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Abstract

In this thesis, two versions of an accent location system are intro-
duced which have been built using data from the Sprekend Nederland
project. These include short recordings of participants’ speech, judge-
ments about other participants’ speech and meta-data such as the
participants’ locations. This thesis aims at exploring the questions
of how an accent location system can be implemented with the given
data and what performance can eventually be achieved.

Both versions of the system were implemented as feed-forward neu-
ral networks taking i-vectors as their input which had previously been
extracted from the recordings. The first version was built to clas-
sify recordings as corresponding to one out of twelve accent regions
whereas the second version predicted coordinates of the speakers’ lo-
cations.

Major challenges faced during engineering the system were due to
dealing with an unbalanced dataset which was especially dominated
by young participants living in larger cities such as Rotterdam, Ams-
terdam and Utrecht. Furthermore, participants’ self-reporting, judge-
ments of fellow participants, and the results of a principal component
analysis of the used features, all indicated that the recordings would
contain just little speech with local accents. Building an accent lo-
cation system on these data consequently required exploiting scarce
cues of these accents.

Both versions of the system showed a performance which was just
little above chance level. However, human listeners who had been
asked to guess participants’ locations based on the same recordings
could overall not outperform the system. While acknowledging further
potential improvements, this led to the conclusion that most of the
available cues of local accentedness must have been exploited during
the system’s training.



1 Introduction

Towards the end of 2015, the project Sprekend Nederland was launched by
the Dutch broadcast organisation NTR, the Netherlands Organisation for
Scientific Research (NWO) and a number of researchers from various Dutch
universities. Its aim is to study how Dutch is currently spoken across the
Netherlands as well as people’s attitudes towards speakers of its various ac-
cents and dialects. The project’s main tool is a smart phone application via
which data from participants are collected. These include recordings of read
aloud and spontaneous speech, judgements and different meta-data such as
age, education, gender and location.

Van Leeuwen and Orr (2016) outline the Sprekend Nederland’s potential
application to accent location. This task is described as finding a speaker’s
origin location, given a speech sample. The aim of the thesis work was to find
ways of implementing an accent location system using the project’s data. In
doing so, the focus was explicitly on local accents in the sense of variation on
the phonetic and phonological level. Additional aspects commonly covered
by the term ”dialect” such as lexical differences were not considered. The
two main questions of this thesis are how an accent location system can be
implemented with the given data and what performance can eventually be
achieved.

In recent years, extensive work has been carried out on the task of accent
recognition. Gaining knowledge about a speaker’s accent can be advanta-
geous if, for instance, applied to speech recognition. Systems accounting for
such variability show lower recognition errors (e.g., Biadsy (2011)). Further-
more, accent recognition is useful in speaker identification and, therefore, also
has forensic applications (Jessen, 2007). The task of recognising an accent
is often times defined as a classification problem. That is, systems trained
on a set of accents aim to find the most suitable accent label for a given
recording. For such a system to work well, the different accents need to be
distinct. However, if there are similarities and overlaps among some of the
accents in question, systems show higher confusion rates, i.e., recordings are
more often misclassified as a similar accent. Given the focus is on identi-
fying foreign accents (e.g., Arslan and Hansen (1996); Bahari, Saeidi, and
van Leeuwen (2013)) this is less of a problem. However, separability is less
guaranteed if one aims to classify different local accents. For instance, in
Hanani’s (2012) dissertation, which focuses on human and automatic recog-
nition of British accents, humans are reported to be more likely to confuse
geographically close accents. Partially, the same problem is encountered in
automatic recognition.

Commonly, dialects and local accents of a language are described by defin-



ing a set of separate regions. For Dutch, dialects have, for instance, been
mapped by Daan and Blok (1969). However, local differences in how Dutch
is pronounced across the Netherlands can also be described as a continuum
(e.g., Heeringa (2004)).

The question of how an accent location system should be implemented is
addressed in two different ways in this thesis. First, the task is defined as a
classification problem. As such, it is not different from common applications
of accent recognition. Below, models are introduced which were built to
classify speakers as belonging to one out of twelve accents regions. The second
approach to accent location treats local accents as a continuous phenomenon
and defines it as a regression problem. The corresponding models make
predictions about a speaker’s location in terms of coordinates. Both the
classification and the regression approach are discussed by van Leeuwen and
Orr (2016). However, the implementations presented below abstract the
accent location task by not accounting for the participants’ location histories
nor their age at the times of living in different places.

In preparation for building an accent location system, it was necessary
to first analyse the available data, select useful parts and extract features
from audio material. These steps are covered in section 2 and 3. Of course,
the implementation of a system for accent location involved making a num-
ber of technical decisions. After having experimented with several different
machine learning algorithms, the final models were all implemented as arti-
ficial neural networks. These types of models are potentially very powerful,
however, tailoring these to the specific task of accent location proved chal-
lenging. Hence, this thesis includes detailed descriptions of the difficulties
encountered in implementing the system. Section 4 deals with creating mod-
els for accent classification. In section 5, changes are introduced converting
the existing models to regression models which predict speakers’ locations in
terms of coordinates. For a subset of the available recordings, the speakers’
locations have been guessed by human listeners. In section 6, their perfor-
mance is compared to the models’ predictions. This thesis is concluded by a
discussion (section 7) highlighting the system’s shortcomings and potential
ways of improvement.

2 Data

In this section, a detailed account of the available data is presented. These
consist of recordings, meta-data and judgements. An outlook will be given
about the challenges these data pose to creating models for accent location.

The data used for this thesis only include recordings which had been col-



lected by March 2016 and corresponding meta-data and judgements which
were last updated in August of the same year. However, the project con-
tinued recruiting new participants and its smart phone application stayed
activated allowing for more recordings and judgements to be collected. For
the task of building a system for accent location, it was necessary to make
a selection of useful data. Only participants who had submitted a recording
of at least ten seconds and who had also indicated their location by corre-
sponding coordinates were considered. Less than half of the people who had
signed up via the application had completed the tasks to that degree. If not
indicated otherwise, ”participants” shall further strictly just refer to those
2191 people whose data were used.

2.1 Recordings

The application includes tasks which prompt the participants to make record-
ings of their own speech. These tasks include reading out word lists and
sentences as well as picture naming and giving detailed descriptions in own
words. Since recordings were required to have a minimum length of ten sec-
onds the selected ones contain especially spontaneous speech data. In total,
these amounted to 13781. The recordings were made using the participant’s
own devices. Hence a variety of different microphones were used. On manual
inspection, the overall quality of the recordings was judged to be good.

2.2 Meta-Data

Although the application includes a questionnaire including 41 questions
which would help to locate the participant’s accents and even allow to make
statements about their potential sociolects and ethnolects, only few answered
all of them. Responses are missing to such a degree that one would have to
exclude most participants if one wanted to make use of just the data which
are accompanied by mostly complete questionnaires. The application had
been designed such that the order of questions was not randomised. Conse-
quently, the later a question was asked the fewer participants gave an answer.
Figure 1 illustrates this drop in response rates.

Van Leeuwen and Orr (2016) have previously presented some early statis-
tics about participation. The meta-data regarding location, gender and age
which are presented below are more recent, however, barely differ.
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Figure 1: Response rates per question

2.2.1 Location

For this project, coordinates were used which participants directly provided
by clicking on the corresponding location on a map. Out of three questions
involving this task, one required the participants to specify a location corre-
sponding to their own accent.! The resulting coordinates were used where
available. However, just a small number of participants gave an answer to
this question due to the fact that it appeared as the twenty-first in the ap-
plication (see Figure 1). All other coordinates were taken from answers to
the question asking where within the Netherlands they have lived the longest
time.? These locations were assumed to correspond to the areas which mostly
shaped the participants’ accents. Of course, this will not always be the case.
For a person to adapt to a certain regional accent will, for instance, also
depend on the age at the time of moving to the according region (Chambers,
1992). Responses to a third question asking ”Where are you from?”3 were
not used since its meaning is somewhat ambiguous. People answer this ques-
tion depending on context (Myers, 2006). It may be read to inquire about a
person’s birthplace, or where she or he currently lives. In real life, a person
may respond to this question by specifying both. However, this option was
not available in the questionnaire.

The participants’ coordinates can be used to match them with a province
or any other geographical region. Comparing the data to the official popu-

"Waar plaats je je eigen accent op de kaart?”
2”Waar heb je de meeste jaren binnen Nederland gewoond?”
3”Waar kom je vandaan?”



lation statistics (Centraal Bureau voor de Statistiek, 2016¢), there are more
participants from provinces with a higher population density. As Figure 2
illustrates, the number of participants per province and the provinces’ num-
bers of inhabitants are strongly correlated r(10) = .97, p < .001. In this
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Figure 2: Distribution of participants per province compared to the number
of citizens per province in 2016. Bars have been scaled to have the same
mean length for both participants and population. The dotted line indicates
the average value for both categories.

work, provinces will be referred to purely for illustrative reasons. However,
other classes which are potentially more meaningful for the purpose of accent
location will also be discussed.

2.2.2 Age

62% of the participants also indicated their year of birth. As Figure 3 shows,
participants were mostly younger people in their twenties. A direct compar-
ison with the Dutch age distribution (Centraal Bureau voor de Statistiek,
2016a) shows that age groups are not well represented by the dataset. There
was a comparably weaker correlation between participants and citizens per
age group, r(61) = .52, p < .001.
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Figure 3: Age distribution of participants compared to the Dutch age distri-
bution in 2016. Bars have been scaled to have the same mean length for both
participants and population. The dotted line indicates the average value for
both categories.

2.2.3 Gender

61% of the participants indicated their gender. Of those who did, 56.04%
were female, 43.74% were male and 0.22% identified as neither of these two.
Females are somewhat over-represented in comparison to the Dutch popula-
tion, of which 50.4% were recorded as females by Statistics Netherlands in
2016 (Centraal Bureau voor de Statistiek, 2016a).

