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Abstract
In recent work concerning demand response for flexibility carriers, specialized

methods have achieved considerable progress for specialized instances of carriers.
These methods often rely on complicated design decisions in feature engineer-
ing or utility function design. Furthermore, flexibility carriers are often stochastic
in their behaviour. In this paper we propose a general model-free reinforcement
learning approach using limited feature engineering and a straightforward utility
function. We validate our approach on a simulation of a flexibility carrying cold
storage cell. Our results indicate significant cost savings can be achieved through
our approach, at the cost of a long exploration period. Our approach requires ap-
proximately 69 simulated days before offering an improvement in cost over stan-
dard carrier behaviour.

1 Introduction
The path towards a world supplied only by renewable resources remains cumbersome.
Renewable production methods like solar and wind are erratic by nature, and human
consumption seems resilient to radical change. The search for adaptation of our energy
consumption to the erratic nature of renewables has seen the emergence of a wealth of
algorithms. Most of these methods focus on so called flexibility carriers. These sys-
tems do not need continuous operation, and thereby allow for flexibility in the moment
they do operate. Examples of flexibility carriers include swimming pool heaters, water
pumps and cold storages. Shifting the energy consumption of a flexibility carrier to a
more desirable (often cheaper) hour of the day is known as demand response. Here
energy market mechanisms allow for a straightforward objective: As renewable energy
sources increase their production throughout a day, the market will adjust by lowering
its prices, making it more desirable to operate flexibility carriers. The benefit of op-
erating flexibility carriers in these hours is twofold. First, less energy is needed from
pollutant sources. Second: operating during these hours reduces operation costs.
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Concurrently, recent advances in artificial intelligence have generated renewed in-
terest in the reinforcement learning paradigm. Reinforcement learning (RL), is a term
used for a collection of methods used to allow an agent to learn from its actions through
interaction with an environment (Barto & Sutton, 1999). In terms of flexibility carri-
ers, a reinforcement learning algorithm can learn to operate the flexibility carrier so
that the carrier is only operational during affordable hours. Exploratory work suggests
model-free variants of reinforcement learning offer a benefit over various model-based
methods, as carrier behaviour models are rarely known (Ruelens et al., 2015). More-
over, model-based methods often struggle in stochastic environments (Cigler et al.,
2013).

However, work surrounding reinforcement learning often leaves room for improved
generalizability as adoption of demand response methods becomes more prevalent.
Some methods require differentiable reward functions (O’Neill et al., 2015) or heavy
feature engineering (Ruelens et al., 2015). In this paper we explore the feasibility of
a general reinforcement learning approach on a simulated flexible cold storage sys-
tem. We show significant cost savings can be achieved through reinforcement learning
without the need for heavy feature engineering or differentiable reward functions. The
structure of this thesis is as follows: First we explain basic concepts surrounding our
objective when applying demand response. Second we concentrate on reinforcement
learning and address some of its challenges. In section 4 we explain the specifics of
our simulated cold storage cell. Section 5 is used to analyze the results of our experi-
ment. Finally, in section 6, we explain the implications of our results concerning future
work and the accuracy of our experiment before reflecting on our objective. Moreover,
appendix A contains all parameters used in our experiment along with their assigned
values.

2 Basic concepts
Before we describe the specifics of the reinforcement learning paradigm, we will define
the tasks objective. Given a cold storage enviroment and a time span, denoted by time
steps t0, t1 . . . tn, our objective is to minimize the cost c of turning on our cooling cell.
The cost of our cell from time step 0 through n is defined as:

c =
n

∑
t=0

utλt .

Where ut is the energy consumption of our cell at time step t, and λt , the energy price
at t. The energy consumption of a cooling cell is controlled by the operational state
z ∈ {0,1}, and the energy capacity ρ of the cell:

ut =

{
ρ, if zt = 1,
0, otherwise.

