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Introduction 

 

Background of the problem 

In the age of exponentially growing amount of information on the Web users are 
more often than not overwhelmed with the amount of content they have to get 

through before getting to the gist of what they are looking for. In particular, while 
deciding whether to buy a certain product on an online platform like Amazon, users 

would like to see what other buyers thought of that product. However, with 
thousands of reviews to read through, it becomes a time-consuming task. Most 

users end up reading between 2 and 5 reviews1 and miss out on a lot of information. 
In order to save a reader’s time and make a reviewing as a tool more effective, 
computerized processing that produces a review assessment based on the aspects 

of the product would be very welcome. This way, instead of just looking whether the 
review is positive overall, the user can see what aspect of the product is positive, 

neutral or negative. A good example of a system with reviews on multiple aspects is 
a Dutch restaurant finder site www.iens.nl, which enjoys great success. Each 

reviewer assesses different aspects of the restaurant like décor, food and service 

(see figure 1).  

To build such a summarization system, we first need to look at the sentiment 
classification and aspect extraction tasks on their own. Especially, we need to 

decide which algorithms are useful for dealing with those tasks on small online 
product reviews. 

 
                                                

1 https://www.brightlocal.com/learn/local-consumer-review-survey/#6 
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Determining the task  

Research on automatic summarization of texts often focusses on either long 
documents like books, movie plots and in-depth articles (Barzilay, R., & Elhadad, M. 

1999) or on multi-document summarization, where a summary is formed by 
extracting information from multiple documents on the same topic (Hu, M., & Liu, B. 

2004, August) (Goldstein J. et al 2000, April). In this thesis I will look at the 
possibilities of a domain-specific, aspect-based sentiment summarizer of short 
reviews. In this thesis I will focus on exploring which algorithms perform well on 

small reviews and then look at a possible application of combining the sentiment 
classifier with the aspect extractor.  

First, a sentiment classifier is chosen, fine-tuned, trained and evaluated on the 
available reviews. Once such a classifier is trained we can use it to classify single 

sentences to one of the three sentiment classes (positive, neutral and negative).  
After the sentiment classifier, the aspect extractor is set-up and also evaluated by 

looking at hand-tagged data. This aspect extractor would be able to extract 
predefined aspects from input strings of arbitrary size. Both systems are evaluated 

and discussed thoroughly, according to my main research goal. 

Figure 1: Example of an aspect based review on www.iens.nl 



  6 

Finally, the two systems are combined to form a pretty-printable summary of a 

single input review by breaking the review down in sentences, extracting the 
aspects from each one of them and determining the sentiment of the sentence, 

according to my secondary research goal.  
  

 

Research goals 

As discussed above, there are multiple possible applications for sentiment analysis 
and aspect extraction in the online reviews field. To successfully develop those 

applications, both the topics need to be researched. 
My research goals follow up on the project goals and can be formulated as follows: 

 

• Exploration of well-performing sentiment classification algorithms and aspect 

extraction model on small online product reviews. 

 
• Exploring a possible way to combine those two systems in the field of small 

online product reviews 

 
This thesis will try to address this goals by means of comprehensive, step by step 
explanation of the system I have created.  

 

The structure of this document 

In the first chapter of the thesis I will discuss the background of the problem and 

the existing works. Second chapter will lay out the datasets I used for my project. In 
the third chapter, the sentiment classification will be discussed. In the fourth 

chapter, I will talk about the aspect extraction. In the fifth chapter I will talk about 
combining both the sentiment classifier and the aspect extractor. Finally, the last 

chapter will be devoted to further research, improvements and evaluation of the 
research goals.  
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Chapter 1: Background 

 

1.1 Online product reviews 

Platforms like Amazon, bol.com and eBay are all online retailers where people are 
buying millions of products worldwide. Online shopping is a rapidly growing 

practice.2 Because of that, the convenience of online shopping is becoming a 
growing concern of the online retailers. 

A big part of such convenience is the ability to decide whether the product is worth 
buying by looking at the reviews left by other users (Lee, J., Park, D. H., & Han, I. 

2011). Online shops can even benefit from those online customer reviews in a 
bigger way than the traditional stores by quoting the favorable reviews in their 

advertising campaigns, free of charge, seen as the reviews are just content that is 
generated by the users of the retailer’s website willingly (Lee, J., Park, D. H., & Han, 

I. 2011).  
Previous research also showed that reviews can also induce informational cascade 

(Huang, J. H., & Chen, Y. F. 2006). Informational cascade is a social phenomenon in 
which people tend to follow the decisions made by a mass of people before them 
while (partly) disregarding their own opinion or information (Hirshleifer, D. A. 1994). 

By seeing multiple positive reviews in a quick succession a customer can just 
decide to buy the product instead of waiting around for a long time without making 

a rational decision based on his own interest.  
What also impacts the sales is the amount of perceived risk from the customers 

about the quality of the product, security of the transaction and the quality / speed 
of the delivery. It is still a threshold for some users to buy products online because 

of their distrust for the Internet, for online retailers or the inability to physically go to 
the store with a complaint (Greval et al. 2003). When the users see multiple short 

assessments of the product that the delivery process went without problems and 
was quick their perceived risk may go down and their willingness to purchase the 

product would go up.  
                                                

2 https://www.wsj.com/articles/survey-shows-rapid-growth-in-online-shopping-1465358582 
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Lastly, the reviews from peer customers induce more empathy than the 

advertisements from the retailer itself, as those reviews are considered similar to 
word-to-mouth effects and therefore seem to contain greater relevance, trueness 

and credibility than the ‘always good and friendly’ marketing advertisements. By 
having users share their opinions in a very accessible way fosters the relationship 

among and between customers and sellers (Chiou, J. S., & Cheng, C. 2003) which, 

again, can increase the sales and customer loyalty. 

It is clear that convenient access to a lot of (positive) reviews can substantially 
increase sales on an e-commerce platform and help build up the loyalty of the 

customers.  
Therefore, influencing the decisions of the buyers by presenting the reviews in the 

best possible way is a vital task for the marketers of such an online e-commerce 
platform. Multiple solutions for this task can be developed. First, a short summary 
of the text can be created to show the main aspects discussed in the review and 

the sentiment of the writer towards these aspects. Another application would be to 
create a search system that allows users to search relevant reviews by aspect 

keywords. That would again increase the convenience for the users searching for 
just one specific aspect of the product.  

For both those applications, multiple steps need to be taken in order to achieve it. 
In particular, we need to be able to calculate the sentiment and to extract the 

aspects from the text. 
 

1.2 Related work 

 Numerous works have been written about both sentiment analysis of reviews, 
aspect extraction and a combination of both. One of the works I relied heavily on in 

the beginning of my project was Mining and Summarizing Customer Reviews by Hu 

and Liu (2004) where they pioneered the generation of feature-based summaries of 

customer reviews. The techniques they used were divided in three parts: 1) 
identifying the features the users commented on, 2) determining the sentiment of 
the sentence the feature is in and 3) producing the summary using that information.  
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This is a fairly old work in this field and bases itself on some primitive concepts of 

sentiment analysis. However, their aspect extraction system is interesting to discuss 
here, as finding a well-performing aspect extraction system that builds upon 

different ideas is one of my main project goals. 
For the identification of product features Hu and Liu first POS-tag every sentence in 

their dataset to extract only identified nouns and noun phrases as they believe 
(mostly) only those sentence parts contain product features in it. Also some pre-

processing is done like the removal of stopwords and stemming. 
Afterwards, explicit frequent features like “this screen is very bright” where screen is 

a product feature are extracted by using association mining, a technique that 

searches for frequently used combination of words. The next step is to identify 
opinion words: words that carry sentimental value relative to the product. Hu and 
Liu only extract adjectives as such words as they believe that most sentiment is 

carried by adjectives. 
The way the actual opinion about the product feature is extracted is by looking at 

each sentence, checking whether the sentence contains a frequent feature and 
assign the nearest adjective to the feature as its effective opinion.  

The approach used by Hu and Liu to determine the sentiment, or semantic 

orientation, of the opinion adjectives is to use a small seed of known positive and 

negative words and then compare all extracted opinion adjectives to the seed list 
using WordNet. If the opinion adjective ends up being a synonym of a word in a 

seed list, the sentiment of the opinion adjective is set to the sentiment of the word 
in the seed list. If it ends up to be an antonym, the opposite sentiment is assigned. 

Each word, when put in one or another category, is added to the seed list until the 
seed list is as big as the adjectives list.  

Afterwards, the authors determine the sentiment of the whole sentence by a fairly 
simple algorithm that just adds or subtracts a one from the total sentiment score 

when it encounters a positive respectively negative adjective while considering the 
negation words like ‘not’ as well.  
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Figure 2: Example summary in Hu and Liu, 
2004 

When both the sentiment of the sentences and the product features are extracted, a 

summary is then compiled by putting all the positive and negative opinion  

 
 

sentences in its category and the counts are computed. Finally, the sentences are 
presented per product feature (figure 2). 

The whole process is schematically displayed in figure 3. 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 3: Schematic representation of the system used in Hu and 
Liu, 2004 
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Now to the evaluation of Hu and Liu’s algorithm. For the evaluation, the authors 
manually read all the reviews and assigned the product features that they detected 

in the review to that review and compared the manually tagged sentences with the 
ones tagged by the algorithm. They also measured the performance of the 

sentiment (semantic orientation) prediction.  The results of both evaluations are 

presented in tables 1 and 2. 
 

 

Table 1:  Recall and precision at each step of feature generation in Hu and Liu 2004 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

All in all, a relevant work for my project as it covers an interesting way of product 

features extraction.  

 
Poria et al. 2014 used sentence dependency trees to detect both explicit and 
implicit aspects.  

Table 2: Results of opinion sentence extraction and sentence 
sentiment prediction in Hu and Liu 2004 
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Dependency parsing is a technique that is based on extracting the dependency 

relations between the words in a sentence where phrasal constituents and phrase-
structure rules do not play a crucial role (Jurafsky, D., & Martin, J. H. 2017, 3rd ed. 

draft, chapter 14). In those parsers, the two parts of a relation are head and 

dependent. There is a fixed set of grammatical (dependency) relations between the 

words and each pair of words is dependent on one another by one of those 
relations. Figure 4 is a representation of such a dependency tree with the 

grammatical relations written in blue.  
 

 
In their work, Poria et al. introduce the term implicit aspect clue (IAC) that refers to 

words like ‘expensive’ and ‘sleek’ which are implicit indicators of the ‘Price’ and 

‘Appearance’ aspects of the product. They introduce a rule-based approach to 

tackle the phenomenon of desirable fact which is: “communicating fact that by 

commonsense is good or bad, which indirectly implies polarity” (Poria et al. 2014). 

Desirable fact makes it harder for the explicit aspect extractors because some 
sentences do not contain any explicit aspect sentiment indicators but do carry an 

aspect sentiment in them, like it is the case in  
 “I can keep putting stuff in this backpack!” which implies the positive sentiment 

towards the size of the bag but does not contain any explicit opinion words.  
The authors used an existing implicit aspect corpus developed by Cruz-Garcia et al. 

2014 to extract the initial seed of IACs in each of the nine categories they defined.  

