight distribution
between linear models and the neural networks. Again, it should be noted that the neural
networks weights are not as straight forward as the linear ones and were calculated based on
some assumptions as discussed in the method section. However, it is clear that the neural
networks focused more on the sex feature than the linear SVMs did. The non-linearity of
the networks may have allowed them to use the feature in a more effective way.

4.4.3 Comparison to earlier work

Some previous age predicting studies using brain features have been carried out, all using
linear SVM regression. They used gray matter density maps based on MRI scans, in which
the amount of gray matter tissue present in each voxel (3D-pixel) in the brain is registered.
These voxel maps consist of more than 100 000 features, far more than the number of variables
considered in this thesis.

4.4. Discussion 30

The brain age model of Schnack et al. [10] (n = 386) had a mean absolute error of 4.31
years and an R2 of 0.79 measured by cross validation. Tested on stronger signal MRI data (3-
T), a MAE of 3.86 was achieved. Another study, by Franke et al. [12] (n = 410), also showed
better results on the test set containing both lower (1.5-T) and higher (3-T) strength MRI
data (MAE=4.61) than on the set containing only 1.5-T scans (MAE=5.44). In Koutsouleris
et al. [13] (n = 800), a MAE of 4.6 and R2 of 0.83 were achieved on a set containing both
MRI strengths, measured with cross validation. The 3-T MRI scanners, having double signal
strength, are less likely to suffer from noise and therefore presumably allowed these models
to make preciser predictions.

The results of the non-linear models (ANN) in this thesis are comparable to those in the
literature (MAE=4.236, R2=0.780 with cross validation, MAE=4.342, R2=0.767 on test set).
The linear ones (MAE=4.876, R2=0.712 on test set), however, show weaker performance
than most results in the previous studies, that were achieved with linear models as well.
Koutsouleris et al. [13] mentioned that non-linear kernels were tried but did not improve the
performance, while significant improvements were found in this thesis. The high number of
features in the MRI data may be problematic for non-linear methods and lead to overfitting.

The brain volume data containing only 6 or 8 features turned out to be informative enough
to achieve similar performance to earlier studies on high number feature data. The use of
non-linearity was needed to attain these comparable results. A limitation is that the previous
studies all used data of subjects that were at least 16 year olds, while the best performances
in this study were achieved on the younger subjects aged 9-18 years old. Further research
on adult brain volume data should be conducted to ensure that these performances are truly
comparable.

4.4.4 Conclusion

In conclusion, decent performances were achieved compared to previous studies, using only a
few features. The non-linear methods performed significantly better than the linear models,
which demonstrates that the use of these methods is feasible on clinical data. However,
the train data set was relatively large in terms of the psychiatry field, which is particularly
beneficial to the non-linear methods. Since predicting age is a regression task, no conclusions
regarding heterogeneity can be drawn yet. The main goal of this chapter, assessing the
potential of the proposed machine learning techniques, was nonetheless achieved.

Chapter 5

Bipolar offspring data

5.1 Introduction

A clinical data set from the domain of psychiatry, possibly containing heterogeneous patterns,
was used to assess the techniques. The set contains data from children of parents with bipolar
disorder that were followed for 12 years. A study on this set showed that these children have
an increased risk of developing a depression disorder, or bipolar disorder to a lesser extent
(Mesman et al. [14]). The goal in this chapter is to predict the prognosis of these children,
using only the baseline data. Predicting which participants will develop a depression or
bipolar disorder can help with deciding whether treatment or medication should be provided
in early stages.

5.2 Method

5.2.1 Data

The Dutch bipolar offspring cohort is a data set of 140 children aged between 12 and 21
years, from 86 different families that were recruited in the years 1997-1998. Each participant
had at least one bipolar parent at baseline. The offspring was followed for twelve years total,
with follow-up interviews taken 1, 2, 5 and 12 years after recruitment. 108 out of the 140
participants completed all the follow-ups. Details on the recruitment procedure of the data
can be found in Wals et al. [15].

Various features of the participants were available in the data set. Demographic informa-
tion like age at baseline, sex, total iq, sex of the bipolar parent and social economic status
(SES) were documented. Lifetime DSM-IV (Diagnostic and Statistical Manual of Mental
Disorders) diagnoses and the presence of a large range of symptoms were determined at each
assessment. In this thesis the focus will lie on predicting bipolar disorder and mood disorders
in general. Mood disorders (MD) are psychiatric illnesses with depression as a major symp-
tom, as specified in the DSM-IV. They include Major Depressive Disorder (MDD), Bipolar
Disorder type I and II (BD), Substance-Induced Mood Disorder (SIMD) and Dysthymic
Disorder. To make the distinction clear between mood (including BD) and unipolar mood
(excluding BD), the latter will be referred to as MD1 (=MD-BD).

Figure 5.1 shows transitions in the two subsets of the KBO set that were used for training.
Both sets contain the 107 participants that completed the whole 12-year track. Since none
of these subjects rehabilitated (a transition from MD to HE or from BD to MD1), the
assumption was made that this was also the case for the participants that were diagnosed but
left the study early. Therefore three participants that were diagnosed with bipolar disorder
before t2 were included, yielding the BD set. For predicting MD, seven participants that left
the study before t2 but after they were diagnosed with mood were added additionally. The

31

5.2. Method 32

group listed in the figure as healthy (HE) does actually contain other diagnoses that were
not categorized as mood disorders by the DSM-IV.

(a) BD set (b) MD set

Figure 5.1: Transitions in the two subsets used for training. The ‘healthy’ group stands for
participants that had no mood disorders (neither bipolar nor unipolar), but possibly other
disorders. a) The BD set (n = 111) that was used for predicting bipolar disorder at t2. At
t1, 7 participants in the healthy group had an anxiety disorder, 10 had any other DSM-IV
diagnosis than mood or anxiety and 62 had no diagnosis. b) The MD set (n = 118) that was
used for predicting mood disorders (either bipolar or unipolar) and multiclass prediction at
t2.

5.2.2 Training

In this study, only baseline (t1) and 12-year follow-up (t2) were considered. All the data used
for training was taken from t1, and the labels to be predicted were taken from t2.

Firstly two binary classification tasks were performed, by predicting diagnosis at t2. Mood
disorders (MD) were classified against non-mood (HE) and subsequently bipolar disorders
(BD) against non-bipolar (HE+MD1). Analogous to chapter 4, these classifications tasks
were performed using linear SVMs (Lin), radial-basis SVMs (RBF) and neural networks
(ANN). Finally, a multiclass neural network was constructed to attempt to predict HE, MD1

and BD simultaneously.
All the features from the data that were considered during the training process can be

found in table A.1 of the appendix. Like with the brain volume data, not all combinations
could be tried, hence various combinations were attempted and the features that were con-
sistently part of better performing models were selected for the final models. Table 5.1 shows
the subset of the features that ended up in one of the final models.

Among those features were two sum scores, one for depression and one for mania, which
are the sums of varying symptoms falling under their category. Those symptom features were
scaled 1 to 3, with 1 meaning not present, 2 mildly present and 3 highly present. The ones
that were found to have a significant effect on developing bipolar or mood disorder (Mesman
et al. [16]) were all considered. They are the first eight features in the table. The sum scores
they are part of were used as well, in addition with the total iq. It should be noted that
the machine learning techniques will treat all the features as continuous variables, while the
symptom features are ordinal; the difference in symptom severity between score 1 and 2, and
between score 2 and 3 does not have to be equal.

5.2. Method 33

Feature Description Range Mean SD

selfc marked self-consciousness 1-3 1.35 0.61
tens marked feeling of tension/unable to relax 1-3 1.46 0.66
death recurrent thoughts of death 1-3 1.43 0.67
suic suicide ideation 1-3 1.20 0.54
insom middle insomnia 1-3 1.11 0.40
elat elation, expansive mood 1-3 1.18 0.45
decslp decreased need for sleep 1-3 1.13 0.41
raceth racing thoughts 1-3 1.15 0.45
ssDep sum score depression 21-50 25.49 6.05
ssMan sum score mania 4-16 4.65 1.81
tiq total intelligence quotient 72-152 114.10 14.89

Table 5.1: Features used during training process with their abbreviation and a description.
The range shows the minimum and maximum values present in the data. All these features
were measured with integer values. The data in this table was extracted from the BD set
(n = 111) as shown in figure 5.1a. These are the features that ended up in the final models;
all considered features can be found in appendix table A.1

.

Performance measures

The performance of the models was mainly measured with the accuracy, which is denoted
by the amount of true positives and true negatives divided by the total number of subjects.
As some models were trained on imbalanced class data, the balanced accuracy (bAcc) was
reported as well and treated as the main measure. The balanced accuracy ensures that both
classes contribute equally to the final percentage.

Other measures that were used are the sensitivity and specificity. The sensitivity (also
known as recall) is the percentage of patients that were classified as such by the model,
denoting the model’s ability to identify the illness. The specificity is the percentage of
healthy subjects that were classified correctly. A lower specificity means that more healthy
participants were diagnosed falsely. The sensitivity and specificity are not uniformly defined
for multiclass models. In this study, they were computed for each class opposed to the other
two combined.

The threshold that decides what prediction values are labeled as +1 or -1 is set a zero
by default. Shifting it to other values will alter the sensitivity/specificity ratio, yielding a
curve (the ROC curve, explained further in the next section). The area under this curve
(AUC) measures the performance of a model across these different thresholds and will also
be reported in the results. A value of 1 is optimal, while a value of 0.5 denotes a model that
performs at chance level.

The weights of the linear SVMs and the ANNs scaled to a sum of 100 are reported. They
were calculated according to the same method as in chapter 4 (section 4.2.5).

Bipolar/mood models

Given their good performance on the brain volume data, only ensembles were considered.
Once again, 11 identical runs were performed, including an 11-fold cross validation procedure
each. Every subject was then predicted by combining the 11 models (one in each run) that
were not trained on that particular subject. The mean was taken over their predictions to
get a classification. For the SVMs double nested cross validation was performed, with 5 inner
loops to tune the parameters. Both the cost and the gamma parameters had a range of 0.001,
0.0025, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2, ..., 10. The neural networks
consisted of one hidden layer with two hidden nodes. A threshold of 0.0001 was used as the
stopping criterion.

