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Abstract

Real-time global illumination has been a goal for graphics researchers for many
years. Over the years many different algorithms have been proposed to capture
the complex interaction between light and an object. Comparisons between these
algorithms have mostly been based on visual judgement. In this research we de-
veloped a scoring metric to quantitatively measure the visual quality of global
illumination algorithms. We tested this metric on two different global illumi-
nation algorithms: Light Propagation Volumes and Voxel Cone Tracing. In
the end, both algorithms scored equally well. Apart from some anomalies, the
variations within the scoring are in line with the expected results.
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1. Introduction

Global Illumination has been a widely researched topic in real-time computer
graphics for many years. The ever increasing power of consumer grade hardware
has made it possible for developers to explore more realistic techniques within
interactive time constraints. Over the years, several algorithms and techniques
have been proposed to capture the complex interaction between light and an
object. Comparisons between these techniques have so far been limited to either
visual judgement (i.e. one image showing one technique, another image showing
a different technique) or at most a per-pixel error metric comparing one method
agains a ’ground truth’ solution. This research will investigate the use of an
error metric to quantitatively measure the visual quality of an approximate
global illumination algorithm.

1.1 Research Question

How can we quantitatively measure the visual quality of different approxi-
mate global illumination algorithms?

Most current global illumination techniques conclude by either comparing
their result to a ground truth solution and highlighting the differences, or to
compute a per-pixel difference, like a Root-Mean-Square measurement. The
goal of this research is to provide a comparison technique, henceforth called an
error metric, that quantitatively measures the result of a global illumination
method on a scene. Ideally, this error metric will take two parameters, a ground
truth reference image and the image generated by the algorithm. The result of
the error metric will be a score between zero and ten, indicating how close the
generated solution is to the ground truth reference.

This error metric will then be used to measure two different approximate
global illumination algorithms, Light Propagation Volumes and Voxel Cone
Tracing.

1.2 Development

In order to conduct this experiment, a custom graphical engine is developed.
This engine is written in C++ and uses OpenGL. At the start of the research
the engine supported a physically based lighting model as well as a deferred
rendering scheme. This engine will be extended with two global illumination
algorithms, Light Propagation Volumes and Voxel Cone Tacing.
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1.3 Contribution

Our contribution is an error metric capable of quantitatively measuring the
visual quality of a global illumination algorithm compared to the ground truth
reference.

1.4 Overview

This introduction has served to introduce the subject of the thesis. The rest of
this thesis is structured as followed. Section 2 gives a short overview of previous
work in the area of real-time global illumination techniques. Section 3 explains
the math and physics behind global illumination and gives a detailed overview of
the two methods implemented. Next in section 4, the error metric used during
this research will be explained in detail. The experimental setup that is used
is described in section 5. The results of this experiment and the evaulation of
those results can be found in Section 6. We conclude this thesis in section 7,
with our conclusion and a discussion of possible future work.
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2. Related Work

The quest for real-time global illumination started with the introduction of
Virtual Point Lights (VPL) by Keller in [Kel97]. VPLs are based on the idea
that after a point has been lit, this point can act as a light source for other
points. [Kel97] employs a quasi-random walk to create a set of particles that
are representative of the ’path’ the light follows. Each point of this walk is
converted into a VPL with the appropiate color intensity. The scene is rendered
for every VPL and the results are accumulated to get the final result.

The idea of virtual point lights was adapted by Dachsbacher and Stam-
minger for use in modern hardware, introducing the Reflective Shadow Map
(RSM) [DS05]. Reflective Shadow Maps are an extension to the regular shadow
mapping algorithm that simulates a single bounce of indirect light. A RSM
stores the depth of the pixel, just as with a regular shadow map. Additionally,
the RSM stores the world position, normal and the flux of a pixel. Using these
four parameters, every pixel in the RSM can act as a VPL. An importance
sampling strategy is used to gather indirect lighting from the RSM.

Crytek extended upon the idea of the Reflective Shadow Map and introduced
Light Propagation Volumes (LPV) [KD09]. A Light Propagation Volume is a
grid that spans the entire scene. Each cell in the grid contains the amount
of indirect illumination at that point in the world. For every light, a RSM is
generated and from this RSM a number of VPLs are injected into the grid. The
light is then propagated throughout the grid. Light Propagation Volumes are
explained in more detail in section 3.3.

More recently, Crassin, Neyret, Sainz, Green and Eisemann developed a
technique to approximate global illumination by voxelizing the scene and trac-
ing cones across this voxelization in [CNS+11]. Tracing a cone across the vox-
elized scene allows for a quick estimate of the amount of lighting present in a
certain direction. By tracing multiple cones an estimate of the amount of in-
direct illumination can be made. More details on Voxel Cone Tracing and its
implementation can be found in section 3.4.

Performance & Artifacts Of the four methods mentioned above, Light
Propagation Volumes and Voxel Cone Tracing are of interest to this research.
VPLs as introduced in [Kel97] do not perform in real-time. [DS05] mentions
several methods to increase the performance of the RSM method in order to get
interactive framerates.

Of the four methods Light Propagation Volumes and Voxel Cone Tracing
are the ones designed with real-time performance in mind. With both being a
grid based method, their performance is largely determined by the resolution of
this grid. Likewise, the grid-based approach can lead to light leaking at small
or thin objects.
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3. Global Illumination

In computer graphics, one can make the distinction between two different
kinds of lighting, direct lighting and indirect lighting. Direct lighting is the
result of light directly traveling from a light source to the surface of an object.
The problem is that light does not stop once it hits an object. Instead, it is
scattered in a random direction from the surface of the object. This means that
an object can receive light from a light source, through another object. This
process is illustrated in figure 3.1.

Figure 3.1: Direct and indirect lighting. The point receives light directly from
the light source (the red arrow), but also through the scattering of the wall (the
blue arrow).

This scattering is called indirect lighting and the sum of both the direct
and indirect lighting is called ’Global Illumination’. One of the most prominent
effects of this scattering is the so-called ’color bleeding’ effect. The color of
an object is reflected, or ’bleeds’, onto another object. An example of color
bleeding can be seen in figure 3.2.
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Figure 3.2: Color bleeding. Notice the red color reflected from the sphere on
the top crate and the yellow color reflected from the floor at the bottom of the
crate. The image was generated using the engine written for this research.

3.1 Physics of Light

In order to understand why the color bleeding effect happens, a more thorough
understanding of the math and physics behind light is required. This section will
only scratch the surface of light interaction and is by no means a comprehensive
listing. The interested reader is encouraged to read [Hof12].

When light hits the surface of an object, part of the light will be reflected
of the surface and the rest will be refracted into the object. What happens
with the light inside the object depends on the material of the object. Some
of the light will be absorbed, while other parts will be scattered. Scattering
is caused by the light hitting particles inside the object. Because this usually
happens close to the surface, the light will most likely leave the material again.
When this light reaches our eyes or a camera, the object will be visible according
to the light that was emitted from the object. How much light is absorbed or
scattered determines the color of a material. Metals have a very high absorption
rate, meaning that all light that travels into a metal object is absorbed and no
scattering takes place. This means that officially, metals do not have a ’color’.
The appearance of a metal object is determined by the amount of light reflected
from the surface. Figure 3.3 shows the reflection and absorption for both a
metal and a non-metal (dieletric) material.
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Figure 3.3: Light absorption and scattering. Some percentage of the light will
be scattered based on the incoming angle of the light (the orange arrows). The
remaining light will travel into the material. The material on the left is a metal,
so all the light that travels into the material is absorbed. The light in the
material on the right is scattered inside the object and leaves the surface again
at a random angle (the blue arrows). The figure was taken from [Hof12].

The reflected light is called the specular lighting and the scattered light is
called the diffuse lighting. For diffuse lighting, it is assumed that the light will
leave the object at the same location uniformly distributed on the hemisphere
around the normal of the surface This assumption holds for most materials,
with the exception of materials with a high transluancy. Prime examples of such
materials are milk, wax and human skin. To accurately render these kinds of
materials, the sub-surface scattering needs to be taken into account. Modeling
this behaviour requires complex algorithms which we will not discuss in this
thesis.

The scattering of diffuse light is what causes the color bleeding effect previ-
ously discussed. The contribution of the specular lighting to global illumination
is reflections.

Over the years, several models have been proposed to compute the diffuse
and specular lighting on a surface point, with the most common today being a
physically based Bidirectional Reflectance Distribution Function (BRDF). The
BRDF is a function that depends on two factors, the incoming and the outgoing
direction, and it computes how much of the light from the incoming direction is
scattered or reflected in the outgoing direction. One of the most popular BRDFs
today is the Microfacet BRDF. A microfacet is assumed to be an infinitely
small plane with perfect reflection around its normal. The microfacet theory
assumes that on a microscopic level, every material consists of a large number
of microfacets, each oriented along a different normal. The microfacet BRDF
then computes the probability that a microfacets normal is aligned so that light
will be reflected from the incoming direction into the outgoing direction. Figure
3.4 illustrates the concept of microfacets.
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Figure 3.4: Microfacets. A microfacet is an infinitely small plane with perfect
reflection along its normal (red arrow). The amount of lighting reflected in a
certain direction is based on the probability that a microfacet normal is aligned
in a specific direction.

When computing the direct lighting, the BRDF is evaluated for every out-
going direction that points to a light source. To include the indirect lighting,
every possible direction on the hemisphere oriented around the normal of the
surface should be taken into account. Figure 3.5 illustrates this concept.

(a) In order to compute the
amount of direct lighting, each
direction to a light source
should be considered.

(b) To compute the global illu-
mination, every possible direc-
tion on the hemisphere around
the normal should be consid-
ered.

Figure 3.5: Direct and indirect lighting using a BRDF.

3.1.1 Terminology

In the field of global illumination, several mathematical quantities of light are
commonly used.

Flux. The flux, or radiant flux, is the amount of energy that is emitted,
reflected or transmitted from a light source. The flux decreases based on
the distance, d the light has traveled, with a ratio of 1

d2 .

Solid angle. The amount of energy a surface receives is dependent on
its solid angle with regards to the light source. At an angle, the same
amount of light is spread over a larger area. This means that the amount
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of energy received from a light source decreases based on the angle between
the surface normal and the vector from the surface to the light source.

Radiance. The radiance is the amount of flux emitted from a surface, per
unit solid angle per projected unit area. It indicates how much energy is
observed when looking at that surface from a specified viewing angle.

Irradiance. The irradiance is the total amount of energy arriving at a
point, from all directions.

3.1.2 Irradiance Maps

One of the easiest and fastest ways to approximate some form of distant global
illumination is in the form of irradiance environment maps. This technique, also
called Image Based Lighting (IBL) is present in most modern game engines.
The diffuse indirect lighting is computed by taking a large number of samples
around the normal of each point in the scene. Assuming the environment is
static, the results for every normal could be precomputed. This is exactly what
an irradiance map represents. An irradiance map is usually presented using
a cube map. Every pixel in the map represents the irradiance received from
that direction. Since the assumption that the world is static does not hold up
in most interactive applications, an irradiance map is usually only computed
for the environment, the so-called distant lighting. To get some form of ’local
lighting’, most game engines support Image Probes. An image probe is placed
in the world and captures the surroundings as if it was an environment map.
By placing several probes around the world and interpolating the result based
on the user’s position in the world, an estimate for the global illumination is
calculated.

Image based lighting has been researched extensively due to their efficient
representation of (static) global illumination. Several large game engines, such
as the Unreal Engine, support IBL. For a more detailed explanation of the IBL
technique, the reader is encouraged to read [Lag12] and [Kar13]. The result of
using irradiance maps can be seen in figure 3.6. Figure 3.6 shows the effect of
using irradiance maps to determine the amount of reflection (specular lighting)
on an object. A diffuse irradiance map uses the same principle, but it is strongly
blurred, reminiscent to the left-most sphere, due to the fact that diffuse light is
spread around the entire hemisphere.
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Figure 3.6: Irradiance maps. The spheres show the reflection of the environment
on different levels of material roughness. A low roughness will result in a near
perfect reflection (right most sphere), while a high roughness will obtain a much
more blurred result (left most sphere). The image was generated using the
engine written for this research.

