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Introduction

The non-equivariant part

The category of finite sets and injective maps has a relatively short history that goes back to M.Bockstedt
famous preprint from 1985. But the formal development of the homotopy theory of I-spaces, that is, diagrams
from the category I to the category of unbased spaces U , denoted by UI , has only been recently started to
develop and they have become parts in various research programs. In the homotopical study of the category
UI , the most important model structure is called the projective I-model structure and has the property that it
is Quillen equivalent to the usual model structure on spaces. Thus, the homotopy category of I-spaces equipped
with the projective I-model structure is equivalent to the usual homotopy category of spaces.

More closely for the purposes of this thesis, is the relationship of the homotopy theory of I-spaces and stable
homotopy theory. The category of I-spaces is closely related to one model of structured spectra, the category of
symmetric spectra, SpΣ. In particular, there is a pair of adjoint functors that relates these two categories. The
importance of the projective I-model structure mentioned in the previous paragraph, is that this adjunction
becomes a Quillen pair, when the category of symmetric spectra is equipped with the stable model structure.
As a formal consequence we have an adjunction between the homotopy category of I-spaces and the stable
homotopy category SH. So, it is not a far fetched analogy to say that the homotopy theory of I-spaces serve
as an “unstable”analogue for the homotopy theory of symmetric spectra.

The equivariant part

Stable equivariant homotopy theory (S.E.H.T.) has seen various applications both in equivariant and non-
equivariant topology. One spectacular application is in the paper [14]. Roughly speaking, S.E.H.T. studies
homology and cohomology theories of spaces with symmetries, that is, with group actions. The subject is very
well developed and an overview of one its models can be be found in [11] and the state of the art is [20]. But
we are following the point of view given in [32] and [31, Chapter III] which has the advantage that the objects
considered are the most concrete. To be more precise the objects of study in the second approach are just
G-objects in the category spectra (symmetric, orthogonal, etc.), that is, spectra {Xn : n ∈ N} which every
pointed space, is a G × Σm or G × O(n) space respectively with appropriate G-equivariant structure maps.
These categories support many model categories but the most interesting one is the G-stable model structure,
which has the property that its homotopy category is the equivariant analog of the stable homotopy category,
SH(G).

The main point of this thesis is to generalize the Quillen adjunction between the homotopy theory of I-spaces
and symmetric spectra in the equivariant context for a finite group G.

Structure and summary of the thesis

We now give a summary of the contents of this thesis. In Part 3, Section 4 we will define formally the category
of I-spaces with a finite group action, in Section 6 we define three “level”model structures and in Section ?? we
their existence and various properties. In Section 8 we will construct left Bousfield localizations of these model
structures and in Section 9 we compare these localizations. Finally, in Part 4 we show the relationship between
the homotopy theory of I-spaces with G-action and the homotopy theory of G-symmetric spectra.

For the following proposition we fix a finite group G. We will call I-spaces with group action G-I-spaces.
We will properly define this category in Definition 4.1. The notation GU stands for the category of G-spaces
and G-equivariant maps.

Proposition 0.1. There is a model structure on the category of G-I-spaces whose weak equivalences are detected
by the homotopy colimit functor

hocolim
I

: GUI −→ GU .

Furthermore, this model structure is Quillen equivalent to the genuine model structure on GU .

The construction of this model structure can be done in two ways. One is provided in Proposition 8.9 by
appealing to the recognition principle of cofibrantly generated model structures, [16, Theorem 2.1.19], after
identifying a set of generating cofibrations and generating acyclic cofibrations. The second way is by a tautolog-
ical application of a theorem proved by D.Dugger in [5, Theorem 5.2]. Both approaches have their advantages
as we now briefly explain. One the one hand, D.Dugger’s method is a left Bousfield localization of the projective
model structure, so the fibrations are a bit mysterious to describe explicitly. The advantage of this approach
is that the formal properties follow tautologically from [5, Theorem 5.2]. One the other hand, by appealing to
the recognition principle of cofibrantly generated model structrures, Proposition 8.9 provides an explicit form
of the fibrations, since we know the set of generating acyclic cofibrations.
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The next proposition is the main result of this thesis.

Proposition 0.2. Fix a complete G-universe U.

(1) There is a cofibrantly generated G-topological model structure on the category G-I-spaces, called the level
model structure, with weak equivalences (resp. fibrations) those maps f : X −→ Y such that for every
finite G-set M , the map after evaluation f(M) : X(M) −→ Y (M) is a genuine G-weak equivalence (resp.
G-fibration),

(2) There is a left Bousfield localization of the above model structure, at a set of maps, such that the adjunction

SI [−] : GUI // GSpΣ : ΩIoo

is a Quillen adjunction, for the corresponding G-stable model structure on the category of G-symmetric
spectra, and

(3) Moreover, the model structure on the category of G-I-spaces of part (2) is Quillen equivalent to the model
structure of Proposition 0.1

The existence of the level model structure of part (1) is a consequence of the existence of the strong level
model structure, given in Definition 6.6 and proven in Subsection 6.6. The relationship between the level model
structure and the strong level model structure is made clear in Proposition 6.7, Remark 6.11 and in Proposition
6.12. For claim (2), the set of maps which, with respect to, we form the left Bousfield localization is defined in
Subsection 8.13. The Quillen adjunction with the G-stable model structure on G-symmetric spectra is proven
in Subsection 9.12. The proof of claim (3) is a consequence of Proposition 9.6 and Proposition 9.4.

0.3. Limitations and Restrictions. We have to note the limitations and restrictions of the theory developed
in this thesis. The first limitation is that the group action on an I-space must be a finite group. This is
due to the fact, that both I-spaces and symmetric spectra have internal symmetries encoded by actions of the
symmetric groups, and thus, we cannot have continuous group homomorphisms G −→ Σm for any m ≥ 0 if
G is, say, a compact Lie group. For compact Lie groups we would have to consider the equivariant analogue
of orthogonal spaces, that is, diagrams of G-spaces over the index category L of finite dimensional real inner-
product vector spaces and linear isometries. The other limitation is that in this thesis, we work only at single
group at a time. In the book in progress [31] and in the preprint [13] the authors study orthogonal spaces and
symmetric spectra in which all compact Lie groups or finite groups, respectively, act at the same time in a
compatible way. Both of these approaches lie outside the scope of this thesis.

0.4. General Prerequisites. We assume that the reader is acquainted with the theory of model categories and
we do not provide an introduction to it. Standard references include [15] and [16]. We will review some main
definitions of G-symmetric spectra but the main reference for the homotopy theory of G-symmetric spectra is
[12].
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Part 1. Preliminaries, Notation and Conventions

0.5. Notation and Conventions. As is standard we denote by I the category of finite sets n = {1, . . . , n},
inclusing the empty set 0 and morphisms the injections. We will work in the category U of unbased compactly
generated weak Hausdorff spaces which for us is synonymous to “spaces” .

In what follows G will always denote a finite group and the notation GU will mean the category of G-spaces
and G-equivariant maps. The space of G-equivariant maps is denoted as mapG(−,−). We will reserve the
notation map(−,−) of the G-space of all continuous maps between two G-spaces where G acts by conjugation.
The fixed points of the G-space map(−,−) is precisly the space of G-equivariant maps mapG(−,−) We fix a
G-set universe U , i.e., a countably infinite G-set, which we always assume to be complete which means that
every action on a finite set embeds into U .

If C is a category we will write C(X,Y ) or homC(X,Y ) for the set of C-morphisms from X to Y. We reserve
the symbol ⊗ for the tensor product in a enriched category C over a symmetric monoidal category (V,×, ∗)
As a last note, normally function spaces in model categories are built from framings or function complexes
and do not refer to topological mapping spaces. However, if the model category is simplicial, the source is
cofibrant and the target is fibrant, the mapping space created by function complexes are weakly equivalent to
the simplicial mapping spaces. For simplicial model categories, we can use then the simplicial mapping space
instead of function complexes to form function spaces and consequentially to form the left Bousfield localization
with respect a map f if f is a map of cofibrant objects. The simplicial mapping spaces in a topological model
category are Sing Map(X,Y ), where Sing is the singular complex functor. But Sing preserves and reflects
weak equivalences, thus for topological model categories we can use topological mapping spaces. All the model
structure that we will be dealing with are topological and we will use this convention throughout.

0.6. Subgroups of product groups and representations. Let A and B be finite groups. We denote the
projections as pr1 : A×B −→ A and pr2 : A×B −→ B.

Definition 0.7. Let G be a finite group. A family of subgroups is a non-empty set of subgroups of G such that
it is closed under conjugation and passage to subgroups.

Definition 0.8 (F-equivalence). A G-map f : X −→ Y of G-spaces is called an F-equivalence if for all
subgroups H of H that lie in the family F , the fixed point map fH : XH −→ Y H is a weak equivalence.

Definition 0.9. Let FA,B denote the family of subgroups L ≤ A×B such that L ∩ (e×B) is trivial.

We have the following lemma

Lemma 0.10. A subgroup L ≤ A × B belongs to the family FA,B if and only if the restriction of the first
projection function to L, i.e., pr1

∣∣
L

: L→ A is injective.

Proof. We have the projection function pr1 : A×B → A and its kernel is the following

ker(pr1) = {(a, b) ∈ A×B| pr1(a, b) = e}
= {(e, b) ∈ A×B| b ∈ B}
= e×B

Since by definition a subgroup L ≤ A×B belongs to the family if L ∩ (e×B) = {(e, e)} the claim follows.
�

For the following lemma we use the notation hom(A,B) for the set of all group homomorphisms, for finite
groups A and B.

Lemma 0.11. Let FG,Σm be the family of subgroups of G×Σm as in Definition 0.9. Let A be the set of pairs
{(H,φ) |H ≤ G,φ ∈ hom(H,Σm)} . The map

F : FG,Σm −→ A
L 7−→

(
pr1(L),pr2 ◦ pr−1

1

)
is a bijection.

Proof. Suppose we have a pair (H,φ) where H is a subgroup of G and φ : H → Σn a group homomorphism,
that is, an action of H to the finite set n . We have the inclusion i : H ↪→ G and let the group homomorphism
j := (i, φ) : H → G×Σn. Its kernel are those elements h ∈ H such that (h, φ(h)) = (e, e) and the first coordinate
imposes h = e. So the homomorphism j = (i, φ) is injective and its image j(H) ≤ G × Σn is a subgroup with
the property that pr1 : j(H) −→ G is injective. This defines a map G : A −→ FG,Σm which is inverse to the
function F . �
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Part 2. Introduction to I-spaces and (G-)Symmetric spectra

1. Symmetric Spectra

In this section we briefly recall one of the models of highly structured spectra, the category of Symmetric
spectra. By definition a symmetric spectrum X is a spectrum in which each of the spaces Xn is equipped with
a base-point preserving left action of the symmetric group Σn, with structure maps

σn : Xn ∧ S1 −→ Xn+1

that are Σn-equivariant and the iterated structure maps σmn : Xm∧Sn −→ Xm+n are Σm×Σn-equivariant. The
Σm×Σn-action on the space right hand side is the restriction action given by the inclusion Σm×Σn ↪→ Σn+m.
A map f : X −→ Y of symmetric spectra is a sequence of Σn-equivariant based maps Xn −→ Yn. The category
of symmetric spectra is most concisely given as a category of diagrams which we describe shortly below. For
details we refer the seminal paper [21]. The approach that we describe below is given in more detail in [27,
Subsection 3.1].

Let α : m −→ n a morphism in I, let n−α denote the complement of α(m) in n and let Sn−α be the
one-point compactification of Rn−α. Given a morphism α : m → n in I there is an induced structure map
α∗ : Xm ∧ Sn−α −→ Xn defined as follows: Choose a bijection β : l −→ n−α for an object l in I and let
{α, β} : mt l −→ n be the resulting injection. Then α∗ is defined by

α∗ : Xm ∧ Sn−α −→ Xm ∧ Sl −→ Xm+l
{α,β}∗−−−−→ Xn

which is independent of the choice of β. With this convention, the subset inclusion ι : m ↪→ m +1 induces the
structure map Xm ∧ S1 −→ Xm+1.

Consider then, the category IS that has the same objects as I but whose morphisms are defined by

IS(m,n) :=
∨

α∈I(m,n)

Sn−α

We consider the category IS enriched over the category of based spaces T . Writing the morphisms of the
category IS in the form (x, α) for x ∈ Sn−α, the composition is defined by

IS(m,n) ∧ IS(l,m) −→ IS(l,m) (x, α) ∧ (y, β) 7−→ (x ∧ α∗y, αβ)

where x ∧ α∗y is defined by the canonical homeomorphism

Sn−α ∧ Sm−β ∼= Sn−αβ , x ∧ y 7−→ x ∧ α∗y

obtained by reindexing the coordinates of Sm−β via α. Thus, if X : IS −→ T is a continuous functor, then we
have for each morphism α : m −→ n in I a based continuous maps α∗ : Xm ∧ Sn−α −→ Xn.

Of particular importance is the stable model structure on the category SpΣ. It can be defined as localization
of the projective model structure on the category of continuous functors IS −→ T . The importance of this
model structure is that its homotopy category, is one of the models of the stable homotopy category SH. For
details we refer to [21].