5.2. Method 34

To deal with the vast imbalance between the classes in the classification of bipolar disorder
(BD against HE+MD1), class weights were added to the SVMs and an adjusted error function
to the neural network. In both cases, classifying a bipolar subject incorrectly was penalized
more heavily (94

17 ≈ 5.53 times) than a non-bipolar one.
The models were trained on data in which some of the subjects were already diagnosed

at t1 with the disorder that the model was trying to predict at t2. In order to avoid further
reduction of the sample size, these baseline-cases were maintained during training and left
out in the testing phase to prevent bias. Since they usually have more severe symptoms and
are therefore easier to classify, omitting them in the testing phase may result in a skewed
balance between the classes. Assuming they are all classified correctly, the sensitivity will go
down while the specificity remains unaltered. Also, omitting subjects during testing means
that models are evaluated on data with a different composition than the set they were trained
on. This means that the default threshold of 0 that the models fitted on may not show the
best performance on new data anymore. Therefore a shift of the threshold is proposed.

The performance of a model for various threshold values can be visualized by an ROC
curve. An example can be viewed in figure 5.4 of the result section. An ROC curve plots all
the sensitivity and specificity value pairs of a model along the spectrum of possible thresholds.
The x-axis represents the 1-specificity values, the y-axis the sensitivities. The closer the curve
gets to the top-left corner, the better and more balanced the performance will be.

New thresholds were calculated by selecting the two sensitivity/specificity value pairs with
the shortest euclidean distance to the ideal point (1,1) of the ROC curve. Since selecting
the single best sensitivity/specificity ratio based on the test data may result in performances
that are too optimistic, the mean of the thresholds belonging to these pairs was calculated.
This results in a threshold located between two local maxima. Figure 5.4 shows this in
action, with the black dots representing the two selected local maxima and the blue dot
the proposed threshold, located in a high performing region of the curve but not on a local
maximum. In the result section, performances will be shown for both the unaltered threshold
and the proposed thresholds.

Multiclass model

Figure 5.2: Coding of
labels for the multiclass
neural network. Hor-
izontal axis represents
the first output node,
the vertical axis the
second.

The multiclass model aims to predict BD, MD1 and HE simultane-
ously. A network with two hidden layer nodes and two output nodes
was trained. The output of the first output node decides between
being healthy and having a mood disorder, while the second output
node decides between unipolar mood (MD1) and bipolar disorder
(BD). A more complex network with one output node per class was
considered, but this adds even more weights and requires scoring to
decide on a predicted label. Since the R package only allowed one
error function for all output nodes, the class imbalance was only
corrected for the mood class as opposed to the healthy class.

The coding used for the outputs nodes is visualized in figure
5.2. This particular coding places the BD class the furthest away
from HE and views BD as an extension of MD1 by putting them
closer together. Given the binary outputs of two nodes, there are
four class options and one remains empty. No data points in the
train data were assigned to the empty class (coded as (-1,1)), but
the resulting network may classify subjects to it.

In the results, the performance will be shown on all subjects,
on a subset without the BD patients of t1 and on that same subset
leaving out the patients diagnosed with MD that did not transition
to BD, assuming that these were easier to predict.

5.2. Method 35

5.2.3 Network interpretation

To get some insight in the mechanics of the neural network models, their weights and node
inputs/outputs were analyzed. The output of each hidden node was multiplied by their
weight to the output node. The output node bias was divided by the number of hidden
nodes and added to those outputs. The resulting values show the contribution each hidden
node makes to the final output. The correlations between these hidden node outputs and the
feature inputs were computed, which resulted in a correlation vector for each hidden node.
These vectors provided information on what kind of features each hidden node focused on.

The analyses were only performed on the multiclass model, having a slightly more complex
structure than the binary neural network classifiers. The correlations of the first network of
the first run, and the mean over the correlations of all 121 models were calculated. In models
in which more than half of the correlations were negative, their signs were flipped given the
arbitrariness of signs due to the weights.

There was a presumption of a recurring role that each of the two hidden nodes played in
the models, but their order in the network is always arbitrary. K-means clustering (K = 2)
was performed on the correlation vectors to determine whether this pattern was truly present.
In all but one of the 121 models, the vectors of the two hidden nodes were assigned to different
cluster centers, suggesting that there was indeed a similarity between the roles of the hidden
nodes among models. In the model of which the vectors were assigned to the same centroid,
the tie was broken by determining which vector lied the furthest away from both centroids
and assigning it to its closest centroid, giving the remaining vector to the other centroid.

In addition, to show patterns in the influence each hidden node had on the final output,
the absolute values of the four weights on connections between the hidden layer and the
output layer were sorted increasingly. Then for each of the 121 networks, the mean over the
absolute weight values in each sorting rank was taken.

5.2.4 Checking for non-linearity

One of the goals of this study is to explore the potential of non-linear methods as opposed to
the established linear ones. To see whether in fact the proposed approaches make use of their
non-linear freedom, the models were inspected by looking at the non-linearity they conveyed
in two ways: firstly, the non-linearity in the whole feature space was assessed. Subsequently,
only the classifications of the data points was considered, ignoring the decision boundary.

In feature space

To assess the non-linearity in feature space, per single model or run ensemble, the subjects
that it was trained on were represented as points in feature space. Depending on the feature
set of the model, duplicate data points may exist and were left out. A (parametric represen-
tation of a) line was drawn between each pair of remaining points. The label was predicted
on 100 equal divided points on those lines. For each line, the amount of times the predicted
label switched from -1 to 1 or vice versa was documented.

In a perfectly linear situation (fig 5.3a), lines between points with different labels will
switch exactly once and those between same-label points will never switch. When the optimal
decision boundary is non-linear, multiple switches per line become possible but will not
necessarily arise (fig 5.3b). However, when the points are labeled in a way that is impossible
to separate linearly, at least one multicrossing line must be present (fig 5.3c).

The degree of non-linearity was measured with a percentage (wPerc) by taking the dis-
tances of all lines that switch label at least twice, divided by the sum of all line distances.
A longer line has more opportunities to change labels and contributed less to the percentage
in this way. The mean of the weighted percentage was taken over the 11 ensembles (one
ensemble for each run of the algorithm) and over all 121 individual models. The percentage
of models/ensembles that had a non-zero wPerc are reported as well.

5.2. Method 36

(a) Linearly separable (b) Linearly separable, but
optimal non-linear separation

(c) Not linearly separable

Figure 5.3: a) The data points have been separated in a linear way, which is optimal in this
situation. The line between the blue points does not cross the decision boundary. b) The
data points can be separated linearly (dotted line), but a non-linear boundary allows for a
wider margin and may therefore generalize better. As a result, the predicted label changes
twice on the line between the blue points. c) The data points are not linearly separable.
Since this specific kind of classification (dichotomy) can only be achieved with a non-linear
separation, there must be a line between the points that crosses the boundary at least twice.

In the classifications

The approach for feature space discussed above reveals forms of non-linearity, but does not
differentiate between the situations in (b) and (c) from figure 5.3, while (c) is the only of the
three that depicts a classification that could not be realized by a linear boundary. To find out
whether the use of non-linear methods did in fact result in a classification of the data points
that was otherwise impossible, the predictions of the models were taken as the correct labels
for the data the models were trained on. An SVM with a high cost parameter (C = 10000)
to approximate a hard-margin SVM was trained and tested on this data. Anologous to the
feature space approach, the accuracy of the 11 runs and all 121 models individually are
reported. Additionally, the accuracy of the ensemble over all runs and the accuracy of the
feature data set with true labels are reported. The ensemble over all runs corresponds to the
final models of predicting mood and bipolar disorder.

Models with perfectly linearly separable predictions ((a) in fig 5.3), are able to achieve
an accuracy of 1. The higher the accuracy, the more linearly separable the predicted classi-
fications were. Since the models were trained on different features sets, their feature spaces
differ and the degree of non-linearity may vary.

5.2.5 Three approaches on same features

Selecting the best set of features for each approach influenced the performance and amount
of non-linearity more than was expected. Besides, the majority of the features used were
ternary, resulting in many subjects cluttering together in feature space. To make comparison
easier, posthoc three more mood models (Lin, RBF, ANN) were trained on the same feature
set. The most common features from the best mood models were chosen (self, tens and
death), in addition with the depression sum score to create more diversity in feature space.
The results will be discussed briefly.

5.3. Results 37

5.3 Results

5.3.1 Performance

The main results are presented in this section; for additional and extended results, refer to
appendix A.

Mood Disorders

The results of the best performing ensemble classifiers for mood disorder can be found in
table 5.2. For each model, the upper row shows the results that came directly from the algo-
rithm. The subjects that were already diagnosed with mood at t1 were excluded from testing;
the results including these subjects can be found in the appendix (table A.2). The second
row shows the results with a shifted threshold, in order to restore the sensitivity/specificity
balance. For the linear and neural network model the mean weights averaged over the 121
submodels and scaled to a sum of 100 are shown.

Scores Features
Thresh bAcc Acc Sens Spec AUC ssDep ssMan tiq selfc tens death decslp

Lin
. .730 .763 .600 .860 .777 35.1 18.5 . . 23.8 18.9 3.7

-.061 .743 .763 .667 .820 .777
RBF

. .727 .750 .633 .820 .702 . . . X X X .
-.122 .727 .750 .633 .820 .702

ANN
. .710 .713 .700 .720 .745 . . 8.5 13.4 22.1 56.0 .

.636 .767 .800 .633 .900 .745

Table 5.2: Performances of the mood ensembles. Results are shown for the default and
proposed threshold values.

