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Summary

It is well known that Boolean logic circuits are functionally equivalent to propositional logic.
This thesis develops an extension of Boolean logic circuits that are functionally equivalent
to modal logic with Kripke semantics. We call these circuits modal circuits. We first define
how modal circuits work with a series of definitions. Then we prove that modal circuits are
functionally equivalent to modal logic with Kripke semantics. Using these circuits, we also
define a modal analogue of Boolean circuit satisfiability, called MCSAT. We show that the well
known PSPACE-complete problem of modal satisfiability (MSAT ) is polynomial time reducible
to MCSAT.
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Part I

Introduction
In 1838 George Boole[1] began to develop a system what can be found in his book “An In-
vestigation of the laws of thought”.1 This system is now known as Boolean logic. In 1938
Claude Shannon[2] expanded on this idea by developing a theoretical system in which electrical
switches could represent Boolean logic.2 Nowadays, circuits using these switches are known
as Boolean circuits. We now understand the definition of a Boolean circuit as described in
Micheal Sipser’s book “Introduction to the Theory of Computation”[3]. In this book, circuits
are represented as follows: “a collection of gates and inputs connected by wires. Cycles aren’t
permitted. Gates take three forms: AND gates, OR gates, and NOT gates.”3

In part II, we will look at an addition to these Boolean circuits. These extended circuits
will be called modal circuits. The addition will allow modal circuits to represent modal logic
as well as Boolean logic. For the modal circuits, we shall only define the ¬ (NOT) gate, the
∧ (AND) gate and the � (BOX) gate. These three connectives are a functionally complete
set for modal logic. In other words, by combining these three connectives you can create all
other connectives, e.g. ⋄ is the same as ¬�¬. In this paper, we will present modal circuits with
“output nodes” between the gate nodes as an aid for presentation.

Example 1. Let ¬(p ∧ q) ∧ ¬p be a propositional formula. Then the Boolean circuit and the
modal circuit will be displayed like this:

Boolean circuit:

∧

¬¬

∧

q p

output

modal circuit:

∧

¬¬

∧

p

p

output

q

output output

outputoutput

output output

1Boole, George. An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories
of Logic and Probabilities. p.48 - p.58.

2Shannon, Claude E. ”A Symbolic Analysis of Relay and Switching Circuits.” Electrical Engineering 57.12.
p.475.

3Sipser, Michael. Introduction to the Theory of Computation. p.380.
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There is one difference between the structures. Between every gate and at the root of the
structure there exists an output node. This difference will not affect the workings of the circuit.
The output nodes exist as placeholders for values of sub circuits of modal circuits.

The � gate is the only difference that will have functional consequences. Because of the �
gate, the inputs of the modal circuits will have to represent Kripke models as defined by Saul
Kripke4[4]. The inputs cannot only be a 1 or a 0 as they would be in Boolean circuits. Because
every atomic proposition has its own valuation for every world in a Kripke model, the inputs
of a modal circuit have to be able contain multiple valuations per input node. These inputs
will be presented as nested sets of valuations calculated with an algorithm to represent Kripke
models. This algorithm is described in part II, section 2. Outputs of modal circuits will have
to represent the truth value of a modal formula for a specific world. We will also present these
outputs as nested sets of truth values. Commonly this will be a singleton, since we are most of
the time interested in the valuation of a formula in one world.

Throughout part II there are a few definitions of algorithms used for modal circuits. To
explain the use of these algorithms, a running example will be given right after these algo-
rithms.This running example will use the modal formula ¬�(p ∧�q).

In part III, we will look at the connection between modal circuits and modal logic. We
will first define what the satisfiability of modal circuits entails. Then we will prove that the
modal satisfiability problem is polynomial time reducible to the satisfiability problem for modal
circuit.5 Because Michael Fischer and Richard Ladner[5] have proven in 1979 that the modal
satisfiability problem is PSPACE-complete, we will prove that certain modal circuit satisfiabil-
ity problems are PSPACE-hard.6

In part IV, we will reflect on this paper. We will discuss the consequences of this paper and
give some problems considering modal circuits that are not solved in this paper.

In this paper, we will see quite a few conventions. p and q are used as atomic propositions.
ϕ, ψ and χ are used as modal formulas. α, β and γ are used as propositional formulas. In this
paper, you will sometimes see a symbol with a subscript i after the use of an enumeration.
Then the i denotes and element of that enumeration. This can be seen in example 2.

Example 2. In the sentence “⟨I1, ..., In⟩ is a well formed input set iff I1, ..., In are well formed
input sets such that each non-empty Ii has the same rank for n ≥ 0.” 7 Ii is an element of
I1, ..., In.

Throughout this paper we will see different uses of the word “correspondence”. First, modal
formulas can correspond to modal circuits. This is the same correspondence as in example 1
where ¬(p∧ q)∧¬p corresponds to the modal circuit presented in the example. Second, sets of
worlds and sets of values can correspond to models. This means that a certain model is used in
the creation of a set of worlds or a set of valuations. How this creation happens will be defined
in the paper. Finally, sets of worlds can correspond to sets of valuations. This correspondence
will be formally defined in the paper.