2.2.4 Other Nationalities or Ethnicities

Participants were also asked whether next to being Dutch they would count
themselves to one or more other nationalities or ethnicities. However, only
25% gave an answer. Of those, 77% indicated that they consider themselves
as only Dutch. The remaining participants are spread across 16 groups.
None of these groups count more than 10 participants with the exception of
Western Europe and Dutch East Indies (38 and 21 participants respectively).

2.2.5 Education and Work

With a response rate of 20% , even fewer participants stated their highest
level of education. Of those, exactly two thirds had enjoyed higher education

Number of Citizens in 2016



at a university or a vocational university. If this is also true for those who did
not respond, this group is by far over-represented. According to Statistics
Netherlands (Centraal Bureau voor de Statistiek, 2016b), only about one
third of the Dutch held a corresponding degree in 2015. When asked about
their work, 57% (of those 20% who gave an answer) stated a profession which
usually requires higher education, e.g., doctor, scientist, manager or teacher.

2.3 Judgements about Fellow Participants

A main focus of the Sprekend Nederland project is on how people are judged
based on how they speak. Its smart phone application includes a large num-
ber of tasks prompting participants to make judgements about others who
already have submitted a recording of their own speech. Most of these judge-
ments have no relevance for this work as these concern aspects such as at-
tractiveness, intelligence, appeal and trustworthiness. However, they also
include ratings of accentedness as well as location judgements. The former
were attempted to be applied in training models and the latter were used in
evaluating the models’ performance.

2.3.1 Perceived Accentedness

As part of the questionnaire, the participants were directly asked whether
they speak a Dutch dialect. Of all participants, 20% replied with ’yes’,
41% with 'no’ and the remaining 39% did not answer the question. Among
the tasks involving judgements about other speakers, participants had to
tell whether they consider another participant to have a strong accent after
having listened to that person’s recording. They could supply their answers
via a discrete slider with values ranging from 1 to 7 indicating strongest
disagreement and agreement respectively. Initially, the slider was positioned
in the centre at value 4. Of the participants, 95% received at least one such
rating. On average, most participants were rated to rather not have a strong
accent whereby the judging participants mostly avoided extreme values on
both ends of the scale (see Figure 4).

These accentedness ratings appear to be incongruous with the percentage
of participants mentioned above who stated that they do not speak a dialect.
One may expect that their ratings should be accordingly low. The absence
of a Dutch dialect, however, does not guarantee that their speech was not
accented in other ways. In fact, this group was still rated with 3.4 on average.
It is possible that speakers’ self-assessments were not always correct or that
the participants who did the rating did not always use the slider as intended.
Selecting the central value 4 may have been the choice for some who wanted

10
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Figure J: Distribution of participants’ mean accentedness rating. Values
correspond to listeners’ agreement when asked whether a speaker had a strong
accent. Subgroups rely on participants stating that they do or do not speak
a Dutch dialect.

to express that they could not detect an accent in a recording. It could
also have been a simple way of just skipping the task. In order to make
sure that the speakers’ average ratings are not just the result of random
usage of the slider, a one-way between subjects ANOVA was performed in
R (R Core Team, 2015) . The ratings significantly differed between speakers
(F'(2088,22482) = 3.56, p < .001).

2.3.2 Location Judgements

Among the tasks which required participants to make judgements about
other participants, they were also asked to guess where another partici-
pant was from by pointing at the corresponding location on a map. They
were prompted to do so by one out of three questions. It was asked where
they thought the speaker was from, where they thought the speaker lived or
whether they could place the speaker on the map?. Selected locations were
stored as coordinates. Of all participants, 897 had their location guessed by
a fellow participant. This number includes only judgements on recordings of

4The original questions in Dutch: ”Waar komt de spreker vandaan?”, ”Waar denk je
dat de spreker woont?”, "Kun je hem/haar plaatsen op de kaart?”
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spontaneous speech.’ Furthermore, judgements referring to locations outside
of the Netherlands were excluded. On many occasions, the same recording
was guessed twice by the same participant. In these cases, these were col-
lapsed to refer to just one location defined by their mean coordinates. With
many participants having their location guessed more often than once, there
were 2001 such location judgements made by 1064 participants.

2.4 Challenges for Accent Location

For accent location, the data prove to be challenging on several levels. A
common problem with research projects especially with those using large
scale data from anonymous sources concerns the reliability of the data. Since
the project’s application was freely available on the Internet, there was no
control over how and by whom it was used. It cannot be guaranteed that
all participants filled in the questionnaire correctly. On occasion, they may
have misinterpreted a question or may not have been been honest in their
answers. It can neither be ruled out that data are in parts confounded as a
result of several people using the same account. The opposite case in which
one individual uses several accounts is also possible. Taking a leap of faith,
most data are assumed to be correct. A model trained on these should still
be sufficiently resistant to such noise.

The project Sprekend Nederland has repeatedly been featured on Dutch
television and has also been covered by other media. Its purpose including
some research questions have been communicated to the public. As an ex-
periment, the project’s application corresponds to an open trial for which
it has not just not been attempted to mask its background but participants
have been explicitly informed. Much of the project concerns people’s atti-
tudes towards other people and their accents. The same attitudes may have
influenced the participants’ speech when they recorded themselves.

The dataset is not balanced with respect to location, age, gender and
social background of the participants. With the exception of population
distribution, the data are neither representative of the Dutch demographics.
From a technical perspective, it is desirable to have a balanced dataset.
However, means to counterbalance the dataset are extremely limited given
the incompleteness of the meta data. In 4.3.4, ways of dealing with unequal

SFor all judgements, the log-file registered the speaker’s prompt. However, it was not
possible to establish to which exact recordings judgements referred. The indicated number
of location judgements is restricted to those based on recordings of spontaneous speech.
This selection fairly ensures that judgements refer only to the longest recordings and allow
for comparison with the models below, which were trained and tested on recordings of at
least 10 seconds.
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prior probabilities in training a model are discussed.

People with a higher education and professions of high status are of-
ten linked to the usage of standard Dutch, which is often thought to be
a non-regional variety (Smakman, 2006). If the remaining participants for
whom there is no information about their social background also happen to
be mostly higher educated and have similar professions as those mentioned
above, then the majority of speech samples can consequently be expected to
contain little regionally accented speech. According to the participants’ self-
assessments at least, 41% should not show a regional accent whereas when
judged by other participants they still may show some accentedness. All in
all, there is reason to fear that a substantial part of the recordings does not
contain speech with a regional accent.

3 Data Preparation

This section deals with preparing the data for training and testing models.
Included steps cover data selection, feature extraction, partitioning and stor-
ing. Furthermore, results of a principal component analysis of the extracted
features are presented.

3.1 Data Selection

It has been mentioned above that recordings of a duration shorter than 10
seconds were excluded from the beginning. The reason for this is that very
short recordings are considered to insufficiently cover a speaker’s variability.
That is, short recordings are unlikely to contain all of the Dutch phonemes
and are even less likely to contain all according allophones. It may be ob-
jected that the chosen minimum duration may still be too short to guarantee
this. However, this value was chosen as a compromise between having too
many recordings which badly represent a person’s speech variability and hav-
ing a drastically reduced dataset. On average, selected recordings ended up
having a duration of 12.82 seconds.

3.2 Feature Extraction

Since it is not feasible to directly train models on audio data, features had to
be extracted from the recordings which were meaningful for the accent loca-
tion task. A popular choice in applications for speech and speaker recognition
are MFCC features. Initially, i-vectors were used which were generated using
the extractor from the Voice Biometry Standardization Initiative (Glembek,

13



Burget, & Matejka, 2015). Their system uses a Universal Background Model
(UBM) trained on telephone data and MFCC features extracted from the re-
spective recordings. By using i-vectors, a recording formerly represented by a
sequence of several MFCC features can be compactly represented by just one
information rich vector. However, the fact that this system is optimised for
telephone data required that recordings had to be transformed accordingly.
This involved down-sampling to 8kHz and implied a loss of information. This
motivated the creation of a customised i-vector system which was built by
David van Leeuwen. Main differences are that audio data were re-sampled
to 16kHz and bottleneck features were used in combination with MFCC fea-
tures. The UBM had been trained on recordings of Dutch speakers from the
LUCEA corpus (Orr et al., 2011). Per recording one i-vector was extracted
resulting in a total of 13781 vectors. However, in training and evaluation of
all models presented below, mean vectors were used which were created for
speakers who provided more than one recording.

3.3 Principal Component Analysis

In order to estimate whether the i-vectors convey any information useful for
the accent location task, a principal component analysis (PCA) was per-
formed for which the Scikit-learn toolkit (Pedregosa et al., 2011) was used.
Its main findings regard extra-linguistic information namely gender and age.
The second component was found to strongly correlate with the gender of
the participants (see Figure 5a).5 However, such a pattern was expected to
be found. The fundamental frequency is a very salient acoustic indicator for
whether a speaker is female or male. With all the voiced intervals of the
recordings there was abundant information about each participant’s gender.
The same two components were also found to be those which showed the
strongest correlation with age. Although age related patterns are visible in
Figure 5b it also shows that the relation between the component’s eigenvalues
and age is much less coherent.

Fewer cues about the participants’ local accents were expected to be in the
data. In fact, these were found to be extremely scarce. For each of the first
50 components, two linear mixed effects models (Bates, 2010; Kuznetsova,
Brockhoff, & Christensen, 2015) were fitted using the eigenvector as depen-
dent variable, the participant’s identifier as random effect and either latitude
or longitude as fixed effects. For a number of components, latitude or lon-
gitude reached statistical significance. In other words, a speaker’s position
did partially explain a component’s values. However, their estimates were

6This only refers to 61% of the participants.(see Section 2.2.3)
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Figure 5: Eigenvalues of the second and third components. Each point rep-
resents one recording.

minute.

The highest estimate for latitude was found in the third and for longitude
in the eighth component. The corresponding eigenvalues are shown in Figure
6a with points being coloured according to the corresponding province. On
visual inspection, eigenvalues appear to be randomly distributed. Only if one
zooms in to their mean values, small differences become apparent as Figure
6 shows.