True

MD MD

Pred
MD 18 7

MD 12 43

(a) Lin

True

MD MD
MD 19 9

MD 11 41

(b) RBF

True

MD MD
MD 21 14

MD 9 36

(c) ANN

MD MD

Pred
MD 20 9

MD 10 41

(d) Lin
(thres=-.061)

MD MD
MD 19 9

MD 11 41

(e) RBF
(thres=-.122)

MD MD
MD 19 5

MD 11 45

(f) ANN
(thres=-.636)

Table 5.3: Confusion matrices for the mood disorder classifiers from table 5.2. MD denotes
the non-mood group. The first row shows the tables with the default threshold, the bottom
row shows the results after the threshold adaptation.

Without the threshold adaptations, the linear model reached the best accuracies and AUC,
making it the best classifier on the validation data. In contrast, the sensitivity/specificity
ratio was more imbalanced than in the other models, favoring the specificity. Moving the
threshold relieved this imbalance slightly. Although the linear model seems to perform best,
the difference in the accuracies is marginal.

The main features of the linear model are the depression and mania sum scores, along
with death thoughts and tension. These features comprise symptoms for depression (ssDep,
death), bipolar disorder (ssMan) and anxiety disorder (tens), which the first two are the main
components of the mood disorder group. Decreased need for sleep did not play a big role,

5.3. Results 38

but leaving it out resulted in a slightly less performing model. The most influencing feature
in the neural networks were the death thoughts. The ANN was the only model that included
the iq as a feature, which played a small role with 8.5% influence.

Adapting the threshold improved the sensitivity/specificity ratio of the linear model, but
did nothing for the RBF and made the balance of the ANN worse. However, a perfectly bal-
anced ratio is not necessarily desired in all situation. Depending on the intended application
of the classifier, a higher specificity or sensitivity may be preferred.

The confusion matrices corresponding to these models are presented in table ??. The best
performing linear model had a relatively low sensitivity in the default situation, where only
18 out 30 of future mood patients were prognosed correctly. A shift in threshold to restored
the balance to classifying 20 patients correctly.

A ready to use linear SVM model for predicting mood can be found in the appendix
(table A.6). It shows the weights and intercept for one of the models trained during cross
validation, that had a median accuracy performance on the left-out fold.

Bipolar Disorder

For the predictions of bipolar disorder against the rest, the performances are presented in
figure 5.4. The values are reported in the same way as the mood disorder results.

In both the unchanged and changed threshold situations, the neural network achieved the
best accuracies. In contrast, its AUC was the lowest, which makes the model less flexible for
adapting the threshold. As an effect, the proposed threshold did not alter the classification.
The best AUC belongs to the RBF model, having a reasonable accuracy performance as well.

Thresh bAcc Acc Sens Spec AUC ssDep ssMan suic insom elat decslp raceth
Linear SVM

. .709 .897 .462 .957 .822 20.9 8.7 29.7 . 15.8 18.0 6.9
-.586 .800 .822 .769 .830 .822

RBF SVM
. .765 .879 .615 .915 .870 . . X X X X .

-.602 .800 .822 .769 .830 .870
Neural Network

. .804 .888 .692 .915 .715 . . 41.9 . 32.7 25.4 .
-.445 .804 .888 .692 .915 .715

Table 5.4: Performances of the bipolar ensembles. Results are shown for the default and
proposed threshold values.

True

BD BD

Pred
BD 6 4

BD 7 90

(a) Lin SVM

True

BD BD
BD 8 8

BD 5 86

(b) RBF SVM

True

BD BD
BD 9 8

BD 4 86

(c) NN

BD BD
BD 10 16

BD 3 78

(d) Lin
(thres=-0.586)

BD BD
BD 10 16

BD 3 78

(e) RBF
(thres=-0.602)

True

BD BD

Pred
BD 9 8

BD 4 86

(f) ANN
(thres=-0.445)

Table 5.5: Confusion matrices for the bipolar disorder classifiers from table 5.4. BD denotes
the non-bipolar group. The first row shows the performance given by the models itself, the
bottom row shows the results for the same models with a shifted threshold.

5.3. Results 39

The linear model suffered most from leaving out the t1 diagnosed patients and had the
most imbalanced sensitivity/specificity ratio. After correcting this with the proposed thresh-
old, the three models had very similar accuracies. Note that the performances of the bipolar
classifiers were generally better than those of the mood classifiers. In a paired one-sided t-test,
the differences were significant (p < .05) for the accuracy values, but not for the AUCs.

Looking at the features, the linear SVM focused primarily on the depression sum score,
suicide thoughts, elation and decreased need for sleep. The first two of those features are
linked to depression, the latter two to mania, which are the two characteristic phases of
bipolar disorder. Part of these features were present in the other models as well.

Figure 5.4: ROC curve of the RBF SVM bipolar model. The default threshold of 0 is displayed
in red, the proposed threshold in blue. The sensitivity and specificity of each threshold are
shown in pairs (spec, sens) behind the thresholds.

Figure 5.4 shows the ROC curve of the RBF SVM ensemble, which had an AUC of 0.870.
The default threshold of 0 (red) lies more on the specificity side of the curve, resulting in
a skewed balance. The algorithm for the proposed threshold computed the two threshold
points lying closest to the top-left (black), and chose the mean (blue) as a new value. In this
example, this approach resulted in a threshold located in a more balanced area of the curve
without choosing a local maximum. The method did not work out as well in all cases; in
some models, the new threshold did not alter the ratio at all (RBF mood model and ANN
BD model) or even made they balance worse (ANN mood model).

Like with predicting mood, a linear SVM model to predict bipolar disorder can be found
in the appendix (table A.11) as well. It shows the weights and intercept for one of the models
trained during cross validation that had a median accuracy value on the left-out fold.

Multiclass Model

The performance of the multiclass model can be found in table 5.6 and the corresponding
confusion matrices in table 5.7. The first row in the performance table shows the result for

5.3. Results 40

all subjects including those diagnosed with BD or MD1 at t1. To lessen bias, those diagnosed
with BD were omitted in the middle row since those never change diagnosis between t1 and
t2. In the bottom row, patients with MD1 that remained MD1 were left out additionally,
although they are less trivial to predict due to their potential of shifting to BD.

When all subjects are considered, one subject was classified to the fourth ‘empty class’.
This means that the first output node in the network classified this subject as being healthy
as opposed to having MD, while the second node classified it to BD rather than MD1. This
combination was not present in the train data.

The unbalanced accuracies were reasonable and hardly changed under leaving out the
baseline-cases. The balanced accuracies suffered however, since only BD and MD subjects
were taken out. This made their classes even smaller, increasing their influence on these
accuracies.

The balance between sensitivity and specificity especially was skewed for BD, probably
due to the fact that the error function could only be adjusted to one smaller class during
training. When higher sensitivities are required for BD, the threshold of the second output
node which codes between MD1 and BD can be adjusted. On the downside, this may direct
more subjects to the empty class as well.

bAcc Acc SensBD SpecBD SensMD1 SpecMD1 SensHE SpecHE
all subs .649 .667 .588 .894 .659 .791 .700 .803
no BDt1 subs .633 .664 .538 .894 .659 .778 .700 .789
no BDt1 , no MD1

t1,t2
subs .599 .636 .538 .920 .560 .778 .700 .684

ssDep ssMan tens death suic elat decslp raceth
mean scaled absolute weights 17.7 16.6 11.7 8.3 15.8 6.8 14.0 9.1

Table 5.6: Performances and weights (scaled to a sum of 100) of the multiclass model.

True
BD MD1 HE

Pred
BD 10 6 4
MD1 3 29 11
HE 3 9 35

– 1 0 0

(a) All subs

True
BD MD1 HE

BD 7 6 4
MD1 3 29 11
HE 3 9 35

(b) No BDt1

True
BD MD1 HE

BD 7 2 4
MD1 3 14 11
HE 3 9 35

(c) No BDt1 & no MD1
t1 in the

MD1 cat.

Table 5.7: Confusion matrices for the multiclass model, corresponding to the rows in table
5.6.

It is clear from the confusion matrices in table 5.7 that most of the baseline-cases were
predicted correctly, as expected. The three subjects with bipolar disorder at t1 were all
classified correctly, and out of the 19 t1 unipolar mood patients that remained MD1, 15 were
predicted correctly. All of the seven rightly predicted bipolar patients were already diagnosed
with mood disorder at t1. All three healthy subjects of t1 that developed bipolar disorder
before t2 were classified incorrectly (two prognosed as staying healthy and one as developing
mood).

5.3.2 Network interpretation

In figure 5.5 a network out of the multiclass model can be found, with bar plots of correlations
between input features and the outputs of the hidden nodes for 1) the displayed network and
2) averaged over all 121 networks.

5.3. Results 41

Figure 5.5: Multiclass network with weights (first CV network from first run). The first
output node decides between HE (-1) and MD (1) and the second between MD1 (-1) and BD
(1). For example, having BD is coded as MD in output node 1 and BD in output node 2.
The combination HE in output node 1 and BD in output node 2 does not code for a class
and was not present in the train set.

Figure 5.6: Correlation of hidden node outputs with the feature inputs. The upper figure
shows the values for the specific network shown in (a) and the lower figure the mean values
over all 121 networks.

5.3. Results 42

In the featured model (top figure of 5.6), both nodes focused on features linked to de-
pression (sum score depression and death thoughts). The first node (H1) was also influenced
strongly by tension, which is linked to mood disorders as well (Mesman et al. [16]). Besides
the mood features, the second node (H2) focused on decreased need for sleep, racing thoughts,
elation, suicide ideation and the mania sum score more than the first node did.

This pattern can be found averaged over all models as well (bottom figure of 5.6). The
first node focused on the mood features more than on the others, while the second node
tended to incorporate all features except for tension. The second node outputs correlated
stronger with the bipolar features than those of the first node. Seemingly, the hidden nodes
code more or less in the same way as the output nodes, suggesting that the hidden layer does
not add much value to the networks. All differences between H1 and H2 were significant
(p < 0.05).

