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Abstract

In this project, we investigated the Mid-Pleistocene transition (the change of glacial
period from 41 kyr to 100 kyr, around 800 kyr ago), with a dynamical systems
approach. By first introducing the mathematical structure for such transitions in
systems (dynamical systems, bifurcations and tipping), this can use this theory to
find 100 kyr cycles in dynamical systems and simulate transitions such as the Mid-
Pleistocene transition (MPT). This is first investigated in the conceptual climate
model of Saltzman and Maasch [1]. By first studying a simplified version of this
model, a thorough bifurcation analysis is performed. By knowing more about the
dynamics of the model, it is possible to simulate the MPT in this model by crossing
a Hopf bifurcation. Although this does not give a proof of a physical mechanism
that triggers the MPT, it seems that MPT-like transitions are (in these systems)
triggered by parameter(s) in the CO2 equations. Later on, also MPT-like transitions
are simulated in the more physics-based model of Gildor and Tziperman [2, 3].
In this model, only a small change in parameters (seemingly without crossing a
bifurcation) is enough to simulate MPT behavior.
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Introduction

The climate on earth is not constant, as we of course observe with global warming. How-
ever, also on timescales of tens of thousands of years, climate is variable. Approximately
every 100000 years (100 kyrs) we have an ice age, i.e. a period with lower surface and
atmosphere temperatures, with the presence of extensive ice sheets at the poles. In be-
tween two ice ages, we have a warmer period on earth. In glaciology, the cold and warm
periods are often referred to as glacials and interglacials. In the sense of the presence of
ice sheets on the north and south pole, we are also currently in an ice age.

Naturally, the question arises how we know this period of ice ages. For this we need
measurements of ice volume and temperature on earth over very long periods of time (at
least a multiple of the period of 100 kyr). There are of course no direct measurements of
temperature and ice volume of the last few million years. For that reason, we have to use
indirect data, which are mainly from isotope measurements from icecores and deep sea
cores. Often used for this reconstruction, is the δ18O value, defined as

δ18O =
Rsample

Rstandard

− 1 where R =
mass H18

2 O

mass H2O
(1)

which is sometimes multiplied by 1000h. This number gives the ratio of stable isotopes
18O and 16O, which for example in deep sea cores depends on the ratio in the surrounding
ocean water. The δ18O value on the long term (many years) is believed to be correlated
to the global temperature. Since the 18O isotope is slightly heavier than the 16O isotope,
it is less likely to evaporate. This means that in clouds, there is less 18O than in the
oceans. Since ice sheets (on land) are formed from snow, one would expect also lower
δ18O values there, compared to the ocean. As global temperatures decrease, more water
is stored in the ice sheets, increasing the δ18O value of the oceans. A linear approximation
gives an estimate of 0.22h increase in δ18O per 1 K temperature decrease. A quadratic
extrapolation gives the relation

T = 16.5− 4.3δ + 0.14δ2 (2)

with T in ◦C and δ denoting the δ18O value [4]. For the deep sea cores, expect of temper-
ature T also ice volume V is believed to be a driver of δ18O. A first order approximation
is given by

δ18O ≈ a+ bT + cV (3)

with constants a, b, c ∈ R. Literature on isotope measurements suggests values of a =
0.00263 ≡ 2.63h, b = −0.00025 K−1 ≡ −0.25h K−1 and c = 0.4 · 10−19 m−3 ≡
0.4 · 10−16h m−3 [5]. Since b < 0, we see that temperature increases with decreasing
values of δ18O. For ice cores, b and c change sign, so temperature increases with increas-
ing δ18O.
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In figure 1 a δ18O record is presented until to 1.5 Myr ago. We observe that until 800 kyr
ago, the periodicity was about 40 kyr, instead of the 100 kyr period we have since. This
means also that ice ages were more frequent than they are now. The sudden change or
transition in this periodicity, is referred to as the ‘Mid-Pleistocene transition’ (since the
Pleistocene is the period from about 2.6 million years to 11700 years ago).

Figure 1: δ18O measurements until 1.5 Myr ago. Time from right to left. Figure from [6].

But what drives the climate such that we observe these cycles? On these time scales,
our earth’s climate is driven by the energy input of the sun (i.e. the insolation). This
insolation varies in time and depends on different periodicities in the position and orbit
of the earth relative to the sun. Examples are the axial tilt of the earth, the eccentricity
of the orbit of the earth around the sun and the precession of this orbit. These forcings
have different periods, and are often called the Milankovitch cycles. Different cycles are
shown in figure 2.

If the insolation, driven by these Milankovitch cycles, determines the climate on earth
(and therefore glacials and interglacials), does it then also explain the Mid-Pleistocene
transition (MPT)? This question is not easy to answer. Since the Milankovitch cycles
themselves have been the same for a very long time (they do not change qualitatively 800
kyr ago), it is unlikely that they triggered the MPT. In figure 2, we see that there is a
periodicity of 41 kyr (tilt) in the signal, which could force the earth’s climate to the same
periodicity. In that sense, we can ‘explain’ the periodicity before the MPT. There is also a
Milankovitch cycle of 96 kr (eccentricity), which is not exactly the same as the periodicity
of the δ18O levels after the MPT, but it is close. However, one should note that this cycle
is a lot weaker than the one forced by the axial tilt (41 kyr). The most energy of the
spectrum of the insolation is at the period of the tilt/obliquity (41 kyr), followed by the
precession (21 and 23 kyr). Only a very small amount of the energy can be found at the
period of eccentricity, making it very unlikely that it can trigger such large amplitude ice
ages. Therefore, it has remained unclear what triggered the transition to a periodicity of
100 kyr.
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Figure 2: Milankovitch cycles and δ18O measurements. Upper four graphs (colored) are differ-
ent Milankovitch cycles, the fifth graph (insolation, summer solstice at 65oN) is a combination
of those, giving the input for the climate. The last two curves are from δ18O measurements from
benthic and ice cores, with data of [6] and [7].

For a long time this so-called “100 kyr problem” has been investigated by the scientific
community, however, there still is not a universal answer. However, there are quite some
different explanations in attempt to solve this problem. We will discuss two classes of
theories, that are the most common.
In the first class of theories, it is believed that the 100 kyr period is an internal period of
the climate. Theories are different in the process that triggered the MPT, but the general
idea is the same. The idea is that the 100 kyr frequency is the earth’s natural resonance
frequency, caused by feedback processes within the climate system. This resonance should
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then have been developed or intensified at the MPT, in order to trigger the transition.
Otherwise the 100 kyr periodicity should also have been present before 1 Myr ago. A slow
parameter change is an example of such a trigger [8, 2]. An example of a parameter that
could have triggered the transition is the deep sea temperature [9]. Another example, is
the theory of Clark et al., suggesting that a transition of the Laurentide ice sheet (from
soft bedded to mixed hard-soft bedded) can also trigger the MPT [10].
In the second class of theories, the external forcing (insolation), and the earth’s response
to this, is the leading factor in explaining the MPT. An example of that is the theory of
the ‘skipped obliquity’. It assumes that obliquity (axial tilt) is the leading driver (as is
the case in the theory of Milankovitch). Due to interactions and feedbacks, the pacing of
the climate system is not one-to-one with the obliquity of 41 kyr, leading to skipping of
cycles. This can double (or triple) the period in the temperature record, leading to 82 and
123 kyr periods [11]. Another example is the theory of fluctuations in the solar luminosity.
The earth’s climate can respond to diffusion waves in the sun and a climate transition
could then be triggered, such as the MPT [12]. However, there are also measurements
(for example Helium isotope measurements) that contradict this theory [13].
There are even more theories, so it remains an understatement that the scientific com-
munity is still investigating the MPT and is that there is not one overall theory to solve
this problem. Investigating the MPT is important, not only for trying to solve the 100
kyr problem itself, but it can give an insight in our climate system and its response to the
external forcing by the sun. Knowing more about past climate shifts or transitions, and
the triggers of such transitions, could give indications for future climate change as well.
It gives a deeper understanding of our climate system and interacting components.

In this project we will use the theory of dynamical systems and bifurcations, in attempt
to explain in both a mathematical and a physical sense this transition in periodicity in
the climate system. We believe that a transition as the MPT can be seen as a so-called
tipping point in a dynamical system. There are multiple types of tipping points, we will
focus on those that are triggered by bifurcations.
In the first chapter, we will give a mathematical background, discussing dynamical sys-
tems, bifurcation theory and we will define the notion of tipping points. In the second
chapter, the theory is applied to a simple conceptual climate model in attempt to simulate
tipping points that have the same character as the MPT, and investigate which features
in the dynamical system can trigger these tipping points. Lastly, in chapter 3 a larger
(and more realistic) physics-based climate model is studied, to see whether the periodicity
transition behaviour persists when the dimension is increased.
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1 Mathematical background

In this section, we will at first give the mathematical setting and introduce the theory of
dynamical systems. Secondly, an overview of bifurcation theory is given, to define some
of the terminology that is used further on in this thesis. Lastly, we will explain how we
can simulate transitions (such as the MPT) by introducing time dependence.

Notation for the reader: statements (such as definitions, examples, lemmas and theorems)
are ended with a 4, remarks are ended with ♦ and proofs are ended with �.