To conclude the analysis, the i-vectors were found to convey information
about individual speakers. However, cues about local accents were found to
be scarce.

3.4 Partitioning for Cross-Validation

When models are build it is generally desirable to have separate datasets
for training and testing. This can be considered a standard prerequisite
for being able to find out how well a model generalises, i.e., how well a
model performs on previously unseen data. A model’s performance may be
perfect if only tested on data on which it has been trained, however, it may
perform poorly on new data. The question then is which data or rather
which portion of the available dataset one wants to ’sacrifice’ for testing the
model. Especially if the available dataset is rather limited, one wants to

15
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reserve as much data as possible for training. However, a testing set which
is too small may lead to less informative test results. The dataset available
for this project as a whole may seem big, however, is in fact very limited,
for instance, with respect to certain regional accents and age groups as has
been discussed above. Therefore, the decision was made to prepare the data
for cross-validation. That is training and testing were planned to happen
repeatedly, and each time a different portion of the dataset would serve as
testing data. That way it is possible to use just a small amount of data for
testing. If the entire dataset is well balanced, models should be very similar.
How well a model trained on the entire data would perform can then be
inferred from the average test results.

The data were prepared for cross-validation by creating a vector carrying
partition labels. All data points were labelled belonging to one out of ten
partitions. Each partition was supposed to be about equally representative
of the entire dataset. In order to achieve that, partitions were created such
that they would all have a similar number of data points as well as similar
proportions with respect to the regions they refer to. In other words, data
points of one region were equally spread among all partitions. This way the
dataset was balanced and in the cross-validation differences between models

16



and their test results could be minimised. However, partitions were not
necessarily balanced with respect to other factors such as gender and age
due to the above mentioned incompleteness of the meta data. Assigning
data points of one region to a certain partition was done in random fashion.
Importantly, however, if several recordings were available for one participant,
they would all be labelled to belong to the same partition. This way the train
and test datasets would never contain data from exactly the same source, i.e.,
an individual’s recordings would never be used for both testing and training.

3.5 Storing

All data and labels were stored as arrays in separate files using Numpy (Walt,
Colbert, & Varoquaux, 2011). All i-vectors were stacked vertically. Next to
class labels, separate files were also created for the participants’ identifiers,
partitions, gender, accentedness ratings and coordinates. All were in parallel
order to the data. These arrays are comparable to columns of one table.
However, using separate arrays allowed for using the correct data type from

the beginning (i.e., floating point numbers for numerical data and strings for
labels).

4 Accent Location as a Classification Prob-
lem

This section is about building an accent recognition system which is able to
predict a person’s location outputting the region for which her or his speech
is most typical. Treating accent location as a classification problem requires
defining a set of regions. The assumption is made that people of each region
have something in common in the way they speak which sets them apart
from people of other regions.

The system was implemented as an artificial neural network. These types
of models are very flexible and currently among the most popular tools for
all types of recognition tasks. However, whether a network is able to make
meaningful predictions largely depends on how it has been trained. Extensive
experimentation was necessary to improve its performance.

In this section, the network’s architecture is introduced. A description of
the implementation also provides an overview of how repeated experimenta-
tion was made possible. The optimisation of the training process is discussed
in more detail whereby effects of adjustments are illustrated using the output
of several alphabetically named models. These were initially built to classify
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speakers by their province. Having established ways to optimally train an ac-
cent classification network, the discussion will move to finding more suitable
classes. The final results are then reported for these newly defined accent
regions.

4.1 A Model for Classification
4.1.1 Neural Networks

The classification models discussed in this paper were all built as fully in-
terconnected feed-forward neural networks using the TensorFlow package
(Abadi et al., 2016) for Python. TensorFlow is an open-source software
library for Machine Intelligence.

The network’s architecture is described by an input layer of the size of
the i-vectors (400), three hidden layers of 1000 sigmoid neurons each and an
output layer of a size equal to the number of classes. That is, each output
node corresponds to one class. The dimensions of the models were chosen
such that they have a potential beyond perfectly fitting the training data.
Some deeper alternatives were tried. However, finding the ideal architecture
for the task was not deemed feasible within the project as the alternatives
are countless in theory and in practice only limited by the specifications of
the computer used for the task.

4.1.2 Alternatives to Neural Networks

Modelling local accents with neural networks was preceded by experiments
with a number of different machine learning algorithms from the Scikit-learn
toolkit (Pedregosa et al., 2011). These included Linear Discriminant Anal-
ysis, Naive Bayes Classifiers and Support Vector Machines. All of these
worked to the extent that they were all able to make predictions which were
consistently three to five percent better than random recall. These results
were, of course, all far off a success rate of even a third of correct predictions.
At that stage it was not yet clear whether this was due to the training data
and selected features or whether these techniques were unsuitable for the
task. Neural networks appeared to offer the most flexibility especially when
dealing with unbalanced and sparse data. However, the results presented
below are just somewhat better than what had been achieved with the above
mentioned algorithms. Therefore, these may still be suitable alternatives.
Training models with the Scikit-learn toolkit is also easier to implement in
Python. It is possible to write scripts which are executed line by line whereas
TensorFlow requires a graph to be built first.
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4.2 Implementation

Repeated training and testing with different settings required flexible scripts
which could be called from the Linux Terminal and thereby avoid necessary
manual changes between trials. A main script for training and testing was
created making use of a dataset class designed for managing how and which
data are used for cross-validation.

4.2.1 Main Script

The main script was responsible for executing all necessary steps: data selec-
tion, preprocessing, model training and evaluation. It was designed to enable
experimenting with a number of settings, which could be changed by using
the respective arguments when called from a Terminal. Great care was taken
to ensure data for training and testing would be kept separate and results
would be replicable. Randomness was controlled for by reusing the same seed
in all training sessions.”

Settings concerned data subselections, number of training iterations, ini-
tial learning rate, learning rate decay, size of mini-batches, dropout rate,
balancing data, collapsing data, prior scaling and posterior scaling. The ef-
fects of applying changes to these settings will be discussed in more detail in
4.3.

The main script allowed for even more settings to be changed flexibly.
For instance, the network’s hidden layers could be changed. However, for
the sake of comparability, the number of layers and their neurons were kept
constant for this work. Furthermore, optional dimension reduction via a
principal component analysis from the Scikit-learn toolkit (Pedregosa et al.,
2011) was included as well. However, since models turned out to reach their
best performance when trained on the original i-vectors, dimension reduction
will not be discussed any further. All remaining settings were either also kept
constant or ceased to be relevant for this work.

By rerunning the script, previously created models could be loaded, for
instance, in order to evaluate their performance on a subset of the data.

The main workings of the script shall be presented in the following sub-
sections.

4.2.1.1 Initializing Dataset

At first, a dataset object was created taking selected data, labels and par-
tition labels as input. In case only a subselection of data was supposed to

"This way the same pseudo-random numbers were generated. Given that data and
settings had not been changed, results from previous trainings could be replicated.
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be used in training, the dataset was reduced accordingly. Mean vectors for
speakers who had provided several recordings could be generated by collaps-
ing the data accordingly.

4.2.1.2 Preprocessing

With each round of the cross-validation, the selected training data were pre-
processed. They were normalised to zero mean and unit variance. Normalisa-
tion on the test data was performed using the mean and standard deviation of
the training data. Means and standard deviations from each cross-validation
round were saved for possible retesting of the models.

4.2.1.3 Training and Evaluation

The cross-validation was partly parallelised. Training, evaluation and saving
the models happened in separate processes. Each time a new graph was
created and each process made use of a deep copy of the dataset object.
However, each time a different partition was selected to serve as test data.

Settings regarding training were partially hardwired. Training was pre-
pared by setting weights to random numbers sampled from a normal distri-
bution with a standard deviation of 0.05. The optimisation algorithm was
set to Gradient Descent and the cost was defined as the mean cross entropy
after applying the softmax function to the output.

Training was implemented using two nested loops. The outer loop iterated
over epochs. With each epoch the learning rate was reduced depending on
the selected value for learning rate decay. With each step of the inner loop
the cost for the given training data was calculated and the network’s weights
were updated accordingly. If all training data were used per update (i.e., in
full batch learning), the inner loop consisted of just one step. More steps
were required if the training data were fed in smaller batches. Their number
then depended on the selected batch size.

For testing the network, data reserved for this task were fed into the net-
work. The class corresponding to the output node with the highest activation
was counted as prediction.

4.2.1.4 Saving Output

After training had finished, the remaining steps consisted of calculating a
mean confusion matrix from the confusion matrices of each cross-validation
round and finally saving all matrices.
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4.2.2 Dataset Class

For classification, a Dataset class was written with which data and labels were
handled. Asinput, it used before mentioned Numpy arrays. On initialisation,
parallel representations were created for labels as numeric arrays as well as
corresponding arrays of one-hot vectors. For cross-validation, all data and
labels belonging to one partition were stored as copies for testing and all
remaining data and labels were stored as copies for training. This was done
iteratively such that each partition was used once as testing set.

A selection of added features are introduced here. Some of these were
used in optimising the models and will be discussed in more detail below.

4.2.2.1 Subselections

The dataset could be reduced to a subselection if one or more boolean arrays
were provided indicating eligible data points.

4.2.2.2 Class Prior Probabilities

For each cross-validation round, prior probabilities were calculated based on
the frequency of class labels in the training data. An array was created
indicating the corresponding prior probability for each data point.

4.2.2.3 Mini-Batches

Training data could be returned in so-called mini-batches. Batches of the
desired size could be returned including corresponding labels and prior prob-
abilities. When using mini-batches, the class kept track of the number of
training iterations, i.e., it counted how many times the complete training
data had been returned. On each iteration the training data were reshuffled.

4.2.2.4 Balancing Training Data

It was possible to balance the training data such that there were the same
number of data points for each class. This was achieved by sampling training
data from each class based on the size of the smallest class. Sampling could
optionally be repeated on each training iteration such that eventually all data
would be used.® Given the requested batch size was a multiple of the number
of classes, it was then also possible to have fully balanced batches returned.
That is, in each batch there were the same number of data points per class.