In the displayed network (fig 5.5), the weights between the hidden layer and output layer
reveal that each output node relied heavily on a single hidden node, making the hidden
layer seem superfluous in this particular model. Over all 121 models, the mean of the lowest
weight between the hidden and output layer in each network was 0.19, while the means over
the second lowest, second highest and highest weight were 0.86, 1.72 and 2.32 respectively
(standard deviations of 0.12, 0.63, 0.62, 0.91). These differences are all significant. It shows
that all networks had at least one weight out of the four that hardly influenced the output
node compared to the other weights. The second lowest weight was very low in some networks
as well, as is clear from its standard deviation. In 87 out of the 121 networks, the two lowest
weights were attached to connections coming from a different hidden node, implying that the
each output node relied mostly on a single hidden node instead of both.

Posthoc, another model was trained on the same features and parameters, leaving out the
hidden layer completely. The results can be found in the appendix (tables A.12 and A.13).
The model performed similar on the unipolar mood and healthy class (one more mood subject
was classified correctly), but classified two bipolar patients as unipolar that were classified
correctly in the hidden layer model, making the balanced accuracy drop a little. Without
the diagnosed patients, a balanced accuracy of .562 and an accuracy of .625 was reached.

5.3.3 Non-linearity

In feature space

ensembles (11) all models (121)
wPerc wPerc0 frac wPerc wPerc0 frac

Mood
Lin 0.000 0.000 0/11 0.000 0.000 0/121

RBF 0.000 0.000 0/11 0.005 0.322 2/121
ANN 1.141 1.245 11/11 3.040 7.508 49/121

Bipolar
Lin 0.000 0.000 0/11 0.000 0.000 0/121

RBF 0.182 0.334 5/11 0.670 1.530 55/121
ANN 0.279 1.533 2/11 0.856 2.073 50/121

Table 5.8: Degree of non-linearity in models’ feature space. wPerc is the mean balanced
percentage of multicrossing lines, wPerc0 is the mean taken over those percentages greater
than zero and frac is the fraction of models that had any multicrossing line. The results are
shown for the 11 ensembles and 121 single models separately.

In table 5.8 the results of examining the degree of non-linearity in the feature spaces are
shown. Naturally, all linear models show no non-linearity at all. In the mood models, the
RBF SVMs hardly show any either. In the ensemble none was found, and of all 121 models
only two contained multicrossing lines. The ANN models score high percentages, and all

5.3. Results 43

ensemble models contained non-linear separations. In the bipolar models, both the RBF
and ANN models contained considerable amounts of non-linearity, though the fractions of
non-linear ANN ensembles drops.

It applies to all single model fractions that the majority of the models contained no
multicrossing lines at all. Even the wPerc0’s, that only consider models with multicrossing
lines, hardly rise over 2 percent except for the mood neural network.

(a) One of the lines between the the points is
multicrossing (single mood ANN).

(b) Two multicrossing lines, of which one crosses
three times (ensemble mood ANN).

Figure 5.7: Planes through feature space containing, three data points. The planes were
scaled such that the vector points lied at (0,0), (0,1) and (1,0). The dark gray areas were
labeled -1 (healthy), the light areas +1 (patients).

In classifications

The mean accuracies of linear, high-C SVMs trained on the classifications of all single models
and ensembles are shown in table 5.9. An accuracy lower than one reveals that the high-C
SVM was not able to separate the classified points perfectly, suggesting that the dichotomy
contained non-linearity.

Though non-linearity in the classification of single linear models is impossible, some was
found on the outer loop predictions of the 11 runs. Since they are each composed of 11
models, single points may be classified differently by these models, yielding possible non-
linear classifications. The same goes for the true ensemble, which in fact showed only a
non-linear classification for the linear mood ensemble.

The data accuracies approximate how linearly separable the data were to begin with.
The number is different for the various models since they were trained on different feature
sets. These accuracies correlate fairly strongly with the the 11 run accuracies (0.736) and the
accuracies of the 120 models (0.650). Comparing the data accuracies to the percentages in
table 5.8, high correlations with the wPerc columns were found as well (-0.620 and -0.621).
This suggests that the choice of the feature set influenced the amount of non-linearity that
was used by the models.

The mood neural network had the most submodels with non-linear classifications and also
showed relatively low accuracies. Since this was not the case for the bipolar network, it is
probably due to its data being the least linearly separable (together with the ANN).

5.4. Discussion 44

runs (11) models (121) ens (1) data unique
acc frac acc frac acc acc points

Mood
Lin 0.958 11/11 1.000 0/121 0.975 0.839 60

RBF 0.997 3/11 1.000 0/121 1.000 0.805 22
ANN 0.910 11/11 0.975 33/121 1.000 0.763 90

Bipolar
Lin 0.992 7/11 1.000 0/121 1.000 0.919 44

RBF 0.991 7/11 1.000 2/121 1.000 0.892 24
ANN 1.000 0/11 0.999 5/121 1.000 0.892 11

Table 5.9: Results of training linear SVMs on the data that the models were trained on,
with the models’ predictions as correct labels. A high cost parameter (C = 10000) was
used to approximate a hard-margin SVM. The fraction (frac) shows the number of models
that had an accuracy lower than one, implying a non-linearly separable classification. The
unique points are the number of unique data points that were present the data. This number
varies for different feature sets. A lower accuracy (acc) suggests a less linearly separable
classification.

5.3.4 Same feature models

Extensive results of the models all trained on the same feature set are presented in the ap-
pendix (tables A.14, A.15, A.16 for performance, feature space non-linearity and classification
non-linearity respectively). As expected, the accuracies were slightly poorer than that of the
models that had their own unique feature sets. The neural network and RBF had a better
balanced accuracy than the linear SVM, but only after the threshold adaptation. Overall,
the performances between the approaches are similar, especially with the default threshold.

The same-feature RBF and ANN models scored higher on most of the non-linearity values
(in the feature space analysis) than the regular mood models. An increase of non-linearity
use compared to the regular models is visible, possibly caused by the increased number of
unique data points (from 22 to 62 for the RBF for example). The same pattern is detectable
in the analysis of the non-linearity in the models’ classifications.

5.4 Discussion

5.4.1 Performances

The mood classifiers were able to predict with balanced accuracies in the range of 71-77%,
while bipolar disorder was classified 76-80% correctly (excluding the linear SVM which scored
71% caused by a large class imbalance). Threshold adaptations (discussed more thoroughly
in section 5.4.3) brought the balanced accuracies to the higher ends of these ranges, but these
values may be too optimistic. No overall patterns of remarkable differences in performance
between the linear SVMs and the non-linear approaches were found. In the bipolar models,
the non-linear methods did improve the performance, but only when the thresholds remained
unaltered.

To our knowledge, this is the first study to apply machine learning techniques to predict
prognosis of bipolar offspring. There are no similar studies to compare the performances
with. To get a realistic idea of the performance in practical use, a completely independent
test set is required. Acquiring such a set is difficult given the specifics and longitudinal nature
of this study. Accuracies are likely to drop on an independent test set due to between-sample
heterogeneity and may vary more due to sampling effects (Schnack and Kahn [17]).

The observed accuracies may be high enough to classify which offspring has a higher risk
of developing mood or bipolar disorder in the future. Psychiatrists may want to monitor

5.4. Discussion 45

these children more cautiously. To use the models to decide on immediate treatment like
medication, very high specificities nearing 100% are vital to make sure that participants
who are not going to develop the disorder are not put through unnecessary treatment. The
thresholds can be adapted to reach higher specificities, but the sensitivities will drop. In
the best bipolar classifier (ANN), only two patients were correctly identified when no false
positives were allowed. The specificities were fairly high in the bipolar models in table 5.5,
but this is partly due to the imbalance between the number of controls and patients. If these
models would decide on providing treatment, at least 40% of the treated participants would
get medication needlessly. Note, however, that patients that did not develop bipolar disorder
before the 12-year follow-up may still get a diagnosis later in life.

When considering the multiclass network as a binary classifier (by combining classes),
bipolar disorder was classified with 71% balanced accuracy and mood disorder with 62%
(leaving out all bipolar and mood baseline-cases respectively). This is considerably lower
than the individual models’ performances, so it seems that the extra information that was
given to the model did not help to improve the classification performance of these individual
classes. However, deciding between three classes simultaneously is a more complex task
than binary classification, leaving more room for errors. It may not be fair to compare the
accuracy directly to the binary models. Also, the chosen encoding for the labels in 2D space
(fig 5.2) may not correspond to reality. Perhaps BD should be closer to HE instead of MD1,
or a completely different network architecture would be more suitable. A network with three
outputs could be attempted, selecting the highest outputting node as the predicted label.

The same-feature mood classifiers performed worse than the regular mood ones, with
balanced accuracy ranges of 65%-71%. These models did not reveal a best performing model
either; the RBF scored highest after a threshold move while the linear model performed best
on the default threshold. This shows that the use of different features for the three approaches
was not the sole reason that no substantial difference between the methods was found.

5.4.2 Leaving out subjects

A limitation of the data set that was used has to do with the longitudinal nature of the data.
The data consists of subjects with various diagnoses already present at t1, some of which the
model is trying to predict at t2, adding a fair amount of bias. The data also suffers from
dropouts. All shown models were trained on data including these baseline-cases, in order to
spare the sample size and leave potential heterogeneity in the data. The group of patients
that these models are trying to predict can be viewed as a heterogeneous group of people
that will have a diagnosis 12 years in the future, of which some are further in their illness
trajectory than others. From this point of view, diagnosed patients of t1 that are already
ill are extreme cases on this spectrum. Although including them will generate bias, leaving
them all out may fail to catch some characteristics of the disorder.

Additionally, the features that were used to prognose are directly related to the labels
that the models are trying to predict. Leaving out diagnosed patients during training means
omitting subjects with severe symptoms, making it more difficult for the models to find a
pattern. On the other hand, subtle patterns in patients that have not been diagnosed yet are
the most valuable in practical use. Further research on the effect of including and excluding
diagnosed patients in prognosing models is required.

With the multiclass model it is more complicated to decide which subjects should be
considered during evaluation. The most rigorous option in the result section omitted both
the BD subjects from t1 and the MD−1 subjects from t1 that did not transition to BD.
This may be considered too harsh, since some of the mood patients of t1 did transition to
BD in the data set, so they are not trivial to prognose. But since no patients in the data
rehabilitated, they are easier to predict than participants that were healthy in the beginning
(who have three options instead of two).