4Kripke, Saul A. ”Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi.” Zeitschrift
Für Mathematische Logik Und Grundlagen Der Mathematik 9.5-6. p.68 - p.69

5The modal satisfiability problem is defined like this: Given a modal formula ϕ, does there exists a model
and a world in that model where ϕ is True;
The definition of polynomial time reducibility is defined in Sipser’s book “Introduction to the Theory of Com-
putation” on page 300

6Fischer, Michael J., and Richard E. Ladner. ”Propositional Dynamic Logic of Regular Programs.” Journal
of Computer and System Sciences 18.2. p.209

7As seen on page 4. of this paper
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Part II

Formal definition of modal circuits

1 Definition well formed modal circuits

In this section we will first define the valuation function V. Secondly we will define what a
well formed input set is. Finally we will use these two definitions to define what a well formed
modal circuit is.

Definition 1. The valuation function V : L → {True, False} is the function that evaluates
propositional formulas and returns True or False depending on the truth value of the formula.8

Definition 2. A well formed input set I is recursively defined as follows:

1. ⟨V(p1), ...,V(pn)⟩ is a well formed input set iff p1, ..., pn are atomic propositions for n ≥ 0.

2. ⟨I1, ..., In⟩ is a well formed input set iff I1, ..., In are well formed input sets such that
each non-empty Ii has the same rank for n ≥ 0.9

3. An input set is well formed iff it follows the rules above.

Let I denote the class of all well formed input sets.

Example 3. Let p, q, r be atomic propositions. Then examples of well formed input sets are
⟨V(p),V(q),V(r)⟩
⟨⟨V(p),V(q)⟩, ⟨V(q),V(r)⟩, ⟨⟩⟩
⟨⟨⟨V(r)⟩, ⟨⟩⟩, ⟨⟨V(p),V(q),V(r)⟩⟩, ⟨⟩⟩

Input sets are the inputs for a modal circuit, just as 1’s and 0’s are inputs for Boolean
circuits. Since, in a Kripke model, every atomic proposition can have a different valuation for
every world, the inputs for modal circuits have to be able to contain different valuations. This
problem is solved by having sets of valuations for every atomic proposition. The nesting of
input sets represents the structure of a Kripke model in relation to the modal circuit. The
algorithm to create input sets representing Kripke models is defined in section 2.

A well formed modal circuit is defined recursively as a directed vertex-labeled tree-like
graph. In this graph, we only have interest in the labeling of the leaves of the tree. We will
call these leaves input nodes. The labels of the input nodes will be atomic propositions. Other
nodes are divided into two types: gate nodes and output nodes. Gate nodes are labeled by ¬,
∧ and �. Output nodes are labeled output. The root of the tree is called the final output node.
Note that two or more input nodes can have the same labeling. The modal circuits will now
be recursively defined as follows:

8In this paper, we will use L as the class of all propositional formulas
9Here we understand rank in the standard set-theoretic way, except with ⟨, ⟩ instead of {, }
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1. Atomic propositions:

p

output

is a well formed modal circuit iff p is a label of an input node.

2. Negations:

outputϕ

¬

output

is a well formed modal circuit iff the node labeled outputϕ is an output node in a well
formed modal circuit. 10

10Throughout the paper, the dotted arrow will be used as an abbreviation for the rest of the modal circuit
that is connected to the node the arrow points at
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3. Conjunctions:

outputψ

∧

output

outputϕ

is a well formed modal circuit iff the node labeled outputϕ and the node labeled outputψ
are output nodes in well formed modal circuits.

4. Box operators:

outputϕ

�

output

is a well formed modal circuit iff the node labeled outputϕ is an output node in a well
formed modal circuit.
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5. For every output node it holds that the output node is accessed by exactly one node.

6. A modal circuit is well formed iff every node in the modal circuit follows the rules above.

Definition 3. Cϕ is a modal circuit corresponding to a modal formula ϕ.

Definition 4. Let ϕ′ be any sub formula of ϕ. Then we define that Nϕ′ is the final output node
of the modal sub circuit corresponding to ϕ′.

Converting modal formulas into modal circuits is done in the same way as propositional
formulas are converted to Boolean circuits (i.e., the circuit is isomorphic to the formula’s syn-
tactic tree). Note that, as in the Boolean case, there is a bijection between modal circuits and
modal formulas.

Running example 1. Let ¬�(p ∧ �q) be a modal formula. Then the modal circuit corre-
sponding to this formula is:

�

output

∧

outputoutput

p �

output

q

output

¬

output
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2 Creating input sets representing models

In this section, we define the notion of world sets and two functions, �⃝ and SET M. Then we
define the rules for creating input sets using this notion and these functions. Throughout this
paper, let M = {W,R,V, τ} be any Kripke model.

A world set is a variant of input sets. A world set looks almost the same as an input set.
The difference is that the most nested elements of the sets are worlds instead of valuations.
These world sets are used in the algorithm for creating input sets.

Definition 5. A well formed world set W is recursively defined as follows:

1. ⟨w1, ..., wn⟩ is a well formed world set iff w1, ..., wn ∈ W for n ≥ 0.

2. ⟨W1, ...,Wn⟩ is a well formed world set iff W1, ...,Wn are well formed world sets such that
each non-empty Wi has the same rank for n ≥ 0.

3. a world set is well formed iff it follows the rules above.

Let WM denote the class of all well formed world sets whose worlds are in W.

Example 4. Let w1, w2, w3 be worlds in model W. Then examples of well formed world sets
are ⟨w1, w2, w3⟩,
⟨⟨w1, w2⟩, ⟨w3, w3⟩, ⟨⟩⟩,
⟨⟨⟨w3⟩, ⟨⟩⟩, ⟨⟨w1, w2, w2⟩⟩, ⟨⟩⟩

In definition 6 we will borrow the {element | condition} notation from set theory.11 Despite
the use of ordered sets, this notation will not be problematic because the order of the elements
satisfying the condition will not matter when using this function.