Because z is discrete, this is equivalent to ut = ρzt . Changes in the operational state
influence the internal temperature Tt of the cell as well. Moreover, when minimizing c,
we will need to keep the internal temperature of the cell between boundaries Tmin and
Tmax to ensure proper preservation of the contents of the cell.
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3 Reinforcement learning

3.1 Markov decision processes
Given an environment, reinforcement learning allows us to learn to interact with the en-
vironment. In our case, an environment would consist of a cold storage system defined
by a set of possible states S. An agent interacts with the environment by iteratively
choosing an action from the set of possible actions A. Choosing an action changes the
state according to a transition function that dictates a state’s successor given an action
a ∈ A. Often the environment satisfies the Markov property. An environment is said
to satisfy the Markov property if its actions only affect a state’s successor. If an envi-
ronment satisfies this property, the accompanying reinforcement learning task is called
a Markov decision process (MDP). Depending on the cardinality of state- and action
spaces, an MDP is either considered finite or infinite. (Barto & Sutton, 1998) In this
paper we will examine the efficacy of reinforcement learning on an infinite Markov
decision process involving a cold storage environment.

3.2 Value functions
In general terms, the goal of reinforcement learning is to find the optimal policy π∗

which maximizes some value given by the value function V . A policy π selects actions
based on the observations an agent makes in a certain enviroment:

π : S 7→ A.

A value function V assigns a value to all states, thereby allowing an agent to differen-
tiate states based on their desirability:

V π : S 7→ R.

The value of a state s∈ S under policy π, given by V π(s), is the expected reward of state
s when following policy π (Wiering & Otterlo, 2014). Because we want maximize the
value of different states through the actions given by our policy, it can be useful to
distinguish between the values of different state-action pairs. This is achieved through
a Q-function:

Qπ : S×A 7→ R.

The Q-value of a state-action tuple is given by:

Qπ(st ,a) = R(st ,a,st+1)+ γ · (max
a

Qπ(st+1,a)).

This defines the Q-function as the sum of the reward gained by taking action a in
state s and the discounted value of acting optimally from the next state onward. Where
R is some reward function assigning a reward to action a in state st , st+1 is the observed
state after taking action a in state st , and γ is the discount factor. A discount factor is
used to assign a weight to rewards gained after taking an action in the current state.
Typically, a lower discount will result in a more greedy policy, while higher discount
factors will result in a policy geared towards long term reward. However, this definition
of the Q-function introduces two dependencies.
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3.3 Reward
First: to solve our problem, we will have to design a reward function R that succeeds
in capturing our definition of successful demand response. As specified earlier, the
goal of our RL approach is to shift energy consumption of cold storage systems to
cheaper hours. Therefore the definition of our reward function R should be closely
related to the monetary cost of the power consumption as realized by our policy. How-
ever, defining the reward function as the monetary cost of our policy will cause any
non-trivial policy to cease all power consumption. Not consuming any power will al-
ways be cheaper than consuming power. Therefore our reward function will have to
incorporate the dissatisfaction of letting the cold storage heat or cool beyond the range
[Tmin,Tmax]. Additionally, in most cold storage systems switching the cooling state of
the system introduces strain on machinery. Thus introducing unnecessary strain into
the system through switching should increase dissatisfaction. Our reward function has
three components to address these requirements.The first component, Rswitch , is meant
to penalize excessive state switching:

Rswitch(st ,a) =

{
−1, if zt 6= zt+1,

0, otherwise.

As our action should dictate the operational state of the cell in the next time step,
the first conditional is equivalent to zt 6= a.

The component Rrange is meant to keep temperatures in the range [Tmin,Tmax]:

Rrange(st ,a) =


−(Tt −Tmax +1)η, if Tt > Tmax,

−(Tmin−Tt +1)η, if Tt < Tmin,

0, otherwise.

Where η is a parameter to control the growth of the penalty when Tt exceeds the
range [Tmin,Tmax]. With correct parameterization of η, this penalty allows for brief vi-
olation of the range, while combatting extended violations. This design differs slightly
from Ruelens et al. (2015) where any violation would result in a sizeable penalty. Our
design allows for minor violations, to allow a policy to exploit the added flexibility.
Additionally, minor violations often happen during standard operation. Lastly, Rprice
rewards a policy for consuming less energy, and doing so at lucrative hours:

Rprice(st ,a) =−utλt .

This leads us to combining these three components into a single reward function:

R(st ,a) = α0 ·Rprice(st ,a)+α1 ·Rrange(st ,a)+α2 ·Rswitch(st ,a).

