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Abstract

Combining different types of data from multiple views makes it easier
to perform object detection. Our novel method enables multi-view deep
convolutional neural networks to combine color information from panoramic
images and depth information derived from Lidar point clouds for improved
street furniture detection. Our focus is on the prediction of world positions of
light poles specifically. In contrast to related methods, our method operates
on data from real world environments consisting of many complex objects
and supports the combination of information from recording locations that
do not have fixed relative positions.

We make five contributions in this work. First, we propose a single-view
pipeline which produces segmentations that are reconstructed as labeled
point clouds, after which a three-dimensional clustering method extracts
the world positions for the segmented objects. Then, a scalable method
to generate ground truth to train the segmentation-network is described.
Different depth-derived features are explored to find an optimal data rep-
resentation to transfer information to the neural segmentation-network. A
novel method is then introduced that refocuses and reprojects images, based
on the depth information of Lidar point clouds, so that correlation between
images from different camera poses is directly defined and no longer has
to be inferred through complex matching algorithms. Finally, a multi-view
pipeline is introduced that leverages refocusing and reprojection to combine
data from multiple recording locations. This combination of geometric and
deep learning methods has never been performed before.

Results show that a single-view pipeline using solely depth-information
outperforms a pipeline with only color information. A deep convolutional
neural network trained on the combined representation creates higher quality
segmentations than networks trained on color or depth information alone. It
is also shown that better segmentations generally result in better clustering
and world position estimates. The multi-view pipeline operating on just
RGB-images correctly predicts 66% of all light poles.

The method is easily extensible to other types of street furniture objects and
currently utilizes neural network architectures with relatively small computa-
tion and memory requirements. However, the pipeline does not dictate any
specific neural network architecture and can in the future easily be updated
with more modern networks for improved performance. The method will be
productized by Cyclomedia to obtain data for remote inspection and inven-
tory purposes, and will be extended with support for road markings.
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Chapter 1

Introduction

Object detection performance can be improved by combining different types of data from mul-
tiple sources. We discuss how information from street-level panoramic images and Lidar point
clouds can be combined in the detection of street furniture objects such as light poles and traffic
signs. Detection of street furniture objects such as light poles and traffic signs can be automated
using machine learning techniques. Deep learning is currently one of the most powerful machine
learning tools for data processing and deep neural networks can be trained to capture abstract
features that would otherwise be too complex to model by hand. The main challenge in this work
is to effectively combine the information from multiple images and point clouds into a single
representation.

1.1 Context

CycloMedia is a company that records the public space with 100 megapixel, 360 degree cylindrical
panoramic images (cycloramas) and Lidar point clouds. Cyclomedia’s data allows users to virtu-
ally perform tasks such as tax assessment, inspection, inventory and planning for infrastructure,
public safety and transportation sectors, without the need to visit each location physically. The
precision of the coordinates is 2 centimeters on average, which allows users to perform highly
accurate positioning and measurements within the virtual data. By combining information from
point clouds and images a user can measure for example the area and angle of a roof, just by
clicking on the corners of the roof within an image.

The data is obtained from the Digital Cyclorama Recorder (DCR) system, which is mounted on
top of driving cars that record the entirety of the Netherlands and parts of France, Germany,
Scandinavia and the USA. The panoramic images are recorded with a camera system that uses
smart triggering to combine images from multiple cameras into a single panoramic image. The
panoramic images are recorded at an interval of 5 meters. The point clouds are sets of three-
dimensional data points that represents the surrounding scene. The point clouds a measured
with a Lidar laser sensor, which continuously fires lasers in different directions to to scan the sur-
roundings. The DCR system is illustrated in Figure 1.1.

(A) (B) (C)

FIGURE 1.1: A) CycloMedia’s DCR10 system. The system contains five cameras
whose focal points lie on a line in order to create parallax-free cycloramas. B)
A Velodyne HDL-32E Lidar sensor. C) A Cyclomedia Car; a Ford Fiesta with a

DCR10L system, including Lidar scanner, mounted on top.
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However, point clouds offer only a sparse sampling of the scene. While information of the mea-
sured points is available, the areas and relations between points are still unknown, and the point
clouds cannot directly be used to extract depth values for each pixel. Therefore, surface recon-
struction algorithms are applied to reconstruct the point cloud as a mesh. Meshes are the con-
ventional representation of 3D models in many applications that explicitly store which points are
connected to each other, approximating the original surface. The surface can be colored with im-
ages in a process called texturing. Figure 1.2 illustrates a point cloud reconstructed as a textured
mesh.

(A) (B) (C)

FIGURE 1.2: a) A point cloud of the facade of a house. b) The edges of the recon-
structed mesh. c) The textured reconstructed mesh.

The mesh can then be used as an approximation to the actual scene surfaces. For every recorded
panorama, the corresponding camera location, orientation, focal length and other lens parameters
are known. The image recorded from a camera can be considered a virtual plane that is placed in
front of the camera at a distance determined by the lens. Each pixel can therefore be associated
with a direction vector, which is the vector from the camera’s lens, through that pixel in the image
plane, into the world. By calculating where this vector intersects with the mesh, a depth value can
be computed for each pixel. A simplified camera model illustrating how each pixel can be related
to a direction is illustrated in Figure 1.3. This combination of the original cyclorama and depth
values is called a depth cyclorama. Figure 1.4 illustrates a cyclorama, its mesh reconstruction,
and a depth image. It should be noted, that as point clouds and reconstructed meshes can contain
inaccuracies, the depth values do not always intuitively correspond to the depicted scene. Mov-
ing objects have been filtered from the point clouds and sometimes the point clouds and images
have been measured at slightly different timestamps, further increasing this effect.

FIGURE 1.3: This image illustrates the geometric relationship between a three-
dimensional point and its corresponding two-dimensional projection onto the im-
age plane of a camera. The virtual image plane is a plane located at a focal length
distance from the center of projection. The focal length is determined by the cam-
era lens. For a pair of pixel coordinates we can then compute the vector from the
center of projection through that pixel. By computing where this vector intersects
the geometry of the scene, a depth value is computed. In reality the model is a bit
more complex since rays from the center of projection are refracted through a lens,
and the center of projection is not an infinitely small point, but an area defined by

the camera aperture.
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(A) (B) (C)

FIGURE 1.4: A) A region of a cycloramic image. B) The corresponding mesh as re-
constructed from the point cloud. Note that the sails of the windmill were moving
during recording, resulting in superfluous mesh parts. Additionally, some parts of
the trees and the light pole are missing. The water is not represented in the point
cloud altogether since the lasers from the Lidar sensor were not properly reflected
back. C) The depth image as created from the mesh. The depth is encoded in the
red and green image channels for higher precision depth storage and improved

local depth contrast.

One of CycloMedia’s goals is to automate the detection of street furniture such as light poles and
traffic signs in the data, for inventory purposes. The detection task consist of finding the objects
that belong to a certain class within an image. CycloMedia already performs object detection in
regular images without depth information. However, classification can be difficult when no geo-
metrical data is available. For example, when objects with similar colors appear next to each other
within an image, it is difficult to estimate the boundary between the objects. Another limitation
of regular images, is that a location within an image, cannot easily be translated to a position in
world coordinates. One solution to this problem is to detect the same object in multiple images,
obtained from nearby recording locations. The vector from the camera towards the object can
then be computed in each view, and the intersection of these vectors can be calculated as the po-
sition of the object. However, this method involves many inaccuracies as the directional vectors
might diverge form each other, or might have intersections at locations where no object is present.
It is expected that the additional depth information would improve accuracy for both the detec-
tion within an image and the world positioning task. Object detection within the image could be
improved since the additional depth information allows for more descriptive and discriminative
features. Even if object with the same colors appear next to each other, they could be distin-
guished by their depth, or three-dimensional shape. The step to map the detection within the
image into a world position also becomes less complex as depth information is readily available
and does not have to be inferred through multiple images. It is therefore interesting to further
explore how the color information from images and depth information from Lidar point clouds
could be combined.

The traditional process of detecting objects automatically, involves the design of descriptive and
discriminative features. It is inefficient to design such features manually, since they are complex,
and new features have to be designed for every class. Machine learning models can be trained
to define such features automatically as long as a representative data set is available. The benefit
of this is that the architecture does not need to be changed when a new type of object has to be
recognized. Since Cyclomedia deals with large volumes of data, and the set of objects that need to
be detected keeps expanding, machine learning techniques offer a flexible and scalable solution.
Artificial Neural Networks are currently one of the most powerful machine learning techniques.
However, finding efficient data representations, creating large annotated datasets and designing
a network that can capture the required features efficiently still poses a challenge.

To train a neural network, a large annotated dataset is required that defines a golden standard,
also called the ground truth, consisting of examples of what the neural network should learn.
Such a dataset might not be available for the chosen data representation. Creating such a dataset
in a fashion that is similarly flexible and scalable as the neural network is an additional challenge.
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Since Cyclomedia deals with large quantities of data, it is desired that the neural network is fast
and has low memory requirements so that it can be invoked many times in parallel. While this is
not a problem that we focus on in this work, it is something we bear in mind. Another desired
property is that the pipeline should be general enough to deal with a range of street furniture
objects such as garbage bins, road markings and traffic signs. However, to limit the scope of this
work, the primary class of interest in this work consists of light poles.

1.2 Research questions

The goal is to introduce a neural network pipeline which computes the world coordinates of street
furniture objects, using information from both images and point clouds. It is expected that the
additional information from the point clouds improves performance over regular images. The
main research question of this work is as follows.

• Research Question
How could cycloramas and Lidar point clouds be combined for improved street furniture detection?

Although the additional depth information is expected to improve detection performance, the
data representation significantly affects its usability. It might therefore be beneficial to design a
neural network that directly operates on point clouds, directly operates on depth cycloramas, or
operates on any representation that is a combined derivative of both. This problem introduces a
new sub-question.

• Sub-question 1
In what representation could the panoramic images and Lidar point clouds from a single recording
location best be combined for optimal neural network processing?

Since Cyclomedia obtains data from many recording locations, this information can be leveraged
to overcome some of the limitations of considering recording locations individually. If an object is
missing or incomplete within the data from a single recording locations, this data could be supple-
mented with data from other recording locations. How the information from multiple recording
locations could be combined poses another challenge where the representation is crucial.

• Sub-question 2
How could data from multiple recording locations be combined, so that inaccuracies within individual
recording locations can be overcome with supplementary information from others?

1.3 Contributions

Five main contributions are made in this work.

• A single-view pipeline is introduced which estimates light pole positions from images
with depth information. First a deep convolutional neural network is used for image seg-
mentation. Then, using the available depth information, the segmentation is reconstructed
as a labeled point cloud. A three-dimensional clustering algorithm then extracts the posi-
tions of the segmented objects from the segmentation-derived point cloud. Only few meth-
ods have used depth information in segmentation-networks, and the combination of seg-
mentation with point cloud clustering is unique. The extraction of depth information from
Lidar point clouds for segmentation purposes specifically, has not been illustrated before.

• A method to generate ground truth segmentation images using the depth information
from Lidar point clouds is described. The data that is available to us consists of object po-
sitions, panoramic images and Lidar point clouds. However, annotated images that can di-
rectly be used for training our neural segmentation-network are not available. Our method
produces high quality ground truth segmentations fully automatically.
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• A comparison is made between neural networks using color information from panoramic
images, depth information form Lidar point clouds, and derived combinations of both.
Several representations that combine color and depth-derived features are explored. Fur-
thermore, in the literature depth images are mostly explored independently from color, ap-
plied on virtual scenes with few objects, for solving classification tasks. Our problem is
more difficult as real world scenes are more complex and consist of many objects. Addi-
tionally our method combines both color and depth information and does not only involve
classification but also the extraction of real world positions.

• A novel method is introduced that supports the combination of information from record-
ing locations that do not have fixed relative positions. In related work dealing with virtual
environments, recording locations with fixed relative positions are chosen. This enables a
neural network to easily correlate the data. However, in the real world, recording locations
can not be chosen arbitrarily. Because our recording cars are bound to the roads and have
to make turns, the trajectories at which scenes are approached vary wildly. In our novel
method, images are refocused and reprojected to a target pose using the depth information
from Lidar point clouds so that they directly overlap and correlation no longer has to be
inferred.

• A novel type of multi-view pipeline is illustrated which leverages the power of image
refocusing and reprojections to combine information from multiple recording locations
that do not have fixed relative positions. In related work, information from multiple
recordings locations is often combined through pooling operations followed by a shallow
convolutional neural network. However, pooling operations quickly reduce data dimen-
sionality, without extracting features first, and therefore valuable information is lost. We
investigate the application of a deep convolutional neural network that jointly performs
pooling and feature estimation for aggregation purposes. This specific combination of geo-
metric and deep learning methods has not been illustrated before.

1.4 Outline

A literature study providing an overview of neural networks related to our problem is provided
in Chapter 2. Chapter 3 discusses our pipeline in which information from both images and Lidar
point clouds is combined for segmentation, and segmentation-derived point clouds are clustered
to extract world positions for the objects. In addition to using depth information directly, several
other depth-derived features are explored for improved performance. A novel method is then
proposed to refocus and reproject images to a target camera, so that information from multiple
recording locations can be directly correlated, without the need for complex matching methods.
This method is then incorporated in our pipeline enabling for improved performance. In Chap-
ter 4 the implementation of the method, the dataset, ground truth creation method and training
methodology and evaluation metrics are discussed. In Chapter 5 a quantitative analysis illus-
trates the performance of the proposed method. Both the quality of the segmentations and the
quality of the extracted object positions are evaluated. Finally, Chapter 6 concludes this work
with a summary and a discussion of future work.
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Chapter 2

Literature Study

Deep learning is one of the most powerful tools in machine learning. We therefore primarily
focus on deep neural networks throughout this work. In this Chapter an overview is provided
of the neural network developments that are most relevant to our problem. Section 2.1 provides
an introduction to artificial networks. In the following sections we focus on the differences and
developments in architectures for different data types and representations. Section 2.2 discuss
methods based on images, while 2.3 discusses methods that use multiple images to incorporate
a notion of three-dimensionality. Methods that operate on meshes by partitioning the space are
discussed in Section 2.4. Finally we discuss methods that process meshes by transforming them
to the frequency domain in Section 2.5.

2.1 An introduction to Artificial Neural Networks

The traditional way of solving problems in computer science is by manually defining rules or
algorithms. So, if the goal is to create a program that distinguishes between cats and dogs, the
first step is to define rules that determine when an image depicts a cat, and when it depicts a dog.
Rules could define the shape of the animals, the differences in color, and the texture of their fur.
These distinctive characteristics are examples of features. However, manually designing features
is tedious and does not scale well to more classes and complex features. If the program would
have to distinguish between fish too, the programmer needs to create an entire new set of features.

Machine learning techniques such as Artificial neural networks (ANNs) can be trained to au-
tomatically capture abstract features that would otherwise be too complex to model by hand.
Neural networks can be adapted to solve different tasks such as estimating relations between
variables (regression), grouping data (classification), finding a bounding box for an object in an
image (object detection) or finding all the pixels in an image that belong to a class (semantic seg-
mentation). Neural networks have been adapted to many data types including raw numbers, text,
images, sound, video, 3D models and point clouds. They have become one of the most powerful
tools for machine learning.

As their name might suggest, artificial neural networks were originally inspired by biological neu-
ral networks, such as the brain. The key principle is the composition of a large number of highly
interconnected processing units that solve a specific task together. Artificial neural networks have
since diverged from the biological neural networks by introducing more mathematical, statisti-
cal and computational elements tailored to solve specific computation tasks. While for modern
artificial neural networks the analogy to the brain only loosely holds, it still offers an intuitive
introduction.