2. I-spaces

In this section we will sketch some basic facts about the category of I-spaces and their homotopy theory.
The main references for this overview are the papers [26], [18, Section 2], and a survey on infinite loop spaces
[1, Section 2]

As we said in the introduction, the category I has objects the finite sets n = {1, . . . n}, including the empty
set 0 and morphisms are the injections. An I-space is a functor X : I −→ U . Every morphism in I can be
factored as a composition of the canonical inclusion ι : n −→ m and a permutation σ : m −→ m. Therefore
an I-space X : I −→ U determines a sequence of spaces X(n) together with an induced action of the sym-
metric group Σn for n ≥ 0, and structural maps jn : X(n) −→ X(n +1) that are equivariant in the sense that
jn(σ · x) = σ · jn(x) for every σ ∈ Σn and x ∈ X(n). On the right hand side we see σ as element in Σn+1

via the canonical inclusion Σn −→ Σn+1. Vice versa, given such a sequence of Σn-spaces X(n) and compatible
structure maps jn, they give rise to an I-space if and only if for m ≥ n and any two elements σ, τ ∈ Σm with
identical restrictions to n we have σ(x) = τ(x) for all x ∈ j(X(n)).

The fundamental notion of weak equivalence between I-spaces is that of an I-equivalence. These weak
equivalences take part in various model structures but we will introduce here the most relevant to us, the so-
called projective I-model structure. We recall from [26, Subsection 3.1], the projective I-model structure. We
say that a map f : X −→ Y of I-spaces is an

• I-equivalence if the induced map of homotopy colimits XhI −→ YhI is a weak equivalence of spaces,
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• I-fibration if it is a projective fibration and the diagram

X(m) //

��

X(n)

��

X(m) // Y (n)

is homotopy cartesian for all morphisms m −→ n in I,
• cofibration if it has the left lifting property with respect to maps of I-spaces that are level acyclic

fibrations.

These classes specify a model structure on UI . A proof can be found in [26, Proposition 3.2] and [18, Theorem
2.3].

Proposition 2.1. The adjunction colimI : UI � U : constI defines a Quillen equivalence between the projective
I-model structure on II and the usual model structure on U .

Thus, the homotopy category of UI is equivalent to the usual homotopy category of spaces. One should
think of hocolimI X as the underlying space of the I-space X.

The following proposition is the imporant link between the homotopy theory of I-spaces and stable homotopy
theory.

Proposition 2.2. [18, Proposition 2.4], [26, Proposition 3.19] The adjunction

SI [−] : UI // SpΣ : ΩIoo

is a Quillen adjunction for the projective I-model structure and stable model structure respectively.

3. Introduction to G-symmetric spectra

As we said in the introduction we are following the point of view of [32] and [12]. The G-symmetric spectra in
this thesis are the direct analog of G-orthogonal spectra. The category is always that of G-objects in the category
of non-equivariant symmetric spectra introduced in Section 1. Parallel to the orthogonal case, these G-spectra
secretly inherit evaluations at arbitrary finite G-sets. Which of these evaluations are declared homotopically
meaningful in the model structure is based on a G-set universe U , i.e., a countable infinite G-set which is
isomorphic to the disjoint union of two copies of itself. For this thesis we will always take the universe U to be
complete, that is, every G-action on finite sets is contained in U .

Definition 3.1. [12, Definition 2.2] A G-symmetric spectrum of spaces is a symmetric spectrum together with

a G-action via automorphisms of symmetric spectra, or equivalently a functor G −→ SpΣ where we regard the
finite group G as a category with a single object. A map of G-symmetric spectra is a map that commutes with
the given G-actions. We denote the category of G-symmetric spectra by GSpΣ.

Equivalently, a G-symmetric spectrum is a symmetric spectrum X together with a G-action on each pointed
space X(n) which commutes with the Σn-action and for which all structure maps σ : S1 ∧ Xn −→ Xn+1 are
G-equivariant, for the trivial G-action on S1.

As we said above, every G-symmetric spectrum secretly inherits evaluations on arbitrary finite G-sets.

Definition 3.2. [12, Definition 2.4] The evaluation of a G-symmetric spectrum X on a finite G-set M of
cardinality m is defined by

X(M) := X(m) ∧Σm Bij(m,M)+

Xm ∧ Bij(m,M)+/{(σ∗x, f) ∼ (x, σ∗f), σ ∈ Σm}
with diagonal G-action g[x, f ] = [gx, gf ]

Example 3.3. The equivariant sphere spectrum S is given by Sn = Sn with action by Σn and with trivial
action of the group G. This does not mean however that G acts trivially on the evaluation S(V ) of S on a finite
G-set V. Indeed, the map

S(V ) = Sn ∧Σn Bij(n, V ) −→ SV , [x, φ] 7−→ φ(x)

is a G-equivariant homeomorphism to the representation sphere of V

Example 3.4. Every pointed G-space A gives rise to a suspension spectrum Σ∞A via

(Σ∞A)n = A ∧ Sn.
The symmetric group acts though Sn, the group G acts through the action on A and the structure maps are

the canonical homeomorphisms (A ∧ Sn) ∧ S1
∼=−→ A ∧ Sn+1. For example the sphere spectrum S is isomorphic
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to the suspension spectrum Σ∞S0 where G acts trivially on S0. If we evaluate the suspension spectrum on a
finite G-set V we obtain

(Σ∞A)(V ) ∼= A ∧ SV .
This homeomorphism is G-equivariant with respect the diagonal G-action on the right hand side.

Given two finite G-sets M and N , we set

Σ(M,N) =
∨

α:M→N injective

SN−α(M)

where N − α(M) is the complement of the image of α in N and it has a G-action by conjugation.

Definition 3.5 (Free G-symmetric spectra). [12, Definition 2.18] Let A be a based G-space and let M be a
finite G-set. The free G-symmetric spectrum on A in level M is denoted by FMA and defined via

(FMA)n = A ∧Σ(M,n)

with diagonal G-action and Σn-action through Σ(M,n). The structure map is the composition

A ∧Σ(M,n) ∧ S1 ↪→ A ∧Σ(M,n) ∧Σ(n, n+ 1)
A∧◦−−−→ A ∧Σ(M,n+ 1)

The free G-symmetric spectrum F∅A is naturally isomorphic to the suspension spectrum Σ∞A, since there
is only one injective function from the empty set to any other finite set.

The equivariant analog of infinite loop space is much more complicated and has a lot more structure.

Definition 3.6. [12, Definition 2.40] A G-projective level fibrant G-symmetric spectrum X is called a GΩ-
spectrum if for all subgroups H ≤ G and all finite H-subsets M and N of U , the adjoint generalized structure
map induces a weak equivalence

(σ̃NM )H : X(M)H −→ mapH
(
SN , X(M tN)

)
on H-fixed points.

The GΩ-spectra are the fibrant objects of a model structure on the category GSpΣ, the G-stable model
structure. Its homotopy category is the equivariant stable homotopy category SH(G). For further details we
refer to [12, Section 2.10].
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Part 3. Model Structures on G-I-spaces

4. The category GUI

Definition 4.1. A G-I-space is a diagram X : I −→ GU . We write GUI := Fun(I, GU) for the category of
G-I-spaces with morphisms the natural transformations.

By Cartesian closedness, a diagram X : I −→ GU can be considered equivalently as a functor G −→ UI ,
where we regard G as a category with a single object or as a functor I ×G −→ U .

The next lemma recalls the basic formal properties of the category of G-I-spaces.

Lemma 4.2. The category GUI is bicomplete with limits and colimits constructed levelwise. Furthermore, GUI
is enriched, tensored and cotensored over U . For a G-I-space X and a space T the tensor X ⊗ T and cotensor
XT are the G-I-spaces defined by

(X ⊗ T )(k) := X(k)× T(4.1)

(XT )(k) := map(T,X(k)).(4.2)

with G-action though X(k). For X and Y two G-I-spaces let

(4.3) MapGUI (X,Y ) ⊂
∏

k∈ob(I)

mapG×Σk
(X(k), Y (k)) .

denote the subspace of all collections of maps (f(m))m∈I that are G × Σm-equivariant in the product of the
mapping spaces Map(X(m), Y (m)) such that each collection determines a map f : X −→ Y of G-I-spaces. It
is topologized as a subspace of this product of mapping spaces.

Every I-space, that is, a functor I −→ U gives rise to a diagram I −→ GU by letting G act trivially on each
X(n). So, we have a functor triv : UI −→ GUI . This functor has a left adjoint (−)/G : GUI −→ UI

(4.4) X/G : I −→ U , n −→ X(n)/G

by taking orbit spaces objectwise and a right adjoint (−)G : GUI −→ UI

(4.5) XG : I −→ U , n 7−→ X(n)G

by taking fixed points objectwise.
For a subgroup H ≤ G we have the restriction functor

(4.6) resGH : GUI −→ HUI

which has a left adjoint, the induction functor

(4.7) GnH − : HUI −→ GUI X 7−→ GnH X

The category GUI is also enriched over the category GU . For a pair X and Y of G-I-spaces, the underlying
mapping space of non-G-equivariant maps MapUI (X,Y ) carries a G-action by conjugation and the fixed points
of this action are precisely the G-equivariant maps, that is, the space MapGUI (X,Y ), as in (4.3). Let L be a
G-space and X : I −→ GU . Then we can define the tensor X ⊗ L as in (4.1) with diagonal G-action and we
can define the cotensor XL as in (4.2) with G-action by conjugation.

Lemma 4.3. The category GUI is enriched, tensored and cotensored over the category GU .

5. Other descriptions of the category GUI

In this section we will sketch the outline for two different descriptions of the category of G-I-spaces. Both
of them follow from general considerations of equivariant phenomena.

5.1. As diagrams on Oop
G . Let C be a category and we denote by GC the category of functors Fun(G, C)

in which we regard G as a category with a single object. Given a subgroup H ≤ G, we have a functor
(−)H : GC −→ C, defined by

GC resGH−−−→ HC limH−→ C.
Let OG be the orbit category of G; its objects are G/H for H ≤ G and morphisms the equivariant maps, that
is, homOG(G/H,G/K) = (G/K)H . Then, an object X ∈ GC, i.e., a functor X : G −→ C defines a functor Φ
from Oop

G to the category C as follows

(5.1) ΦX : Oop
G −→ C, ΦX(G/H) −→ XH

The functor Φ has a left adjoint defined by

Λ : Fun(Oop
G , C) −→ GC(5.2)

Y 7−→ Y (G/e)
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Applying the above for our case of G-I-spaces, we have the adjunction

(5.3) Λ : Fun(Oop
G ,UI) // Fun(G,UI) : Φoo

5.2. As enriched functors. For basic facts about enriched categories over a symmetric monoidal category V we
refer to [25, Chapter 3], [2, Chapter 6]. Let IG be the category whose objects are pairs (m, φ : G −→ Σm) := mφ,
in which m is an object of I and φ is a homomorphism from G to Σm and thus endows m with the structure of
a G-set. Morphisms (m, φ) −→ (n, ψ) are the underlying injective functions m −→ n, that is, the morphisms
in I. The group of automorphisms of (m, φ) is Σm. Since we do not require morphisms to commute with
the homomorphisms G −→ Σ, we have a G-action by conjugation on the hom-sets of IG; Concretely given a
morphism (m, φ) −→ (n, ψ), an element of g ∈ G acts on f

m
φ(g−1)−−−−→m

f−→ n
ψ(g)−−−→ n

which by a slight abuse of notation we write as g · f = gfg−1. We will write IG for this category enriched in
the monoidal category of G-sets. Similarly we define UG to be the category whose objects are G-spaces and
whose morphisms are continuous maps. The category UG is enriched in the monoidal category of G-spaces via
conjugation and we write UG for the enriched category.

Definition 5.3. A IG-space is a G-enriched functor X˜ : IG −→ UG. Morphisms between IG-spaces are G-
natural transformations. We write G-Fun(IG,UG) for the above category.

Unwinding the definitions, given a G-functor X˜ : IG −→ UG we have a map

IG 3mφ −→ X(mφ)

together with morphisms

X˜ mφ,nψ : IG(mφ,nψ) −→ UG (X(mφ), X(nψ)) .

By definition of a V-functor, the maps IG(mφ,nψ) −→ UG (X(mφ), X(nψ)) must be G-equivariant with
respect the respective conjugation actions, that is, given an injective function f : mφ −→ nψ we have
gX˜ (f)g−1 = X˜ (gfg−1)

A useful observation is that there is an adjoint equivalence of categories

(5.4) P : Fun(I, GU)
//
G-Fun(IG,UG) : Uoo

where P is a form of extension and U is a form of restriction. Such an equivalence of categories is not something
new. It was first observed in [34] in the case of G-Γ-spaces, that is, the category of diagrams Γ −→ GU . It is
very much analogous to the adjoint equivalence of categories that we mentioned in the introduction between
G-spectra indexed on a complete universe and spectra with G-action.