1.1 Introduction to dynamical systems

1.1.1 Definition of a dynamical system

In this project, we work in the world of continuous-time dynamical systems, described
by ordinary differential equations (ODEs). If we have n coordinates (or variables, state
vectors, ...), our state space (also called phase space) is Rn and a dynamical system is
described by n ODEs. In vector form, a dynamical system will look like

dx

dt
= f(x) (4)

for our state vector x = (x1, x2, ..., xn) ∈ Rn. The function f : Rn → Rn described the
evolution in time of the variables, and is assumed to be smooth (sufficiently many times
differentiable). Often the dot-notation is used for the time derivative, i.e. the equation

ẋ = f(x) (5)

is equivalent to equation (4). The ODEs are called autonomous, meaning that the function
f does not depend on time, only on the position in state space.

Remark. With using the term smooth, we implicitly also assume the function to be locally
Lipschitz continuous. In that case, there is exists a (local) unique solution of 5 for given
initial condition x(t0) = x0. [14] ♦
Often rather simple is the class of linear dynamical systems. In that case we can write
the right hand side of equation (4) as a matrix multiplication.

Definition 1.1. A dynamical system on (a subset of) Rn is called linear if there exists a
real-valued n× n matrix A such that

dx

dt
= Ax. (6)

4

Recall that a higher order ODE can be written as a set of ODEs. We illustrate this with
the following example.
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Example 1.1. Given some ω ∈ R and the second order differential equation

ẍ = −ω2x (7)

we can, introducing y = ẋ, write this as the two ODEs

d

dt

(
x
y

)
=

(
y
−ω2x

)
=

(
0 1
−ω2 0

)(
x
y

)
(8)

which is in fact a linear dynamical system on R2. Thus a higher order derivative does not
imply nonlinearity of the equivalent dynamical system. 4

Remark. The ODE in example 1.1 is that of a harmonic oscillator with frequency ω ∈ R,
which has solutions of the form

x(t) = A cos(ωt) +B sin(ωt) (9)

with A,B ∈ R depending on initial conditions. ♦
Although we speak of solutions, we mean of the corresponding ODE (for which existence
of solutions is defined). However, often one speaks of orbits of the dynamical system. We
will define what is meant by this.

Definition 1.2. Let x0 ∈ Rn and let I ⊂ R be a time interval where the dynamical
system as in equation (4) or (5) has a solution x(t;x0) for initial condition x0. Then the
corresponding orbit is a curve in state space, given by

O(x0) = {x ∈ Rn | ∃ t ∈ I : x = x(t;x0)} . (10)

4

Remark. Note that different points in phase space can be on the same orbit. An orbit
also has a direction or orientation. This direction is always towards increasing t. ♦

Definition 1.3. A phase portrait of a dynamical system is the collection of all its distinct
orbits. 4

Remark. For practical and graphical reasons, when drawing a phase portrait only some
of the orbits are drawn. The rest then follows from continuity. ♦
The operator that maps to a point on the orbit at a time t, is called the flow operator or
evolution operator (given an initial condition). We define this more precisely.

Definition 1.4. Let x0 ∈ Rn be an initial condition for system (4). Then the flow
ϕt : Rn → Rn maps this point to a point on its orbit, t time units later, i.e.

ϕtx0 = x(t;x0). (11)

4
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1.1.2 Equilibria

As is known, not all differential equations have solutions, or at least we cannot always
find them. Still we want to say something about the behaviour of a dynamical system as
in equation (4). The first thing one does, is look for equilibria of the system. These are
stationary points in state space (i.e. taking such a point as initial condition will give a
constant solution).

Definition 1.5. A point x0 ∈ Rn is called an equilibrium of system (4) if f(x0) = 0. 4

Remark. The orbit of an equilibrium consists only of one point, that of the equilibrium
itself. Thus O(x0) = {x0}. ♦

Lemma 1.1. If x0 ∈ Rn is an equilibrium of (4), then ϕtx0 = x0 for all t ∈ R. 4

Remark. Sometimes this is used as the definition of an equilibrium, and then f(x0) = 0
follows from that. The two statements are equivalent. ♦
We will introduce the notion of stability of such an equilibrium. In this way, something
can be said about the behaviour of the system close to this equilibrium. We will call
an equilibrium stable when orbits close to it, will converge towards the equilibrium (and
unstable otherwise). From the Hartman-Grobman theorem (which we will not repeat), we
know that the linearization of the system around an equilibrium determines the stability.
We repeat the theorem of Lyapunov (1892) from [15].

Theorem 1.2. Suppose that x0 ∈ Rn is an equilibrium of the system as in (4). Let
A = Df(x0) denote the Jacobian matrix of f evaluated at the equilibrium. Then x0 is
stable if all eigenvalues λ1, ..., λn of A satisfy Re(λ) < 0. 4

As soon as there is one eigenvalue that has Re(λ) > 0, the system is unstable. Sometimes
a system with all eigenvalues Re(λ) ≤ 0 and at least one with Re(λ) = 0, is called
neutrally stable. In this case, the dynamics can be more complicated than when there are
no eigenvalues on the imaginary axis.

Definition 1.6. An equilibrium x0 ∈ Rn of (4) is called hyperbolic if all eigenvalues of
the Jacobian matrix of f at x0 have Re(λ) 6= 0. 4

Example 1.2. Let α, β > 0. Consider the linear dynamical system on R2, defined by

d

dt

(
x
y

)
=

(
−αx
−βy

)
=

(
−α 0
0 −β

)(
x
y

)
(12)

which has an equilibrium at the origin. We can read of the matrix A immediately. Its
eigenvalues are λ1 = −α and λ2 = −β, so we have Re(λ) < 0 for both. Therefore the
origin is a stable equilibrium and orbits will converge towards the origin. A phase portrait
is plotted in figure 3 for fixed α and β. 4
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Figure 3: Phase portrait for system (12) with (α, β) = (1, 1) (left) and (α, β) = (1, 2) (right).
In red the (stable) equilibrium at the origin.

Note that although different values for β are used, the two phase portraits look qual-
itatively the same. This can be generalized for any two dynamical systems with an
equilibrium.

Definition 1.7. Let f, g : Rn → Rn be smooth functions. Let ẋ = f(x) and ẏ =
g(y) be two dynamical systems on Rn with equilibria at x0 and y0, respectively. We
call the dynamical systems topologically equivalent near their equilibria if there exists a
homeomorphism h : Rn → Rn that satisfies the following conditions:

1. h is defined in a neighborhood U ⊂ Rn of x0.

2. h satisfies h(x0) = y0.

3. h maps orbits onto orbits, preserving direction.

4

If the equilibria x0 and y0 as in definition 1.7 are hyperbolic, the eigenvalues of the Jacobian
again give the necessary information to determine whether two systems are topologically
equivalent. This is stated in the next theorem without proof (for that we refer to [15]).

Theorem 1.3. Let f, g : Rn → Rn be smooth functions. Let ẋ = f(x) and ẏ = g(y) be two
dynamical systems on Rn with hyperbolic equilibria at x0 and y0, respectively. Suppose the
number of the Jacobian matrices at these equilibria have the same number of eigenvalues
with Re(λ) > 0 and Re(λ) < 0, respectively. Then the two systems are topologically
equivalent. 4
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As is shown, one could already extract some information of the dynamics of the system,
by determining the equilibria (which is simply finding zeros of a function) and calculation
the eigenvalues of the Jabocian matrix at these points. This is therefore always a good
starting point when investigating a dynamical system.

1.1.3 Periodic orbits

As we have seen in the previous paragraph, equilibria are points that are invariant under
the flow, i.e. ϕtx0 = x0 for all t ∈ R, if x0 is an equilibrium. In other words, the orbit of
x0 (which only consists of the point itself) maps to itself under ϕ. This might also be the
case for other orbits, that contain more than one point.
Let C be a closed curve in state space (Rn). Suppose this curve is an orbit of the dynamical
system as in (4), i.e. C = O(x) for all x ∈ C. Then we call C a periodic orbit or cycle of
the system. This can also be defined using the flow.

Definition 1.8. An orbit C of a dynamical system is called a cycle if it is not an equilib-
rium and there exists T > 0 such that every x ∈ C satisfies ϕt+Tx = ϕtx for every t ∈ R.

4

Similarly as in the case of equilibria, we want to know if a cycle is stable, i.e. if orbits
close to this curve will converge towards the cycle or diverge. For that, we need the notion
of a Poincaré map. Let x0 be a point on the cycle C. Then we define Σ as cross-section,
which is a hypersurface of dimension n − 1. For x ∈ Σ, the Poincaré map P is defined
as the point on Σ where the orbit of x returns ‘after one rotation’ (if it exists). This is
illustrated in figure 4.

Figure 4: Illustration of a Poincaré map. Adapted figure from [15].
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Note that for the point x0 we have P (x0) = x0, i.e. it is a fixed point of the Poincaré
map. In general, one can find cycles by solving for fixed points of a Poincaré map. If
we now take a point x ∈ Σ close to x0, we want to know if the iterations of x under P
are getting closer to x0. In that case, the orbits close to the cycle will converge towards
the cycle (which makes it a stable cycle). Similarly as for the equilibria, we look at the
Jacobian matrix of P at x0. With the eigenvalues of this matrix, we have similar notions
of hyperbolicity and stability.

Definition 1.9. The cycle C is called hyperbolic if all eigenvalues µ1, ..., µn−1 of the
Poincaré map at x0, are not located at the unit circle, i.e. |µ| 6= 1. 4

Definition 1.10. The cycle C is called stable if all eigenvalues µ1, ..., µn−1 of the Poincaré
map at x0 satisfy |µ| < 1. 4

Remark. The eigenvalues µ1, ..., µn−1 are also called multipliers and are independent of
the point x0 on the cycle. ♦
We now have an idea of some of the dynamics of a dynamical system without solving
any differential equation. The equilibria and cycles already give us some information. Of
course there may also be other subsets S ⊂ Rn of state space that are invariant, but are
not equilibria or cycles. The definition of being invariant, is therefore more general.