A biological neuron receives input signals through its dendrites. Outputs signals travel along the
axon, which branches into synapses that are connected to the dendrites of other neurons. Figure
2.1 illustrates a biological neuron. In 1943 the McCulloch-Pitts (MCP) model [1] was presented
as a mathematical simplification of the neuron. Many of these artificial neurons wired together in
a network, would theoretically be able to reproduce the highly complex patterns as they occur in
the brain. A McCulloch-Pitts neuron computes a sum of its inputs, where each input is weighted
equally, and compares it to a threshold. The threshold is similar to how a biological neuron only
fires a signal if its action potential reaches a certain threshold. Adjusting the weights is analogue
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to the Hebbian learning principle; "When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased." [2].
This is summarized by Löwel as: “neurons wire together if they fire together” [3]. In 1958 the
Perceptron was introduced by Rosenblatt [4], which extended the MCP model with more flexible
computational features. The Perceptron introduced separate weights for each input and a learn-
ing rule to optimize the ways analytically. The weights of a network are also called parameters.
Figure 2.2 illustrates an artificial neuron.

FIGURE 2.1: A biological neuron receives input signals through its dendrites. Out-
put signals are carried away from the cell body along the axon, which branches
into synapses that are connected to the dendrites of other neurons. A neuron only

fires a signal if its action potential reaches a threshold.

x2 w2 Σ

activation
function

y

output

x1

inputs
w1

weights

xn wn

bias
b

...

FIGURE 2.2: An artificial neuron computes a weighted sum of its inputs. A bias can
be added which, together with the activation function, simulates a thresholding or

scaling operation. The artificial neuron loosely resembles a biological neuron.

In 1962 Hubel and Wiesel showed that the functional architecture of the cat’s visual cortex is
highly hierarchical, where each layer acts on a receptive field in the previous layer [5]. Fukushima
created the Neocognitron [6] in 1980 as the first neural network with such a hierarchical archi-
tecture. A convolution neuron computes for each pixel in the input image a weighted sum with
its neighbors, mimicking the receptive fields in the visual Cortex. The collection of weights for
a receptive field is called a convolution kernel or a filter. A convolutional neuron is depicted in
Figure 2.3. Since the same convolution kernel is used for each pixel, the network is invariant to
translations. The hierarchical architecture of convolution neurons enables higher level neurons to
have effectively bigger receptive fields over the image. Lower level neurons learn features that
correspond to edges, while higher level neurons correspond to more abstract features such as
eyes, noses, mouths, or entire faces. This way, the hierarchical architecture also mimics the hierar-
chical structure of the world around us. Since the information from many neurons is combined in
the higher levels of the hierarchy, the network becomes more invariant to noise, deformations and
color changes. The architecture of the neocognitron is depicted in Figure 2.4. The features that
neurons at different level in the hierarchy of a CNN correspond to are depicted in 2.5. The success
of the neocognitron inspired further development of convolutional neural networks (CNNs).

In 1998 Yann LeCun kept a similar architecture and layout with the LeNet network [8]. Instead of
using a threshold, the network used a non-linear continuous activation function. The weighted
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FIGURE 2.3: A convolution neuron computes a weighted sum of a local region of
pixel values. For each region, it computes a single output value. The neuron con-
siders all regions in a sliding-window fashion. In this example a sliding window
size of 3 × 3 is used, resulting in 9 sliding window locations. The blue region in
the input image corresponds to the single blue value in the intermediate result. The
value has been computed as follows. First the sum of the input values is computed,
while each value is weighted with the corresponding value in the convolution ker-
nel: (0× 0)+ (2× 1)+ (1× 0)+ (1× 0)+ (0× 0)+ (2× 0)+ (0× 0)+ (−1× 0)+
(2× 0) = 2. Then the bias is added. 2 + 1 = 3. The intermediate result is scaled by
the activation function to compute the final output. The activation function used

in this example is the sigmoid activation function: y = 1
1+e−x .

FIGURE 2.4: The architecture of the neocognitron. The hierarchical architecture
mimics the visual cortex. Neurons in higher levels of the architecture have a bigger
effective receptive field and are more invariant to noise, deformations and color

differences.

sum of the inputs, which is a linear combination, is multiplied by the activation function to cre-
ate a non-linear output. Using this non-linearity enables the network to define more complex
features. A technique called backpropagation can be used that automatically optimizes all the
weights in the network. This is called end-to-end learning. To train a network, training samples
should be provided to illustrate the desired output. A loss function is defined to measure the
difference between the desired and the predicted output. For every training sample, the partial
derivatives of all weights with respect to the loss function are computed. The weights can then be
automatically tweaked with gradient descent techniques that use the partial derivative to know
whether the weights should be increased or decreased. Backpropagation is essentially the appli-
cation of the chain rule for derivatives, applied on the many components of the neural network.
The weights are incrementally optimized. The more training samples are available, the closer the
weights will come to their optimal value. If the training data is representative of the whole data
domain, then these weights will also generalize well to unseen data. However, too much training
is harmful, as the network might overreact to fluctuations in the training data, disabling it to gen-
eralize to unseen data. This is called overfitting.

Due to powerful computers, new techniques, and the accessibility of large image databases through
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FIGURE 2.5: Hierarchical features as learned by a CNN. Features learned by neu-
rons in the lower layers of the hierarchy correspond to edges and contrasts. Higher
level features are more complex and respond to body parts such as eyes, mouth or
nose. The features in the highest layers of the network correspond to faces. Image

adapted from [7].

the internet, neural networks could already outperform hand-designed features at this point. Fea-
tures can be interpreted as complex mathematical formulas, and neural networks can approx-
imate any unknown formula, as long as the network has enough parameters, and appropriate
training data is available. Modern CNNs rival the accuracy of the Primate IT Cortex, and even
function similarly [9]. The challenge is now to define neural network architectures for different
problems and different types of data that can be trained with realistic amounts of data. A gen-
eral theory to tackle such challenges has, however, not been well-established. We are no longer
limited by computation power or data, but rather by ideas.

2.2 Image-based methods

In this section we discuss image-based localization methods since they have been studied exten-
sively and many image-based techniques can be transferred to other types of data and represen-
tations easily. The localization of objects in images can be approached in several ways. In both
object detection and instance segmentation the goal is to classify and localize object instances.
In object detection however, instances are localized using bounding boxes, while in instance seg-
mentation the set of pixels that belongs to an instance is computed. In this section we discuss
both approaches and how they are optimized for efficiency.

The general process of object detection involves the extraction of fixed-size regions from an im-
age. The regions are then classified separately. The region that has the highest class score then
defines the position of the bounding box that fits the object. If a neural network is trained to
detect i.e. a cat in an image patch of 10 × 10 pixels, while the test image is bigger than that, all
the potential regions are exhaustively considered. First the 10× 10 region at the top-left position
is considered. Then the window of interest "slides" from left to right, from top to bottom, to ex-
haustively consider all potential regions. This is called a sliding-window approach. The number
of potential regions increases rapidly with the size of an image. However, region proposal can be
generated using criteria such as color, texture or position, to limit this problem. Selective Search
[10] is one method that uses a diverse set of complementary and hierarchical grouping strategies
to propose regions that are likely to contain an object. This way, instead of considering all regions
in an exhaustive search, only a subset has to be processed.

For object detection, Girshick et al. propose Region-based CNNs (RCNNs) [11]. An RCNN re-
lies on category-independent region proposals on the image. The proposed regions are likely to
contain objects of interest. A CNN is then invoked to extract a feature vector for each region in-
dependently. The feature vectors are finally classified using a category-specific linear SVM. The
method is agnostic to the particular region proposal method that is used. The proposed regions
can later be refined by training a per class bounding-box regressor that uses the CNN features.
The architecture of an RCNN is depicted in Figure 2.6.
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FIGURE 2.6: The RCNN architecture. Regions are first proposed by a separate
method. For each region individually, the pixels are extracted from the image and
then scaled to a fixed size. The CNN then computes and classifies the region fea-

tures.

The RCNN however, has some notable drawbacks such as its multi-stage pipeline, which has
high memory requirements and slow computation time, due to the fact that each region is pro-
cessed individually, while some of this computation could be shared. The network is effectively
split in two, where one part deals with generating region proposals and the other part deals with
classifying each region. This inefficiency can be reduced by sharing features among the two parts
of the network.

Trying to decrease region proposals as a bottleneck, Girshick later proposed the Fast RCNN [12]
which contains a single stage training process that jointly learns to classify object proposals and
refine their spatial locations by sharing features, improving both speed and accuracy. The Fast
RCNN requires an image and a set of region proposals as input. Instead of extracting the regions
directly from the image, the network first computes full-image features, and extracts the regions
from these features. Instead of computing the feature for each region independently the com-
putation is now shared over the entire image. A subnetwork then computes a class probability
distribution and a set of candidate bounding boxes for each region. Non-maximum suppression
is then applied independently for each class to find the best bounding box. The architecture of a
Fast RCNN is depicted in Figure 2.7.

FIGURE 2.7: The Fast RCNN architecture. First, full-image features are computed.
The regions are then extracted from these features. Finally, the regions are classified

by the CNN and a regressor further refines the bounding box.

Later, the Faster RCNN was proposed by Ren et al. [13] to further decrease the region proposal
bottleneck. While region proposals can be computed quite fast already, the fact that they are
computed using different features than those used for detection makes them impractical. This
can be solved by introducing a deep convolutional Region Proposal Network (RPN). The RPN
takes the full-image features as an input, effectively merging it with the detection network. This
merged architecture is depicted in Figure 2.8. An RPN takes an image as input and outputs a set
of rectangular regions, with an associated "objectness" score which estimates whether the region
contains an object or not. To generate region proposals the RPN considers a sliding window over
the full-image features. At each sliding window location multiple region proposals are generated
using a fixed set of boxes with different scales and aspect ratios, which are later refined using
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regression. Through training, the network then learns which regions are most likely to contain
objects. This is similar to a neural network version of selective search.

FIGURE 2.8: The Faster RCNN architecture. Instead of relying on a separate region
proposal method, a neural network is trained to propose regions. The region pro-
posal network takes full-image features as input and is therefore effectively merged

with the classification network.

While in the classification task a class label is assigned to an image as whole, the semantic seg-
mentation task consist of computing a class label for every pixel in the image individually. Fully
Convolutional Networks (FCN) [14] have been a successful approach for semantic image seg-
mentation, where a score map stores a class likelihood distribution for each pixel. In such maps
however, different instances with the same semantic value are not recognized as separate objects
as depicted in Figure 2.9. Furthermore, FCNs have been designed for high translation-invariance
in order to find objects at different positions in the image. However, when localizing individual
instances, the relative positioning of objects to each other, and thus translation-variance is impor-
tant. The task that deals with semantic segmentation while separating class instances, is called
instance segmentation. We will see that neural networks for both the object detection and seg-
mentation tasks, have become highly similar.

To separate object instances from the same class, and determine which set of pixels belongs to
each object, Dai et al. propose an Instance-sensitive FCN (InstanceFCN) [15]. The InstanceFCN
stores for each pixel a classifier of relative positions to an object instance. Multiple score-maps
encode these relative positions. For example, the "top-center-sensitive" score map contains high
scores for features that are similar to the top center position of a class instance. This means, that
instead of a single classifier that scores whether a region depicts a human, there are multiple clas-
sifiers that each score whether a sub-region depicts a specific part of a human. Each region is then
subdivided into sub-regions. By copying the values from each sub-region in the corresponding
score-map an instance mask proposal is assembled. The region classification is performed sepa-
rately. This process is depicted in Figure 2.10.

For the classification of regions Fast and Faster RCNN, however, still apply a sub-network for
each region individually. Therefore Dai et al. proposed a Region-based FCN (R-FCN) [16] that
shares almost all computation on the entire image, eliminating the need for expensive per-region
computations. The approach is very similar to the InstanceFCN. This time however, the position-
sensitive score-maps are used to estimate a bounding box instead of finding a pixel mask. The
only per-region computation that is required then is average voting over the score-maps for each
proposed region to finalize the bounding box. The bounding box can be even further refined with
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FIGURE 2.9: An input image and its score map as computed by an FCN for seman-
tic segmentation. The network does not distinguish between class instances.

FIGURE 2.10: An InstanceFCN computes position-sensitive score-maps. For exam-
ple, the "top-center-sensitive" score map contains high scores that are similar to the
top center position of a class instance. A region is then subdivided into sub-regions.
By copying the values from the same sub-region in the corresponding score-map

an instance mask proposal is assembled.

a regressor.

Li et al. presented the first FCN for Instance Segmentation (FCIS) [17] that jointly performs in-
stance mask prediction and classification. In the RFCN the position-sensitive score-maps score
how much a pixel is similar to a particular region of an object, assuming it is inside the object.
The FCIS adds another set of score-maps that score how much a pixel is similar to a particular
region outside an object. This provides the network with important context information such as
whether the object is in the air, on the ground or underwater. An object is more likely a fish when
it is underwater, but less so when it is in the air. Classification is then performed by computing
a max-operation over inside and outside score-maps. By applying a per-pixel softmax operation
on the score-maps a foreground probability is computed which is used to create the instance mask.

FIGURE 2.11: An FCIS computes position-sensitive score maps for regions both in-
side and outside class instances. The outside score map captures important context

information.

We have seen that recent approaches for object detection and instance segmentation apply simi-
lar methods for region proposals and classification. The difference is then whether the region is
refined to a bounding box for object detection, or if an instance mask is created for instance seg-
mentation. In order to optimize efficiency, sub-networks with different purposes such as region
proposals, classification and segmentation, are merged by sharing features. This has also resulted
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in moving away from separate region-proposal methods, and towards fully convolutional slid-
ing window approaches. FCNs have enabled sharing of full-image features but make detecting
separate instances harder due to their translation-invariance. In order to overcome this issue,
position-sensitive score-maps can be applied. Challenges that remain primarily relate to accuracy
of the methods. The accuracy can be improved by creating deeper networks that capture more
complex features. However, deeper networks are harder to train, simply because they have more
parameters to optimize. A challenge is therefore to find new ways to achieve similar performance
with fewer parameters. Invariance to intra-class variations and deformations can be achieved by
providing appropriate training data. It is however, still difficult to achieve such invariance with-
out artificially modifying the data. Finally, image-based methods can be made more reliable by
incorporating more information, such as depth, as we will see in the next chapter.

2.3 Image-based methods with depth information

While images do not directly store how pixels relate to three-dimensional structure, data rep-
resentations such as RGBD images, meshes and point clouds do contain some notion of three-
dimensionality. We therefore call them 3D representations. Features that can be learned from
such representations include geometric edges and curvature. The localization of objects in 3D
representations can be inspired by object localization techniques for images as seen in Section 2.2.
In this section we discuss how image-based techniques can be applied to 3D representations.

Perhaps the most naive approach to classify a mesh is to render it to a single image, and apply
image-based methods on that. Su et al. have shown that such an approach can even outperform
neural networks that operate on meshes directly. They rendered a mesh to an image, and pro-
cessed it using a VGG-M network [18]. The reason this simplistic approach works so well is that
many features, such as the texture of the material for example, are constant over all sides of an
object.

Gupta et al. modify the RCNN as discussed in Section 2.2 to support RGBD images, which store
a depth value for each pixel. The network is called RCNN-depth [19]. The depth in the RGBD
images is computed using two images of the same object, with each image created from a slightly
different position, similar to how our eyes are positioned apart. The depth information is used to
detect contours, generate better region proposals and boost performance in both object detection
and segmentation. The depth information is encoded into regular RGB images using a special
feature encoding that emphasizes complementary discontinuities in the image. The channels in
this encoding represent the height above ground, angle between the normal of the surface and the
direction of gravity, and the horizontal disparity. The disparity refers to the distance between two
points in the two images that depict the same three-dimensional point. This encoding helps the
network to learn more complex features, without having to learn basic features first, which can be
difficult when little training data is available, increasing performance. Furthermore, it was shown
that the encoded depth images have similar structural characteristics as regular RGB images. As
an example, edges in the encoded depth image correspond to edges in the original image. Net-
works trained on regular images can therefore be used as an initialization of networks for depth
images.