Definition 6. The function �⃝ : WM → WM is recursively defined as follows:

1. �⃝(⟨w1, ..., wn⟩) = ⟨⟨wi|(w1, wi) ∈ R⟩, ..., ⟨wi|(wn, wi) ∈ R⟩⟩ for n ≥ 0.

2. �⃝(⟨W1, ...,Wn⟩) = ⟨ �⃝(W1), ..., �⃝(Wn)⟩ for n ≥ 0.

We may abbreviate �⃝(W ) by �⃝W .

Definition 7. The function SET M : WM × Lp → I is recursively defined as follows: 12

1. SET M(⟨w1, ..., wn⟩, p) = ⟨V(pw1), ...,V(pwn)⟩ where pwi is True iff M, wi |= p for n ≥ 0.

2. SET M(⟨W1, ...,Wn⟩, p) = ⟨SET M(W1, p), ...,SET M(Wn, p)⟩ for n ≥ 0.

We may abbreviate SET M by SET when the Kripke model is obvious.

Given M we now associate, for every non-gate node N , an element SM,N ∈ (WM ∪ I) at
N . With the algorithm we will arrange it so that for every input node N , SM,N ∈ I, and that
for every output node N SM,N ∈ WW . We will abbreviate SM,Nϕ

by Wϕ. We will commonly
start by setting Wϕ = ⟨τ⟩, because we are often interested in the value of a formula at the
actual world τ . However, the definition below works for any arbitrary world set. Define SM,N1

(respectively SM,N3), the set corresponding to M at node N1 (respectively N3), by these rules:

11An example of this notation from set theory can be found in Sipser’s book “Introduction to the Theory of
Computation” on page 7.

12In this paper, we will use Lp as the class of atomic propositions
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1. If the circuit contains:

N1

N2

andN1 is an input node labeled by any atomic proposition p, then SM,N1 = SET (SM,N2 , p).

2. If the circuit contains:

N1

¬

N2

then SM,N1 = SM,N2 .

3. I the circuit contains:

N1

∧

N2

N3

then SM,N1 = SM,N2 = SM,N3 .

4. If the circuit contains:

N1

�

N2

then SM,N1 = �⃝SM,N2 .
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Running example 2. Let ¬�(p ∧�q) be a modal formula and let the Kripke model M be:

w1 : p w2 : q w3 : p, q

If we want to know whether M, τ |= ¬�(p ∧�q), then we calculate the input sets from the
root of the modal circuit corresponding to the formula using the algorithm like this:

�

⟨⟨w1, w2⟩⟩

∧

⟨⟨w1, w2⟩⟩⟨⟨w1, w2⟩⟩

⟨⟨True, False⟩⟩ �

⟨⟨⟨w1, w2⟩, ⟨w3⟩⟩⟩

⟨⟨⟨False, True⟩, ⟨True⟩⟩⟩

⟨w1⟩

¬

⟨w1⟩
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3 Calculating values of output nodes

In this section, we define the notion of a well formed output set, which is similar to an input set
except with (possibly) non-atomic propositions as the most nested elements. Then we define a
notion of position and the notion of correspondence between output sets and world sets. With
these notions, we will define one function, ¬⃝, and two partial functions, ∧⃝ and �⃝M. Finally
we will define the rules for calculating output sets using this notion and these functions.

Definition 8. The value of an output node is a well formed output set O. A well formed
output set O is recursively defined as follows:

1. ⟨V(α1), ...,V(αn)⟩ is a well formed output set iff α1, ..., αn are propositional formulas for
n ≥ 0.

2. ⟨O1, ...,On⟩ is a well formed output set iff O1, ...,On are well formed output sets such that
each non-empty Oi has the same rank for n ≥ 0.

3. an output set is well formed iff it follows the rules above.

Let O denote the class of all well formed output sets.

As we will see in section 3.2, given a model M and choice ofWϕ, we will associate, for every
output node N , an element OM,N ∈ O.13

Definition 9. The position of an element x in a world set W or an output set O is a string
s ∈ (N ∪ {$})∗ and is recursively defined as follows:

1. The position of xi in ⟨x1, ..., xi, ..., xn⟩ is $i, iff x1, ..., xi, ..., xn are either worlds or valu-
ations for 0 ≤ i ≤ n.

2. The position of an element x in Xi in ⟨X1, ..., Xi, ..., Xn⟩ is $iI where I is the position
of x in Xi, iff X1, ..., Xi, ..., Xn are either world sets or output sets for 0 ≤ i ≤ n.

Example 5. Let ⟨⟨⟨w1, w2, w2⟩, ⟨w2⟩, ⟨w1⟩⟩, ⟨⟨w2, w3, w1⟩⟩⟩ be a world set. Then the position
of the element w3 is $2$1$2.

Definition 10. Let α be a propositional formula and let ϕ be a modal formula and let ϕ′ be
any sub formula of ϕ. A world w in the world set SM,Nϕ′ corresponds to the valuation V(α)
in the output set OM,Nϕ′ iff the position of w in SM,Nϕ′ is the same as the position of V(α) in
OM,Nϕ′ and it holds that M, w |= ϕ′ iff V(α) is True.

Definition 11. A world set W corresponds to an output set O iff each element of W corre-
sponds to some unique element of O.

3.1 Functions on output sets

In the next section there are several definitions of functions. All these functions will be used in
the running example after the algorithm in section 3.2.

