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Abstract

We investigate the possibility of using a vector field to drive anisotropic cosmic inflation in
contrast with the isotropic accelerated expansion driven by scalar field. The realization of such
vector field models during inflation provides a promising link to the observed large scale Cos-
mic Microwave Background anomalies. Despite being a close upgraded step from the scalar
field, the vector field models are troubled with instabilities due to the presence of ghost. In
this work, we construct and analyze stable vector fieldmodels in simple form using ideas from
chaotic inflation. Weobtain stable evolution of slow-roll inflationary period driven by a vector
field and present also different graceful exit scenarios.
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Units andConventions

Unless stated otherwise, we use natural units:

c = ħ = kB ≡ 1 ,

and also set the reduced Planck mass Mpl to 1 for greater ease in computation:

Mpl = (8πG)−1/2 ≡ 1 .

We use the “mostly pluses” convention for metric signature (−,+,+,+). Greek indices stand
for the four spacetime coordinate labels µ, ν = 0, 1, 2, 3while Latin indices stand for the three
spatial coordinate labels i , j = 1, 2, 3. Partial derivatives are denoted by commas and covariant
derivatives denoted by semi-colons.
We use following Fourier convention:

Rk = ∫ d3xR(x)e−ik⋅x ,

so that the power spectrum is:

⟨RkRk′⟩ = (2π)3δ(k + k′)PR(k) , ∆2
R(k) ≡

k3

2π2PR(k) .

Derivatives with respect to physical time are denoted by overdots, while derivatives with re-
spect to conformal time are indicated by primes.
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“The imagination of nature is far, far greater than the imagination of
man.”

Richard P. Feynman

1
Introduction

As early as the first emergence of mankind’s civilization, people have unceasingly ponde-
red, imagined and postulated ideas whenever they look for what is “written in the stars.” Those
mental adventures were in fact our cosmological theories in their utmost primitive forms. As
fascinating as it is, the progress of knowledge advancement was extremely slow. Only after
more than ten thousand years, we have recently come to realize that we Earthlings are not at
the center of the Universe. Earth planet is just one of many planets orbiting the Sun. This
milestone achievement is thanks to Nicolaus Copernicus and his seminal work De revoluti-
onibus orbium coelestium (On the revolution of heavenly spheres), published in 1543. Over
one hundred years passed by for Copernican heliocentrism to gain acceptance despite relent-
less suppression from ignorance.1 Half a century later, in the mid-1680s, Sir Isaac Newton
found that even our Sun is not at the center of Universe either because of its deviation from
our solar system’s center of gravity. Catching up with experimental evidences, on the theo-
retical side, Newton’s law of universal gravitation and Cosmological Principle published in
the Principia (1687) were established as the framework for cosmology by providing fantastic
agreement with observational data.

The state of affair is maintained until the beginning of 20th century. This time, theoreti-

1This paradigm shift still cost us a hefty price withGiordanoBruno’s burned alive at the stake incident in 1600
and Galileo Galilei’s house arrest until his death for vehemently suspect of heresy in 1633.
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cal side plays the pioneer role with the advent of General Relativity theory by Albert Einstein
in 1915 [1]. On the observational side, the dominant cosmic view was that the Milky Way
Galaxy represents the whole Universe. In 1920, we witnessed the Great Debate in astronomy
concerned the nature of spiral nebulae and size of the Universe between astronomers Harlow
Shapley and Heber Curtis. Shortly after, in 1924, Edwin Hubble successfully measured the
distance to classical Cepheid variables in the Andromeda Galaxy and showed that these vari-
ables in fact do not belong to the Milky Way Galaxy. This settled the Great Debate with the
more accurate side leaning toward Curtis. The Milky Way Galaxy is just one of many galaxies
in the Universe! Furthermore, in 1929, Hubble demonstrated the approximately linear rela-
tionship between distances of the galaxies and their redshifts [2] based on measurements of
galaxies’ redshifts by Vesto Slipher and Milton Humason. Only after 5 years of our first rea-
lization that the Universe is actually much bigger than we previously thought, we received a
significant paradigm shift sinceCopernicus: theUniverse is also getting bigger over time! The
theoretical side amazingly had a prediction beforehand. In 1927, by independently deriving
Friedmann’s equations, Georges Lemaître showed that an expanding Universe is a solution
to Einstein’s equations of General Relativity and the Hubble Law naturally follows. Modern
physical cosmology era has unfolded.