Figure 4: An example of a dependency tree (https://github.com/awaisathar/dependensee, accessed 
21th of June, 2017) 
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Afterwards, WordNet and SenticNet were used to enrich the aspect categories by 

synonyms and antonyms of the words in those categories.  
As mentioned above, the novelty of work by Poria et al. 2014 consisted mainly of 

the dependency parsing of the sentences. By handcrafting multiple dependency-
rules and dependency-parsing the sentences the authors extract word-

(combination)s that are indicative of an aspect in a sentence. An example would be 
their subject noun rule:  

 
As for the results, the algorithm used by Poria et al. 2014 performs well on the data 
that Hu and Liu used in their work. The results are presented in table 3. The 

numbers are considerably higher than the numbers in Hu and Liu.  

 
Pavlopoulos and Androutsopoulos 2014 were the ones to introduce a ‘hot’, new 
technique for use in aspect extraction for sentiment analysis: word embeddings. 

They combined word2vec implementation by Mikolov et al. 2013 with the 

implementation by Hu and Liu. This was a very important step for my own project 
because word2vec eventually became the backbone of my aspect extractor. I will 

dive into word2vec in general and my implementation in chapter four. 
Other important notion that the authors made is that a lot of previous aspect term 

extraction research has been focused on the extraction of multi-word aspect terms 
while single-word aspect terms are very relevant as well. Multi-word aspect terms 

are words like ‘hard disk’ while ‘expensive’ is a single-word aspect term. Having 
both multi-word- and single-word aspect terms provides more information for the 

extraction system. I used that knowledge in my sentiment classification step, which 
also benefits from that observation.   

 

Trigger: when the active token is found to be the syntactic subject of a token.  

Behavior: if an active token h is in a subject noun relationship with a word t then: 

 if t has any adverbial or adjective modifier and the modifier exists in SenticNet, 

then t is extracted as an aspect. (Poria et al. 2014) 
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Table 3: Evaluation results from Poria et al., 2014 

 

In yet another work, Bagheri, Saraee and de Jong 2013 are proposing their 
approach to the unsupervised model for detecting aspects in reviews. Their 

argument for an unsupervised system is that a huge amount of data available is 
unlabeled and that data is available in different domains and different languages. To 
develop real world applications, we have to be able to do aspect extraction 

unsupervised.  
The authors work relies heavily on POS-tagging for the extraction of aspect terms. 

They use the assumption that aspects are nouns and noun phrases and so they 
have come up with the POS patterns in figure 5 for their aspect extraction.  

 
 

Afterwards, they use a new, self-made metric called A-score to enrich their initial 
seed list of aspects and use that bigger seed list as a final aspect list after some 

pruning. The most important part for me was the emphasis on POS-tags in this 
paper which could be useful in combination with the dependency parser. More on 

that in chapter four. 
 

Dataset Precision Recall 

DVD-player 89.25% 91.25% 

Canon G3 90.15% 92.25% 

Jukebox 92.25% 94.15% 

Nikon Coolpix 82.15% 86.15% 

Nokia-6610 93.25% 93.32% 

Figure 5: POS-patterns used in Bagheri, Saraee and de Jong 2013 
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In general, even though it looks like a lot of work has been done on the subject of 

aspect extraction in reviews, most of the works are quite similar in their essence. 
Most researchers try to come up with a good unsupervised algorithm rather than a 

supervised one. Most of the papers also extract aspects from documents within 
multiple domains and evaluate those extractions while my evaluation will be per 

aspect in just one domain, namely food reviews. I also found that sentiment 

orientation classification in aspect extraction is not discussed extensively and is 
often let out as something that is ‘out of scope’ of the aspect extraction and is just a 

given. Some papers, like the one by Bagheri, Saraee and de Jong states that their 
aspect extraction algorithm might be a great asset for the eventual sentiment 

analysis but does not venture into the actual analysis. When the sentiment is 
discussed, like in Hu and Liu, a fairly simple algorithm is used and while it is a 

reasonably performing algorithm, I wanted to look into something more machine 

learning oriented.  
The next chapter will be about the data I used for my research. 
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Chapter 2: The data 

 

2.1 Domain 

The domain I chose is food reviews on Amazon. The reason I chose that domain is 
mainly its availability. After searching for convenient datasets of a large amount of 
reviews I had to look for a couple of criteria. First, the data had to contain full review 

texts, preferably without too much noise in it. Noise in such reviews is mostly 
excessive html tags but also excessive whitespace and other structural information 

from the website that is not related to the content of the review.  
Secondly, the data had to contain some kind of scores from the users to train and 

evaluate the sentiment classifier. Those scores must be categorical or convertible to 
categorical to feed it to a machine learning algorithm conveniently. 

 

2.2 Initial dataset: sentiment classification 

Amazon Food Reviews dataset from Kaggle3 was a good match to my needs. It 

contained 568,454 food reviews with a score from 1 to 5 for each review. This score 
data is easily converted to some other scale, like the one I used. Initially, I converted 

the scores to fall just in three categories: 1 for ‘positive’, 0 for ‘neutral’ and -1 for 
‘negative. The final conversion in my summarizer was: score 1-3 in the ‘negative’ 

class, 4 in the ‘neutral’ class and 5 in the ‘positive’ class. For motivation for this 
choice see chapter 3.  

The dataset also contained a short summary of each review which works like a title 
of the review on Amazon. I did not end up using it but it might be interesting for 

further research, as it could work as an additional feature. 
It is important to note that the dataset was imbalanced. Figure 6 shows the initial 

distribution of reviews in the dataset. In fact, a statistical analysis of Amazon 
                                                

3 https://www.kaggle.com/snap/amazon-fine-food-reviews 
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reviews4 and my own observations show that users leave many more positive 

reviews than negative ones. So this imbalance is inherent to the domain. It is 
however an unwanted feature of the data so I deal with it by balancing out the 

training set and introducing class weights to the machine learning algorithms. The 
way I approached the balancing is by taking 70.000 reviews from each sentiment 

class and putting them in one training set of 210.000 texts. The test set I took was 
however imbalanced, because we do want to keep the real world distribution when 

we are testing. More about it in the next chapter.  

 

2.3 Bigger dataset: word embeddings 

Further down the road, when both my sentiment classifier and my aspect extractor 

were up and running, I searched for more data to maybe optimize both models. I 
                                                

4  Max Woolf, ‘A Statistical Analysis of 1.2 Million Amazon Reviews’, 
http://minimaxir.com/2014/06/reviewing-reviews/, accessed 22nd of June, 2017 

Figure 6: Initial distribution of the scores in the Amazon food reviews dataset from Kaggle 



  18 

found a collection5 6 7 of Amazon review datasets which consists of millions of 

reviews within multiple domains. I requested the food dataset, which contained 
another 1,297,156 Amazon food reviews and a dataset of 4,253,926 reviews in the 

kitchen & home category.  
A word2vec model on the domain data could only benefit from extra entries. I 

ended up using the extra data to train my final word2vec model. 
For the word2vec aspect extraction model I also have briefly experimented with the 

pre-trained model8 by Google on their News dataset which was trained on about 1 
billion words. It consisted of 300-dimensional vectors of around 3 million words and 

phrases. The model was slow to load and was a huge file on the hard drive and with 
a subpar performance I quickly stepped away from it. It is, however, an interesting 

idea to look for the best trade-off between large amounts of not domain specific 
data and a smaller amount of domain-specific data to see what fits better on the 

domain in question. The evaluations of each of the word2vec models I used are 
shown in chapter four. 
                                                

5  He, R., & McAuley, J. (2016, April). Ups and downs: Modeling the visual evolution of fashion 
trends with one-class collaborative filtering. In Proceedings of the 25th International Conference on World 
Wide Web (pp. 507-517). International World Wide Web Conferences Steering Committee. 

6 McAuley, J. Amazon product data, http://jmcauley.ucsd.edu/data/amazon/, accessed on 11th of June 
2017 

7  McAuley, J., Targett, C., Shi, Q., & Van Den Hengel, A. (2015, August). Image-based 
recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on 
Research and Development in Information Retrieval (pp. 43-52). ACM. 

8 https://code.google.com/archive/p/word2vec/, accessed on 12th of June, 2017 
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Chapter 3: Sentiment classification 

 

In sentiment classification, most approaches are either corpus-based or lexicon-

based. A lexicon-based approach makes use of a set of sentiment-labeled words to 
gradually calculate the sentiment of a document. Such approach often performs 

quite well and is useful for incorporating lexical modifiers like amplification (‘very 

tasty’) and negation (‘don’t like it’). A good example of such a classifier is SO-CAL 
described by Taboada et al. 2011 where the authors achieve accuracy scores of 

around 75% on multiple datasets while also being able to implement interesting 
syntactic patterns that can aid the classifier even more. However, for such classifier 

a good polarity dataset is needed and the syntactic rules have to be developed. 

Taboada et al. 2011 (pp. 268-269) mention the supervised machine learning 
classifiers in the following passage: “although such classifiers perform very well in 

the domain that they are trained on, their performance drops precipitously (almost to 

chance) when the same classifier is used in a different domain (Aue and Gamon 

2005)”. 

But I am working in a single particular domain so the supervised, corpus-based 
sentiment classification would be a better solution for me. Moreover, once a model 

is trained, the corpus-based classifier tends to be much faster than the lexicon-
based one because a lexicon-based classifier has to essentially compute everything 

word-by-word and do a lexicon lookup every time.  
  

3.1 Data preprocessing 

As I mentioned in the previous chapter, the data I got from Kaggle was quite 
imbalanced.  

Before doing something about this imbalance, the data first had to be categorized 
in lesser number of classes. For sentiment, the use of a neutral class is advised 

(Koppel, M., & Schler, J. 2006). That seems like a good choice for the analysis on 
reviews as well, as some reviews may only contain some factual information or 
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contain mixed sentiment such that binary classification is not justified. So, the three 

classes in this classification problem were negative, neutral and positive.  
The scores in the dataset ranged from 1 to 5, 1 indicating the most negative score 

and 5 indicating the most positive score. For the purpose of classification, I have 
initially binned those scores into three categories the following way (Table 4): 

 
 

 
 

 

 

 

The results of this categorization will be discussed in 3.2 but it was clear that the 

neutral class was the algorithm’s bottleneck. Following the observation that people 
tend to value negative reviews more than positive reviews and that there are in 

general many more positive reviews I decided to move the 3’s to the negative class 
and move 4’s down to the neutral class. That seemed to work better and was my 

default configuration till the end.  
Other important step in data preprocessing is tokenizing. I have stuck to the default 

tokenizer from sklearn tf-idf vectorizer9 but I have experimented with some custom 
tokenization as discussed in great detail by Christopher Potts10. Tokenization can be 

a great asset to the classifier but, as Christopher Potts mentioned in his tutorial, 
with a large amount of data the need for a careful tokenizing is smaller. 

Minimum amount of preprocessing was done for the sentiment classification step in 
comparison with the aspect extraction step.  
I also chose not to remove stopwords as it decreased my performance by a few 

percent (see section 3.2).  The text was lowercased, the punctuation was removed 
and the html entities were removed as they introduced noise to the data.  
                                                

9  http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html, 
accessed on 15th of May, 2017 

10  Christopher Potts, Sentiment Symposium Tutorial, 
http://sentiment.christopherpotts.net/tokenizing.html, accessed on 2nd of June, 2017 

Score Label 

1 and 2 -1 

3 0 

4 and 5 1 

Table 4: Initial class distribution after binning 
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3.2 Algorithm performances and selection 

Pang, Lee et al. 2002 delivered a very influential work on machinal sentiment 

analysis. They analyzed IMDb movie reviews while trying to not make use of any 
knowledge-based methods. Their goal was to see “whether it suffices to treat 

sentiment classification simply as a special case of topic-based categorization (with 

the two “topics” being positive sentiment and negative sentiment)” (Pang, Lee et al. 