13Wϕ is the world set chosen to be the root of a modal circuit. Commonly this will be ⟨τ⟩ but for sub circuits
other world sets may be needed

11



Definition 12. The function ¬⃝ : O → O is recursively defined, on the structure of output sets,
as follows:

1. ¬⃝(⟨V(α1), ...,V(αn)⟩) = ⟨V(¬α1), ...,V(¬αn)⟩ for n ≥ 0.

2. ¬⃝(⟨O1, ...,On⟩) = ⟨ ¬⃝(O1), ..., ¬⃝(On)⟩ for n ≥ 0.

We may abbreviate ¬⃝(O) by ¬⃝O.

Definition 13. The partial function ∧⃝ : O×O⇀ O 14 is recursively defined as follows:

1. ∧⃝(⟨V(α1), ...,V(αn)⟩, ⟨V(β1), ...,V(βn)⟩) = ⟨V(α1 ∧ β1), ...,V(αn ∧ βn)⟩ for n ≥ 0.

2. ∧⃝(⟨O1,1, ...,O1,n⟩, ⟨O2,1, ...,O2,n⟩) = ⟨ ∧⃝(O1,1,O2,1), ..., ∧⃝(O1,n,O2,n)⟩ for n ≥ 0.

Definition 14. The partial function �⃝M : O⇀ O is recursively defined as follows:

1.

�⃝M(⟨⟨V(α1,1), ...,V(α1,m)⟩, ..., ⟨V(αn,1), ...,V(αn,o)⟩⟩) = ⟨V(
m∧
i=1

α1,i), ...,V(
o∧
i=1

αn,i)⟩

for n ≥ 0 and m ≥ 0 and o ≥ 0 iff for any world set W such that �⃝W corresponds to

(⟨⟨V(α1,1), ...,V(α1,m)⟩, ..., ⟨V(αn,1), ...,V(αn,o)⟩⟩)

we have that W corresponds to

⟨V(
m∧
i=1

α1,i), ...,V(
o∧
i=1

αn,i)⟩

.

2. �⃝M(⟨O1, ...,On⟩) = ⟨( �⃝M)O1, ..., �⃝M(On)⟩
for n ≥ 0 iff for any world set W such that �⃝W corresponds to ⟨O1, ...,On⟩ we have that
W corresponds to ⟨ �⃝M(O1), ..., �⃝M(On)⟩

We may abbreviate �⃝M(O) by �⃝O if the model is obvious.

Note that ∧⃝ and �⃝M are partial functions. It is not the case that arbitrary output sets can
be used on these functions. However, if the input sets of a modal circuit are made by using the
steps described in section 2, then these partial functions can always be used. This will become
clear in part III section 5. Further note that the restrictions in 14.1 and 14.2 ensure that this
is not a multi valued function.

Example 6. Consider �⃝M(⟨⟨⟩⟩). Without the restrictions in definition 14 this function has
two possibilities. Either �⃝M(⟨⟨⟩⟩) = ⟨True⟩ or �⃝M(⟨⟨⟩⟩) = ⟨⟨⟩⟩. Since any world set cannot
correspond to both

⟨V(
m∧
i=1

α1,i), ...,V(
o∧
i=1

αn,i)⟩ and ⟨ �⃝M(O1), ..., �⃝M(On)⟩

at the same time, the restriction in the definition prevents �⃝M from being a multi valued
function.

14In this paper, the ⇀ will denote a partial function
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3.2 Steps for calculating

Given the input set INi for every input node Ni, we now associate, for every node N , an output
set OM,N ∈ O corresponding to model M in node N . If the model is obvious from the context
we will write ON instead of OM,N . Define ON2 , the output set at N2, by these rules:

1. If the circuit contains:

N1

N2

and N1 is an input node, then ON2 = IN1 .

2. If the circuit contains:

N1

¬

N2

then ON2 = ¬⃝ON1 .

3. If the circuit contains:

N1

∧

N2

N3

then ON2 = ∧⃝(ON1 ,ON3)

4. If the circuit contains:

N1

�

N2

then ON2 = �⃝ON1
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We may abbreviate ONϕ
by Oϕ.

Running example 3. Let ¬�(p ∧�q) be a modal formula and let the Kripke model M be:

w1 : p w2 : q w3 : p, q

If we want to know whether M, τ |= ¬�(p∧�q), and we know what the input sets are, then
we calculate the output set of the root starting at the leaves like this:

�

⟨⟨False, False⟩⟩

∧

⟨⟨False, True⟩⟩⟨⟨True, False⟩⟩

⟨⟨True, False⟩⟩ �

⟨⟨⟨False, True⟩, ⟨True⟩⟩⟩

⟨⟨⟨False, True⟩, ⟨True⟩⟩⟩

⟨False⟩

¬

⟨True⟩

Since the output set at the final output node contains True, we know that M, τ |= ¬�(p∧�q).

14



Lemma 1. Let ϕ be a modal formula. Let N be a node in Cϕ. Let α be a propositional formula.
Suppose �⃝W ∈ W corresponds to O ∈ O. Then W corresponds to �⃝O.