3.1.3 Spherical Harmonics

Irradiance maps are usually stored in a cube map. Alternatively, the irradiance
can be represented using Spherical Harmonics (SH) to represent the diffuse in-
tensity. A spherical harmonic is the representation of an image over a sphere,
just like a cube map is the representation of an image over a cube. A spherical
harmonic consists of a set of N basis functions and a set of N weights. The
basis functions are the same for every spherical harmonic and in the case of
irradiance maps they can be seen as a direction in the same way that every
pixel of a cube map can be seen as a direction. The weights are the actual data
of the spherical harmonic, which is the actual RGB color in that direction. The
number of basis functions theoretically go on forever and determine the number
of directions the spherical harmonic can store. One can think of spherical har-
monics as for example four colors in four different directions. When evaluating
the spherical harmonic with a specific direction, the colors are interpolated to
represent that direction. More basis functions equals more directions that can
be stored, leading to a better interpolation. In the case of diffuse lighting we
usually restrict ourselves to the first nine basis functions. To store this kind
of spherical harmonic, four values are required for each color component. This
means that a diffuse irradiance map can be represented using just twelve float
values, instead of using a cube map. Due to the low frequency of this type of
spherical harmonic, it is only suited for diffuse lighting. The nature of spherical
harmonics is too complex to explain in this thesis, but the interested reader can
read [Gre03] and [RH01].
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3.2 Path Tracing

Path traced solutions solve the global illumination problem by tracing a poten-
tial path the light can follow. Since we are only interested in paths that end up
at the camera (i.e. are ’visible’), the path is traced in reverse order. From the
camera a ray is traced through each pixel of the screen. When this ray hits an
object, a random direction is chosen to continue the path. This direction is used
as outgoing direction for the BRDF and the lighting received from that direction
is computed. This path continues until a light source has been reached or a set
number of iterations have occurred. This is repeated a large number of times
and the result is averaged to get a final solution. This is called Monte-Carlo
path tracing and it is mathematically proven that when consequently choosing a
random direction, the solution will eventually converge to the correct solution.

The main problem with this approach is the huge number of samples required
to get a decent estimate. Depending on the scene complexity rendering an image
using path tracing can take anywhere from several minutes upwards to several
hours. A multitude of techniques exists to speed up the convergence of a path
traced solution without sacrificing image quality. Figure 3.7 shows an example
of different global illumination effects that can be achieved using path tracing.
Figure 3.7 was generated by the path tracer.

Figure 3.7: Path tracing. Global illumination is visible in the reflective red
sphere, the refractive blue sphere (note how the light travels through the sphere
and illuminates the ground behind it) and the green color bleeding under the
green sphere. The image was generated using the path tracer used to create the
reference images.
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3.3 Light Propagation Volumes

Light Propagation Volumes (LPV) were first introduced by Crytek in their
CryEngine3. They originally presented a course at SIGGRAPH 2009 [Kap09]
and the algorithm was later presented in [KD09] by Kaplanyan and Dachsbacher.

A light propagation volume is a grid that spans the entire scene. Each cell in
the grid contains the amount of indirect lighting at that point in the world. The
intensity of a cell is represented using spherical harmonics to preserve the direc-
tional information of the illumination. The paper uses spherical harmonics up
to the second band, which amounts to four coefficients. The LPV is completely
recomputed each frame.

The LPV algorithm consists of three steps, injection (section 3.3.1), propa-
gation (section 3.3.2) and rendering (section 3.3.3). The injection phase fills the
grid with an initial configuration of indirect lighting. The propagation phase
then ’smears’ this lighting across the grid. The final rendering phase reads the
indirect lighting from the grid.

3.3.1 Injection

The first phase, injection, is used to generate an initial configuration of indirect
lighting. It does this by generating and inserting a large number of Virtual
Point Lights (VPL) into the grid. Indirect lighting is caused when a point,
A, receives light from a light source through another point, B. The point B
can be considered a virtual light source for point A. The VPLs are inserted
by generating a Reflective Shadow Map (RSM) for each light source. A RSM
is an extension to a regular shadow map. A RSM renders the scene from the
perspective of the light, the same way a shadow map does. Alongside the depth,
a RSM stores the world position, normal and the reflected flux of every pixel.
The reflected flux is computed as the flux emitted through a pixel, multiplied by
the material color. According to the original RSM paper [DS05], the flux should
not be modulated by a distance attenuation term. In the case of a spot light,
the flux decreases with the cosine to the spot direction, due to the decreasing
solid angle. For any other type of uniform light, the flux is a constant value.

For every pixel of the RSM (or a subset of the pixels) a VPL is injected into
the grid. When injecting a VPL into the grid, its location is used to determine
the cell the VPL resides in. To prevent self lighting and shadowing, each VPL
is virtually moved by half the cell spacing in the direction of the VPL normal.
This ensures that a VPL that points away from a cell center is injected into the
adjacent cells instead. Figure 3.8 illustrates the concept of creating a VPL from
a light source and injecting it into the grid.
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(a) An RSM is created
for the light source.
For several pixels of the
RSM, a VPL is created.

(b) Each VPL created
from the RSM is in-
jected into the grid.

Figure 3.8: Light Propagation Volumes injection step. The figures were taken
from the powerpoint accompanying [KD09].

Low-frequency lighting, such as the illumination from environment maps or
particle systems, can also be injected into the grid. This is achieved by creating
a large number of VPLs from these light sources and injecting those VPLs into
the grid. VPLs from an environment map for example are injected into the
outer layer of the grid.

Geometry Volume

In addition to the LPV with light intensity, a separate grid holding a fuzzy
representation of the scene is computed. This Geometry Volume (GV) holds
an occlusion probability when traveling from one cell to the other. As with the
LPV, the GV is recomputed each frame. The GV is constructed from the depth
buffers used by the RSMs created for the injection as well as the depth buffer of
the camera view. The GV has the same resolution as the LPV, but it is shifted
by half a cell. This ensures that the center of the GV is located at the corners of
the LPV cels. [KD09] claims this results in better interpolation of the occlusion
propability.

Implementation Details

To store a spherical harmonic, four values are required for every color compo-
nent. This means that we use one texture for the red, green and blue component,
resulting in a total of three textures. The textures need to have a floating-point
format, as the spherical harmonic can be negative or larger than one. For each
participating light source, a reflective shadow map is generated. An example of
a RSM can be seen in figure 3.9.
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(a) Position buffer. (b) Normal buffer. (c) Flux buffer.

Figure 3.9: Reflective Shadow Map for a scene. The figures were created using
the engine written for this research.

To inject the VPLs of the RSM into the grid, points are drawn onto the
RSM. Each pixel, or a subset of the pixels, is drawn as a point. The vertex
shader determines the position, normal and flux of this point, by sampling from
the textures generated during the RSM pass. The position is used to calculate
the cell index of the point in the grid. The geometry shader is then used to select
the correct layer of the grid to render the final result to. The fragment shader
transforms the flux to a spherical harmonic and stores the values in the grid.
Appendix B.1 shows example shader code for computing the spherical harmonic
components from a direction and the flux. Using this approach, we can write to
all the appropiate grid cells in a single draw call. By enabling additive blending,
the same cells can receive multiple VPLs. The geometry volume is filled using a
similar approach, but the input for the geometry injection shader is the position
and normal buffer from the RSM. In a deferred renderer, the position and normal
buffer from the G buffer can also be used to fill the geometry volume.

One other aspect to take into account is the weight of each injected VPL.
This weight is dependent on the area the RSM covers and area for the LPV.
In order to simplify further computations, [KD09] makes several assumptions.
Firstly, we assume that the area of a texel in the RSM is much smaller than the
area of a cell in the LPV. Thus, we do not have to worry about discontinuity
during the injection. Secondly, the projected area of the RSM is assumed to be
equal to the projected area of the slice of the LPV perpendicular to the light
direction. This is achieved by projecting each corner point of the box that con-
tains the LPV onto the plane with the light direction as normal. From maximum
width and height between these points is determined and these values are used
for the orthographic projection of the RSM. Since the area for the RSM and the
LPV are now equal, the weight of each VPL is only detemined by the amount of
texels in the RSM and cells in the LPV. The weight is computed using equation
3.1. Note that in this equation, we use twice the LPV resolution, instead of
three times, because we estimate the number of cells within the projected area
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(the slice perpendicular to the light direction).

weight =
(lpvResolution ∗ lpvResolution)

(rsmWidth ∗ rsmHeight)
(3.1)

The result of the injection step can be seen in figure 3.10.

Figure 3.10: Intensity in the grid after the injection phase. The intensity in the
grid is represented using a sphere for every texel of the grid. The normal of the
sphere is used to evaluate the SH for visualization. The figure was created using
the engine written for this research.

3.3.2 Propagation

After the injection phase, the grid contains the lighting information for just a few
cells. In the propagation phase, the injected light is propagated throughout the
grid. This means that the light is ’smeared’ into the neighbouring cells, creating
a color bleeding effect. The propagation is carried out in several iterations, each
iteration spreads the light further away. Figure 3.11 shows the result after
several iterations.

Figure 3.11: After several iterations, the light has been spread throughout the
grid. The figure was taken from the powerpoint accompanying [KD09].

The initial input for the propagation is the grid from the injection phase.

16



The input to each subsequent iteration pass is the result of the previous propa-
gation pass. During propagation, light is propagated to each of the cell’s direct
neighbours. In the three dimensional case, each cell has six direct neighbours.
When propagating from one cell to the other, each face of the destination cell
is considered. For each face the total amount of flux reaching the face from the
source cell is computed. This flux needs to be converted to intensity again so it
can be used during the next iteration. To compute the amount of flux the algo-
rithm considers the solid angle of the face and determines the central direction
ω of that solid angle. This means that they take the intensity in direction ω as
average intensity over the solid angle.

Blocking of the light due to scene geometry is integrated in the propagation
step. The GV stores an anisotropic occlusion probability that is modulated with
the light intensity during propagation. This blocking is not considered in the
first propagation iteration, to prevent self shadowing.

The quality of the propagation is dependent on the number of iterations
performed. The paper proposes to use two times the longest side of the LPV as
a heuristic for the number of iterations.

Implementation Details

The engine uses a ping-pong structure to switch between grids for the propaga-
tion. A key note in the propagation step is that the input for the propagation
is the result of the previous propagation step. This is not the total accumulated
intensity. So to properly do the propagation phase, one needs at least three grid
structures. One to read the intensity from (the result of the previous propa-
gation step), one to write the result of this propagation step to (the input for
the next propagation step) and one that holds the accumulated intensity of all
propagation steps. This ping-pong structure is illustrated in listing 3.1.

Listing 3.1: Propagation ping-pong

LPV propagate ( int s teps , LPV o r i g ){
LPV accum , A, B;
A = o r i g ;

for ( i = 0 ; i < s t ep s ; i ++){
// propagate l i g h t from A and s t o r e the r e s u l t in B
B = propagateFrom (A) ;
// update accumulated i n t e n s i t y
accum += B;
// swap A and B f o r next propagat ion s t e p
swap (A, B) ;

}
return accum ;

}

The injection step rendered each pixel of the RSM to inject light. For the
propagation phase, we need to render each cell of the LPV. This ensures the
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propagation touches upon every cell of the LPV. Propagation so far has been
described as being spread throughout the grid. However, it is not possible
to write to multiple cells of the grid at the same time. Therefore the actual
implementation gathers the intensity from its surrounding cells. The principle
remains the same, but instead of pushing its intensity towards the neighbouring
cells, we compute how much intensity a cell receives from each neighbour. In
order to get a correct propagation, we need to consider the amount of intensity
projected onto the five faces of each neighbouring cell. The sixth face is the
one adjoining both cells, so we do not consider that one. The reason we need
to consider all five faces instead of just the ’main’ direction, is because of the
spherical harmonics. Spherical harmonics are a spherical representation of light
that we are storing in a cubic grid. If we would ignore the side faces of a cell, we
would have noticable gaps in the final result. Figure 3.12 shows a 2D illustration
of this gathering process.

Figure 3.12: 2D example of the gathering operation done during the propagation
phase. Besides the main direction(red), we also need to consider the side faces
(blue and green).