By including more views, Su et al. further increase the accuracy of their CNN for object classifi-
cation [20]. The resulting network is called a Multi-View CNN (MVCNN). MVCNNs typically
involve two steps. First the 3D object is projected to multiple views that capture different sides of
the object. To create these images, the object is rendered from different viewpoints, with virtual
cameras positioned in a ring or a sphere around the object. During the second step, the views
are classified using well-established image-based CNNs. The final class is the one with the most
votes across all images. The network can be further optimized and aggregated by combining the
images into one image using a max-operation. A final CNN then performs classification on this
combined image. A similar idea was discussed earlier by LeCun et al. A small network is trained
on stereo-vision images, which are images taken from two viewpoints a small distance apart. In
contrast to the virtual views used in MVCNN, the stereo-vision images are recorded in the real
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world. Since the information from different viewpoints is considered, the network becomes in-
variant to pose [21].

FIGURE 2.12: The Multi-View CNN architecture. A multi-view representation is
created by rendering the scene from different viewpoints. Features are extracted
from each view independently, combined and then jointly used for classification.

Instead of classifying each view independently, Johns et al. propose a pairwise approach [22].
First, every possible pair of views in the set is generated. Each pair, combined with the relative
camera change between the views is then classified independently. The final class probability dis-
tribution is finally computed as the weighted average over all pairs. This way the transformations
between viewpoints are captured, and the network becomes more invariant to viewpoint differ-
ences. If such data is available the method can be extended with depth images for additional
discriminative features. This pairwise method outperforms MVCNN.

While it is intuitive to create images from multiple viewpoints, the entire scene can be captured
in one image. Shi et al. introduce DeepPano, which is a CNN trained directly on panoramic im-
ages of 3D models [23]. The panoramic projection is illustrated in Figure 2.13. However, when an
object is rotated, this results in a shift in the panoramic image. To make the network invariant to
these changes, a row-wise max pooling layer which takes the maximum value of each row in the
convolutional feature maps, is introduced. The panoramic mapping is parallel to one of the prin-
ciple axes of the object, and orthogonal to the other two. This disables the projection to capture
information from some sides of the object, resulting in a representation that is less information
rich than multi-view representations.

FIGURE 2.13: The DeepPano architecture uses a mapping that creates a panoramic
view, which is a cylindrical projection around the object’s principle axis.

Sinha et al. propose another way to map a 3D shape to an image [24]. The goal is to generate a
single image which provides a highly descriptive representation of all sides of the 3D shape. This
can be done by encoding the surface properties of the object in the image. The shape is spherically
parameterized, mapped to an octahedron and then cut along the edges to unfold it as a square
and produce a so-called geometry image. The position of a pixel in a geometry image then de-
fines how the point is related to the three-dimensional surface of the object. This representation
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captures enough information to reconstruct the original 3D model from the image with relatively
high accuracy. Since geometry images encode surface properties, they are more invariant to inter-
class variations and deformations than other methods.

(A) The process of mapping a 3D model to
a geometry image.

(B) An example 3D model and the corre-
sponding geometry image

We have seen that intuitive approaches exist that enable the use of image-based methods on 3D
data, with good performance. Adding depth information to images improves performance, while
only requiring little changes to the network. While using a single image already works well, using
multiple views increases performance and even outperforms smart mappings such as panoramic
or geometry images.

2.4 Volumetric methods

While images capture only the visible parts of the surfaces in the scene, meshes and point clouds
represent the three-dimensional scene in its entirety. Before a neural network can be applied on
meshes or point clouds, however, the data has to be mapped to a different representation on
which the neural network can efficiently operate. In this chapter methods based on the volumet-
ric properties of meshes and point clouds are discussed.

A commonly used representation, which captures the three-dimensional information of the entire
scene, is the voxel grid. The space is first partitioned with a regular grid of cubes. Each grid cell
is called a voxel. Voxels are usually binary, storing a 1 when they are occupied, a 0 otherwise.
To create a voxel representation of a 3D model every voxel that intersects the model surface is
considered occupied. In a similar manner a voxel can be created from a point cloud. Every voxel
that contains (a thresholded value of) samples of the point cloud, is considered occupied. Alter-
natively the point cloud can first be reconstructed as mesh. The number of voxels used in the grid
is also called the resolution. For example a grid of 30× 30× 30 voxels is said to have a resolution
of 30. Voxel representations do have some inconvenient properties. For example, a 3D voxel vol-
ume with small resolution, has the same memory requirements as an image with relatively high
resolution.

Wu et al. train a voxel-based CNNs, called 3D ShapeNets, for object classification, using voxel
representations with a resolution of 30 [25]. After training the network using voxel represen-
tations of full 3D models, it is able to reconstruct missing data in voxel representations of RGBD
images. First each voxel is marked as free, surface or occluded. The voxels that correspond to pix-
els in the original RGBD image are observed to be either free or surface segments, while occluded
voxels are considered missing data. Object classification can be performed using only the ob-
served data. When reconstructing a voxel representation from an RGBD image, the missing data
is randomly initialized to see how the class distributions change and the voxels corresponding to
the highest scoring label are clamped. A number of such iterations is performed on a number of
instances in parallel. The most frequently sampled class then determines the final classification
label. Although the reconstruction abilities of the method are convenient, it does not reach state
of the art performance in classification. This performance difference could be explained by the
small resolution of the volumetric representation.
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FIGURE 2.15: The process of reconstructing missing data in voxel models created
from RGBD images. One slice is used for visualization. The unkown voxels are

iteratively clamped to maximize the score of the most likely class.

Maturana and Schere propose another 3D CNN, called VoxNet [26]. VoxNet is similar to ShapeNet
in its data representation but uses a different network which contains fewer parameters. VoxNet
performs slightly better than ShapeNet, which can be explained by the slightly higher voxel res-
olution of 32. Another factor in the performance difference is that VoxNet suffers less from over-
fitting due to fewer parameters. Additional experiments show that rotation invariance can be
improved by adding rotated variations of meshes to the training data. The alteration of data to
improve invariance is generally called data augmentation.

Different representations capture different features. The representations can therefore be used
complementary to each other to obtain more discriminative features. Hegde and Zadeh con-
cluded that most methods use either voxels or multi-views, although a combination of both would
probably perform best. Therefore, they propose FusionNet, which fuses three networks, which
rely on different representations [27]. The first network is an MVCNN as discussed in Section 2.3,
which describes strong features through its image-based representation. The second network is a
regular volumetric CNN which captures spatially local features through its voxel-based represen-
tation. The final network is another volumetric CNN which contains a few alterations inspired by
GoogLeNet [28]. The inception-module originally occurred in GoogLeNet and introduced a new
level of organization. A network consist of many different types of layers. However, it is not ob-
vious in which cases 1×1 convolution, 3×3 convolution, 5×5 convolution or pooling operations
are preferred. Instead of choosing the layers manually, they could all be computed in parallel.
The results can then be summed and let the network can learn their respective relevance. Regular
convolution layers could then be combined with 1× 1 convolutions, that reduce feature depth to
decrease memory consumption, while keeping height and width the same. This allows for very
deep networks that capture more abstract information and encode higher representational power
without much additional computation cost. Experiments show that while each network performs
reasonably well individually, the combination of all three does indeed make a stronger classifier.

Qi. et al. argue that volumetric methods should capture at least as much information as an
MVCNN does [29]. To illustrate how the low resolution of a voxel model would influence the
performance of a multi-view method, the voxel model is rendered using multiple views and pro-
cessed by a regular multi-view CNN. The voxels are rendered as spheres because those are view-
invariant. This comparison is further illustrated in Figure 2.16. The results indicate that even
with the lower resolution, the multi-view method performs better than the volumetric approach,
although worse than when normal rendering is done. From this, it is concluded that the input res-
olution amounts to a small performance difference between volumetric and multi-view methods.
The majority of the performance difference is explained by differences in network architecture.
The performance differences are illustrated in Figure 2.17.

Qi et al. apply an approach similar to that of the MVCNN, where the 3D model is first projected to
a 2D representation, after which the image representation is classified. The voxel-based represen-
tation is first mapped to an image by a CNN which they call the Anisotropic probing module. The
idea is that the anisotropic probing module learns a rendering function that captures the global
structure of the 3D volume, similar to an X-ray. A 2D CNN then learns to classify these repre-
sentations. By extracting 3D features from multiple orientations the network becomes orientation
invariant. The resulting network is like a voxel-based adaptation of the originally image-based
MVCNN and is called a Multi-Orientation Volumetric CNN (MOVCNN). This way Qi et al.
successfully close the gap in performance between volumetric and 2D CNNs when using a res-
olution of 30. However, further increasing the resolution quickly results in intractable memory
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FIGURE 2.16: Voxel models are rendered to multiple views using sphere-rendering.
The performance difference between such images and images using a standard
rendering, explains how much of the performance difference between volumetric

and multi-view methods is accountable to input resolution.

FIGURE 2.17: Performance differences between methods using different data rep-
resentations. The performance difference between MVCNNs using standard ren-
dering and sphere rendering explains how much of the performance difference
between multi-view and volumetric methods is accountable to input resolution.
The performance difference between the MVCNN using sphere rendering and the
volumetric CNN explains how much of the performance difference between multi-

view and volumetric methods is accountable to network architecture.

requirements. Therefore, new techniques are required that allow for efficient scaling of volumet-
ric methods.

Recently Riegler et al. propose OctNet as a network that allows for higher resolution volumetric
data [30]. The space is partitioned with a hybrid grid-octree data structure, which focuses compu-
tation and memory allocation on the relevant regions. The data structure can be stored efficiently
using a compressed bit-string representation. It is also shown how 3D convolution and pooling
operations can be implemented efficiently on this data structure. OctNet has been tested with a
resolution up to 256. To analyze the influence of increased resolution on performance, the number
of parameters in the network is kept constant. Therefore some convolution layers are removed
when testing higher resolutions. Results indicate that for classification there are diminishing re-
turns beyond a voxel resolution of 32. For orientation estimation the performance increases are
negligible for resolutions higher than 64. However, if the network is extended with more con-
volution layers, introducing more parameters, the increased resolution does improve orientation
estimation performance. Lower resolutions seem sufficient for simple classification tasks. The
reason for this is that the classes that could not be classified correctly with a lower resolution,
remain ambiguous with higher resolutions. An example of such an ambiguous case is the distinc-
tion between a dresser and a night stand since both objects have very similar shape. he primary
benefit of using OctNet is that it requires significantly less memory than other methods. How-
ever, Riegler et al. did not test how the performance of their network would compare to others,
when increasing parameters and resolution while keeping memory requirements similar.

Brock et al. combine ideas from multiple successful and influential networks into one single
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architecture for volumetric data called a VoxCeption-ResNet (VRN) [31]. Their voxception-
module is a 3D adaptation of the inception-module from GoogLeNet, as previously discussed.
The voxception-module is then altered to incorporate concepts first proposed in ResNet [32].
Deep neural networks suffer from the vanishing gradient problem, where the gradient decreases
exponentially with the depth of a network, resulting in slow weight optimization and therefore
limiting network depth. ResNet effectively solves the vanishing gradient problem by introducing
"shortcut connections" that skip one or more layers, and directly add their result to the results of a
higher level layer. When the network must apply an identity function, it is easier to use a shortcut
connection than to approximate the identity function through multiple non-linear layers. Such
connections do not add any parameters to the network and are therefore a cheap and simple
improvement. Through these residual connections, deep networks become easier to optimize.
InceptionNetv4 by Szegedy et al. [33] added the shortcut connections from ResNets as an extra
path in an inception module. Brock et al. then applied that idea to voxel data (with a resolution
of 32), resulting in their VRN architecture, which outperforms all other volumetric approaches.
The success of the VRN relies on the increased expressive power resulting from its significantly
increased depth. A VRN has 45 layers, while ShapeNet has only 5. The best results are obtained
through a simple ensemble by summing predictions from five VRNs and one Voxception network
consisting of four Voxception modules and three Voxception-Downsample modules.

FIGURE 2.18: VRN modules

FIGURE 2.19: The VRN architecture. VRN refers to the VoxCeption-Resnet module
and DS refers to the Voxception-Downsample module as depicted in Figure 2.18

We have discussed the major volumetric methods. To summarize, volumetric representations can
easily be processed using the same concepts as used for images. However, volumetric methods
have not been able to perform as well as image-based methods for a long time. The differences
in performance are caused by low input resolution and differences in architecture. Recent meth-
ods support higher resolutions through efficient space partitioning and memory models. The
increased resolution helps for orientation estimation, but does not significantly improve perfor-
mance for classification. The architecture can be improved by taking more orientations into ac-
count, making the model more invariant to rotation. Other methods improve performance by
combining the discriminative power of volumetric features with that of image features. Although
resolution and architecture are significant factors in performance, the most powerful volumet-
ric network contains little architectural innovation, and instead focuses on network depth. Even
though the deeper network does not support higher resolutions or complex representation map-
pings, it enjoys higher expressive power, outperforming all other volumetric methods. To our
knowledge, no volumetric methods have been combined with color information yet.

2.5 Intrinsic methods

Instead of encoding the occupied volume, a three-dimensional data representation can also en-
code surface properties. The latter approach has some significant advantages over the former, as
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will be discussed in this section.

The previous sections discuss methods that work on 3D geometry by mapping it to a represen-
tation that can be easily processed by neural networks. Approaches as seen in Section 2.3 which
map 3D data to a single image, or multiple images from different views, are primarily used be-
cause the success of image-based CNNs has already been illustrated. Volumetric approaches as
seen in Section 2.4 rely on voxels because they allow for efficient convolutions that are similar to
those in convolutional networks working on images. These convolutions are highly efficient as
they make use of the locality in the data; pixels or voxels that are close to each other are correlated.
However, these approaches consider geometric data as extrinsic Euclidean structures, which are
not invariant to deformations, unless complex network architectures and large datasets are used.
In contrast, intrinsic approaches try to find representations in non-Euclidean domains, which are
invariant to deformations. This difference is illustrated in Figure 2.20. Note that intra-class varia-
tions can also be considered small deformations.

FIGURE 2.20: Differences between extrinsic and intrinsic representations. Left:
Extrinsic methods rely on Euclidean representations, such as volumetric occu-
pancy, which are not invariant to deformations. Right: Intrinsic methods use non-
Euclidean representations, encoding data of the surface, which are invariant to de-

formations. Image adapted from Boscaini et al. [34]

In the same way that images can be interpreted as signals, meshes can be considered signals. It
is however not obvious how convolution can be performed on a mesh. The convolution theorem
states that the convolution of signals in the primal domain is identical to point-wise multipli-
cation in the spectral domain. The spectral domain is a higher-dimensional equivalent to the
Fourier domain, also called the frequency domain. Convolution via the spectral domain is usu-
ally mathematically simpler and computationally cheaper than in the primal domain. Spectral
mesh processing is a process in which meshes are transformed to the spectral domain for process-
ing using appropriately defined operators. A mesh is first mapped to a matrix representation that
captures the pairwise relations between mesh elements, such as vertices that are connected by
edges. This encoding of pairwise relations is similar to a graph interpretation of the mesh. An ex-
ample of such a representation is the graph Laplacian as depicted in Figure 2.21. Similarly, images
and arrays of numbers can be interpreted as graphs. The graph interpretation is related to shape,
since graph connections only exist between samples that are close in Euclidean space. Consecu-
tively the eigenvectors and eigenvalues of the matrix representation are computed to construct a
basis in the spectral domain. When meshes have a different number of vertices, a fixed number
of eigenvectors corresponding to the lowest frequencies are kept, similar to a low-pass filter. The
spectral transform is the process of transforming the original signal to this new basis. This trans-
formation is a generalization of the Fourier-transformation to non-Euclidean domains. The basis
then defines a feature space which can be used in a problem-specific manner. For an extensive
introduction to spectral mesh processing we refer the reader to the paper by Lévy et al. [35].