Figure 1.1: The original Hubble diagram [2]. Radial velocities (units should be km sec-1), corrected for solar motion,

are plotted against distances (units should beMpc) estimated from involved stars andmean luminosities of nebulae

in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually;

the circles and broken line represent the solution combining the nebulae into groups; the cross represents mean

velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.

A question soon raised regarding an expanding Universe: “Does it have a beginning?”



CHAPTER 1. INTRODUCTION 3

There were two most popular theories that gained similar amount of supporters in the scienti-
fic community: 1) Fred Hoyle’s Steady State theory asserts that an expanding Universe main-
tains its appearance over time by continually creating additionalmatter and therefore does not
have a beginning; 2) Lemaître’s BigBang theory describes an expandingUniverse began froma
very high density and high temperature state. By a fortunate event in 1964, theCosmicMicro-
wave Background (CMB) was discovered by astronomers Arno Penzias and Robert Wilson
[3, 4]. This event earned the discoverers the 1978Nobel Prize in Physics and decisively tipped
the balance in favor of theBigBangmodel because the Steady Statemodel is unable to generate
a background spectrum closer to a blackbody than any other source in nature as measurements
from the CMB shows [5].

2 4 6 8 10 12 14 16 18 20 22

Intensity (MJy/sr)

Frequency (cm–1)

450

400

350

300

250

200

150

100

50

0

FIRAS data with 1000σ errorbars

Figure 1.2: Left: Original plot of the CMB Spectrum from the full COBE FIRAS data set [6]. The FIRAS data match

the curve so exactly, with error uncertainties less than the width of a blackbody curve. The solid curve shows the

expected intensity from a single temperature blackbody spectrum as predicted by the hot Big Bang theory. The

FIRAS data were taken at 43 positions equally spaced along this curve. Right: The error bars have been multiplied

by a factor of thousand in the plot. The distribution is extremely well fit by a blackbody spectrum at a temperature

of T0 = 2.725 (±0.001)K – courtesy of Tuhin Ghosh (IUCAA).

Our currently accepted model for the Universe is the ΛCDM (Lambda Cold Dark Mat-
ter) Big Bang model, which claims that the Universe contains dark energy (associated with
a cosmological constant, denoted by Λ) and cold dark matter. This model tells us the finite
age of the currently accelerated expanding and flat Universe to be about 13.8 billion years [7].
Nowadays, any respectable theory which is capable of competing with the ΛCDM Big Bang
model has to at least provide satisfactory explanations for all the following observations: i)
Accelerating expansion, ii) Blackbody CMB and iii) Abundance of light elements. So far,
there is none.
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As successful as it is with vast amount of correct predictions, the ΛCDM Big Bang mo-
del still has thorny unresolved issues such as: i) Cosmological constant problem, ii) Nature of
dark matter, iii) Validity of general relativity on large scales, iv) Existence of anomalies in the
CMB and on small scales and v) Predictivity and testability of the inflationary paradigm [8].
The measurement in 2000 by BOOMERanG [9] and confirmed later in 2006 by three-year
WMAP data [10] showed that our Universe is actually very close to be flat has revived signifi-
cant interest in the Cosmic Inflationary paradigm, which was proposed earlier by Alan Guth
in 1981 [11]. Although the primordial B-mode polarization – Cosmic Inflation’s “smoking-
gun” signature – has not been confirmed either by Planck-2015 experiment [7] or BICEP2
and Keck Array collaborations [12], it is still the best shot among several other rival theories
until today. This is largely because Cosmic Inflation in its generic form provides very good
explanation for the following observations: i) Flat Universe, ii) Gaussian and adiabatic per-
turbation, iii) Nearly scale-invariant spectrum of density and iv) Specific peaks in the CMB’s
spectrum [13].
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Figure 1.3: CMB data (Planck 2013) versus the predictions of one of the simplest inflationary models for flat Uni-

verse (full line) [14]. The error bars include cosmic variance, whose magnitude is indicated by the green shaded

area around the best fit model. The low-ℓ values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16, 19, 22.5, 27, 34.5

and 44.5.