Definition 1.11. A subset S ⊂ Rn is called an invariant set of a dynamical system, if
for every x ∈ S is mapped onto S under the flow, i.e. ϕtx ∈ S for all t ∈ R. 4

Remark. Every individual orbit is an invariant set. ♦
One could always restrict the dynamical system to an invariant subset S (instead of the
whole phase space). This is again a dynamical system, with restricted flow ϕt|S : S → S.

1.2 Bifurcation theory

1.2.1 Introduction

In general, bifurcation theory is the mathematical theory that describes changes in the
topological structure of a given family. In our case, we will investigate families of dynam-
ical systems and study changes in the topological structure. So far, we studied properties
of dynamical systems and defined topological equivalence of two systems. In the setting
of bifurcation theory, we study families of such dynamical systems. To make this more
explicit, we will introduce an explicit dependence on parameters in the system. In this
setting, every dynamical system is of the form

ẋ = f(x, α) (13)

where again x ∈ Rn is the state vector. α ∈ Rs is the parameter and we again assume
that the function f : Rn×Rs → Rn is smooth. For any fixed parameter α, we are back in
the setting of equation (4) and (5). When α is changed, the phase portrait of the system
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also changes. Depending on this change, the new phase portrait could be topologically
equivalent to the old one. However, this does not have to be the case. This is how we will
define a bifurcation.

Definition 1.12. A bifurcation is the appearance of a topologically nonequivalent dy-
namical system, under variation of α. 4

One possibility of a bifurcation is that the number of equilibria changes for changing α.
Then the new system is topologically nonequivalent. Also a cycle might appear, or the
number of cycles can change. Or the stability of an equilibrium or cycle can change, also
leading to a bifurcation.
We will investigate some of the ‘standard’ bifurcations that one could expect in a family
of dynamical systems. The first type of bifurcations are the bifurcations of equilibria.
After that, we will also shortly discuss some bifurcations of periodic orbits.

1.2.2 Codim 1 bifurcations of equilibria

In this paragraph we will study some bifurcations of codimension 1, meaning that one
parameter is sufficient to encounter these bifurcations. Therefore, our dynamical system
is now given by

ẋ = f(x, α); x ∈ Rn, α ∈ R (14)

which corresponds to s = 1 in the previously defined system. Suppose that the system has
an hyperbolic equilibrium at x0 ∈ Rn, for some α0 ∈ R. This means that all eigenvalues
have Re(λ) 6= 0. When we change the parameter α, also the eigenvalues change. If this
change is small enough, the equilibrium will still be hyperbolic, with the name number of
eigenvalues left (stable) and right (unstable) to the imaginary axis. In that case, the new
system is then topologically equivalent to the system at α0. However, it can happen that
the equilibrium is not hyperbolic anymore (one or more eigenvalues hit the imaginary
axis) and with even larger change of α the number of stable and unstable eigenvalues
might change, leading to a topologically nonequivalent system (i.e. a bifurcation occurs).

Remark. In systems including parameters (such as above), we also speak about eigenval-
ues. To be precise, these are the eigenvalues of the Jacobian matrix of the function f with
respect to the state vector x (evaluated at the equilibrium), i.e. eigenvalues of the n× n
matrix Dxf(x0, α). ♦
There are different possibilities of eigenvalue(s) that hit the imaginary axis when α
changes. These lead to different kind of bifurcations, we will discuss a few of them.

Definition 1.13. Suppose for one eigenvalue λj (j ∈ {1, ..., n}) we get λj = 0 at some
parameter value α. This is called a fold bifurcation. 4

Remark. Other names for fold bifurcation are saddle-node bifurcation or limit point bi-
furcation. ♦

13



Definition 1.14. Suppose that at some parameter value α, a pair of complex conjugate
eigenvalues hit the imaginary axis, i.e. λ1,2 = ±iω for some ω > 0, where λ1, λ2 are two
of the eigenvalues. This is called an Andronov-Hopf bifurcation (often called Hopf ). 4

Remark. Note that a fold bifurcation can already occur in one-dimensional systems (n =
1), but an Andronov-Hopf bifurcation can only occur when the dimension is n ≥ 2. ♦

Example 1.3. We will investigate bifurcations of the set of two ODEs,{
ẋ1 = α− x21
ẋ2 = −x2

(15)

with parameter α ∈ R. Using x = (x1, x2) ∈ R2, we write this as one dynamical system

ẋ = f(x, α) ≡
(
α− x21
−x2

)
(16)

and we find the Jacobian matrix of f w.r.t. x to be

Dxf(x, α) =

(
−2x1 0

0 −1

)
. (17)

To find equilibria of the system, we solve f(x0, α) = 0 and find x0 = (±
√
α, 0). Note that

this is only valid for α ≥ 0, otherwise there are no solutions (and thus no equilibria). For
positive α, we find one positive and one negative equilibrium (w.r.t to the first coordinate).
We call the Jacobian matrices evaluated at these equilibria A+ and A−, respectively. We
can calculate these matrices:

A+ =

(
−2
√
α 0

0 −1

)
, A− =

(
2
√
α 0

0 −1

)
. (18)

The eigenvalues of the matrices determine the stability of the corresponding equilibrium.
Since the eigenvalues are in this case equal to the two nonzero entries, we see that the
positive equilibrium is stable and the negative equilibrium unstable. At α = 0, one of the
eigenvalues becomes zero, i.e. here we find a fold bifurcation. Phase portraits for values
of α = 0 and close to this, are drawn in figure 5. We see that when α becomes negative
(i.e. when we cross the bifurcation at α = 0), two equilibria have merged into one, and
disappeared. This becomes clear when we plot the first coordinate of the equilibrium
position as function of α, as can be seen in figure 6. 4

In example 1.3, we have seen a 2-dimensional dynamical system with a fold bifurcation.
In general, if we have such a system, we do not want to calculate and draw everything
to find this bifurcation. Luckily, there is a shorter solution to this, as we see in the next
theorem.

Theorem 1.4. Let α ∈ R be a parameter of the planar dynamical system

ẋ = f(x, α) (19)

with an equilibrium at x0 and let A denote the Jacobian matrix Dxf at x0. If at some
α0 ∈ R we have det(A) = 0 and tr(A) 6= 0, then there is a fold bifurcation at α0. 4
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Figure 5: Phase portraits for system (16) for α = 1 (left), α = 0 (middle) and α = −1 (right).
Red dots indicate equilibria.
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Figure 6: First coordinate of the equilibrium position as function of α. Solid line indicates a
stable equilibrium, dashed is unstable. At α = 0, the two equilibria merge (red dot).

Proof. The system will have a fold bifurcation if one of the eigenvalues of A becomes zero.
In general, we can write

A =

(
a11 a12
a21 a22

)
(20)

of which we can find the eigenvalues by solving the characteristic equation,

(a11 − λ)(a22 − λ)− a12a21 = 0 (21)

which is equivalent to solving

λ2 − tr(A)λ+ det(A) = 0 (22)

where tr(A) = a11 + a22 and det(A) = a11a22 − a12a21. The solutions λ1,2 are

λ1,2 =
tr(A)±

√
tr(A)2 − 4 det(A)

2
(23)
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and if det(A) = 0 and tr(A) 6= 0, we indeed find

λ1 = 0, λ2 = ±tr(A) 6= 0 (24)

which implies a fold bifurcation.

In this way, we can detect fold bifurcations, by calculating the trace of the matrix. Espe-
cially when doing this numerically, this can be a lot faster than calculating eigenvalues of
a matrix.

Example 1.4. Given the planar dynamical system{
ẋ = αx− y − x(x2 + y2)
ẏ = x+ αy − y(x2 + y2)

(25)

with parameter α ∈ R, we will investigate its bifurcations. The system has an equilibrium
at (0, 0). The Jacobian matrix J as function of x and y is given by

J(x, y) =

(
α− 3x2 − y2 −1− 2xy

1− 2xy α− x2 − 3y2

)
(26)

which at the equilibrium becomes

J(0, 0) =

(
α −1
1 α

)
(27)

with eigenvalues λi,j = α ±
√
α2 − α− 1 for some i, . At α = 0, the eigenvalues become

the complex pair λ1,2 = ±i, which implies a Hopf bifurcation at this point. In figure 7,
we plotted phase portraits of the system around this bifurcation point. When crossing
the Hopf bifurcation, the equilibrium becomes unstable and a stable cycle emerges. 4
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Figure 7: Phase portraits for system (25) for α = −1 (left), α = 0 (middle) and α = 1 (right).
Red dots indicate equilibria, the red curve is a cycle.
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Example 1.5. We will study a planar dynamical system, very similar to that of example
1.4. The system, with parameter α ∈ R, is described by the equations{

ẋ = −αx− y + x(x2 + y2)
ẏ = x− αy + y(x2 + y2)

(28)

and it has again an equilibrium at the origin. The Jacobian matrix J at the origin, is now
given by

J(0, 0) =

(
−α −1
1 −α

)
(29)

with eigenvalues λ1,2 = −α±
√
α2 − α− 1. Again we have λ1,2 = ±i at α = 0, so an Hopf

bifurcation. However, behaviour around this bifurcation is similar as before, but not the
same. This can be seen in figure 8, where the phase portraits are shown. We see that in
this case, the equilibrium becomes stable and again a cycle emerges. However, this cycle
is unstable, since close orbits diverge. 4
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Figure 8: Phase portraits for system (28) for α = −1 (left), α = 0 (middle) and α = 1 (right).
Red dots indicate equilibria, the red curve is a cycle.