Bruna et al. use the graph Laplacian, and define operators that capture important properties such
as smoothness. The Fourier transformation of the graph Laplacian also exhibits highly correlated
local statistics and can thus be processed by generalizing convolution operators. This results in a
new type of CNN on graphs, called Spectral Networks [36].
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FIGURE 2.21: The combinatorial graph Laplacian can be computed as L = D − A

where D and A are the Degree and Adjacency matrices respectively.

The spectral networks as proposed by Bruna et al. make use of prior knowledge about the graph
structure. It is known, in advantage, which samples are connected to each other. When the ex-
act structure of the graph is unknown, these connections could be estimated. This is similar to
reconstructing a mesh from a point cloud. Henaff et al. extend spectral Networks with a Graph
Estimation procedure [37]. Instead of applying measures that have been manually designed by
humans, like Euclidean distance, Z-score or square-correlation, a neural network could be trained
to optimize for this particular task. First a fully connected network is trained for a classification
task. Then the first-layer features are extracted. The similarity between two samples is then com-
puted as the Euclidean distance between their first-layer features. When the graph structure is
not known a priori, the neural network for graph estimation performs significantly better than
the manually designed measures. However, the architecture remains sensitive to graph estima-
tion errors. When a graph is estimated incorrectly this is equivalent to introducing a deformation
to the model. Such an error can result in misclassification, mistaking i.e. a bed for a couch. The
network has been applied on regression problems and image classification.

Ravanbaksh et al. define a network with set-invariant layers that directly takes a point cloud as
input [38]. In contrast to the graph interpretations which encode pairwise relations, this meth-
ods operates on the point cloud as a set. Structural composition, pooling and set convolution
are defined using associative and commutative operators based on set-theory. Each neuron then
responds to particular 3D constellations of points. The success of the approach is illustrated for
classification of images and point clouds, and the prediction of galaxy distances as a regression
problem. The method performance is similar to that of a MVCNN.

Yi et al. propose a Synchronized Spectral CNN (SyncSpecCNN) [39], which is similar to an
FCN, but performs graph convolutions via the spectral domain. Information sharing for different
types of objects is difficult since their graph Laplacians are different. Therefore the eigenbases are
aligned in the spectral domain by a Spectral Transformer Network (SpecTN). Alignment is done
efficiently by focusing only on the low-frequency part of the domain. Experiments validate that
the SpecTN does improve performance and makes the network more invariant to input resolu-
tion.

Qi et al. propose PointNet [40], a neural network which takes point clouds directly as input,
and can output class labels either for the entire point cloud or for each point individually. Sim-
ilarly to Ravanbaksh et al. PointNet interprets a point cloud first as an unordered set defined
in a Euclidean space. First a function that is invariant to the order of its arguments is learned
by a multi-layer perceptron network to construct a global signature of the input point cloud. The
global features are then concatenated with the per point information, in order to compute stronger
per-point features such as accurate normal information or labels. Small transformation networks
learn transformation matrices that align the input point clouds and align the feature point clouds,
in order to make them invariant to transformations. The features learned by the network are sim-
ilar to some conventional hand-crafted features and keypoints that capture local neighborhood.
Further experiments indicate that the network is significantly more robust to missing data than
VoxNet. This is an important property when processing point clouds as they only provide partial
and sparse data.

ShapeNet (not to be confused with the volumetric 3D ShapeNets) was proposed by Masci et al.
[41] Similar to PointNet, the network learns feature descriptors that capture local curvature. The
network uses sets of geodesics (shortest paths along the curved space), cast in different directions
using local polar coordinates, to define surface patches used for convolution. This idea was first
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presented by Kokkinos et al. [42] and is further illustrated in Figure 2.22. Each patch is then
convolved with geodesic patch filters, which can be represented using sparse matrices that scale
well to larger meshes. The output of the network is a feature vector which could be used in a
task-specific manner.

FIGURE 2.22: The ShapeNet architecture. Convolution is applied on local geodesic
patches. The convolution filters are applied in all possible rotations. Angular max
pooling (AMP) is applied to obtain rotational invariance. The colors on the figures

represent the response to specific features.

Intrinsic methods show promising results due to their invariance to isometric transformations.
Neural networks using spectral mesh processing can be made efficient by performing convolu-
tions via the spectral domain. However, these methods have been primarily compared to each
other, and have not been extensively compared to image based or volumetric methods on 3D
shapes. Additionally, intrinsic methods are hard to implement due to their mathematical com-
plexity. An interesting property of intrinsic methods is that they generalize to many different
types of data; arrays, images, models and point clouds can all be interpreted as graphs or sets.
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Chapter 3

Methodology

This chapter introduces the novel pipeline which combines information from images and point
clouds to localize objects. First, Section 3.1 discusses the considerations that led to the proposed
architecture. Section 3.2 discusses the single-view pipeline, where a segmentation network pro-
cesses images individually. Section 3.4 discusses the multi-view pipeline, which utilizes a second
neural network that aggregates multiple segmentations from different recording locations to im-
prove segmentation accuracy.

3.1 Motivation and high-level considerations

In Chapter 2 multiple neural network architectures have been discussed that incorporate depth
information in different ways. However, not all of these methods perform localization or incorpo-
rate color information. The goal of this work is to combine the color information from panoramic
images with the depth information from Lidar point clouds. This section discusses how the prop-
erties of the discussed methods are weighed against each other and against our requirements.

While intrinsic methods offer high mathematical flexibility, they are also mathematically complex,
and their performance has not yet been illustrated on problems similar to ours. The flexibility of
intrinsic methods with regard to the type of input data is not interesting for our application, as
we only require support for a single representation.

Volumetric methods offer an intuitive approach to convert 3D models into a structure that can
easily be convolved. However volumetric approaches have only been illustrated on single objects
and are difficult to adapt to outdoor scenes due to their high memory requirements and low reso-
lution. These properties are especially wasteful considering that outdoor scenes typically contain
more empty space in some areas, while being more cluttered in others. Voxel-based methods have
also not been used together with color. Assigning a color to each voxel would increase memory
requirements further, and would again suffer from the low resolution.

Some images-based methods incorporate depth information through additional image channels.
The resulting images can be processed by neural networks similar to any other type of image.
Depth can then be encoded in multiple ways, and even information from multiple sides of an
object can be captured in a single image. Similarly, multi-view CNNs capture depth information
from different angles of a mesh or a point cloud. While a virtual camera could be positioned any-
where within the reconstructed meshes, the quality of both the point clouds and the cycloramas is
highest at the original recording locations. While the recording locations might not be as densely
distributed as is commonly simulated in a Multi-view CNN, the recording interval of 5 meters is
high enough to ensure high correlation between images, which means that the same objects are
visible from similar sides, resulting in an overlap of information. We propose to use the depth
cycloramas in a neural network similar to a Multi-view CNN. Since MVCNNs generally only deal
with fixed camera poses, we will introduce a novel method that supports varying camera poses.
With this approach we can rely on established methods such as RCNN-depth and MVCNN as
stepping stones, while making optimal use of the properties that are specific to our data.
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3.2 The single-view pipeline

We first describe a single-view pipeline that performs image-segmentation, than reconstructs the
segmentations as labeled point clouds, and applies three-dimensional point cloud clustering to
extract the world position for each detected object. The architecture of our single-view pipeline is
depicted in Figure 3.1. An example of the pipeline output is illustrated in Figure 3.2.

FIGURE 3.1: The single-view pipeline. An image is segmented by the
segmentation-network. Since we know for each pixel the corresponding depth
value, the resulting segmentation can be reconstructed as a point cloud, with a
class label for each point. A clustering algorithm is then applied to extract the clus-
ters of points belonging to the light pole class. The centroids of all clusters are

computed to predict the positions of the light poles.

First a neural network is considered that only operates on individual RGBD images. A segmen-
tation performs pixel-wise classification and computed per pixel a probability for each class. The
final segmentation is created by picking for each pixel the class with the highest probability. Af-
ter the neural network has predicted an object of interest within the image, the next step is to
estimate a location in world coordinates. Many object detection methods, like the RCNN family
[11] [12] [13], and the RFCN [16], predict a set of bounding boxes within each view. With the
available depth information, these bounding boxes can then be projected into world-space and
possibly combined. However, it is not obvious how this projection to world-space should be im-
plemented. The depth of the bounding box can be computed as the average of all depth values
of the pixels within the bounding box, or alternatively, the depth value of the center pixel of the
bounding box could be chosen. Since light poles are thin objects with a protruding head on the
top, it is common that many pixels within the bounding box are not relevant and that the center
of the bounding box does not even coincide with the light pole itself. To minimize the number
of irrelevant pixels we opt for a segmentation network that computes a per-pixel classification,
instead of a detection network. The design of the pipeline does not rely on any specific segmen-
tation network implementation, and thus any segmentation network can be used.

In a segmented image, each pixel is assigned a class label. Until this point no distinction has
been made between different instances of the same class. As a consequence, instances still have
to be separated in an additional phase. Instance separation can also be achieved with an instance-
level segmentation network. However, these networks are often complex, while regular point
cloud clustering algorithms are relatively simple. We propose to make optimal use of the avail-
able depth information by first recreating a point cloud from the segmentation and then applying
three-dimensional point cloud clustering. To create a point cloud, each pixel that is classified as
"light pole" is reconstructed as three-dimensional point. As illustrated in Figure 1.3 each pixel
in an image can be associated with a direction vector if the camera parameters are known. By
setting the length of the direction vector equal to the corresponding depth value, the original
three-dimensional point is effectively reconstructed. Note that if a pixel has no depth-value, or
if the depth value is zero, as is the case for pixels corresponding to the sky, a point can not be
reconstructed. This means that pixels belonging to the sky that are incorrectly labeled as "light
pole" are automatically filtered when a segmentation is reconstructed as a point cloud.

A clustering algorithm is applied to determine the clusters in the point cloud and distinguish be-
tween object instances [43]. For every point in the point cloud the following steps are performed:
The point is first added to an empty queue. For each unprocessed point in the queue the set of
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RGB image Ground truth

Light pole Ground plane

Sky Other
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FIGURE 3.2: An example of the output of our segmentation-network. The RGB im-
age is provided as input. The corresponding ground truth segmentation is consid-
ered the perfect output for this image. The network for each pixel a probability per
class. The probabilities for all pixels are illustrated per class. The final segmenta-
tion is constructed by picking, for each pixel, the class with the highest probability.

point neighbors within a sphere with radius r is computed. Each neighbor that has not been pro-
cessed already is added to the current queue. When all points in the queue have been processed,
the queue contains all points that form a cluster together. This process terminates when all points
in the point cloud have been processed and have thus been assigned to a cluster. The centroids of
these clusters are the potential locations of our objects of interest.

As we are only interested in the coordinates of the objects within the horizontal plane, the z-
coordinate of the centroids is ignored. The three-dimensional clustering is expected to work better
than image-space clustering since incorrectly classified pixels will be located further away from
the actual object of interest, and correctly classified pixels will be more densely packed if the over-
all classification is correct. The risk with instance-separation methods like clustering is that if the
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instances are not separated correctly, the computed positions will be affected. Another risk is that
the centroid of the cluster might not coincide with the actual object if the object is concave. The
larger the concave protrusions are, the further the computed position might be off. While taking
these risks into account, the clustering method can be generalized to any type of object as long as
instances consist of a single geometrical component within the point cloud.

3.3 Alternative depth-derived features

In the previous sections, depth cycloramas were used to provide additional information to the
segmentation network. The choice for depth information is obvious and intuitive as the output
from the Lidar laser sensor consist of depth values. However, the representation of the data affects
the performance of the neural network. If the data is not provided in an optimal representation,
the network might first have to learn to transform the data into something useful, or might be
unable to use the data at all. The expectation is that depth information is useful to increase per-
formance, but that other derivative representations might perform even better.

Depth information on its own does not provide a network with directly useful information. Only
by combining depth information of many pixels, the relative positioning and orientation of objects
can be determined. An algorithmic approach to compute these features explicitly is well-defined.
Therefore, it is undesirable to let a neural network estimate these features, as it might be un-
precise. We therefore compute these features explicitly and pass them to the neural network as
additional information. The benefit of this is that the neural network no longer has to learn these
specific features, and can use the spare weights for estimation of other features.

We propose to directly incorporate orientation information derived from depth information in the
images. The orientation of a surface can be defined by the normal vector, which is the unit vec-
tor perpendicular to the surface. While normals are not directly available, they can be estimated
within the point clouds. The problem of determining the normal to a point on a surface can be
approximated by estimating the normal to a plane tangent to the surface [43]. To fit a plane to
the point on a surface we therefore first find all neighbors within a radius, construct a covariance
matrix from those, and apply Principle Component Analysis to see how a plane would best fit the
set. The sign of the normal can, however, not be solved since PCA can not mathematically deter-
mine the front or back of the plane. This can result in inconsistent normal orientation throughout
a point cloud. However, since we know the position of the camera, we can orient all normals
towards the camera in a consistent manner.

The normal vector can be defined by its x, y and z components. However, these values are not
directly meaningful. We therefore propose the encoding of normal information using azimuth
and elevation, which are commonly used to define the position of an object in the sky, relative
to an observation point. The relation between a normal, azimuth and elevation is illustrated in
Figure 3.3. We adapt the terminology to define the orientation of a normal vector, relative to the
camera orientation. The azimuth is commonly defined as an angle in the horizontal plane, in a
range of −π to π, relative to the observer’s forward facing direction. However, since all normals
in our scene point toward the camera, the azimuth values would then commonly occur around
the boundary between −π and π, which might confuse the neural network. To ensure that az-
imuth values change continuously we define them relative to the backward facing direction of
the camera. The elevation then defines the angle between the normal and the horizon where 1

2π
corresponds to straight up, and − 1

2π corresponds to straight down. The resulting azimuth and
elevation values can be stored per pixel in a 2-channel image. We abbreviate this feature encoding
as AzEl-encoding. Examples of AzEl-encoded images are illustrated in Figure 3.4.

As discussed in Section 2.3, Gupta et al. defined a feature for RCNN-depth consisting of height
above ground, angle with the gravity and horizontal disparity. We propose a similar feature that
replaces horizontal disparity with the distance along the camera direction. We argue that objects
in the real world are most commonly oriented vertically. This means that objects commonly have
a top and bottom, but can be orientated at different yaws. Since azimuth values are different when
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FIGURE 3.3: A direction vector which is usually defined through its x, y and z com-
ponents can alternatively be defined using two values, for azimuth and elevation.
Azimuth is defined as the angle in the horizontal plane relative to a fixed direction.

Elevation is defined as the angle between the direction and the horizon.

an object is oriented differently, we expect that azimuth is not very useful to distinguish between
classes. However, some objects such as buildings are commonly observed from the side, while
others such as roads and pavements are commonly observed from the top. It is therefore expected
that elevation is useful to distinguish between classes. To define a value similar to elevation in-
dependent from azimuth we compute the angle between the normal and the gravity-direction.
Since the camera might be positioned on a slope, the gravity direction within the local coordinate
space of the camera might not always correspond to straight down. In addition to this orientation
information, positioning information can be provided in a more useful way than depth alone.
Because the depth values are defined as the distance to the camera, flat objects have non-linearly
changing depth values. To make it easier for the network to distinguish straight objects, we mea-
sure the distance of a point relative to the imaging plane, parallel to the camera direction, so that
depth features change linearly over flat surfaces. Finally, some objects have different features at
different heights; e.g. a leafy tree top in comparison with its trunk. In addition, some objects are
more common at specific heights; e.g. bicycles commonly occur on the road, but are uncommon
in tree tops. While height can be inferred from a pixel’s location and the corresponding depth
value, we propose to include height information in the feature encoding. In short the feature
encoding consists of distance, height and angle with the gravity, encoded in a 3-channel image.
We abbreviate this feature encoding as HDA-encoding. Examples of HDA-encoded images are
illustrated in Figure 3.4.
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FIGURE 3.4: The original RGB images together with different depth features. The
second row illustrates single-channel depth information. The second tow illus-
trates depth information encoded as 2-channel AzEl features. The green and blue
color channels correspond to azimuth and elevation respectively. The third row
illustrates depth information encoded as 3-channel HDA features. The green, blue
and red color channels correspond to height, distance and angle with the gravity

respectively.