We explain in brief the the adjoint equivalence (5.4). There is a fully faithful functor ι : I −→ IG given
by sending an object m ∈ ob(I) to the object (m, ι) ∈ IG, where (by abuse of notation) ι denotes the unique
homomorphism G −→ Σm that factors through the trivial group. The functor ι induces the restriction functor
R : G-Fun(IG,UG) −→ Fun(I, GU), which sends a G-enriched functor X˜ to its restriction to the objects with
trivial G-action. Summing up the above discussion, given a G-enriched functor X˜ : IG −→ UG, we precompose
it with the inclusion ι : I −→ IG

I ι−→ IG
X−̃→ UG

and setting X := X˜ ◦ ι. Any injective morphism f : m −→ n between trivial actions is G-fixed, and thus f
must be sent to a G-equivariant map X(f) : X(m) −→ X(n). This implies that the restriction of X˜ to the
category I in fact lands in GU ⊂ UG. For the other direction, given a diagram X : I −→ GU , as we will see in
Definition 5.5 we can always recover arbitrary G-actions by the formula X(M) = X(m) ×Σm Bij(m,M) with
diagonal G-action where M now stands for a finite G-set in the universe U

5.4. Evaluations at finite G-sets. As we said in the introduction, the main objects of study in equivariant
stable homotopy theory are symmetric spectra with G-action but allowing arbitrary evaluations on finite G-sets.
In parallel way we chose to work with the category of diagrams I −→ GU , that is, I-spaces with G-action instead
of IG-spaces, as in Definition 5.3. So, for the homotopy theory of G-I-spaces the evaluations on arbitrary finite
G-sets M ⊆ U will play a major role. The definition is exactly the analogue of the case of G-symmetric spectra
3.2.
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Definition 5.5 (Evaluation). Let X be a diagram I −→ GU and let M be a finite G-set in U of cardinality
|M | = m. The evaluation of X at the finite G-set M is defined by

EvIM X = X(M) :=X(m)×Σm Bij(m,M)

= X(m)× Bij(m,M)/ {(σ∗x, f) ∼ (x, σ∗f), σ ∈ Σm}(5.5)

with diagonal G-action g[x, f ] := [gx, gf ].

For every finite G-set M , the functor EvIM : GUI −→ GU has a left adjoint which we now define. For a finite
G-set M ⊆ U and n ∈ ob(I) we denote by

(5.6) Inj(M,n)

the set of injective functions M −→ n . It comes with a G×Σn-action which for an injective map f : M −→ n,
the group G× Σn acts by the rule f 7−→ σf(g−1 · x), for g ∈ G, σ ∈ Σn and x ∈M.

Definition 5.6. Let M be a finite G-set and L be a G-space. The free G-I-space on L in level M , denoted by
F IM (L) and defined via

F IM (L)(−) : I −→ GU
n 7−→ Inj(M,n)× L(5.7)

with diagonal G-action and Σn-action through I(M,n).

Proposition 5.7. Let M be a finite G-set, let L be a G-space and let X be a G-I-space. Then, the natural
map

(5.8) Map(F IM (L), X) −→ map(L,X(M))

that sends a (non-necessarily equivariant) morphism of G-I-spaces f : F IM (A) −→ X to the composite

A ∼= A× {idA} ↪→ A× Inj(M,M) ∼= F IM (A)(M)
f(M)−−−→ X(M)

is a G-isomorphism with the respective G-actions by conjugation on the spaces on 5.8.

Proof. By our discussion , the category G-I-spaces considered as category of G-Fun(IG,UG), the above Propo-
sition is just a consequence of the enriched Yoneda Lemma. �

Of particular importance for the course of this thesis is the following. Consider two finite G-sets M,N ⊆ U
and let α : M −→ N an injection (not-necessarily equivariant.) By the strong Yoneda Lemma, we have the
following G-isomorphism Map(F IM (∗), X) ∼= X(M), where the G-action on the left hand side is by conjugation.
The injection M −→ N induces a natural transformation of representable functors F IN (∗) −→ F IM (∗) by pre-
composition. Consider the following commutative diagram for a G-I-spaces X

(5.9) Map(F IM (∗), X) //

��

X(M)

X(α)

��

Map(F IN (∗), X) // X(N)

By the strong Yoneda lemma the top and bottom horizontal arrows are G-isomorphisms and the left vertical
arrow is G-equivariant with the respective G-actions by conjugation. This implies that also the right vertical
arrow is G-equivariant. For the course of this thesis, whenever we have an injection M −→ N , we will use this
map as the induced map X(M) −→ X(N) without any further comment.

6. Level Model structures on GUI

We shall be mainly interested in three level model structures on the category of GUI , the projective model
structure, the level model structure and the strong level model structure. In this section we will state the
definitions and some properties that follow directly from them. We will prove their existence and other model
structure properties in the following section.

6.1. Projective Model structure. Consider the category GU equipped with the genuine model structure.
Consider then, the category of diagrams I −→ GU equipped with the projective model structure. By definition,
in this model structure, we call a map f : X −→ Y of G-I-spaces

• a projective equivalence if for all objects m of I, the map f(m) : X(m) −→ Y (m) is a G-weak
equivalence,

• a projective fibration if for all objects m of I, the map f(m) : X(m) −→ Y (m) is a G-fibration, and
• a projective cofibration if it has the left lifting property with respect all maps that are projective acyclic

fibrations
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Proposition 6.2. The class of projective equivalences, projective fibrations and projective cofibrations specify
a cofibrantly generated, proper, cellular, topological model structure on the category GUI .

We write the category GUI equipped the above model structure as GUIproj.

Proof. By construction, the model structure GUIproj exists and is cofibrantly generated by [15, Theorem 11.6.1].

It is proper by [15, Theorem 13.1.14] and cellular by [15, Proposition 12.1.5].

The evaluation functor EvIm : GUI −→ GU , X 7−→ X(m) has a left adjoint, which we write as F Im and is
defined as follows

F Im(L)(−) : GU −→ GUI(6.1)

L 7−→ I(m,−)× L
The set of generating cofibrations is

Iproj =
{
I(m,−)×G/H × ∂Dk −→ I(m,−)×G/H ×Dk |m ∈ I, H ≤ G, k ∈ N

}
(6.2)

=
{
F Im

(
G/H × ∂Dk

)
−→ F Im

(
G/H ×Dk

)
|m ∈ I, H ≤ G, k ∈ N

}
and the set of generating acyclic cofibrations is

Jproj =
{
I(m,−)×G/H ×Dk −→ I(m,−)×G/H ×Dk × [0, 1] |m ∈ I, H ≤ G, k ∈ N

}
(6.3)

=
{
F Im

(
G/H ×Dk

)
−→ F Im

(
G/H ×Dk × [0, 1]

)
|m ∈ I, H ≤ G, k ∈ N

}
�

6.3. Level Model structure. In this subsection we introduce the level model structure on G-I-spaces in which
we allow evaluations on finite G-sets in a complete universe U .

Definition 6.4 (Level model structure). We call a map f : X −→ Y of G-I-spaces

• a level equivalence if for all finite G-sets M ⊆ U , the map after evaluation, f(M) : X(M) −→ Y (M) is
a G-equivalence,

• a level fibration if for all finite G-sets M ⊆ U , the map after evaluation, f(M) : X(M) −→ Y (M) is a
Serre G-fibration, and

• level cofibration if it has the left lifting property with respect all maps that are level acyclic fibrations.

We will write GUIlevel for the above model structure.

6.5. Strong level Model structure. In this subsection we introduce the strong level model structure.
For the product group G× Σm, we recall Definition 0.9 of the family of subgroups FG,Σm .

Definition 6.6 (Strong level m.structure). We call a map f : X −→ Y of G-I-spaces

• a strong level equivalence if for all n ∈ ob(I) the (G × Σn)-map f(n) : X(n) −→ Y (n) is a FG,Σn -
equivalence,

• a strong level fibration if for all n ∈ ob(I) the (G×Σn)-map f(n) : X(n) −→ Y (n) is a FG,Σn -fibration,
and

• a strong level cofibration if it has the left lifting property with respect all maps that are strong level
acyclic fibrations.

We will write GUIstrong for the category GUI equipped with the above model structure.

Proposition 6.7. Let f : X −→ Y be a map of G-I-spaces. Then the following are equivalent:

(i) The map f is a strong level equivalence (resp. strong level fibration)
(ii) For all subgroups H ≤ G and all finite H-sets M , the map after evaluation, f(M) : X(M) −→ Y (M) is a

weak equivalence (resp. Serre fibration) on H-fixed points, that is, the map f(M)H : X(M)H −→ Y (M)H

is a weak equivalence (resp. Serre fibration).

Remark 6.8. By applying the above proposition for all subgroups of H with restricted action on M , we can
replace the second condition by requiring f(M) to be a genuine H-equivalence (resp. H-fibration) for every
subgroup H ≤ G.

Proposition 6.7 is a consequence of the following two lemmas which together show that subgroups L ≤ G×Σn
which lie in the family FG,Σm correspond to pairs of a subgroup H of G and a finite H-subset M of U of
cardinality n and that for a G-I-space the respective fixed points X(n)L and X(M)H are naturally isomorphic.
They also have an important implication which we will see later on Proposition 9.4.

Lemma 6.9 (Untwisting). Let X be a diagram I → GU , let n be a natural number and let L be a subgroup in
the family FG,Σn . Then there exists a subgroup H ≤ G, a group isomorphism j : H → L and an H-structure
on n such that there is an H-isomorphism j∗(X(n)) ∼= X(nφ), where nφ is the finite set n equipped with the
given H-action, X(nφ) is the evaluation at the finite H-set nφ and j∗ is the restriction of the action along j.



G-I-SPACES 9

Proof. Since L ∈ FG,Σn , by Lemma 0.11, there is a subgroup H of G and a group homomorphism φ : H → Σn
such that the group L can be written as L = {(h, φ(h)) : h ∈ H}. Define a map j : H → L, h 7→ (h, φ(h)) :=
(h, σh), which is an isomorphism. Define a map

F : X(n)→ X(nφ) x 7→ [x, id]

This map is homeomorphism and it remains to show that it is H-equivariant with respect the restricted action on
X(n) by the homomorphism j : H → L and the diagonal action of H on X(nφ). More precisely we need to show
that j∗(X(n)) → X(nφ) is H-equivariant. For x ∈ X(n), the restricted action of L along the homomorphism
j : H → L is given by

(h, φ(h)) · x = h · σh∗(x)

= σh∗(h · x)

= X(φ(h))(h · x)(6.4)

So, the map F maps σh∗(h ·x) 7→ [σh∗(h ·x), id] and by Definition 5.5, the equivalence relation we have imposed
on X(n)×Bij(n,nφ) this is, equivalent to [h ·x, σh]. But this is the diagonal action of an element h of the group
H on [x, id]. So it is equivariant and we are done. �

Lemma 6.10 (Twisting). Let H be a subgroup of G and M a finite H-set of order m. Then there is a subgroup
L ≤ G × Σm in the family FG,Σm and an isomorphism j : H → L such that there is an H-isomorphism
X(M) ∼= j∗(X(m)) for every X : I → GU . This H-isomorphism is natural in X.

Proof. Choose a bijection φ : M →m . Since M is a finite H-set, we can define an H-action on m by

(6.5) ρ : H −→ Σm, ρ(h) = φ ◦ lh ◦ φ−1

M

lh
��

m
φ−1

oo

��
M

φ
// m

The bijection φ is H-equivariant with respect these actions and so the induced homeomorphism X(M) ∼= X(mφ)
is H-equivariant. From above we know that X(m) ∼= X(mφ) where the action on X(m) is the restriction along
the homomorphism j = (i, φ) : H → G× Σm and the image of j, that is, the subgroup j(H) lies in the family
FG,Σm �

Remark 6.11. Following [22, Remark 4.9.], given a map f : X −→ Y of G-I-spaces, the property of f being
a strong level equivalence, that is, for every H ≤ G, the map after evaluation f(M) : X(M) −→ Y (M) is an
H-weak equivalence is equivalent to being a level equivalence as in Definition 6.4, part (i). Given a subgroup
H ≤ G, let M be a finite H-set. Suppose that f(T ) : X(T ) −→ Y (T ) is a G-weak equivalence for every finite G-
set T , i.e., f is a level equivalence. Then, M is an H-retract of some G-set Q, and since the H-weak equivalences
are closed under retracts we get also that f(M) is an H-weak equivalence. So, f is a level equivalence implies
the seemingly stronger condition that f is a strong level equivalence. The converse holds trivially.

Proposition 6.12. We have the following Quillen equivalence

Id : GUIlevel
// GUIstrong : Idoo

Proof. From Definition 6.4 and Proposition 6.7 we can easily see that the functor Id : GUIstrong −→ GUIlevel is
right Quillen. From Remark 6.11, we also get immediately that the Quillen adjunction is a Quillen equivalence.