Remark. In general, crossing a Hopf bifurcation leads to the emergence of a cycle. In
the stable case, as in example 1.4, this is called a supercritical Hopf bifurcation. The
unstable case, as in example 1.5, is called subcritical. A proper definition of these types
of criticality can be given using the first Lyapunov coefficient l1, which can be computed
when writing out the Taylor series of the function f , for the definition see [15]. The sign
of l1 then determines whether a Hopf bifurcation is supercritical or subcritical. ♦

Theorem 1.5. Let α ∈ R be a parameter of the planar dynamical system

ẋ = f(x, α) (30)

with an equilibrium at x0 and let A denote the Jacobian matrix Dxf at x0. If at some
α0 ∈ R we have det(A) > 0 and tr(A) = 0, then there is a fold bifurcation at α0. 4
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Proof. Similar as the proof of theorem 1.4, we find the eigenvalues of A to be

λ1,2 =
tr(A)±

√
tr(A)2 − 4 det(A)

2
(31)

and when we use the fact that det(A) > 0 and tr(A) = 0, we find

λ1,2 =
±
√
−4 det(A)

2
= ±

√
det(A)i (32)

which is a pair of purely imaginary eigenvalues, i.e. there is a Hopf bifurcation.

Remark. Theorems 1.4 and 1.5 tell us that only by looking at the trace and determinant
of the Jacobian matrix, we can detect fold and Hopf bifurcations. This is often much
easier to compute than the eigenvalues. ♦
Although there are other codim 1 bifurations of equilibria, we will not further investigate
this (since we will not be needing this). We continue with codim 2 bifurcations, which
you can encounter by increasing the parameter space with one extra parameter.

1.2.3 Codim 2 bifurcations of equilibria

One could encounter more complicated bifurcations when adding an extra parameter.
Just as with the codimension 1 bifurcations, there are also a lot of codim 2 bifurcations.
We will discuss two of them, since we will only need these later on in the project. The
parameter space becomes two-dimensional, i.e. we study dynamical systems on Rn,

ẋ = f(x, α) (33)

with α ∈ R2 and f : Rn×R2 → Rn smooth. We assume that the system has a hyperbolic
equilibrium at x0 ∈ Rn, for some α0 ∈ R2. When we change α, the eigenvalues of the
Jacobian matrix Dxf(x0, α) change w.r.t. the eigenvalues of Dxf(x0, α0). As we saw in the
previous paragraph, when one eigenvalue becomes zero, we encounter a fold bifurcation.
With the addition of one parameter, more complex (or more degenerate) conditions can
be met.

Definition 1.15. Suppose that at some value of α, two of the eigenvalues become λ1 =
λ2 = 0. This is called a Bogdanov-Takens bifurcation. 4

Recall that the first Lyapunov coefficient l1 determines if a Hopf bifurcation is supercritical
or subcritical. A special case is when l1 = 0.

Definition 1.16. Suppose that at some value of α, we get λ1,2 = ±ωi for some ω > 0,
where λ1, λ2 are two of the eigenvalues. Furthermore, suppose that the first Lyapunov
coefficient is l1 = 0. This is called a Bautin bifurcation. 4

Remark. A Bautin bifurcation is also called a Generalized Hopf bifurcation. It is a higher
degenerate Hopf bifurcation. ♦
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Remark. There also exists a higher degenerate fold bifurcation, it is called the Cusp
bifurcation. It is also a codimension 2 bifurcation.

Example 1.6. Consider the planar dynamical system with parameter α = (α1, α2) ∈ R2,
described by the differential equations{

ẋ = y
ẏ = α1 + α2x+ x2 − xy (34)

and the corresponding Jacobian matrix J is given by

J(x, y) =

(
0 1

α2 + 2x− y −x

)
. (35)

Note that the system has equilibria at (1
2
(−α2 ±

√
α2
2 − 4α1), 0). We observe that at

α1 = α2 = 0, the two equilibria have collided to one equilibrium at the origin, and the
Jacobian matrix then becomes

J(0, 0)|α=(0,0) =

(
0 1
0 0

)
(36)

which has eigenvalues λ1,2 = 0. Therefore, this is a Bogdanov-Takens bifurcation point.
We can also find fold and Hopf bifurcations, using theorems 1.4 and 1.5. By looking
for zeros of the trace and determinant of the Jacobian matrix, we can find curves in the
(α1, α2)-plane that correspond to these bifurcations (it will be curves, since the codimen-
sion is 1). For the fold bifurcation, we solve det(J) = 0 and find α2

2 = 4α1. For the Hopf
bifurcation, we find α1 = 0, α2 < 0 by solving tr(J) = 0, det(J) > 0. Note that the to
bifurcation curves meet at (α1, α2) = (0, 0). This becomes clear when we see the diagram
containing these bifurcation curves and the Bogdanov-Takens point, as in figure 9. 4
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Figure 9: Bifurcation diagram of system (34) in the (α1, α2)-plane. The blue curve corresponds
to the fold bifurcation, the red curve is of the Hopf bifurcation, and the orange point is the
Bogdanov-Takens bifurcation.

Remark. A diagram in the parameter space containing bifurcation curves and points, is
often called a bifurcation diagram. Different enclosed regions in this diagram, correspond
to different phase portraits (in terms of topological equivalence). ♦
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1.2.4 Bifurcations of periodic orbits

So far, we have focused on bifurcations of equilibria. At these bifurcations, the number
and/or stability of equilibria changed, leading to topologically nonequivalent systems.
However, as we discussed earlier in this section, also for periodic orbits (cycles) there is
a notion of stability. By adding parameters, also the number and/or stability of cycles
might change under variation of these parameters. In that way one could encounter
bifurcations of periodic orbits. We could repeat the whole bifurcation theory for cycles,
we will however give one example (for other bifurcations of cycles we refer to [15], we will
not need them for the purpose of this project).
We will study the analogy of the fold bifurcation, in the setting of periodic orbits. We
are back in the setting with one parameter α ∈ R, in a dynamical system of the form

ẋ = f(x, α) (37)

and x ∈ Rn, f : Rn × R → Rn a smooth function. We assume the system has a hyper-
bolic cycle C for some parameter value α0. This means that for x0 ∈ C, the Poincaré
map has multipliers (eigenvalues of Jacobian) |µ| 6= 1. By changing the parameter α, it
might happen that one of the multipliers becomes µ1 = 1. Then the new system will be
topologically nonequivalent, leading to a bifurcation.

Definition 1.17. Suppose that at some value of α, one multiplier of the Poincaré map
becomes µ1 = 1. This is called a cycle fold bifurcation. 4

Remark. The cycle fold bifurcation is also called limit point of cycles or cycle saddle-node
bifurcation. ♦

Figure 10: Sketch of a cycle fold bifurcation at α = 0. Figure from [15].
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In figure 10, a sketch is given of a cycle fold bifurcation. It is analogous to a fold bifurcation
of equilibria: two cycles L1 (stable) and L2 (unstable) collide at the bifurcation point
α = α0 = 0 and disappear. We will not try to find this bifurcation analytically, since it is
usually rather hard to find an explicit formula of a Poincaré map of a cycle. There are ways
to detect this bifurcation, as also other cycle bifurcations and equilibrium bifurcations,
numerically. An example of software to do this with, is MATCONT [16], which will be
used later on.
There are also other codim 1 bifurcations of cycles, and bifurcations of higher codimension,
as in the case of bifurcations of equilibria. However very interesting, we will not study
these types of bifurcations here.

1.3 Tipping points in dynamical systems

1.3.1 Time dependent dynamical systems

So far, we studied dynamical systems defined by autonomous (first order) ODEs. We will
now study systems that can depend explicitly on time, which are called nonautonomous
systems. This time dependence will be incorporated via the parameter set. In the general
setting, we have dynamical systems on Rn,

ẋ = f(x, α(t)) (38)

with the parameters now a smooth function α : R → Rs of t and the function f :
Rn × Rs → Rn also smooth. The smoothness implies that the eigenvalues not only
continuously depend on the parameter value, but now also continuously on time. Phase
portraits will now be difficult to draw, since the corresponding vector field changes in time.
For every time t, we could draw a vector field (like taking a photograph), but as this field
changes over time, it does not actually consists of the orbits (and is therefore not a phase
portrait). However, given an initial condition x0 ∈ Rn at time t = t0 ∈ R, we can still
speak of the corresponding solution x(t;x0, t0). It could still be that a solution converges
towards an equilibrium. However, because of the time dependence, this equilibrium might
change position or stability in time. These changes in equilibria are similar to bifurcations,
and can be observed in solutions of the system. These qualitative changes of the solution
(in time), are referred to as tipping points, which will be discussed in the next paragraph.

1.3.2 Tipping points

In many different research areas, one speaks about tipping points. Also in popular science
literature you can come across this terminology. However, not everyone means the same
when they are talking about tipping points. In this paragraph, we will give a definition
in the mathematical setting as discussed so far. Also in mathematics, you can define
different kinds of tipping points [17]. We will focus on tipping points that are induced by
bifurcations.
We will investigate the possibilities of tipping points in a systems as described in equation
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(38). Let x(t;x0, t0) denote the solution of the system with initial condition x(t0;x0, t0) =
x0, and we assume this solution to be valid on some time-interval I ⊂ R. We will give
conditions for a tipping point to be present in this solution.