Cosmic inflation in its simplest form involves only scalar field (the inflaton) to both dri-
ving inflation and generating primordial perturbations. Even at that level of simplicity, it has
already given good predictions for above mentioned observations. Furthermore, there is one
other noteworthy feature of scalar field inflation model: it produces both scalar and tensor
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perturbations but it does not produce vector perturbations. However, through high resolu-
tion data obtained from WMAP and confirmed by Planck experiment, we have recently noti-
ced some unexplained features in the CMB. The most well-known among these features are:
the low power in the quadrupole moment [15–19], the alignment of the lowest multipoles
and claims of statistical anisotropy [19–25], an asymmetry in power between the northern
and southern hemispheres [26–32] and a non-Gaussian deviation in the southern hemisphere,
known as the “cold-spot” [33–38].

There are still disputes whether these anomalies are of any statistical significance. Nevert-
heless, the possibility that these unexplained features actually exist in the CMB has motivated
theoretical cosmologists to extend Cosmic Inflation paradigm by including higher spin fields
such as vector fields, spinors and p-forms. It seems that themost straightforward and simplest
next step in making extension would be vector fields. However, this task is highly non-trivial.
The appearance of ghost in many firstly proposed vector field models renders them unstable
and therefore unviable [39–41]. Motivated by the flexibility of chaotic inflation, we explore
in this thesis the possibility of using a vector field to drive anisotropic cosmic inflation. Our
strategy in building a stable vector field model is to obtain firstly known behaviors of single
scalar field in chaotic inflation and clear out subtleties such as initial conditions and positive
Hubble parameter branch selection. The stability is ensured by constraining themass termm2

in the potential to be positive and real throughout the whole inflation period. Systematically,
we obtain next a stable vector fieldmodel in simple formwhich provides the required amount
of 60 e-folds slow-roll inflationary duration. We also observe that the inflation period does
not end like the single scalar field case and instead goes on infinitely. Therefore, we further
investigate different graceful exit scenarios by slightly modifying our original chaotic inflation
potential. After we verify that inflation proceeds to exit as intended, we finish by performing
stability analysis using different approaches.

This thesis is structured as follows. In chapter 2, we build up prerequisites by reviewing
assumptions and basic equations starting from standard Big Bang cosmology until the forma-
lism for calculation of spectrum perturbation in Cosmic Inflation. In chapter 3, we present
the developments in vector field models for Cosmic Inflation and its constraints on stability
by ghost fields. After that, we go into details about constructing simple ghost-free vector field
models and performing stability analysis. Finally, in chapter 4, we conclude by discussing the
implications in our findings and possible directions for further developments.2

2In the Appendices, we also provide the technicalities required for the conduct of our formalism.



“The Big Bang says nothing about what banged, why it banged, or
what happened before it banged.”

Alan H. Guth

2
Modern Precision Cosmology

More than twenty years ago, with data obtained by the Cosmic Background Explo-
rer (COBE), we discovered anisotropies in the order ofO(10−5) in the near-perfect blackbody
spectrum CMB and therefore entered into the era of modern precision cosmology. In order
to understand the origin of these anisotropies, we firstly review in this chapter the standard
model of cosmology - the ΛCDM model - by presenting the equations which govern the evo-
lution of the Universe. After that, we introduce the framework for the Cosmic Inflation pa-
radigm which offers the status quo explanation to the formation of structures in the Universe
via primordial fluctuations.1

2.1 ∎ THE STANDARDMODEL OF COSMOLOGY

The theoretical foundations of the ΛCDM model are: i) The Cosmological Principle and ii)
Einstein’s General Relativity theory. The energy content of an expanding Universe is modeled
via cosmological fluids with constant equation of state: photons, baryons, neutrinos, cold dark
matter (CDM) and dark energy.

In a powerful manner, the cosmological principle (CP) states that the Universe is homo-
geneous and isotropic on sufficiently large scales.2 Homogeneous means that different patches

1For further reading, interested readers are recommended to follow excellent resources in [42–45].
2The CP is again strengthened by the recent Planck data to show that the Universe is highly isotropic [46].
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in everywhere of the Universe have the same average physical properties such as energy den-
sity, pressure and temperature. Isotropic means that there are no preferred directions in the
Universe. Any observer measuring a cosmological quantity – e.g. the photon flux or a galaxy
count – in two different directions should find the same value.