3.4. The multi-view pipeline 29

3.4 The multi-view pipeline

The pipeline as described in Section 3.2 invokes a segmentation network for each view indepen-
dently. To make the network more invariant to the inaccuracies of a single recording location,
segmentations from multiple views could be combined with a second neural network, which we
call an aggregation network. The aggregation network is similar to max-pooling across views
followed by convolution as in an MVCNN, but more elaborate as the network learns aggregation
over multiple layers. The benefit of a multi-view approach is that inaccuracies of a single view
due to occlusions could be corrected with information from other views. In addition, confusion
between classes or uncertainty of features is alleviated. The architecture then becomes more in-
variant to view-point changes, and the importance of each view can be learned.

The overall process is as follows. First a recording location is processed by the single-view
pipeline. If the single-view pipeline detects an object, the multi-view pipeline is invoked to im-
prove the detection. The original image from the single-view pipeline is refocused so that the
predicted location is centered in the view. Images from neighboring recording locations are then
also refocused to look at the same location. The refocused images are then all segmented and re-
projected to the base image. The base image is also segmented and concatenated together with the
segmentations from the neighboring images. Concatenation is performed in a layer-wise fashion,
which means that concatenating m images of n channels results in a single (m · n)-channel image.
Through this concatenation multiple images can easily be fed to the aggregation network. The
aggregation network then outputs a new single-channel segmentation. Similar to the single-view
pipeline, the pixels in the segmentation corresponding to our class of interest are then recon-
structed as a point cloud, and clustered to predict the final object location. The architecture of our
multi-view pipeline is illustrated in Figure 3.5.

As discussed in Section 2.3, MVCNNs define a set of virtual camera poses at fixed locations
around a single object. Since these locations are fixed, the network can learn how the different
views are correlated and how information from different views can be combined. However, the
relative positions of our recording locations with respect to the objects of interest are not fixed, as
the trajectories of the recording cars vary. Sometimes an object is approach in a straight trajectory,
while other times an object is approached in a curved trajectory because the recording makes
a turn. One could train a network to deal with this type of variance and correlate the images.
However, while the combination of information from multiple views can result in powerful new
features, we expect that it is very difficult for the network adapt to the viewpoint differences. We
therefore propose to first calculate a segmentation for each view individually and then apply an
image reprojection, which transforms all pixels from a segmentation from one camera pose to
another, using the corresponding depth information. The reprojected segmentations then all cor-
respond to the same camera pose, and although we disable the network to combine features from
different images, correlation no longer has to be inferred since a pixel in one segmentation, di-
rectly corresponds to the same pixel in the other segmentation. While reprojection of RGB images
can be complex, the implementation becomes more straightforward when depth information is
available.

The image that we want to reproject from is called the source image. Similar to how a point in
world-coordinates can be computed for a set of pixel coordinates, a point can be mapped back
to pixel coordinates by calculating the vector from the 3D point to the center of projection, and
computing where the vector intersects the virtual imaging plane. For reprojection, first the world
coordinates of a pixel from the target image are reconstructed. Then the three-dimensional point
is projected into the source image. The geometric relationship between a target pixel, its recon-
structed three-dimensional point, and the corresponding two-dimensional projection onto the
source image, is illustrated in Figure 3.6. By relating each pixel in the target image, to a pixel in
the source image, a geometric image transformation can be performed, which maps and interpo-
lates the pixels from the source image, onto the target image, to create a new reprojected image.
It is often the case that a pixel in the target image has no corresponding pixel in the source image.
In that case the pixel is assigned a special value to indicate this. These pixels can be considered
a new class. This approach only works if the positioning data is highly accurate. To make sure
that no big inaccuracies are propagated, the distance of the reconstructed point from the source
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FIGURE 3.5: The multi-view pipeline. Before the multi-view pipeline is invoked,
the single-view pipeline generates candidates. For each potential object location
found by the single-view pipeline, the image the object is found int is refocused so
that the potential object is in the center of the image. This image is now considered
the target image. Similar images are created by refocusing the images from the two
recording locations that are nearest to the recording location of the target image.
The three images are then segmented individually by the segmentation network.
The segmentations that do not belong to the target image are then reprojected to
the target image, so that the segmentations have a shared camera pose. The three
segmentations are than concatenated in a layer-wise fashion. This means that con-
catenating m images of n channels, results in a single (m · n)-channel image. This
concatenated image is then aggregated into a single-channel segmentation by the
aggregation-network. The new segmentation is reconstructed as point cloud after

which a clustering algorithm extracts the positions of the predicted objects.
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image to the target image, is compared to the depth value that was stored in the source image.
If the difference is below a certain threshold the correspondence is accepted. The threshold can
be set dependent on the positioning accuracy of the original point clouds, although a very high
positioning accuracy is required for this method to create high quality reprojections. Examples of
reprojected RGB-images and segmentations are illustrated in Figure 3.8.

FIGURE 3.6: This image illustrates the geometric relationship of a pixel in a source
image, its reconstructed three-dimensional point, and the two-dimensional repro-
jected point on the imaging plane of a target camera. Whether the point was oc-
cluded in the target image can be verified by comparing the original depth value
in the target image, with the depth value of the reprojected point. If the difference
is higher than a user-specified threshold, the point is disregarded. Some points of
the source might not be visible in the target image, while some pixels in the target
image might not have a point reprojected onto them. Therefore, the reprojected

image does not contain the exact same parts of the scene as the original image.

We expect that segmentations works best when a camera directly focuses on the object of inter-
est. Therefore, all involved cameras are refocused at the same object. Refocusing is in essence
another reprojection, where only the camera orientation differs between source and target poses,
while the position remains the same. Figure 3.9 illustrates how refocusing an image can results in
a significant improvement of object visibility. Figure 3.10 provides an example of an image that
has been refocused on an incorrect object location.
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FIGURE 3.7: A reprojection example. View 1 is the target image to which views 2
and 3 are reprojected. With reprojection, the parts of the world that are visible in
one view are reprojected to another. The result is an image that contains the parts
of the scene that are visible in both views, while the rest of the image is empty.
Since reprojection makes use of the depth information for each pixel which might
contain inaccuracies, the reprojected images might introduce artefacts. The repro-
jected RGB images give an intuitive example of what parts of an image are trans-
ferred with reprojection. However, the RGB images are not actually reprojected in
our pipeline. Instead, only the segmentations are reprojected. The segmentation
from the target view, and the reprojected segmentations from the other views are

combined in the multi-view pipeline.
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FIGURE 3.8: These images represent the probabilities computed for every class per
view. The probabilities of view 2 and view 3 have been reprojected to view 1 so
that they can directly be correlated. The 12 images are concatenated in a layer-wise
fashion and used as input for the aggregation-network. The aggregation network is
expected to learn to combine these probabilities and reduce inaccuracies. It should
be noted that probabilities of the sky class can generally not be reprojected since
pixels corresponding to sky don’t have corresponding depth values. The probabil-
ities that are left after reprojecting the sky probabilities stem from pixels that have

incorrectly been labeled as "sky" but do have a corresponding depth value.
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FIGURE 3.9: An example of a refocused image. Even though the light pole is only
partially visible on the right side of the original RGB image, the position could
be extracted quite accurately by the single-view pipeline. The refocused image
therefore has a clear view of the light pole, resulting in a clean segmentation. Even
though the segmentation of the original RGB image predicted that parts of the tree
in the center of the image belong to the light pole class, these false positives are
filtered by the clustering algorithm when the segmentation is reconstructed as a

point cloud, since the tree’s geometry spreads the samples out too far.

RGB image segmentation

O
ri

gi
na

li
m

ag
e

R
ef

oc
us

se
d

im
ag

e

FIGURE 3.10: An example of an image that is refocused at the wrong location. The
segmentation of the original image has predicted parts of the trees as belonging
to the light pole class. In this case, the false positives have formed a cluster at
which the image is refocused. This is however no problem, as the aggregation-
network will combine multiple segmentation that are refocused at this location.
Since these segmentations do not contain an actual light pole the probability of
the false-positives overlapping is low, especially within the point clouds, and the
aggregation network will likely generate a segmentation that does not predict a

light pole in this location.
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Chapter 4

Experiments

This chapter discusses how the performance of our method is measured. First, section 4.1 dis-
cusses the implementation of our neural networks. Then, Section 4.2 provides an overview of
the data that is available to us. Section 4.3 discusses how this data is preprocessed to provide
datasets for training and evaluation. Section 4.4 discusses how the data and ground truth are
used to train the neural networks. Finally, Section 4.5 discusses what metrics are used to evaluate
the performance of our method.

4.1 Implementation

The pipeline is designed in such a way that it does not dictate a specific implementation of the
segmentation and aggregation networks. The choice of network is therefore considered a hyper-
parameter. In our implementation we applied the SegNet architecture for both segmentation and
aggregation [44]. SegNet uses an encoder to first performs classification, after which a decoder
upsamples the low resolution feature maps to fill input resolution feature maps. Instead of learn-
ing the parameters of the upsample layers, the decoder takes the pooling indices computed by the
corresponding max-pooling layers in the encoder. This is done in a memory conservative way by
storing the max-pooling indices only, instead of entire feature maps. The sparse upsampled fea-
ture maps are improved by trainable convolution layers. The architecture of SegNet is depicted
in Figure 4.1.

FIGURE 4.1: The SegNet architecture. The encoder part performs classification, re-
sulting in a low-resolution feature map. The decoder map then applies upsampling
to scale the feature maps back to input resolution. The upsample layers are not
trained but rather the pooling indices from the corresponding max-pooling layers
in the encoder part are used. The resulting upsampled feature-maps are improved
with trainable convolution layers. The convolution layers in both the encoder and
decoder are followed by batch normalization and a ReLU activation function. A
final SoftMax layer takes for each pixel the class with the highest probability to

generate the final segmentation.

One of the benefits of SegNet is that the encoder part consist of the same layers as the first 13
layers of the VGG16 network, designed for object classification [45]. Therefore, the weights of
the trained VGG model can be used as an initialization of the weights of SegNet. The fully con-
nected layers of VGG are discarded in the encoder to retain higher resolution feature-maps as the
final encoder output. This reduces the number of parameters from 134M to 14.7M resulting in a
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network that requires relatively little memory, requires little computation time during inference
and is relatively easy to train. VGG is typically trained on ImageNet [46], which is a common
benchmark dataset consisting of hundreds of object categories and millions of images for object
recognition. Initial experiments indicate that using pretrained weights does improve the initial
loss during training, but does not result in improved performance after convergence. This indi-
cates that our own dataset has a feature representation as rich as that of ImageNet.

Another reason for choosing SegNet is that the original SegNet paper illustrates the performance
of the network on the CamVid dataset [47]. CamVid is a high quality database of street-level
videos with corresponding pixel-level annotations. The reason that SegNet has had good perfor-
mance on the CamVid database indicates that it should be easy to adapt to our own street-level
imagery.

For the aggregation network it might be computationally cheaper to use a simple network consist-
ing of a few convolution layers for aggregation. However, since the SegNet architecture is already
embedded for segmentation, it is easier to employ the same architecture once more for aggrega-
tion, than to define an additional neural network architecture. Any segmentation network, or
neural network whose output size is the same as the input size could be used for aggregation, as
it only needs to compute some sort of dimensionality reduction over the input. In fact, a single
convolution layer, as in a MVCNN, might be enough [20]. However, SegNet’s relatively com-
plex architecture will allow the aggregation network to learn features that could compensate for
erroneous input. We therefore use the SegNet as our aggregation-network architecture. Note
that since the aggregation-network receives more data as input, and the number of parameters in
the first layer depends on the input size, the aggregation-network has more parameters than the
segmentation-network, even though the same architecture is used.

The overall pipeline is implemented in C++. The segmentation and aggregation networks are
embedded using the C++ API of the Caffe deep learning framework [48]. Operations on point
clouds are implemented with PCL (Point Cloud Library) [49]. Operations on images are imple-
mented using OpenCV (Open Source Computer Vision Library) [50].

First, we experiment with the single-view pipeline to explore whether a combination of depth
and color information allows a network to outperform networks that have been trained on only
one of these components. Then, the different depth-derived features are evaluated to see whether
they offer an improvement. Finally, the multi-view pipeline is evaluated to see if performance
could be improved by combining information form multiple recording locations.

4.2 Dataset

The data that used in our experiments is from the city of Schiedam in the Netherlands. The image
data consists of street-level 360 degree spherical panoramic images, called cycloramas. Every road
of Schiedam has been recorded with a 5 meter interval, resulting in 34320 recording locations. In
addition, Lidar point clouds were obtained continuously with a HDL-32E Velodyne Lidar while
driving. The point clouds have been reconstructed as meshes. The information from the point
clouds and images has been combined resulting in a set of 34320 depth cycloramas. The goal is to
find the coordinates of all light poles visible in these images.

Due to the perspective projection in cycloramas, straight lines in the real world are not straight
in the cycloramas. In addition, cycloramas are large images. Since the segmentation network ar-
chitecture is originally meant for images of 480× 360 pixels, and because we expect that straight
lines can be recognized more easily, the cycloramas are divided into 8 different views with a rec-
tilinear projection. The first image is directed straight along the nose of the recording car, and the
other images are obtained with 45 degree yaw increments. To make sure that objects at the edges
of these views can still be segmented correctly, the views are created with 120 degree horizontal
field of views, introducing overlap between the different views.
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The new images have a size of 512 × 512 pixels. However, initial experiments have shown that
this image resolution is too big to be successfully processed by the segmentation network. as
the same amount of information is spread over a larger number of pixels, the network does not
have enough convolution layers to gain a receptive field over the image that is large enough to
recognize features over larger patches and extract more abstract features. For comparison; the
feature maps after the final layer of the encoder-part of the SegNet architecture have a size of
16 × 16 for images of size 512 × 512, while they have a size of 15 × 12 for images of the original
480×360 resolution. To solve this issue, more convolution layers can be introduced to the network.
However simply resizing the images to the desired 480 × 360 pixels offers a simpler solution.
Linear interpolation is used for color information. Nearest-neighbor interpolation is used for
depth values, since interpolating between depth values could result in depth values that do not
correspond to any object. For example, interpolating between a nearby wall and a distant wall
could result in depth values that incorrectly indicate the existence of a wall in between. Due to the
interpolation performed while resizing, some detail in the images will be lost. As a result, some
features might be estimated less accurately, although the actual effect is expected to be small.

4.3 Ground truth

In order to train and evaluate models a "golden standard" dataset, also called the ground truth,
is required to compare to. The ground truth does not need to be perfect but its quality should be
as good as possible. As the pipeline is optimized to approximate the quality of the ground truth,
the ground truth dictates the upper limit of the quality of the trained model. Different ground
truth is required for the different aspects of the pipeline. To train and evaluate the quality of the
segmentations produced by the segmentation and aggregation networks, ground truth segmen-
tations are required. To evaluate the quality of the final world positions predicted by the pipeline,
ground truth positions are required.

To obtain the locations of all light poles in Schiedam, a team from Cyclomedia has manually in-
spected all images in the dataset and annotated the light poles. The world positions of the light
poles have been determined by calculating where the vectors through the annotated positions
from multiple images intersect. The light pole positions are stored as xy-coordinates, ignoring the
height of the terrain. The resulting set of 7683 ground truth positions can be used to compare
with the light pole locations computed by the pipeline. The ground truth positions are used di-
rectly to evaluate the world positions predicted by our pipelines.

The main class of interest in this work is the light pole class. In order to see what the effect of
the dataset is on the learning of other classes, a few additional classes are included in the ground
truth. A second reason to do so is to counter the class imbalance. The number of pixels that occurs
for each class within an image differs. This results in a tendency of the network to optimize for
the class that occurs more frequently. The class imbalance when dealing with the classes light
poles versus the rest can be made smaller by splitting the rest class into multiple other classes. We
distinguish between the following four classes: "sky", "ground plane", "light poles" and "other".
The "other" class consists of all objects that do not belong to the other three classes. The "other"
class mainly consists of buildings, cars and vegetation. Ground truth segmentations are created
as follows.