In order to do the actual propagation, we loop through the six neighbours
of a cell. For each neighbour, we compute the direction towards that neighbour
and read the SH intensity from its cell. The amount of intensity reaching the
main cell from this neighbour is computed by transforming the direction to the
neighbour cell to a spherical harmonics. This intensity is modulated by the solid
angle to the face and the blocking potential. For the main direction, the solid
angle is the angle of the red cone in figure 3.12, for the side faces, the solid angle
is the angle of the green cones. This process is then repeated for each side face
of the neighbouring cell. Appendix B.3 shows pseudo code for the propagation
phase.

Figure 3.13 shows the result of doing one propagation step versus thirty
propagation steps.
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(a) Result of doing one propagation
step.

(b) Result of doing thirty propagation
steps.

Figure 3.13: Visualization of the propagation steps for the LPV. The images
were generated using the engine written for this research.

3.3.3 Rendering

The final part of the algorithm is to apply the intensity computed in the LPV
to the final rendering result. Each cell in the LPV represents the light intensity
at that point in the world. When shading a point, the cell this point resides
in is determined. The inverse of the normal of the point is transformed to the
SH (since we want to know how much light is going towards the surface) and
combined with the result stored in the grid cell to get the amount of indirect
lighting. The result of light propagation volumes can be seen in figure 3.14.

Figure 3.14: The result of using an LPV on a scene. For demonstration purposes
the indirect lighting has been exaggerated.

Implementation Details

Implementing the rendering part of the LPV algorithm is relatively straighfor-
ward. Appendix B.2 shows example shader code to transform the normal to
the SH and to retrieve the intensity value from the grid. While conducting our
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experiments, we ran into an issue when using the LPV with a high grid reso-
lution (128 in our case). During each propagtion step we ’lose’ some intensity.
This means that the total amount of light intensity for each propagation step
is a bit less than the total amount of light intensity for the previous step. This
is required, otherwise the light will propagate indefinitely. A downside of this
approach is that there is a fixed number of steps before there is no more light
to propagate. This means that the distance the light travels with the higher
resolution is much lower than the distance traveled with a lower resolution. In
the case of a grid resolution of 128, the light does not propagate far enough
to correctly illuminate the surrounding geometry. All the figures presented in
[Kap09] and [KD09] that detail the resolution of the LPV, show the resolution to
be 32. Future research will be required to determine if the displayed behaviour
is an error in our implementation or if high resolution grids are not possible
with Light Propagation Volumes.

3.3.4 Specular Reflections

Light Propagation Volumes are designed for indirect diffuse lighting, as evi-
denced by their use of spherical harmonics. According to the paper, LPVs can
be used to achieve specular reflections. The paper proposes to raymarch across
several grid cells and averaging the intensity of all cells for the ray march di-
rection, divided by the squared distance to the cell that they pass through.
This can be seen as undoing the propagation steps. Propagation spreads the
light throughout the grid, the ray marching gathers the light back to a sin-
gle cell again. Since this research will not consider the specular part of global
illumination, this part of the algorithm was not implemented.

3.3.5 Cascaded Light Propagation Volumes

Performance of the LPV is largely dominated by the number of propagation
steps and the resolution of the grid. With a small scene, a small grid will suffice.
If we for example have a scene with dimensions of 10 meter x 10 meter x 10
meter and a grid resolution of 32 x 32 x 32, then each cell of the grid will occupy
an area 10

32 = 0.3125 meter in the scene. Since diffuse indirect lighting is ’blurry’
by its nature, these dimensions will suffice for most cases. But what if we have
a much larger scene? If the scene has a dimenson of 100 meter x 100 meter x
100 meter, each cell will occupy an area of more than three meters. We lose to
much detail in this case. A possible solution is to increase the resolution of the
grid, but this will also reduce performance and cannot be done indefinitely. The
paper proposes to solve this issue by utilising a cascaded structure of nested
LPV grids. Each grid has the same resolution, but the area it covers doubles
each level. The grids are centered around the camera. Figure 3.15 shows the
cascaded structure.
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Figure 3.15: Cascaded Light Propagation Volumes. The area a grid covers
quadruples each level. The figure was taken from [KD09].

The cascaded approach makes it possible to cover a large area at interactive
frame rates. Centering the grids around the camera ensures that we get high
precision close to the camera, while far away objects have much less detail. Each
level of the cascade is treated separately and the injection and propagation phase
are done for each grid in the cascade. Since the projected area of the RSM used
for the injection is set to be the same as the project area of the LPV, each level
in the cascade has its own corresponding RSM.

The contents of a LPV cell can be considered the average of all the lighting
in that location. A small change in the grid position can noticably change the
average of each cell, leading to flickering when moving the grid around the scene.
This is a common problem with cascaded solutions and it is solved by snapping
the position of each grid so that it is always in the corner of a grid cell. This
ensures that the same cluster of VPLs is injected together in a grid cell, which
leads to temporal stability and reduces flickering.

During rendering, we locate the smallest grid in the cascade that contains
the point to be shaded and sample the indirect lighting from that grid. In
order to get a smooth transition between two levels in the grid, we adopted
the approach from the LPV paper. Their approach is based on the work done
in [LH04]. [LH04] proposes to set a transition width, w, that determines the
strength of the interpolation. Given the center of the grid, C, and the point to
be shaded, P , the interpolation factor, a, is computed using equation 3.2.

a =
P − C − ( gridArea2 − w)

w
(3.2)

a is clamped to be in the range of 0 to 1. Equation 3.2 returns a three
dimensional vector, and the actual interpolation factor is the largest component
of this vector. The clipmap paper proposes to set w using the heuristic w =
n/10, with n being the area of the grid.

3.4 Voxel Cone Tracing

Path traced solutions solve the global illumination problem by tracing a large
number of rays in a random direction. Cone tracing presents an alternative that
provides an estimate of a large number of rays in a single query. Cones, like
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rays, have an origin and a direction. Unlike a ray, a cone has an angle. As the
sampling point travels farther from the origin of the cone, the sampling radius
gets bigger. Figure 3.16 shows an example of a cone.

Figure 3.16: Example of a cone. The sampling radius gets bigger as the distance
between the sampling point and the origin of the cone increases.

Using cones for the purpose of global illumination was first introduced in
[CNS+11] by Crassin et al. [CNS+11] proposes to store a voxelized version of
the scene in a sparse octree. This tree is then filtered. The filtering implies that
each node in the higher levels of the tree holds the approximate illumination of
all its child nodes. When tracing a cone through this tree, the radius of the cone
at the current sampling point determines the level of the tree the illumination
is retrieved from.

By tracing several combinations of cones, different forms of global illumina-
tion can be approximated, for example indirect diffuse lighting, specular reflec-
tions and refractions. In order for voxel cone tracing to work, the scene needs
to first be voxelized.

3.4.1 Voxelization

The voxelization approach implemented for this research is based on the chap-
ter Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer of
the OpenGL Insights book [CG12], written by the same author as the voxel
cone tracing paper. OpenGL inherently did not have the capability to write
to a random texel of a texture, so previous approaches to voxelization had to
render each ’slice’ of the 3D space separately. OpenGL 4.3 however introduces
ImageStore functions, which allows to write values to an arbitrary location in
the texture. This makes it possible to voxelize an entire mesh in a single draw
call. The octree in the original paper requires two passes to fill with data. The
first step voxelizes the scene and constructs an octree. A second step renders
the scene from the perspective of each light source to inject radiance into the
octree. Next, the tree is filtered. The filtering means that each node in the tree
will hold the approximate irradiance of all its child nodes. The paper uses a
Gaussian weight to compute the final irradiance of an octree node.

For this thesis we opted to use a 3D grid instead of an octree. Using a grid
compared to an octree has several advantages. The first one is that it is a lot
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easier to implement. The second advantage is that it allows us to compute the
lighting at each voxel directly, using a forward shading pass. This mitigates the
use of a separate light render pass. The third advantage is that the 3D grid is
implemented using a 3D texture, which means that filtering can be done using
the build in glGenerateMipMaps() function. The major downsides of using a
grid is the large memory requirement and that it divides the space equally.
The sparse voxel octree proposed in the paper puts more nodes, and therefore
greater detail, in locations where triangles are located. The cubic shape of the
grid means that some grid cells will be empty, and could therefore be considered
’wasted’.

Figure 3.17 shows the voxelized result of a scene at the base level, as well as
the filtered result at level two.

(a) Base level of a voxelized scene. (b) Second level of a voxelized scene.

Figure 3.17: Voxelized result of a scene. The images were generated using the
engine written for this research.

Implementation Details

Initially, the voxel grid was implemented using a single 3D texture, with the
red, green and blue components holding the irradiance of the voxel and the
alpha component storing an opacity factor. This opacity factor is required
to determine if a voxel is empty or filled. Unfortunately, this led to a lot of
flickering within the voxelized scene. The cause of this is race conditions. As
each object is rendered, the fragments are processed in a random order. Since
the voxelization will overwrite the current value of the voxel, the final result
is largely dependent on the order in which fragments were processed. This is
especially true at voxels with multiple intersecting objects.

[CG12] solved this issue using OpenGLs imageAtomicCompSwap method.
When writing to a texel using this method, it will atomically compare the
current result in the texture with the one we are trying to store. If they are
equal, the result is stored in the grid, otherwise, the result is discarded. In either
case the original value of the texel is returned. The solution in the OpenGL
book uses the alpha component of the color as a counter to average the result of
the voxelization. When a GPU thread tries to store the result into a voxel, the
imageAtomicCompSwap is used to determine if another thread is also trying
to access that voxel. If the value returned by imageAtomicCompSwap is not
the same as the value we are trying to store, then another thread has accessed
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the voxel. We then update the value of our result to represent an average of
the value in the texel and our own value. Using this method, we can produce
a flicker-free voxelized scene. Appendix B.5 shows example code to implement
this atomic averaging. Unfortunately, we have lost the alpha channel to the
atomic counter, so we introduced a separate alpha grid to store the opacity of
the voxels.

In order to ensure maximum coverage of each voxelized triangle, every tri-
angle is projected onto its dominant axis. The dominant axis is the one that
provides the maximum value for n · v, with n being the triangle normal and v
being one of the three primary axes in the scene. In the geometry shader of the
voxelization program, the triangle is projected using an orthographic projection
along the dominant axis. This simple approach to voxelization does not pro-
duce a ’correct’ vozelization. Because a triangle will only provide a fragment
if it covers the center of the pixel, this voxelization approach can lead to holes
in the final voxelized scene. The solution is to use a more precise conservative
rasterization approach. The general idea is to enlarge the projected triangle
by half a pixel. This is done by shifiting the edges of each triangle outward in
the geometry shader. Since the exact shape of the bounding polygon that does
not overestimate the coverage of the triangle is a polygon, a bounding box is
computed alongside the triangle. The fragments outside of this box are killed
in the fragment shader. Figure 3.18, taken from [CG12], shows the bounding
box of an enlarged triangle and which fragments will be killed in the fragment
shader. The conservative rasterization approach ensures that a fragment is gen-
erated for every pixel that is touched by a triangle. Listing B.4 shows example
geometry shader code for conservative voxelization.

Figure 3.18: Conservative rasterization. The bounding polygon of the enlarged
triangle kills off the excess fragments in the corners of the triangle.

3.4.2 Cone Tracing

A cone has an origin, a direction and a radius. When sampling a value from the
grid, the sampling point moves along the direction of the grid. The radius at
the sampling point determines the level of the mip-map to sample from. Using
simple geometry, the radius, r, for sampling point p at distance d, of a cone
with angle A, can be computed as r = tan(A/2) ∗ d, see figure 3.19. From this
radius the level in the grid to sample from can be computed using equation 3.3.
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In equation 3.3, voxelSize is the size of a voxel at the lowest level. In our case,
this corresponds to the Euclidian distance between two corners of a voxel.

level = log2(
2 ∗ r

voxelSize
) (3.3)

Figure 3.19: Using simple geometry, the radius r at point p at distance d of a
cone with angle A, can be computed as r = tan(A/2) ∗ d.

After sampling from the grid, the sampling distance is moved by 2 ∗ r, see
figure 3.20. This means that there is some overlap in the irradiance we retrieve,
as well as corners we will miss.

Figure 3.20: After a sample has been taken, the sampling distance is moved by
2 ∗ r.