8 Alternatively, smaller classes could be expanded to the size of the biggest class by
filling these with copies.
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4.2.2.5 Collapsing Data

Given a vector of additional labels, data points of the same label could be
collapsed to their average. For instance, one mean vector could be created
per speaker if she or he had provided several recordings. This option was
used in training all models which are presented below.

4.2.3 Hardware

The main scripts for this work (e.g., feature extraction and model training)
were computationally very demanding and could not have been run efficiently
on an average laptop. Therefore, it was necessary to run these on an external
computer cluster with sufficient processing power and random access mem-
ory. By courtesy of the Centre for Language Studies of Radboud University
Nijmegen, access was granted to the Equestria cluster °.

4.3 Optimisation

Whether a neural network gives any useful output highly depends on how it
has been trained. Especially with this project for which data were unbalanced
and often sparse for certain regions, finding the right parameter settings was
crucial. Several methods which potentially help to train the networks such
that they generalise well were repeatedly tested with different settings. In
4.2, these methods were introduced. In this section, it will be shown how
training was affected by applying these methods. The network’s output will
be evaluated on recall and precision. The former informs about the portion
of recordings belonging to one class which were correctly classified. Precision
refers to the portion of recordings predicted to belong to the same class which
actually are from that class.

If one wants to illustrate how different ways of training affect a network’s
performance, its architecture should, of course, not be changed between trials.
Generally, the most meaningful comparisons can often be made if one keeps
all but one parameter constant between trainings. More than 400 such trials
were conducted obeying this principle. However, it is virtually impossible to
train as many networks as there are different possible settings.

In this section, a small selection of models of before mentioned trials serve
to illustrate how different training methods affected performance. When
showing examples of networks the singular is used for simplicity. However,
this in fact refers to ten networks created during a cross-validation. Results

Yalso referred to as Ponyland
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always refer to average values of the output of all ten networks. For illustra-
tive purposes, exceptions are made when discussing the learning progress. In
that case the first model created during a cross-validation is used.

4.3.1 Learning Rate and Learning Rate Decay

The learning rate defines how much the network’s weights are changed with
each learning step. Fortunately, there usually are several learning rates which
will all enable a network to learn. Higher values result in faster learning.
However, if the learning rate is chosen too big, it will result in an increasing
error (Bengio, 2012). On the other hand, no learning may be observable
within the chosen number of epochs if the learning rate is too small.

When training a network on batches of data it is always necessary to
reduce the learning rate over time (Wilson & Martinez, 2003). Reducing
the learning rate has the consequence that weight updates become more and
more subtle. That way it can be achieved that a weight’s value approaches
the ideal value (true gradient) for the given data. Keeping the learning rate
constant would have the effect that weights oscillate around ideal values with
each update leading to either overshooting or undershooting. For this work,
the learning rate was reduced exponentially. After each epoch of training,
the learning rate was multiplied by a chosen factor < 1.

Figure 7 illustrates how different settings of initial learning rate and its
decay affected the final performance of a network trained with full batches
throughout 1000 epochs. In other words, one learning step was applied per
epoch using the entire training data. The figure shows that if the learning
rate is reduced to fast, the network does not learn enough to make correct
predictions. Reducing the learning rate by factors 0.95 and 0.995 led to
near random performance whereas the slowest decay resulted in somewhat
better performance. However, reducing the learning rate by factor 0.9995
over 1000 epochs meant that the last training step used a learning rate which
was still 60% of its initial value, which is potentially still too much. It is
therefore worth having a closer look at the best performing network, which
will be referred to as Model A. In order to track the networks performance
throughout training, the first model created during a cross-validation was
tested on the training and test data after each completed epoch. Figure
8 shows how much of the data were correctly classified. '© It shows that
updates still had a big effect towards the end of training. Moreover, it appears

ONote: All data were used for monitoring the training process. Since classes are un-
equally represented in the dataset the recognition rate always reflects especially the net-
work’s performance on bigger classes, i.e., it is not identical to the mean recall reported
elsewhere in the text.

23



15

O Model A

10

O Initial Learning Rate

H 0.75

O 05

@ 01

o H 0.05
I I I

0.95 0.995 0.9995

Learning Rate Decay

Mean Recall in %

Figure 7: Mean recall of classification networks trained with full batches. The
dotted line indicates random performance, which is equivalent to correctly
classifying one out of twelve samples.

that a prolonged training would create a better fit. This, however, was not
favoured as one cross-validation of a network trained with full batches already
took about six hours to complete.

A quick look at Model A’s precision and recall per class (Figure 9 )
reveals yet another problem. It is not just that recognition is overall poor.
In fact, several classes are entirely ignored. The network especially zooms in
to classes for which there are more recordings available (compare with Figure
2 above).

Due to these performance issues, however, especially due to the fact that
training was extremely slow, training with full batches was abandoned.

4.3.2 Training with Mini-Batches

Faster training was possible using so-called mini-batches which also lead to
more meaningful results. This way of training differs from the above in that
instead of using the entire training data per learning step, only a random
sample is used. Sampling happens without replacement. One epoch consists
of several learning steps and is completed as soon as the entire training data
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Figure 8: Accuracy of Model A during training with full batches. The recog-

nition rate indicates correct classifications of all training and all test data.
This refers to the first out of ten models trained during a cross-validation.

have been used once.!* In training Model B, batches consisting of 36 i-vectors
were used. The initial learning rate was set to 0.5 and reduced by a factor
of 0.99. This faster reduction of the learning rate was found to work since
training progressed faster in comparison to training with full batches, i.e.,
more learning steps were made per epoch.

On average, Model B was able to correctly classify 12.68% of the test data
with a precision of 12.90%. The mean recall was similar to that of Model
A. However, Model B did not ignore entire classes. A previously observed
problem remained. Bigger classes were still dominant. Section 4.3.4 will
show different techniques which were applied to deal with this issue.

A special case of training with mini-batches is on-line training in which
batches of just one data point are used. Consequently, one epoch consists of
as many learning steps as there are data points. Bengio (2012) lists a number
of advantages of this approach over batch learning. The strongest argument
is that faster convergence is achieved with on-line learning.

Indeed, this way of training allowed for reducing the number of epochs
to less than a third of those 1000 epochs used otherwise and even slightly
improved accuracy. In practice, however, the overall increased number of
learning steps resulted in much longer training. Nevertheless, it was decided
to train all subsequent models in this manner (i.e., Models C - G).

The observed increase in training duration, however, should not be inter-

1Tn practice, an epoch was counted as completed if not enough training data were left
making up the selected batch size.
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Figure 9: Precision and recall of Model A.

preted to disprove Bengio (2012). It can merely be attributed to how training
was implemented.!?

4.3.3 Dropout

Figure 11 shows Model B’s ability to classify training and test data after each
of the first 200 epochs. It reveals a major problem which is often encountered
when working with neural networks which is over-fitting. At the beginning
of training, the network improved on both training and test data. However,
while the network continued to improve on the former as far as making perfect
predictions, the network showed no improvement when test data were used.
Quite opposite, it even became somewhat worse. In other words, the network
badly generalised.

According to Hinton, Srivastava, Krizhevsky, Sutskever, and Salakhut-
dinov (2012), over-fitting happens if training data are sparse and a network
has enough hidden neurons which allow to perfectly model training data with
many different settings. Their proposed technique for reducing over-fitting,
which is commonly referred to as dropout, prevents complex co-adaptations
on the training data. This works by randomly omitting a selected number

12The actual training happened within the TensorFlow graph, which could be expected
to proceed as efficient and fast as it is currently state of the art. This includes estimating
the gradient from batches of data, which becomes computationally more demanding with
larger batches. However, data were fed into the graph from outside. It is presumably these
feeding steps (including retrieving data from the dataset) which delayed computation.
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Figure 10: Precision and recall of Model B.

of hidden neurons during training. With each new learning step, previously
omitted neurons are recovered and a different random selection is made for
omission. This is often compared to training a large number of networks and
using their average results in prediction. However, dropout requires much
less computation.

In practice, dropout was applied to the last hidden layer. Figure 12
shows the accuracy of Model B* during training again. It was trained as
before except for making use of dropout and training with the same number
of i-vectors per class (see 4.3.4)'3. The dropout rate was set to 0.25, which
is equivalent to the probability of a neuron to be kept during training. In
contrast to Model B (see Figure 11), the network kept improving on both
training and test data.

4.3.4 Prior Class Probabilities

The output of above mentioned networks Model A and B indicates that both
had more difficulties with correctly classifying data from smaller classes. In
theory, this could be due to these data being less discernible. This would
imply that the correlation of class size and the network’s abilities was mere
coincidence. An alternative explanation, however, would be that the net-
works had more difficulties with learning from smaller classes. The former
explanation would imply that nothing can be done to alleviate the problem

13 Applying dropout to Model B without accounting for different prior class probabilities
just delayed over-fitting.
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Figure 11: Accuracy of Model B. Of a total of 1000 epochs, the first 200 are
shown. The recognition rate indicates correct classifications of all training
and all test data. This refers to the first out of ten models trained during a
cross-validation.
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Figure 12: Accuracy of Model B* with applied dropout. The recognition

rate indicates correct classifications of all training and all test data. This
refers to the first out of ten models trained during a cross-validation.

within the limits of the available dataset. The latter explanation, however,
corresponds to a phenomenon which has repeatedly been observed and for
which there are solutions. In Lawrence, Burns, Back, Tsoi, and Giles (1998)
a number of such measures are discussed. The following subsections will
shortly introduce some of these and their application.

Apart from purely improving the model, there is another good reason
for aiming at avoiding varying class prior probabilities to influence training.
When a model for accent location is evaluated one is usually interested in
knowing how well a model is at actually detecting an accent purely based
on the input. If, however, predictions about class membership of some data
are conflated with the classes prior probabilities, one may draw incorrect
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conclusions about a models detection ability. That is, one may confuse the
latter with the model’s acquired knowledge about demographics.