2002, page 3, section 5).  

The authors evaluated three algorithms: Naive Bayes classification, 
maximum entropy classification (multinomial logistic regression), and support vector 

machines. The features they used were straightforward:  
 

𝑑 	 ∶= 	(𝑛' 𝑑 , 𝑛) 𝑑 , … , 𝑛+ 𝑑 )	 

 

where 𝑑 is a document vector representation, 𝑛- 𝑑  is the number of times feature 

𝑓-	occurs in document 𝑑 and {𝑓', … , 𝑓+} a predefined set of 𝑚 features 

(words/word combinations) that can appear in a document.  
Authors, however, mention that the presence of the feature rather than its frequency 

delivered much better performance. I decided to use tf-idf vectors of reviews as my 
features. Tf-idf vectorizing is used to determine which words are indicative of 

certain ‘topics’ by calculating the inverse proportion of the frequency of that word 
compared to the total frequency of that word (Ramos, J. 2003, December).  

I have briefly tested the Naive Bayes classifier but I found it not that interesting for 
my research for its relative simplicity and inferior performance on my dataset. The 

two algorithms I used and will discuss in this chapter are multinomial logistic 
regression (Maximum Entropy) and a support vector machine.  

This section will be divided in subsections for each algorithm I found promising and 
different results using different data and setups.  
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3.2.1 Multinomial Logistic Regression 

The first algorithm that performed rather well was one of the oldest and most 
trusted models in statistics. Multinomial logistic regression algorithms perform well 

on data that, given a set of features that are not necessarily statistically independent 
of each other, is classifiable into more than two categorical dependent variables. 

The statistical independence of features is important for my task as we don’t know 
whether terms appear independent of each other. On the contrary it is likely that the 

terms are not independent of each other. That is also the reason for inferior 
performance of Naïve Bayes. It is also shown by the hidden semantics in word 

embeddings. More on that in chapter four.  
For a sentiment classification problem, it is intuitive to think that when we do not 

see features that are indicative of a certain class then the sentiment could be any 
class with the same probability. This principle is exactly what a maximum entropy 
classifier incorporates: it considers the data to have maximum entropy (maximum 

uniformness) when no constraints are put on the data. When such constraints 
appear in the form of external knowledge, for example our tf-idf features, the 

algorithm tries to model the data in such way that it becomes non-uniform enough 
to conform to the constraints (Nigam, K., Lafferty, J., & McCallum, A. 1999, August). 

In all other situations it prefers maximum entropy. Figure 7 shows the principle of 
entropy in my food review sentiment classification task. The green boxes are clearly 

positive, red boxes are clearly negative but the ones in the middle are not defined 
and do not have clear features. So the algorithm puts them somewhere in the 

middle, while trying to maintain maximum entropy. 
Importance of the neutral class is explained in Koppel, M., & Schler, J. 2006: not 

every document expresses sentiment or it just expresses objective facts or 
expresses mixed or conflicted sentiment. Remember that there are many more 

positive reviews and the negativity bias (Wu, P. F. 2013) in Amazon reviews led me 

to think that when people give 4 stars to a product, they are not all that happy and it 

is more likely that only 5 stars are in fact positive reviews. 
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That led me to try to put 4’s in the neutral class. I also have decided to manually 
balance out the train set by using the amount of data advantage I had. I selected 

70.000 entries from each class and put them in the trainset. The final cross-
validated result of logistic regression before I moved into different algorithm is 

displayed in table 5. 
 

3.2.2 Multinomial Logistic Regression results 

Below is the result of a 10-fold cross validation run on the following configuration 
and data: 
 
Data:  

Train: Balanced set of 210.000 reviews, 70.000 from each of the classes;  

Test: 20.000 reviews, unbalanced 

"Worst aftertaste since 
forever"

"The salami was red"

"Price was incredible""Delicious fish sauce"

"Way too expensive"

"Transparent bag"

"Terrible tea"

"Quickest delivery 
ever!"

"I bought 
apples 

yesterday"

Figure 7: Abstract entropy visualization in food reviews. Box size is not indicative and the 
sentences are equally representative of the sentiment categories.  
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Figure 8: A separation by an SVM in 2-dimensional 
space. The three support vectors are showed in gray 
(Cortes and Vapnik 1995) 

Three classes with 4’s in the neutral set:  

Scores 1-3 are ’negative’, -1 

Score 4 is ‘neutral’, 0 

Score 5 is ‘positive’, 1 

 
 

 Precision Recall F1-score 

-1 0.84 0.88 0.86 

0 0.71 0.54 0.62 

1 0.90 0.94 0.92 
 

Table 5: 10-fold cross validation of Max Entropy algorithm 

 
Overall good performance except on the neutral class. It does makes sense, as 

neutral reviews are mostly either not sentimental or have conflicted sentiment which 
is harder to classify.  

 

3.2.3 Support Vector Machine 

Support Vector Machine (SVM) is a large-margin classifier that relies on a (small) set 
of support vectors to classify an input element. Essentially, an SVM tries to find 

(multiple) hyperplane(s) (a line in 2d space) that divide the input into n classes while 

maintaining the biggest margins from the hyperplane to those classes. Figure 8 

from the fundamental work by Cortes and Vapnik 1995 shows this principle.  
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An SVM is built upon the structural risk minimization principle in which the classifier 

needs to make the best fit as to minimize misclassification on the training data but 

also performs well on unseen data, so it does not overfit. SVM accomplishes that 
with its margin maximization hyperplane idea. 

There are a number of big advantages of SVMs for NLP tasks, especially data-
driven ones. Due to their dimensionality independence for generalization and a 

small amount of hyperparameters to tune they tend to perform very well on highly 
dimensional data. And seeing that I work with tf-idf vectors of hundreds of 

thousands of texts, the number of features can become large.  
Another advantage is that you can use non-linear kernels with an SVM. A kernel in 

machine learning is a data transformation technique that allows us to work with 
data that is not linearly separable by feeding the data points to a cleverly chosen 
function.  By doing that one can perform classification on non-linear data. I 

experimented with different kernels but found out that the performances were sub-
par to the linear kernel and took way longer. The reason for that is that for high-

dimensional data, that data is likely linearly-separable (Joachims, T. 1998).  So, for 
the rest of this paper I will talk about linear SVM when I mention SVM.  

Yet another plus of an SVM is that, because of its ability to handle large feature 
spaces, the need for dimensionality reduction is taken away. That is favorable for 

text classification problem, as there are usually only very few irrelevant features in 
the problem. Joachims 1998 stated that “a good classifier should combine many 

features (learn a “dense” concept) and that feature selection is likely to hurt 

performance due to a loss of information” which makes support vector machine a 

perfect candidate for this need. For that reason, I chose not to perform any 
dimensionality reduction in SVMs. 

Using tf-idf vectors yields a lot of sparsity in the features because each document 
contains only a very small amount of words from the vocabulary. SVMs are well 

suited for problems with sparse data “because they scale linearly with the number 

of non-missing values” (Li, X. et al. 2015, June).  
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In my implementation of SVM I have used sklearn’s LinearSVC class11. While vanilla 

SVM is made to be a binary classifier, a multi-class implementation works just as 
well by, in my case, using one-vs-rest classification. In this approach a separate 

classifier is built for each class where all the samples from that class are labeled as 

being positive and all the rest is negative. 
 
3.3 Configuration of LinearSVC 

C is a parameter that deals with a situation that is showed in figure 9. The star in 
lower right corner is misclassified but is obviously an outlier to the data. Because 

SVMs initially value right classification higher than margin maximization the machine 
would not be ‘content’ with the result. However, by specifying smaller values of C 

parameter, we tell our SVM to penalize misclassifications less and prioritize larger-

margin separating hyperplane. Besides C the only parameter I’ve tuned were the 
class weights to counteract the class imbalances in the test data. The class weights 
are a workaround for the regularization of the classes in the data. Internally, class 

weights work the following way: 
 

𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = {−1, 0, 1} 
 

𝑐𝑙𝑎𝑠𝑠	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 	 −1:	0.12, 0:	0.08, 1:	0.7  
 

𝐶	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑎𝑠𝑠 = {𝐶H', 𝐶I, 𝐶'} 
 

𝐶	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑎𝑠𝑠	𝑎𝑓𝑡𝑒𝑟	𝑐𝑙𝑎𝑠𝑠	𝑤𝑒𝑖𝑔ℎ𝑡𝑠	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

= {𝐶H' ∗ 0.12, 	𝐶I ∗ 0.08, 	𝐶' ∗ 	0.7} 
 
This way, when a class is given smaller weight, the regularization parameter C 
becomes smaller as well, which ensures that the algorithm prefers large-margin 

separation above correct classification. When the class is underrepresented that 
                                                

11  http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html, accessed on 20th of 
May, 2017 
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helps classification as it generalizes the minority class better and prevents general 

overfitting on the majority class.   
And this is exactly one of the strengths of support vector machines: there are hardly 

any hyperparameters to tune, the algorithm takes care of everything on itself.  

 

 
 

3.4 LinearSVC results 

Below are the results from the 10-fold cross validated SVM model I used. 

Data:  

Train: Balanced set of 210.000 reviews, 70.000 from each of the classes;  

Test: 20.000 reviews, unbalanced 

Three classes with 4’s in the neutral set:  

Scores 1-3 are ’negative’, -1 

Score 4 is ‘neutral’, 0 

Score 5 is ‘positive’, 1 

 

 
Table 6: 10-fold cross validation of the LinearSVC 

 Precision Recall F1-score 

-1 0.88 0.90 0.89 

0 0.79 0.56 0.66 

1 0.91 0.96 0.93 

Figure 9: Example of an outlier regularization by an SVM 
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Once again inferior performance on the neutral class and good performance on the 

negative and positive classes. 

This was my best performing classifier so I decided to also print top contributing 

features per class. 
 
The features with the highest coefficient values per class were as follows: 

 

 

To compare the performances of the algorithms to some baseline I have also ran a 
dummy classifier with a most_frequent setting to have a dummy baseline to 

compare to my algorithm. This dummy classifier just always predicts the most 

frequent label in the training set which was ‘positive’ in my case. It is of course not 
necessary to run such a classifier as I could just look at the distribution of data but 

this classifier runs almost instantly and how the advantage of a pretty printable 
classification report. 

The results of the dummy classifier that always predicts ‘positive’ are presented in 
table 7. 

 

 
 

 

 Precision Recall F1-score Accuracy 

1 0.63 1.00 0.77 0.62595 

Table 7: Results of the dummy classifier 

-1: two stars-+-threw-+-three stars-+-sorry-+-weak-+-okay-+-return-+-n
ot recommend-+-the worst-+-bland-+-disgusting-+-ok-+-stale-+-not good-
+-very disappointed-+-disappointment-+-horrible-+-not worth-+-unfortun
ately-+-disappointing-+-worst-+-awful-+-terrible-+-not-+-disappointed 
------ 
0: liked-+-it stars-+-complaint-+-stars is-+-it four-+-four-+-marley-+
-enjoyed-+-the only reason-+-nice-+-stars instead of-+-stars instead-+
-bit-+-but-+-pretty good-+-only reason-+-star-+-pretty-+-however-+-tho
ugh-+-good-+-overall-+-my only-+-stars-+-four stars 
------ 
1: everyone-+-wow-+-love these-+-fabulous-+-perfectly-+-loves-+-be dis
appointed-+-favorite-+-the best-+-so good-+-love it-+-love-+-love this
-+-best-+-fantastic-+-perfect-+-hooked-+-awesome-+-highly-+-wonderful-
+-excellent-+-not only-+-amazing-+-great-+-delicious 
 

Figure 10: The features with the highest coefficient in the best performing SVM 



  29 

 

 All in all, the SVM showed the best performance on my data. So, for the sentiment 
classification part this particular trained model was used from now on. As the first 

part of the project was now taken care of, the next chapter will cover the aspect 
extraction part. 
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Chapter 4: Aspect extraction 

 

Aspect extraction is traditionally divided into two subfields: explicit and implicit 

extraction.  
 