A big issue with the cone tracing method is avoiding self-intersection. In path
tracing this is done by adding a small nudge factor to each ray. With cones we
also add a nudge factor. Intuitively, the minimum nudge factor should be the
size of the smallest voxel plus the sampling radius of the point, to make sure
we don’t fetch from the voxel the cone originated from. Rauwendaal [Rau13]
observed that this is not enough if the direction of the cone differentiates from
the surface normal. Figure 3.21 illustrates this concept. The nudge factor is
computed using equation 3.4.
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Figure 3.21: A nudge factor is computed based on the angle between the surface
normal, n, and the cone direction ω. The figure was taken from [Rau13].

nudgeFactor =
voxelSize

n · ω
(3.4)

The cone tracing is terminated after the accumulated opacity has reached
one, or when a certain distance has been reached. Cones with a bigger cone angle
take larger steps through the volume, so they terminate quicker. Performance-
wise this means that a cone with a large angle is usually faster than one with a
small angle.

Implementation Details

Listing 3.2 shows pseudo code to implement the cone tracing algorithm.

Listing 3.2: Cone tracing pseudo code

vec4 coneTrace ( vec3 o r i g i n , vec3 d i r e c t i o n , vec3 normal ,
↪→ f loat coneAngle , f loat maxDist , f loat voxSize ,
↪→ f loat nudge ) {
vec4 accum = vec4 (0 ) ;
f loat tanA = tan ( coneAngle /2) ;

f loat h = nudge ∗ voxSize ;
f loat nDotS = dot ( normal , d i r e c t i o n ) ;

f loat d i s t = h / nDotS ;

while ( d i s t < maxDist && accum . a < 1 . 0 ) {
f loat sampleRadius = tanA ∗ d i s t ;
f loat sampleDiameter = 2 ∗ sampleRadius
f loat sampleLOD = log2 ( sampleDiameter / voxSize ) ;
vec3 samplePos = o r i g i n + d i r e c t i o n ∗ d i s t anc e ;

vec4 sampleValue = fetchVoxelValue ( samplePos ,
↪→ sampleLod ) ;

accum += ( 1 . 0 − accum . a ) ∗ sampleValue ;
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d i s t += sampleDiameter ;
}
return accum ;

}

In listing 3.2, the coneAngle parameter is the angle of the cone in radiance,
maxDist is the maximum distance a cone can travel, voxSize is the size of the
smallest voxel in our scene. In our case of isotropic voxels, this is the Euclidean
distance between two opposing corners of a voxel from the lowest level grid.
The final parameter, nudge, is a user specified parameter to influence how far
the cone is pushed outwards from the starting point. This helps prevent self
intersection, but may cause small objects to be ’missed’ by the cone tracing.

The fetchV oxelV alue function samples the voxel volume at the specified
sample level to retrieve the irradiance. In our isotropic case, this is just a single
texture fetch in the 3D texture (actually, we have two texture fetches, one for
the colors and one for the opacity factor). Alternative solutions exists, such as
anisotropic voxels or spherical harmonics.

The default nudge factor in our implementation is a value of two, but even
then self intersection can not be fully avoided. This is caused by the filtered
structure of the voxelization. The starting distance is computed to make sure
we do not sample from the same voxel as the cone originates from, with regard
to the lowest level of the filter chain. Especially with cones with a large angle,
it is very possible that subsequent steps sample from a higher level in the filter
structure, which means it is still possible to have some form of self intersection.

3.4.3 Indirect Diffuse Lighting

Indirect diffuse lighting can be approximated by tracing several cones with a
large angle around the normal of the point to be shaded. This means that we
need to find a set of cones that cover a hemisphere as closely as possible. For this
research we tested different options, with a varying number of cones and cone
angles. In the end, we decided to use nine cones with an angle of 60 degrees.
One cone is traced in the direction of the normal, the other eight are traced to
the top corners and the sides of the box around the normal. Figure 3.22 shows
the result of using voxel cone tracing for diffuse global illumination.

27



Figure 3.22: Diffuse global illumination through voxel cone tracing. Note the
colored highlights on the bottom of the box and the sphere. For demonstration
purposes the indirect lighting has been exaggerated. The image was created
using the engine written for this research.

3.4.4 Indirect Specular Lighting

Specular reflections are approximated by tracing a single cone in the direction
of the camera reflected around the normal. The angle of the cone is linearly
interpolated between an one degree and an eighty degree cone angle based on
the roughness of the material. A better method would be to match the angle
of the cone based on the BRDF of the material. Since for this research we will
only consider the diffuse part of global illumination, no extra effort was used to
implement a proper BRDF fitting. Figure 3.23 shows the result of using cone
tracing in combination with irradiance maps for specular reflections.
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Figure 3.23: Specular reflections using voxel cone tracing. The environment
reflection retrieved using irradiance maps is blended with the voxel cone tracing
result using the opacity factor from the cone tracing. For demonstration pur-
poses, the sphere is a perfect mirror. The image was created using the engine
written for this research.

3.4.5 Spherical Harmonics

So far we have stored isotropic values in our voxels. This means we have dis-
carded any form of directional information. As with the Light Propagation
Volumes algorithm described in 3.3, we can retain directional information by
storing spherical harmonics in the voxels. This requires two extra textures, since
we now need one texture for each color component. The implementation details
of spherical harmonics are very similar to the one used for the LPV algorithm
and we refer the reader to the relevant part of section of 3.3 for more informa-
tion. When we use the atomic average method described in the voxelization
chapter, we lose the alpha component of the three color textures. We therefore
require four textures to correctly store the SH information for each color chan-
nel. Another issue arises with the atomic average method used to store the voxel
values. In the case of spherical harmonics, we need to write to different textures
so we need to call this function multiple times. This led to race conditions, with
the result being that the fragment shader never completes. The solution was
to add a counter to the code of the image atomic average function. The count
makes sure that the while loop of the function is executed a maximum of 1000
times. This led to the behavior expected, without a noticable loss in quality.

The fetchV oxelV alue function of listing 3.2 for spherical harmonics trans-
forms the inverse of the direction of the cone to the spherical harmonics and
accumulates the intensity by sampling from the three textures.
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3.4.6 Cascaded Voxel Cone Tracing

The same problem described in the cascaded section of the Light Propagation
Volume algorithm described in section 3.3.5 can be applied to the voxel grid.
The same solution of cascaded voxel grids can also be applied. The details of
the cascaded structure are the same as with the LPV algorithm, so we will not
repeat those steps here. The reader is encouraged to read the relevant part of
section 3.3.5 for more information.

During the implementation we encountered a problem when moving the
cascaded grids throughout the scene. The movement caused a lot of flickering,
something that should have been fixed by snapping the grid positions to the grid
cells. The problem with cone tracing compared to light propagation volumes, is
that the cones also sample from higher mip-map levels. Snapping the position
to a grid cell makes the base level of the grid temporally stable. Instead of
snapping to a single grid cell, we snap the position to a multiple of the grid cell.
We found that a factor of gridresolution/8 provides good results. Intuitively,
the divide by eight means that all but the top three (8 = 23) mip-map levels
of the texture are stable. There is still some very slight flickering, due to these
high level mip-maps not being stable, but the effect is barely noticable.

3.4.7 Other Uses

The result of a cone trace through a voxelized scene is the approximation of the
result of firing a large number of rays from the cone origin in the direction of
the cone. This approximation can be used to get estimates of different effects
at interactive rates.

Emissive Lighting Voxel cone tracing has for now been used as a supplement
to direct lighting, by calculating the amount of indirect lighting. Similarly,
cone tracing can be used to evaluate direct lighting. Instead of storing the
accumulated irradiance in the voxels, the voxels store the actual radiance at
that location. Using this technique, a lot of lights can be evaluated at once or
emissive materials can be rendered. Figure 3.24 shows the result of using voxel
cone tracing to light a scene using several emissive cubes instead of regular light
sources.
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Figure 3.24: Emissive lighting using voxel cone tracing. The only lighting
present in this scene are the emissive cubes. All the light, both diffuse and
specular, is gathered using voxel cone tracing. The image was created using the
engine written for this research.

Refraction Very similar to how a single cone can approximate specular re-
flections, a single cone can also simulate refraction. Instead of tracing the cone
away from the surface of the material, a cone is traced through the inside of
the material. This cone is based on the refractive index of the material and the
transparency. See figure 3.25 for an example of refractive cone tracing.

Figure 3.25: Refractions using voxel cone tracing. The environment reflection
retrieved using irradiance maps is blended with the voxel cone tracing result
using the opacity factor from the cone tracing. The image was created using
the engine written for this research.

Soft Shadows Cone tracing can also be used to simulate soft shadows. By
tracing a cone towards the light source and accumulating the occlusion along
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the way, the amount of shadow can be computed. The angle of the cone is based
on the radius of and the distance to the light source, with larger light sources
generating a softer shadow. Figure 3.26 shows the result of using voxel cone
tracing to approximate soft shadows.

(a) Soft shadow approximation using
voxel cone tracing. The angle of the
cone is based on the radius of the light
source and the distance.

(b) A bigger light radius results in a
softer shadow.

Figure 3.26: Soft shadows using voxel cone tracing. The image was created
using the engine written for this research.

3.5 Ambient Occlusion

Indirect lighting is also called ambient lighting, since it has no clear location or
direction, but is present everywhere. The amount of ambient lighting a location
receives is determined partly by its surroundings. A corner or crevice will receive
less light than a flat surface. Simulating this Ambient Occlusion can give a scene
a sense of depth, leading to a more believable result. Several ambient occlusion
algorithms have been devised over the years, with some of the most common
ones today being based on Screen Space techniques.

Screen space techniques use the geometry output from a deferred renderer to
produce different kind of effects, examples of screen space techniques are Screen
Space Reflections and Screen Space Ambient Occusion (SSAO).

3.5.1 Screen Space Ambient Occlusion

The original SSAO algorithm was developed by crytek for the Crysis games.
SSAO takes the depth buffer of the scene as input and uses this as a course
approximation of the geometry. For each fragment, points are sampled in a
sphere around the original sampling point, see figure 3.27.
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Figure 3.27: SSAO Point sampling in a sphere. The figure was taken
from [Cha11].

Each sample point is projected into screen space to get the value of the depth
buffer at that sample point. If the sample position is behind the sampled depth,
i.e. it is ’inside’ the geometry, it is considered occluded and it contributes to the
ambient occlusion. The final occlusion is then determined as the percentage of
samples that is considered inside the geometry. Since this approach samples a
sphere, on average at least half the samples are occluded, leading to a dark look.
Additionally, corners appear brighter, because on average only one quarter of
the samples are occluded. The SSAO algorithm implemented for this research
is based on a blog post by John Chapman [Cha11] and it mitigates this problem
by sampling around a hemisphere instead, see figure 3.28.

Figure 3.28: SSAO Point sampling in a hemisphere. The figure was taken from
[Cha11].

The hemisphere requires that per-pixel normal data is available and this is
the case in a deferred renderer. Samples for the algorithm are generated within
the hemisphere, oriented along the Z axis. We use an accelerating interpolation
function to make sure that more points are generated closer to the origin. This
puts greater weight at the close surroundings of a pixel. To orient the samples
along the fragment normal, a tangent vector is computed using a randomly
generated noise texture. This noise texture is tiled accross the screen. This tiling
introduces banding into the occlusion result. This banding is later removed in a
separate blur pass after the ambient occlusion has been computed. Figure 3.29
shows the occlusion result for SSAO on a scene.
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Figure 3.29: Ambient occlusion using Screen Space Ambient Occlusion. The
image was created using the engine written for this research.

Over the years, several improvements on the original SSAO algorithm have
been made in the form of for example Horizon Based Ambient Occlusion (HBAO)
[Bra08] and Screen Space Directional Occlusion (SSDO) [RGS09]. Due to time
constraints and the relatively minor effect of ambient occlusion on the final
image, these improvements were not implemented for this research.

3.5.2 Color Bleeding

Ritschel, Grosch and Seidel introduced an improvement to SSAO in [RGS09]
called Screen Space Directional Occlusion. Alongside SSDO, they provides a way
to introduce a single bounce of indirect lighting. Samples that are considered
occluders during the SSAO pass can potentially bounce light in the direction
of the sampling position. The amount of indirect lighting is computed using
equation 3.5.

Lind(P) =

n∑
i=1

LpixelV (i)
As cos θsi cos θri

d2i
(3.5)

In equation 3.5, di is the distance between the fragment position P and
occluder i, θsi and θri are the angles between the sender/receiver normal and the
transmittance vector, defined as Pi − P. As is the area the occluder occupies.
Since the samples are defined around a hemisphere, the sample area can be
approximated as As = πr2/N, with r being the sampling radius. V (i) is the
visibility factor, which is the amount sample i contributes to the final occlusion
value.