�

Proposition 6.13. The adjunction

Id : GUIproj
// GUIlevel : Idoo

is a Quillen adjunction

Proof. By Remark 6.13, we get immediately that the identity functor Id : GUIlevel −→ GUIproj is right Quillen.
�
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7. Existence of the Level Model Structures and other properties

This section is devoted to proving the existence of the model structures that we defined in the previous
section. We will appeal to the general recipe for constructing level model structures on the functor category
Fun(D,V) [31, Proposition 3.26, pp 565], for a small index category D that comes with a degree function
deg : ob(D) −→ N satisfying two axioms, namely

(i) If two objects d, e of D satisfy deg(e) < deg(d), then D(e, d) is the empty set, and
(ii) if two objects d, e of D satisfy deg(e) = deg(d), then d and e are isomorphic.

see [31, Skeletal filtration, pp.560] and V a symmetric monoidal category. We discuss a bit general recipe for
constructing model structures on the functor category Fun(D,V). As input we need, for every m ≥ 0, a model
structure C(m) on the category of D(m)-objects. We call a morphism f : X −→ Y in Fun(D,V)

• a level equivalence if f(m) : X(m) −→ Y (m) is a weak equivalence in the model structure C(m) for all
m ≥ 0,

• a level fibration if f(m) : X(m) −→ Y (m) is a fibration in the model structure C(m) for all m ≥ 0,
• a cofibration if it has the left lifting property with respect to all maps that are level acyclic fibrations.

In fact, using the skeletal filtration defined by the degree function deg : ob(D) −→ N we could be more explicit
about the cofibrations using a form of “latching maps” which is a generalization of latching maps on diagram
categories where the index category is Reedy.

The crucial property such that the above definitions define a model structure is the following consistency
condition which we define.

Definition 7.1 (Consistency condition). For all m,n ≥ 0 and every acyclic cofibration i : A −→ B in the model
structure C(m) on D(m)-objects, every cobase change, in the category of D(m+ n)-objects, of the morphism

D(m,m+ n)×D(m) i : D(m,m+ n)×D(m) A −→ D(m,m+ n)×D(m) B

is a weak equivalence in the model structure C(m+ n).

7.2. Existence. We define a degree function on the category I, deg : ob(I) −→ N, n 7−→ |n |. We move on
to prove the consistency condition for the strong level model structure. The consistency condition of the level
model structure will be implied by the consistency of the strong level model structure.

For the proof of the consistency condition we will need the following lemma [12, Lemma A.2]

Lemma 7.3. For every FG,Σm-equivalence between cofibrant G × Σm-spaces f : X → Y and every cofibrant
G× Σk-space A the map Σm+k nΣm×Σk (f ×A) is a FG,Σm+k -equivalence.

We will need also the following situation. Suppose we have a G-space X. For the proof of the consistency
condition, we would like to be able to write X in the form G nH A, where H a subgroup of G and A an H-
subspace of X. Let X be a G-space and f : X → G/H a G-map. Write A = f−1(eH) which is an H-subspace
of X and we have a G -map F : G nH A → X [g, a] 7→ ga Since we only deal with finite groups, the first
condition of the following proposition is trivially satisfied, [37, Proposition 4.4, pp.32-33]

Proposition 7.4. The map F constructed above is a homeomorphism if one of the following conditions are
satisfied:

(1) G is compact Hausdorff and H is closed in G
(2) q : G→ G/H has a local section

With the above Lemma and Proposition now we can move to the proof of the consistency condition. Denote
I(m,m+ k) the set of injective functions from m to mtk. The group Σm+k acts by post-composition and the
action is transitive. The stabilizer of the canonical inclusion

im : {1, 2, . . . ,m} → {1, 2, . . . ,m,m+ 1, . . . ,m+ k} j 7−→ j

permutes the remaining coordinates so it is isomorphic to the group of permutations Σk. So, I(m,m + k) as
a homogeneous Σm+k-space is isomorphic to Σm+k/ Stab(im) ∼= Σm+k/Σk. Since the action is transitive any
injective map can be written as a composition τim for some (non-unique) τ ∈ Σm+k. Let f be the function

f : I(m,m+ k)→ Σm+k/Σk τim 7→ [τ ] = τΣk.

The inverse image of the function f is the following A = f−1(eΣk) = {i ∈ I(m,m+ k) | i = τim such that τ ∈
Σk} which consists of a single element A = ∗, namely the canonical inclusion, and we have the G-isomorphisms
Σm+k nΣk ∗ ∼= Σm+k/Σk ∼= I(m,m+ k)

So, consider a generating acyclic cofibration in (G×Σm)U with respect the family FG,Σm , that is, a map of
the form g : (G × Σm)/L ×Dk → (G × Σm)/L ×Dk × [0, 1] for some k ∈ N and for L ∈ FG,Σm . Every such
map is a FG,Σm -equivalence between cofibrant G× Σm spaces.
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So, let X be a G× Σm+n-space and suppose we have the following pushout square

(G× Σm)/L×Σm I(m,m+ k)×Dk //

��

X

��

(G× Σm)/L×Σm I(m,m+ k)×Dk × [0, 1] // Y

The functor − ×Σm I(m,m + k) is naturally isomorphic to Σm+k nΣm×Σk (− × Σk) and so we have that
the map g ×Σm I(m,m + n) is isomorphic to the map Σm+k nΣm×Σk (g × Σk) and by Lemma 7.3 this map is
a FG,Σm+k -equivalence. Moreover, it is an h-cofibration of (G × Σm+n)-spaces which means that X → Y is a
FG,Σm+n equivalence and we have shown the consistency condition. This proof contains also the consistency
condition for the level model structure. Thus we have proved that the model structure defined in 6.4 and 6.6
exist.

Next, we describe the set of generating cofibrations and the set of generating acyclic cofibrations for the level
and strong level model structure. The evaluation functor EvIm : GUI −→ (G×Σm)U , X 7−→ X(m) has a left
adjoint which we denote by GIm and is defined as follows

GIm(L)(−) : (G× Σm)U −→ GUI(7.1)

L 7−→ I(m,−)×Σm L

By inspecting Definition 6.6 we have that the strong level acyclic fibrations are detected by the following set

(7.2) Istrong =
{
GIm(G× Σm/L× ∂Dk) −→ GIm(G× Σm/L×Dk)

∣∣m ∈ I, L ∈ FG,Σm , k ∈ N
}

and similarly the strong level fibrations are detected by the following set

(7.3) Jstrong =
{
GIm(G× Σm/L×Dk) −→ GIm

(
G× Σm/L×Dk × [0, 1]

) ∣∣m ∈ I, L ∈ FG,Σm , k ∈ N
}
.

By Remark 6.8, we can also write the set that detects strong level acyclic fibrations as follows

Istrong =
{
GnH

(
I(M,−)×H/K × ∂Dk

)
−→ GnH

(
I(M,−)×H/K ×Dk

)}
(7.4)

=
{
GnH

(
F IM (H/K × ∂Dk)

)
−→ GnH

(
F IM (H/K ×Dk)

)}
for every finite H ≤ G, every H-set M and every generating cofibration of the genuine HU model structure.
And similarly the set that detects strong level fibrations as follows

Jstrong =
{
GnH

(
I(M,−)×H/K ×Dk

)
−→ GnH

(
I(M,−)×H/K ×Dk × [0, 1]

)}
(7.5)

=
{
GnH

(
F IM (H/K ×Dk)

)
−→ GnH

(
F IM (H/K ×Dk × [0, 1])

)}
For the case of the level model structure, by inspecting definition 6.4 the following set of maps

I level =
{
I(M,−)×G/H × ∂Dk −→ I(M,−)×G/H ×Dk |M ∈ U,H ≤ G, k ∈ N

}
=
{
F IM (G/H × ∂Dk) −→ F IM (G/H ×Dk) |M ∈ U,H ≤ G, k ∈ N

}
(7.6)

and the set of maps

J level =
{
I(M,−)×G/H ×Dk −→ I(M,−)×G/H ×Dk × [0, 1] |M ∈ U,H ≤ G, k ∈ N

}
=
{
F IM (G/H ×Dk) −→ F IM (G/H ×Dk × [0, 1]) |M ∈ U,H ≤ G, k ∈ N

}
(7.7)

detect level acyclic fibrations and level fibrations respectively. Sources and targets of all the maps of G-I-spaces
in the sets that we listed above are small with respect their respective cells. This follows from the fact that all
objects in question in GU HU are small with respect to sequential colimits and we apply left adjoint functors.

Remark 7.5. The projective model structure is related to the level and strong level model structure in the
following sense. Let H ≤ G be subgroup and consider the trivial homomorphism φ : H −→ Σm, h 7−→ e. By
Lemma 0.11, this group homomorphism identifies the subgroup H of G as a subgroup of G × Σm. As cosets,
we have an isomorphism G × Σm/H ∼= G/H × Σm and so GIm (G/H × Σm) = I(m,−) ×Σm (G/H × Σm) ∼=
I(m,−) × G/H. So, the projective model structure can be considered as restricting to only finite sets with
trivial G-actions.
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7.6. Compatibility with Enrichments. In this subsection we will prove that the model structures GUIlevel

and GUIstrong are U-model structures and GU-model structures. Recall from Lemma 4.2 that the category GUI
is tensored, cotensored and eriched over the category U of spaces. Recall from [16, Corollary 4.2.5] that a
U-model category (or a topological model category) M is a category that is enriched, tensored and cotensored
over U and equipped with a model structure such that if f : X −→ Y is a cofibration in M and g : S −→ T a
cofibration on U , then the pushout-product map

f�g : Y ⊗ S ∪X⊗S X ⊗ T −→ Y ⊗ T
is a cofibration in M which is acyclic if either f or g is.

Proposition 7.7. The level model structure and the strong level model structure on the category GUI are
topological model structures.

Proof. Let I{e} be the set of generating cofibrations in U , i.e., ik : ∂Dk −→ Dk for every k ∈ N and J{e} be

the set of generating acyclic cofibrations in U , i.e., jk : Dk −→ Dk × [0, 1] for every k ∈ N. By [16, Corollary
4.2.5] it suffices to show that I level�I{e} consists of cofibrations and both I level�J{e} and J level�I{e} consists
of acyclic cofibrations. Similarly, it suffices to show Istrong�I{e} consists of cofibrations and both Istrong�J{e}
and Jstrong�I{e} consists of acyclic cofibrations.

For the case of the strong level model structure, let f : G×Σm/L×∂Dk −→ G×Σm/L×Dk be a generating
cofibration in the model structure FG,Σm-U so, GIm(f) is a generating cofibration in GUIstrong as in the defining

equation (7.2). Since the functor GIm preserves colimits and tensors, the map GIm(f)�ik can be identified with
the map GIm (f�ik) . Since the FG,Σm-U is a U-model category, the pushout -product map f�ik is a cofibration,
hence GIm(f�ik) also is a cofibration in GUIstrong. The argument for Istrong�J{e} and Jstrong�I{e} is similar
to the above.

For the case of the level model structure, it suffices to notice that the functor F IM (L)(−) preserves colimits
and tensors. The proof is similar to the one above.

�

Proposition 7.8. The level model structure and the strong level model structure on the category GUI are
G-topological model structures.

Proof. We know from Lemma 4.2 that the category GUI is, enriched, tensored and cotensored over GU . By [16,
Corollary 4.2.5], it suffices to consider the generating (acyclic) cofibrations for the respective model structures.
Let iG : G/H × ∂Dk −→ G/H × Dk be a generating cofibration of the genuine model structure on GU and
let f a generating cofibration of the FG,Σm-U , so GIm(f) is a strong level generating cofibration. Since G
preserves colimits and tensors, the map GIm(f)�iG is isomorphic to the map GIm(f�iG). Since the FG,Σm-U
is G-topological, this implies that f�iG is a cofibration in FG,Σm -U and henceso is GIm(f�iG). By the same
reasoning, if either iG or f is a generating acyclic cofibration in the respective model structures, so is f�iG,
hence so is GIm(f�iG). This concludes the proof.

�

7.9. The class of h-cofibrations. In this subsection we prove some results concerning the class of h-cofibrations
which will be essential in later sections.

Definition 7.10. Let C be a category tensored over the category U . A morphism f : A −→ B is an h-cofibration
if it has the homotopy extension property, i.e., given morphism φ : B −→ X and a homotopy H : [0, 1]⊗A −→ X
such that H0 = φf , there is a homotopy H : [0, 1]⊗B −→ X such that H ◦ ([0, 1]⊗ f) = H and H0 = φ.

Lemma 7.11. Let C be a complete category, tensored and cotensored over the category of spaces.

(i) If C is a topological model category in which every object is fibrant, then every cofibration is an h-cofibration
(ii) The h-cofibrations are preserved under retracts, cobase change, coproducts, sequential compositions and

transfinite compositions
(iii) If C′ be another category that is tensored and cotensored over the category U of spaces and F : C −→ C′ a

continuous functor that commutes with colimits and tensors with [0,1]. Then F takes h-cofibrations in C
to h-cofibrations in C′.

Proof. [31, Corollary 1.20] �

Proposition 7.12. (i) Every cofibration in the level model structure and strong level model structure is an
h-cofibration.

(ii) For every finite G-set M ⊆ U , the functor EvIM : GUI −→ GU preserves h-cofibrations.

Proof. For the claim (i) by Proposition 7.6, the model structures GUIlevel and GUIstrong are topological model
structures. Since all objects are fibrant, the claim follows from Lemma 7.10 (i)

For claim (ii), recall from Definition 5.5, for a G-I-space X and given a finite G-set M ⊆ U of cardinality m
the evaluation of X at M is X(M) = X(m)×Σm Bij(m,M). Hence, by construction the evaluation commutes
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with colimits, and obviously commutes with tensoring with [0, 1], that is, (X ⊗ [0, 1])(M) = X(M) × [0, 1].