4.1 Explicit aspect terms 

Poria et al. 2014 used a small corpus of aspect words as a seed that they expanded 
by using WordNet. While it is a popular approach, I find that WordNet excels at 

finding semantically related lemmas for different senses of the  words, it is not the 
most efficient and fast way to expand the lexicon. In WordNet, a lemma must be 

specified to search through the corpus. The result of one query gives just a handful 
of words. It is possible to iteratively look for more words by querying the first list of 

words. I decided to try a quick and dirty approach, as I wanted to get a big list of 

related words. 
So to achieve that I decided to use thesaurus.com function to find synonyms and 

antonyms of a word. It also provides a possibility to get “related” words, however I 
found those lists not suitable for my task as they included a lot of terms that are 

semantically related to other meanings of my terms. Therefore, I limited myself to 
the synonyms and antonyms and used web scraping to iteratively collect related 
terms per aspect.  

My initial aspect categories were: 
 

 {Price, Quality of food, Delivery} 

 

This way I managed to get fairly extensive term lists for each of the aspects. Some 
caveats came along the way: initial seed for the Price category consisted of terms 

such as 'deal', 'overpriced', 'budget', 'affordable', 'affordability', 'bang-for-the-

buck', 'money', 'cheaper', 'pay', 'costs', 'mid-priced', 'cost-effective'. However, 

those words brought a lot of noise in the final list of terms, even though those terms 
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are legitimate by themselves. So I initialized the Price seed with just two words, 

‘expensive’ and ‘cheap’ and gradually added new terms that did not introduce a lot 

of noise. Another observation is that some terms found by the thesaurus scraper 

might as well fit into another category, good example of that is the word ‘cheap’. 
That word, in its main sense, is indicative of the price of the product. However, it 

can also be used to describe the quality of the product. During the aggregation of 
terms, I ignored that fact. 

After some hand-filtering of the aggregated terms, I ended up with three sets of 
aspect terms (Table 13). The terms themselves are available to see in the appendix. 

 

Aspect category Amount of terms 

Price 235 

Delivery 415 

Food quality 214 
 

Table 13: Amount of terms per aspect category 

 

Note that the term sets contained not only adjectives but also nouns and verbs. The 

reason for that is that I want to extract all aspect-related terms from the phrases, so 
if a phrase like “I despise that cake” is present in the review, I would like to extract 

that as a quality aspect of food (even though it does not convey the exact quality it 
still carries a strong sentimental value towards food’s quality).  

However, even before I set out to test aspect extraction using this explicit aspect 
terms I found that it would not work well. The reason for that is that the explicit set 

of aspect terms contained a lot of noise and too general words. For example, the 
Price set contained words like amazing, lovely and an arm and a leg. Those terms 

are either too general and can indicate other aspects just as well or are too 
situational. That is a pitfall of using aspect term aggregation via synonyms and 

antonyms scraping and also a possible argument for WordNet. WordNet links not 
just word forms but specific senses of those words. This way words that are found 

near each other in the network are semantically disambiguated, which is not the 
case in a simple thesaurus. So, a word like ‘cheap’ can have multiple senses 

relevant for both ‘Price’ and ‘Quality’ and WordNet disambiguates that. 
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4.2 Part-of-speech patterns and dependency parsing 

Observation that most aspect terms are incorporated in nouns and noun phrases is 
one that multiple works I covered in the previous chapter converge on. For that 

reason, my second approach for the aspect extraction problem was to extract 
certain POS-patterns from the text. However, POS-tagging can usually only extract 

single words with good precision. The aspects are often composed of multiple 
words. What makes it harder for a standard POS-tagger, is that word combinations 

that make up an aspect do not strictly appear near each other in a sentence. Take a 
look at a review sentence like: 

 

"One of the bags had a hole in it and the gummi was rock hard in that bag showing 

that it was damaged before shipping.” 

 

One of the aspects in this sentence is a damaged bag. Those two words are not 

adjacent however and will not be extracted by simply asking the POS-tagger to give 

you ADJ + NOUN combinations. Therefore, a more sophisticated system should be 
used. 

Dependency parsing is a good solution for this issue. In this implementation, I used 
the Stanford Dependency Parser implementation in NLTK12. I already gave a short 

introduction on this technique in the first chapter but the core idea is that words are 
linked to each other by binary relations called dependencies. A dependency relation 

consists of the head of the relation and the dependent which inherits some of the 
characteristics of the head. The dependency relations defined in Stanford 

Dependency Parser can be found in the appendix.  
For the aspect extraction it is useful to not only consider relevant dependency 

relations but also extract only relations with nouns in it, as nouns incorporate the 
most aspect semantics.  

My dependency parser gave output in the form of tuples with three elements, where 
the first element represented the head of the relation, the second element was the 
                                                

12 http://www.nltk.org/_modules/nltk/parse/stanford.html 
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dependency relation and the third one was the dependent of the relation. It looked 

like this:  

         ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')) 

For the aspect extraction I used the following combination of dependency rules and 
POS-patterns for my aspect extraction: 

 

POS-

patterns 

head or dependent is: NN, NNS, NNP, PRP 

Dependency 

relations 

'amod', 'compound', 'advmod', 'nmod', 'neg', 'num', 'nsubj', 

'nmod:npmod' 

 

Table 14: POS-patterns and dependency relations used for aspect extractions 

 
The results were mixed. Even though the parser extracted the patterns well and 

delivered meaningful results, some aspects were not extracted simply because they 
did not match the patterns. Such was the case for the following sentences: 

 
"Candy was delivered quickly. My only complaint would be that it seems old as it is 

tougher to chew. Have ordered and had this product many times and find it 

delicious but not usually so tough to chew.” 

 
The parser did not see anything in the first sentence because it does not have any 

pattern and dependency relation that matches that sentence. The relations 
extracted by the parser were: 

 
((u'be', u'VB'), u'dep', (u'delivered', u'VBN')) 
((u'delivered', u'VBN'), u'nsubjpass', (u'candy', u'NN')) 
((u'delivered', u'VBN'), u'auxpass', (u'was', u'VBD')) 
((u'delivered', u'VBN'), u'advmod', (u'quickly', u'RB')) 
 

When a matching relation was found, POS-patterns didn’t match and when a noun 
was found, the relation was “wrong”. And that while we clearly want to extract 

aspect Delivery from the sentence. 
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But besides occasional problems like the one above the dependency parser did a 

good job extracting pairs of words that closely resembled possible aspects from the 
reviews. But with just pairs of words I still didn’t know to which aspect those words 

belong. This seemed like a problem that needed a semantic approach.  
 

4.3 Word embedding: word2vec + dependency parsing 

One of the ‘hottest’ topics in the NLP world anno 2017 are word embeddings. Initial 
research on distributed representations of words was done by Bengio et al. 2003. 

There it was proposed as a way to combat the curse of dimensionality. The idea 

behind the approach is that it reduces the dimensionality of word representations 

by only considering words that are semantically related. This semantic relatedness 
is based on words’ distributional properties in big amount of textual data. The core 

principle used in this idea is the one of distributional hypothesis. Back in 1954, 

Harris made a careful discovery that words that appear in the same context have 
similar meanings.  

Word embedding is a predictive method which leverages the distributional 

hypothesis. Given a set of neighbors, the context, it tries to predict the next word 
using dense and small embedding vectors. 

One of the biggest breakthroughs in word embedding applicability came with the 
paper and the subsequent toolkit word2vec developed by Mikolov et al. 2013. In 

their work the authors showed that learned word vectors can be used in vector 
calculations to express very intuitive patterns such as: 

 

1. vec(“Madrid”) - vec(“Spain”) + vec(“France”) ≈ (“Paris”) 

2. “Berlin” is to “Germany” as “Bangkok” is to “Thailand” 

3. but also “Which word doesn’t fit?” 

“sweet sour bitter expensive” 

 
This resembles the way humans think about concepts and so is very convenient to 

use in semantically-driven tasks.  
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The most used models in word2vec are the Skip-gram model developed by Mikolov 

et al. and the continuous bag-of-words model (CBOW). Skip-gram predicts source 
context-words from the target words, so it can predict the words ‘dog loudly’ from 

the word ‘barks’. I general, skip-gram is a variation on n-gram where the words do 
not necessarily are positioned near each other but are k distance units away from 

each other. CBOW however, does it the other way around, it predicts target words 

from the source context-words. The training of such a model is happening inside a 
two-layer neural network. The following figure comes from the TensorFlow13 

explanation of the word2vec algorithm and explains the way the neural net works 
using the CBOW model.   

 

 
 

The way this model works is to try to maximize the likelihood of the next (target) 

word 𝑤K given a set of previous (history) words ℎ. We want to express the scores 

of 𝑤K in regard to ℎ as probabilities and those probabilities need to sum up to 1. So 

we need some kind of normalization to achieve that. Softmax function does that: it 

transforms an N-dimensional vector of any real values to an N-dimensional vector of 
real values in the range [0, 1] that add up to 1. An intuitive way to think of this 
                                                

13 https://www.tensorflow.org/tutorials/word2vec 

Figure 10: The use of the efficient negative sampling in the CBOW model 
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approach is to see the hidden layer as a lookup table. Each word in the vocabulary 

is encoded as a one-hot vector: it is all zeros and only has a 1 in the position 

corresponding to the word. So our hidden layer is essentially a weight matrix with n 

rows (corresponding to the vocabulary of the size n) and k columns (corresponding 
to the number of hidden neurons, number of words the model compares the input 

word to, a hyperparameter of the model). If an input is a one-hot vector and we 
multiply that with the weight matrix we get exactly the row in the matrix which 

corresponds to the word:  

 
This way we get a word weight vector for a single word with the size of the number 
of the hidden neurons. But, as mentioned before, we need this vector to sum up to 

1. We use softmax for that. The hidden layer output is put into the softmax function 

to get such a normalized vector. The whole system looks like this, simplified14: 

 

The model would then be trained by maximizing the log-likelihood on the training 

set. The log-likelihood is used because it is more convenient for the calculation of 
the maximum likelihood as we will end up with the sum of the likelihoods instead of 

the product. However, this model is still very inefficient as it will need to calculate 
the likelihoods of words for every word in history at every training step, as seen in: 

 
                                                

14 http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ 
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So, Mikolov’s team solved this problem by using a technique called negative 

sampling. It is too elaborate to introduce it here with the proper math but essentially 

the model now compares the word 𝑤K	with a set of noise words instead of the 

whole vocabulary. The problem of predicting the correct word is reduced to a binary 

classification task, where the model tries to distinguish real data from noise samples 
(figure 10). In short, for every word and its context we generate k noise words from 

some noise distribution. Afterwards we label the correct words as positive given 
their context and all the noise words as negative. Logistic regression is then used to 

minimize the log-likelihood of our training examples against the noise. The neural 
net used here is the same that is explained above. For in-depth explanation of the 

negative sampling method I refer to Mikolov et al. The most important part to 
understand for now is that given a word w, the model has a vector in it with n 

dimensions that is in close proximity to other words that are similar to w in the 

vector space.  