Figure 3.30 shows the result of applying equation 3.5 in the original SSAO
algorithm to compute indirect lighting.
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Figure 3.30: Indirect lighting using SSAO. Notice the yellow color at the base
of the cube and the (very) slight red color on the cube. For demonstration
purposes the indirect lighting has been exaggerated. The image was created
using the engine written for this research.

The same limitations as with all screen space techniques still apply here.
This is mainly visible on the crate in figure 3.30. It shows a red highlight from
the sphere, but this highlight is cutoff towards the center of the cube. This is
because it only has the screen space information available and all the normals
of the sphere point away from the cube. It will therefore incorrectly assume no
light is bounced in the direction of the cube.

During the implementation we found that the result of the indirect lighting
is largely dependent on the configuration of the samples. Even with a lot of
samples, color bleeding can simply not occur if for certain configurations of
objects the samples are oriented poorly. The accelerating interpolation function,
used to generate more points closer to the origin, amplifies this problem.

3.5.3 Voxel Cone Traced Ambient Occlusion

Our voxel structure has all the elements required to compute ambient occlusion.
In fact, the alpha component of our cone tracing holds the opacity of the trace,
which is the ambient occlusion. To compute ambient occlusion with voxel cone
tracing, we repeat the steps required for diffuse indirect lighting, but we ignore
the color components of the trace. The result of using this Voxel Ambient
Occlusion (VAO) can be seen in figure 3.31.
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Figure 3.31: Ambient occlusion using Voxel Cone Tracing. The image was
created using the engine written for this research.

As both figure 3.29 and 3.31 show, voxel cone traced ambient occlusion gives
a greater sense of depth to a scene.
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4. Error Metric

An error metric is a mathematical function that measures the amount of
error between the parameters of a ground truth reference and a set of parameters
whose error is measured. Over the years many error metrics for many different
purposes have been devised. For global illumination we are mostly interested in
perceptually based metrics. This means that two images can be mathematically
very different, for example because one image is slightly brighter or darker than
the other, but most people will not notice this difference.

One of the most commonly used error metrics today is the Mean Squared
Error (MSE). MSE is the average of the squared intensity difference of two input
signals. Mathematically, the MSE is computed using the following formula:

1
n

n∑
i=1

(xi − yi)
2. By taking the root of the mean squared error, one obtains

the Root Mean Squared Error (RMSE). The RMSE can be thought of as the
distance (error) between two data points. In our case of image analysis, each
datapoint is a pixel. RMSE is a very simple metric, which does not take into
account the intricacies of the human visual system (HVS). Different perceptual
metrics have been devised that try to mimic the complex internal workings of
the HVS.

Because it is difficult to capture the intricacies of global illumination in
a single metric, most algorithms have relied on a visual comparison for their
assessment. This usually takes the form of showing their method, next to images
of a ground truth reference and an older method, to showcase the improvement
in their technique. Figure 4.1 shows how Crassin et al compared their Voxel
Cone tracing Technique against Light Propagation Volumes and a reference.

(a) Light Propagation
Volumes

(b) Voxel Cone Tracing (c) Reference

Figure 4.1: Visual comparison between Light Propagation Volumes, Voxel Cone
Tracing and ground truth. The images were taken from [CNS+11].
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4.1 Structural Similarity

For this research we decided to use the Structural Similarity (SSIM) based
metric, introduced by Wang in [WBSS04]. The paper introduces the SSIM
index, which tries to evaluate two sets of images by separating the image in
three components, luminance, contrast and structure. These components work
relatively independently of each other. Intuitively it makes sense that this metric
will give better estimates than something like RMSE, since our example case
of having one image slightly brighter or darker will only affect the luminance
component and therefore have a lessened impact on the total error.

4.1.1 Luminance

Firstly, the luminance of an image x, µimage, is estimated as the mean intensity
of an image, shown in equation 4.1.

µx =
1

n

n∑
i=1

xi (4.1)

The luminance compare function, l(x,y) is then a function of µx and µy.
The luminance compare function is defined in equation 4.2.

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4.2)

The C1 factor is a constant included to avoid instability when µ2
x + µ2

y is
close to zero. The paper proposes to compute this factor as C1 = (K1L)2, with
L being the dynamic range of the pixel values (255 in the case of 8-bit images)
and K1 << 1.

4.1.2 Contrast

To estimate the amount of contrast in an image, SSIM uses the standard de-
viation as an estimate. The standard deviation σimage is defined in equation
4.3.

σx = (
1

n− 1

n∑
i=1

(xi − µx)2)
1
2 (4.3)

The contrast comparison c(x,y) is the comparison of σx and σy. The con-
trast comparison functions has a similar form as the luminance compare func-
tion. It is defined in equation 4.4.

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4.4)

In equation 4.4, C2 = (K2L)2, and K2 << 1.
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4.1.3 Structure

The final component of the metric, the structure comparison, is conducted on a
normalized version of the images. The images are normalized by dividing them
by their own standard deviation, (x−µx)/σx. The structure comparison is then
computed using equation 4.5.

s(x,y) =
σxy + C3

σxσy + C3
(4.5)

[WBSS04] proposes to set C3 as C2

2 . σxy can be estimated using equation
4.6.

σxy =
1

n− 1

n∑
i=1

(xi − µx)(yi − µy) (4.6)

4.1.4 SSIM

Using all of the three functions defined previously, the SSIM index between
images x and y is computed using equation 4.7.

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (4.7)

In equation 4.7, α, β and γ are parameters used to adjust the relative impo-
rance of the three components. If we set α = β = γ = 1 and C3 = C2/2, then
the SSIM index results in the form given in equation 4.8.

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.8)

4.1.5 Image Quality Assesment

The paper proposes to apply the SSIM index locally rather than globally. There
are several reasons for this approach. Firstly, image features are usually spatially
nonstationary. Secondly, image distortions may also be space-variant. Thirdly,
only a local area in the image can be perceived with high resolution by a human
observer, due to the foveated nature of the HVS. The paper uses an 11 x 11
circular Gaussian weighted window to compute the local SSIM index. In order
to get a single quality value of the entire image, the mean SSIM (MSSIM) is
computed using equation 4.9.

MSSIM(X,Y) =
1

m

m∑
i=1

SSIM(xi,yi) (4.9)

In equation 4.9, X and Y are the reference image and the image to compare,
xi and yi are the SSIM indices at the ith local window, with a total of m
windows. m is the total number of pixels in the image, with a window being
generated for every pixel.
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[Hof12] proposes to use the metric to automatically detect if an image con-
version results in an ’acceptable’ loss in quality, for example when compressing
a png image into a jpg format. One can reason that using an approximate global
illumination method will result in a loss in quality.

4.2 Modifications

The most prominent effect of diffuse global illumination is color bleeding. How-
ever, by computing the luminance based on the average color, we lose all color
information in this step. We therefore opted to compute the SSIM index on
each color component separately. The final index is computed as the average of
the MSSIM of an image.
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5. Experimental Setup

For this experiment two test scenes were utilized. The first scene is a simple
demo scene that is set up specifically to show the properties of diffuse global
illumination (color bleeding). The second scene is the Sponza scene, by Crytek.
This is a scene of a roman style atrium that was first used as an example for
the LPV algorithm. It was specifically designed to highlight the problems faced
by global illumination. Since then, most global illumination algorithms have
included the Sponza scene in their test set. For each scene, we took two camera
configurations, one that gives a rough overview of the entire scene and one that
should highlight the color bleeding effect.

The reference images were created using a custom path tracer. Using this
custom path tracer, we are ensured that color details such as gamma correction
are identical between the reference images and the images to compare. It also
made it very easy to build the scene and set up the camera in the path tracer.
Unfortunately, the path tracer has no support for specular surfaces. This means
that we can only compare the diffuse contribution of global illumination in this
research.

For the metric we implemented the SSIM index described in section [?]. We
adopted the same parameters as the one proposed in [WBSS04]. Specifially,
K1 = 0.01, K2 = 0.03 and C3 = C2

2 . We also adopted their approach of
computing the index in a local 11 x 11 Gaussian window. The result of this
metric is a similarity score between zero and one, that indicates how similar the
two images are. A higher score equals a better estimate.

During the implementation of the metric we found that the intensity compo-
nent of the SSIM index was almost solely responsible for the error. In hindsight
this makes sense, as both the compare and the reference image show the same
scene, with the reference image having more intensity (global illumination) in
the dark parts of the image. When using the SSIM index given in equation
4.8, this resulted in a very high score. Since both images show the same scene
from the same angle, the contrast and structure comparisons will be almost
identical. As it turns out the intensity factor was not enough to make a large
difference on the similarity score. All the tests scored a 9.999 or higher. We
therefore opted to raise the score by a power of 1000, making our final SSIM
index, index(x,y) = SSIM(x,y)1000. The value of 1000 is an arbitraly chosen
value that brings the range of the similarity score within an acceptable range.
The SSIM score is multiplied by a factor of ten, to get a grade between zero and
ten.

In the case of the basic test scene, we noticed that the scene does not take
up a majority of the screen. This means that a large part of the screen is black
in both the reference and the compare image. The SSIM index in these parts
will result in one (i.e. no difference). This also contributed to the very high
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score. To circumvent this issue, we modified the SSIM index to ignore pixels
where both the compare and the reference pixel are black.

5.1 Basic Scene

The two reference images used for the basic scene can be seen in figure 5.1. The
dimension of these images is 1280 by 720 pixels.

(a) Reference image 1.
This image shows a general overview
of the scene. Global illumination is
mostly visible at the bases of the cube
and the sphere, with some slight red
color bleeding on the floor.

(b) Reference image 2.
This image focuses on the colorbleed-
ing of the sphere on the side of the
cube.

Figure 5.1: Reference images for the basic scene. Created using the custom
path tracer.

The basic scene is compared using the two algorithms described in this the-
sis, Light Propagation Volumes and Voxel Cone Tracing. Light Propagation
Volumes are executed with a grid size of 32 and 64, respectively, while Voxel
Cone Tracing is executed with a grid size of 32 and 128. The resolution of
the Light Propagation Volumes was dropped because of the issues discussed in
section 3.3.3. In addition, each algorithm is tested with Screen Space Ambi-
ent Occlusion enabled and disabled. In the case of Voxel Cone Tracing, Voxel
Ambient Occlusion is tested as well. Voxel Cone Tracing is also tested using
isotropic voxels and with spherical harmonics. In all cases the area of the grid is
set to cover the entire scene. The nudge factor for the Voxel Cone Tracing is set
to 1 for this scene. This leads to the following list of algorithmic configurations
that are tested for the basic scene:

Light Propagation Volumes, dimensions 32 x 32 x 32.

Light Propagation Volumes, dimensions 64 x 64 x 64.

Light Propagation Volumes, dimensions 32 x 32 x 32, with SSAO.

Light Propagation Volumes, dimensions 64 x 64 x 64, with SSAO.

Voxel Cone Tracing, dimensions 32 x 32 x 32.
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Voxel Cone Tracing, dimensions 128 x 128 x 128.

Voxel Cone Tracing, dimensions 32 x 32 x 32, with SSAO.

Voxel Cone Tracing, dimensions 128 x 128 x 128, with SSAO.

Voxel Cone Tracing, dimensions 32 x 32 x 32, with voxel ambient occlusion.

Voxel Cone Tracing, dimensions 128 x 128 x 128, with voxel ambient
occlusion.

Voxel Cone Tracing using Spherical Harmonics, dimensions 32 x 32 x 32.

Voxel Cone Tracing using Spherical Harmonics, dimensions 128 x 128 x
128.

Voxel Cone Tracing using Spherical Harmonics, dimensions 32 x 32 x 32,
with SSAO.

Voxel Cone Tracing using Spherical Harmonics, dimensions 128 x 128 x
128, with SSAO.

Voxel Cone Tracing using Spherical Harmonics, dimensions 32 x 32 x 32,
with voxel ambient occlusion.

Voxel Cone Tracing using Spherical Harmonics, dimensions 128 x 128 x
128, with voxel ambient occlusion.