4.3.4.1 Subsampling

In order to achieve that all classes are represented evenly in the training
data, one may choose to reduce data of each class to the size of the smallest
one. With the exception of the latter, each class is represented by a smaller
sample. If this is just done once before training, this method implies data
loss.

Similarly, classes of equal size can be created by expanding all classes
to the size of the biggest class. This can be achieved by adding sampled
duplicates. Its advantage is that no data is lost. In trials, this method led
to similar results as repeated subsampling (see 4.3.4.3 below)

4.3.4.2 Probabilistic Sampling

Probabilistic sampling is another method which works by changing the input
of training data. It is defined by Lawrence et al. (1998) as a loop randomly
selecting one class followed by random selection of one data point.

4.3.4.3 Repeated Subsampling

What is called repeated subsampling here is an own approach which can
be considered as a combination of the previous two methods. It involves
repeating subsampling after each completion of an epoch (see implementation
in 4.2.2). A reduced dataset is used per epoch. However, over several epochs
this does not result in data loss.

Model C was trained in that manner, which had the desired effect as Fig-
ure 13 shows. Furthermore, this model was trained throughout 300 epochs
in on-line manner (mini-batches of size 1). The initial learning rate was set
to 0.0075, learning rate decay to 0.99 and dropout to 0.90. With the excep-
tion of learning rate decay these settings were also applied to all following
classification models.

In combination with before mentioned dropout, mean recall and precision
reach 17.83% and 15.97% respectively.

4.3.4.4 Post Scaling

When using post scaling networks can be trained as usual. Instead of ma-
nipulating the training data it requires the network’s output to be corrected.
In practice, the output neurons’ activations are divided by the corresponding
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Figure 13: Precision and recall of Model C.

class probabilities. This results in activations of neurons corresponding to
smaller classes to increase. In practice, this only works if activations do not
differ too extremely. In other words, the network needs to have learned about
all classes at least to a certain degree. For instance, Model A is such an ex-
treme case where neurons of the smallest classes were barely activated such
that they would keep being ignored if one applied post scaling (see Figure
9).

4.3.4.5 Prior Scaling

Prior scaling affects weight updates during training. This was implemented
by increasing the cost for data points from small classes. In principle, one
can just divide the cost by the according class prior probability. However,
in this simple form where probabilities are numbers between 0 and 1, the
overall cost becomes inflated as in fact all cost values end up as multiples of
their previous values. Therefore, the prior probabilities were scaled to mean
1. Consequently, the cost for data from smaller and bigger classes became
increased and decreased respectively.

This approach turned out to be successful with respect to smaller classes.
However, the results were neither ideal since recognition rates for bigger
classes dropped considerably. Lawrence et al. (1998) point out that prior
scaling may be even more successful if its scaling factor is between 0 and
1, i.e., no prior scaling and full scaling. Scaling with factors other than
these two extremes was implemented by multiplying the fully scaled cost by
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the scaling factor and adding the non-scaled cost multiplied by 1 minus the
scaling factor. Model D made use of prior scaling. The approximately ideal
scaling factor was found to be 0.95. In contrast to Model C, all training data
were used per epoch. Therefore, the learning rate decay was set to 0.95.
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Figure 1/: Precision and recall of Model D.

Model D’s mean values for recall and precision are 17.84% and 16.07%
respectively. Overall, the performance of this model and Model C are almost
identical.

4.3.5 Training with Selections of Data
4.3.5.1 Gender-Dependent Models

In speech recognition, systems have been shown to perform better when
gender-dependent models are used (e.g., Woodland, Odell, Valtchev, and
Young (1994)). The principal component analysis in 3.3 has shown that
gender accounts for a main part of the variation in the i-vectors. However,
this variation does not help with the accent location task. The question is
whether as in speech recognition it is a nuisance factor. In that case, using
separate models can be expected to show better performance.

Before this approach could be tested, another problem had to be solved
which is that 39% of the participants did not state their gender (see 2.2.3).
In order to avoid data loss, labels indicating whether a recording belonged
to a female or male speaker had to be generated. This was achieved by first
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training a neural network '* on the data of those participants for whom this
information was available. It was able to correctly classify 97.6% of the data
in a cross-validation.

The gender-dependent models were trained with the same settings as
Model C. However, both performed worse. Recall and precision for the model
trained on i-vectors labelled as corresponding to females were 15.97% and
14.67%. These values were even lower for the male model with 15.23% recall
and 13.38% precision.

Training separate models has the disadvantage that only about half of the
data can be used for each of the two models. If at all variation attributed to
gender is actually problematic for accent location, the disadvantage of having
to use two reduced datasets did not justify training separate models.

4.3.5.2 Discarding Unaccented Data

Data which show no characteristics of their own class are problematic in
training models for classification. In practice, recordings of speakers of stan-
dard Dutch are of little use in modelling local accents. In fact, they lead to
more confusable classes and subsequently to worse results.

Judgements on the degree of accentedness were available for almost all
participants. As was discussed in more detail in 2.3.1, these were not neces-
sarily reliable.

Several models were trained using training data corresponding to an ac-
centedness rating above a selected threshold. Whether discarding suppos-
edly unaccented data resulted in overall better performance depended on the
method used accounting for different prior class probabilities. The biggest
improvement was observed when Model C was retrained on data with an
accentedness rating above 1.5. Recall improved by 0.19% and precision by
0.38% to 18.02% and 16.35%. In training Model C, repeated subsampling
was applied. However, no sub-selection of training data could be found which
would result in Model D, which made use of prior scaling, to show a better
performance.

It could not be established whether the small improvement in Model C

1 The model for gender classification was trained over 1000 epochs on mini-batches of
100 i-vectors applying repeated subsampling. Initial learning rate and learning rate decay
were set to 0.7 and 0.99 respectively.
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was actually due to using supposedly more meaningful training data.!> If
that was the case, it would need to be explained why the same approach
failed with regard to Model D. Since there appeared to be little to gain from
removing data based on accentedness ratings, this approach was deemed
unsuccessful.

4.4 Alternative Classes

The first attempts at classifying accents as presented above made use of
provinces as labels, i.e., models were built to return a participant’s province
given some speech. At first, the assumption that provinces have their corre-
sponding accents may seem justified. For instance, this seems to hold true
for the southern province Limburg, which has its own dialect called Lim-
burgs. However, a valid objection is that borders of provinces have not been
established based on how people speak but on politics. Figure 15 shows a
mapping of Dutch dialects and provinces. The two rarely coincide. In fact,
this is also true for the before mentioned dialect Limburgs, which corresponds
to the red area covering both Dutch and Belgian territory.

Concluding that provinces are unlikely the best class labels it was at-
tempted to find more suitable ones. It would suggest itself to simply rely
on a mapping such as that by Daan and Blok (1969). However, with the
available data, this would be unlikely to work well. Some accents would have
to be modelled based on utterances of just too few people. This could only
be alleviated by grouping the affected accents.

4.4.1 Clustering: Finding Divisions in the Population Distribu-
tion

Any division of the country into accent regions defined by strict boundaries
will require some abstraction. Overall, accents do not change as abruptly
as boundaries imply. Two speakers of neighbouring regions living close to

15 A possible, however, untested explanation regards randomness. In training Model
C, removing training data also influenced sub-sampling. In order to be able to replicate
trials, randomness was controlled for by reusing the same seed. However, if some data
were removed from a set, there was no guarantee that of the remaining data the same
data points would end up being selected again. For instance, if the pseudo-random rule
for sampling from some data points (e.g., A,B,C,D) includes always selecting the third
item and a preceding item is removed in another trial, two different items will be selected
in both trials (C and D).

In order to test whether the improvement of Model C was due to this issue, one would
need to cross-validate all models with several different seeds and average over their out-
come.
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Figure 15: Dutch dialect map according to Daan and Blok (1969) (Map
created using Kaart package (2013) )

the shared border will often have similar accents. These similarities may be
even stronger than those between these speakers and their regions’ average
accents. A recording of such a person will then be ambiguous for a classifier
or human listener since it will appear equally likely to correspond to an accent
of either of the two neighbouring regions.

Following this reasoning, new classes were created taking the population
distribution (or rather participant distribution) into account. It was aimed
at finding class boundaries along which the population density is low and
thereby reduce the number of before mentioned ambiguous cases.

New classes were generated by taking the participants’ locations and ap-
plying K-means clustering. Several locations were chosen as initial class
centres (centroids). For each participant’s location, the algorithm checked
which would be the closest centroid. Locations of several participants were
assigned to their closest centroids resulting in temporary classes. The cen-
troids’ locations were then recalculated such that they represented the mean
locations of their assigned participants. After that, this process started again
with each participant being newly assigned to its closest centroid and cen-
troids being moved subsequently. These steps were repeated until no changes
in assigning participants nor the location of the centroids occurred.

To illustrate how this approach differs from using provinces as classes,
twelve new classes were created using the locations of the biggest cities of each
province as initial centroids. The resulting clusters resembled agglomerations
in a very broad sense.

As Figure 16 shows, the newly generated classes represent compacter
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Figure 16: Locations of participants coloured according to class membership.
Bigger dots mark the average locations (centroids) per class. Agglomerations
are named after the centroids’ locations previous to clustering. (These and
all subsequent maps have been created using tmap (Tennekes, 2016).)

regions. Boundaries between two classes always form a straight line. (Com-
pare, for instance, the borders of provinces Utrecht and Gelderland to those
between agglomerations Utrecht and Nijmegen.) Furthermore, boundaries
between two classes are drawn in places where the population density is
comparably low. Although clusters are merely based on participants’ loca-
tions they would likely correspond to clusters based on the actual population
distribution. At least this would match with 2.2.1, where it was observed
that the number of participants per province correlated with the provinces’
populations.