The price reward function Rprice is a trivial penalization of expenditure. The range
control function Rrange penalizes a policy for exceeding the range [Tmin,Tmax] by ap-
plying a penalty that grows exponentially as the temperature moves further outside the
range. The function does not apply any penalty if the temperature is inside normal
ranges, as to not impede “bold” policies that move temperatures close to the edges of
the range for added performance. Lastly, Rswitch applies a penalty if the current opera-
tional state is not the same as the next operational state, thereby rewarding non-erratic
switching behaviour. We introduce parameters α0,α1,α2 to mediate the influence of
the three individual components on the main reward function R. If parameterized prop-
erly, this reward function will reward a policy for minimizing its cost through Rprice
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while keeping temperatures in a normal range as dictated by Rrange, and minimizing
the number of operational switches through Rswitch.

3.4 Function approximation
Second: given a state s, how do we determine which action has the highest value?
Determining the action which maximizes Q(s,a) can be non-trivial in stochastic envi-
ronments. Stochastic environments can make it difficult to estimate the transition func-
tion between states. Without a known or estimated transition function model-based
algorithms like value iteration (Bellman, 1957) will not work. One possible option is
the model-free Q-learning algorithm (Watkins & Dayan, 1992). As Q-learning has no
internal model of the environment it is interacting with, the algorithm will not suffer
under the absence of a known transition function. Q-learning works by incrementally
updating the expected value of a state-action tuple based on feedback the algorithm re-
ceives from testing those tuples against a reward function (Wiering & Otterlo , 2014).
However, using Q-learning in our cold storage environment introduces a challenge.
The state space of our environment is not discrete. Our state space includes variables
like temperature and energy consumption, both are continuous. This means we would
have to update our Q-values for an infinite number of states. One possible solution to
this problem is function approximation (v. Hasselt, 2012). Function approximation has
shown promise in earlier demand response research (Ruelens et al., 2014) and works
similar to Q-learning by incrementally updating expected values. The goal of function
approximation is to learn a function Θ so that Θ approximates Q. By learning this
function we can choose the action with the highest expected value:

Qπ(st ,a) = R(st ,a,st+1)+ γ ·E[(max
a

Qπ(st+1,a))]

≈ R(st ,a,st+1)+ γ · (max
a

Θ(st+1,a)).

This means that after learning Θ, and observing state st , we can choose the action
with the highest expected value according to:

max
a

Θ(st ,a).

3.5 Gradient boosting
Recalling our reward function, the presence of conditionals when determining the re-
wards shows this function is non-linear. This entails that Θ should be able to ap-
proximate non-linear functions. Our approach uses gradient boosted decision trees. A
gradient boosting learner is an ensemble of multiple smaller learners, called base learn-
ers (Friedman, 2002). Base learners are fitted on a dataset before a weight is assigned
to each learner based on it’s accuracy. The output of the gradient boosting learner is
subsequently determined by the weighted mean of the output of all base learners. Our
implementation uses simple decision trees as base learners. Gradient boosted trees
have shown earlier promise in highly complex, non-linear reinforcement learning envi-
ronments (Abel et al., 2016). When starting a reinforcement learning algorithm early
actions are typically chosen at random, subject to some exploration parameter ε. This
exploration parameter is gradually decreased as learning continues, making the algo-
rithm more likely to choose the action with the highest expected value. In the case
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of gradient boosting this allows for bootstrapping of early base learners. However,
early base learners are fitted on mostly randomly chosen actions, meaning early base
learners’ output might not be representative of the output of base learners that are fit-
ted later in the process. This phenomenon, where the distribution of the input data
changes over time, while it’s relationship with the output does not is called coviarate
shift (Sugiyama, 2011). Gradient boosting allows for attractive mitigation of covari-
ate shift, as assigning and updating weights to base learners allows the algorithm to
decrease it’s dependency on early base learners as more learners are added during the
learning process. Learning of Θ is done by iteratively observing a triple containing
the state, the chosen action, and the reward: < st ,at ,rt >. These triples are added to a
dataset before the exploration probability is decreased by εdecay. Every k time steps the
state-action values of the dataset are computed, and b base learners are trained on the
dataset. The base learners are then added to the ensemble, and all base learner weights
are recomputed.

Like many machine learning algorithms, feature engineering may enhance our
learner’s accuracy when predicting the value of a state-action tuple. Nonetheless, little
feature engineering was performed in an attempt to keep our reinforcement learning
approach as general as possible. Our state st is given by a vector containing: the max-
imum and minimum temperatures Tmax,Tmin, the current temperature Tt , the current
operational state zt , the current energy price λt , and the difference between the current
energy price and the energy price in one hour λt −λt+60. All of these values are easily
observable.