Definition 1.18. Suppose there exists t∗ ∈ I such α∗ = α(t∗) is a bifurcation point of
the autonomous system ẋ = f(x, α∗). Then this t∗ ∈ I is called a tipping point of the
solution x(t;x0, t0). 4

Example 1.7. Consider the time dependent planar dynamical system{
ẋ = (t− 2)x
ẏ = −y (39)

with an equilibrium at the origin and corresponding Jacobian matrix

J =

(
t− 2 0

0 −1

)
(40)

which also depends on time. Defining α(t) = t − 2, the first equation can be written
as ẋ = α(t)x. At t = 2, we have det(J) = 0 and therefore a fold bifurcation in the
corresponding autonomous system given by{

ẋ = αx
ẏ = −y (41)

and thus t = 2 is a tipping point of any solution of (39). For t < 2, both eigenvalues are
negative implying that the equilibrium is stable. However, the origin becomes unstable
for t > 2. Since this is a rather simple system, the equations can be solved analytically.
When taking as initial condition t0 = 0, x0 = 1, y0 = 1, we find the solution

(x(t; 1, 0), y(t; 1, 0)) =
(
e−2t+

1
2
t2 , e−t

)
(42)

which is plotted in figure 11. We indeed see both x and y converging to 0 for t < 2, and
x diverging for larger t. 4

Example 1.8. We consider a time dependent variant of the dynamical system of example
1.4, with parameter function

α = α(t) = tanh

(
t− 10

10

)
(43)

i.e. we are studying the planar system described by{
ẋ = tanh

(
t−10
10

)
x− y − x(x2 + y2)

ẏ = x+ tanh
(
t−10
10

)
y − y(x2 + y2)

(44)
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Figure 11: Solution curves of x(t; 1, 0) (blue) and y(t; 1, 0) (red) of system (39).

of which the origin is an equilibrium and observe that the Jacobian matrix at the origin
is given by

J =

(
tanh

(
t−10
10

)
−1

1 tanh
(
t−10
10

) ) (45)

and recall that the autonomous system undergoes a supercritical Hopf bifurcation at
α = 0. Now consider a solution of the system, e.g. (x(t; 1

2
, 0), y(t;−1

2
, 0) with initial

condition (x0, y0) = (1
2
,−1

2
). We expect a tipping point at t = 10, since that corresponds

to α = tanh(0) = 0. For t < 10, the origin is stable (since α < 0) and for t > 10 (α > 0)
we expect oscillatory behavior (since the autonomous system has a stable cycle). We can
indeed see these features in the graphs of x and y in figure 12. 4
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Figure 12: Solution curves of x(t; 1
2 , 0) (blue) and y(t;−1

2 , 0) (red) of system (44).

Remark. Whether we see the (bifurcation induced) tipping point in the solution of the
system, depends on the way the parameter(s) depend on time. The ‘speed’ in which the
parameters change is important, and also the presence of noise can have influence. ♦
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2 MPT in the Saltzman-Maasch model

In this chapter, we will investigate a conceptual climate model of the last few million years.
The model was proposed by Saltzman and Maasch in 1991 [1] and is one of a series of
conceptual models of these researchers. This particular ODE model is a slightly modified
version of the model they had proposed a year earlier [18]. The dynamical system is a
simple set of three differential equations, describing changes in the global ice mass (I),
atmospheric CO2 concentration (µ) and (a measure of) the deep ocean circulation (θ).
The precise description of the system is given by

İ = α1 − cα2µ− α3I − kθα2θ − kRα2FI
µ̇ = β1 − (β2 − β3µ+ β4µ

2)µ− β5θ + Fµ
θ̇ = γ1 − γ2I − γ3θ

(46)

where {αi, βj, γk}i,j,k=1,2,... is the set of parameters, which link the state variables I, µ
and θ to each other. FI = FI(t) and Fµ = Fµ(t) are functions that describe the (time
dependent) forcing. The constants c, kθ and kR are determined from equilibrium climate
model simulations that relate the temperature (via the parameter α2) to atmospheric CO2

concentration, deep ocean temperature and incoming solar radiation.
Our goal is to find tipping points that affect the solutions of the model in such a way
that we can simulate MPT behavior. The results of the first chapter come in handy, but
in order to use them we first have to make sure the system is in the setting of dynamical
systems. We will derive a non-dimensional autonomous version of the model. Then we
study a 2D simplification of this model, and of the non-dimensional 3D model. This is
in both cases done with a bifurcation analysis. When we know the bifurcation structure,
we can find tipping points by letting one or more parameters be time dependent and
we can simulate the MPT in such a model. Lastly, we will use the knowledge of the
non-dimensional model to simulate the MPT in the full Saltzman-Maasch model.

2.1 Derivation of the non-dimensional model

We will decompose the state variables as I
µ
θ

 =

 I0
µ0

θ0

+

 I ′

µ′

θ′

 (47)

where (I0, µ0, θ0) is the background climate (long term tectonic equilibrium) and we refer
to (I ′, µ′, θ′) as the deviation to the this background state. Furthermore, we also write
FI = F̄I + F ′I and we assume Fµ = 0, i.e. we only consider forcing in the equation for I.
For the background state we now know that

0 = α1 − cα2µ0 − α3I0 − kθα2θ0 − kRα2F̄I
0 = β1 − (β2 − β3µ0 + β4µ

2
0)µ0 − β5θ0

0 = γ1 − γ2I0 − γ3θ0
(48)
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We can also plug (47) into the original system (46) to get
İ ′ = α1 − cα2(µ0 + µ′)− α3(I0 + I ′)− kθα2(θ0 + θ′)− kRα2(F̄I(t) + F ′(t))

µ̇′ = β1 − (β2 − β3(µ0 + µ′) + β4(µ0 + µ′)2)(µ0 + µ′)− β5(θ0 + θ′)

θ̇′ = γ1 − γ2(I0 + I ′)− γ3(θ0 + θ′)

(49)

and using (48) we can reduce this to
İ ′ = −cα2µ

′ − α3I
′ − kθα2θ

′ − kRα2F
′(t)

µ̇′ = b1µ
′ − b2µ′2 − β4µ′3 − β5θ′

θ̇′ = −γ2I ′ − γ3θ′
(50)

where we introduced the new parameters

b1 = −β2 + 2β3µ0 − 3β4µ
2
0, b2 = −β3 + 3β4µ0 (51)

to simplify the equations. Note that these new parameters depend only on previous
parameters of the µ-equation and on µ0, which can be thought of as a reference value for
the CO2 concentration. Now we non-dimensionalise the equations by the mappings

t 7→ λ0t
∗

I ′ 7→ λ1X
µ′ 7→ λ2Y
θ′ 7→ λ3Z

(52)

where the different scales are given by

λ0 =
1

cα2

, λ1 =
cα2√
α3β4

, λ2 =

√
α3

β4
, λ3 =

cα2γ2

γ3
√
α3β4

. (53)

The obtained dimensionless dynamical system is then
Ẋ = −X − Y − vZ − uF ′I(t∗)
Ẏ = −pZ + rY − sY 2 − Y 3

Ż = −q(X + Z)

(54)

where the dot now represents the derivative with respect to the new time t∗, which we will
call t again from now on. The parameters p, q, r, s, u, v ∈ R depend on the previous set
{αi, βj, γk}i,j,k=1,2,... of (dimensional) parameters. The parameter space is six-dimensional,
which we will first reduce even further when investigating a simplified version of the model.
For a bifurcation analysis, we will look at the autonomous system, i.e. ignoring the forcing
term F ′I(t) (or equivalently, setting u = 0). The analysis of the simplified 2D model helps
to understand the dynamics of the system, with the most important parameters. This
can help understand the dynamics of the 3D model (with 6 parameters).
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2.2 Analysis of the simplified 2D model

For the simplest case that we will consider, we set, apart from u = 0, also s = v = 0
and let q → ∞. The last condition implies Z = −X, i.e. the model reduces to a planar
dynamical system. In physical terms, we assume that on longer time scales, ice volume
and deep ocean temperature are in anti-phase. The dynamical system is then described
by {

Ẋ = −X − Y
Ẏ = pX + rY − Y 3 (55)

which now only consists of two parameters. Note that there is Z2 symmetry in the system
(for (X, Y ) 7→ (−X,−Y )). The equilibria of this system are located at
{(0, 0), (

√
r − p,−

√
r − p), (−

√
r − p,

√
r − p)}. Note that the nontrivial equilibria only

exist for r > p. This already suggests that a bifurcation takes place at p = r. For further
investigation of this (and other bifurcations), consider the Jacobian matrix J at the origin,
given by

J(0, 0) =

(
−1 −1
p r

)
(56)

Recall that this equilibrium has a fold bifurcation when det J(0, 0) = 0, which is indeed
at p = r. Furthermore, trJ(0, 0) = 0 when r = 1. The eigenvalues λ1,2 of this Jacobian
matrix are given by

λ1,2 =
r − 1

2
± 1

2

√
(r − 1)2 − 4(p− r) (57)

and we see that a Hopf bifurcation happens at r = 1, for p > r. The Hopf bifurcation is
supercritical. For p < r, we also have λ1 + λ2 = 0, but the eigenvalues are real instead
of imaginary. This is called a neutral saddle. A special point in parameter space is in
this case p = r = 1, where both eigenvalues equal zero. This corresponds to a Bogdanov-
Takens bifurcation.