Ideally, models should be trained on a data set consisting solely of patients that have not
been diagnosed with any disease that is to be predicted. Such a set with decent sample size

5.4. Discussion 46

is not available yet and is hard to obtain, especially when requirements like having a bipolar
parent or being available for follow-ups have to be met.

5.4.3 Threshold adaptation

The solution for the problem of baseline diagnoses that was proposed in this study, was
to leave out the baseline-cases in the validation phase. Since mostly all of these cases are
predicted correctly due to their severe symptoms, omitting them only lowers the sensitivity,
resulting in too little correctly predicted cases. Adapting the threshold can restore this bal-
ance, but must be approached with caution. Firstly, selecting the most convenient threshold
based on the data that the model is testing on, leads to overfitting. Secondly, the models are
fitted in such way that the default threshold value of 0 yields the best generalizability. This
goes especially for the margin of the SVMs.

To reduce overfitting, the mean of the two most convenient threshold points was chosen
instead of the best one. However, this is a rather arbitrary method, and more research on the
effect of improving the sensitivity/specificity balance by adapting the threshold is required.
Other options may be omitting the baseline-cases after all and accepting a lowered sample
size to make sure the models and results are not biased, or accepting the baseline cases as
correctly predicted samples and viewing them as a heterogeneous group in the data. The
latter option is problematic when the models are only going to be applied to subjects without
any diagnoses, since the sensitivity will be misleading and turn out to be lower in practice.

Instead of compensating for the baseline-cases during testing, it would be better to do
this in the training phase. It is possible to include the cases during training, while giving
them less strength to update the model. For SVMs this could be done by applying a more
forgiving hinge loss function to the baseline-cases, lowering the influence they have on the
fitted hyperplane. In the neural networks, it is possible to penalize errors on the baseline-
cases less heavily by modifying the error function, so that the weights are be adjusted less
strongly for these subjects. Research is required to discover to what extent the subjects
diagnosed at baseline should influence the models to get a good balance in the performance.

In the multiclass network results, no threshold adaptation was suggested. It is possible
to change the balance in the results by changing the thresholds of at least one of the two
output nodes. This is more complex than in the binary models since subjects will be moved
from two classes in the direction of the two others (possibly including the empty class).
Adapting the threshold of the first output node will move patients back and forth between
the healthy/empty and the mood side, while the second output threshold will move them
between non-bipolar and bipolar/empty (see figure 5.2).

This mechanic makes it harder to put more emphasis on a certain class, without unwill-
ingly moving subjects to another class as well. The relatively low sensitivities for BD in
the multiclass results can be increased by lowering the second output threshold. This will
move subjects from MD1 to BD, but will likely also move healthy subjects to the empty
class unintentionally. The presence of a class that is incorrect for any subject complicates it
more; a transition to the empty class will always end up in an incorrect classification, while
this does not have to be the case for other classes. A different network architecture with an
output node for each class may be considered in future research on thresholds in multiclass
situations.

5.4.4 Feature selection

In this study, the final features were selected by choosing the models that performed best.
Though the differences in performance between various well-performing feature sets were
not substantial in this case, in further research feature selection should be carried out in an
additional cross validation loop to exclude any bias in the features. For each model that is
trained (on the train fold, see figure 2.4), a cross validation procedure should be added in
which models with various feature sets are trained and tested. For SVMs it is more complex,

5.4. Discussion 47

since a tuning loop has to be carried out additionally for each of those models. A disadvantage
of this way of feature selection is that it results in K models with different features (for K
outer loops). To get an ensemble or final model, a voting system needs to be added to select
which feature set should be used.

In both the mood and bipolar models, the best performing linear SVM included more
features than the other approaches did. Also, in contrast to the others, it included total sum
scores instead of only the symptom feature components. This may indicate that the linear
SVM prefers a data set with more distinct points, since the sum scores have more distinct
values than their components. Besides, as was explained in chapter 2, linear SVMs suffer
less from overfitting due to their limited freedom in fitting. Therefore the linear SVMs were
able to include more information without reducing the (cross validated) accuracy. Note that
the best multiclass model included the most features (8) of all models, which was probably
possible because of the extra label information the network has.

The results show that using non-linear methods on clinical data is feasible and that they
are able to perform at least as well as the linear method, but extra features should be
added with great caution. For equal sample sizes, the non-linear methods methods should be
regulated by training them on less-dimensional feature spaces to achieve similar performances.

5.4.5 Non-linearity

The amount of non-linearity as shown in table 5.9 correlated strongly with the linear separa-
bility of the feature set it was trained on. This suggests that the choice of features influenced
the amount of freedom that was used by the non-linear methods more than the choice for
these approaches itself. Besides, the table revealed that creating an ensemble of linear SVMs
may result in a non-linear model. This means that when using ensembles, linear SVMs might
also be a resource in tackling heterogeneity. Their ability is still limited to combining linear
hyperplanes however, making their freedom smaller than fully non-linear techniques.

The values in the non-linearity tables of the same-feature models (table A.15, A.16) cannot
be influenced by differences in the data, but still no clear difference between the RBF and
ANN models was found. The same-feature RBF showed considerably more non-linearity than
the regular model however, which indicates that a higher amount of unique data points (22
in the regular model as opposed to 62 for the same-feature model) allows for more linearity.
In the bipolar offspring data, many features that correlated well with the labels consisted of
a small range of distinct values or were even ternary. These ternary features turned out to
be the most informative, but reduced different subjects to the same data points in feature
space, making many participants indistinguishable for the models.

In the data used for this study, the problem of small-range features could be solved by
only using sum scores instead of the components, at the expense of the accuracy. The fact
that the models performed best on features that reduce the amount of unique data points
may indicate that they prefer data that is more linearly separable to begin with. The mood
neural network that included the total iq, of which many distinct values are present in the
data, suggests this link between unique data points and non-linearity as well. It had the
highest amount of unique data points (90) and by far the highest percentages in the feature
space non-linearity (wPerc 3.040, wPerc0 7.508). The fact that the RBFs and ANNs did not
perform considerably better than the linear SVMs also indicates that the use of non-linearity
did not make a big impact on the results.

As can be seen in the extensive bipolar performance table (A.7) in the appendix, the
non-linear methods did outperform the linear SVM in terms of balanced accuracy when all
subjects were included. There may be some heterogeneity in the bipolar subjects that is
caught by those methods. This effect was not found in the mood table A.2, where the linear
SVM performed best.

5.4. Discussion 48

5.4.6 Further research

In addition to the suggestions that were already made, the following is proposed for further
research. Firstly, other approaches in classifying mood and bipolar disorder can be attempted.
Models could be trained only on the patients with mood disorder of t1 to find which of
these will also develop bipolar disorder. Leaving out the healthy subjects (which may never
develop a disorder) may help the models to focus on early bipolar patterns. However, if
subjects diagnosed with BD at t1 are to be left out to prevent bias, only 29 mood patients
of t1 are available. Preliminary results of such an approach were promising, achieving a
balanced accuracy of 80% with an RBF SVM trained on those 29 subjects. This is a slight
improvement compared to the bipolar models with unaltered thresholds, but a larger sample
size and more extensive training is required to draw conclusions.

Another possibility is to construct a two-step model where firstly a classifier is built to
separate healthy participants from mood patients, to subsequently apply a second model to
filter the bipolar patients from those classified as mood. The accuracy of the current mood
models have to be improved before such a two-step model would be feasible.

The longitudinal nature of the data set was not represented in the features that the models
trained on; it was only present in the fact that the labels consisted of diagnoses that were
made at 12 years follow-up while the feature were extracted from baseline data. To give
the models information on the pace of which symptoms are changing, the features of 1-year
follow-up could be added. This may enable the models to distinguish between patients with
moderate symptoms that remain stable and those who are worsening quickly. Note that if
additional follow-up information is added for every existing feature, the amount of features
is doubled. Therefore this method is recommended for the linear methods.

Chapter 6

Conclusion

The application of artificial intelligence techniques to build predictive models on psychiatric
data showed promising results. The age predicting models performed at least as well (MAE of
4.3 years) as models in previous studies, regardless of the lower number of features. In follow-
up research, the brain age models could be applied to brain volumes of patients suffering from
mental disorders to find out whether their brains have aged more rapidly than those of healthy
persons. This effect was confirmed by Schnack et al. [10], and could be supported by the
brain volume models as well.

The prognosis models trained on the bipolar offspring data achieved encouraging perfor-
mances as well. Decent accuracies between 70% and 80% were reached, despite specific issues
in the data like the baseline-cases, the longitudinal nature and the limited value ranges of
features, that complicated the training and testing process. The predictive models may be
used to determine which children are at high risk of developing a disorder, so they can be
monitored more intensively. To make the models suitable for deciding on treatment, higher
specificities need to be reached. Follow-up research could comprise adding new features such
as longitudinal variables or merging data sets from several bipolar studies.

Significant performance increases were achieved with the construction of non-linear models
on the brain volume data. The curved trend of the gray matter loss was presumably the reason
for this gain. On the bipolar offspring data, no convincing performance increases were found
using non-linear models as opposed to the linear method. Examination of the RBF SVM
and ANN predictions revealed that these methods did use their flexibility to draw non-linear
boundaries. This suggests that there was not enough heterogeneity in the data to make a
difference.

Likely, there are differences in the extent to which heterogeneity is present in clinical and
MRI data. Another possibility for a follow-up study could be to apply the same methods to
neuroimaging and look for heterogeneous patterns in the brain instead of clinical variables.
Such an approach would pose new challenges, such as the large number of features in MRI
data. Feature selection and reduction would play a more important role, to ensure that the
RBF SVMs and particularly the neural networks are still feasible to train.

In conclusion, the concept of heterogeneity should always be kept in mind in classification
tasks on psychiatric data. Non-linear approaches should be studied and applied more often to
deal with possible heterogeneity in the data. Caution is needed when the number of features
grows or the sample size shrinks, but both data studies demonstrated that non-linear machine
learning techniques are able to predict at least as well and possibly better than the linear
method, even when sample sizes are relatively small. This provides hope for the future, as
these non-linear techniques hold the power to fit to the heterogeneity in psychiatric diseases
and thereby tackle one of the main issues that stands in the way of applying machine learning
classifiers in medical practice.