Hence by Lemma 7.10, part (iii), the functor EvIM must preserves h-cofibrations. �

Remark 7.13. We know that for a small category K, the h-cofibrations in UK are object-wise h-cofibrations.
If we consider the category of diagrams GUI equivalently as the category of functors I ×G −→ U , we get that
if f : X −→ Y is cofibration in the level or strong level model structure in the category GUI , then for any
k ∈ ob(I), the map f(k) : X(k) −→ Y (k) is an h-cofibration of (G × Σk)-spaces. In particular, f(k) is an
h-cofibration of the underlying spaces hence a closed embedding.

7.14. Properness of Level Model structures. In this subsection we prove that the level model structure
and strong level model structure are proper, that is, left proper and right proper [15, Definition 13.1.1]. We will
prove first the version of the gluing lemma.

Lemma 7.15 (Gluing lemma). Consider the following diagram in the category GUI

(7.8) Y

α

��

Xoo i //

β

��

Z

γ

��

Y1 X1
oo

i1
// Z1

in which i, i1 are h-cofibrations of G-I-spaces. If the maps α, β, γ are strong level equivalences, then the induced
map of pushouts Y ∪X Z −→ Y1 ∪X1

Z1 is a strong level equivalence

Proof. Let H be a subgroup of G and let M be a finite H-set in U of cardinality m. Then, evaluating the
diagram (7.8) at M we get the induced diagram

(7.9) Y (M)

α

��

X(M)oo i //

β

��

Z(M)

γ

��

Y1(M) X1(M)oo
i1
// Z1(M).

Since i : X −→ Z and i1 : X1 :−→ Z1 are h-cofibrations it follows from Lemma 7.11, part (ii) that
i(M) : X(M) −→ Z(M) and i1(M) : X1(M) −→ Z1(M) are h-cofibrations of H-spaces. By assumption,
the maps α, β, γ are strong level equivalences so the induced map of evaluations α(M), β(M), γ(M) are H-weak
equivalences. Now the gluing lemma implies that Y (M) ∪X(M) Z(M) −→ Y1(M) ∪X1(M) Z1(M) is a H-weak
equivalence. (Y ∪X Z)(M) −→ (Y1 ∪X1 Z1)(M) is an H-weak equivalence. Doing the above for every H ≤ G
and every finite H-set M ⊆H U , proves the result. �

Using the gluing lemma we get immediately the following corollaries.

Corollary 7.16. Let

A
f
//

g

��

B

��

C
k
// D

be a pushout square such that f is a strong level equivalence. If in addition g is an h-cofibration, then the
morphism k is a strong level equivalence

Proof. Let g : A −→ C be an h-cofibration and consider the following diagram

A

f

��

A
g
// C

B A
f
oo

g
// C

which from the Gluing lemma, 7.14 we get immediately that the map C −→ B
∐
A C is a strong level equivalence.

�

Corollary 7.17. The model structures GUIlevel and GUIstrong are proper.

Proof. Left properness follows directly from Corollary 7.15, part (i) since by Lemma 7.11 all cofibrations in
both model structures are h-cofibrations. Right properness follows directly from the definition, since weak
equivalences and fibrations are defined levelwise and the pullback is computed levelwise. �
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7.18. Cellularity of Level Model structures. In this subsection we prove that our model structures are
cellular in the sense [15, Chapter 12]. Recall from [15, Definition 12.1.1] that a cellular model category is a
cofibrantly generated model category M with generating cofibrations I and generating acyclic cofibrations J
such that the domains and codomains of the maps in I are compact relative to I [15, Definition 10.8.1], the
domains of the maps in J are small relative to the subcategory of relative I-cell complexes [15, Definition 10.4.1]
and the cofibrations are effective monomorphisms [15, Definition 10.9.1]

Proposition 7.19. The level model structure and the strong level model structure on the category GUI are
cellular.

Proof. We will prove the claim for the strong level model structure. For the compactness and smallness asser-
tions, we recall from (7.2) that the objects in question are obtained by applying left adjoint functors to compact
objects in HU for every subgroup H ≤ G. The assertions hold because sequential colimits in GUI are created
in GU and all cofibrations in the strong level model structure are h-cofibrations.

By definition of an effective monomorphism, we have to show that if A −→ B is a cofibration, then it is the
equalizer of the canonical maps B ⇒ B

∐
AB. Since equalizers are calculated objectwise we have to show that

the diagram A(m)→ B(m) ⇒ B(m)
∐
A(m)B(m) is an equalizer diagram. By Remark 7.12 every strong level

cofibration is an h-cofibration hence an object-wise closed embedding, that is, injective and closed map. The
result now follows. �
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8. Localizations of the Level Model structures

In this section will construct localizations of the three Level model structures that we defined in Section 6.
We will not provide the definitions and main properties of left Bousfield localizations, instead we refer to [15,
Chapter 3]. For the existence of the left Bousfield localizations we appeal to [15, Theorem 4.1.1].

8.1. G-hocolim model structure. In this subsection we will construct a model structure on the category
GUI which, in a sense, is the direct generalization of the projective I-model structure on the category I-spaces
given in Section 2 to the equivariant context.

As is generally the case for diagrams with values in the category of G-spaces, given a functor X : I −→ GU ,
the homotopy colimit of X, hocolimI X, comes equipped with a natural G-action. We explain a bit here the
induced G-action on the homotopy colimit. If X is a diagram I −→ GU the usual Bousfield-Kan formula for
homotopy colimit is by geometric realization of the simplicial replacement of the diagram X as follows

(8.1) hocolim
I

X :

∣∣∣∣∣[n] 7−→
∐

k0←...←kn

X(kn)

∣∣∣∣∣
Since for every n in I the space X(n) has a G-action, the simplicial replacement X• is a G-simplicial space,
that is, a functor ∆op −→ GU and then composing with the the geometric realization of G-simplicial spaces to
G-spaces, | − | : ∆opGU −→ GU we get the homotopy colimit.

Considered as a functor, hocolimI : GUI −→ GU has a right adjoint such that, to a G-space L associates
the G-I-space

n 7−→ map (B(n ↓ I), L)

with G-action through L.
A crucial property of the above homotopy colimit is that, for a subgroup H ≤ G, the H-fixed points of the

G-space hocolimI X is naturally homeomorphic to the homotopy colimit (non-equivariant) of the fixed-point
functor XH : I −→ U , m 7−→ X(m)H , that is,

(8.2)
(

hocolim
I

X
)H ∼= hocolim

I
(XH)

An informal proof of the above homeomorphism can be found in [6, Remark 5.6].

Remark 8.2. A more formal proof can be found in [7, Proposition 1.8]. The proposition as stated in [7]
requires a discrete group G acting on a index category C, encoded by a functor α : G −→ Cat, where we regard
G as a category with a single object. The fundamental notion considered in the paper is that of a G-functor
Xα : C −→ U , which loosely speaking is a functor X : C −→ U that is compatible with the G-action on C in an
appropriate sense. For the formal definition we refer to [7, Definition 1.1] and [10, Definition 2.2]. G-functors
or G-diagrams generalize the notion of a functor with values in G-spaces. Indeed, if the G-action on the index
category is trivial, then a G-functor is precisely a functor C −→ GU which is the case we are interested in. For
further details about G-diagrams we refer to the papers [7], [8] and [10].

We will need the following two lemmas which we reproduce here for the reader’s convenience.

Lemma 8.3. [24, Proposition 4.4] Let C be a small category, let X −→ Y be a map of C-diagrams in U , let
α : k −→ l be a morphism in C. Consider the two squares

(8.3) X(k) //

X(α)

��

Y (k)

Y (α)

��

X(k) //

��

Y (k)

��

X(l) // Y (l) XhC // YhC .

If the left hand is homotopy cartesian for every α, then the right hand square is homotopy cartesian for every
object k .

Remark 8.4. [26, Remark 6.13] The above lemma as stated in [24], is only stated for simplicial sets, but
the analogous result for our category U is an immediate consequence. Indeed, recall that a square diagram
of topological spaces is homotopy cartesian if and only if applying the singular complex functor Sing gives a
homotopy cartesian square of simplicial sets. Conversely, a square diagram of simplicial is homotopy cartesian
if and only if the geometric realization is homotopy cartesian. Thus, given a map X −→ Y of C-diagrams of
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topological spaces such that the left hand squares are homotopy cartesian, the lemma implies that the diagram

SingX(k) //

��

SingY (k)

��

(SingX)hC // (SingY )hC

is homotopy cartesian. This in turn implies that the geometric realization is homotopy cartesian and the natural
transformation |SingX| −→ X defines a natural weak equivalence between this realization and the right hand
square in the lemma

We continue with a construction that has been widely used in the homotopy theory of spectra and diagram
spaces. Instead of proving another version of it, we state the formal construction and we refer to [31, Proposition
3.16] for the proof.

Construction 8.5. Let j : A −→ B be a morphism in a topological model category. We factor j through the
mapping cylinder construction as the composite

A
c(j)−→ Z(j) = ([0, 1]⊗A) ∪j B

r(j)−→ B

where c(j) is the front mapping cylinder inclusion and r(j) is the projection, which is homotopy equivalence.
We will be interested in the case where A and B are cofibrant, and then the morphism c(j) is a cofibration by
the pushout-product property. We then define Z(j) as the set of all pushout product maps

(8.4) ik�c(j) : Dk ⊗A ∪∂Dk⊗A ∂Dk ⊗ Z(j) −→ Dk ⊗ Z(j)

for k ≥ 0 where ik : ∂Dk −→ Dk the inclusion

Lemma 8.6. [31, Proposition 3.16] Let C be a topological model category, j : A −→ B a morphism between
cofibrant objects and f : X −→ Y be a fibration. Then the following two conditions are equivalent

(i) The square of spaces

map(B,X) //

��

map(A,X)

��

map(B, Y ) // map(A, Y )

is homotopy cartesian.
(ii) The morphism f has the right lifting property with respect to the set Z(j)

We make the following definition.

Definition 8.7. A map f : X −→ Y of G-I-spaces is

• G-hocolim equivalence if the induced map hocolimI X −→ hocolimI Y is a G-weak equivalence, and
• a G-hocolim fibration if it is projective fibration with the additional property that every morphism

k −→ l in I, induces a homotopy cartesian square in GU

X(k) //

��

X(l)

��

Y (k) // Y (l).

Unwinding a bit, this means that for every subgroup H ≤ G and every k ∈ ob(I) the map f(k)H :
X(k)H −→ Y (k)H is a fibration of spaces and for every morphism k −→ l in I the following diagram

X(k)H //

��

X(l)H

��

Y (k)H // Y (l)H

is homotopy cartesian square of spaces, that is, the map X(k)H −→ X(l)H ×Y (l)H Y (k)H is a weak
equivalence.

Consider a morphism α : k −→ l and a subgroup H ≤ G. This induces a map of G-I-spaces α∗ × G/H :
F Il (G/H) −→ F Ik (G/H)

Lemma 8.8. The map α∗ ×G/H : F Il (G/H) −→ F Ik (G/H) is a G-hocolim equivalence.
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Proof. By definition of the homotopy colimits, F Il (G/H)hI and F Ik (G/H)hI can be identified by the product
B(l ↓ I) × G/H and B(k ↓ I) × G/H respectively. Both of the categories (l ↓ I) and (k ↓ I) have an initial
object (l, id) and (k, id), respectively so their classifying spaces are contractible. Therefore the map induced by
α∗ ×G/H is a G-equivalence. �

We now use the tensor with an interval in U , to factor the map α∗ ×G/H through the mapping cylinder in
the usual way

F Il (G/H)
c(j)−−→M(j)

r(j)−−→ F Ik (G/H).

The map c(j) is a projective cofibration and r(j) is a homotopy equivalence. Let K be the set of morphisms of
the form ik�c(j) where c(j) is as above, ik is a generating cofibration in U , and � as usual the pushout-product
map associated to the tensor with an object in U . We define Ihocolim = Iproj and Jhocolim = Jproj ∪K.

Proposition 8.9. The G-hocolim equivalences together with the projective cofibrations and G-hocolim fibrations
specify a cofibrantly generated model structure on the category GUI with generating cofibrations Ihocolim and
generating acyclic cofibrations Jhocolim.

We shall refer to this as the G-hocolim model structure on G-I-spaces.

Proof. We will use the criterion [16, Theorem 2.1.19] for the recognition principle for cofibrantly generated
model structures. As in the projective model structure, the Ihocolim-injective maps are the maps X −→ Y such
that for every k ∈ ob(I) and all subgroups H ≤ G, the induced map X(k)H −→ Y (k)H is an acyclic fibration.
Moreover from Lemma 8.6 we can see immediately that a map X −→ Y is Jhocolim-injective if and only if it is
G-hocolim fibration. Thus, a map X −→ Y which is Ihocolim-injective is clearly both a Jhocolim-injective and a
G-hocolim equivalence. Suppose then that f : X −→ Y is Jhocolim-injective and a G-hocolim equivalence. The
first condition implies for every subgroup H ≤ G and every morphism k −→ l the square

X(k)H //

��

X(l)H

��

Y (k)H // Y (l)H

is homotopy cartesian square. Consider the commutative square

(8.5) X(k)H //

��

Y (k)H

��

hocolimI(XH) // hocolimI(Y H).