First, all pixels in the image that have a depth value which is too high, are labeled as sky. The
HDL-32E Velodyne Lidar scanner has a range of approximately 80 to 100 meters. However since
the point clouds are obtained while moving, a slightly higher range is deemed accurate enough
for our purposes. The maximum depth at which the point cloud is considered precise enough for
more accurate classification is 150 meters.

For all pixels with a depth smaller then 150 meters, the corresponding 3D points are reconstructed.
This results in a new point cloud in which we can label different types of objects. A region grow-
ing algorithm is applied to estimate the planes in the scene. Initial results have indicated that
while the most prominent planes in the scene can easily be extracted, the quality of the estima-
tions is not high enough to properly include all planar objects as a new class. However, the ground
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plane is consistently extracted using this method, and is therefore included as an extra class in the
ground truth segmentations.

For each ground truth light pole position we define a cylinder with a radius of 1 meter in the
xy-plane, and which stretches infinitely upward and downward. For each pixel in an image the
corresponding 3D point is reconstructed. If the 3D point lies within one of the cylinders, it is
considered to be a light pole, and the corresponding pixels are labeled as such.

Finally, all points that do not adhere to our definitions of the classes "sky", "light pole" or "ground
plane", are grouped together in a single class named "unlabeled". The resulting ground truth seg-
mentations therefore contain four classes.

Note that the resulting ground truth segmentations are only a noisy approximation to a perfect
per-pixel classification. Since tree often appear near light poles, and their branches might reach
within the cylinder defined around light poles, some parts of trees are incorrectly labeled as "light
pole". However, neural networks can learn some invariance to this noise. For example, it is com-
mon to train face-detection networks, using bounding boxes around the faces as ground truth.
These bounding boxes however, also contain some pixels that belong to other classes. A neural
network can be invariant to such inaccuracies as long as they are not too frequent. As neural
networks first optimize towards the features that are most common in the training set, a network
becoming affected by low-frequency inaccuracies can be recognized as overfitting.

4.4 Training Methodology

While the original Schiedam dataset consists of 34320 recording locations, a smaller selection is
made to keep computation time and memory requirements tractable. Recording locations are
selected and processed randomly until to create a dataset of 5000 images for the single-view
pipeline. Note that as panoramic images are split in multiple images, and images without a
properly visible light pole are filtered, the number of usable images extracted differs per record-
ing location. These datasetsare divided into a training set, a test set and a validation set using
a 3000 : 1000 : 1000 ratio. Since the multi-view pipeline is trained on segmentations from the
single-view pipeline, a new dataset is produced, processed by the single-view pipeline and re-
focussed, to create a set of 3000 images for the multi-view pipeline. This dataset is split into a
training, validation and testing set using a 1000 : 1000 : 1000 ratio. To tune the training parame-
ters, the validation set is used. Since the model has not seen any of the images from the validation
set during training, the performance on the validation set gives an impression of how well the
model generalizes to unseen data. While the loss of the model on the training data will generally
decrease, the loss of the model on the validation set will increase when the model starts overfit-
ting. At this point the model adapts to the details that are specific to the training set, while those
are not representative of the features in a generalized setting. The validation set is therefore used
to determine when the training process should be stopped. Since the validation set is used to
optimize the training process, the model is also adjusted to the validation data and a separate test
set is used to measure the final performance of the model.

Automatic optimization algorithms exist that adaptively change the learning rate of the solver
over time. Caffe supports for example AdaDelta [51], AdaGrad [52], Adam [53], Nesterov’s ac-
celerated gradient [54] and RMSprop [55]. However, choosing the rate at which the learning
rate should degrade is another hyperparameter that requires tweaking to find the right value.
Instead, we opt for a more manually controlled training approach. First we experiment with mul-
tiple learning rates, to find a the highest learning rate at which the network still converges. The
high learning rate allows for faster training. The network is trained until it converges. Then the
learning rate is decreased manually to see if the network converges further. This process is iter-
ated until altering the learning rate no longer improves convergence. Training is performed using
a Tesla K40M GPU card with 12GB GDDR5 RAM. With a validation and testing set enabled, the
maximum batch size without running out of memory is 3 for most of our networks. Even for the
networks that did allow larger batch sizes, a batch size of 3 was used, so that the learning rates
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did not have to be adjusted.

The classes in our data are not distributed equally. A larger part of the pixels in an image corre-
spond to sky, while relatively few pixels belong to the light pole class. The exact percentage of
pixels for each class and the corresponding weight have been illustrated in Figure 4.2. Refocus-
ing of images in the multi-view pipeline has little impact on the class percentages, and the same
weights are used in the single-view pipeline and the multi-view pipeline. As a result, the easiest
way for the network to optimize the loss, the steepest gradient, corresponds to optimizing for the
sky class first. However, we want all classes to be optimized equally, while a slight advantage for
the light pole class could even prove beneficial as it is our main class of interest. To ensure the net-
work optimizes all classes, we weight each class in the loss function so that the number of pixels
belonging to the class, multiplied by the weight is the same for each class. Weights are defined so
that the weight for the light pole class is exactly 1 and that the other weights are defined relative
to that. Class weighting is not not ideal, as the class distributions vary in each image. Since we
rather include more false positives in our results that could be filtered manually, than have false
negatives that can not be corrected, a small bias towards light poles was intentionally created by
increasing the weight for the light pole class to 10.

Class Percentage Weight

Light poles 0.4% 10.00
Ground plane 17.4% 0.023
Sky 51.3% 0.008
Other 30.9% 0.013

FIGURE 4.2: This table depicts for each class the percentage of corresponding pix-
els. Percentages have been computed over a dataset of 3000 ground truth segmen-
tations. Each class is weighted so that the percentage multiplied by the weight is
equal for all classes. The weight for the light poles class was originally set to 1,
while the other weights were defined relative to that. Initial experiments indicate
that increasing the light pole class weight by a factor of 10 yields slightly better

results.

Note that as the number of values in the different image formats differs, the number of parameters
in the convolution kernels in the first layer of the network also differs. The different networks
therefore have a slightly different number of parameters, and should learn different features.
Because of this, each network requires a different number of training iterations. Therefore, it
is uninformative to compare the exact number of training iterations for each network. During
training each network is trained until it converges. A network has converged when the loss
when the loss on the validation set has stopped decreasing. If the loss on the validation set starts
increasing, the network starts overfitting, and the training process should be stopped, or resumed
with a lower learning rate.

4.5 Metrics

For evaluation we distinguish between several conventional types of test outcomes. Predictions
can be either positive or negative. Whether a prediction matches with the ground truth defines if
it is true or false. When a class is predicted and it matches the ground truth, this is called a true
positive (TP). When a class is predicted while the ground truth does not specify so, it is called a
false positive (FP). When a class is not predicted in a location, where it should have been, it is
called a false negative (FN). Finally, when a class is not predicted in a location where the class
does indeed not occur, it is called a true negative (TN). We will refer to these different test out-
comes as events. This distinction between events is illustrated in Figure 4.3. A table can be used
to count the various types of events for a specific class. A confusion matrix is a similar table that
visualizes how predictions are distributed over multiple classes. It should be noted that not all
types of events are equally relevant in different settings. True negatives can easily be counted
when considering the pixels of an image, infinite true negatives exist when considering positions
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in a continuous space. For the evaluation of segmentations we will therefore include true nega-
tives, while we will ignore true negatives when evaluating world positioning performance.

Predicted
Yes No

Actual Yes True
Positive

False
Negative

No False
Positive

True
Negative

FIGURE 4.3: This table illustrates the different types of events that can occur when
comparing a prediction to the ground truth. A prediction can be either positive
or negative for a specific class. Whether the prediction matches the ground truth

defines whether the prediction is true or false.

Common metrics that incorporate the different types of events are the precision and recall met-
rics. The precision metric is the fraction of predictions that is correct. A higher precision means
fewer false positives. The recall metric is the fraction of all actual instances that has been cor-
rectly predicted. A higher recall means fewer false negatives. Neither precision or recall requires
a count of false negatives, and both can therefore be used for evaluation of both segmentation and
world positioning. Precision and recall are computed as follows.

presision =
true positives

true positives+ false positives
recall =

true positives

true positives+ false negatives

Typically, precision and recall are inversely-related to one another. As precision increases, recall
decreases and vice-versa. This trade-off can be visualized using a Precision-Recall-curve (PR-
curve). To create a PR-curve, a threshold is applied on specific parameters of the predictions,
such as the probability or uncertainty, or the blob size of class. Precision and recall are then com-
puted using many different values for the threshold, and these points are plotted with recall on the
horizontal axis, and precision on the vertical axis of the graph. The area under the curve (AUC)
can be used as another metric, which summarizes the PR-curve in a single value. AUC measures
the performance of the model over the whole range of threshold values. A perfect model will
have an AUC of 1.0, while a model that is influenced by the parameter will have a lower AUC. To
summarize the performance of multiple classes, the mean of the AUCs per class (mAUC) is used.

Conventional metrics that summarize the trade-off between precision and recall are the break-
even point between precision and recall, or the F-score, which is a weighted average of precision
and recall. However, these metrics are less meaningful to us. The precision is of less importance
than recall, since false positives can easily be filtered out through post-processing steps such as
manual verification. However, stronger requirements apply for the recall of the method, since
there is no scalable approach to correct false negatives.

The computed positions can be evaluated in multiple ways. In a per-segmentation evaluation we
evaluate how many of the predicted positions extracted for each view are correct. If a detection is
missing where an actual object exists, it is considered a false negative. A prediction that is within
a 1.5 meters to the ground truth is considered a true positive, while considered a false positive
otherwise. The per-image segmentation evaluation indicates how well segmentations are on a
pixel level. In a per-object evaluation we evaluate how many of the actual objects have been
found, when the predictions over all images are combined. In this scenario, when at least one
detection is within 1.5 meters to the ground truth position, it is considered a single true positive.
Each detection that does not match a ground truth position is still considered a false positive.
While the per-segmentation provides valuable information regarding segmentation quality, the
per-object evaluation provides insight in the performance of the pipeline overall. Since we are
most interested in the recall rate of light poles, the per-object evaluation is the most important
metric.
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Chapter 5

Results and discussion

In this chapter we evaluate our pipeline on different types of data and evaluate the performance
with regard to segmentation and world-positioning. The segmentation performance of our reg-
ular single-view pipelines is evaluated in Section 5.1. The world positioning performance of the
regular single-view pipeline is evaluated in Section 5.2. Then, the segmentation and world po-
sitioning performance of the single-view pipelines with alternative depth-derived features are
evaluated in Section 5.3 and Section 5.4 respectively. Finally the segmentation performance of
the multi-view pipeline is evaluated in Section 5.5, while its world positioning performance is
evaluated in Section 5.6.

5.1 Segmentation performance of the single-view pipeline

The first task of the proposed pipeline is to solve a segmentation problem. In this section the
segmentation results of the single-view pipeline using color-information, depth-information, and
a combination both are evaluated. The networks operating on the different types of images are
referred to as the RGB-network, D-network and RGBD-network. It is expected that some classes
are easier to segment than others due to difference complexity of geometry, color and frequency.
To provide a qualitative estimate of the performance, some examples of good segmentations are
shown in Figure 5.1, and some examples of bad segmentations are shown in Figure 5.2.

The resulting segmentations have been evaluated quantitatively by comparing the estimated la-
bels to the ground truth. Figure 5.3 shows per class how the precision and recall rates change
when only probabilities above a certain threshold accepted. All three networks perform well
with regard to the "ground plane", "sky" and "other" classes. The D-network and the RGBD-
network score consistently above 0.95 AUC for these classes. The RGB-network, however, per-
forms slightly worse with an AUC of 0.94 for the "ground plane" class and a 0.85 AUC for the
"other" class. The plots have a consistent ordering to the networks, with the RGB-network scoring
the lowest and the RGBD-network scoring the lowest. This ordering is confirmed by the mAUC
scores. It is interesting to see that the D-network outperforms the RGB-network, which indicates
that depth information on its owns is more useful for our purposes than color information on its
own. A combination of both types of information performs even better. This trend holds for all
classes, except for the sky class where the D-network and RGBD-network perform equally well.
The biggest improvement of depth information over color information occurs at the most impor-
tant and most difficult class; light poles. The difference in performance between the RGB-network
and the D-network is larger than the difference in performance between the D-network and the
RGBD-network. This is shown both in the per class AUC scores and the overall mAUC scores.

Figure 5.4 shows for each network a confusion matrix summarizing how predictions of the seg-
mentations are distributed over classes. Generally, the percentage of correctly predicted labels
is highest in the RGBD-network, and lowest in the RGB-network, while confusion is lowest in
the RGBD-network, and highest in the RGB-network. The confusion matrices therefore further
support the conclusion that the RGBD-network performs best and RGB-network performs worst.
Remarkable is that while the D-network performs better than the RGB-network for every other
type of event, the confusion is slightly higher for pixels belonging to the "other" class that are
misclassified as the "light pole" class. This difference is however relatively small. In all three net-
works, the most confusion occurs due to light pole pixels being misclassified as belonging to the
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FIGURE 5.1: These are some examples of good segmentations resulting from the
single-view pipeline. The quality of the ground truth is not perfect. As a result
the ground truth of view 1 has incorrectly labeled parts of the tree and bushes as
light poles. In the ground truth of view 2, the traffic sign next to the light pole is
also labeled as a light pole. In the ground truth of view 3 the light pole is located
quite far from the camera, making it expectedly harder for the network to correctly
segment the light pole correctly. However, in the resulting segmentations, the light
poles are segmented quite clearly. The overall trend seems to be that segmenta-
tions of RGB-images are quite generous, and include many false positives around
light poles, while segmentations of D-images and RGBD-images are cleaner, with
RGBD-images being segmented the clearest. Unexpectedly, The segmentation of
the RGBD-image of view 2 is even cleaner than the ground truth, and even cor-
rectly includes a light pole that was not present in the ground truth because of
its distance. The segmentations of view 3 include a few false positives for the light
pole class. However, the fact that the light pole has been segmented correctly, while
it seems nearly invisible in the original RGB image is promising. Light poles are

segmented especially accurate when the background is sky.