5.2 Sponza Scene

The two reference images used for the sponza scene can be seen in figure 5.2.
The dimension of these images is 640 by 480 pixels.

(a) This image shows a general
overview of the scene. Without global
illumination, the entire left portion of
the screen is dark.

(b) This image focuses on the color-
bleeding of the cloth on the sides of
the pillar.

Figure 5.2: Reference images for the sponza scene. Created using a custom path
tracer.
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The same algorithmic configurations that were used for the basic scene were
also tested with the sponza scene. In addition, for both Light Propagation
Volumes and Voxel Cone Tracing a cascaded approach is tested. The small size
of the basic scene does not make it interesting to test the cascaded approach.
The sponza scene, however, is much bigger, requiring finer detail. For the
cascaded approach four cascaded grids were used. The covered area for the
lowest grid is set to 10x10x10, with the area doubling each subsequent cascade.
For Voxel Cone Tracing, the nudge factor was set to 0.5. This leads to the
following list of algorithmic configurations for the sponza scene:

Light Propagation Volumes, dimensions 32 x 32 x 32.

Light Propagation Volumes, dimensions 64 x 64 x 64.

Light Propagation Volumes, dimensions 32 x 32 x 32, with SSAO.

Light Propagation Volumes, dimensions 64 x6432 x 64, with SSAO.

Cascaded Light Propagation Volumes, dimensions 32 x 32 x 32.

Cascaded Light Propagation Volumes, dimensions 64 x 64 x 64.

Cascaded Light Propagation Volumes, dimensions 32 x 32 x 32, with
SSAO.

Cascaded Light Propagation Volumes, dimensions 64 x 64 x 64, with
SSAO.

Voxel Cone Tracing, dimensions 32 x 32 x 32.

Voxel Cone Tracing, dimensions 128 x 128 x 128.

Voxel Cone Tracing, dimensions 32 x 32 x 32, with SSAO.

Voxel Cone Tracing, dimensions 128 x 128 x 128, with SSAO.

Voxel Cone Tracing, dimensions 32 x 32 x 32, with voxel ambient occlusion.

Voxel Cone Tracing, dimensions 128 x 128 x 128, with voxel ambient
occlusion.

Voxel Cone Tracing using Spherical Harmonics, dimensions 32 x 32 x 32.

Voxel Cone Tracing using Spherical Harmonics, dimensions 128 x 128 x
128.

Voxel Cone Tracing using Spherical Harmonics, dimensions 32 x 32 x 32,
with SSAO.

Voxel Cone Tracing using Spherical Harmonics, dimensions 128 x 128 x
128, with SSAO.

Voxel Cone Tracing using Spherical Harmonics, dimensions 32 x 32 x 32,
with voxel ambient occlusion.

Voxel Cone Tracing using Spherical Harmonics, dimensions 128 x 128 x
128, with voxel ambient occlusion.

Cascaded Voxel Cone Tracing, dimensions 32 x 32 x 32.
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Cascaded Voxel Cone Tracing, dimensions 128 x 128 x 128.

Cascaded Voxel Cone Tracing, dimensions 32 x 32 x 32, with SSAO.

Cascaded Voxel Cone Tracing, dimensions 128 x 128 x 128, with SSAO.

Cascaded Voxel Cone Tracing, dimensions 32 x 32 x 32, with voxel ambient
occlusion.

Cascaded Voxel Cone Tracing, dimensions 128 x 128 x 128, with voxel
ambient occlusion.

Cascaded Voxel Cone Tracing using Spherical Harmonics, dimensions 32
x 32 x 32.

Cascaded Voxel Cone Tracing using Spherical Harmonics, dimensions 128
x 128 x 128.

Cascaded Voxel Cone Tracing using Spherical Harmonics, dimensions 32
x 32 x 32, with SSAO.

Cascaded Voxel Cone Tracing using Spherical Harmonics, dimensions 128
x 128 x 128, with SSAO.

Cascaded Voxel Cone Tracing using Spherical Harmonics, dimensions 32
x 32 x 32, with voxel ambient occlusion.

Cascaded Voxel Cone Tracing using Spherical Harmonics, dimensions 128
x 128 x 128, with voxel ambient occlusion.
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6. Results & Evaluation

6.1 Results

Table 6.1 and 6.2 shows the scores, rounded to the nearest decimal, for all algo-
rithmic and camera configurations for the basic and the sponza scene. Appendix
A shows the images used as comparison and the resulting SSIM image.

Basic scene
Algorithm Configuration 1 Configuration 2
LPV 32x32x32 7.4 7.5
LPV 32x32x32 with SSAO 7.4 7.5
LPV 64x64x64 7.5 7.3
LPV 64x64x64 with SSAO 7.6 7.0
VCT 32x32x32 6.7 5.7
VCT 32x32x32 with SSAO 6.8 5.7
VCT 32x32x32 with VAO 6.9 6.2
VCT 32x32x32 with SH 7.9 8.0
VCT 32x32x32 with SSAO and SH 8.0 8.1
VCT 32x32x32 with VAO and SH 8.1 8.8
VCT 128x128x128 7.7 8.1
VCT 128x128x128 with SSAO 7.8 8.2
VCT 128x128x128 with VAO 7.8 8.4
VCT 128x128x128 with SH 8.1 8.2
VCT 128x128x128 with SSAO and SH 8.2 8.2
VCT 128x128x128 with VAO and SH 8.2 8.2

Table 6.1: Error metric scores (rounded to the nearest decimal) for the basic
scene.
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Sponza scene
Algorithm Configuration 1 Configuration 2
LPV 32x32x32 6.9 7.2
LPV 32x32x32 with SSAO 7.1 7.1
Cascaded LPV 32x32x32 7.2 7.1
Cascaded LPV 32x32x32 with SSAO 7.3 7.1
LPV 64x64x64 7.1 7.2
LPV 64x64x64 with SSAO 7.1 7.2
Cascaded LPV 64x64x64 6.8 7.2
Cascaded LPV 64x64x64 with SSAO 6.8 7.1
VCT 32x32x32 6.0 5.7
VCT 32x32x32 with SSAO 6.3 6.2
VCT 32x32x32 with VAO 7.4 7.0
VCT 32x32x32 with SH 7.5 7.3
VCT 32x32x32 with SSAO and SH 7.5 7.2
VCT 32x32x32 with VAO and SH 6.7 7.2
Cascaded VCT 32x32x32 6.5 6.1
Cascaded VCT 32x32x32 with SSAO 6.6 6.5
Cascaded VCT 32x32x32 with VAO 7.5 7.4
Cascaded VCT 32x32x32 with SH 7.6 7.4
Cascaded VCT 32x32x32 with SSAO and SH 7.6 7.3
Cascaded VCT 32x32x32 with VAO and SH 7.0 7.4
VCT 128x128x128 6.8 6.4
VCT 128x128x128 with SSAO 6.9 6.6
VCT 128x128x128 with VAO 7.4 7.0
VCT 128x128x128 with SH 7.3 7.4
VCT 128x128x128 with SSAO and SH 7.3 7.3
VCT 128x128x128 with VAO and SH 7.0 7.3
Cascaded VCT 128x128x128 7.6 6.8
Cascaded VCT 128x128x128 with SSAO 7.6 6.8
Cascaded VCT 128x128x128 with VAO 6.5 7.1
Cascaded VCT 128x128x128 with SH 6.9 7.4
Cascaded VCT 128x128x128 with SSAO and SH 6.8 7.3
Cascaded VCT 128x128x128 with VAO and SH 6.5 7.2

Table 6.2: Error metric scores (rounded to the nearest decimal) for the sponza
scene.

Figure 6.1 shows a plot of the scores for each algorithmic configuration for
the sponza scene. Appendix A contains the figures for the other configurations
and scenes.
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Figure 6.1: Results for the first configuration of the sponza scene.

6.2 Evaluation

Looking at figure 6.1 and the corresponding figures in appendix A, several in-
teresting phenomena can be deduced. Light Propagation Volumes are designed
with diffuse global illumination in mind and that shows in their score. There is
barely any difference between the different settings for the LPV algorithm.

Voxel Cone Tracing is a method that facilitates diffuse global illumination,
amongst other effects. This versatility is evident in the wider variety in scores
for the different configurations. The scores show that Voxel Cone Tracing is
much more affected by the set of parameters and these results are quite like
we expected. A higher grid resolution leads to a better scoring, as does using
a cascaded approach versus a non-cascaded one. The largest improvement can
be made by storing spherical harmonics in a voxel compared to the isotropic
case. Finally, there is a small improvement when using Screen Space Ambient
Occlusion, but usually a much larger improvement for Voxel Ambient Occlusion.
Interestingly, the combination of spherical harmonic and ambient occlusion leads
to a worse score compared to using spherical harmonics only. In these cases,
Voxel Ambient Occlusion leads to a lower score than Screen Space Ambient
Occlusion.

Voxel Cone Tracing requires much more tweaking compared to Light Prop-
agation Volumes. Examples of tweakable parameters are the number of cones
for the diffuse illumination, the angle of these cones and the nudge factor to
avoid self-intersection. An interesting notion that can be observed from table
6.1 and 6.2 is that for the VCT case, increasing the resolution sometimes leads
to a worse estimate. A possible explanation for this can be found in the way
cones are traced, see figure 3.16. With a higher resolution, the gaps we miss by
stepping along the cone are much more noticable.

In general, we find that Light Propagation Volumes gives much more stable
results. This is due to the strong blending effect that is inherent of the injection
and propagation phase as well as the use of spherical harmonics. There are
hardly any seams, hotspots or artefacts, leading to a stable result, regardless of
resolution. Voxel Cone Tracing is much more reliant on its parameters to avoid
artifacts.
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7. Conclusion

7.1 Conclusion

In this research we developed a scoring metric to quantitatively measure the
visual quality of an approximate global illumination algorithm. The scores for
the different configurations of the algorithm, as shown in table 6.1 and 6.2, are
consistent with the expected output for the scoring metric. Examples of this are
a higher score when using ambient occlusion, spherical harmonics, or a cascaded
approach. As discussed in section 6.2, the combination of spherical harmonics
and ambient occlusion leads to a lower score. Future research will be required
to determine the cause of this abnormality.

7.2 Future Work

This research has focused solely on diffuse global illumination. For future exper-
iments we would like to look into specular global illumination as well in order to
measure the full spectrum of global illumination. In addition, the scenic setup
has been relatively simple in our case. We would like to expand this research
with scenes with more interesting phenomena, such as a sky box, and particles.
This would also allow us to compare more effects than only diffuse and specular
global illumination, such as sub-surface scattering and refraction.

Additionally, we would like to conduct an experiment that will ask several
test subjects to grade the resulting global illumination methods, to see if their
results match up with the scores for the error metric. Additionally, the focus
for this research has been on final image quality. In the future, we also would
like to take performance characteristics such as computation time and memory
requirement into account when determining the final score of an algorithm.

For future research we propose to take multiple camera orientations within
each scene, more than the two used during this research, and average the results
of all these orientations in order to get an score for a scene, instead of for a
camera configuration.

Real-time global illumination remains an unsolved issue, that is still exten-
sively researched. This means that improvements to existing algorithms and
entirely new ones are expected to arrive over the years. For this research we
focussed on the implementation of Light Propagation Volumes and Voxel Cone
Tracing. There are many more interesting approximate gobal illumination algo-
rithms, such as Layered Reflective Shadow Maps and Signed Distance Fields. In
addition, many algorithms exists that require some form of preprocessing, such
as Lightcuts. Ideally, the error metric should be tested with these algorithms
as well as Light Propagation Volumes and Voxel Cone Tracing.
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A. Experimental Results

A.1 Basic Scene Results

Results for the first configuration of the basic scene.

Results for the second configuration of the basic scene.
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A.2 Sponza Scene Results

Results for the first configuration of the sponza scene.

Results for the second configuration of the sponza scene.

A.3 SSIM Index

This chapter shows the results of all the tests, as described in section 5. For
every test, the image generated with the algorithm, as well as the SSIM image
from the index is shown. The SSIM image shows the SSIM index for each
color component of each pixel of the image. An index of one means the color
component of the image is completely equal to the component of the reference.
A value of zero means it is completely different

56



A.3.1 Basic scene: Configuration 1

Reference

Reference image for first camera configuration for the basic scene.