Since f : X −→ Y is a G-hocolim equivalence, by definition, the induced map of fixed points (hocolimI X)
H −→

(hocolimI Y )
H

is a weak equivalence for every subgroup H ≤ G. But (hocolimI X)
H ∼= hocolimI(XH) and

similarly (hocolimI Y )
H ∼= hocolimI(Y H), hence by Lemma 8.3 the square (8.5) is homotopy cartesian, so we

get that X(k)H −→ Y (k)H is a weak equivalence. Hence the map f : X −→ Y is projective level equivalence,
so Ihocolim-injective.

The last thing to check is that Jhocolim-cell also belong to the class Ihocolim-cof and G-hocolim equivalences.
For the second part we first observe that the maps in Jhocolim are G-hocolim equivalences by Lemma 8.8. We
next observe that the functor hocolimI : GUI −→ GU takes the class Ihocolim-cof to cofibrations in GU . Since
the functor hocolimI is left adjoint, it preserves colimits so it suffices to check that it takes the elements in
Ihocolim to cofibrations in GU . Indeed, this follows from the fact that for a map of G-I-spaces of the form
I(m,−) × G/H × ∂Dk −→ I(m,−) × G/H × Dk, the induced map on homotopy colimits may be identified
with the map B(m ↓ I) × G/H × ∂Dk −→ B(m ↓ I) × G/H × Dk and B(m ↓ I) is a cell complex. By
definition a map in Jhocolim-cell is the transfinite composition of a sequence of maps which is a pushout of a
map in Jhocolim. The induced map XhI −→ YhI is therefore the transfinite composition of a sequence of maps
each of which is a pushout of an acyclic cofibration. So, it is transfinite composition of G-equivalences which
are also h-cofibrations hence the induced map is a G-weak equivalence.

�

8.10. G-hocolim model structure as localization. In this section we follow the paper [5] and we will discuss
in the next subsection how the G-hocolim model structure can be constructed equivalently as a left Bousfield
localization of the projective model structure.

Recall that given M a cofibrantly generated model category and K a small category, then the category
of diagrams MK may be given the projective model structure. A map of diagrams X −→ Y is called a
hocolim-equivalence if the induced map of corrected homotopy colimits is a weak equivalence inM. One of the
author’s goal in the paper [5] is to localize the projective model structure by inverting the hocolim-equivalences.
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Unfortunately these form a proper class, so the author proceeds to identify a set of maps such that forming the
left Bousfield localization with respect this set of maps is enough. We describe shortly this set of maps.

Assume that M is left proper and cellular. Then by [5, Proposition A.5], there exists a set W of cofibrant
objects that detect level equivalences, in the sense that a map f : X −→ Y is a weak equivalence if and only if
it induces weak equivalences on function complexes M(A,X) −→M(A, Y ), for every A ∈W.

Let K be a small category. For i ∈ ob(K) and X ∈M let Fi(X) the diagram

Fi(X)(−) : K −→MK

j 7−→
∐
K(i,j)

X = K(i, j)×X

Let S be the set of diagrams

(8.6) Fj(A) −→ Fi(A)

for every morphism i −→ j in K and A ∈W .
Then the author proceeds to prove [5, Theorem 5.2], which states that if K has contractible nerve, then there

is a model structure on the category MK with weak equivalences the class of S-local equivalences, cofibrations
the cofibrations of the model structure MKproj and the fibrant objects are the S-local objects. More precisely,

this model structure is defined as a left Bousfield localization ofMKproj at the set of maps S as defined in (8.6).
A map f : X −→ Y belongs to the class of S-local equivalences if and only if it induces a weak equivalence on
the corrected homotopy colimits. A diagram X : K −→M is S-local if and only if for every arrow i −→ j in K
the induced map X(i) −→ X(j) is a weak equivalence in M.

8.11. Application to G-I-spaces. Since the category I has contractible nerve (it has an initial object) and
the category GU with the genuine model structure is left proper and cellular we can apply [5, Theorem 5.2] for
the projective model structure GUIproj and we get tautologically the following corollary

Corollary 8.12. There is a left Bousfield localization of GUIproj, at a set of maps A, denoted by GUIproj-loc.
such that the following hold

(i) the weak equivalences in GUIproj-loc. are the G-hocolim equivalences

(ii) the adjunction colimI : GUIproj-loc. � GU : constI is a Quillen equivalence, and

(iii) the fibrant objects of GUIproj-loc., that is, the A-local objects are those diagrams X : I −→ GU such that

for any morphism n −→m in I the induced map X(n) −→ X(m) is a G-weak equivalence.

Since a model structure is completely specified by the cofibrations and the fibrant objects, the above model
structure is equal to the model structure that we constructed in Proposition 8.9. Let’s follow the recipe as is
laid out in Subsection 8.10 to identify the set of maps of G-I-spaces that do the job.

The (topological) genuine model structure GU has the set {G/H |H ≤ G} that detect weak equivalences.
The free functor that is used, in our case is defined by equation (6.1. So the set of maps A is

(8.7) α∗ ×G/H : F In (G/H) −→ F Im(G/H)

for every morphism α : m −→ n in I and every subgroup H ≤ G. By the above corollary and the proof of
[5, Theorem 5.2], a map f of G-I-spaces belongs to the class of A-local equivalences if and only if the induced
map hocolimI X −→ hocolimI Y is a G-weak equivalence and the set of A-local objects are those diagrams
X : I −→ GU that satisfy the condition in (iii) which are also called “locally constant functors”.

8.13. Localization of the Level Model structure. In this subsection we will construct a left Bousfield
localizations of the (topological) level model structure, GUIlevel. Recall the Definition 5.6 of a free G-I-space
on L in level M . Let M and N be finite G-sets and let α : M −→ N an injective map. This induces a natural
transformation

α∗ : F IN (∗) = I(N,−) −→ I(M,−) = F IM (∗)
f 7−→ α∗f = f ◦ α

For a subgroup H ≤ G we have as above a natural transformation

α∗ ×G/H : F IN (G/H) −→ F IM (G/H).

Let B be the set of all maps of G-I-spaces,

(8.8) α∗ ×G/H : F IN (G/H) −→ F IM (G/H)

for every M,N ⊂ U , every injection α : M −→ N and every H ≤ G. Since is left proper and cellular by [15,
Theorem 4.1.1] the left Bousfield localization with respect to B exists and we write the resulting model structure
by GUIlevel-loc.

The fibrant objects of the model structure GUIlevel-loc. are precisely the B-local objects. We have the following
proposition.
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Proposition 8.14. Let X be a diagram I −→ GU . Then X is fibrant in GUIlevel-loc. if and only if

(1) X is fibrant in the model structure GUIlevel and,
(2) for every M and N finite G-sets and every injection M −→ N the induced map X(M) −→ X(N) is a

G-weak equivalence.

Proof. By definition, if S is a set of maps in a model structure M, an object X is S-local if it fibrant in M
and every element f : A −→ B of S the induced map f∗ : map(B,X) −→ map(A,X) is a weak equivalence
of spaces. The first condition is automatically satisfied since in GUIlevel all objects are fibrant. Suppose we are
given M and N finite G-sets, an injection α : M −→ N and a subgroup H ≤ G. Let f be a map in the set B.
We have the following

f∗ : MapGUI (F IM (G/H), X) −→ MapGUI (F IN (G/H), X) is w.e. if and only if

f∗(M) : mapG(G/H,X(M)) −→ mapG(G/H,X(N)) which is w.e. if and only if

f∗(M)H : X(M)H −→ X(N)H is a w.e. for every H ≤ G

So, X(M)H −→ X(N)H is a weak equivalence of spaces, when restricting the G-actions on M and N , by
the inclusion H ↪→ G. By letting H run through all subgroups of G we get that X(M) −→ X(N) is a G-
equivalence. Inductively doing the above for every M,N ⊂ U and every equivariant injection α : M −→ N we
get the proposition. �

Remark 8.15. If we chose to work in theG-topological model structureGUIlevel, the mapping spaces Map(F IM (∗), X)
and Map(F IN (∗), X) have a G-action by conjugation. The set of maps B, would be defined equivalently as the
set of maps F IN (∗) −→ F IM (∗). Hence a diagram X is B-local if and only if

f∗ : Map(F IM (∗), X) −→ Map(F IN (∗), X) is a G-weak equivalence

map(∗, X(M)) −→ map(∗, X(N)) iff is a G-weak equivalence

X(M) −→ X(N) iff is a G-weak equivalence

8.16. Localization of the Strong level model structure. In this subsection we introduce a localization of
the (topological) strong level model structure, GUIstrong.

Similarly to the previous subsection, for M and N finite H-sets, with M,N ⊆H U and β : M −→ N an
injection we have a natural transformation of G-I-spaces

GnH β∗ : GnH F IN (∗) −→ GnH F IM (∗)
and for a subgroup K ≤ H we have

GnH (β∗ ×H/K) : GnH F IN (H/K) −→ GnH F IM (H/K).

Let C be the set of all maps of G-I-spaces

(8.9) GnH (β∗ ×H/K) : GnH F IN (H/K) −→ GnH F IM (H/K)

for every H ≤ G, every M,N finite H-sets in U and injection β : M −→ N and every K ≤ H. Since the model
structure GUIstrong is proper and cellular, the left Bousfield localization with respect the set C exists and we

write the resulting left Bousfield localization as GUIstrong-loc.
Proposition 8.17. Let X be a diagram I −→ GU . Then X is fibrant in GUIstrong-loc. if and only if

(1) X is fibrant in the model structure GUIstrong and,
(2) for every H ≤ G and every M and N finite H-sets in U and every injection M −→ N the induced map

X(M) −→ X(N) is an H-weak equivalence.

Proof. The proof is identical the proof of Proposition 8.14 and we omit it. �

Remark 8.18. Similarly to Remark 8.15, if we chose to work in the G-topological model structure GUIstrong,
then we would define the set of maps C, as the set G nH F IN (∗) −→ F IM (∗), for every subgroup H ≤ G, every
M,N ⊆H U and every injection M −→ N.
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9. Comparing the localizations

In this section we will compare the three localizations that we constructed, namely, GUIproj-loc., GUIlevel-loc., GUIstrong-loc.
As we will see in Discussion 9.7 these model structures are all Quillen equivalent. The important ingredients
for this observation is Lemma 9.3 and Proposition 9.4.

For the next lemma recall the set of maps A from (8.7), the set of maps B from (8.8), and the set of maps C

from (8.9), with respect to which we localize the projective model structure, the level model structure and the
strong level model structure, respectively.

Lemma 9.1. Consider the sets of maps A,B and C as sets of maps in the underlying category GUI . Then

(i) The set B is strictly contained in the set of maps C, and
(ii) The set of maps in the A is strictly contained in the set of maps B.

Proof. We prove first Part (i). Let M and N be finite G-sets contained in U , let H ≤ G and let j : F IN (G/H) −→
F IM (G/H) be a map in the set B. Restrict the G-action on M , to an H-action by the inclusion ι : H ↪−→ G. Let
n ∈ ob(I) and consider the G-set Inj(M,n) that we defined in (5.6). Then the set Inj(M,n) has an H-action
that is a restriction of a G-action, which implies G nH Inj(M,n) ∼= G/H × Inj(M,n) in which now Inj(M,n)
on the right hand side has the G-action. Since the isomorphism is natural we have

GnH F IM (∗) = GnH Inj(M,−)

∼= G/H × Inj(M,−)

= F IM (G/H).

Similarly for the finite G-set N , we have G nH Inj(N,−) ∼= G/H × Inj(N,−). So, every map F IN (G/H) −→
F IM (G/H) can be written as a map G nH F IN (∗) −→ G nH F IM (∗). Since not every H-action on a finite set is
given by a restriction of a G-action by the inclusion H ↪−→ G, it follows that the containment is strict. Hence
we can consider the set of maps B as a strict subset of the set of C restricting only to H-actions on finite sets
that are restrictions of G-actions, induced by the inclusion H ↪−→ G.

We move on to Part (ii), which follows the same reasoning. Let n and m be objects in I, let H ≤ G and
let F In (G/H) −→ F Im(G/H) be a map in the set A. The G-I-space F In (G/H) is isomorphic to the G-I-space
F IM (G/H), after choosing a bijection M → m and with trivial G-action on M. Hence every map in the set A

is contained in the set B by restricting to trivial G-actions on all finite sets. That the containment is strict is
evident. �

We have the following immediate corollaries.

Corollary 9.2. The identity functors Id : GUIlevel-loc. −→ GUIstrong-loc. and Id : GUIproj-loc. −→ GUIlevel-loc. are
left Quillen.