Finally, Our implementation of gradient boosting uses an unchanged version of
scikit-learn’s gradient boosting decision tree regressor. (Pedregosa et al., 2012).

4 Simulation
To learn and evaluate our gradient booster for reinforcement learning, a simulation
environment was created. This simulation environment simulates temperature progres-
sion, energy use and energy cost for a single cold storage cell in discrete 1-minute
time steps. Temperature progression is modelled differently depending the operational
state zt of our cell. Most cold storage facilities cool rapidly while heating by exter-
nal factors is a much slower process. Additionally, temperature change starts to slow
down when temperatures approache either external temperatures or the temperature of
internal cooling systems. This allows us to model temperature progression as a loga-
rithmic function of time ζ. However, our transition function should not be a function of
time, but a function that returns a temperature based on the previous temperature, this
is achieved through derivatives ∆ζoff and ∆ζon (Henze & Schoenmann, 2003). These
derivatives model temperature changes when the cooling system is inactive and active
respectively. The functions are given by:

∆ζoff(Tt) =
1

(Tt +φ0) ln(ψ0)
+ v,

∆ζon(Tt) =−(Tt +φ1) ln(ψ1)+ v.

Where φn is a parameters to control the speed of change decrease as the tempera-
ture approaches the external or cooling temperatures, and ψn is a parameter to control
the length of a cooling or heating period. Stochastic noise is added through v, which is
sampled randomly from the Gaussian distribution N (0,µ), where µ dictates the vari-
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ance of the noise. Combining these two derivatives completes the transition function:

Tt+1 =

{
Tt +∆ζon(Tt), if at = 1,
Tt +∆ζoff(Tt), if at = 0.

The starting temperature was set to 1
2 (Tmax + Tmin). Energy prices are based on the

Dutch EPEX APX day-ahead market. This data is publicly available. Our simulation
uses the hourly APX prices from 2016 through 2017, normalized to the interval [0,1].

5 Results

5.1 Benchmark Policy
During and after training our reinforcement learning policy was evaluated against a
benchmark policy. This benchmark policy is an approximation of the way cold storage
software manages internal temperatures. Given the temperature range [Tmin,Tmax], our
benchmark policy switches the operational state of the cell zt as soon as the temperature
Tt violates the temperature range. This results in a policy that switches as little possible
while mostly keeping temperatures in the specified range. However, since this policy
does not observe nor factor in energy prices during planning, the policies’ cost is largely
dependent on market patterns.

5.2 Results
To test the performance of our reinforcement learning approach, we trained our gra-
dient booster for a duration of 100 simulated days, sampled randomly from our APX
price dataset, while adding new base learners every 10 days. After each day the aver-
age discounted reward of that day, and the total energy cost as realized by the policy in
that day were recorded. The progression of the energy cost and average daily rewards
are depicted in Figure 1. Additionally, the figure depicts the average performance of
our benchmark policy as calculated over 100 days. The comparison between the pro-
gression of our reinforcement learning policy and the average benchmark performance
reveals it takes approximately 69 days before reinforcement offers any improvement.

Like the benchmark policy, we evaluated our reinforcement learning policy on 100
unique simulated days. The results are shown in Table 1. These results contain the
mean discounted reward per day, the average sum of the cost per day, the average num-
ber of operational switches per day, the average percentage of the time spent cooling
per day, and the average realized price per day. The realized price is calculated by
dividing the cost of a day by the cooling time of that day, and should give in indication
whether time spent cooling was done so during cheaper hours. All metrics include their
respective standard deviation σ.

These metrics show both policies perform approximately equal in regards to our
reward function, but the reinforcement learning policy achieves an improvement of
50% in cost. The improvement can largely be attributed to the 30% decrease in cooling
time, but as indicated by the 9% decrease in realized price, the reinforcement learning
policy does cool more during cheaper hours in comparison with the benchmark policy.
An example of how the reinforcement learning policy achieves this is depicted in Figure
2. Finally we see a considerable 285% increase in the number of operational switches
the reinforcement learning policy makes compared to the benchmark. An increase
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Figure 1: Average episode reward and cost during episodic learning
Figure 1 shows the averaged reward per training episode, and total realized cost per training
episode. Both figures include the average performance of the benchmark policy.