To find bifurcations of the nontrivial equilibria, we look at the Jacobian matrix evaluated
at those points,

J(±
√
r − p,∓

√
r − p) =

(
−1 −1
p 3p− 2r

)
(58)

which has eigenvalues

λ1,2 =
3p− 2r − 1

2
± 1

2

√
(3p− 2r − 1)2 − 8(r − p) (59)

and we see that a Hopf bifurcation occurs when 3p−2r−1 = 0, or equivalently, r = 3p−1
2

.
The bifurcation is subcritical. This is a curve in the (p, r)-plane, and together with the
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Figure 13: Bifurcation diagram of (55) in the (p, r)-plane. Blue line: fold bifurcation, red solid
line: Hopf bifurcation of (0, 0), red dotted line: neutral saddle, orange point: Bogdanov-Takes
bifurcation, green line: Hopf bifurcation of nontrivial equilibria.

bifurcations we found for the trivial equilibrium, they form a bifurcation diagram. This
diagram is plotted in figure 13.

Using the pplane9 software in Matlab, we can visualize the phase portraits for different
points in the parameter space. The points for which this is done, are the black dots in
figure 13, labeled A through E. For p = 1.2, the phase portraits (i.e. of points A-D) are
shown in figure 14. The phase portrait at point E is shown in figure 15. Although this is
a different point in parameter space, from 13 one would expect a similar phase portrait as
at point D, since the points are not separated by any bifurcation curves. This is indeed
the case.
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(a) Phase portrait for (p, r) = (1.2, 0.8). The origin
is stable.

(b) Phase portrait for (p, r) = (1.2, 1.1). The origin
is unstable, and a limit cycle has emerged (due to
Hopf bifurcation).

(c) Phase portrait for (p, r) = (1.2, 1.25). The non-
trivial equilibria have appeared and are unstable,
the origin is a saddle. The limit cycle encloses all
equilibria.

(d) Phase portrait for (p, r) = (1.2, 1.4). The limit
cycle has disappeared (due to subcritical Hopf bi-
furcation), the nontrivial equilibria are stable and
the origin is a saddle.

Figure 14: Different phase portraits for varying values of r (and fixed p = 1.2).
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Figure 15: Phase portrait for (p, r) = (0.5, 0.8). Stable nontrivial equilbria, the origin is a
saddle. This is topologically equivalent to figure 14(d).

Now let v > 0 be nonzero (and it is by definition positive). The system in equation (55)
then becomes{

Ẋ = (v − 1)X − Y
Ẏ = pX + rY − Y 3 (60)

which is still symmetric. The equilibria are now located at{
(0, 0),

(√
p+ r(v − 1)

(v − 1)3
,

√
r +

p

v − 1

)
,

(
−

√
p+ r(v − 1)

(v − 1)3
,−
√
r +

p

v − 1

)}
(61)

and the Jacobian at the origin is given by

J(0, 0) =

(
v − 1 −1
p r

)
(62)

With a similar analysis we find for example the fold bifurcation (det J(0, 0) = 0) when
r(v− 1) + p = 0, which defines a curve in the three dimensional (p, r, v) parameter space.
Looking at the eigenvalues, given by

λ1,2 =
v − 1 + r

2
± 1

2

√
(v − 1 + r)2 − 4(p+ r(v − 1)) (63)

we again find a Hopf bifurcation, now when v−1+ r = 0 and p+ r(1−v), i.e. if r = 1−v
and p > (v − 1)2. Qualitatively, the bifurcation diagram in the (p, r)-plane remains the
same as in figure 13, only the position of the codim 2 Bogdanov-Takens bifurcation point
now depends on v. Following [1], we can fix v = 1

5
. The fold bifurcation curve in the

(p, r)-plane is then at p = 4
5
r, and the Hopf curve at r = 4

5
, for p > 16

25
. The point (16

25
, 4
5
)
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Figure 16: Bifurcation diagram of (60) in the (p, r)-plane, for v = 1
5 . Blue line: fold bifurcation,

red solid line: Hopf bifurcation of (0, 0), red dotted line: neutral saddle, orange point: Bogdanov-
Takens bifurcation, green line: Hopf bifurcation of nontrivial equilibria.

is now the new position of the codim 2 Bogdanov-Takens bifurcation point. The new
bifurcation diagram is plotted in figure 16.
We indeed see that the bifurcation diagram is qualitatively the same as before. The
Bogdanov-Takens point is the so-called ‘organizing center’ in the bifurcation diagram. As
soon as you know the position of this point, the codim 1 curves emerge from this and you
can deduce the dynamics of the system.

2.3 Analysis of the 3D model

In the 2D model, we have seen that the parameters of the Y equation (in that case p and
r) already determine a lot of the dynamics (and bifurcations) of the system. In this para-
graph, we return to the 3D non-dimensional autonomous dynamical system as described in
equation (54). The equilibria can be found analytically: except for (X̄0, Ȳ0, Z̄0) = (0, 0, 0)
there are two more, given by

(X̄1, Ȳ1, Z̄1) =

(
− s

2(v − 1)
− Q

2(v − 1)3/2
,−s

2
− Q

2
√
v − 1

,
s

2(v − 1)
+

Q

2(v − 1)3/2

)
(64)

and

(X̄2, Ȳ2, Z̄2) =

(
− s

2(v − 1)
+

Q

2(v − 1)3/2
,−s

2
+

Q

2
√
v − 1

,
s

2(v − 1)
− Q

2(v − 1)3/2

)
. (65)
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In these equations we used Q as an abbreviation of Q =
√

4p+ (4r + s2)(v − 1). We
will analyze the system, in particular the bifurcations of these equilibria, by varying two
parameters (and letting the others fixed). As in the 2D system, we will focus on the Y
equation. We will investigate bifurcations when varying (r, s) and for (p, r).

We start by doing a numerical bifurcation analysis, with three fixed parameters: p =
1, q = 2.5, v = 0.2. For the analysis we then have two ‘active’ parameters, r and s (i.e.
these are allowed to vary). Using the bifurcation software MATCONT for Matlab, we can
make a bifurcation diagram in the (r, s)-plane, for (r, s) ∈ [0, 3] × [0, 3]. The result is
shown in figure 17.

Figure 17: Bifurcation diagram in the (r, s)-plane. The left Hopf curve is of the origin, the
right one is of the nontrivial equilibria. In the grey area, solutions have a period of ≈ 100 kyr.

At four different positions in the (r, s)-plane, a phase portrait is constructed. The results
are shown in figure 18. We see that in some regions a limit cycle is present, and also its
stability can change. This is all due to the Hopf bifurcation. The LPC curve is the fold
(or limit point) bifurcation of the limit cycle.
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(a) Phase portrait for (r, s) = (0.2, 0.0). The ori-
gin is stable.
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(b) Phase portrait for (r, s) = (0.6, 0.0). The
origin is unstable, and a stable limit cycle has
emerged (due to Hopf bifurcation).
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(c) Phase portrait for (r, s) = (0.3, 1.8). The non-
trivial equilibria have appeared and are unstable,
the origin is stable. Note that not all orbits con-
verge to the limit cycle.

-0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

Y

(d) Phase portrait for (r, s) = (1.3, 0.6). Again
a stable limit cycle. The period is approximately
100 kyr.

Figure 18: Different phase portraits for varying values of r and s. The different colors indicate
a different initial condition. Note that all phase portraits are drawn in the (X,Y )-plane, i.e. the
Z-coordinate is neglected.
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Figure 19: Bifurcation diagram in the (p, r)-plane. The lower Hopf curve is of the origin, the
other is of the nontrivial equilibria. In the grey area, solutions have a period of ≈ 100 kyr.

Secondly, we did a similar analysis for varying (p, r). A bifurcation diagram is plotted
in the (p, r)-plane (for fixed s = 0.6), see figure 19. Although the bifurcation diagram
is more complex than in the 2D case (we also have a larger parameter space), we again
find the two Hopf curves (trivial and nontrivial), which can lead to the emergence of a
limit cycle. We can get from a stable origin state to a limit cycle state, by increasing r.
This is the same in both the 2D as the full 3D case. As long as we stay away from the
codim 2 bifurcations (BT: Bogdanov Takes, GH: Generalized Hopf/Bautin), we can try
to simulate the emergence of an internal oscillation. This is done later on in this chapter.

2.4 Analysis of the full model

We can do a similar bifurcation analysis for the full (i.e. dimensional) Saltzman-Maasch
model, as described in equation (46). Note that the parameter space is much larger, but
if we only allow one or two parameters to change, we can make a bifurcation diagram.
In order to do this, we again have to make the system autonomous. Therefore we set
FI = Fµ = 0. In the non-dimensional models (both 2D and 3D) we have seen that
changing one or two parameters in the CO2 equation are sufficient to encounter Hopf
(and other) bifurcations. So we will keep this in mind for the analysis of the full model.
For convenience, we will neglect all the units. To start, we take constants c = 0.004 and
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kθ = 0.04444444, and set the parameters to
(α1, α2, α3) = (16.673915, 9.52381, 0.1)
(β1, β2, β3, β4, β5) = (513.4577, 6.25868, 0.02639456, 0.00003628118, 5.833333)
(γ1, γ2, γ3) = (1.85125, 0.01125, 0.25)

(66)

which is similar to what is done in [19].

We can find one equilibrium numerically, at

(I, µ, θ) = (35.4722, 281.746, 5.80875) (67)

and we will investigate the bifurcations of this equilibrium. This is again done numerically,
using the MATCONT software.