The disadvantage of this approach is its blindness to geography. This
becomes especially apparent with regard to the mapping of participants be-
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longing to Leeuwarden. Furthermore, the way the clustering was initialised
led to results which are not necessarily optimal since it still implies some de-
pendence on provinces. Initializing the clustering with the provinces’ biggest
cities as centroids was merely done in order to be able to directly compare
previously used provinces to newly generated classes. One may alternatively
initialise the clustering with random centroids. This leads to clusters which
are fully independent of any pre-existing division. However, this also leads
to different clusters on each repetition which are neither always optimal.

4.4.2 Repeated Clustering

The solution found to the problem described above involved repeated cluster-
ing with a larger number of centroids and iteratively removing the centroids
attracting the smallest number of points. Initial centroids corresponded to
evenly spaced locations on the map whose number was a multiple of the de-
sired classes. An outer loop was added to the algorithm described above.
With each iteration, clustering proceeded as above. After convergence, the
centroid attracting the fewest points was dropped and the remaining cen-
troids were used in the next iteration. These steps were repeated until reach-
ing the desired number of classes.
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Figure 17: Clusters emerging from repeated K-means clustering whereby
after each convergence the centroid of the smallest cluster is removed. Larger
bubbles indicate the centroids’ locations.

Figure 17 shows two intermediate states and the final state of the clus-
tering. The result, represented by 17c, is a clustering which entirely relies on
the participant distribution.
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4.4.3 Manually Corrected Clusters

Taking the history of the country, the literature about its dialects as well
as the intermediate results above into consideration, it was decided to dis-
solve one cluster and force the creation of a new one at a different location.
The cluster in question largely corresponded to the region around Almere
which is also rather close to Utrecht and Amsterdam (compare with Figure
16). Flevoland, of which Almere is the biggest city, is the newest province
of the Netherlands. At the time Daan and Blok (1969) mapped Dutch di-
alects, only a small island in its north could be included. These days, the
province is occasionally subject of research on emerging accents. However,
accents spoken in Flevoland cannot be expected to be very distinct from its
neighbouring accents. In fact, the intermediate results above show the worst
precision and recall for this province. Due to its small population no cluster
‘survived” which would correspond to Zeeland in the south-west of the coun-
try. A centroid corresponding to its biggest city was added to the remaining
eleven centroids and a simple K-means clustering was performed again.
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Figure 18: New classes resulting from repeated K-means clustering and some
manual corrections.

The resulting clusters were subsequently compared to the dialect regions
established by Daan and Blok (1969). Clusters were named after the dialect
regions they best represented. In Daan and Blok, the region corresponding to
Zuidhollands stretches out more to the north and also includes Amsterdam.
However, separating the northern part and labelling it after the city dialect
Amsterdams can be justified by the clustering results and the fact that this
region is best represented in the dataset.
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4.5 Results

The final classification results refer to the output of Model E which made
use of the new classes defined above. It was trained just like its predecessor
Model D.

Gronings  —— o
Fries [ ] Precision
Overijssels e
Twents E——— B Recall
Westfries —
Zuidgelders '
Utrechts m—
Amsterdams  ———
Zuidhollands "
Zeeuws i
Noordbrabants ————
Limburgs

1
0 20 40 60 80 100
%

Figure 19: Precision and recall of Model E.

Overall, the model showed the best performance with an average recall
of 18.11% and a precision of 16.83%. In contrast to all preceding models,
all classes reached a recall exceeding the value corresponding to random
performance, i.e., 8.34%. As figure 19 shows, there was also less variation in
performance with regard to different classes. (Recall per class had a standard
deviation of 7.54% whereas the second best model reached 9.07%.)

Still despite all efforts made for optimizing training and finding more
suitable classes, the results clearly show that the vast majority of recordings
could not be classified correctly. The confusion matrix (Table 1) shows that
there were examples of all possible ways of misclassification. However, it also
shows that recordings were more likely to be classified to correspond to a
neighbouring region. A positive correlation was found between the number
of false positives per accent and whether accents were neighbouring or not,
r(130) = .41, p < .001. The following section will in part address the question
how this observation can be exploited.
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Table 1: Confusion matriz for Model E. Rows indicate the accents to which
the recordings actually correspond. Columns indicate the accent as which a
recording was classified.
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G) 28 11 13 12 5 15 11 14 10 13 5
F) 12 215 7 16 10 6 9 7 8 4
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5 Accent Location as a Regression Problem

A potentially more precise approach to accent location will be introduced in
this section. In changing the task to a regression problem, predictions refer
to precise locations expressed by coordinates.

In the classification networks above, the output layer consisted of twelve
neurons of which each neuron was associated with one class. In prediction,
a recording was said to belong to the class for which the corresponding neu-
ron showed the highest activation. Consequently, all remaining output was
ignored even if another neuron showed similarly high activation. Given the
apparently highly confusable data, there were many such border cases in
which one class would win over another class by a marginal difference. In
general, a classification does not account for gradual changes between classes.
Therefore, these types of models are not good at representing the continuous
aspects of accents. This problem can be solved if instead of regions precise
locations are predicted by a model.

This section first deals with how the output of the classification model
can be used to approximate a speaker’s coordinates. Moving on to building a
new regression model trained on i-vectors and coordinates, necessary changes
to the network’s architecture and training are introduced.
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5.1 Reinterpretation of Classification Model’s Output

A first attempt at locating accents in a continuum involved using all output
of the classification model. By applying the softmax function to the output
layer of the network, the converted output could be interpreted as a prob-
ability distribution. In other words, the output was changed such that it
represented the probability of a recording to correspond to each class. Very
low probabilities were regarded as little meaningful. In order to lower their
impact, the probability distribution was smoothed accordingly. Smoothing
was implemented by taking the square of the probability distribution and
subsequent rescaling to its previous range (0-1).

Classes were reinterpreted as representing locations instead of regions.
Each class got assigned the coordinates of its centre. A prediction was made
by multiplying all centre coordinates by their according probabilities and
taking the sum of these values. For instance, if the probability distribution
showed a value of 0.5 for Utrechts as well as for Amsterdams and all other
classes being zero, the recording was predicted to correspond to a location
situated exactly between the two accent regions’ centres.
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Figure 20: Predicted locations generated from output of Model E. Colouring
corresponds to the actual accent region. Larger bubbles indicate the average
predicted location per accent.

Figure 20 shows the predicted locations generated by applying this ap-
proach to Model E. Obviously, most recordings were predicted to correspond
to locations between the classes’ centres. Although the output reflected grad-
ual differences between recordings of different accents, it was by definition
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unable to predict locations of all speakers correctly. The reason for this was
that the coordinates could be predicted only for an area limited by the class
centres’ locations, which did not cover the entire country. One could alleviate
this issue by shifting the outer centres to the borders of the country. This
would allow for a wider range of locations to be predicted. However, this
would doubtfully make predictions more correct. Samples which are good
representatives of their class would eventually be predicted to correspond to
locations at these borders. Instead, it was decided to create networks which
would be able to directly predict coordinates without considering any class
membership during training.

5.2 A Regression Neural Network for Predicting Co-
ordinates

In order to create a regression neural network which outputs corresponding
coordinates for a given i-vector, the network’s design had to be changed to
include an output layer consisting of just two neurons. These corresponded
to latitude and longitude. Consequently, the networks were then trained
on i-vectors and latitudes and longitudes corresponding to the participants’
locations. The cost function was initially redefined as the absolute difference
between actual and predicted coordinates.

5.3 Optimisation

Training was conducted with similar settings to those considered optimal
for classification. As before, on-line training was applied throughout 300
epochs. The initial learning rate and its decay were set to 0.001 and 0.99
respectively. Since the regression networks were more prone to over-fitting it
was necessary to lower the dropout rate to 0.4. Previously taken measures
dealing with different class prior probabilities were, however, not applicable.

The first regression network Model F which was trained in that manner,
however, turned out to make poor predictions. As Figure 21 illustrates, it
predicted coordinates close to the demographical centre of the country for
most of the data. Logically, it performed extremely well when tested on data
from speakers who happened to come from that region. On average, the
predicted locations were less than 12 kilometres away from the centre. In
other words, the model had learned little beyond the average location of all
training data.

A closer look at how such a network learns reveals what caused this
behaviour. During training, the cost function calculates the difference be-
tween the actual coordinates of a sample and those predicted by the model.
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Figure 21: Predicted locations of Model F.

Weights are then adapted such that this difference is reduced. The biggest
possible discrepancy between the predicted and actual location of a sample
corresponds to the longest distance within the country. However, a network
which has learned to return the mean of all coordinates roughly cuts this er-
ror in half. Learning the centre coordinates does not require the network to
discover any relationships between the i-vectors and their coordinates. This
performance could theoretically be achieved even if i-vectors consisted of just
random numbers. However, actual learning is required for the network to be
able to predict coordinates which are closer to the target. As it turned out
the model failed in learning to predict locations beyond the small stretch
around the centre. What helped to alleviate this problem was to square the
cost.

Further improvements were achieved by stressing those training samples
which had previously been shown to be more predictable and lowering the
importance of more confusable samples. Each i-vector was assigned a score
ranging from 0 to 2 with a higher score indicating better predictability. In
training, the cost was multiplied by these scores. Thereby, the network
learned more from committed errors on data which were more representa-
tive of a certain region. The scores were calculated based on the results of
Model E as presented in 5.1. Distances were measured between actual and
predicted locations, scaled to range (0-2) and subtracted from 2.1 Although
this approach involved adapting training based on the outcome of a previous

16 Tn fact, scaling was separately performed per accent class in order to avoid biasing
scores to be higher for locations in the centre.
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model this did not constitute a mix-up of training and test data.

5.4 Results
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Figure 22: Predicted locations of Model G.

Figure 22 shows locations predicted by Model G, the final regression
model. Those are mostly scattered around the centre and largely overlap
for all accent regions. However, a look at the mean predicted locations also
shows that most of these approach the actual centroids to some degree.

As a measure to evaluate a regression model for locations, van Leeuwen
and Orr (2016) propose to use the distance between a predicted location and
the actual location. For comparison, the distances between actual locations
and the centre'” were also measured. Taking these two measures allowed to
state how the model differed in performance from just making an educated
guess purely based on the mean coordinates of all training data.