Results

Basic scene. Camera configuration 1. Light Propagation Volumes, dimensions
32 x 32 x 32. Score: 7.35972
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Basic scene. Camera configuration 1. Light Propagation Volumes, dimensions
32 x 32 x 32 with Ambient Occlusion. Score: 7.41518

Basic scene. Camera configuration 1. Light Propagation Volumes, dimensions
64 x 64 x 64. Score: 7.52197

Basic scene. Camera configuration 1. Light Propagation Volumes, dimensions
64 x 64 x 64 with Ambient Occlusion. Score: 7.57575
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Basic scene. Camera configuration 1. Voxel Cone Tracing, dimensions 32 x 32
x 32. Score: 6.725

Basic scene. Camera configuration 1. Voxel Cone Tracing, dimensions 32 x 32
x 32 with Ambient Occlusion. Score: 6.83063

Basic scene. Camera configuration 1. Voxel Cone Tracing, dimensions 32 x 32
x 32 with Voxel Ambient Occlusion. Score: 6.90634
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Basic scene. Camera configuration 1. Voxel Cone Tracing with Spherical Har-
monics, dimensions 32 x 32 x 32. Score: 7.94017

Basic scene. Camera configuration 1. Voxel Cone Tracing with Spherical Har-
monics, dimensions 32 x 32 x 32 with Ambient Occlusion. Score: 8.02049

Basic scene. Camera configuration 1. Voxel Cone Tracing with Spherical Har-
monics, dimensions 32 x 32 x 32 with Voxel Ambient Occlusion. Score: 8.14196
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Basic scene. Camera configuration 1. Voxel Cone Tracing, dimensions 128 x
128 x 128. Score: 7.72177

Basic scene. Camera configuration 1. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Ambient Occlusion. Score: 7.80809

Basic scene. Camera configuration 1. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Voxel Ambient Occlusion. Score: 7.82198
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Basic scene. Camera configuration 1. Voxel Cone Tracing with Spherical Har-
monics, dimensions 128 x 128 x 128. Score: 8.1662

Basic scene. Camera configuration 1. Voxel Cone Tracing with Spherical Har-
monics, dimensions 128 x 128 x 128 with Ambient Occlusion. Score: 8.21534

Basic scene. Camera configuration 1. Voxel Cone Tracing with Spherical Har-
monics, dimensions 128 x 128 x 128 with Voxel Ambient Occlusion. Score:
8.19092
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A.3.2 Basic scene: Configuration 2

Reference

Reference image for second camera configuration for the basic scene.

Results

Basic scene. Camera configuration 2. Light Propagation Volumes, dimensions
32 x 32 x 32. Score: 7.46911
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Basic scene. Camera configuration 2. Light Propagation Volumes, dimensions
32 x 32 x 32 with Ambient Occlusion. Score: 7.50752

Basic scene. Camera configuration 2. Light Propagation Volumes, dimensions
64 x 64 x 64. Score: 7.34371

Basic scene. Camera configuration 2. Light Propagation Volumes, dimensions
64 x 64 x 64 with Ambient Occlusion. Score: 7.0
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Basic scene. Camera configuration 2. Voxel Cone Tracing, dimensions 32 x 32
x 32. Score: 5.68233

Basic scene. Camera configuration 2. Voxel Cone Tracing, dimensions 32 x 32
x 32 with Ambient Occlusion. Score: 5.73776

Basic scene. Camera configuration 2. Voxel Cone Tracing, dimensions 32 x 32
x 32 with Voxel Ambient Occlusion. Score: 6.17783
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Basic scene. Camera configuration 2. Voxel Cone Tracing with Spherical Har-
monics, dimensions 32 x 32 x 32. Score: 8.04488

Basic scene. Camera configuration 2. Voxel Cone Tracing with Spherical Har-
monics, dimensions 32 x 32 x 32 with Ambient Occlusion. Score: 8.11504

Basic scene. Camera configuration 2. Voxel Cone Tracing with Spherical Har-
monics, dimensions 32 x 32 x 32 with Voxel Ambient Occlusion. Score: 8.80377
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Basic scene. Camera configuration 2. Voxel Cone Tracing, dimensions 128 x
128 x 128. Score: 8.12149

Basic scene. Camera configuration 2. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Ambient Occlusion. Score: 8.19119

Basic scene. Camera configuration 2. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Voxel Ambient Occlusion. Score: 8.40112
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Basic scene. Camera configuration 2. Voxel Cone Tracing with Spherical Har-
monics, dimensions 128 x 128 x 128. Score: 8.16055

Basic scene. Camera configuration 2. Voxel Cone Tracing with Spherical Har-
monics, dimensions 128 x 128 x 128 with Ambient Occlusion. Score: 8.18867

Basic scene. Camera configuration 2. Voxel Cone Tracing with Spherical Har-
monics, dimensions 128 x 128 x 128 with Voxel Ambient Occlusion. Score:
8.18941
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A.3.3 Sponza scene: Configuration 1

Reference

Reference image for first camera configuration for the sponza scene.

Results

Sponza scene. Camera configuration 1. Light Propagation Volumes, dimensions
32 x 32 x 32. Score: 6.92271
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Sponza scene. Camera configuration 1. Light Propagation Volumes, dimensions
32 x 32 x 32 with Ambient Occlusion. Score: 7.1096

Sponza scene. Camera configuration 1. Cascaded Light Propagation Volumes,
dimensions 32 x 32 x 32. Score: 7.15292

Sponza scene. Camera configuration 1. Cascaded Light Propagation Volumes,
dimensions 32 x 32 x 32 with Ambient Occlusion. Score: 7.25342
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Sponza scene. Camera configuration 1. Light Propagation Volumes, dimensions
64 x 64 x 64. Score: 7.10905

Sponza scene. Camera configuration 1. Light Propagation Volumes, dimensions
64 x 64 x 64 with Ambient Occlusion. Score: 7.13586

Sponza scene. Camera configuration 1. Cascaded Light Propagation Volumes,
dimensions 64 x 64 x 64. Score: 6.80618
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Sponza scene. Camera configuration 1. Cascaded Light Propagation Volumes,
dimensions 64 x 64 x 64 with Ambient Occlusion. Score: 6.80623

Sponza scene. Camera configuration 1. Voxel Cone Tracing, dimensions 32 x
32 x 32. Score: 6.04972

Sponza scene. Camera configuration 1. Voxel Cone Tracing, dimensions 32 x
32 x 32 with Ambient Occlusion. Score: 6.32192
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Sponza scene. Camera configuration 1. Voxel Cone Tracing, dimensions 32 x
32 x 32 with Voxel Ambient Occlusion. Score: 7.3811

Sponza scene. Camera configuration 1. Voxel Cone Tracing with Spherical
Harmonics, dimensions 32 x 32 x 32. Score: 7.47038

Sponza scene. Camera configuration 1. Voxel Cone Tracing with Spherical
Harmonics, dimensions 32 x 32 x 32 with Ambient Occlusion. Score: 7.45351
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Sponza scene. Camera configuration 1. Voxel Cone Tracing with Spherical
Harmonics, dimensions 32 x 32 x 32 with Voxel Ambient Occlusion. Score:
6.65364

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing, dimen-
sions 32 x 32 x 32. Score: 6.50038

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing, dimen-
sions 32 x 32 x 32 with Ambient Occlusion. Score: 6.63723
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Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing, dimen-
sions 32 x 32 x 32 with Voxel Ambient Occlusion. Score: 7.49734

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 32 x 32 x 32. Score: 7.56519

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 32 x 32 x 32 with Ambient Occlusion. Score:
7.53097
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Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 32 x 32 x 32 with Voxel Ambient Occlusion.
Score: 7.03117

Sponza scene. Camera configuration 1. Voxel Cone Tracing, dimensions 128 x
128 x 128. Score: 6.7757

Sponza scene. Camera configuration 1. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Ambient Occlusion. Score: 6.94764
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Sponza scene. Camera configuration 1. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Voxel Ambient Occlusion. Score: 7.44524

Sponza scene. Camera configuration 1. Voxel Cone Tracing with Spherical
Harmonics, dimensions 128 x 128 x 128. Score: 7.33576

Sponza scene. Camera configuration 1. Voxel Cone Tracing with Spherical
Harmonics, dimensions 128 x 128 x 128 with Ambient Occlusion. Score: 7.28739
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Sponza scene. Camera configuration 1. Voxel Cone Tracing with Spherical
Harmonics, dimensions 128 x 128 x 128 with Voxel Ambient Occlusion. Score:
7.01389

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing, dimen-
sions 128 x 128 x 128. Score: 7.5559

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing, dimen-
sions 128 x 128 x 128 with Ambient Occlusion. Score: 7.56632
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Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing, dimen-
sions 128 x 128 x 128 with Voxel Ambient Occlusion. Score: 7.52922

Sponza scene. Camera configuration 1. Cacaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 128 x 128 x 128. Score: 6.88213

Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 128 x 128 x 128 with Ambient Occlusion.
Score: 6.83252
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Sponza scene. Camera configuration 1. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 128 x 128 x 128 with Voxel Ambient Occlusion.
Score: 6.62664

A.3.4 Sponza scene: Configuration 2

Reference

Reference image for second camera configuration for the sponza scene.
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Results

Sponza scene. Camera configuration 2. Light Propagation Volumes, dimensions
32 x 32 x 32. Score: 7.20196

Sponza scene. Camera configuration 2. Light Propagation Volumes, dimensions
32 x 32 x 32 with Ambient Occlusion. Score: 7.12059
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Sponza scene. Camera configuration 2. Cascaded Light Propagation Volumes,
dimensions 32 x 32 x 32. Score: 7.10172

Sponza scene. Camera configuration 2. Cascaded Light Propagation Volumes,
dimensions 32 x 32 x 32 with Ambient Occlusion. Score: 7.08763

Sponza scene. Camera configuration 2. Light Propagation Volumes, dimensions
64 x 64 x 64. Score: 7.23175
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Sponza scene. Camera configuration 2. Light Propagation Volumes, dimensions
64 x 64 x 64 with Ambient Occlusion. Score: 7.16263

Sponza scene. Camera configuration 2. Cascaded Light Propagation Volumes,
dimensions 64 x 64 x 64. Score: 7.14802

Sponza scene. Camera configuration 2. Cascaded Light Propagation Volumes,
dimensions 64 x 64 x 64 with Ambient Occlusion. Score: 7.07308
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Sponza scene. Camera configuration 2. Voxel Cone Tracing, dimensions 32 x
32 x 32. Score: 5.72353

Sponza scene. Camera configuration 2. Voxel Cone Tracing, dimensions 32 x
32 x 32 with Ambient Occlusion. Score: 6.2168

Sponza scene. Camera configuration 2. Voxel Cone Tracing, dimensions 32 x
32 x 32 with Voxel Ambient Occlusion. Score: 7.07407
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Sponza scene. Camera configuration 2. Voxel Cone Tracing with Spherical
Harmonics, dimensions 32 x 32 x 32. Score: 7.27794

Sponza scene. Camera configuration 2. Voxel Cone Tracing with Spherical
Harmonics, dimensions 32 x 32 x 32 with Ambient Occlusion. Score: 7.18962

Sponza scene. Camera configuration 2. Voxel Cone Tracing with Spherical
Harmonics, dimensions 32 x 32 x 32 with Voxel Ambient Occlusion. Score:
7.20493
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Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing, dimen-
sions 32 x 32 x 32. Score: 6.11409

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing, dimen-
sions 32 x 32 x 32 with Ambient Occlusion. Score: 6.49928

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing, dimen-
sions 32 x 32 x 32 with Voxel Ambient Occlusion. Score: 7.43055
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Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 32 x 32 x 32. Score: 7.37627

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 32 x 32 x 32 with Ambient Occlusion. Score:
7.2963

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 32 x 32 x 32 with Voxel Ambient Occlusion.
Score: 7.37576
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Sponza scene. Camera configuration 2. Voxel Cone Tracing, dimensions 128 x
128 x 128. Score: 6.35485

Sponza scene. Camera configuration 2. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Ambient Occlusion. Score: 6.55574

Sponza scene. Camera configuration 2. Voxel Cone Tracing, dimensions 128 x
128 x 128 with Voxel Ambient Occlusion. Score: 6.9726
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Sponza scene. Camera configuration 2. Voxel Cone Tracing with Spherical
Harmonics, dimensions 128 x 128 x 128. Score: 7.38036

Sponza scene. Camera configuration 2. Voxel Cone Tracing with Spherical
Harmonics, dimensions 128 x 128 x 128 with Ambient Occlusion. Score: 7.26363

Sponza scene. Camera configuration 2. Voxel Cone Tracing with Spherical
Harmonics, dimensions 128 x 128 x 128 with Voxel Ambient Occlusion. Score:
7.26962
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Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing, dimen-
sions 128 x 128 x 128. Score: 6.7976

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing, dimen-
sions 128 x 128 x 128 with Ambient Occlusion. Score: 6.83765

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing, dimen-
sions 128 x 128 x 128 with Voxel Ambient Occlusion. Score: 7.08996
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Sponza scene. Camera configuration 2. Cacaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 128 x 128 x 128. Score: 7.36901

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 128 x 128 x 128 with Ambient Occlusion.
Score: 7.2539

Sponza scene. Camera configuration 2. Cascaded Voxel Cone Tracing with
Spherical Harmonics, dimensions 128 x 128 x 128 with Voxel Ambient Occlusion.
Score: 7.208
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B. Shader Code

This chapter details shader code for several issues discussed during this doc-
ument.