Figure 20: Bifurcation diagram in the (β1, β5)-plane. Dark curves are fold bifurcations, light
curves are Hopf. BT and CP are codim 2 Bogdanov-Takens and Cusp bifurcations.
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We allow two parameters to change, β1 and β5. These are the ones that are somehow
related to p and r in the non-dimensional models. When we change these parameters, we
find both fold and Hopf bifurcations of the equilibrium. The software can continue the
bifurcation curves, giving a bifurcation diagram as shown in figure 20. Zooming in closer
to the values as given above, gives the diagram as in figure 21. The position of the point
where we started, as in equation (66), is to the right of the four curves.

Figure 21: Bifurcation diagram (zoomed in) in the (β1, β5)-plane. Dark curves are fold bifur-
cations, light curves are Hopf.

2.5 Simulation of MPT

In this paragraph, we will use our knowledge of the bifurcation structure of the Saltzman-
Maasch model (both non-dimensional and the full model) to simulate MPT behaviour.
This is done first for the 3D non-dimensional model.
Looking at the bifurcation diagram in figure 17, we expect that left of the first Hopf curve,
there is no internal oscillation, since orbits converge to the origin. When adding a forcing
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term (recall that this is the function F ′I(t) in the first differential equation), we can expect
a linear response (or close to linear) to the forcing. When crossing the Hopf curve, i.e.
when r increases, the system has got a limit cycle and we expect to see that back in the
solution. Many different paths through parameter space are possible to achieve MPT-like
behaviour, we will show one of them.
We fix (p, s, q, u, v) = (1.0, 0.6, 2.5, 0.0, 0.2). Note that this implies that there is still no
forcing present. We let r vary in time, corresponding to

r(t) = 0.75 + 0.5 tanh

(
t− 1000

400

)
(68)

of which a graph is shown in figure 22. Note that by defining this function for r, we indeed
cross the Hopf bifurcation.
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Figure 22: Plot of r(t) as in equation (68).
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Figure 23: Plot of X(t) for (p, s, q, u, v) = (1.0, 0.6, 2.5, 0.0, 0.2) with r(t) as in equation (68).

With these settings, we simulate the system as in equation (54), starting from (X(0), Y (0), Z(0)) =
(0.1, 0.0, 0.0). This yields a graph of X(t) as shown in figure 23. We see that prior to
crossing the Hopf curve, no oscillation is present (since the origin is a stable node). After
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crossing the bifurcation curve, a limit cycle emerges, which in this case has a period of
approximately 100 kyr. Also the other variables go from a stable state to an oscillatory
state in a similar way, as can be seen in figure 24.
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Figure 24: Plot of X(t), Y (t) and Z(t) for (p, s, q, u, v) = (1.0, 0.6, 2.5, 0.0, 0.2) with r(t) as in
equation (68).

When we add forcing, we expect that the forcing period will be present prior to the
bifurcation (as the autonomous system converges to zero). However, after the bifurcation,
we expect a combination of the forcing and the internal oscillation. Therefore we define
a purely sinusoidal forcing function,

F ′I(t) = sin

(
2πt

41

)
(69)

where t is again in kyr. The period of 41 kyr corresponds to the dominant Milankovitch
forcing (obliquity). We set u = 0.6 and the simulation of X(t) is plotted in figure 25.
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Figure 25: Plot of X(t) for (p, s, q, u, v) = (1.0, 0.6, 2.5, 0.6, 0.2) with r(t) as in equation (68)
and F ′I(t) as in equation (69).

To make it more realistic, we also add a second Milankovitch period, namely of 23 kyr.
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The forcing function becomes

F ′I(t) =
1

2

(
sin

(
2πt

41

)
+ sin

(
2πt

23

))
(70)

and we simulate the system, for u = 0.7. The result is shown in figure 26.
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Figure 26: Plot of X(t) for (p, s, q, u, v) = (1.0, 0.6, 2.5, 0.7, 0.2) with r(t) as in equation (68)
and F ′I(t) as in equation (70).

We will now simulate the MPT in the full Saltzman-Maasch model. Using the parameters
as given in (66), we have found a stable equilibrium (see previous paragraph). Looking
at the (close-up) bifurcation diagram in 21, we see that we can cross the Hopf bifurcation
curve by decreasing the parameter β1. By doing this, we can again expect oscillatory
behavior in the solutions. We take β1 = 513.4577 as starting point, as in equation (66),
and let it decrease according to

β1 = β1(t) = 513.4577− tanh

(
t

1000

)
(71)

with t measured in kyr. A graph of this function is plotted in figure 27.
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Figure 27: Plot of β1(t) as in equation (71).
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The rest of the parameters is held constant. We add a forcing term FI , given by

FI(t) = sin

(
2πt

41

)
+ sin

(
2πt

23

)
(72)

with t in kyr (and constant kR = 0.1), i.e. the two dominant Milankovitch cycles. We
take (I, µ, θ) = (45, 280, 5.5) as initial condition and get a solution for (I(t), µ(t), θ(t)) as
in figure 28.
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Figure 28: Plots I(t), µ(t) and θ(t) with β1(t) as in equation (71) and initial condition
(I, µ, θ) = (45, 280, 5.5).

We clearly see the change in amplitude and periodicity at 1 Myr, towards larger cycles
with a period of around 100 kyr. The position where the Hopf curve is crossed, is chosen
such that the period of the cycle matches with this 100 kyr. Note that only a small change
in the parameter β1 is needed to get this MPT behaviour.
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3 MPT in the Gildor-Tziperman model

In this chapter, we will study a more involved, physics-based coupled box model of the
earth’s climate. The model was built for reproducing ice ages oscillations in the late
Pleistocene, by Gildor and Tziperman [2, 3, 20]. Whereas the Saltzman-Maasch is a con-
ceptual model of three global averaged variables, this model consists of different coupled
boxes (ocean and atmosphere) where the physics of each box is described by their own
equations. We start with a simple version of the model [9], and then go on to the ‘full
model’. A short overview is given of the components of the model, and after that we will
simulate the MPT in this model. Note that this is done without a bifurcation analysis;
this model is intrinsically time dependent and high dimensional, which makes it virtually
impossible to study the bifurcation structure in detail.

3.1 Simple version of Gildor-Tziperman model

To get a feeling of some of the components and equations describing the Gildor-Tziperman
model, we first discuss a simple two-variable version of the model. We will give a summary
of the important features and repeat some of the results, following the work of Gildor et
al. [9]. The model consists of two independent variables, V (land ice volume) and T
(temperature). The ice volume is described by the differential equation

dV

dt
= P (T, as)− S(T, t) (73)

where P is a function describing the precipitation, depending on temperature, and S a
function for the ablation, depending on temperature and time. The precipitation function
is given by

P (T ) = (P0 + P1q(T ))(1− as
ao

) (74)

where q denotes the amount of water in the atmosphere, as is the sea-ice area, ao the area
of the ocean and P0, P1 are constants. The sea-ice area is a function of temperature (as a
‘switch’), given by

as(T ) =

{
I0s if T ≤ Tf
0 if T > Tf

(75)

and for q we have the Clausius-Clapeyron relation

q(T ) =
qrεqA

ps
e−B/T (76)

with qr the relative humidity, ps the surface pressure and constants εq, A,B. The function
of the ablation is

S(T, t) = S0 + SMM(t) + ST (T − 273) (77)
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with constants S0, SM , ST and M(t) is the normalized deviation of the summer insolation
at 65oN from the long term mean. The temperature is described by the differential
equation

C0

a0

dT

dt
= −εσT 4 +Hs(1− αs

as
a
− αL

aL
a

)(1− αc). (78)

where aL is the land ice area, C0 is the heat capacity of the ocean and a is the total area
(land and ocean). The constants αs, αL, αc are the values of the albedo of sea-ice, land ice
and clouds, respectively. For more information on the model equations and descriptions
of the parameters, we refer to [9]. Gildor et al. showed that by a slow variation of the
deep ocean temperature, one could simulate the MPT with this simple model. Results
are shown in figure 29

Figure 29: From [9]: Model results for slowly varying deep ocean temperature. Shown is a
time series of the fraction of land area covered by land ice. The transition from obliquity and
precession (20 and 41 kyr) dominated cycles to 100 kyr ones is seen around -800 kyr. Upper
panel: using an idealized insolation curve with a simple periodicity of 41 kyr. Lower panel:
using actual Milankovitch summer radiation at 60N.
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3.2 Model description of the full model

In this paragraph, we will give a short overview of the full Gildor-Tziperman model. The
model consists of different boxes, both atmosphere, land and ocean. Polar ocean boxes
can be (partially) covered by sea ice and polar land boxes by land ice. A schematic view
of the box-model is given in figure 30. There is also a thermohaline circulation included,
this is represented with arrows.

Figure 30: Schematic view of the Gildor-Tziperman model. Figure from [20].

All the physical components of the climate system are allowed to vary and interact, based
on the model equations. In the model, it is also possible to include a biogeochemistry
module, that also calculates different biological and chemical variables and their interac-
tion. We have not included this module, i.e. we used what Gildor and Tziperman refer
to as the ‘physics-only’ model. However, in order to simulate the MPT more realisticly,
we did include a module for the Milankovitch cycles (instead of constant insolation), as
you will see in the next paragraph.
We will not repeat the equations of the model here, for that we refer to the code or the
literature. Except for the many equations, also the parameter space is very large. We
will only mention certain parameters here if we change them with respect to their default
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value. Our focus will be on the output of the model. The model is based on forward
integration methods and it calculates all important quantities (temperature (atmosphere,
ocean), CO2 concentration, sea/land ice fraction, ...) every 6 hours, for every relevant
box. The output consists of 200 year averages (which is more convenient, especially for
runs of more than one million years). In the physics-only runs, the CO2 concentration in
the atmosphere has to be prescribed.