This also made it possible to assess whether the predicted coordinates
merely correspond to locations randomly scattered around the centre or
whether they refer to locations closer to the targets. In order to do so, a
Wilcoxon signed-rank test was conducted comparing the two measures. The
predicted locations were found to be significantly closer to their targets (Mdn
= 57.49 km) compared to the distances between centre and targets (Mdn =
60.34 km) , p < .001, r = -0.07. Comparing means, predicted locations and
targets were 63.40 km apart (SD = 36.59 km) whereas the mean distance

1"Here, the centre is defined as the average location of all training data.
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between centre and targets amounted to 66.67 km (SD = 37.15 km). In other
words, the model was able to predict locations which were on average 3.29
km closer to their targets.

However, it should be noted that the reported mean improvement is
very conservative. As mentioned above, the number of recordings per re-
gion largely differed. Those for which the most data were available were also
among those for which the model showed the worst performance (see Table
2). Averaging over the twelve accent regions, the model’s prediction were
6.46 km closer to the target than the centre.

A post-hoc analysis was performed consisting of dependent-samples ¢ tests
for each of the twelve accent regions. The significance level was lowered from
a =.05to a = .00417 by applying Bonferroni correction. The analysis showed
that the model’s predictions were significantly better than random for par-
ticipants of just five of the twelve accent regions. For Utrechts, predictions
were found to be significantly worse.
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Table 2: Mean distances in km between predicted and actual locations as well as between the demographic centre
and actual locations. Negative differences between these values indicate that the model’s predictions were on average
closer to the target than the centre. Results of t tests comparing these two measures for participants of each subgroup
are shown in the right-hand column. Asterisks indicate significant results for o = .00417

Accent Distance between  Distance between Difference Post-Hoc t test  p value
Prediction and Target Centre and Target
Gronings 119.13 139.90 -20.77  t(145) = -6.43, < .001*
Fries 95.24 115.57 -20.33  t(113) = -6.47, < .001*
Overijssels 66.27 59.45 6.83 t(111) = 2.49, 014
Twents 80.56 95.68 -15.12 t(95) = -6.75, < .001*
Westfries 65.81 72.41 -6.60 t(83) = -2.52 014
Zuidgelders 49.38 46.37 3.01 t(217) = 2.15, .032
Utrechts 33.93 15.85 18.08 (300) = 15.73, < .001*
Amsterdams 46.67 45.10 1.57 t(280) = 1.17, 244
Zuidhollands 59.89 61.04 -1.15  t(384) = -0.86, .388
Zeeuws 116.87 116.27 0.59 t(68) = 0.17, .866
Noordbrabants 55.32 63.95 -8.63  t(248) = -4.66, < .001*
Limburgs 81.40 116.38 -34.97 t(130) = -14.16, < .001*




6 Comparison with Human Performance

The classification and regression models have so far only been assessed by
contrasting their output with random performance. These comparisons suf-
fice to answer the question whether the models actually are able to make any
meaningful predictions. However, they are less suitable to assess how well
they fare at this task. As mentioned in 2.3.2; location judgements were avail-
able for a part of the participants. These were elicited by the smart phone
application by playing recordings to other participants and asking them to
indicate the speaker’s location on a map. In other words, participants had a
similar task to what was attempted computationally.

In this section, these human judgements on some of the participants’
recordings are compared to corresponding predictions of the classification and
regression models. First, it is discussed how human listeners differ from the
models in how both deduce someone’s accent. This is followed by contrasting
human judgements to predictions of the classification model and finally to
those of the regression model.

6.1 Human versus Computer Perception of Accents

While participants could make judgements based on the unaltered audio
recordings the input used in training and testing the models differed con-
siderably. The i-vectors with which the models were trained were based on
down sampled audio data cut into many short frames of just 25 milliseconds.
That means any cue about a speakers local accent which could not be ex-
pressed within the time frame of these short samples was lost. The duration
of vowels and consonants is often sufficiently short to be covered entirely by
such a sample. Syllables, however, will most often be too long. Consequently,
the models should be expected to be blind to differences in phonotactics and
prosody. Human listeners, however, can also make use of all available cues
beyond the phone level. That, for instance, includes observing differences
in consonant clusters. The participants may have noticed differences with
respect to the frequency of schwa insertion, which is a phenomenon more
common in the south of the country (Swerts, Kloots, Gillis, & De Schutter,
2001). They may also have noticed differences in intonation and theoreti-
cally even have exploited lexical differences when trying to guess a speakers
location. Although, such cues were expected to be scarce given the relative
shortness of the recordings. Another advantage for human listeners is that
they must have been exposed to far more speech throughout their lives than
what has been recorded for this project. Having access to the full amount
of information of a recording as well as being experienced with different ac-
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cents potentially enables humans to make better predictions than the models
presented below. However, most of the participants can be expected to not
have been explicitly trained to recognise local accents. Their exposure to
different accents is unlikely to have been even. At its worst, however, par-
ticipants should still have been good at detecting whether someones accent
was similar or different to their own.

In sum, the question is whether one should expect participants to outper-
form the models presented here because recordings were made available in
their original form including all cues about the speakers’ locations or whether
models explicitly trained for accent location show a better performance.

Previously, it has been shown that it is possible to train models which
can outperform humans when given the tasks of language accent classifica-
tion. For instance, Arslan and Hansen (1996) used Hidden Markov Models
to model sequences of phonemes of (foreign) accented and unaccented Amer-
ican English. Comparing their performance to human listeners, the model
correctly classified 68.8% whereas human listeners on average were able to
correctly classify just 52% of the used word list. The authors point out indi-
vidual differences in listeners’ performance. Of those, two were still slightly
better at this task than the model. Model and listener performance was
reported to be similar when given the task of deciding whether a word was
accented or not, i.e., accent detection. In a more recent dissertation by
Hanani (2012), different models are compared to human listeners in how well
they can classify British accents. The most basic acoustic model (GMM-
UBM) performed just slightly better than human listeners given samples of
30-45s length. Model and listeners correctly classified 60.2% and 58.24%
respectively. However, when phone sequences were modelled performance
improved by more than 20%. From these results, it can be concluded that
the models presented above should perform at least as good as humans pro-
vided that there are no technical issues.

A fair comparison requires that human judgements and the model’s pre-
dictions refer to recordings of the same people. Therefore, the output of
the final models is presented again showing only predictions for those 897
speakers whose locations were also guessed by other participants. However,
it cannot be guaranteed that exactly the same set of recordings was used.
Human judgements were considered only for recordings deemed the most in-
formative. There should be a large overlap with recordings used in prediction.
However, some bias towards better human performance can be expected (see
also: footnote 5 in 2.3.2).
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6.2 Classification

Van Leeuwen and Orr (2016) argue that human perception of accents is more
comparable to a classification task. However, participants were not explicitly
asked to classify accents of fellow participants (e.g by choosing a label from
a list of accents). Instead, they were asked to guess corresponding locations
which were then registered as coordinates. In order to compare these with
the output of the classification model, coordinates had to be matched with
corresponding accent labels. For participants whose location was guessed
more often than once by the same listener, mean coordinates were calculated.

Table 3: Confusion matriz for classifications based on guessed locations of
fellow participants. Rows indicate the accents to which the recordings actually
correspond. Columns indicate the accent as which a recording was classified.

G F O T WFZGU A ZHZ NBL
Gronings (G) 13 5 19 8 3 13 34 24 28 1 5 2
Fries(F) 5 5 11 2 1 7 16 6 12 1 5 0
Overijssels (O) 1 0 11 6 5 4 28 21 14 0 5 O
Twents (T) 3 2 8 5 2 5 137 4 0 7 1
Westfries(WF) 1 0 9 0 7 2 12 19 14 1 2 0
Zuidgelders (ZG) 1 2 12 5 4 26 32 21 25 2 31 6
Utrechts (U) 7 3 23 2 9 30 11262 8 2 22 2
Amsterdams (A) 6 3 29 5 14 23 82 66 57 3 12 2
Zuidhollands (ZH) 3 0 29 6 5 24 97 66 1177 15 3
Zeeuws (Z) 0 1 4 0 1 6 8 5 9 2 8 2
Noordbrabants (NB) 0 2 8 2 1 31 34 21 34 2 76 21
Limburgs (L) 1 0 1 2 0 11 8 2 3 0 24 26

Overall, the participant’s location judgements are equivalent to a mean
recall of 18.06% and a precision of 21.51%. With 16.94%, Model E reached
a somewhat lower mean recall when tested on recordings of the same par-
ticipants. The mean precision of 15.64%, however, is considerably lower in
comparison to human performance.

Human guesses differed from the model’s predictions in that there was
a clear preference for those locations with the highest population densities.
What is striking is that more than half of all participants were guessed to
have either an Utrechts, Amsterdams or Zuidhollands accent. At the same
time, speakers were rarely considered to come from regions corresponding to
Gronings, Fries, Twents or Zeeuws. This pattern may reflect the participants’
knowledge about Dutch demographics. In other words, participants may
have based their guesses on both the perceived accent as well as the prior
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probabilities for speakers to stem from a different regions. The classification
model, however, was explicitly trained such that it would not include different
class prior probabilities in prediction.
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(a) Precision and recall based on guesses by fellow participants.
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(b) Precision and recall of Model E tested on the same subset of recordings.

Figure 23: Precision and recall for accents guessed by fellow participants and
predicted by Model E.

In summary, the participants and the classification Model were similarly
likely to match a recording with the correct class. However, given a number
of recordings which all had been classified as the same accent, the proportion
of those to be correct was on average higher for participant’s guesses.
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6.3 Regression

The participants’ task of guessing a fellow participant’s location can be more
directly compared with the regression model. This is also considered more
suitable since it is unknown whether the results as presented above would
have been the same if instead of pointing at a location the participants had
been asked to select a suitable accent from a list. By allowing participants to
freely point at any location on the map, they were not forced to select just
one region. If they considered a fellow participant’s accent to show features
of different regional accents, they could also select the point in between those
regions.