Table 1: Averaged performance metrics of RL and Benchmark policies over 100
unique simulated days.

Metric RL Benchmark
Mean discounted reward (Q) −0.0043 (σ = 0.0023) −0.0041 (σ = 0.0009)
Total cost (∑t c) 37 (σ = 12) 74 (σ = 23)
Total switches (zt 6= zt+1) 54 (σ = 26) 14 (σ = 1)
Cooling time percentage (z = 1) 16% (σ = 0.047%) 23% (σ = 0.021%)
realized price ( ∑t c

∑t z ) 11.12 (σ = 0.026) 12.22 (σ = 0.030)

in the number of operational switches is expected, as the benchmark policy uses the
minimum amount of switches needed to keep temperatures in the specified range.

6 Discussion
Our results reveal various shortcomings of a reinforcement learning approach to de-
mand response. Our approach takes approximately 69 simulated days before offering
any improvement over the benchmark policy. This 69 day period can be a long time to
bridge, as the exploratory phases of learning exhibit undesirable behaviour like erratic
switching or violation of temperature ranges. Possible solutions to this problem include
bootstrapping a number of base learners on historical data of the cold storage system or
fitting various linear models on the temperature progression patterns of the system to
build an approximate model of the system, before learning a number of base learners
from this approximate model. Both of these solutions offer possible venues for future
research. Additionally, our simulation is based on one instance of a cold storage sys-
tems, but like any system, cold storage systems exist in a wide array of configurations.
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Figure 2: Example control sequences of benchmark and RL policies
Figure 2 Shows examples of a control sequence using the benchmark policy. The benchmark
policy does not factor in energy pricing and starts to cool continuously during a peak in energy
price. Additionally this figure shows an example of a control sequence as executed by the re-
inforcement learning policy. While scarcely cooling during high energy prices, the RL policy
succeeds in keeping temperatures within the specified range. Once energy prices decrease the RL
policy starts cooling continuously and thereby manages to avoid cooling during another small
price peak.

These configurations range from systems consisting of a single cell to systems consist-
ing of dozens of cells with unique temperature ranges. Even though our reinforcement
learning was kept as general as possible, more work is required to examine the effect
of the configuration of a cold storage system on the viability of reinforcement learning
for that system. For configurations consisting of multiple cells possible research could
be directed towards batch reinforcement learning, as used by Ruelens et al. (2014).

Furthermore our results pose a dichotomy: most of the savings achieved through
reinforcement learning can be attributed to a reduction in the time spent cooling. This
means that, regardless of energy prices, switching as little as possible is not necessarily
the best course of action. This observation is a result of the logarithmic pattern that
the temperature progression follows. Since this progression is logarithmic, the effort
needed to keep the temperature decrease constant grows exponentially as more time is
spent cooling. At a certain point, the effort needed to continue cooling may come at an
undesirable cost, even if the temperature is far above the lower temperature boundary.
Deciding how long to cool, assuming a constant energy price, is a problem beyond the
scope of this paper, but the results of our experiments show that reinforcement learning
may be applicable to solve this problem, while simultaneously performing demand
response.

Our main criticism of earlier work revolved around the lack of generalizability.
Here our results show it is possible to achieve some level of demand response without
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the need for differentiable reward functions (O’Neill et al., 2015) or heavy feature en-
gineering (Ruelens et al., 2015). However, our generalized approach seems to require
a longer learning period, which may be undesirable. Ultimately our approach exhibits
shortcomings for demand response. Nonetheless, our results show it is possible to
achieve considerable cost savings in a specific cold storage system using a general re-
inforcement learning approach, thereby offering a model-free method that is readily
available and easily implementable with limited domain knowledge.
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8 Appendix A - parameters
Param. Summary Param. Value

Reinforcement learning
Discount factor γ 0.9
Base learner interval k 10 days
Base learner additions b 20
Starting exploration ε 0.99
Exploration decay εdecay 1×10−6

Reward function
Range penalty growth η 4
Price reward weight α0 0.0100
Range reward weight α1 0.0100
Switch reward weight α2 0.0125

Simulation
Range min. Tmin 0
Range max. Tmax 1
Power consumption ρ 1
Heating speed decrease φ0 0.1
Cooling speed decrease φ1 0.1
heating period length ψ1 1.00185
Cooling period length ψ1 1.02200
Noise deviation µ 0.05
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