Proof: We give a proof by induction over the structure of W .
Base case: Let W be ⟨w1, ..., wn⟩ ∈ W for n ≥ 0. Then by the definition of �⃝ we can
calculate that �⃝W = �⃝(⟨w1, ..., wn⟩) = ⟨⟨wi|(w1, wi) ∈ R⟩, ..., ⟨wi|(wn, wi) ∈ R⟩⟩. The
output set O that corresponds to �⃝W is O = ⟨⟨V(αwi)|(w1, wi) ∈ R⟩, ..., ⟨V(αwi)|(wn, wi) ∈
R⟩⟩ where every valuation V(αwi) corresponds to world wi in W . We can calculate by the
function �⃝ that

�⃝O = �⃝⟨⟨V(αwi)|(w1, wi) ∈ R⟩, ..., ⟨V(αwi)|(wn, wi) ∈ R⟩⟩ =

⟨V(
∧

(w1,wi)∈R

αwi), ...,V(
∧

(wn,wi)∈R

αwi)⟩.

Now we have to prove that

⟨V(
∧

(w1,wi)∈R

αwi), ...,V(
∧

(wn,wi)∈R

αwi)⟩ corresponds to ⟨w1, ..., wn⟩.

We must prove that for every element wj in W it holds that

V(
∧

(wj ,wi)∈R

αwi
) is True iff M, wj |= �ϕα.

We know that
V(

∧
(wj ,wi)∈R

αwi)

is True iff for every world v where (wj , v) ∈ R it holds that M, v |= ϕα. We also know by
the definition of � that M, wj |= �ϕα holds iff for every world v where (wj , v) ∈ R it holds
that M, v |= ϕα. Therefore, we know that

V(
∧

(wj ,wi)∈R

αwi)

is True iff M, wj |= �ϕα

Inductive hypothesis. Suppose for world sets W1, ...,Wn, we have that for 0 ≤ i ≤ n, if

�⃝Wi corresponds to Oi, then Wi corresponds to �⃝Oi.

Inductive step: Let W be ⟨W1, ...,Wn⟩. Then by the definition of �⃝ we calculate that

�⃝W = �⃝⟨W1, ...,Wn⟩ = ⟨ �⃝W1, ..., �⃝Wn⟩. Now we know that the output set O that
corresponds to �⃝W is O = ⟨O1, ...,On⟩. Then we calculate by the function �⃝ that �⃝O =

�⃝⟨O1, ...,On⟩ = ⟨ �⃝O1, ..., �⃝O⟩. Now we have to prove that W = ⟨W1, ...,Wn⟩ corresponds
to �⃝O = ⟨ �⃝O1, ..., �⃝O⟩. Therefore, by definition of correspondence, we have to prove that
every Wi in W corresponds to �⃝Oi in �⃝O. This is true by the inductive hypothesis.

�
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Part III

Satisfiability of modal circuits

4 How is a modal circuit satisfiable

There are several ways to define satisfiability for modal circuits. In this paper we will consider
only the definition below. Some other definitions of satisfiability will be given in the conclusion
of the paper to consider for future research.

Definition 15. An output node in a modal circuit can be calculated iff the output set of that
output node can be calculated from the input sets by using the functions and steps defined in
sections 3.1 and 3.2.

Definition 16. A modal circuit is satisfiable iff there is a configuration of input sets such
that the value of every output node can be calculated and such that the calculated value of the
final output node is a singleton containing True and there is a Kripke model such that if the
world set at the final output node is ⟨τ⟩, then the input sets can be calculated using the algorithm
described in section 2 of part II.

Running example 4. In running example 2 we saw that there is a Kripke model such that
if the world set at the final output node is ⟨τ⟩, then the input sets can be calculated using
the algorithm described in section 2 of part II, because we calculated the input sets using the
algorithm. In running example 3 we saw that there is a configuration of input sets such that
the value of every output node can be calculated and such that the calculated value of the final
output node is a singleton containing True. Now we know that our circuit is satisfiable.

Modal circuit satisfiability, from now on MCSAT, is defined as follows:

MCSAT = {< C > | C is a satisfiable modal circuit}

5 Polynomial-time reduction from MSAT to MCSAT

In this section we will prove two theorems. The first theorem states that modal circuits produce
the same truth values as modal formulas, generalizing the well known result that Boolean formu-
las and the corresponding Boolean circuits produce the same truth values. The second theorem
will use the first theorem to prove that MSAT is polynomial-time reducible to MCSAT .

Theorem 1. Given model M and a modal circuit Cϕ. For every valuation V(α) in the output
set Oϕ of the final output node it holds that V(α) is True iff for that world w corresponding to
V(α) it holds that M, w |= ϕ.

Proof: LetWϕ be the world set of the final output node of the modal circuit Cϕ corresponding
to the modal formula ϕ. We give a proof by induction:
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Main base case: Let ϕ be an atomic proposition. Then the corresponding circuit is:

ϕ

Output

The world set of Output is by assumption Wϕ. We can calculate the input set by using the
algorithm described in section 2. By using this algorithm, we calculate that Ii = SET (Wϕ, ϕ).
By the definition of the modal circuit in section 3, the calculated output set in Output is
SET (Wϕ, ϕ). We now have to prove that for every valuation V(α) in SET (Wϕ, ϕ) it holds that
V(α) is True iff for the world w corresponding to V(α) it holds that M, w |= ϕ. We can prove
this by induction on the structure of world sets:

Base case: Let Wi be a set of worlds ⟨w1, ..., wn⟩ for n ≥ 0. Then we have to prove that
for every valuation V(α) in SET (⟨w1, ..., wn⟩, ϕ) it holds that V(α) is True iff for the world
wi corresponding to V(α) it holds that M, wi |= ϕ. By the definition of SET we calculate
that SET (⟨w1, ..., wn⟩, ϕ) = ⟨V(ϕw1), ...,V(ϕwn)⟩ where ϕwi is True iff M, wi |= ϕ.