Now for my implementation of word2vec. I used the distribution that is incorporated 

in gensim, a Python package. This word2vec implementation takes a sequence (or 

list) of sentences where each sentence is a list of words. So some preprocessing 
and tokenization is necessary.  

I used gensim’s internal preprocessing library on my data. The preprocessing 
included the stripping of punctuation, removing stopwords, stripping non 

alphanumerical characters, stripping all the html tags and lowercasing the texts. 
The reason for removing the stopwords is that if we look at the way word2vec 

works it doesn't make sense to include words that are often positioned inside the 
skip-gram of the target word but carry no semantic meaning. The same goes for the 

stripping of the excessive characters and tags. Lowercasing is a way to normalize 
the data to just encompass the semantic values. As for the parameters, my 
configuration was as following: 

model = gensim.models.Word2Vec(processed, min_count=10, size=500, workers=8) 

where processed is a list of preprocessed texts; min_count is the minimal amount of 

appearances of a word in the dataset; size is the dimensionality of the feature 
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vectors, the de-facto size of the layers in the neural network and workers is the 

number of threads used for parallel computation. I used CBOW as my model for its 

speed but will reflect on the potentially better use of skip-gram in the Future works 

and reflections chapter, as skip-gram might perform better for infrequent words.  

As mentioned, I tried different combinations of data to train my model. Results from 

all the different models will be presented in the section 4.5. For now, I will focus on 
a single model, namely the one that used the original review data (560k+) and a 

subset of extra data. Extra ‘Food’ dataset was used fully and I took 500k random 
entries from the ‘Kitchen and home’ set as well, for a grand total of 2.365.610 

reviews. Training on this whole dataset took 487 seconds, which is under 10 
minutes. I think that this speed is mostly achieved by a combination of 

multithreading and the use of CBOW model instead of the skip-grams.  

Once done, I could perform queries like model.similarity('tasty', 'delicious') and 

model.most_similar(positive=['wonderful'], negative=['terrible'], topn=10).  

Coming back to the problem at hand, for aspect extraction I used a combination of 

this trained word2vec model and the dependency parser. To do that, I first have 
written a small function that, given a word w, a list of candidate words and a 

word2vec model, calculated the most similar candidate word for w together with its 

similarity score. This way, I could make queries like  

most_similar_from_list('expensive', ['delivery', 'price', 'taste', 'packaging'], 

model) 

> ['price', 0.43795922192373477] 

Having this function, I could then calculate which aspects are present in each 

relevant dependency tuple in a review by taking the maximum aspect score (given 
by word2vec) of that tuple. This was incorporated in two main functions, 

which_aspect and get_aspects. For the sake of its importance I will include those 
two functions below. For the rest of my (relevant) code see Appendix. 
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""" This function accepts a word and a word2vec model as input arguments. 
It returns multiple strings and booleans: 
nextsim = next similar word to the input word, according to word2vec model. 
Used to find an aspect even when the input word cannot be matched with an 
aspect 
aspectwoord = the actual aspect word corresponding to the input word 
score = the confidence score of the aspect word being related to the input 
word 
teklein = boolean that indicates whether the confidence score is too small 
isnotin = boolean that indicates whether the word could not be found in the 
vocabulary 
aspectsimilar = aspect of the most similar word (nextsim) 
The function first tries to find the most suiting aspect term for the input 
word from the list of aspects. Then, if it finds such an aspect, it throws 
'packaging', 'delivery' and 'service' aspects in one broad category. Then, 
it checks whether the confidence score is too low and looks for an aspect 
on the most similar word in a similar fashion as explained.""" 
 
def which_aspect(word, model2): 
    score = 0 
    aspectwoord = "" 
    aspectsimilar = "" 
    nextsim = "" 
    teklein = False 
    isnotin = False 
    try: 
        aspect_candi = most_similar_from_list(word, ASPECTS, model2) 
        aspectwoord = aspect_candi[0] 
        score = aspect_candi[1] 
        if aspectwoord == 'packaging' or aspectwoord == 'delivery' or 
aspectwoord == 'service': 
            aspectwoord = 'service' 
 
        if aspect_candi[1] < 0.01: 
            teklein = True 
            similar = model2.most_similar(word, topn=10) 
            for i in range(len(similar)): 
                nextsim = similar[i][0] 
                aspect_similar = most_similar_from_list(nextsim, ASPECTS, 
model2) 
                aspectsimilar = aspect_similar[0] 
                scoresimilar = aspect_similar[1] 
                if scoresimilar > 0: 
                    if aspectwoord == 'packaging' or aspectwoord == 
'delivery' or aspectwoord == 'service': 
                        aspectwoord = 'service' 
                    score = scoresimilar 
                    break 
        else: 
            teklein = False 
 
    except: 
        isnotin = True 
 
    return nextsim, aspectwoord, score, teklein, isnotin, aspectsimilar 
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''' 
This function accepts a text and a word2vec model. It returns a set of all 
seen aspects in the text. 
The 'weights' of the aspects can be manually adjusted by means of trial and 
error or domain knowledge, like when we know that aspect 'health' is harder 
to detect because of the more general words that are often associated with 
the aspect and are not present often in the dataset. 
''' 
def get_aspects(text, w2vmodel): 
    most_prominent = [] 
    max_prom = "" 
    most_prominent1 = "" 
    most_prominent2 = "" 
    most_prominent_tuple = () 
    all_aspects = [] 
    for p in parse_list([text]): 
        firstword = p[0][0] 
        secondword = p[2][0] 
        first = which_aspect(firstword, w2vmodel) 
        second = which_aspect(secondword, w2vmodel) 
        sim1 = first[0] 
        sim2 = second[0] 
        aspct1 = first[1] 
        aspct2 = second[1] 
        score1 = first[2] 
        score2 = second[2] 
        teklein1 = first[3] 
        teklein2 = second[3] 
        isnotin1 = first[4] 
        isnotin2 = second[4] 
        aspctsim1 = first[5] 
        aspctsim2 = second[5] 
        if aspct1 == 'service' or aspctsim1 == 'service': 
            score1 = score1*0.70 
        if aspct2 == 'service' or aspctsim2 == 'service': 
            score2 = score2*0.70 
        if aspct1 == 'health' or aspctsim1 == 'health': 
            score1 = score1*1.70 
        if aspct2 == 'health' or aspctsim2 == 'health': 
            score2 = score2*1.70 
        if firstword == 'size' or firstword == 'product' or firstword == 
'products' or firstword == 'buy': 
            score1 = score1*0.70 
        if secondword == 'size' or secondword == 'product' or secondword == 
'products' or secondword == 'buy': 
            score2 = score2*0.70 
 
""" Here we look at the absolute difference between the scores of the first 
word in the dependency pair and the second one and put them to the 
extracted aspect set accordingly. If the scores do not differ and are 
significant, both words are put in the set. """ 
         

  if (abs(score1-score2) <= 0.01) and (score1 > 0.30 or score2 > 30): 
            if aspctsim1 == "" and aspctsim2 == "": 
                most_prominent1 = (aspct1, score1) 
                most_prominent2 = (aspct2, score2) 
            elif aspctsim1 != "" and aspctsim2 == "": 
                most_prominent1 = (aspctsim1, score1) 
                most_prominent2 = (aspct2, score2) 
            elif aspctsim1 == "" and aspctsim2 != "": 
                most_prominent1 = (aspct1, score1) 
                most_prominent2 = (aspctsim2, score2) 
            elif aspctsim1 != "" and aspctsim2 != "": 
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                most_prominent1 = (aspctsim1, score1) 
                most_prominent2 = (aspctsim2, score2) 
 else: 
      """ Otherwise, only the highest scoring one is put in the set.""" 
                max_ = max(score1, score2) 
                if max_ > 0.30: 
                   if max_ == score1 and aspctsim1 == "": 
                       most_prominent1 = (aspct1, score1) 
                   elif max_ == score1 and aspctsim1 != "": 
                       most_prominent1 = (aspctsim1, score1) 
                   elif max_ == score2 and aspctsim2 == "": 
                       most_prominent1 = (aspct2, score2) 
                   else: 
                       most_prominent1 = (aspctsim2, score2) 
            else: 
                continue 
        most_prominent.append(most_prominent1) 
        if most_prominent2 != "": 
            most_prominent.append(most_prominent2) 
        all_aspects = [x[0] for x in most_prominent] 
    return list(set(all_aspects)) 

 

For both functions, a lot of handcrafted regularizations can be made if certain 
patterns are seen. For example, the ‘price’ aspect gets assigned to words like ‘sell’, 

‘box’, ‘buy’ and ‘store’. However, in practice, a lot of those contexts are associated 
with other aspect like ‘delivery’. So some regularizations, like discarding some 

‘deceiving’ words or manually bumping up the score for an aspect like ‘health’ is a 
way to fine-tune the algorithm to the knowledge we have about the domain. Those 

two functions made it fairly easy to do. Another feature I implemented was a kind of 
propagational search through semantically related words if a target word could not 

be assigned to an aspect (got a score below some really low threshold). This way, I 
ensured that all relevant words that are extracted by the dependency parser got put 

in an aspect with a reasonable certainty. In practice, the propagation never 
exceeded two steps and it significantly helped right aspect extraction. All in all, 

which_aspect function prepared everything for the final aspect extraction in 
get_aspects.  

I decided to bring aspects ‘packaging’, ‘delivery’ and ‘service’ under one aspect 

‘service’. The reason for that being that a lot of opinions on those subjects are 
connected to the service aspect of the product but are difficult to bring under a 

certain, niche, aspect. So that makes the final aspect list being {'taste', 'health', 
'price', 'service', 'delivery', 'packaging'} 



  42 

Detailed sample output from the system without manual balancing of the aspect 

weights looked like this: 

INPUT: 

review3 = "Candy was delivered quickly. My only complaint would be that it seems 

old as it is tougher to chew. Have ordered and had this product many times and find 

it delicious but not usually so tough to chew." 
processed = ' '.join([tok for tok in preprocess_string(review3.lower(), [re
move_stopwords, strip_punctuation, strip_tags]) if len(tok) >2]) 
show_aspects(processed, big_model) 
asps = get_aspects(processed, big_model) 
print(asps) 

OUTPUT: 
candy delivered quickly complaint old tougher chew ordered product times de
licious usually tough chew 
 
-+-+-+- 
 
((u'chew', u'VBP'), u'nsubj', (u'candy', u'NN')) 
Aspect of chew is: taste 0.101363752045 
Aspect of candy is: service 0.125595597839 
Most prominent aspect is service with a score of 0.125596 
 
-+-+-+- 
 
((u'chew', u'VBP'), u'nsubj', (u'complaint', u'NN')) 
Aspect of chew is: taste 0.101363752045 
Aspect of complaint is: service 0.146401411858 
Most prominent aspect is service with a score of 0.146401 
 
-+-+-+- 
 
((u'complaint', u'NN'), u'amod', (u'old', u'JJ')) 
Aspect of complaint is: service 0.146401411858 
old can't be put in one of defined aspects 
olds is the most similar word to old that has a relation to an aspect and i
t's aspect is: service 0.00335930430473 
Most prominent aspect is service with a score of 0.146401 
 
-+-+-+- 
 
((u'delicious', u'JJ'), u'nsubj', (u'times', u'NNS')) 
Aspect of delicious is: taste 0.209588576926 
Aspect of times is: service 0.0614434350653 
Most prominent aspect is taste with a score of 0.209589 
 
-+-+-+- 
 
((u'times', u'NNS'), u'compound', (u'product', u'NN')) 
Aspect of times is: service 0.0614434350653 
Aspect of product is: service 0.35765115948 
Most prominent aspect is service with a score of 0.357651 
 
-+-+-+- 
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[('service', 0.12559559783907934), ('service', 0.14640141185761685), ('serv
ice', 0.14640141185761685), ('taste', 0.20958857692639116), ('service', 0.3
5765115948033566)] 
All aspects of the sentence are: ['service', 'service', 'service', 'taste',
 'service'] 

 As seen here, aspect taste is not identified with big confidences while it should be 

in some cases like ‘delicious’, while ‘product’ is identified as ‘service’ with a high 

confidence. Balancing the aspects and fine-tuning the addition threshold improves 
this extraction substantially.  