5.1. Segmentation performance of the single-view pipeline 43

View 1 View 2 View 3
R

G
B

im
ag

e
G

ro
un

d
tr

ut
h

O
ut

pu
tR

G
B

O
ut

pu
tD

O
ut

pu
tR

G
BD

FIGURE 5.2: These are some examples of bad segmentations resulting from the
single-view pipeline. The ground truth of view 1 indicates the existence of a light
pole but has incorrectly labeled many pixels that correspond to the tree, as light
pole class. The corresponding segmentations incorrectly label the sign post on the
left as a light pole. The segmentation of the RGB-image is the only segmentation
that does include the actual light pole. The ground truth of view 2 has marked
a light pole that is nearly impossible to see in the image. The corresponding seg-
mentations have not labeled significant blobs of pixels around that area and miss
the light pole. Many false positives for light poles occur in the trees. This can
be explained by the fact that trees have also been present in many ground truth
segmentations. The ground truth of view 3 has not clearly labeled the light pole.
This can occur when the manually determined light pole position is off. The cor-
responding segmentations are not very clean but do include the light pole to some
extend. However, because the pixels do not have the same values as the ground

truth, they are still considered incorrect.
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FIGURE 5.3: These are Precision-Recall curves for the RGB, D and RGBD-networks,
compared per class. The results are thresholded on class probabilities. When only
predictions with high probabilities are accepted, lower precision and higher recall
is achieved. When lower probabilities are accepted too, recall increases while pre-
cision decreases. A higher recall corresponds to fewer false negatives. A higher
precision corresponds to fewer false positives. The trend for each class is that
the RGBD-network has the most accurate predictions, while the RGB-network per-

forms worst.
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Network: RGB Predicted

light pole ground
plane sky other

Actual

light pole 410883
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0.06
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ground plane 311816
0.01

27065883
0.94

142567
0.00
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0.05

sky 1071574
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5892594
0.07

other 2285452
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3937512
0.07
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0.81

Network: D Predicted
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light pole 512572
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Network: RGBD Predicted
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light pole 506863
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FIGURE 5.4: These are the confusion matrices of the segmentation performance
of the RGB-network, D-network and the RGBD-network. The rows indicate the
actual class a pixel belongs to according to the ground truth. The columns indicate
what class the pixel was predicted as. The predicted class is the class with the
highest probability. The numbers in each cell represent the number of pixels, and
what percentage this number is of all pixels of that class in the ground truth. E.g.
30% of all pixels that should have been predicted as the "light pole" class, were
actually labeled by the RGBD-network as the "other" class. Keep in mind that,
since class distributions are not equal, percentages from different rows can not be
directly compared to each other. The RGBD-network seems to produce the highest
quality segmentations, with the highest true-positive rights, and the least confusion

between classes.
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"other" class. This confusion is smallest in the RGBD images and largest in the RGB images. It is
likely that this confusion is partially caused by the inaccuracies in the ground truth. In many im-
ages, trees are very close to the light poles, and due to the approach in which the "light pole" class
is labeled, some parts of those trees are incorrectly labeled as light poles. Since trees are mainly
included in the "other" class, the neural networks could be confused between the tree features
present in the "light pole" class and the tree features included in the "other" class. Another reason
is that "sky" and "ground plane" classes are relatively easy to learn, since the sky has a relatively
constant color and no corresponding depth values, and the ground plane has relatively constant
color and flat geometry, while the "light pole" class has more complex features and the "other"
class consists by definition of even more complex features of many different kinds of objects. The
final segmentations follow the same trend as the probabilities per class; The RGB-network per-
forms worst, while the RGBD-network performs best. The "light pole" class is the class that is
estimated worst, and the "other" class causes the most confusion.
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5.2 World positioning performance of the single-view pipeline

The second task of the proposed pipeline is to solve a world positioning problem. In this section
the quality of the extracted light pole positions is evaluated. The pipeline including segmenta-
tion, clustering of the segmentation-derived point clouds, and world positioning is evaluated for
color information, depth information, and the combination of both. The pipelines will be referred
to as the RGB-pipeline, D-pipeline, and the RGBD-pipeline. Note that the test set consists of 1000
images that together contain 725 unique light poles.

As neural networks learn to approximate the features in the ground truth, they cannot be ex-
pected to produced output with a higher quality than that of the the ground truth. By evaluating
the world positioning performance of our pipeline while using ground truth segmentations, we
can compute the maximal performance that can be expected of our pipeline. The ground truth
segmentations are not perfect, as they contain many pixels that are incorrectly labeled as "light
pole". However, only pixels within a one meter radius of a ground truth light pole position are
labeled as light pole. During testing we consider every cluster within a 1.5 meter radius to a
ground truth light pole position correct. The incorrectly labeled clusters therefore all fall within
the acceptance radius and the precision of the positions derived from ground truth segmentations
is therefore exactly 1. The recall rate of the ground truth segmentations is, however, not optimal.
Some light poles are partially occluded within the segmentations and therefore consist of mul-
tiple geometrical components that are smaller than 100 points each. This is not checked during
ground truth creation. Since the clustering performed in the segmentation-derived point clouds
only accepts clusters larger than 100 points, the ground truth segmentations introduce false neg-
atives. Experiments indicate that the maximal recall score of the ground truth on a per-view basis
is 0.74 and that the recall limit on a per-object basis is 0.79. By comparing the recall scores of our
pipelines relative to these limits, we can measure how close the score is to the maximum achiev-
able score.

The world positioning performance, both on a per-view basis and on a per-object basis is shown in
Figure 5.5. The performance is measured both absolute and relative to the recall limits. The AUC
scores indicate that the RGBD-pipeline generates the best world positioning score over all thresh-
old values. The RGBD-pipeline also achieves the highest recall scores in all cases. The world po-
sitioning performance ordering is the same as for segmentation performance; The RGBD-pipeline
achieves the best results, while The RGB-pipeline performs worst. Since the order of performance
is the same for world positioning as for segmentation performance, we can conclude that better
segmentations do result in better world-positioning performance. The RGBD-network reaches
56% recall rate on a per-view basis, which is 75% of the limit, with a precision of 17%. On a
per-object basis the RGBD-pipeline achieves a 62% recall rate, which is 78% of the limit, with a
precision of 13%.

The difference between the recall score of the pipeline when using ground truth segmentations
and the recall score of the pipeline when using predicted segmentations, indicates the perfor-
mance improvements that can be achieved through better segmentations. This means that with
the results of the RGBD network, 17% recall can still be achieved through better segmentations.
Better segmentations can be achieved using different segmentation-network architectures, and
finding optimal data representations for the segmentation-network to operate on.

The difference between the recall score of the pipeline when using ground truth segmentations
and a perfect recall score of 1, indicates what performance improvements could still be achieved
through other pipeline changes, such as improved segmentation-derived point cloud clustering,
better ground truth and tweaking of hyperparameters such as the minimal cluster size. The
current results achieved with ground truth segmentations indicate that 21% recall could still be
achieved through pipeline changes.

The fact that world positioning performance is better on a per-object basis than on a per-view
bases indicates that if a light pole is missed in one image, it can still be found in another. This
suggests that information from multiple views could be combined for improved detections and
confirms our reasoning for creating the multi-view pipeline.



48 Chapter 5. Results and discussion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n
World positioning performance
(PR-curve on a per-view basis)

RGB (AUC = 0.15)
D (AUC = 0.17)
RGBD (AUC = 0.23)
Recall limit

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall as a percentage of the limit
Pr

ec
is

io
n

World positioning performance
(Scaled relative to recall limit)

RGB (AUC = 0.18)
D (AUC = 0.21)
RGBD (AUC = 0.28)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

World positioning performance
(PR-curve on a per-object basis)

RGB (AUC = 0.15)
D (AUC = 0.17)
RGBD (AUC = 0.22)
Recall limit

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall as a percentage of the limit

Pr
ec

is
io

n

World positioning performance
(Scaled relative to recall limit)

RGB (AUC = 0.17)
D (AUC = 0.20)
RGBD (AUC = 0.27)

FIGURE 5.5: The PR-curves for the world positioning performance of our single-
view pipelines. Predicted positions are considered correct if they are within 1.5
meters to a ground truth light pole position. The graphs on the top show the per-
formance on a per-view basis; if a light pole is missed in an image it counts as a
false negative. The graphs on the bottom show the performance on a per-object
basis; if an object is missed in one view, but is found in another, it still counts as a
true positive. The graphs on the left show the absolute precision and recall values.
Evaluating the world positioning performance with ground truth segmentations as
input has illustrated that even when using theoretically perfect segmentations, the
clustering approach does not yield a perfect recall score. This indicates that there
is an upper limit to the attainable recall score. This is primarily a result of the clus-
tering process, which only accepts clusters larger than 100 points. The graphs on
the right show the PR-curves, where recall is measured relative to the maximally
attainable recall limit. The precision reached when using perfect segmentations is
1. This means that all blobs in the ground truth, larger than 100 points, are within

1.5 meters of an actual light pole position. The precision is therefore not scaled.
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5.3 Segmentation performance of depth-derived features

In this section the segmentation performance of segmentation-network operating on images with
color-information in combination with alternative depth-derived features is evaluated. The net-
works using AzEl and HDA features will be referred to as the RGBAzEl-network and the RGBHDA-
network respectively. Figure 5.6 shows a few examples of images processed by the RGBAzEl-
network and the RGBHDA-network. Surprisingly, the segmentations resulting from the RGBAzEl-
pipeline and the RGBHDA-pipeline seem qualitatively worse than those of the pipelines without
the depth-derived features. Interestingly, the networks seem to have a high response to pole-like
objects in general, instead of to light poles specifically.

The confusion matrices summarizing how class predictions are distributed are shown in Figure
5.7. The conclusion that the pipelines with the alternative depth-derived features perform gen-
erally worse than the pipelines without, is quantitatively supported by these confusion matri-
ces. Compared to the RGB-pipeline, the worst performing pipeline without depth-derived fea-
tures, the RGBAzEl-pipeline and RGBHDA-pipeline have fewer "light pole" pixels misclassified
as "other", but have more pixels of the "sky" and "other" classes being misclassified. Since the
"sky" and "other" classes, correspond to more pixels than the "light pole" class, the overall num-
ber of correctly classified pixels is smaller than that of the RGB-pipeline. This effect is caused by
the segmentation-network being very generous towards the "light pole" class. As the segmen-
tations show, predictions for the "light pole" class consist of overly large blobs of pixels around
the objects. Due tot his, the number of true positives is very high for the "light pole" class, but
the number of false positives is too, resulting in lower true positive rates for the other three classes.

The depth-derived features performing worse than any other single-view pipeline is surprising.
Theoretically, neural networks are able to learn to ignore irrelevant data. If the networks would
set the weights in the first layer corresponding to the channels of the depth-derived features to
zero, then they would be equal to the RGB-network. Therefore, the networks should theoret-
ically never perform worse than the RGB-pipeline. The fact that the network has been unable
to learn this, indicates that there are architectural limitations that limit how the gradients to the
first layers are able to propagate during training. Since the introduction of the network used in
our implementation, SegNet, and the development of this work, there have been large improve-
ments in deep neural network architecture. One of the problems that have been solved since is
the degradation problem. The general trend has been to increase neural network depth to allow
for stronger features. However, as depth increases, accuracy saturates and then degrades rapidly
[32]. This is a result of the network being unable to preserve accuracy after saturation, as identity
mappings are difficult to approximate with a set of non-linear layers. As a solution, He et al.
proposed additional "residual connections" that simply perform identity mapping, skip one or
multiple layers, and sum their output with the output of the stacked layers. As a result, identity
mappings do not have to be approximated, and gradients can propagate over multiple layers,
without being limited by the layers in between. Residual connections do not contain weights
and therefore do not add any complexity to the network. Inspired by residual networks, dense
networks were proposed by Huang et al. that connect each layer to every other layer in a feed
forward fashion, alleviating the vanishing gradient problem, strengthening feature propagation
further and encouraging feature reuse [56]. In contrast to residual networks, the additional con-
nections in dense networks are not summed but concatenated, resulting in more parameters. Our
conclusion is that it is likely that the performance of our pipelines with depth-derived features is
limited by the current neural network architecture. The depth-derived features might still prove
beneficial when using more complex segmentation-network architectures.
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FIGURE 5.6: Some examples of segmentations resulting from the RGBAzEl-
pipeline and the RGBHDA-pipeline. Surprisingly, the segmentations seem qual-
itatively worse than those of the pipelines without the depth-derived features. The
segmentations close less narrowly to the contours of objects and large areas of false

positives are predicted around pole-like objects in general.
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Network: RGB Predicted

light pole ground
plane sky other

Actual

light pole 410883
0.53

45498
0.06

22527
0.03

289112
0.38

ground plane 311816
0.01

27065883
0.94

142567
0.00

1373085
0.05

sky 1071574
0.01

10905
0.00

81511560
0.92

5892594
0.07

other 2285452
0.04

3937512
0.07

4064899
0.07

44709733
0.81

Network: RGBAzEl Predicted

light pole ground
plane sky other

Actual

light pole 455617
0.60

41276
0.05

26123
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238036
0.31

ground plane 837280
0.03

26327735
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1458610
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sky 2861586
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76803316
0.87

8357512
0.09

other 7174984
0.13

4453465
0.08

6174717
0.11

37524359
0.69

Network: RGBHDA Predicted

light pole ground
plane sky other

Actual

light pole 419108
0.55

51354
0.07

29951
0.04

262306
0.34

ground plane 638015
0.02

26583876
0.92

99939
0.00

1486275
0.05

sky 2356820
0.03

8642
0.00

78246935
0.87

7616521
0.09

other 5377781
0.10

4501222
0.08

6154083
0.11

38967172
0.71

FIGURE 5.7: These are the confusion matrices of the segmentation performance
of the RGB network. Since the quality of the segmentations from the pipelines
using depth-derived features should theoretically never be worse than those of
the pipeline using RGB-images only, the confusion matrix of the RGB-network is
repeated here for comparison. While the RGBAzEl-network and the RGBHDA-
network have higher true positive rates for the "light pole" class, and fewer pixels
from the "light pole" class that are mislabeled as the "other" class, more pixels from

the other three classes have been incorrectly labeled.
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5.4 World positioning performance of depth-derived features

In this section we evaluate the world positioning performance of our single-view pipeline based
on the RGBAzEl-network and RGBHDA-network. The pipeline will be referred to as the RGBAzel-
pipeline and the RGBHDA-pipeline respectively. Again, the test consists of 1000 images that to-
gether contain 725 unique light poles. The world positioning performance of these pipelines is
shown in Figure 5.8.

As discussed in Section 5.3, the segmentations resulting from these pipelines are worse in quality
than the segmentations from the other pipelines. As the segmentation-network includes more
false positives for the light pole class in the segmentations, more false positives are introduced in
the world positioning. It is therefore unsurprising that the world positioning performances of the
RGBAzEl-pipeline and the RGBHDA-pipeline are also worse than that of the RGB-pipeline. Even
though the segmentations of the RGBAzEl-network and the RGBHDA-network contain more true
positives for the "light pole" class than the RGB-network, the recall rate in world positioning is
lower. This is likely caused by the additional false-positives, introducing inaccuracies when they
are included in a cluster. This effect is worse for the RGBAzEl-pipeline than for the RGBHDA-
pipeline. The performance of the RGBHDA-pipeline is slightly better than that of the RGBAzEl
pipeline. It has both a higher AUC score and reaches a higher recall score. However, as con-
cluded in Section 5.3, the performance is currently limited by the architecture of the segmentation-
network and not by the features themselves. No conclusions can therefore be drawn regarding the
usability of the depth-derived features. The performance might still improve with a more com-
plex segmentation-network architecture, and that with the improved segmentations, the world-
positioning also improves.
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FIGURE 5.8: The world positioning performance of the RGBHDA-pipeline and the
RGBAzEl pipeline. Since the quality of the corresponding segmentations should
theoretically never be worse than that of the segmentations of the RGB-pipeline,
the word-positioning performance of the RGB-pipeline is repeated in these graphs
for comparison. Unsurprisingly, worse segmentations result in worse world-
positioning performance. Although the performance of the RGBHDA-pipeline
seems better than that of the RGBAzEl-pipeline, no definitive conclusion can be
made with regard to usability of the features, as the performance is limited by the

current segmentation-network architecture.
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5.5 Segmentation performance of the multi-view pipeline

In this section the segmentations from the multi-view pipelines are evaluated. Two variants of
the multi-view pipeline are considered that both operate on RGB-images. The first pipeline ag-
gregates segmentations with an aggregation-network and is referred to as the MV-Agg pipeline.
In the second pipeline segmentations are combined by simple per-class probability summation.
The second pipeline is referred to as the MV-Sum pipeline. Figure 5.9 shows some segmentations
produced with both pipelines, and the differences in the corresponding per-class probabilities
that the aggregation methods produce. Figure 5.10 shows a few more segmentation examples,
without the corresponding probabilities.