B.1 Spherical harmonics

Listing B.1: Compute the spherical harmonic from a direction and an intensity

#define SH cosLobe C0 0.886226925 f // s q r t ( p i ) /2
#define SH cosLobe C1 1.02332671 f // s q r t ( p i /3)
vec4 dirToCosineLobe ( in vec3 N) {

return vec4 (
SH cosLobe C0 ,
−SH cosLobe C1 ∗ N. y ,
SH cosLobe C1 ∗ N. z ,
−SH cosLobe C1 ∗ N. x ) ;

}

void computeSHIntensity ( vec3 N, vec3 f l u x ) {
// conver t normal to SH space
vec4 c o e f f s = ( dirToCosineLobe (N) ) ;

// compute SH f o r each c o l o r channel
vec4 redSH = c o e f f s ∗ f l u x . r ;
vec4 greenSH = c o e f f s ∗ f l u x . g ;
vec4 blueSH = c o e f f s ∗ f l u x . b ;

}

Listing B.2: Compute the amount of lighting in a given direction

#define SH C0 0.282094792 f // 1 / 2 s q r t ( p i )
#define SH C1 0.488602512 f // s q r t (3/ p i ) / 2

vec4 dirToSH ( in vec3 N){
return vec4 (

SH C0 ,
−SH C1 ∗ N. y ,
SH C1 ∗ N. z ,
−SH C1 ∗ N. x ) ;

}
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vec3 g e t I n d i r e c t L i g h t i n g ( vec3 P, vec3 N){
// P i s the index in the gr id , range [ 0 . . . 1 ]
// N i s the world normal

// conver t normal to SH i n t e n s i t y
vec4 sh = dirToSH(−N) ;

// g e t SH c o e f f i c i e n t s f o r each c o l o r channel
vec4 redSH = texture ( redTexture , P ) ;
vec4 greenSH = texture ( greenTexture , P ) ;
vec4 blueSH = texture ( blueTexture , P ) ;

// mix based on SH
return vec3 (

dot ( sh , redSH ) ,
dot ( sh , greenSH ) ,
dot ( sh , blueSH ) ) ;

}

B.2 Light Propagation Volume

Listing B.3: LPV propagation

struct Propagation {
vec4 R;
vec4 G;
vec4 B;

}

f loat computeBlocking ( i v e c3 index , vec3 mainDir ) {
// from range [ 0 . . r e s o l u t i o n ] to [ 0 . . 1 ]
vec3 geomCoord = ( index + 0 .5 ∗ mainDir ) / r e s o l u t i o n ;
vec4 geomSH = texture ( geomTexture , geomCoord ) ;

return 1 .0 − s a tu ra t e ( dot (geomSH , dirToSH(−mainDir ) ) ) ;
}

const f loat so l idAng leToCe l l = 0 .12753712 ;
const f loat sol idAngleToFace = 0 .13478556 ;

Propagation propagate ( i v e c3 c e l l I n d e x ) {
// c e l l index i s the index in the g r i d o f the c e l l we

↪→ want to g a t h e r the i n t e n s i t y to , in the range
↪→ [ 0 . . . r e s o l u t i o n ]

Propagation prop ;
for ( int i = 0 ; i < 6 ; i++){
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// g e t d i r e c t i o n to neighbour c e l l
vec3 mainDir = di rToCe l l ( i ) ;
// determine index i n t o neighbour c e l l
i v e c3 index = c e l l I n d e x − mainDir ;

vec4 redSH = texture ( redTexture , index ) ;
vec4 greenSH = texture ( greenTexture , index ) ;
vec4 blueSH = texture ( blueTexture , index ) ;

f loat o c c l u s i o n = computeBlocking ( index , mainDir ) ;
f loat w = o c c l u s i o n ∗ so l idAng leToCe l l ;

vec4 dirCos = dirToCosineLobe ( mainDir ) ;
vec4 dirSH = dirToSH ( mainDir ) ;

prop .R += w ∗ dot ( redSH , dirSH ) ∗ dirCos ;
prop .G += w ∗ dot ( greenSH , dirSH ) ∗ dirCos ;
prop .B += w ∗ dot ( blueSH , dirSH ) ∗ dirCos ;

// compute c o n t r i b u t i o n f o r each f a c e
for ( int f a c e = 0 ; f a c e < 4 ; f a c e++){

// g e t d i r e c t i o n to t h i s f a c e o f the neighbour
↪→ c e l l

vec3 dirToFace = dirToSideFace ( face , i ) ;

o c c l u s i o n = computeBlocking ( index , dirToFace ) ;
f loat w = o c c l u s i o n ∗ sol idAngleToFace ;

dirCos = dirToCosineLobe ( dirToFace ) ;
dirSH = dirToSH ( dirToFace ) ;

prop .R += w ∗ dot ( redSH , dirSH ) ∗ dirCos ;
prop .G += w ∗ dot ( greenSH , dirSH ) ∗ dirCos ;
prop .B += w ∗ dot ( blueSH , dirSH ) ∗ dirCos ;

}
}
return prop ;

}

B.3 Voxelization

Listing B.4: Conservative voxelization

void v o x e l i z e ( vec3 p0 , vec3 p1 , vec3 p2 ) {
// p0 , p1 and p2 are the v e c t o r s o f the t r i a n g l e in

↪→ the range [− g r i d r e s o l u t i o n . . . g r i d r e s o l u t i o n ]
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// compute the normal o f the f a c e
vec3 n = c r o s s ( p1 − p0 , p2 − p0 ) ;
f loat nDotX = abs (n . x ) ;
f loat nDotY = abs (n . y ) ;
f loat nDotZ = abs (n . z ) ;

// f i n d the a x i s t h a t maximizes the p r o j e c t e d area o f
↪→ t h i s t r i a n g l e

i f (nDotX > nDotY && nDotX > nDotZ) {
// X a x i s
p0 . xyz = p0 . yzx ;
p1 . xyz = p1 . yzx ;
p2 . xyz = p2 . yzx ;

}
else i f (nDotY < nDotX && nDotY > nDotZ) {

// Y a x i s
p0 . xyz = p0 . xzy ;
p1 . xyz = p1 . xzy ;
p2 . xyz = p1 . xzy ;

}

// next , e n l a r g e the t r i a n g l e f o r c o n s e r v a t i v e
↪→ r a s t e r i z a t i o n

// c a l c u l a t e aabb f o r t h i s t r i a n g l e
vec4 AABB;
AABB. xy = p0 . xy ;
AABB. zw = p0 . zw ;

AABB. xy = min( p1 . xy , AABB. xy ) ;
AABB. zw = max( p1 . xy , AABB. zw) ;

AABBxy = min ( p2 . xy , AABB. xy ) ;
AABB. zw = max( p2 . xy , AABB. zw) ;

// e n l a r g e by h a l f a p i x e l
vec2 hPixe l = vec2 ( 1 . 0 / g r idReso lu t i on ) ;
AABB. xy −= hPixe l ;
AABB. zw += hPixe l ;

// f i n d 3 t r i a n g l e edge p la nes
vec2 n0 = normal ize ( p1 . xy − p0 . xy ) ;
vec2 n1 = normal ize ( p2 . xy − p1 . xy ) ;
vec2 n2 = normal ize ( p0 . xy − p2 . xy ) ;
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n0 = vec2(−n0 . y , n0 . x ) ;
n1 = vec2(−n1 . y , n1 . x ) ;
n2 = vec2(−n2 . y , n2 . x ) ;

// i f t r i a n g l e i s back fac ing , f l i p i t s edge normals
↪→ so t r i a n g l e does not s h r i n k

vec3 c l ipN = c r o s s ( p1 − p0 , p2 − p0 ) ;
i f ( c l ipN . z < 0) {

e0 ∗= −1;
e1 ∗= −1;
e2 ∗= −2;

}

// p i x e l i s 1x1 , d i a g o n a l o f a p i x e l i s s q r t (2)
// s c a l e d by the s i z e o f the volume
f loat p ixe lD iagona l = s q r t (2 ) / g r idReso lu t i on ;
p0 . xy −= pixe lD iagona l ∗ ( ( e2 . xy / dot ( e2 . xy , n0 . xy ) )

↪→ + ( e0 . xy / dot ( e0 . xy , n2 . xy ) ) ) ;
p1 . xy −= pixe lD iagona l ∗ ( ( e0 . xy / dot ( e0 . xy , n1 . xy ) )

↪→ + ( e1 . xy / dot ( e1 . xy , n0 . xy ) ) ) ;
p2 . xy −= pixe lD iagona l ∗ ( ( e1 . xy / dot ( e1 . xy , n2 . xy ) )

↪→ + ( e2 . xy / dot ( e2 . xy , n1 . xy ) ) ) ;

// output parameters
g l P o s i t i o n = vec4 ( p0 , 1) ;
EmitVertex ( ) ;
g l P o s i t i o n = vec4 ( p1 , 1) ;
EmitVertex ( ) ;
g l P o s i t i o n = vec4 ( p2 , 1) ;
EmitVertex ( ) ;

}

B.4 Image Atomic Average

Listing B.5: Computing an atomic average using the ImageAtomicCompSwap
method of OpenGL 4.2

vec4 convRGBA8ToVec4( u int va l ) {
return vec4 ( f loat ( ( va l&0x000000FF ) ) , f loat ( ( va l&0

↪→ x0000FF00 )>>8U) , f loat ( ( va l&0x00FF0000 )>>16U) ,
↪→ f loat ( ( va l&0xFF000000 )>>24U) ) ;

}
uint convVec4ToRGBA8( vec4 va l ) {

return ( u int ( va l .w)&0x000000FF )<<24U | ( u int ( va l . z )&0
↪→ x000000FF )<<16U | ( u int ( va l . y )&0x000000FF )<< 8U
↪→ | ( u int ( va l . x )&0x000000FF ) ;
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}
void imageAtomicRGBA8Avg( layout ( r32u i ) uimage3D voxelGrid

↪→ , in i v e c3 coords , in vec4 va l ) {
// v a l i s the c o l o r we want to s tore , in the range

↪→ [ 0 . . . 1 ] wi th v a l . a be ing 1
// v a l must be in t h i s range , in order to prevent

↪→ o v e r f l o w
// coords i s in the range [ 0 . . . r e s o l u t i o n ]
va l . rgb ∗= 255.0 f ;
u int newVal = convVec4ToRGBA8( va l ) ;
u int prevStoredVal = 0 ;
u int curStoredVal = 0 ;
// Loop as long as d e s t i n a t i o n v a l u e g e t s changed by

↪→ o t her t h r e a d s
while ( ( curStoredVal = imageAtomicCompSwap ( voxelGrid ,

↪→ coords , prevStoredVal , newVal ) ) !=
↪→ prevStoredVal ) {
prevStoredVal = curStoredVal ;
vec4 r v a l = convRGBA8ToVec4( curStoredVal ) ;
r v a l . xyz =( r v a l . xyz∗ r v a l .w) ; // Denormalize
vec4 curValF = r v a l + va l ; // Add new v a l u e
curValF . xyz /=( curValF .w) ; // Renormalize
newVal = convVec4ToRGBA8( curValF ) ;

}
}
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