49

References

[1] M.S. Van der Knaap et al. “Pattern recognition in magnetic resonance imaging of white matter
disorders in children and young adults”. In: Neuroradiology 33.6 (1991), pp. 478–493.

[2] M. Maes et al. “A clinical and biological validation of the DSM-III melancholia diagnosis in
men: Results of pattern recognition methods”. In: Journal of Psychiatric Research 26.3 (1992),
pp. 183 –196.

[3] D.A. Regier et al. “DSM-5 field trials in the United States and Canada, Part II: test-retest
reliability of selected categorical diagnoses”. In: American journal of psychiatry 170.1 (2013),
pp. 59–70.

[4] T. Wolfers et al. “From estimating activation locality to predicting disorder: A review of pat-
tern recognition for neuroimaging-based psychiatric diagnostics”. In: Neuroscience and Biobe-
havioral Reviews 57 (2015), pp. 328–349.

[5] B. Boser, I. Guyon, and V. Vapnik. “A Training Algorithm for Optimal Margin Classifiers”.
In: COLT ’92 (1992), pp. 144–152.

[6] P. Werbos. “Beyond regression: new tools for prediction and analysis in the Behavioral Sci-
ences”. PhD thesis. Cambridge, MA: Harvard University, 1974.

[7] E. Varol, A. Sotiras, and C. Davatzikos. “HYDRA: Revealing heterogeneity of imaging and
genetic patterns through a multiple max-margin discriminative analysis framework”. In: Neu-
roImage (2016).

[8] A.F. Marquand et al. “Understanding heterogeneity in clinical cohorts using normative models:
beyond case-control studies”. In: Biological Psychiatry 80.7 (2016), 552–561.

[9] M. Riedmiller and H. Braun. “A direct adaptive method for faster Backpropagation Learn-
ing: the RPROP Algorithm”. In: IEEE International Conference on Neural Networks (1993),
pp. 586–591.

[10] H.G. Schnack et al. “Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recog-
nition Study”. In: American Journal of Psychiatry 173.6 (2016), pp. 607–616.

[11] A.F Fotenos et al. “Normative estimates of cross-sectional and longitudinal brain volume
decline in aging and AD”. In: Neurology 22.64 (2005).

[12] K. Franke et al. “Estimating the age of healthy subjects from T1-weighted MRI scans using
kernel methods: Exploring the influence of various parameters”. In: Neuroimage 50 (2010),
pp. 883–892.

[13] N. Koutsouleris et al. “Accelerated brain aging in schizophrenia and beyond: a neuroanatomical
marker of psychiatric disorders”. In: Schizophrenia Bulletin 40.5 (2014), pp. 1140–1153.

[14] E. Mesman et al. “The Dutch Bipolar Offspring Study: 12-Year follow-Up”. In: American
Journal of Psychiatry 170.5 (2013), pp. 542–549.

[15] M. Wals et al. “Prevalence of psychopathology in children of a bipolar parent”. In: Journal of
the American Academy of Child & Adolescent Psychiatry 40 (9 2001), pp. 1094–1102.

[16] E. Mesman et al. “Baseline dimensional psychopathology and future mood disorder onset:
findings from the Dutch Bipolar Offspring Study”. In: Acta Psychiatrica Scandinavica (2017).

[17] H.G. Schnack and R.S. Kahn. “Detecting neuroimaging biomarkers for psychiatric disorders:
sample size matters”. In: Frontiers in Psychiatry 7.50 (2016).

50

Appendix A

Additional results

A.1 Features

Feature Description Range Mean SD

age age at baseline (in years) 11.7-21.0 16.09 2.77
sex sex 0-1 0.54 0.50
tiq total intelligence quotient 72-152 114.10 14.89
parbd bipolar type of parent (I or II) 0-1 0.26 0.44
parsx sex of bipolar parent 0-1 0.41 0.49
depld depression load in family 0.5-6.2 1.66 1.25
subld substance use load in family -1.6-2.4 -0.76 0.60
ses social economic status 1-9 4.90 2.04
ssDep sum score depression 21-50 25.49 6.05
ssMan sum score mania 4-16 4.65 1.81
ssExt sum score externalizing behavior 12-22 13.91 2.59
ssAnx sum score anxiety 23-39 27.77 4.02
ssSub sum score substance use 6-13 7.78 1.92
ssPsy sum score psychosis 12-19 13.13 1.62
selfc marked self-consciousness 1-3 1.35 0.61
tens marked feeling of tension/unable to relax (ssAnx) 1-3 1.46 0.66
death recurrent thoughts of death (ssDep) 1-3 1.43 0.67
suic suicide ideation (ssDep) 1-3 1.20 0.54
insom middle insomnia (ssMan) 1-3 1.11 0.40
elat elation, expansive mood (ssMan) 1-3 1.18 0.45
decslp decreased need for sleep (ssMan) 1-3 1.13 0.41
raceth racing thoughts (ssMan) 1-3 1.15 0.45

Table A.1: All features that were considered for the models trained on the bipolar offspring
data set. Features where the ranges are listed with integers, do in fact only contain integer
values. The sum score features are sums of symptoms features (with possible values of 1, 2
and 3). The data in this table was extracted from the BD set (N = 111) as shown in figure
5.1a.

51

A.2. Predicting Mood Disorders 52

A.2 Predicting Mood Disorders

Thresh wAcc Acc Sens Spec AUC ssDep ssMan tiq selfc tens death decslp
Linear SVM

all subs
. .812 .805 .765 .860 .876 35.1 18.5 . . 23.8 18.9 3.7

.028 .812 .805 .765 .860 .876

no bd subs
. .730 .763 .600 .860 .777

-.061 .743 .763 .667 .820 .777
RBF SVM

all subs
. .807 .805 .794 .820 .820 . . . X X X .

.224 .807 .805 .794 .820 .820

no bd subs
. .727 .750 .633 .820 .702

-.122 .727 .750 .633 .820 .702
Neural Network

all subs
. .772 .780 .824 .720 .809 . . 8.5 13.4 22.1 56.0 .

.636 .805 .818 .735 .900 .809

no bd subs
. .710 .713 .700 .720 .745

.636 .767 .800 .633 .900 .745

Table A.2: Performances mood ensembles (including results on all subjects).

A.3 Linear model (MD)

Train Validation
Cost Acc Sens Spec Acc Sens Spec bAcc AUC
.500 .805 .794 .820 .806 .799 .811 .820 .812
.500 .830 .813 .852 .798 .768 .848 .802 .795
.500 .836 .816 .864 .807 .799 .830 .807 .801
.750 .834 .818 .856 .790 .768 .833 .792 .786
.500 .831 .818 .850 .798 .805 .800 .797 .792
.500 .828 .813 .848 .798 .786 .815 .800 .793
.250 .833 .812 .863 .815 .786 .864 .820 .812
.500 .831 .804 .866 .782 .768 .808 .782 .776
.500 .830 .804 .866 .790 .786 .811 .790 .784
.500 .830 .812 .854 .807 .805 .83 .807 .801
.250 .825 .790 .872 .798 .768 .848 .802 .795

.500 .828 .809 .856 .799 .785 .827 .802 .795

Table A.3: Mean results of 11 linear SVM model runs. For the parameters, the median was
taken. The bottom row shows the means over this table, with again the median value for the
parameters.

A.3. Linear model (MD) 53

A.3.1 RBF model (MD)

Train Validation
Cost γ Acc Sens Spec Acc Sens Spec bAcc AUC
.250 .250 .829 .859 .787 .764 .843 .683 .807 .801
.500 .250 .805 .794 .820 .806 .799 .811 .807 .801
.250 .250 .803 .785 .826 .798 .781 .811 .800 .793
.500 .250 .805 .794 .820 .806 .799 .811 .807 .801
.500 .250 .805 .794 .820 .806 .799 .811 .807 .801
.250 .250 .803 .796 .812 .806 .799 .811 .807 .801
.500 .250 .803 .787 .826 .789 .763 .811 .792 .786
.500 .250 .805 .794 .820 .806 .799 .811 .807 .801
.250 .250 .803 .796 .814 .798 .799 .788 .797 .792
.250 .250 .802 .784 .826 .806 .799 .811 .807 .801
.250 .250 .805 .794 .820 .806 .799 .811 .807 .801

.250 .250 .806 .798 .817 .799 .798 .797 .804 .798

Table A.4: Mean results of 11 RBF SVM model runs. For the parameters, the median was
taken. The bottom row shows the means over this table, with again the median value for the
parameters.

A.3.2 ANN model (MD)

Train Validation
Acc Sens Spec Acc Sens Spec bAcc AUC
.901 .765 .926 .883 .727 .914 .764 .766
.828 .862 .781 .773 .831 .727 .762 .767
.825 .854 .784 .747 .781 .720 .740 .740
.832 .870 .779 .740 .831 .658 .722 .734
.828 .859 .785 .774 .812 .742 .764 .766
.835 .856 .806 .747 .796 .705 .737 .740
.835 .854 .808 .764 .827 .705 .752 .758
.832 .857 .798 .748 .794 .703 .737 .740
.836 .840 .832 .772 .815 .742 .764 .766
.841 .843 .839 .789 .827 .758 .782 .783
.829 .859 .787 .764 .843 .683 .749 .760

.838 .847 .811 .773 .808 .732 .752 .756

Table A.5: Mean results of 11 ANN SVM model runs. The bottom row shows the means
over this table.