As an example, we did a run of 500 kyr with default settings. For the CO2 concentration,
a constant value of 280 ppm (pre-industrial conditions) was prescribed, as can also be seen
in the results. In figure 31 we see these default results. We chose to plot the temperature
(of the four atmosphere boxes), the sea-ice and land-ice fractions (at both polar boxes)
and the CO2 concentration. In this case, the latter is not very interesting. In general, one
can see in that graph which function for the concentration is prescribed.
After a start-up period, we see that the solutions are periodic, with a period of more than
150 kyr. Note that there is always sea ice on the south pole, but this is not the case on
the north pole. Sea ice is only formed when the temperature is below a certain threshold,
which is the parameter Tice. The default value of this parameter is set on Tice = 274
K. When this value is larger, it is easier to form sea ice. In the land ice signal, we see
the characteristic ice age cycles, with slow build-up of ice, and more rapid melt. This
asymmetry is also seen in the (indirect) measurements. This is only for the north pole,
the land ice fraction at the south pole is held constant in this model.
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Figure 31: An example solution for constant CO2 concentration at 280 ppm.
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3.3 MPT simulation

In the previous paragraph we have seen that default parameter values and a constant CO2

concentration of 280 ppm gives oscillations in the solution with a period of approximately
180 kyr. This becomes perhaps more clear when we extend the time to 2 Myr. This is
shown in figure 32.

We want to know whether the period of the solution changes, when we change the pa-
rameters of the model. In the simple version of the Gildor-Tziperman model, we have
seen that a slowly varying deep ocean temperature can trigger an MPT-like transition.
To reproduce the same effect in this larger model, we can vary the parameter Tice. The
first experiment, is to increase the value from Tice = 274 K to Tice = 275.5 K, i.e. it is
again constant. We expect that it will now be easier to form sea ice and therefore the
period should decrease. The model run is again over a period of 2 Myr and the results
are shown in figure 33. We observe that the period indeed has decreased, to a value of
approximately 40 kyr (i.e. the value prior to the MPT).

The next step in our attempt to simulate MPT-like behaviour in the full Gildor-Tziperman
model, is to make the parameter Tice time dependent. We start at a value of Tice = 275.5
K and let it decrease by 2.5 K in 2 Myr. By decreasing this threshold, we expect that it
gets harder to create sea ice by time. In that sense, the period of the solutions is expected
to increase, yielding an MPT-like transition. The results are shown in figure 34.
To make it more realistic, we did the same run also including Milankovitch forcing (by
including this module). This results in the graphs of figure 35.
Although we see clearly an increase in the period of the solution in both cases, the tran-
sition is rather smooth (not sudden) and the periods are also not exactly 41 and 100 kyr.
Therefore, it does not seem to be a bifurcation. It is rather a continuous dependence of
the period on the parameter value.

It might not be physically realistic that the Tice parameter has changed in the past. We
will now try to find MPT-like behaviour in the model, by a change in the physical quan-
tities. We choose to do this for CO2, since we have seen so far (in the Saltzman-Maasch
model) that CO2 is a possible trigger for the MPT. In order to investigate this in the
Gildor-Tziperman model, we first study the effects of a doubling of the CO2 concentra-
tion, i.e. we increase it to 560 ppm. The new model output is visible in figure 36, for
Tice = 274 K.
We see that the period is now approximately 80 kyr, which is smaller than in the default
run with a concentration of 280 ppm. However, there are also changes that cannot be
explained physically. For example, the average fraction of land ice has increased signifi-
cantly, which one would certainly not expect when the CO2 increases. Also the interglacial
periods are much shorter than the glacial periods, which is not the behaviour we see in
measurements.

45



Although this model is clearly not physically realistic for large CO2 concentrations, we
can simulate transition behavior by decreasing the CO2 concentration. We decrease the
concentration linearly from 560 ppm to 280 ppm over a period of 2 Myr. This (final)
result is shown in figure 37. Note that also the Milankovitch forcing is included again.
Also in this figure, we see an increase in the period, however the periods are too large. In
general, we see clearly a dependence of the periodicity on the CO2 concentration. We can
simulate MPT-like behavior, but not in a physically feasible way. In that way, the MPT
simulation by decreasing Tice is preferred, although it has its own shortcomings.
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Figure 32: Model solution for constant CO2 concentration at 280 ppm and Tice = 274 K.
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Figure 33: Model solution for constant CO2 concentration at 280 ppm and Tice = 275.5 K.

48



Figure 34: Model solution for constant CO2 concentration at 280 ppm and a linear decreasing
Tice, from 275.5 K to 273 K.

49



Figure 35: Model solution for constant CO2 concentration at 280 ppm and a linear decreasing
Tice, from 275.5 K to 273 K. Milankovitch forcing is included.
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Figure 36: Model solution for constant CO2 concentration at 560 ppm and Tice = 274 K.
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Figure 37: Model solution for a linear decreasing CO2 concentration from 560 ppm to 280 ppm
and constant Tice = 274 K.
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Conclusions and discussion

We have (re)introduced the theory of dynamical systems and their bifurcations. We have
defined (bifurcation induced) tipping points and via a Hopf bifurcation, we can see the
Mid-Pleistocene transition also as a tipping point in the climate system. We have simu-
lated this transition in two (very) different models: a conceptual ODE model of Saltzman
and Maasch, and a physics-based box model of Gildor and Tziperman.

In the first case, we could trigger the tipping point by first investigating the bifurcation
structure of the model. Crossing the Hopf bifurcation leads to the emergence of a cycle and
with Milankovitch-like forcing we could simulate the MPT in both the non-dimensional
(2D and 3D) and the full Saltzman-Maasch model.

One should keep in mind that the Saltzman-Maasch model is a conceptual model, also
referred to as a ‘phenomenological’ model. This is because the model equations are based
on the phenomenon that you want to describe, and not based on first principles (of
physics). However, this very simple model can be analysed thoroughly with the math-
ematical structure we presented. In that way, we can understand the effects of every
parameter change on the solutions of the model. Knowing the bifurcation structure of a
model gives a lot of tools to tune the model and find transitional behavior. The results
show that a transition like the MPT can be found in this model (in all versions), which
matches the data nicely. However, it does not directly give a physical mechanism. We can
up to this point only give an explanation for the MPT from a mathematical point of view.

The parameters that we have changed in order to simulate the MPT in the Saltzman-
Maasch model, where in the equation of CO2, both in the non-dimensional cases (2D and
3D) as the full model situation. Although this can of course be a coincidence (the model
can be set up this way a priori by Saltzman and Maasch), it at least gives an idea that
CO2 can play an important role in the Mid-Pleistocene transition.

With this in mind, we also were able to simulate MPT-like behavior in the Gildor-
Tziperman model. This transition is however not based on knowledge of the bifurcation
structure. Although the model is based on physics and therefore also the MPT that is
simulated, it also has it flaws. One of them is that the module for land ice is not correct,
in the sense that the accumulation (growth) of land ice is not correctly depending on
temperature and CO2. Higher CO2 leads to more land ice on average, which is coun-
terintuitive. The model has been constructed for very specific research, and is therefore
probably only valid in a bounded parameter regime. In other words, the model is not
robust for large changes in parameters. The model is, in this form, therefore perhaps not
ideal for the purpose of investigating the MPT. Some (maybe rigorous) changes have to
be done to the model to make it suitable for future research on this subject.
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Another point of criticism might be that it may not be very likely that the parameter
Tice is something that has changed the last few million years. From a physics point of
view, you would expect that to be (almost) constant, and transitions will most likely be
triggered by changes in parameters or variables like the CO2 concentration. The choice
for changing Tice lies in the idea that deep sea changes could have triggered the MPT,
and this is one way of simulating this behavior.

There is still future research to be done on the MPT, especially for finding the exact
physical triggers in the climate system. We have discussed a mathematical theory for
these triggers and tested this successfully, but we are still uncertain about the physical
mechanism. However, with these results it seems likely that CO2 has been involved as a
possible trigger for the MPT.

54



References

[1] Barry Saltzman and Kirk A. Maasch. A first-order global model of late Cenozoic cli-
matic change II. Further analysis based on a simplification of CO2 dynamics. Climate
Dynamics, 5(4):201–210, 1991.

[2] H. Gildor and E. Tziperman. Sea ice as the glacial cycles’ climate switch: Role of
seasonal and orbital forcing. Paleoceanography, 15(6):605–615, 2000.

[3] Hezi Gildor and Eli Tziperman. A sea ice climate switch mechanism for the 100-kyr
glacial cycles, 2001.

[4] S. Epstein, R. Buchsbaum, H. A. Lowenstam, and H. C. Urey. Revised Carbonate-
Water Isotopic Temperature Scale. Geological Society of America Bulletin, 64:1315–
1325, 1953.

[5] Johannes Oerlemans. Antarctic ice volume and deep-sea temperature during the last
50 Myr: A model study. Annals of Glaciology, 39:13–19, 2004.

[6] Lorraine E. Lisiecki and Maureen E. Raymo. A Pliocene-Pleistocene stack of 57
globally distributed benthic delta 18O records. Paleoceanography, 20(1):1–17, 2005.
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