It seems that the segmentations produced by the MV-RGB pipeline still contain many false-
positives for the "light pole" class. However, the segmentations have the interesting property
that light poles in the center of the image are segmented quite generously, with many false posi-
tives clustering around the true positives within the images. Relatively few false positives occur
in other areas of the images. The segmentation quality of the MV-Sum pipeline is even better,
with very accurate light pole detection where the boundaries of the prediction narrowly fit the
boundaries of the object in the ground truth. Relatively few false positives for the "light pole"
class are predicted by the MV-Sum pipeline.
The segmentations are evaluated quantitatively in Figure 5.11. Because both the MV-Agg and the
MV-Sum networks use RGB-images for segmentation, the confusion matrix for the RGB-network
is repeated for comparison. Even though the segmentations look quite good qualitatively, the
performance on a pixel-level is less conclusive. While the MV-Agg and has a slightly higher true
positive rate for the "light pole" class, the MV-Sum has a lower true positive rate, compared to the
RGB-network. The MV-Agg network has a lower confusion rate of pixels from the "light pole"
class being incorrectly labeled as "other" pixels. However, the MV-Agg network has more pixels
of the "other" class that are confused with the "light pole" and "ground plane" classes. This illus-
trates that the trade-off between the "light pole" and "other" classes is just slightly tilted in the
multi-view networks. The actual segmentation quality however has not decisively improved.

The performance of the aggregation-network could have been limited through the neural net-
work architecture and the data it is provided with. As the segmentation performance ha snot
significantly improved, the network apparently is not able to correct inaccuracies in the predic-
tions through supplemental information. However, this would have been very difficult given
the data provided. Since the aggregation-network operates on probabilities without the origi-
nal data, all color information and features extracted by the segmentation-network are lost when
the probabilities are passed to the aggregation-network. The aggregation-network cannot possi-
bly reconstruct this information from the probabilities alone. It might be better to provide color
information and depth information to the aggregation-network, in addition to the probabilities.
Even better would be to merge the single-view pipeline with the segmentation-network and the
aggregation-network into a single large neural network, where all features are shared and re-
projection and refocusing are implemented as network layers. This network would however be
harder to train due to its increased depth.
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FIGURE 5.9: These are examples of segmentations produced by the MV-RGB
pipeline and the MV-Sum pipeline. The segmentation from the MV-RGB pipeline
contains many false positives for the "light pole" class around the actual object.
However, it should be noted that very few false positives for the "light pole" class
occur in other areas of the image. The tree on the right side of the image is even
better represented in the segmentation than in the ground truth. The segmenta-
tion from the MV-Sum pipeline is even cleaner. Very few false positives a present
overall and the boundary of the light pole in the segmentation fits the object in the
ground truth quite narrowly. We can see that same patterns apply for the corre-
sponding probabilities. The boundaries between classes are much sharper in the

probabilities from the MV-Sum pipeline.
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FIGURE 5.10: These are more examples of segmentations produced by the MV-RGB
pipeline and the MV-Sum pipeline. The MV-RGB pipeline has many false posi-
tives for the "light pole" class. It is clear that the segmentations from the MV-Sum
pipeline are much cleaner, with less noise around the boundaries between classes
and details captured more accurately. Even very thin structures can correctly be

captured by the RGB-Sum pipeline.
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Network: RGB Predicted

light pole ground
plane sky other

Actual

light pole 410883
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45498
0.06

22527
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0.38

ground plane 311816
0.01

27065883
0.94
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0.00
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sky 1071574
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Network: MV-Agg Predicted
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plane sky other
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light pole 398946
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ground plane 472273
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sky 2248700
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0.89
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0.08

other 3771008
0.07
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0.07
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Network: MV-Sum Predicted

light pole ground
plane sky other

Actual

light pole 355806
0.49

65917
0.09

12912
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298258
0.40

ground plane 213453
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27169377
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51956
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1144858
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sky 1088193
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0.00
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FIGURE 5.11: These are the confusion matrices of the segmentation performance
of the multi-view networks. Because the multi-view pipelines operate on RGB-
images the confusion matrix of the single-view RGB-pipeline is repeated here for
comparison. Although the segmentations visually look good, there are many dis-
crepancies between the segmentations and the ground truth. There are multiple
reasons for this. First, objects in the center of the images are segmented well be-
cause those parts of the image are best supplemented by the additional recording
locations through reprojection due to high overlap. Because only objects in the cen-
ter of images are segmented well, the other areas of the segmentation have more
misclassification, resulting in a worse quality overall. Secondly, the resulting seg-
mentations are in some cases qualitatively better than the ground truth. This means
that when a segmentation is correct, and the ground truth is not, the network is still

punished for it during training.
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5.6 World positioning performance of the multi-view pipeline

In this section we evaluate the world positioning performance of the multi-view pipelines. The
pipeline using an aggregation network is referred to as the MV-Agg pipeline, while the pipeline
that performs simple probability summation is referred to as the MV-Sum pipeline. Again, the
test set consists of 1000 images, however, because multiple images are refocused on the same posi-
tion, the set consist of only 245 light poles. The corresponding PR-curves are shown in Figure 5.12.

In the multi-view pipeline, all positions predicted by the single-view pipeline are further investi-
gated by first refocusing the images at the positions, and then aggregating the information from
multiple nearby recording locations through reprojection. In doing so, a new set of images is
created with slightly different characteristics from the original images. To measure how refocus-
ing impacts the performance of the pipeline, new ground truth segmentations are generated for
the refocused images, and used to calculate the new recall limits achievable by the pipeline. The
recall limit has moved from 74% to 79% on a per-view basis and has moved from 79% to 83%
on a per-object basis, illustrating that refocusing at every cluster position predicted by the single-
view pipeline does indeed produce images with better object visibility, resulting in improved
world-positioning recall performance. However, since more images are introduced that are not
segmented perfectly, more false positives are also introduced, resulting in a lower precision.

As established in Section 5.5, the segmentations for these pipelines are not very accurate but
have some desirable properties whose usefulness is confirmed in the PR-curves. While many
false negatives for the "light pole" class result in missing objects during positioning on a per-view
basis, the missing objects are generally found within other views, resulting in a higher recall score
both on a per-view and on a per-object basis.
While the segmentations from the RGB-Sum pipeline are slightly worse with respect to the "light
pole" class overall, the recall rate is slightly higher than that of the RGB-Agg pipeline on a per-
view basis. However, when considering all images, the MV-Agg can compensate better for missed
light poles than the MV-Sum pipeline, resulting in a higher recall rate for the MV-Agg pipeline
on a per-object basis. The MV-Agg reaches 51% recall rate on a per-view basis, which is 64% of
the limit, with a precision of 9%. On a per-object basis the MV-Agg pipeline achieves a 66% recall
rate, which is 79% of the limit, with a precision of 3%.

These results indicate that on a per-object basis, approximately 17% recall could still be achieved
through better segmentations, while another 17% recall could be obtained through other pipeline
changes such as improved clustering and better ground truth.
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FIGURE 5.12: The world positioning performance of the multi-view pipelines.
While the performance on a per-view basis seem to indicate that the MV-Sum
pipeline performs better, the performance on a per-object shows that the MV-Agg
pipeline reaches a higher recall. These results can be explained by the fact that espe-
cially the objects in the center of the images are segmented well because those parts
of the image are best supplemented by the additional recording locations through

reprojection. This effect is apparently stronger for the MV-Agg pipeline.
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5.7 Overall comparison

A comparison has been made between pipelines operating RGB-images, D-images, and RGBD-
images, where the depth-information is derived from Lidar point clouds. As Section 5.2 and Sec-
tion 5.1 discuss, the depth information on its own is more useful for achieving a high light pole
recall rate than color information alone. The combination of both has been shown to work best.
Since the data-representation affects the capabilities of a neural network to learn specific features,
different depth-derived features are explored. As Section 5.3 and Section 5.4 discuss, the per-
formance of the pipeline with the new features is however limited by the current segmentation-
network architecture and performs worse than a pipeline without depth information.

As discussed in Section 5.2 the world positioning performance of the pipeline with ground truth
segmentations provides an indication of the performance that can maximally be expected from
the pipeline. The fact that the recall rate on a per-object basis is higher than at a per-view basis
indicates that information from multiple views could be combined for improved segmentation.

A multi-view pipeline has been introduced which incorporates several techniques for improved
segmentation. The multi-view pipeline reconsiders every position predicted by the single-view
pipeline. From the panoramic images, an image patch is extracted and resampled to focus on the
predicted position for optimal visibility. As discussed in Section 5.6 this already improves the
recall rate of light poles. Information from multiple recording locations is then reprojected to a
target camera pose so that correlation between images is then explicitly defined, and no longer
has to be inferred. The reprojected images can then be combined into a single representation.
As discussed in Section 5.5 the resulting segmentations are not necessarily better on a pixel level
but do have some beneficial properties. The position that the image has been refocused at is seg-
mented accurately while the surroundings are less accurately segmented. As a result, the recall
on a per-view basis has improved slightly, and the recall on a per-object basis has improved con-
siderably compared to the single-view pipeline.

To answer sub-question 1 we conclude as follows. Our pipeline operating on the combination
of color information and depth information outperforms pipelines that operate on information
from only one of these sources. While, theoretically, alternative depth-derived features could re-
sult in an even better performance, the current segmentation-network architecture has limited
capabilities to learn the correct features. The optimal data representation for the current pipeline
therefore consists of RGBD-images, where the depth values directly correspond to the distance
from the recording location to the mesh reconstructed from the Lidar point clouds.

To answer sub-question 2 we conclude as follows. By reprojecting information from multiple
recording locations to a target camera pose,the information can be combined into a single repre-
sentation. Reprojection can be achieved by utilizing the depth information derived form Lidar
point clouds. While these representations do not result in better segmentations at a pixel-level,
the objects in the center of the image are generally segmented more accurately, resulting in higher
recall rates.
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Chapter 6

Conclusion

In this chapter we conclude this work. A summary is provided in Section 6.1. Finally, Section 6.2
discusses future work.

6.1 Summary

We discussed how color information from panoramic images and depth information derived from
Lidar point clouds could be combined for improved street furniture detection. In contrast to many
related methods, our method deals with real world environments consisting of many complex ob-
jects. A novel method is proposed that enables multi-view deep convolutional neural networks
to combine data from recording locations that do not have fixed relative positions. The focus is
on the recall rate of light poles.

A single-view pipeline is introduced which embeds a deep convolutional neural network for
segmentation, using both images and Lidar point clouds. The resulting segmentations are then
reconstructed as labeled point clouds, after which a three-dimensional clustering method extracts
the world positions for the segmented objects. Results show that a network trained on depth-
images outperforms a network trained on regular images. A network trained on representation
that combines both types of images creates the highest quality segmentations. It is also shown
that better segmentations generally result in better world position estimates. On a per-object ba-
sis the pipeline that combines color and depth information achieves a 62% recall rate, which is
78% of the limit, with a precision of 13%.

Several depth-derived features are explored to see whether these are more informative to our deep
neural networks than depth information alone. Results indicate that with the current network ar-
chitecture, the additional data confuses the network, with worse segmentations as a result. Due
to network architecture limitations, the network does not learn to ignore irrelevant data and both
segmentation and world positioning performance is worse than that of a network without depth
information.

Finally, a multi-view pipeline is introduced which combines the segmentations of several record-
ing locations into a single better-informed segmentation through image reprojection. While the
quality of the resulting segmentations is not necessarily better, due to a double check on every
cluster found by the single-view pipeline and segmentations which are more accurate towards
the position they have been refocused at, the recall is increased. The multi-view pipeline which
uses an additional neural network for segmentation-aggregation achieves a 66% recall rate, which
is 79% of the limit, with a precision of 3%.

6.2 Future work

The main limitations of the pipeline are caused by the limitations of the SegNet architecture for
segmentation, the data passed to the aggregation network, the clustering step and the quality of
the ground truth.
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To improve segmentation quality multiple alterations to the architecture could be made. There
have been significant improvements in network architecture after the introduction of SegNet and
during the creation of this work. In addition to improvements such as residual connections and
inception modules as discussed in Section 5.3, other significant improvements have been made to
make deep neural networks in more powerful in general. Inspired by residual networks, densely
connected networks were proposed by Huang et al. that connect each layer to every other layer in
a feed forward fashion, alleviating the vanishing gradient problem, strengthening feature propa-
gation en encouraging feature reuse [56]. In contrast to residual networks, the additional con-
nections in dense networks are not summed but concatenated, resulting in more parameters.
Another recent development in deep convolutional neural networks was the incorporation of
attention modules which learn attention-aware features [57] as proposed by Wang et al. An atten-
tion module consists of an encoder-decoder architecture that learns in which areas of an image a
feature is relevant. This means that internally, the network learns a mask for each feature so that
the corresponding network output is scaled during inference, and the corresponding gradients
are scaled during training. Recently, residual attention networks have surpassed state-of-the-art
image classification methods. We expect that incorporating residual connections, dense connec-
tions, inception modules and attention modules in a new pipeline could further improve the per-
formance of our pipeline. Finally, he performance of the aggregation is currently limited by the
information it is provided with. Since the aggregation-network only receives probability infor-
mation, all features extracted by the segmentation-network are lost when information is passed
to the aggregation-network. The best solution for this would be to merge the segmentation and
aggregation networks in a single larger network, where are features are shared. Such a network
would however contain more parameters and be would be harder to train.

Besides network architecture there are other aspects that can be improved. The performance of
the ground truth is currently not optimal, with a recall limit of 0.79 on a per-view basis, and
a recall limit of 0.83 on a per-object basis. Improving the ground truth could therefore make a
significant improvement in performance. The ground truth for the "light pole" class incorrectly
includes some parts of nearby trees. These points are however not geometrically attached to the
light pole. Additionally, some light poles are occluded. While only ground truth with at least
100 light pole pixels is accepted, these pixels are not guaranteed to belong to a single geomet-
rical cluster. Therefore, an additional clustering step at the time of ground truth creation could
be used to remove the irrelevant clusters. It could be further explored what the exact number of
occluded light poles is, and how both recall and precision change if smaller clusters are accepted.
To minimize confusion between the "light pole" class and the "other" class, buildings and trees
could be added to the ground truth as new classes. How these object could be annotated auto-
matically, however, is not obvious. Alternatively, the ground truth could be improved through
manual inspection. If the quality of the ground truth is better, than the segmentation-networks
will automatically learn better features.

There are also a few other metric parameters that can still be further explored to evaluate our
pipeline. For example the acceptance radius of 1.5 meters could be changed to see how this af-
fects performance. Additionally, the number of neighboring recording locations incorporated in
the multi-view pipeline could be increased to 4 or 5 to see if this has benefit. It is however ex-
pected that the information from these additional recording locations decreases in importance
as the distance to the original recording location increases, because the images will have smaller
overlap.

The pipeline currently contains many inaccuracies introduced by point cloud positioning, refo-
cusing, reprojection and interpolation. Although the effect of each of these steps is expected to
be small, the combination of all these effects could be significant. To deal with images that do
not have the correct resolution, the network could operate on image-pyramids, consisting of dif-
ferently scaled versions of the same image. Instead of regular linear interpolation for colors and
nearest neighbor interpolation for depth values improved methods could be used. Interpolating
depth values might be more accurate when the nearest depth value is chosen, instead of the depth
value of the nearest pixel. Even better, instead of interpolation over pixels, depth values could be
resampled from the original Lidar point cloud reconstructed as a mesh.
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The pipelines have been illustrated with light poles as the main class of interest. The clustering
within the segmentation-derived point clouds could work on any type of object that consists of a
single geometrical component as long as concave protrusions are taken into account. The method
will be productized by Cyclomedia to obtain data for remote inspection and inventory purposes
of street furniture. A next step would therefore be to see how these pipelines perform when a
different main class of interest such as traffic lights, traffic signs, garbage bins of road markings is
chosen. The only thing that is necessary to train new networks is the availability of a new dataset
and ground truth. However the ability of the networks to generalize to other classes is not obvi-
ous. When similar classes are introduced to the model, it could result in more misclassification.
For example, if a second class of pole-like objects is introduced, that is different from light poles,
the network might suffer form confusion. Additionally, in the current pipeline it is assumed that
instances of the same class never touch. However, if an object is misclassified, the probability
of it connecting to an object with the same label increases, and clustering in the segmentation-
derive point clouds might not be enough. It might be beneficial at that point to perform instance
level segmentation instead of regular semantic segmentation to distinguish between objects of the
same class.
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