Inductive hypothesis. Suppose for world sets W1, ...,Wn, we have that for every valuation
V(α) in SET (Wi, ϕ) it holds that V(α) is True iff for the world wi corresponding to V(α) it
holds that M, wi |= ϕ.

Inductive step: Let Wm be ⟨W1, ...,Wn⟩ for n ≥ 0. Then we have to prove that for every
valuation V(α) in SET (Wm, ϕ) it holds that V(α) is True iff for the world wi corresponding
to V(α) it holds that M, wi |= ϕ. By using the definition of SET we can calculate that
SET (⟨W1, ...,Wn⟩, ϕ) = ⟨SET (W1, ϕ), ...,SET (Wn, ϕ)⟩. By the inductive hypothesis, we
know that for every valuation V(α) in SET (W1, ϕ), ...,SET (Wn, ϕ) it holds that V(α) is
True iff for the world wi corresponding to V(α) it holds that M, wi |= ϕ.

This is the conclusion of the base case.

Main inductive hypothesis. Suppose for any world set for the final output node of the
modal circuit Cψ corresponding to modal formula ψ, we have that for every valuation V(α) in
the calculated output set Oψ of the final output node it holds that V(α) is True iff for the world
w corresponding to V(α) it holds that M, w |= ψ. Suppose this is the same for χ.
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Main inductive step - negation(¬): suppose ϕ is ¬ψ. The corresponding (partial) circuit
is then:

Nψ

¬

Nϕ

The world set of Nϕ is by assumption Wϕ. By using the algorithm of section 2 we can cal-
culate that Wϕ = Wψ. By the inductive hypothesis, we know that for every valuation V(α) in
the calculated output set Oψ of Nψ it holds that V(α) is True iff for the world w corresponding
to V(α) it holds that M, w |= ψ. Now we have to prove that for every valuation V(γ) in the
calculated output set ¬⃝Oψ of Nϕ it holds that V(γ) is True iff for the world v corresponding
to V(γ) it holds that M, v |= ¬ψ. We can prove this by induction on the structure of world sets:

Base case: Let Wϕ be a set of worlds ⟨w1, ..., wn⟩ for n ≥ 0. Therefore, we
know that Wψ = ⟨w1, ..., wn⟩. Therefore, we know that Oψ = ⟨V(αw1), ...,V(αwn)⟩
where every valuation V(αwi) is True iff for the world wi corresponding to V(αwi) it
holds that M, wi |= ψ. Now, following the definition of ¬⃝, we know that ¬⃝Oψ =
¬⃝⟨V(αw1), ...,V(αwn)⟩ = ⟨V(¬αw1), ...,V(¬αwn)⟩. Since we know that for every valuation
V(αwi) in ⟨V(αw1), ...,V(αwn)⟩ of Nψ it holds that V(αwi) is True iff for the world wi corre-
sponding to V(αwi) it holds that M, wi |= ψ, we know by the definition function of negation
that every valuation V(¬αwi) in ⟨V(¬αw1), ...,V(¬αwn)⟩ of Nϕ is True iff for the world wi
corresponding to V(¬αwi) it holds that M, wi |= ¬ψ.

Inductive hypothesis. Suppose for world sets W1, ...,Wn, we have that for every valuation
V(¬α) in ¬⃝Oψ it holds that V(¬α) is True iff for the world w corresponding to V(¬α) it
holds that M, w |= ¬ψ.

Inductive step: Let Wϕ be ⟨W1, ...,Wn⟩ for n ≥ 0. Therefore, we know that the world set
for Nψ,Wψ is ⟨W1, ...,Wn⟩. Therefore, we know that the output set Oψ for Nψ is ⟨O1, ...,On⟩
where Oi corresponds to Wi. By the main inductive hypothesis, we know that for every
valuation V(α) in the calculated output set Oψ of the final output node of Cψ it holds that
V(α) is True iff for the world w corresponding to V(α) it holds thatM, w |= ψ. Now, following
the definition of ¬⃝ we can calculate that ¬⃝Oψ = ¬⃝⟨O1, ...,On⟩ = ⟨ ¬⃝O1, ..., ¬⃝On⟩. By the
inductive hypothesis we know that for every valuation V(¬α) in ¬⃝O1, ..., ¬⃝On it holds that
V(¬α) is True iff for the world w corresponding to V(¬α) it holds that M, w |= ¬ψ.

Main inductive step - conjunction(∧): Suppose ϕ is ψ ∧ χ. The corresponding (partial)
circuit is then:
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Nψ

∧

Nϕ

Nχ

The world set of Nϕ is by assumption Wϕ. By using the algorithm of section 2 we can
calculate that Wϕ =Wψ =Wχ. By the inductive hypothesis, we know that for every valuation
V(α) and V(β) in the calculated output sets Oψ and Oχ of Nψ and Nχ it holds that V(α) and
V(β) are True iff for the world w corresponding to V(α) and V(β) it holds that M, w |= ψ and
M, w |= χ. Now we have to prove that for every valuation V(γ) in the calculated output set
∧⃝(Oψ,Oχ) of Nϕ it holds that V(γ) is True iff for the world v corresponding to V(γ) it holds
that M, v |= ψ ∧ χ. We can prove this by induction on the structure of world sets:

Base case: LetWϕ be a set of worlds ⟨w1, ..., wn⟩ for n ≥ 0. Therefore, we know thatWψ =
Wχ = ⟨w1, ..., wn⟩. Therefore, we know that Oψ = ⟨V(αw1), ...,V(αwn)⟩ where for every valu-
ation V(αwi) it holds that V(αwi) is True iff M, wi |= ψ and Oχ = ⟨V(βw1), ...,V(βwn)⟩ where
for every valuation V(βwi) it holds that V(βwi) is True iff M, wi |= χ. Now, following the
definition of ∧⃝, we know that ∧⃝(Oψ,Oχ) = ∧⃝(⟨V(αw1), ...,V(αwn)⟩, ⟨V(βw1), ...,V(βwn)⟩) =
⟨V(αw1 ∧ βw1), ...,V(αwn ∧ βwn)⟩. Since the main inductive hypothesis gives that for every
valuation V(αwi) and V(βwi) in ⟨V(αw1), ...,V(αwn)⟩ and ⟨V(βw1), ...,V(βwn)⟩ of Nψ and Nχ

respectively it holds that V(αwi) and V(βwi) are True iff for the world wi corresponding to
V(αwi) and V(βwi) it holds that M, wi |= ψ and M, wi |= χ respectively, we know by the
definition of the valuation function of conjunction that for every valuation V(αwi ∧ βwi) in
⟨V(αw1

∧ βw1
), ...,V(αwn

∧ βwn
)⟩ of Nϕ it holds that V(αwi

∧ βwi
) is True iff for the world

wi corresponding to V(αwi ∧ βwi) it holds that M, wi |= ψ ∧ χ.

Inductive hypothesis. Suppose for world sets W1, ...,Wn, we have that for every valuation
V(α ∧ β) in ∧⃝(Oψ,Oχ) it holds that V(α ∧ β) is True iff for the world w corresponding to
V(α ∧ β) it holds that M, w |= ψ ∧ χ.

Inductive step: Let Wϕ be ⟨W1, ...,Wn⟩ for n ≥ 0. Therefore, we know that Wψ =Wχ =
⟨W1, ...,Wn⟩. Therefore, we know that Oψ = ⟨Oψ1 , ...,Oψn⟩ and Oχ = ⟨Oχ1 , ...,Oχn⟩ where
Oji corresponds toWi in Nj . By the main inductive hypothesis, we know that for every valu-
ation V(α) and V(β) in the calculated output set Oψ and Oχ it holds that V(α) and V(β) are
True iff for the world w corresponding to V(α) and V(β) it holds that M, w |= ψ and M, w |=
χ respectively. Now, following the definition of ∧⃝ we can calculate that ∧⃝(Oψ,Oχ) =
∧⃝(⟨Oψ1 , ...,Oψn⟩, ⟨Oχ1 , ...,Oχn⟩) = ⟨ ∧⃝(Oψ1 ,Oχ1), ..., ∧⃝(Oψn ,Oχn)⟩. By the inductive hy-
pothesis we know that for every valuation V(α∧β) in ∧⃝(Oψ1 ,Oχ1), ..., ∧⃝(Oψn ,Oχn) it holds
that V(α∧β) is True iff for the world w corresponding to V(α∧β) it holds that M, w |= ψ∧χ.
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Main inductive step - box(�): Suppose ϕ is �ψ. The corresponding (partial) modal
circuit is then:

Nψ

�

Nϕ

The world set of Nϕ is by assumption Wϕ. By using the algorithm of section 2 we can
calculate that Wψ = �⃝Wϕ. By the inductive hypothesis, we know that for every valuation
V(α) in the calculated output set Oψ of Nψ it holds that V(α) is True iff for the world w
corresponding to V(α) it holds that M, w |= ψ. Now we have to prove that for every valuation
V(γ) in the calculated output set �⃝Oψ of Nϕ it holds that V(γ) is True iff for the world
v corresponding to V(γ) it holds that M, v |= �ψ. We can prove this by induction on the
structure of world sets:

20



Base case: Let Wϕ be a set of worlds ⟨w1, ..., wn⟩ for n ≥ 0. Therefore, we know that
Wψ = �⃝⟨w1, ..., wn⟩ = ⟨⟨wi|(w1, wi) ∈ R⟩, ..., ⟨wi|(wn, wi) ∈ R⟩⟩. Therefore, we know that
Oψ = ⟨⟨V(αwi)|(w1, wi) ∈ R⟩, ..., ⟨V(αwi)|(wn, wi) ∈ R⟩⟩ where for every valuation V(αwi) it
holds that V(αwi) is True iff M, wi |= ψ.
Now, following the definition of �⃝, we know that

�⃝Oψ = �⃝⟨⟨V(αwi)|(w1, wi) ∈ R⟩, ..., ⟨V(αwi)|(wn, wi) ∈ R⟩⟩ =

⟨V(
∧

(w1,wi)∈R

αwi), ...,V(
∧

(wn,wi)∈R

αwi)⟩

Since we know by the main inductive hypothesis that for every valuation V(αwi) in
⟨⟨V(αwi)|(w1, wi) ∈ R⟩, ..., ⟨V(αwi)|(wn, wi) ∈ R⟩⟩ of Nψ it holds that V(αwi) is True iff
for the world wi corresponding to V(αwi) it holds that M, wi |= ψ, and since M, wj |= �ψ
holds iff for all worlds wi ∈ W where (wj , wi) ∈ R it holds that M, wi |= ψ, we know that
for every valuation

V(
∧

(wj ,wi)∈R

αwi) in ⟨V(
∧

(w1,wi)∈R

αwi), ...,V(
∧

(wn,wi)∈R

αwi)⟩

of Nϕ it holds that

V(
∧

(wj ,wi)∈R

αwi)

is True iff for the world wj corresponding to

V(
∧

(wj ,wi)∈R

αwi)

it holds that M, wj |= �ψ.