Note that, homogeneity does not imply isotropy. A common example is an imaginedUni-
verse filled with a homogeneous magnetic field. That imagined Universe is homogeneous but
not isotropic. Moreover, isotropy observed at one location does not guarantee homogeneity
either. The simplest case is given by an observer at the center of an isotropic explosion. Howe-
ver, isotropy about two or more different locations is equivalent to homogeneity and isotropy
about all locations.

On the one hand, physical theories can only be disproved, they can not be proven as in
the case of mathematical theorems. On the other hand, we still can support the reliability of
physical theories with more and more evidence. The CP is not true on small scales because
galaxies, stars, planets and we ourselves should not exist in a perfectly homogeneous Universe.
However, on scales roughly larger than 100h−1Mpc (about the average distance between two
galaxies), the Universe indeed becomes smooth.3 Therefore, we can treat the dynamics of
the cosmological fluids on the large scales as if the Universe were perfectly homogeneous and
isotropic.4

2.1.1 ⧫ The FLRW spacetime

Through observational data, Hubble told us the linear relationship between the radial speed
with which a galaxy recedes from Earth and its distance to it:

v = H0r . (2.1)

The proportionality H0 is a positive number which is now called Hubble constant.5 Using the
CP, the Hubble’s law then becomes universal. Isotropy enforces the radial motion and ho-
mogeneity ensures that the recession velocity is proportional to the distance; however, theCP

3By definition: 1Mpc = 3.086 × 1022m = 3.262 × 106 ly.
4It is impossible to observationally prove the homogeneity of the Universe without assuming first the Coper-

nican principle. We can only probe the past light cone of here and now.
5By convention, we parametrize the Hubble constant by the pure number h whereH0 ≡ 100h km/s/Mpc. The

most accurate local measurements of h to date employ Cepheid variables and Type Ia supernovae in low-redshift
galaxies give similar results as obtained by Planck [7] assuming ΛCDM model: h = 0.6780 ± 0.0077 at 68%
confidence level.
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alone does not tell us the sign ofH0. The recession speed is not the speed of somethingmoving
through space, but of space itself. Because it is not a local phenomenon, it can exceed c – the
speed of light. The implication of Hubble’s law is groundbreaking: space itself is expanding
and H0 represents the homogeneous expansion rate.

Thanks to the CP, we can define a universal time variable – the cosmic time – which is
defined as the time measured by observers at rest (or freely-falling) with respect to the mat-
ter in their neighborhood. By convention, to determine the age of the Universe, we choose
the zero of the cosmic time to coincide with the Big Bang event. We also define comoving
observers as observers who are at rest with the Hubble expansion. Comoving observers per-
ceive the Universe as isotropic and see objects receding from them according to Hubble’s law.
The coordinate system where all comoving observers have constant spatial coordinates is cal-
led comoving coordinates. The metric that describes a homogeneous and isotropic expanding
spacetime is called the Friedmann-Lemaître-Robertson-Walker (FLRW)metric. In comoving
spherical coordinates (χ, θ , ϕ) and cosmic time t, it is given by:

ds2 = −dt2 + a2(t) (dχ2 +Φk(χ2)(dθ2 + sin2 θdϕ2)) , (2.2)

where

Φk(χ2) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sinh2 χ
χ2

sin2 χ

Hyperbolic geometry
Flat geometry
Spherical geometry

k = −1
k = 0
k = +1

. (2.3)

The factor a(t)parametrizes the uniform expansion of theUniverse. Wedistinguish three
different geometries for the Universe based on the value of the curvature constant k. Recent
results from the WMAP [47] and Planck [7] CMB satellites strongly suggest that we live in a
Universewithflat geometry. Therefore, fromnowon, we shall assume k = 0 and also a(t0) = 1
where t0 is current time. The Hubble constant H0 is then just the present-day value of the
Hubble parameter defined as:6

H ≡ 1
a
da
dt

. (2.4)

The FLRW metric can also be conveniently expressed using the conformal time defined as

6The expression for the radial velocity is v = dr/dt ⋅ r̂ = 1
a
da
dt r + a

dx
dt ⋅ r̂. Therefore, we obtain for comoving

observers: v = 1
a
da
dt r.
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dτ = dt/a. Physically, conformal timemay be interpreted as a “clock” which slows downwith
the expansion of the Universe.

ds2 = a(τ)2 [−dτ2 + (dχ2 +Φk(χ2)(dθ2 + sin2 θdϕ2))] . (2.5)

In an isotropic Universe, we may consider radial propagation of light as determined by the
two-dimensional line element:

ds2 = a(τ)2 [−dτ2 + dχ2] . (2.6)

which resembles a flat Minkowski metric multiplied by a time-dependent conformal factor
a(τ). Light cone is therefore conveniently straight lines at angles±45○ in the τ–χ plane. If we
hadused instead physical time t to study light propagation, the light cone for curved spacetime
would be curved.