A.3.3 Example of a linear model (MD)

ssDep ssMan tens death decslp b

weights 2.422 -1.283 1.049 0.721 0.187 1.328

Table A.6: A linear model which can be directly applied to predict a data point, by taking
the dot product of the feature weights (ssDep to decslp) with the data point vector and
adding the intercept b. This was a linear mood model trained in the first cross validation
fold of the first run. It was selected because its validation accuracy was equal to the median
value of all 121 models’ validation accuracy.
These five features were all measured on a scale 1-3. They were normalized by subtracting
the mean and dividing by the standard deviation of the MD set (n = 118, fig 5.1a)

A.4. Predicting Bipolar Disorder 54

A.4 Predicting Bipolar Disorder

Thresh wAcc Acc Sens Spec AUC ssDep ssMan suged drsla uitbu versb versn
Linear SVM

all subs
. .773 .901 .588 .957 .862 20.9 8.7 29.7 . 15.8 18.0 6.9

-.586 .827 .829 .824 .830 .862

no bd subs
. .709 .897 .462 .957 .822

-.586 .800 .822 .769 .830 .822
RBF SVM

all subs
. .810 .883 .706 .915 .895 . . X X X X .

-.385 .859 .883 .824 .894 .895

no bd subs
. .765 .879 .615 .915 .870

-.602 .800 .822 .769 .830 .870
Neural Network

all subs
. .840 .892 .765 .915 .777 . . 41.9 . 32.7 25.4 .

-.445 .840 .892 .765 .915 .777

no bd subs
. .804 .888 .692 .915 .715

-.445 .804 .888 .692 .915 .715

Table A.7: Performances bipolar ensembles (including results on all subjects).

A.4.1 Linear model (BD)

Train Validation
Cost Acc Sens Spec Acc Sens Spec bAcc AUC
.0050 .914 .659 .961 .912 .682 .958 .802 .835
.0100 .913 .678 .955 .902 .682 .947 .797 .812
.0050 .911 .677 .953 .893 .682 .937 .792 .792
.0075 .911 .677 .953 .912 .682 .958 .802 .835
.0050 .912 .617 .965 .893 .591 .958 .743 .805
.0075 .909 .666 .953 .893 .591 .948 .768 .797
.0075 .914 .665 .959 .902 .636 .958 .773 .821
.0075 .910 .640 .958 .902 .636 .958 .773 .821
.0050 .912 .624 .964 .902 .636 .958 .773 .821
.0050 .911 .677 .953 .912 .682 .958 .802 .835
.0050 .914 .659 .961 .912 .682 .958 .802 .835

.005 .912 .658 .958 .903 .653 .954 .784 .819

Table A.8: Mean results of 11 linear SVM model runs. For the parameters, the median was
taken. The bottom row shows the means over this table, with again the median value for the
parameters.

A.4. Predicting Bipolar Disorder 55

A.4.2 RBF model (BD)

Train Validation
Cost γ Acc Sens Spec Acc Sens Spec bAcc AUC
.250 .025 .903 .725 .935 .884 .682 .924 .845 .803
.100 .050 .904 .765 .929 .875 .727 .903 .805 .758
.500 .025 .900 .759 .926 .902 .818 .924 .845 .803
.100 .025 .902 .759 .928 .893 .818 .913 .840 .787
.250 .025 .907 .754 .935 .893 .773 .924 .816 .789
.250 .050 .903 .782 .924 .875 .727 .903 .805 .758
.100 .050 .901 .759 .927 .884 .727 .924 .786 .773
.250 .025 .904 .754 .931 .875 .682 .913 .781 .757
.075 .050 .902 .753 .929 .866 .727 .903 .776 .742
.075 .050 .900 .725 .932 .884 .727 .914 .810 .773
.100 .025 .903 .725 .935 .884 .682 .924 .786 .773

.100 .025 .903 .751 .930 .883 .735 .915 .809 .774

Table A.9: Mean results of 11 RBF SVM model runs. For the parameters, the median was
taken. The bottom row shows the means over this table, with again the median value for the
parameters.

A.4.3 ANN model (BD)

Train Validation
Acc Sens Spec Acc Sens Spec bAcc AUC
.903 .725 .935 .884 .682 .924 .810 .773
.901 .765 .926 .893 .773 .914 .840 .787
.901 .765 .926 .893 .773 .914 .840 .787
.901 .765 .926 .883 .727 .914 .810 .773
.901 .765 .926 .883 .727 .914 .810 .773
.901 .765 .926 .883 .727 .914 .810 .773
.901 .765 .926 .893 .773 .914 .840 .787
.901 .765 .926 .893 .773 .914 .840 .787
.901 .765 .926 .893 .773 .914 .840 .787
.901 .765 .926 .893 .773 .914 .840 .787
.901 .765 .926 .883 .727 .914 .810 .773

.901 .761 .927 .889 .748 .915 .826 .781

Table A.10: Mean results of 11 ANN SVM model runs. The bottom row shows the means
over this table.

A.4.4 Example of a linear model (BD)

ssDep ssMan suic elat decslp raceth b

weights 0.187 0.106 0.253 0.173 0.185 0.078 -0.608

Table A.11: A linear model which can be directly applied to predict a data point, by taking
the dot product of the feature weights (ssDep to raceth) with the data point features and
adding the intercept b. This was a linear BD model trained on the second cross validation
fold of the first run. It was selected because its validation accuracy was equal to the median
value of all 121 models’ validation accuracy.
The ssDep values in the data were ranged from 21 to 50, and the other five features were all
measured on a scale 1-3. They were all normalized by subtracting the mean and dividing by
the standard deviation of the BD set (n = 111, fig 5.1b).

A.5. Multiclass model (no hidden layer) 56

A.5 Multiclass model (no hidden layer)

bAcc Acc SensBD SpecBD SensMD1 SpecMD1 SensHE SpecHE
all subs .617 .658 .471 .926 .682 .731 .700 .803
no BDt1 subs .589 .654 .385 .926 .682 .714 .700 .789
no BDt1 , no MD1

t1,t2
subs .562 .625 .385 .960 .600 .714 .700 .684

ssDep ssMan tens death suic elat decslp raceth
mean scaled absolute weights 17.3 16.7 10.9 8.9 15.3 7.3 14.4 9.2

Table A.12: Performances and weights (scaled to a sum of 100) of multiclass model consisting
of networks without hidden layer, as opposed to the results in 5.6.

True
BD MD1 HE

Pred
BD 8 5 2
MD1 5 30 13
HE 3 9 35

– 1 0 0

(a) All subs

True
BD MD1 HE

BD 5 5 2
MD1 5 30 13
HE 3 9 35

(b) No BDt1

True
BD MD1 HE

BD 5 1 2
MD1 5 15 13
HE 3 9 35

(c) No BDt1 & no MD1
t1 in the

MD1 cat.

Table A.13: Confusion matrices of the multiclass model without hidden layer, corresponding
to the rows in table A.12.

A.6 Models on same features (mood)

Thresh bAcc Acc Sens Spec AUC ssDep seflc tens death
Linear SVM

. .697 .738 .533 .860 .757 32.6 17.2 23.5 26.7
-.788 .653 .650 .667 .640 .757

RBF SVM
. .683 .713 .567 .800 .742 X X X X

-.409 .717 .738 .633 .800 .742
Neural Network

. .677 .713 .533 .820 .734 49.1 21.5 9.2 20.2
-.413 .707 .700 .733 .680 .734

Table A.14: Performances of models trained on an identical feature set (predicting mood
disorder). Patients diagnosed with mood disorder at t1 are omitted in the results.

ensembles (11) all models (121)
wPerc wPerc0 frac wPerc wPerc0 frac

eqLIN 0.000 0.000 0/11 0.000 0.000 0/121
eqRBF 1.365 1.365 11/11 1.436 2.446 71/121
eqANN 1.206 1.896 7/11 0.589 1.047 68/121

Table A.15: Degree of non-linearity in feature space, of models trained on an identical set
of features. wPerc is the mean balanced percentage of multicrossing lines, wPerc0 is the
mean over the those percentages greater than zero and frac is the fraction of models that had
any multicrossing line. The results are shown for the 11 ensembles and 121 single models
separately.

A.6. Models on same features (mood) 57

runs (11) models (121) ens (1) data
acc frac acc frac acc acc

eqLIN 0.976 11/11 1.000 0/121 1.000 0.805
eqRBF 0.965 11/11 0.985 37/121 0.975 0.805
eqANN 0.935 11/11 0.992 43/121 0.932 0.805

Table A.16: Results of training linear SVMs on the data the models with identical feature
sets were trained on, with the models’ prediction as correct labels. A high cost parameter
(C = 10000) was used to approximate a hard-margin SVM. The fraction (frac) shows the
amount of models that showed an accuracy lower than one, implying a non-linearly separable
classification. A lower accuracy (acc) suggests a less linear separation.

Appendix B

NNSVM User Manual

An R framework called NNSVM was built around the pre-existing libraries neuralnet and
libsvm (known as e1071) to allow for a more smooth training process. It was specifically
designed for this study, with the domain of psychiatry in mind. It combines the implementa-
tions of SVMs and neural networks in a coherent interface; functionality to train models with
(double nested) cross validation, get analyses of SVM and ANN weights and test ensembles
was added. Access to the R script and the full documentation document can be requested
from the author or the first supervisor.

This user manual contains a few examples, showing how to use the NNSVM script to train
and test neural networks and SVMs using cross validation. This is not a documentation
document. For further information and formal descriptions of all parameters and return
values, please refer to the documentation document.

It is recommended by the author to use the development environment RStudio1, which
has functionality to view and scroll through data frames and view all parameters in the global
environment.

B.1 Loading the script

To start off, make sure the R packages neuralnet2 and e10713 (LIBSVM for R) are installed.
This can be done by calling the following commands in R, which is only necessary the first
time:

> install.packages(neuralnet)

> install.packages(e1071)

Load the needed packages:

> library(neuralnet)

> library(e1071)

Load the allFunctions script by calling the source function with the path to the file (with
escaped backslashes):

> source(C:\\Users\\Example\\allFunctions.R)
All the functions in the script are now available to use. Read the documentation file for

an overview of all available functions with their exact use, parameters and return values. The
following sections consist of a few examples of how to use the functions to train on data and
get results.