Proof. We consider first the case Id : GUIlevel-loc. −→ GUIstrong-loc.. By Proposition 6.14, the identity functor is

left Quillen, hence so is the composition GUIlevel
Id−→ GUIlevel

Id−→ GUIstrong-loc. So, by [15, Proposition 3.3.18], it
suffices to show that the identity functor sends the maps in the set B to C-local equivalences. But this follows
from Lemma 9.1, part (i).

Similarly to the first case, by Proposition 6.14, it suffices to show the identity functor sends every map in
the set A, to B-local equivalences. But this follows from Lemma 9.1, part (ii). As a consequence, we get also
that the identity functor Id : GUIproj-loc. −→ GUIstrong-loc. is also left Quillen as a composition of left Quillen
functors. �

Lemma 9.3. Let L be a G-space. Consider the constant functor F I0 (L)(−) ∼= constI L : I −→ GU .
(i) The functor constI L is fibrant in GUIlevel-loc., that is, it is a B-local object and,

(ii) The functor constI L is fibrant in GUIstrong-loc., that is, it is a C-local object.

Proof. We will prove claim (ii). Recall that given a G-I-space X and a finite H-set M of cardinality m, then
the evaluation X(M) is homeomorphic (non-equivariantly) to the underlying space X(m) but has a new H-
action given by the diagonal H-action on X(m) ×Σm Bij(m,M). By Lemma 6.10, after choosing a bijection

M
∼=−→ m, we can define an H-action on m which we denoted as mφ, such that X(M) and such that X(mφ)

are H-isomorphic. By Lemma 6.9, the new action of h ∈ H on the underlying space X(m) is given equivalently
as follows

(9.1) X (φ(h)) (h · x) for x ∈ X(m).

Since we consider the constant diagram constI L : I −→ GU , by definition, any morphism in I is sent to the
identity. Hence for the constant diagram and for any h ∈ H the induced automorphism X(φ(h)) must be the
identity. Hence we have (constI L)(M) ∼= L for any finite H- set M ⊆H U , where the H-action on the right hand
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side on L is just the restriction of the group action by the inclusion ι : H ↪→ G. This implies that for every finite
H-sets M,N ⊆H U , and any injective function M −→ N , the induced map (constI L)(M) −→ constI(L)(N)
is an H-weak equivalence. This shows that F I0 (L) ∼= constI L is a C-local object. The proof of claim (i), is
entirely analogous and we therefore omit it. �

The next proposition is an immediate corollary of the previous Lemma.

Proposition 9.4. The adjunctions

(9.2) F I0 (−) : GU // GUIstrong-loc. : EvI0oo

(9.3) F I0 (−) : GU // GUIlevel-loc. : EvI0oo

are Quillen equivalences.

Proof. We will prove that the adjunction (9.2) is a Quillen equivalence. By Definition 6.6 of the strong level

model structure, it is clear that the adjunction F I0 : GU � GUIstrong : EvI0 is a Quillen adjunction. By definition

of the left Bousfield localization the identity functor Id : GUIstrong −→ GUIstrong-loc. is left Quillen, so we have

the Quillen adjunction F I0 : GU � GUIstrong-loc. : EvI0 . So, to show that the Quillen adjunction is a Quillen

equivalence, we have to show that for every cofibrant G-space L and every fibrant X in GUIstrong-loc., i.e., a

C-local object, a map F I0 (L) −→ X is a C-local equivalence if and only if its adjoint L −→ X(0) is a G-weak
equivalence.

By Lemma 9.3 part (ii), the G-I-space F I0 (L) is C-local. Since by assumption X is C-local, the C-local
equivalences between them are precisely the strong level equivalences. So it suffices to show that F I0 (L) −→ X
is a strong level equivalence if and only if L −→ X(0) is a G-weak equivalence. If a map F I0 (L) −→ X is a strong
level equivalence then obviously we will have that the L −→ X(0) is a weak equivalence. Conversely suppose
that L −→ X(0) is a G-weak equivalence. Since X is C-local object for any finite H-set M , we have an H-weak
equivalence X(0) −→ X(M), which implies immediately that F I0 (L) −→ X is a strong level equivalence.

The proof that the adjunction (9.3) is a Quillen equivalence, follows similarly from Lemma 9.3, part (i), and
the above proof so we omit it. �

Before proving our next proposition, we make the following remark about computing the colimits of spaces
with G-action.

Remark 9.5. Recall that given a small category C and a functor X : C −→ GU , then the colimit of X, colimC X
can be defined by first forgetting the G-action, compute the underlying colimit of the diagram X : C −→ U ,
and then give the induced G-action. Formally, for a discrete group G, the forgetful functor GU −→ U creates
the colimits. In particular importance to us is the following. Recall from Definition 5.6, the free G-I-space in
level M , for some finite G-set M ⊆ U of cardinality m, that is, the functor

F IM (∗) : I −→ GU
n 7−→ Inj(M,n).

with G-action on the source. To compute the colimit colimI(F IM (∗)) as we said above, we first forget the
G-action on the values F IM (∗)(n) for every n ∈ ob(I), compute the colimit, and then give the G-action. By
forgetting the G-action on the finite set M , the free functor F IM (∗) is naturally isomorphic to the functor F Im(∗),
after choosing a bijection M

∼=−→ m . Now, the diagram F Im(∗) is cofibrant in the projective model structure,
hence the natural comparison map, hocolimI F

I
m(∗) −→ colimI F

I
m(∗) is a weak equivalence. The homotopy

colimit of the diagram F Im(∗) may be identified with the classifying space B(m ↓ I) hence it is contractible.
This implies immediately that the underlying space of colimI F

I
m(∗) is also contractible, hence any action on it

induced by the diagram will be trivial. Now, let L be a G-space and consider the free functor

F IM (L)(−) : I −→ GU(9.4)

n 7−→ Inj(M,n)× L.

Consider the following adjunctions (left adjoints on the top)

(9.5) GU
FIM // GUI

EvIM

oo
colimI // GU
constI
oo

It follows that colimI ◦F IM is left adjoint to EvIM ◦ constI . By the proof of Lemma 9.3, we have that the

composite functor EvI ◦ constI : GU −→ GU is the identity functor Id : GU −→ GU . So, we have the functor
colimI ◦F IM is left adjoint to Id. But the identity functor is also a left adjoint to itself, hence from [19, Corollary
1, Chapter IV], we have that colimI ◦F IM is naturally isomorphic to the identity. Hence for the G-I-space (9.4)
we have colimI ◦F IM (L) ∼= L.
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In similar way to the above given a subgroup H ≤ G, and a finite H-set M ⊆H U of cardinality m and
consider the functor

GnH F IM (∗) : I −→ GU
n 7−→ GnH Inj(M,n)

Then we have the following isomorphism since colimits commute

colim
I

(
GnH F IM (∗)

) ∼= GnH
(
F IM (∗)

)
.

By the above discussion, colimI(F IM (∗)) is a point with trivial H-action. Hence, the induction GnH ∗ ∼= G/H
with G action on the set G/H by translations. Finally, like above if L is a space with an H-action, we have
that colimI

(
GnH F IM (L)

) ∼= GnH L

After this remark we can continue to compare our localized model structure. For the next proposition, we
consider the category GU equipped with the fine (or genuine) model structure.

Proposition 9.6. The adjunctions

(9.6) colimI : GUIlevel-loc
// GU : constIoo

and

(9.7) colimI : GUIstrong-loc
// GU : constIoo

are Quillen adjunctions.

Proof. We prove first the claim that the adjunction (9.6) is a Quillen adjunction. In order to prove this, we
first prove that the adjunction colimI : GUIlevel � GU : constI is a Quillen adjunction. Recall from defining
equations (7.6) and (7.7) the set of generating cofibrations and the set of generating acyclic cofibrations of
GUIlevel, namely, I level and J level, respectively. Since the functor colimI is left adjoint is suffices to show
that colimI sends the generating cofibrations to cofibrations in GU , and that it sends the generating acyclic
cofibrations to acyclic cofibration in GU .

Let f : F IM (G/H × ∂Dk) −→ F IM (G/H ×Dk) be a map in I level for some finite G-set M ⊆ U of cardinality
m, for some H ≤ G and some k ≥ 0. Consider the induced map of colimits

(9.8) colim
I

(
F IM (G/H × ∂Dk)

)
−→ colim

I

(
F IM (G/H ×Dk)

)
By the discussion in Remark 9.5, the colimit colimI F

I
M (G/H × ∂Dk) ∼= G/H × ∂Dk with G-acting on G/H by

translations. Applying the same for colimI
(
F IM (G/H ×Dk)

)
we can conlude that the induced map of colimits

(9.8) is the inclusion G/H × ∂Dk id×ik−−−→ G/H ×Dk which is a cofibration in GU . Following the same reasoning
we can conclude immediately that colimI sends a generating acyclic cofibration to an acyclic cofibration in GU .

We next prove that colimI is also left Quillen, considered now as a functor from GUIlevel-loc to GU . Since the
model structure GUIlevel-loc is defined as a left Bousfield localization by [15, Proposition 3.3.18], it suffices to
show that colimI sends the maps in the set B to weak equivalences in GU . Recall, the set of maps B (8.8), which
we localized the (topological) level model structure. Consider a map in B , that is f : F IN (G/H) −→ F IM (G/H)
for some finite G-sets M,N ⊆ U , of cardinality m and n, respectively and H ≤ G and some injection M −→ N.
By the discussion in Remark 9.5 we have the G-isomorphisms colimI F

I
N (G/H) ∼= G/H and colimI F

I
M (G/H) ∼=

G/H and it follows immediately that colim f is a weak equivalence in GU . Hence, indeed we have the Quillen
adjunction colimI : GUIlevel-loc. � GU : constI .

We move on to show that the adjunction (9.7) is a Quillen adjunction which follows the same reasoning.
We prove first that colimI : GUIstrong −→ GU is left Quillen functor. So, consider a map f in Istrong, that is,

f : GnH F IM (H/K n ∂Dk) −→ GnH F IM (H/K × ∂Dk), for some H ≤ G, a finite H-set M ⊆ U of cardinality
m, a subgroup K ≤ H and some k ≥ 0. By the discussion of Remark 9.5 we have the following G-isomorphisms

colim
I

GnH
(
F IM (H/K × ∂Dk)

) ∼= GnH
(

colim
I

F IM (H/K × ∂Dk)
)

∼= GnH
(
H/K × ∂Dk

)
∼= G/K × ∂Dk.

Similarly we have colimI
(
GnH F IM (H/K ×Dk

) ∼= G/K ×Dk. Hence the induced map of colimits , colim f is
indeed a cofibration in GU . Following the same reasoning if f is a generating acyclic cofibration, we get that
colim f is an acyclic cofibration in GU .

Finally, we show that the functor colimI is left Quillen when considered as a functor colimI : GUIstorg-loc. −→
GU . Since GUIstorg-loc. is defined as a left Bousfield localization, it suffices to show that colimI sends every map

in the set C (8.9), to a weak equivalence in GU . Let f be a map in the set C, that is a map GnH F IN (H/K) −→
G nH F IM (H/K) for a subgroup H ≤ G, for M,N finite H-sets in U and an injection M −→ N . By Remark
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9.5 we have the G-isomorphisms colimI
(
GnH F IN (H/K)

) ∼= GnH
(
colimI F

I
N (H/K)

) ∼= GnH H/K ∼= G/K

and similarly colimI
(
GnH F IM (H/K)

) ∼= G/K. Hence the functor colimI sends the maps in the set C to weak
equivalences in GU . The proof is complete. �

Discussion 9.7. We summarize our results so far from Proposition 9.6 and Proposition 9.4 and we explain
their implications. We consider the following composition

GU FI0−−→ GUIlevel-loc.
colimI−−−−→ GU

and we have colimI ◦F I0 = Id. The identity functor Id is of course a Quillen equivalence and by the 2-out-
of-3 property of Quillen equivalences [16, Corollary 1.3.15], we can conclude that also the functor colimI :
GUIlevel-loc. −→ GU is a left Quillen equivalence. Following the same reasoning, we can also conclude that
colimI : GUIstrong-loc. −→ GU is a left Quillen equivalence. Consider now the following two commutative
diagram of model categories

(9.9) GU

GUIproj-loc.

colimI
55

Id
// GUIlevel-loc.

colimI
ii

(9.10) GU

GUIproj-loc.

colimI
55

Id
// GUIstrong-loc.

colimI
ii

We know that the functors colimI : GUIlevel-loc. −→ GU and colimI : GUIstrong-loc. −→ GU are left Quillen

equivalences. The functor colimI : GUIproj-loc −→ GU is a Quillen equivalence from Corollary 8.12, which
was provided by applying D.Dugger’s result on hocolim-model structures. By Corollary 9.2, we have that the
identity functors Id : GUIproj-loc. −→ GUIlevel-loc. and Id : GUIproj-loc. −→ GUIstrong-loc. are left Quillen functors.

By applying again the 2-out-of-3 property of Quillen equivalences, we can conclude that Id : GUIproj-loc. −→
GUIlevel-loc. and Id : GUIproj-loc. −→ GUIstrong-loc. are left Quillen equivalences. This implies that also Id :

GUIlevel-loc. −→ GUIstrong-loc. is a left Quillen equivalence.
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Part 4. G-I-spaces and G-symmetric spectra

In this part we begin to develop the relationship between the homotopy theory of G-I-spaces and the
homotopy theory of G-symmetric spectra.