Figure 2.1: Joint two-dimensional marginalized constraint on the vacuum energy density, ΩΛ , and the spatial cur-

vature parameter, Ωk . The contours show the 68% and 95% CL. Left: The WMAP-only constraint (light blue)

compared with WMAP+BAO+SN (purple). Note that we have a prior onΩΛ > 0. This figure shows how powerful

the extra distance information is for constraining Ωk . Middle: A blow-up of the region within the dashed lines in

the left panel, showing WMAP-only (light blue), WMAP+HST (gray), WMAP+SN (dark blue), and WMAP+BAO (red).

The BAO provides the most stringent constraint on Ωk . Right: One-dimensional marginalized constraint on Ωk
from WMAP+HST, WMAP+SN, and WMAP+BAO. We find the best limit, −0.0178 < Ωk < 0.0066 (95% CL),

from WMAP+BAO+SN, which is essentially the same as WMAP+BAO. Note that neither BAO nor SN alone is able

to constrainΩk : they need the WMAP data for lifting the degeneracy. Note also that BAO+SN is unable to lift the

degeneracy either, as BAO needs the sound horizon size measured by the WMAP data [48].
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2.1.2 ⧫ Hubble horizon vs. Particle horizon

TheHubble time tH is defined as inverse of theHubble parameter. Current value of theHubble
time is:

tH0 ≡
1
H0
= 9.77h−1Gyr . (2.7)

If we assume a constant expansion, i.e. d2a/dt2 = 0, the Hubble time is the time needed by
the Universe to double in size. Therefore, if the expansion had been constant after the Big
Bang, the Hubble time would be the age of the Universe. In the real case which accounts for
different constituents of the Universe, Hubble time only serves as hint to the time-scale for
the expansion of the Universe.7

The Hubble radius LH is defined as the physical distance traveled by light in a Hubble time,
its current value is given by:

LH0 ≡
c
H0
= 2998h−1Mpc . (2.8)

FromHubble’s law, objects which are farther than aHubble radius recede faster than light.
Therefore, the Hubble radius is often referred to as Hubble horizon. The comoving Hubble
horizon is then defined as:

rCHH(t) =
c

a(t)H(t)
. (2.9)

The comoving Hubble horizon is not to be confused with the particle horizon, which is
defined as themaximum distance a particle could have traveled since the Big Bang event until a
certain time t. With this definition, Since the speed of light is the limit velocity, the distance
traveled by a photon8 from theBig Bang event up to a certain time t coincideswith the particle
horizon. In comoving coordinates, it is obtained by:9

rCPH(t) = χ(t) ≡ ∫
t

0
c
dt
a(t)

. (2.10)

7In the more realistic case of a decelerated expansion, the age of the Universe needs to be larger than 1/H so
that the expansion parameter would have had enough time to reach its present value. The current best estimate
of the age of the Universe for ΛCDM model is by Planck experiment: t0 = 13.813 ± 0.038Gyr [7].

8Photon follow null geodesic (ds2 = 0). Along a radial path, we have d χ = c
a dt .

9The particle horizon is proportional to the conformal time τ where χ(t) = cτ(t) .
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For an observer on Earth, the present-day particle horizon sets the size of the observable
Universe which is about 28.5Gpc. There is a subtle difference between the comoving particle
horizon χ(t) and the comoving Hubble horizon c/(aH): the former is a measure of the past
light cone of an event given the previous expansionhistory, while the latter sets the extent of its
future light cone based on the instantaneous value of H. An observer sitting at the center of a
sphere with radius χ(t) did not have the possibility to establish contact with anything outside
that sphere. The same observer, however, will be able to interact with all that is currently inside
the Hubble sphere (provided that the expansion is not accelerated).10