 

4.3.1 Word2vec + dependency parsing evaluation 

 

And now for the evaluation of this combined system. I had no aspect labeled data in 

my domain so I decided to do it myself. Around 700 sentences were chosen 
randomly from the dataset by way of random shuffling the whole reviews list and 

taking the first 700 sentences out of it. This had an advantage in comparison to just 
selecting a random index and taking 700 sentences from there on that it 

accomplished the same goal of taking 700 random sentences but now they were 
also randomly shuffled which removes possible internal ordering of the reviews. 

Namely, it can be the case that depending on the way the data was collected (web 
scraping, API calls or just an Amazon dump) the reviews in the set are ordered by 
the appearance on the site or food category in one way or another. If it is the case 

than it could interfere with the evaluation because the reviews could be similar and 
so capture less of the variance in the dataset. I did not check if this internal ordering 

is the case in the data but either way it would be counteracted this way. A sample 
from my hand tagged data is found in the Appendix. 

To evaluate the extraction algorithm by using conventional classification metrics the 
output should be converted to a form that is convenient for those metrics. In my 

case, each hand tagged sentence had a zero or a one for each aspect depending 
on whether the aspect is present in the sentence or not. This way each sentence 

had a vector of the form 
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[M𝑇𝑎𝑠𝑡𝑒M, ′𝐻𝑒𝑎𝑙𝑡ℎM, ′𝑃𝑟𝑖𝑐𝑒M, ′𝑆𝑒𝑟𝑣𝑖𝑐𝑒′] → [1, 0, 0, 1] 
 

My aspect extractor just gave the list of detected aspects as output so I converted 
this list to a vector by assigning 1 or a 0 to the index in a vector where the aspect 

belongs. So if the algorithm’s output was [‘taste’, ‘price’] given a certain sentence, 
this output was transformed to [1, 0, 1, 0]. 
This way I had everything I need to perform precision and recall measures on the 

data.  
Below are the results from using sklearn’s classification report feature and the 

accuracy. 

Data: new + old + kitchen 

 

 avg. precision avg. recall 

Taste 0.88 0.68 

Health 0.80 0.81 

Price 0.90 0.89 

Service 0.69 0.67 

         Avg.    0.818     0.763 
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4.4 Word embedding: word2vec only 

With performances being reasonable, the biggest concern was still the speed of the 
aspect extraction. It took my aspect extractor around half an hour to create aspect 
vectors of the 700 hand tagged sentences. I can’t name the exact reason for the 

slow performance but I think that the bottleneck in this approach is the slow 
implementation of the dependency parser: the Stanford Parser needs external Java 

jars to be used in Python. 
So I decided to try to drop the dependency parsing and use word2vec method on 

every word in the sentence, instead of just noun phrases. In the end, dependency 
parsing is a way to smartly target only relevant words for the aspect extraction 

which could save us some time. However, this is not the case right now, as the 
dependency parser implementation is clearly the time / complexity bottleneck here. 

So the algorithm for word2vec now looked like this, much shorter and much more 
simple. 
“”” The function below accepts text and a word2vec model. It first pre-proc
esses the text by lowercasing it, removing stopwords15, stripping html tags
, removing each token shorter than two letters and finally splitting the te
xt into tokens. It then iterates through the tokens list and calculates asp
ect and score for each token. The weights are trial and error or domain kno
wledge (if the word is package it is very important for its aspect) and the
 exact numbers can’t be explained by some logic. “”” 
 
def get_aspects_no_parsing(text, w2vmodel): 
    toks = [tok for tok in preprocess_string(text.lower(),  
  [remove_stopwords, strip_punctuation, strip_tags]) if len(tok) >2] 
    most = [] 
    for tok in toks: 
 w_a = which_aspect(tok, w2vmodel) 
        aspect = w_a[1] 
        score = w_a[2] 
        if aspect == 'service': 
            score = score*0.70 
        if aspect == 'health': 
            score = score*1.70 
        if tok == 'size' or tok == 'product' or tok == 'products' or tok ==
 'buy': 
            score = score*0.70 
        if tok == 'delicious': 
            score = score*2 
        if tok == 'packages' or tok =='package': 
            score = score*2 
        if aspect == 'taste': 
            score = score*1.3 
        if score > 0.3: 
            most.append(aspect) 
                                                

15 https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/parsing/preprocessing.py 



  46 

    return list(set(most)) 
 

 

With the removal of dependency parsing, the 700 vectors were created in 18 

seconds. That is 100 times faster than with the dependency parser. And what was 

unexpected is that the performance actually got better as well! The explanation for 
that might be that my POS-patterns and dependency relations did not capture the 

whole width of the aspect indicators. 
 

4.5 Word2vec aspect extractor evaluation 

With having word2vec only implementation I could perform the same evaluation 
metrics as before. Below are the results from it using different data combinations for 

the training of the models.  
 

Types of data: 

Vanilla = ‘old’ data, the initial 560k+ food reviews from Amazon 

Old + new + kitchen = the data I used in the previous sections. Basically everything 

with a subset from kitchen. 

Google model = pretrained Google model data on Google news (100 billion words)16 

Only new food = extra food reviews from Amazon only 

Kitchen + new food = extra food reviews and 500k kitchen reviews 

Only kitchen = only 500k kitchen reviews 

Old + new = ‘old’ and new food reviews combined, no kitchen 

 

Vanilla 

 precision recall 
Taste 0.85 0.81 
Health 0.83 0.83 
Price 0.88 0.82 

Service 0.73 0.69 
   Avg.               0.822                      0.788 

 
                                                

16 https://code.google.com/archive/p/word2vec/ 
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Old + new + kitchen 

 precision recall 
Taste 0.86 0.79 
Health 0.83 0.83 
Price 0.92 0.91 

Service 0.70 0.69 
             Avg.      0.828                      0.805 

Google model 

 precision  recall 
Taste 0.85 0.86 
Health 0.74 0.68 
Price 0.85 0.75 

Service 0.67 0.66 
   Avg.     0.778   0.738 

Only new food 

 precision recall 
Taste 0.85 0.80 
Health 0.83 0.83 
Price 0.88 0.81 

Service 0.71 0.70 
 Avg.     0.818   0.785  

Kitchen + new food 

 precision recall 
Taste 0.86 0.80 
Health 0.84 0.84 
Price 0.88 0.81 

Service 0.71 0.69 
   Avg.      0.823     0.785 

Only kitchen 

 precision recall 
Taste 0.87 0.78 
Health 0.80 0.70 
Price 0.90 0.89 

Service 0.70 0.70 
   Avg.      0.818     0.768 
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Old + new 

 avg. precision avg. recall 
Taste 0.86 0.80 
Health 0.83 0.83 
Price 0.88 0.81 

Service 0.71 0.69 
   Avg.       0.82   0.783 

 

Old + new + kitchen seem to win it by the slightest so I end up using it as a model 
for my summarizer. Interesting part is that the ‘only kitchen’ data configuration did 

not perform bad at all. The reason for that might be that people tend to use the 
same kind of words in the kitchen reviews because the most products are still 

related to food in one or another way. 
Even more appealing of this new, dependency free, approach is that when we 

compare the results on the same data (old + new + kitchen), we get these two 
tables: 

With dependency parsing 

 avg. precision avg. recall 

Taste 0.88 0.68 

Health 0.80 0.81 

Price 0.90 0.89 

Service 0.69 0.67 

         Avg.    0.818     0.763 

 

Without dependency parsing 

 avg. precision avg. recall 

Taste 0.86 0.79 

Health 0.83 0.83 

Price 0.92 0.91 

Service 0.70 0.69 

                   

        Avg.              0.828                                    0.805 
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The variant without the parser gives better results and is way faster and more 

memory efficient than the variant with the parser. 
All in all, with reasonable results from both the sentiment classifier and the aspect 

extractor I could begin combining those two together for a summarizer. 
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Chapter 5: Summarizer 

 

5.1 Combining the two systems 

My main research goal was to explore the different sentiment analysis algorithms 
and aspect extraction possibilities. However, it is interesting to see whether the two 
systems can be combined to form one possibly useful application. In this chapter I 

will show an example of such an application in the form of a summarizer. However, I 
did not have a way to evaluate this system so this is purely a possible way to think 

of combining the two systems. 

As mentioned before, convenience for the user is very important for the online 

retailers. So a concise and insightful summary of each review that shows exactly 
which aspects of the product are discusses can be helpful.  

My approach for the summarizer was to split a review into sentences, calculate the 
sentiment of each sentence using my trained SVM model and extract tuples of 

(aspect, words that triggered that aspect). So, for example in the following 

review: 

 
multiple_sentiment_review = 'Haribo has always made the best gummy bears, with 

the perfect texture and flavor. However, the aftertaste was really nasty.' 

 

The text was split into two sentences and I extracted the following with a help of 
combined function which just ran the sentence through both my models: 

 
(array([1]), [('taste', 'texture_flavor'), ('taste', 'perfect_textur
e')]) 
(array([-1]), [('taste', 'however_aftertaste')]) 
 

with 1 or -1 indicating either positive or negative sentiment. The tuples indicate that 
texture, flavor and aftertaste all contributed to the extraction of the ‘Taste’ aspect in 
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their sentences. The word however suggests that aftertaste is not a good addition 

to the product. We would of course also like to extract nasty_aftertaste. That is not 

a simple task for this system but is a fairly trivial one for the dependency parser. 

That might be a good application of the parser still, if we would prefer that above 
performance speed. But that is a topic for further research chapter. 