9.8. Preliminaries. We briefly recall the adjunction

(9.11) SI [−] : UI // SpΣ : ΩIoo

which level-wise, the left adjoint functor takes an I-space to the symmetric spectrum SI [X]n := Sn ∧X(n)+,
and the right adjoint ΩI : SpΣ −→ UI , E 7−→ ΩnEn. The categories of G-I-spaces and G-symmetric spectra
are defined as the category of functors G −→ UI and G −→ SpΣ, respectively. So, this adjunction prolongates
to the adjunction

(9.12) SI [−] : GUI // GSpΣ : ΩIoo

which for a G-I-space X we have SI [X]n = Sn∧X(n)+ with diagonal Σn-action and G-action through X(n)+.
Similarly for a G-symmetric spectrum Y , the G-I-space ΩI(Y ) = ΩnYn with Σn-action by conjugation and
G-action though Yn.

For the next lemma recall, 3.5, [12, Definition 2.18] of a free G-symmetric spectrum on A in level M denoted
by FMA. We have the following analogue of [26, Lemma 14.3]. We will use this in Subsection 9.12.

Lemma 9.9. Let M be a finite G-set and let L be a G-space. Furthermore, let H be a subgroup of G, let N be
a finite H-set and K an H-space. We have the following natural isomorphisms

SI [F IM (L)] ∼= FMS
M ∧ L and SI [GnH F IN (K)] ∼= GnH

(
F

(H)
N SN ∧K

)
Proof. Let Y be a G-symmetric spectrum. We have the following equivalences

MapSpΣ

(
SI [F IM (L)], Y

) ∼= map
(
L,EvIM ΩI(Y )

)
∼= map

(
L,ΩMY (M)

)
∼= map

(
L,MapSpΣ(FMS

M , Y )
)

∼= MapSpΣ

(
FMS

M ∧ L, Y
)

The second isomorphism is a consequence of the first isomorphism and the fact that SI [−] preserves colimits as
a left adjoint. �

If α : M −→ N is an injection and L is a G-space we have a natural transformation α∗×L : F IN (L) −→ F IM (L)
and applying the functor SI [−] we have the map

SI [α∗] ∧ L : FNS
N ∧ L −→ FMS

M ∧ L
The map SI [α∗] : FNS

N −→ FMS
M is the adjoint of the following map

SN
(id,α)−−−−→ SN ∧ Inj(M,N)+

∼= SM ∧Σ(M,N) = FMS
M (N)

where the G-isomorphism (with diagonal G-actions) Inj(M,N)+∧SN ∼= SM ∧Σ(M,N) is given in [12, Example
3.35].

9.10. Quillen adjunction of Level Model Structures.

Proposition 9.11. The adjunction
SI [−] : GUI � GSpΣ : ΩI

is Quillen adjunction for the respective level and strong level model structures.

Proof. We will prove firstly the proposition for the case of the respective level model structures and we will do
that by showing that SI [−] is left Quillen. Since it is left adjoint, it suffices to show that it sends generating
cofibrations to cofibrations and generating acyclic cofibrations to acyclic cofibrations. Recall from defining
equation (7.6) that a generating cofibration in the level model structure is of the form

F IM (iG) : F IM (G/H × ∂Dk) −→ F IM (G/H ×Dk)

for iG : G/H × ∂Dk −→ G/H ×Dk a generating cofibration in GU . So, we need to show that

SI [F IM (iG)] : SI [F IM (G/H × ∂Dk)] −→ SI [F IM (G/H ×Dk)]

is a cofibration in GSpΣ
level . By Lemma 9.9 we have an isomorphism SI [F IM (iG)] ∼= FMS

M∧iG. The G-symmetric

spectrum FMS
M is cofibrant in GSpΣ

level and since it is G-topological model structure we have that FMS
M ∧ iG

is a cofibration in GSpΣ
level, by [16, Remark 4.2.3]. Similarly if jG is an acyclic cofibration in GU and F IM (jG)

we have the isomorphism SI [F IM (jG)] ∼= FMS
N ∧ jG. Following the same reasoning as in the case of cofibrations

we get that FMS
N ∧ jG is acyclic cofibration in GSpΣ

level .



G-I-SPACES 25

We proceed now to prove the proposition for the respective strong level model structures. Again, we will do
that by showing that the functor SI [−] is left Quillen. Consider a subgroup H of G and a generating cofibration
of the HU genuine model structure, that is, a map of the form

iH : H/K × ∂Dk −→ H/K ×Dk

for a subgroup K ≤ H and some k ∈ N and let the map

GnH
(
F IM (iH)

)
: GnH F IM (H/K × ∂Dk) −→ GnH F IM (H/K ×Dk)

for a finite H-set M , which is a generating cofibration of the model structure GUIstrong.
By Lemma 9.9 we have the following isomorphism

SI [GnH
(
F IM (iH)

)
] ∼= GnH

(
F

(H)
M SM ∧ iH

)
For a subgroup H ≤ G, the level model structure, HSpΣ

level is an H-topological model structure, so F
(H)
M SM ∧iH

is a cofibration in HSpΣ
level, by [16, Remark 4.2.3]. For the last step, by construction of the strong level model

structure of G-symmetric spectra and observing the set of generating cofibrations [12, Equation 2.3, 2.4], the
induction functor

GnH − : HSpΣ
level −→ GSpΣ

strong

is left Quillen for every H ≤ G, hence the induction G nH
(
F

(H)
M SM ∧ iH

)
is a cofibration in GSpΣ

strong. The

argument that the functor SI [−] sends generating acyclic cofibrations to acyclic cofibrations follows the same
reasoning as above and therefore we do not write it. Thus the proof is concluded.

�

9.12. Quillen Adjunction and Localization. In this subsection we prove, that the functor SI can be regarded
as left Quillen functor from the localizations the we previously constructed on Section 8. To prove this, we will
appeal to [15, Proposition 3.3.18], which we state below.

Proposition 9.13. Let M be a model category and let S be a set of maps in M. If LSM is the left Bousfield
localization of M with respect to S, N is a model category, and F : M −→ N is a left Quillen functor that
takes every cofibrant approximation to an element of S into a weak equivalence in N , then F is a left Quillen
functor when considered as a functor LSM−→ N .

Lets denote by GSpΣ
stable,level the G-stable localization of GSpΣ

level Consider the following diagram :

GUIlevel
SI [−]

//

γ

��

GSpΣ
level

ΩI
oo

Id // GSpΣ
stable,level

Id
oo

GUIlevel-loc.

55

Since Id : GSpΣ
level −→ GSpΣ

stable,level is left Quillen, by Proposition 9.11 the composition GUIlevel
Id ◦SI [−]−−−−−−→

GSpΣ
stable,level is also left Quillen. If we show the functor SI [−] takes every cofibrant approximation to an

element of B into a G-stable equivalence of G-symmetric spectra then by the above proposition, 9.13, we will
be done.

Consider an element of B, that is, a map of the form α∗ × G/H : F IN (G/H) −→ F IM (G/H) for some M
and N finite G-sets, an injection α : M −→ N and a subgroup H ≤ G. By inspection of the set of generating
cofibrations for the level model structure from defining equation (7.6) , we note that all objects in the set B are
cofibrant, so we do not need to take cofibrant approximation. So, we need to show that the following map is a
G-stable equivalence

SI [α∗ ×G/H] : SI [F IN (G/H)] −→ SI [F IM (G/H)].

By Lemma 9.9 and the discussion below it, this is the map

SI [α∗] ∧G/H : FNS
N ∧G/H −→ FMS

M ∧G/H
By [12, Proposition 4.1, (ii)] smashing with a cofibrant G-space preserves G-stable equivalences and since G/H
is cofibrant G-space, it suffices to show that SI [α∗] : FNS

N −→ FMS
M is a G-stable equivalence. Consider the

injection M −→ N as an inclusion M ⊆ N of finite G-sets. We have the following map

λM,N−M : FMt(N−M)S
N−M = FNS

N−M −→ FMS
0

which by [12, Example 2.46] is a G-stable equivalence. Since the representation sphere SM is cofibrant G-space
smashing it with the map λM,N−M is also a G-stable equivalence. The resulting map after smashing is

SI [α∗] = λM,N−M ∧ SM : FNS
N −→ FMS

M

So, SI [α∗] : FNS
N −→ FMS

M is a G-stable equivalence and we have proven the claim.
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Consider now an element of C, that is, choose finite H-sets M and N , an injection β : M −→ N and a
subgroup K ≤ H. So, we have the following map

GnH (β∗ ×H/K) : GnH F IN (H/K) −→ GnH F IM (H/K).

After applying the functor SI [−], and by Lemma 9.9 we have the following isomorphism

SI [GnH F IM (H/K)] ∼= GnH
(
F

(H)
M SM ∧H/K

)
∼= GnH F

(H)
M SM ∧G/K

and so we have the following isomorphism

SI [GnH (β∗ ×H/K)] ∼= GnH SI [β∗] ∧G/K
Since G/K is a cofibrant G-space, it clearly suffices to show that GnH SI [β∗] is a G-stable equivalence. Consider
the injection β : M −→ N as an inclusion of finite H-sets. We have the map

λ
(H)
M,N−M : F

(H)
N SN−M −→ F

(H)
M S0

and smashing this map with the representation sphere SM we have the map

SI [β∗] = λ
(H)
M,N−M ∧ S

M : F
(H)
N SN −→ F

(H)
M SM .

By [12, Example 2.46], it follows that the induction

GnH
(
λ

(H)
M,N−M ∧ S

M
)

= GnH SI [β∗]

is a G-stable equivalence.
Thus, by the above discussion and applying Proposition 9.13 we have shown the following proposition

Proposition 9.14. We have the following Quillen adjunctions

(9.13) SI : GUIlevel-loc.
// GSpΣ

stable,level : ΩIoo

and

(9.14) SI : GUIstrong-loc.
// GSpΣ

stable,strong : ΩIoo
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Part 5. An example

Let R be a ring with unit and consider GLn(R), the general linear group of degree n, that is, the group of
invertible n× n matrices with entries from the ring R. Identifying each n× n matrix A

A 7−→
(
A 0
0 1

)
∈ GLn+1(R)

gives an embedding GLn(R) ↪→ GLn+1(R). The union of the resulting sequence

GL1(R) ⊂ GL2(R) ⊂ . . .GLn(R) ⊂ GLn+1(R) ⊂ . . .
is called the infinite general linear group GL(R). For every morphism α : m −→ m in I there is an induced
map α∗ : GLm(R) −→ GLn(R) which can be made functorial. This defines a functor

GL(R) : I −→ Grp .

By taking the classifying space for each GLn(R), that is, the geometric realization of the nerve we have the
I-space

BGL(R) : I −→ GU , n 7−→ BGLn(R)

Consider now a ring R with unit and a finite group G that acts on R by ring automorphisms. The action of
G on R induces a G-action on GLn(R) for every n ∈ N and the embedding GLn(R) ↪→ GLn+1(R) is equivariant.
So we have the G-I-space defined by

BGL(R) : I −→ GU n 7−→ BGLn(R).

Recall that given a G-I-space X, and given a subgroup H ≤ G, we can define the I-space

XH : I −→ U , n 7−→ X(n)H

From Subsection 8.11 we know that given a diagram X : I −→ GU , then its homotopy colimit hocolimI X :=
XhI has an induced G-action.

An important property of the classifying space functor is that if category C comes with a G-action then
taking fixed points commutes with the classifying space functor. This is a consequence that the classifying
space functor commutes with finite limits.

As an example consider C and R as discrete rings(fields) and let Z/2, the cyclic group of order 2 act by
conjugation on C, that is, z 7→ z̄. By the above we have Z/2-I-space

BGL(C) : I −→ Z/2U n 7−→ BGLn(C)

and by taking objectwise fixed points we have the I-space defined by

BGL(C)Z/2 : I −→ U , n 7−→ BGLn(C)Z/2.

The Z/2-fixed points of GLn(C) is isomorphic to GLn(R) (as groups), hence by taking realization we have the

homeomorphism BGLn(C)Z/2 ∼= BGLn(R). So, by taking the homotopy colimits we have (BGL(C)hI)
Z/2

=(
BGL(C)Z/2

)
hI = BGL(R)hI .

Another example that exhibits the same phenomenon, consider Fq the finite field with q elements and the
extension Fq −→ Fqn . Then Gal(Fqn/Fq) ∼= Z/n = Z/nZ. So we have a Z/n-I-space defined by

I :−→ Z/nU , n 7−→ BGL(Fqn)

Following the reasoning above we have the homeomorphisms

(BGL(Fqn)hI)
Z/n ∼=

(
BGL(Fqn)Z/n

)
hI
∼= BGL(Fq)

It is generally the case, that given a Galois extension L/K, with Galois group G = Gal(L/K), the fixed
points GLn(L)G = GLn(K). Care has to be taken though since in general Galois groups are far from being
finite groups, that is, they are profinite. This limits severely the above examples. We do not know, however, if
the above consideration provides any new information about algebraic K-theory of rings (fields).
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