2.1.3 ⧫ The Dynamical Equations of Expanding Universe

In order to determine the dynamic of theUniverse on large scale, we need to solve for the equa-
tion of the scale factor a(t) in flat FLRW metric. These relations are given by the Einstein’s
equations. In our choice of units, we simply have:

Gµν = Tµν . (2.11)

where the Einstein tensor Gµν , Ricci tensor Rµν and the Ricci scalar R are defined as:

Gµν ≡ Rµν −
1
2
gµνR , (2.12)

Rµν = Rα
µαν = Γαµν,α − Γαµα,ν + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα , (2.13)

R ≡ gµνRµν . (2.14)

The Christoffel symbols (or affine connection) in metric space without torsion are given by:

Γµ
αβ ≡

gµν

2
[gαν,β + gβν,α − gαβ,ν] . (2.15)

10The event horizon is another concept of horizon in cosmology. It is the largest comoving distance from
which light emitted now can ever reach the observer in the future. Another interesting concept is future horizon
as discussed in [49] which leads to the speculation that we are living in a very privileged period in the evolution
of the Universe. Observers when the Universe was an order of magnitude younger would not have been able to
discern any effects of dark energy on the expansion, and observers when the Universe is more than an order of
magnitude older will be hard pressed to know that they live in an expandingUniverse at all, or that the expansion
is dominated by dark energy.
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We substitute the flat FLRW metric from (Eqn. 2.2) into the above equations to retrieve the
Christoffel symbols and obtain the Ricci tensor Rµν and the Ricci scalar:11

Γ0 i j = δi j ȧa Γi
0 j = Γi

j0 = δi j
ȧ
a
, (2.16)

R00 = −3
ä
a

Ri j = δi j (2ȧ2 + aä) , (2.17)

R = 6 [ ä
a
+ ( ȧ

a
)
2

] . (2.18)

From above equations, all the components of the Einstein tensorGµν are determined as:

G00 = 3(
ȧ
a
)
2

,

Gi j = −δi j (ȧ2 + 2aȧ) ,

Gi0 = G0i = 0 .

(2.19)

We observe from (Eqn. 2.19) that the Einstein tensorGµν is diagonal whichmeans the energy-
momentum tensor Tµν is diagonal too. Therefore, in the simple FLRW model, at large scale,
cosmological fluid is characterised only by its energy density ρ(t) and its pressure p(t). In a
frame that is comoving with the fluid, we have:

T µ
ν = gµαTαν =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (2.20)

By equating both left and right hand side of Einstein’s equations (Eqn. 2.11), we finally obtain
the desired equations for the evolution of the scale factor a(t). These non-linear coupled

11An overdot denotes derivative with respect to physical time.
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ordinary differential equations are also called the Friedmann equations:12

H2 ≡ ( ȧ
a
)
2

= 1
3
ρ , (2.21)

Ḣ +H2 = ä
a
= − 1

6
(ρ + 3p) . (2.22)

The total energy-momentum tensor is given by the sum of the energy-momentum tensors
of the species in the Universe such as: photons, baryons, neutrinos, cold darkmatter and dark
energy.13 We make an additional assumption that the fluids compose the Universe are baro-
tropic. The relation between p and ρ is called the equation of state of the fluid; we parametrize
it via the barotropic parameterw as:

p = w(ρ)ρ . (2.23)

Relativistic species such as the photons, the neutrinos have wR = 1
3 . Non-relativistic species

such as the baryons and cold dark matter after decoupling have no pressure andwM = 0. The
dark energy can be treated as a cosmological constant, which is equivalent to a negative pres-
sure fluidwithwΛ = −1. Eqns. (2.21) and (2.22)may be combined into the continuity equation.
Although this equation does not contain any additional information beyond the above equa-
tions, it represents the energy conservation in more transparent way:

dρ
dt
+ 3H(ρ + p) = 0 . (2.24)

By rewriting above equation as d ln ρ
d ln a = −3(1 +w) and integrating it, we have:

ρ ∝ a−3(1+w) . (2.25)

Plugging this back into the Friedmann equation (2.21), we obtain the time evolution of the
scale factor as:

a(t)∝
⎧⎪⎪⎨⎪⎪⎩

t2/3(1+w) w ≠ −1 ,
eHt w = −1 .

(2.26)

12They were first theoretically derived by Alexander Friedmann in 1922 [50], before the obervational disco-
very by Hubble in 1929. The second Friedmann equation is also known as Raychaudhuri evolution equation.