The next step was to extract these indicative terms per aspect in a single review to 
twelve lists of words (one corresponding to each aspect / sentiment combination, 
4x3) in the following way: 
aspects_terms_per_sentiments = defaultdict(list) 
sentiments_per_sentence = [] 
     
    for s in re.split('! |\. |\?', text):  
 
 sentiment = "" 
 info = combined(s, vectorizer_model, sentiment_model, w2vmodel) 
 aspects = info[1] 
 polarity = info[0][0] 
        if polarity == 0: 
            sentiment = 'neutral' 
        elif polarity == 1: 
            sentiment = 'positive' 
        elif polarity == -1: 
            sentiment = 'negative' 
             
        sentiments_per_sentence.append(sentiment) 
         
       taste_positive_words = [combi[1] for combi in aspects if combi[0]== 
 'taste' and sentiment == 'positive' and combi[1] != ''] 
 
        taste_neutral_words = [combi[1] for combi in aspects if combi[0] ==
 'taste' and sentiment == 'neutral' and combi[1] != ''] 
 
       taste_negative_words = [combi[1] for combi in aspects if combi[0] ==
 'taste' and sentiment == 'negative' and combi[1] != ''] 
 
I did this four times to cover all aspect/sentiment pairs. Afterwards, the resulting 

lists were put in a dictionary. Example of that with the last aspect and the return of 
the whole extraction. All other aspects had exactly the same treatment: 

 
        aspects_terms_per_sentiments['service_positives'].extend(service_po
sitive_words) 
 
        aspects_terms_per_sentiments['service_neutrals'].extend(service_neu
tral_words) 
 
        aspects_terms_per_sentiments['service_negatives'].extend(service_ne
gative_words) 
 
 
    return dict(aspects_terms_per_sentiments), sentiments_per_sentence 
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The end result of the function looked like this 

INPUT: 
    review to analyze               models for sentiment analysis       w2v model 
extract_terms_per_aspect (multiple_sentiment_review, vectorizer_model, sentiment_model, model) 

 

OUTPUT: 
({'price_positives': [], 'price_negatives': [], 'health_negatives': [], 'taste_neutrals': [], 'ta
ste_negatives': ['however_aftertaste'], 'price_neutrals': [], 'health_positives': [], 'servic
e_neutrals': [], 'service_negatives': [], 'service_positives': [], 'health_neutrals': [], 'taste
_positives': ['texture_flavor', 'perfect_texture']}, ['positive', 'negative']) 
 

This is a kind of an overview of what is going on in this single review. We see that 
there are words in the review that are negative on the aspect ‘Taste’ and there are 

words that a positive on the aspect ‘Taste’. Further, no aspects are discussed. 
Next step is just making a way of ‘pretty printing’ the summaries using the 

information we got from extract_terms_per_aspect. I will include the code for the 
making of a pretty summary in my Appendix as it is too long to show it here. In the 

next section a few examples are shown.  
 

5.2 Sample summaries 

Given a review, the summarizer first splits the text into sentences and then 

preprocesses it the way explained in chapter four on word embeddings. It then runs 
it through the make_pretty_summary function which creates a readable summary. 

Below are some examples of that. 

In figure 16, the aspect discussed the most is clearly ‘Taste’. Those words also get 
picked up by the algorithm, creating an overview of what is good in this product. 

The aspect price is also extracted, indicating the product is cheaper than 
somewhere else. 

We would also like the algorithm to extract the availability bit about the larger bag in 
the first sentence of the review which does not get extracted. Especially because 

the word ‘bag’ is present in the sentence. This indicates that ‘bag’ doesn't match 
quite as much with packaging as we want. Luckily, we can fix that easily by 
manually adjusting its weight. In this case it is not a malicious thing, as generally we 
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always want the word ‘bag’ to be put in the packaging aspect. And yes, if we do 

just that and run this code: 
 

if tok == 'packages' or tok =='package' or tok == 'bag': 

score = score*2 

	

We get the result in figure 17. 

 
----------------- Review Summary ----------------- 
 
The input text is: "These are the absolute best chocolates you can find for
 the price, and cheaper in the large size bag than what you can find in the
 store. The dark chocolate is the best melt-in-my-mouth chocolate. I just s
uck on it and taste the goodness until it dissolves. The caramel is the per
fect mix of caramel with chocolate. And the milk chocolate is perfect for t
hose who don’t like dark chocolate and want some solid chocolate. You can't
 go wrong with any of the flavors." 
 
The overall sentiment of the text is positive 
 
Below there is a summary of this product based on four aspects with the wor
ds associated with that aspect per sentiment. 
 
Taste: 
    Positive words: dark_chocolate, mouth_chocolate, suck_taste, caramel_ch
ocolate, mix_caramel, caramel_perfect, like_dark, dark_chocolate, don’t_lik
e, solid_chocolate, milk_chocolate, wrong_flavors 
    There are no neutral words about the taste of this product! 
    There are no negative words about the taste of this product! 
 
Health: 
    Health aspect is not mentioned or is not (significantly) detected by th
e algorithm! 
 
Price: 
    Positive words: price_cheaper, chocolates_price 
    There are no neutral words about the price of this product! 
    There are no negative words about the price of this product! 
 
Service / delivery / packaging / availability: 
    Service / delivery / packaging / availability aspects are not mentioned
 or are not (significantly) detected by the algorithm! 
 
--------------------------------------------------- 
 

Figure 16: No packaging aspect extracted 
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----------------- Review Summary ----------------- 
 
The input text is: "These are the absolute best chocolates you can find for
 the price, and cheaper in the large size bag than what you can find in the
 store. The dark chocolate is the best melt-in-my-mouth chocolate. I just s
uck on it and taste the goodness until it dissolves. The caramel is the per
fect mix of caramel with chocolate. And the milk chocolate is perfect for t
hose who don’t like dark chocolate and want some solid chocolate. You can't
 go wrong with any of the flavors." 
 
The overall sentiment of the text is positive 
 
Below there is a summary of this product based on four aspects with the wor
ds associated with that aspect per sentiment. 
 
Taste: 
    Positive words: dark_chocolate, mouth_chocolate, suck_taste, caramel_ch
ocolate, mix_caramel, caramel_perfect, like_dark, dark_chocolate, don’t_lik
e, solid_chocolate, milk_chocolate, wrong_flavors 
    There are no neutral words about the taste of this product! 
    There are no negative words about the taste of this product! 
 
Health: 
    Health aspect is not mentioned or is not (significantly) detected by th
e algorithm! 
 
Price: 
    Positive words: price_cheaper, chocolates_price 
    There are no neutral words about the price of this product! 
    There are no negative words about the price of this product! 
 
Service / delivery / packaging / availability: 
    Positive words: size_bag 
    There are no neutral words about the service/packaging/delivery/availab
ility of this product! 
    There are no negative words about the service/packaging/delivery/availa
bility of this product! 
 
--------------------------------------------------- 
 

 

One final review that captures the aspects is showcased in figure 18. 
So much for the example summaries. This application could be an asset but, in the 

end, the keywords generated by the aspect extractor may be of better use in a 
search system for reviews per aspect. Such a search application remains to be a 

topic for future work. As I do not have a way to evaluate the summarizer I can’t 
state whether it is of use to clients or retailers.  

In the next chapter I will go through some of the critical points towards my 
approach and possible improvements. 

 

Figure 12: Packaging aspect extracted after manual adjustment 
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----------------- Review Summary ----------------- 
 
The input text is: "These are by far my favorite chips, they are extremely 
crunchy (similar to other Kettle style chips), but it's the extreme Vinegar
 flavor that differentiates these from lesser fried potato snacks.  I've tr
ied several other brands of Salt and Vinegar and none of them come close. T
hey are also not that and greasy which makes it a better product for those 
who want to lose weight! It came in a good plastic bag that was filled to t
he top. The shipping was quick!" 
 
The overall sentiment of the text is positive 
 
Below there is a summary of this product based on four aspects with the wor
ds associated with that aspect per sentiment. 
 
Taste: 
    Positive words: extremely_crunchy, vinegar_flavor 
    There are no neutral words about the taste of this product! 
    There are no negative words about the taste of this product! 
 
Health: 
    Positive words: lose_weight 
    There are no neutral words about the healthiness of this product! 
    There are no negative words about the healthiness of this product! 
 
Price: 
    Price aspect is not mentioned or is not (significantly) detected by the
 algorithm! 
 
Service / delivery / packaging / availability: 
    Positive words: shipping_quick 
    Neutral words: plastic_bag 
    There are no negative words about the service/packaging/delivery/availa
bility of this product! 
 
--------------------------------------------------- 

 
Figure 18: A capture of the essential words by the summarizer 
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Chapter 6: Critical reflection 

 

6.1 Sentiment calculation 

I have not used stemming as a preprocessing step while multiple papers claim its 
effectiveness. The reason for not using it was plain simply forgetting about including 
it in the preprocessing step. I thought about it only when writing this document and 

it was a bit too late to properly redo all the work with the stemmer in place. 
Certainly something for the future works. 

Another critical remark is that I did not invest time into researching why the extra 
data did not improve the results of my SVM. There are some possible explanations, 

like that the added data is not that linearly separable and I would need to increase 
the regularization parameter on the go to increase classification precision. Or 

maybe even go with a kernel altogether. I do not think that is the problem, however, 
as linearity usually ‘increases’ with the increase of data. Or I could be overfitting on 

the extra data altogether and so diminishing my test results. Anyway, I did not 
research into that properly and that would be indeed very interesting as I believe 

that when there is extra data we should exploit it in some way. 
 

6.2 Aspect extraction 

As for the aspect extraction, I noticed multiple implementation details while writing 
this document. 

In my gensim word2vec implementation, I used the CBOW algorithm, which is faster 
than the skip-gram. However, the skip-gram model performs better on infrequent 

features and on a big dataset that could be interesting. Moreover, skip-gram model 
idea fits better for the aspect extraction idea: it tries to predict source words from 

the target word and that is essentially what we are doing with aspect extraction.  
Secondly, the word2vec documentation states: ‘dimensionality of the word vectors: 

usually more is better, but not always’. I used 500 as my dimensionality but I could 
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have experimented with more, up to a thousand, because the actual training was 

remarkably fast. 
 

6.3 Overall reflection  

Overall I noticed that this project spawned a lot of documents, scripts, small result 
sheets and such. At a certain moment near the writing of this document that 

amount was too big really. Because of that I had to re-run some of my code 
because I couldn't find my notes anymore.  

I think that this is partly because I tried too many different approaches and 
afterwards I think that it would be better if I would focus on a single, more 

restricted, topic. But nonetheless, I found this a very informative, interesting and 
challenging project to do. 
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Chapter 7: Conclusion and future work 

 

7.1 Conclusion 

In my research question I asked which sentiment analysis and aspect extraction 
techniques perform well on the field of online product reviews. I have evaluated two 
sentiment classifiers and came to the conclusion that a linear support vector 

machine is a good fit for the sentiment classification of short reviews. Afterwards, I 
looked into the aspect extraction and tried out both a system with explicit word 

pairs extraction (dependency parsing) and a system without the explicit word pair 
extraction.  I found that word embeddings is a good technique for this task. It is 

fast, memory efficient because of the pretrained models and, more importantly, it 
captures the hidden semantic connections between the words, which other models 

struggle to do. Both the sentiment classifier and the aspect extractor were ready to 
be ‘plugged in’ any system that achieves to work with short online product reviews. 

Afterwards I have built a small possible application of the two models: a review 
summarizer. The system I have built showed some potential for a review 

summarizer but could be further improved to suit multiple needs. First, my system 
does not have a reliable evaluation metric for it to be called a summarizer. Once that 

is found, the system could be a first step towards a good summarization system for 
online reviews. Aspect based sentiment extraction, when done right, could be a 

great tool to make concise summaries of reviews based only on the relevant parts 
of those reviews. 

Secondly, the aspect terms my system extracts could be used as a search tool for 
reviews that target certain aspects. Such a system does not exist on Amazon right 
now, for one, and could be of use for the customers. 

The system I have built is adaptive. It is adaptive in the sense that it can be adapted 
to use domain knowledge, such as the manual weights on certain indicative words 

or reduced weights on overly ‘general’ aspects like ‘’. Any other data source can be 
supplied to train both sentiment and word2vec models on another domain. Also 
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improvements like I mentioned in the previous section can be implemented to 

further fine-tune the system. 
 