@ Gronings

@ Fries

O Overijssels
O Twents

@ Westfries

@ Zuidgelders
O Utrechts

@ Amsterdams
@ Zuidhollands
@ Zeeuws

@ Noordbrabants
@ Limburgs

(a) Locations as guessed by fellow participants.
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(b) Predicted locations by Model G.

Figure 24: Participants’ locations according to fellow participants’ guesses
and predictions of regression Model G

Figure 24 shows guessed locations as well as Model G’s predicted locations
for the same group of participants. Guessed locations were visibly more
spread than predicted ones. The former were on average placed 49.14 km
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off the centre whereas the latter were on average much closer with 34.15 km.
However, both were similar in that predictions and guesses largely overlapped
with regard to the speakers’ accent regions.
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Figure 25: Mean distances between speaker’s actual locations and their lo-
cations according to guesses by fellow participants and predictions of Model
G. Error bars indicate £ SEM

A quite similar pattern can be observed considering the distances of both
guesses and predictions to the actual locations of the speakers. As Figure 25
shows, guessed and predicted locations were closer to their targets if these
were located near the centre of the country. Furthermore, humans appear
to outperform the model when guessing the location of speakers of Zuid-
hollands, Zeeuws and Limburgs. However, the model’s predictions were on
average closer or equally close to their targets with regard to speakers from
the remaining accent regions. In other words, differences between human
guesses and the model’s predictions seem to depend on the accent region to
which speakers belonged. This was tested by performing a factorial ANOVA.
However, instead of taking the absolute distance between target and predic-
tion (or guess) as a measure of performance, only improvement over taking
the location of the demographic centre as prediction for all speakers (a mea-
sure introduced in 5.4) was used. That is, the ANOVA was conducted to
compare the main effects of prediction type (model prediction, human guess)
and accent region as well as the interaction of these two on improvement
over predicting the centre location. The main effect of prediction type on
improvement was significant, F'(1,2843) = 4.77 ,p = .029. There was also a
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significant main effect of accent region on improvement, F'(11, 2843) = 47.52,
p < .001. The interaction effect between prediction type and accent region
was significant as well, F'(11, 2843) = 4.11, p < .001. This suggests that
the improvements regarding speakers of different accent regions were differ-
ently affected by whether predictions were made by the model or a fellow

participant.

Table 4: FEstimated coefficients of the linear model.

interaction terms.

Colons are used for

Estimate  Std. ¢ value p value
Error

(Intercept) -8.04 1.92  -4.18 <.001 *k*
pred. MODEL 7.56  3.46 2.18 .029 *
Fries 10.52  4.37 2.41 016 *
Gronings 16.76  3.29 5.09  <.001 ***
Limburgs 59.56  4.25 14.01 <.001 ***
Noordbrabants 18.35  2.91 6.31  <.001 ***
Overijssels -6.50  3.90 -1.67 .096
Twents 12.22  4.82 2.54 011 *
Utrechts -19.60  2.60 -7.52  <.001 *EE
Westfries 11.18  4.53 2.47 014 *
Zeeuws 16.28  5.24 3.11 002 **
Zuidgelders -2.76 3.23 -0.86 .392
Zuidhollands 13.56  2.59 5.24  <.001 ***
pred. MODEL:Fries 6.48 7.55 0.86 391
pred. MODEL:Gronings -0.39  6.06 -0.06 949
pred. MODEL:Limburgs -32.61  7.28  -4.48  <.001 X
pred. MODEL:Noordbrabants -7.86  5.25 -1.50 135
pred. MODEL:Overijssels 5.18  6.88 0.75 451
pred. MODEL:Twents 523 832 0.63 .529
pred. MODEL:Utrechts 4.57  4.71 0.97 332
pred. MODEL:Westfries 0.59  7.69 0.08 939
pred. MODEL:Zeeuws -23.61  9.13 -2.59 010 **
pred. MODEL:Zuidgelders 0.15  5.70 0.03 978
pred. MODEL:Zuidhollands -9.23  4.68 -1.97 049 *

Table 4 shows the corresponding contrasts. It confirms above made ob-
servations that overall model’s predictions outperform human guesses with
the exception of Zuidhollands, Zeeuws and Limburgs. For these, significantly
smaller improvements are attested if predictions stem from the model.
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7 Discussion

Although both versions of the location system have been shown to be able
to make meaningful predictions, their performance can only be described as
underwhelming. The classification model turned out to perform only about
ten percent better than chance. When attempting to predict people’s exact
locations, the regression model’s predictions were just about six kilometres
closer to their targets compared to just guessing every speaker to come from
the country’s centre. There are two potential causes for this performance
considered here. The system’s implementation may simply be deficient. On
the other hand, the available data may be insufficient or not suitable for the
task. Both explanations are not mutually exclusive. In other words, the sys-
tem’s performance may reflect problems regarding both the implementation
and the used data.

Although the final models are the best out of several hundred experi-
mental versions there is no guarantee that no further improvement would be
possible. In fact, it is considered extremely likely that better solutions could
be created given the virtually infinite possibilities of implementation. For
instance, there was no discussion of different network architectures above.
All of the above models were identical with respect to their input and hidden
layers. Some alternative architectures had been tested beforehand, however,
it is considered likely that more suitable solutions could be found through
further experimentation. Furthermore, as discussed in detail in section 4.3,
adapting parameters in training models is crucial and often has big effects on
their eventual performance. Despite having extensively experimented with
different settings, there may still be some improvement possible by further
fine-tuning training parameters. Another way to improve performance would
be to make the models’ input even more information rich. This can, for in-
stance, be achieved by using features which cover more cues of local accents
such as differences regarding phonotactics and prosody.

Comparing the models’ performance in locating accents with that of hu-
man listeners puts the results somewhat in perspective. It was expected that
the models should be outperformed by human listeners if the implementation
was severely flawed. This was not found to be the case. Main differences in
accuracy between a model’s predictions and human guesses were found to
depend on specific accent regions. When comparing human guesses with
predicted locations of the regression model, human listeners were able to
outperform the model with respect to recordings of just three accent regions.
Possible explanations for the model’s worse performance in these cases may
differ with respect to the three regions. Of those, the biggest difference was
found regarding speakers from the accent region labelled as Limburgs. In the
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literature, several dialects are grouped together under this name. Of those
many (however, not all) have a pitch accent (Gussenhoven & Peters, 2008).
This attribute, which contrasts with other Dutch accents, may have helped
human listeners in identifying speakers of this region. However, the model
could not exploit this difference as it was not covered by the used features.

With regard to Zeeuws, the model’s performance may be attributed to the
fact that the available data were simply scarcest for the corresponding region.
For Zuidhollands, human guesses were just slightly better than the model’s
predictions. As has been discussed above, it appears that listeners defaulted
to this and the two neighbouring accent regions Utrechts and Amsterdams
in guessing speakers’ locations.

The similarly poor performance of human listeners in guessing locations
of participants indicates that the used data were problematic. In section 2,
it was pointed out that they were not representative of the Dutch popula-
tion. Moreover, it was apprehended that speakers of standard Dutch would
predominate. Consequently, the data would include fewer recordings of local
accents. A principle components analysis on the extracted i-vectors as pre-
sented in section 3.3 showed that just little of the covered variability can be
attributed to local differences.

Apart from qualitative issues of the data affecting both human and model
performance, the data are also problematic in terms of quantity with respect
to some regions. As has been pointed out above, many of the participants
came from highly populated areas of the Netherlands, whereas there were just
few from northern regions and the south-west. Consequently, some accents
had to be abstracted from very few recordings in training the models.

Obviously, alleviating the problems described above would involve col-
lecting more data. In the meantime, the Sprekend Nederland project has re-
peatedly been covered on Dutch television. Previously, the project had exclu-
sively been featured on scientific programmes. However, different audiences
are expected to have been reached by also receiving airtime on RTL Late
Night as well as broadcasting a 90-minute game show carrying the project’s
name'®. At the time of writing, more participants have been recruited and
more data have been collected via the smart phone application. Having more
recordings per accent region would allow for future models to make better
generalisations. Furthermore, more meta-data and judgements would help
with filtering out recordings of speech without local accents. There is a good

8The corresponding clip from RTL Late Night can be found on the broad-
caster’'s website: http://www.rtlxl.nl/#!/programma-301978/a2c480c8-e789-4413
-alde-d842079fc8c8

The entire Sprekend Nederland show can be watched on the NPO’s website: https://
www.npo.nl/sprekend-nederland/19-05-2016/VPWON_1260835
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chance a better performance could be achieved by retraining the models on
these new data.

8 Conclusion

In this thesis, two versions of an accent location system were introduced.
The first version was built to classify recordings of participants as belonging
to one out of twelve accent regions, whereas the second system predicted
the participants’ coordinates. Both were built using data collected via a
smart phone application as part of the project Sprekend Nederland. Data
included recordings of speech, judgements about other participants’ speech
and meta-data including the participants’ locations. By the time work on
the accent location began, these data were mostly incomplete. Major chal-
lenges faced during engineering the systems were due to dealing with an
unbalanced dataset which was especially dominated by young participants
from the country’s metropolises. Furthermore, participants’ self-reporting,
judgements of fellow participants, and the results of a principal component
analysis of the used features, all indicated that the recordings would contain
just little speech with local accents. Building an accent location system on
these data consequently required exploiting scarce cues of these accents. It
was chosen to implement both versions of the system as neural networks,
which proved to be sufficiently flexible for the given task allowing for predic-
tions above chance level. In general terms, their performance was still poor.
However, when comparing the system’s ability to predict a speaker’s loca-
tion to that of human listeners, both turned out to be overall similar. This
can be interpreted to indicate that most of the available information had
been exploited in training the system. While acknowledging the technical
possibilities for improvement, the main causes for its poor performance are
considered to be the problems with data as described above. Nevertheless,
this thesis illustrated how the data collected by Sprekend Nederland can be
used for accent location. As the collection continues to grow, better perfor-
mances are expected to be achieved by reimplementing the system using an
updated dataset.
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