Inductive hypothesis. Suppose for world sets W1, ...,Wn, we have that for every valuation

V(
∧

(wi,wj)∈R

αwj )

in �⃝Oψ it holds that

V(
∧

(wi,wj)∈R

αwj )

is True iff for the world wi corresponding to

V(
∧

(wi,wj)∈R

αwj )

it holds that M, wi |= �ψ.
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Inductive step: Let Wϕ be ⟨W1, ...,Wn⟩ for n ≥ 0. Therefore, we know that Wψ =

�⃝⟨W1, ...,Wn⟩ = ⟨ �⃝(W1), ..., �⃝(Wn)⟩. Therefore, we know that Oψ = ⟨O1, ...,On⟩ where Oj

corresponds to �⃝(Wj). By the main inductive hypothesis, we know that for every valuation
V(α) in the calculated output set Oψ of Nψ it holds that V(α) is True iff for the world w
corresponding to V(α) it holds that M, w |= ψ. Now, following the definition of �⃝, we
can calculate that �⃝Oψ = �⃝⟨O1, ...,On⟩ = ⟨ �⃝O1, ..., �⃝On⟩. We know by lemma 1 that
W1, ...,Wn correspond to �⃝O1, ..., �⃝On. Then, by the inductive hypothesis, we know that
for every valuation

V(
∧

(wi,wj)∈R

αwj )

in �⃝Oψ it holds that

V(
∧

(wi,wj)∈R

αwj )

is True iff for the world wi corresponding to

V(
∧

(wi,wj)∈R

αwj )

it holds that M, wi |= �ψ.

�
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We now prove that local modal satisfiability is reducible to the modal circuit satisfiability
using Theorem 1.

Theorem 2. MSAT ≤p MCSAT .

Proof: We must find a reduction function f such that for every s ∈ L, s ∈ MSAT iff
f(s) ∈ MCSAT . We claim a function f that works would be the obvious function f such
that f(< ϕ >) =< s > where < s > is a string that encodes the modal circuit of ϕ.15 This
function is clearly polynomial-time computable for the same reason as the reduction function
from propositional formulas to Boolean circuits.

Let ϕ be a modal formula. Then we have to prove that there exists an input set for Cϕ such
that every output node can be calculated and such that the calculated value of the final output
node Nϕ is a singleton containing True iff there exists a world w ∈ W such that M, w |= ϕ

⇒ Suppose ϕ is satisfiable. Then we know that there exists a model M and a current world
τ where it holds that M, τ |= ϕ. Then we have to prove that there exists an input set for
the modal circuit Cϕ that satisfies the circuit. Let the world set of the final output node
be ⟨τ⟩. Then we know by theorem 1 that the valuation V(α) of the output set ⟨V(α)⟩
is True iff for the world τ it holds that M, τ |= ϕ. By assumption M, τ |= ϕ holds.
Therefore, V(α) is True.

¬ ⇒ Suppose ϕ is not satisfiable. Then we know that there exists no model M with a current
world τ where it holds that M, τ |= ϕ. Then we have to prove that there exists no input
set for the modal circuit Cϕ that satisfies the circuit. We know by theorem 1 that for any
model M = ⟨W,R,V, τ⟩, if Wϕ = ⟨τ⟩, then if Oϕ = OM,Nϕ

= ⟨V(α)⟩, for some valuation
V(α), we have that V(α) is True iff M, τ |= ϕ. By assumption, M, τ ̸|= ϕ. Therefore Cϕ
is not satisfiable.

�

15Note that the symbols < and > are different from ⟨ and ⟩. < x > is the string that encodes x and ⟨x⟩ is a
singleton containing x.
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Part IV

Conclusion
In this paper, we looked at modal circuits as an extension of Boolean circuits. In part II, we de-
fined modal circuits. Then we looked at a definition for calculating input sets corresponding to
models. After that, we learned how to calculate the output sets using the input sets in a circuit.

In part III we have proven that modal logic is polynomial time reducible to modal circuits.
First we defined the satisfiability of modal circuits. Then we proved the reduction from modal
logic to modal circuits. For proving the reduction, we first proved the more general theorem 1.
Then we used that theorem to prove the actual reduction.

Proving the reduction means that the modal circuit problem MCSAT is PSPACE-hard,
since the modal logic problemMSAT is PSCPACE-complete. For future research, PSPACE-
completeness can be proven by proving that MCSAT ≤p MSAT . In this paper the definition
ofMCSAT was very specific. Other satisfiability problems can be imagined and can be proven
still. For example, satisfiability can be defined like this: A modal circuit is satisfiable iff there
is a configuration of input sets such that the value of every output node can be calculated and
such that the calculated value of the final output node is a singleton containing True. An even
simpler version could be that a modal circuit is satisfiable iff there is a configuration of input
sets such that the calculated output set at the final output node is a singleton containing True.

When the reductions from and to MSAT for the other satisfiability problems are proven,

modal circuits may be useful for finding an answer for the NP
?
= PSPACE question. Since

modal circuits look a lot like Boolean circuits, modal circuits can be a nice addition towards
solving this problem.
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