7.2 Further work 

Most of the further work would consist of the improvements I mentioned in the 
reflection section. This section will address mostly further work that can be of use 

for the summarizer application of my system. 
One of the most feasible ways to improve the quality of the summarization step is to 

use dependency parsing after all. But not to extract the aspects at the word 
embeddings stage, as it does not add anything of value to the model as seen in 

chapter four, but rather use it as a way to generate sensible word pairs at the 
summary stage. As I explained, my summarizer reports pairs of consecutive words 

which are indicative of an aspect. However, just taking adjacent words does not 
always work. Often the adjective of a noun is not adjacent but stays somewhere 

else in the sentence. By using dependency parsing on the summarizer stage we 
could extract the dependency pairs with the aspect indicator as a head. This way 

we could use these word combinations instead of the pure adjacent words to the 
indicator. 

Another improvement that would help the system at the sentiment stage is a better 
way to handle negations and amplifications. These parts are by far the best handled 

by lexicon-based classifiers that can use hand-crafted rules for sentiment score 
manipulation when a negator or an amplifier is encountered so that may be a 

possible further work as well.  
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Appendix 

List of abbreviations 

POS – part-of-speech 

CBOW – continuous bag-of-words (model) 

SVM – Support Vector Machine 

word2vec – a model for word embedding, originally developed by Google  

sklearn – a Python machine learning library 

API - Application Programming Interface 

gensim – a Python topic- and vector space modelling library 

k – one thousand 

TensorFlow – an open-source machine learning library by Google 

NLP – Natural Language Processing 

vec – vector  

NN, JJ, NNP, PRP, NNS – part-of-speech tags corresponding to noun, adjective, singular 

proper noun, personal pronoun and plural noun, respectively  

'amod', 'compound', 'advmod', 'nmod', 'neg', 'num', 'nsubj', 'nmod:npmod' – 

dependency relations corresponding to adjectival modifier, noun compound modifier, 

adverbial modifier, noun modifier, negation modifier, numeric modifier, nominal subject and 

noun phrase modifier, respectively  

CV – cross-validation 

WordNet – semantic lexical database for English17 

SenticNet – a semantic knowledge base for English18 

n-gram – a sequence of n tokens 

tf-idf -  term frequency–inverse document frequency, measure of token importance 

                                                
17 http://wordnet.princeton.edu/ 
18 http://sentic.net/ 
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AUC ROC - Area Under the Receiver Operating Characteristic curve, an evaluation metric 

IMDb – Internet Movie Database 

Kaggle – Data science platform 

SO-CAL – Semantic Orientation Calculator used by Taboada et al. 

A-score – metric used by Bagheri, A., Saraee, M., & de Jong, F. 

IAC – Implicit Aspect Clue, as used in Poria et al. 2014 

 

Hand tagged sentences for the aspect extractor evaluation 

Text;Taste;Health;Price;Delivery 

 
Love love love this pasta, and it's whole wheat, so it's good for you. Haven't been so pleased 

since they found out chocolate was good for you...;1;0;0;0 

I had read about these bars in various low carb blogs. Yesterday, I came across some at my 

local grocery store and decided to give it a try. I purchased the milk chocolate bar. I was 

pleasantly surprised. It was a bite of heaven. They are mildly sweet and have a creamy texture, 

as evidenced by the fat content. However, what pleases me the most is that they are sweetened 

without sugar or the use of malitol. I need to eat low carb due to medical reasons and I stray 

away from sugar alcohols due to gastric reasons!;1;1;0;0 

"These are great and epitomize the reason I love Japanese candies. Each one is a tiny, light, 

crispy, chocolaty crunch. However I highly recommend <a 

href=""http://www.amazon.com/gp/product/B003N0QXCI"">Meiji Chocorooms, 3.13-Ounce 

Boxes (Pack of 10)</a> over these. Chocorooms are extremely similar to these except their 

crispier and have a higher chocolate to cookie ratio, I much prefer them.";1;0;0;0 

"This is how jerky is supposed to taste. Extra salty bite with a good chew. If you can't make a 

nice ""brothy soup"" with your jerky, then you're probably eating the wrong jerky. Keep the soft 

sweet glazed gourmet crap outta the jerky industry because it's definitely killing it. Lol at the 

people who says jacks links is a superior product. Oh boy Oberto's thin style is the way to 

go.";1;0;0;0 

I only like herbal tea especially raspberry.  This one has a distincive flavor-it's great!!;1;0;0;0 

Again this is good stuff but don't buy it here.  At my wal-mart I got this exact same thing for 

$3.98!!!!!!!!<br />$3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 

$3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 

$3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98 $3.98!!!!;1;0;1;0 
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"This is a great , mellow coffee.  The orange flavoring is so subtle, yet distinct.  The orange rinds 

with the beans make the difference and readily grind up nicely with the beans.  People will 

comment on my excellent coffee and ask me what beans I use and when I inform them of the 

orange rinds, they remark ""this is excellent! Now that you mention it, I can taste the slight hint 

of orange.""  I just bought another bag to give to my best friend for her birthday - it is that 

good!";1;0;0;0 

they taste very good.and product was in good condition, but way to much packing penuts, i 

would prefer somthing biodegradabl or recyclabl;1;0;0;1 

I recv'd this tea in great condition. The packing and timeliness were great. I love this tea. It takes 

me back to when I had our son in an Italian hospital near Pisa, Italy. They brought me Lipton 

Yellow Label Tea. That was many years ago and I never forgot how good it tasted or stopped 

looking to buy more once we left Europe. Hubby and I were talking about it and I thought of 

Amazon! It was right here. I'm enjoying it in the afternoon for a pick me up! Good stuff!;1;0;1;1 

This coffee has a deep flavor with no bitterness.  It stays fresh in the packaging, and with the 

subscription plan savings it's a great deal!;1;0;1;1 

I have used this several times in my chicken soup and it is yummy! Nice new taste.;1;0;0;0 

"My dogs did not show any interest in this.  I even put peanut butter on it!  They love their other 

Nylabone Bones, but did not care for the shape of this one.  The only thing I could think of was 

that it was to large for them; 20 lb mini-Aussies. One of my dogs is a hard chewer; likes to chew 

amsot anything. I will stick with the regular bones.";1;0;0;0 

"When looking for a ""green"" signature drink for a geeky wedding we came across the Finish 

This Drink recipe. It called for Kiwi syrup which we could not find locally in any store. Amazon to 

the rescue - this Monin kiwi syrup made a yummy drink!!";1;0;0;1 

This is the most flavorful sea salt we have ever used. The salt will arrive slightly damp in the jar -

-at least the first four bottles we have opened have been damp -- but once again, no problem. 

Dump the jar of salt in a pie pan, and put it in the oven as the oven cools after use. Then the salt 

grinds in any table salt grinder with ease. It is very grey -- I suspect the source of the great 

flavor! It also makes great kosher dill pickles -- simply disolve the salt and let it sit for a day in a 

quart sealer, then pour off the clear saline solution. Fabulous taste -- no cloudy pickles!<br 

/>This salt represents exceptional value. We use this salt for just about everything now.;1;0;0;1 

My husband loves the green and white fusion tea!! He rates it excellent! I have not tried it as of 

yet, but of all he has tried this is the one for him.;1;0;0;0 

"Got this yesterday, have been like a mad scientist since...adding it to almost everything and 

thinking about more.  Last week got the newsletter from CSPI and PB2 chocolate and plain 

featured on the back.  CSPI trustworthy, so I went for it.  I normally get a jar of natural peanut 

butter, pour off the oil and then for several days put in paper towels to sop up the remaining oil.  

Then I have maybe a teaspoon at a time - rarely more than a full tablespoon in a day.  We are in 
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Easter Candy Season and the spectre of chocolate peanut butter eggs is everywhere.  Hard to 

be at peace with oneself when peanut butter - and especially combined with chocolate - is 

readily available.  Now this PB2 stuff is not especially chocolatey - but it is a wonder and my 

next order [soon] will be to try the basic version.  The contents of the one pound package will 

have to be transferred to an air tight container.  Note recipe on the side of the bag:  just plain 

weird for a ""health food product"" - a ""MexiNut"" dip involving an undiluted can of bean with 

bacon soup, canned tomatoes, velveeta, 1/2 cup of PB2 chocolate, and chilli powder.  As the 

soup, the tomatoes and the velveeta are sodium nightmares and the soup and velveeta heavy 

with fat, loaded with addditives, why would the company promote such a disasterous use of its 

""healthy"" product?  Use your own good common sense and happy eating.";1;1;0;0 

Very bitter!  I couldn't taste the coffee at all.  It basically tastes like baking cocoa.  No 

sweetness, no richness, not coffee.  I bought the 4 pack though, so I've begun mixing it half and 

half with Swiss Miss (in the can), and then sprinkling it with instant coffee after I've made a cup.  

Even making it with whole milk couldn't make this yummy by itself.  If you like a rich chocolate 

taste with just a bit of coffee.... shop elsewhere.;1;0;0;0 

Love that I could save gas money by not going to the grocery store to buy some food products! 

Thanks Amazon!;0;0;1;1 

I started ordering this green tea after I got an extremely bad shipment of the Davidson's 

Gunpowder Green. I really like this, and it is a good price with the subscription. Sticking with 

this one and I will not go back to Davidson's. So much better. Uses less tea also, which further 

reduces cost.;1;0;1;1 

"but ""Chips Ahoy! Chewy Gooey Megafudge"" is TOO MUCH chocolate.  Seriously.  Milk 

doesn't even help.  In moments of weakness, I have been known to eat a whole package of 

chocolate chip cookies, with chocolate milk.  I was barely able to eat two of these goo-balls.  

On one hand, maybe that's a good thing - it forced me to moderation.  But the truth is, I really 

didn't like them that much.<br /><br />Oh sure, they are chocolate, and that's really never a bad 

thing!  But these are just too much for my tastes.  The description is accurate:  they are chewy, 

they are gooey, they are fudge.  Basically, they are the Chips Ahoy chewy fudge cookies, slit 

open and filled with gooey fudge in the middle.<br /><br />Not bad - just WAY too far over the 

top for my taste.";1;0;0;0 

We haven't opened this yet as it is a Christmas gift, but we found the same drawer in a store for 

cheaper.  I couldn't cancel the order though.;0;0;1;1 

This wasabi mayonnaise comes in a squeezable bottle and is easy to use. It is a nice flavor 

addition to many foods, such as sandwiches, potato salad, and pretty much any food where 

regular mayo would normally be used. It is especially good on hamburgers and cheeseburgers. I 

started looking forward to eating a hamburger only because I can put wasabi mayonnaise on 

it.;1;0;0;0 
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This snack is the best. I love taking it to school and whenever I take it, all my friends gather 

around me. It is very crunchy and comes in various tastes like pizza, smoky, or bbq. I would 

recommend this as a fulfilling snack.;1;0;0;0 

Good balance between the honey sweetness and the ginger/lemon tartness. Very natural taste, 

with no nasty aftertaste. Good hot or cold. Great after dinner drink.;1;0;0;0  

 

Code 
 

All of my relevant code for all the parts of my project is rendered nicely, with output, 
in Jupyter notebooks in the following GitHub repository. This can be viewed without 

a GitHub account. 
 

 

https://github.com/mabergerx/Thesis_Mark 

 

Data: https://we.tl/uDzCaJJUXA 