1https://www.rstudio.com/
2https://CRAN.R-project.org/package=neuralnet
3https://CRAN.R-project.org/package=e1071

58

B.2. Read in data 59

B.2 Read in data

Use the built-in R functions read.table (for a tab separated text file) or read.csv (for
a comma separated file) to read in your data file, which must located in the directory of
your current path. The path can be inspected and modified with getwd() and setwd()

respectively.

> data <- read.csv(‘‘yourData.csv", header = TRUE, sep = ",")

To use the NNSVM training functions, it is essential that the first column of the data
frame contains the true labels and the other columns represent the features that you would
like to train with. If you would like to only use, for example, the first five columns, the
seventh column and the ninth column from your data frame, modify your data with (where
c() stands for concatenation):

> data <- data[,c(1:5, 7, 9)]

Or just the first 40 rows:

> data <- data[1:40,]

It can be convenient to store the column with the true labels for later use:

> labels <- data[,1]

It is recommended to scale the data by hand and keep the scale parameters at their
default value of FALSE during training. Otherwise, the weights produced by the linear SVMs
may not be accurate.

B.3 Training

B.3.1 Neural network

This function call trains a neural network with one hidden layer containing three nodes
(h = 3), using 10-fold cross validation (cross = 10). Ten models will be trained on the
9 train folds and validated on the left out folds. In each epoch, training terminates when
the derivative of the function decreases with at most 0.001 or when the amount of training
iterations exceeds stepmax. The type regression makes sure the output will be unaltered,
as opposed to classification which will use the sign function to get -1 and 1 outputs.

> nn.model <- nnTrain(data, type="regression", h=3, threshold = 0.001,

stepmax = 400000, cross = 10)

The result of the training process is stored in nn.model, and consists of four components
which can be accessed with the $ operator. nn.model$resultTable returns a data frame
with results and information about the 10 cross validation runs, and is automatically printed
at the end of the full training run. Call nn.model$results to get the means of that result
table. nn.model$nn contains a list of the 10 trained networks. Use the subscript [[i]] to
access the different networks:

> nn.model$nn[[1]] # first model
> nn.model$nn[[2]] # second model, etc...

These models are of type "nn" from the neuralnet package. See the documentation of
the neuralnet() function for more information on the values that can be extracted from nn

objects.

Error function

It is possible to alter the error function in cases of class size imbalances. By default the
error function is function(x,y){(1/2 * (y - x)^2}, but to penalize errors made on the
smaller class more heavily, the function should be multiplied by the proportion of the class
sizes (larger class divided by the smaller): function(x,y){((50/10)^(0.5*(y+1))) * 1/2

B.4. Predicting 60

* (y - x)^2} for a class with 10 and one with 50 subjects, where the small class has label
-1. The exponent of 0.5 ∗ (y + 1) is added to ensure the multiplication will only be carried
out when the true label is -1. To reverse the labels, use -y in the exponent instead of y.

B.3.2 Support vector machines

To train an SVM, use svmTrain. Here are examples for a linear and an RBF SVM:

> svm.model <- svmTrain(data, kernel = "linear", type="regression", cost

= c(1:6), innerCross = 5, outerCross = 10)

> svm.model <- svmTrain(data, kernel = "radial", type="regression", cost

= c(1:6), gamma=c(0.01, 0.1, 1, 2), innerCross = 5, outerCross = 10)

A vector of values for cost C and γ are supplied. These are the values that are tried
during the grid search in the inner cross validation loop. InnerCross denotes the number of
folds in this inner loop, where parameter optimization is carried out.

Analogous to the neural networks, the models can be accessed with:

> svm.model$svm[[1]] # first model
> svm.model$svm[[2]] # second model, etc...

These models are of type "svm" from the e1071 package. Refer to the documentation of
the svm() function for more information on the values that can be extracted from them.
Additionally, functionality to easily extract weights and the intercept b was added in NNSVM:

> svm.model$svm[[5]]$weights

ic cbgm cbwm vlat sex
0.02805278 -0.08782604 -0.0009609036 0.03464588 0.01460566

> svm.model$svm[[5]]$b

0.1274092

These weights are only meaningful for the linear kernel and only when the parameter scale
was set to FALSE during training! Any scaling should be done on the data set by hand to get
a sensible result for the weights.

Class weights

When the class sizes are imbalanced, it is possible to add class weights. A higher weight
for a class means that errors made on subjects belonging to that class are penalized more
heavily, which results in the model working harder to classify them correctly. Usually the
ratio between the classes can be used by dividing the size of the bigger class by the size of the
smaller class (i.e. a weight of 5 when the sizes are 10 and 50). Supply only the class weight
of the class that is to be compensated for, the other will be 1 by default: > svm.model <-

svmTrain(data, ..., classWeights = c("-1" = 5))

In this example, the class with label -1 gets a weight of 5 and the class with label 1 will get
the default weight of 1.

B.4 Predicting

Now we want to see how the trained models perform. In these examples the nn.model is used,
but predicting and performance measuring works likewise for the svm.model. To predict with
a single model (the first one) from the nn.model list, do:

> model.pred <- predictModel(model$nn[[1]], data[,-1])

Note that we omit the first column from the data, which contains the correct labels and
should not be provided in the testing phase. For SVMs, it is possible to get the decision
values instead of the sign values by adding decisionValues=TRUE as a parameter.

B.5. Performance 61

To request a vector of the predictions of each subjects that were made on the left out
folds during cross validation:

> valPred <- nn.model$valPred

It is also possible to predict with the ensemble of the 10 trained CV models. Such an
ensemble will make a prediction with each provided model, and return the mean of these
prediction as a final value. It is also possible to take the median instead by adding the
parameter fun="median".

> nn.pred <- predictEnsemble(nn.model$nn)

B.5 Performance

The variable nn.pred contains a vector now with the predictions for each row in the data. To
get an idea of the model performance, we can use the following functions to get the RMSE,
MAE, correlation and R2 measures. Note that these measures are for regression models. The
model and true labels must be supplied:

> rmse(nn.pred, data[,1])

6.3112531
> mae(nn.pred, data[,1])

4.683251
> cor(nn.pred, data[,1])

0.8663163
> r2(nn.pred, data[,1])

0.7505039

If you trained a classification model instead of using regression, you can use the confusion
matrix to get performances, with the function predTable. Supply the predictions followed
by the true labels.

> nn.tab <- predTable(nn.pred, data[,1])

> nn.tab
true

pred 1 -1
1 7 5
-1 3 35

> acc(nn.tab)

0.84
> bAcc(nn.tab)

0.7875

Use the functions acc for the normal accuracy (diagonal divided by total) and bAcc for a
balanced accuracy, where each class influences the performance equally. The class with label
1 was predicted less accurately in this example, and it is also the smallest class. Therefore
the balanced accuracy is lower than the unbalanced version.

B.6 Suggestions for parameters

One of the only ways we can influence the training process, is by choosing the parameters
well. The best choice of parameters depends heavily on the data set. Here are a few rules
of thumb, but these should be used with great caution. Always experiment by using cross
validation and comparing results on the validation folds.

B.7. Common errors 62

B.6.1 Neural networks

• Threshold The network will keep training until the derivative of the error function does
not decrease with more than the threshold value in percentage. If this constraint is not
met before the stepmax is reached, the network will not be labeled as ‘converged’ and
will be discarded and trained again. Therefore this value is very important! Always
try a few values to see how long it takes before a certain threshold is reached. Sensible
values are in the order of 0.0001, 0.001 or 0.01. The lower the value, the more time is
needed, thus a higher stepmax will be necessary too. When adding more hidden nodes,
this value should be lowered to achieve the same training duration as before.

• Stepmax This is the maximum amount of steps the algorithm will take. If the threshold
is not reached before, the network will be discarded and retrained. Choose a high value
to make sure the network has enough time to converge, but extreme values will make
the process very lengthy. Values between 100000 and 1000000 are common, but for
bigger networks with more than 3 to 5 nodes, the values may need to be much bigger
to ensure convergence.

• H The optimal number of hidden nodes depends heavily on the amount of inputs (fea-
tures) in the data set. Typically, it is lower than the number of inputs and higher than
the number of outputs. The NNSVM script was intended for relatively small networks
with hidden node amounts between 2 and 10, but feel free to experiment. It is possible
to provide a vector (like c(4, 10)) to get a second layer, but attempting this is at the
user’s risk and has not been tested thoroughly. Some functionality may fail.

• InnerCross and OuterCross For the number of inner CV folds, a value between 5 and
10 seems sensible. Leave-one-out CV is also possible. The same goes for the number of
outer folds, though it is typically equal or greater than the number of inner folds.

B.6.2 Support Vector Machines

• Cost The cost parameter influences the size of the margin in the SVM. Large values
of C will resemble a hard-margin SVM, allowing as less misclassifications as possible,
but typically also resulting in overfitting. A commonly used value is 1, but the cost
parameter can be tuned by providing a vector of values. Try a few values closer to
zero and larger values as well, since the best value depends on your data. Start with
something like c(0.001, 0.01, 0.1, 1:5) and see which order of magnitude is chosen most
often by the algorithm.

• Gamma The γ parameter influences how close the RBF SVM will fit to the data. Lower
values will result in a looser fit that is more robust to overfitting and higher values may
improve the accuracy but at risk for a less generalizable model. Like with C, multiple
orders of magnitudes should be tried in the inner cross validation loop.

B.7 Common errors

There are a few common error situations that can occur while using the NNSVM script or the
neuralnet and e1071 packages. Watch out for these situations:

• Error in neurons[[i]] %*% weights[[i]] : non-conformable arguments

This occurs when you provide a data frame which differs from the data that the neural
network was trained on. Make sure the column with the true is omitted for predicting,
and that it is present for training. Also make sure that the data set contains the same
features in the same order as in the training phase.

B.7. Common errors 63

• Error in svm$coefs : object of type ‘closure’ is not subsettable

This is a similar situation, but for SVMs. It usually means that the provided data
frame contains the wrong columns: check whether the label column should be present
or if any unneeded columns have been added.

It may also mean that you are trying to add a column using $ to an object that is of a
different type than a data frame (e.g. a matrix). Use class to check the type of the
object, and use as.data.frame() to convert it (back) to a data frame.