13The cosmological constant is an example of a wider class of dark energy in which −1 ⩽ w ⩽ −1/3.
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The table below summarizes the results for flat FLRW Universe:

w ρ(a) a(t) a(τ) H(t) H(a)
MD 0 a−3 t2/3 τ2 t−1 a−3/2
RD 1/3 a−4 t1/2 τ t−1 a−2
Λ −1 a0 eHt −τ−1 const const

We have considered the contributions of different type of matter in the energy density
separately. In the case that there are more than one matter species, we only need to sum their
contributions in the energy density and the pressure of the Universe as:

ρ ≡∑
i
ρi , p ≡∑

i
pi . (2.27)

In order to emphasize the flatness of the Universe (k = 0). We also define the critical energy
density as:14

ρcrit(t) ≡ 3H2 . (2.28)

Thedensity of the species normalised to the critical density of theUniverse is called the density
parameter:

Ωi(t) ≡
ρi(t)
ρcrit(t)

. (2.29)

This allows us to write the Friedmann equation (Eqn. 2.21) as

( H
H0
)
2

=∑
i
Ωia−3(1+w i) +Ωka−2 . (2.30)

We evaluate above equation at present-day value for a more explicit version. The subscript ‘0’
denotes the value of a quantity at the present time, t0:

H2 = H2
0 [

ΩM0

a3
+ ΩR0

a4
+ Ωk0

a2
+ΩΛ0] , (2.31)

with Ωk0 ≡ −k/a20H2
0 parametrizing curvature.15 As mentioned in (Sec 2.1.1) and shown in

14The present-day value of the critical energy density is ρcrit(t0) = 1.878h2 × 10−26 kg
m3 . Air is around 1026

times denser than the critical energy density.
15ΩΛ , ΩM, ΩR and Ωk each represents respectively the relative energy density for the dark energy, matter
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Figure 2.2: 68.3%, 95.4% and 99.7% confidence level contours on ΩΛ and ΩM obtained from CMB, BAO and

supernovae (SNe) set as well as their combination (assumingwΛ ≈ −1) [51].

(Fig. 2.2), observations of the CMB and the large-scale structure told us that the Universe is
flat:

Ωk ≈ 0 , (2.32)

and composed of approximately 4.8% atoms (or baryons on astronomical scale), 26.7% (cold)
dark matter and 68.5% dark energy (wΛ ≈ −1) [7]:

Ωb ≈ 0.048 , ΩDM ≈ 0.267 , ΩΛ ≈ 0.685 . (2.33)

2.2 ∎ THE COSMIC INFLATION PARADIGM

2.2.1 ⧫ Prelude

We refer to physical theory as notions and rules that describe how a physical system behaves
from given conditions. Whenwe restrict these conditions to fit the observedworld, we obtain
models such as the standard model in particle physics or the ΛCDM model in cosmology.
Physical theory’s merit is valued based on their explanation power for known facts and their
prediction power for unknown phenomena.

In this sense, a physical theory is not required to justify or give answers to its own ini-

component (baryons plus the cold dark matter), the radiation and the curvature of the Universe.
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tial conditions. We can describe a rocket’s motion by theory of classical mechanics but it is
inappropriate to do the same for combustion process which gives the rocket’s initial conditi-
ons. Therefore, regarding i) “horizon or homogeneity problem” (the observed homogeneous
CMB over ≈ 106 causally-disconnected patches16) and ii) “flatness problem” (observed flat-
ness of the Universe despite density curvature ∣Ω(a) − 1∣’s supposedly diverged behavior17),
the answer from ΛCDM model are just: given correct initial conditions, let the equations
evolve them and we will end up in the observed Universe today. There are theoretical physi-
cists who consider the offered initial conditions explanation from ΛCDM model are just too
“fine-tuned”, “improbable”, “unnatural”, “unattractive” or even “disappointing”.18 They argue
that the Universe should instead be able to come to existence from a much broader range of
initial conditions by suggesting the Cosmic Inflation paradigm – a period of accelerated ex-
pansion from ≈ 10−36 s to ≈ 10−32 s after the Big Bang event. It is much debatable that the
Cosmic Inflation paradigm really explains the initial conditions for ΛCDM model or only
modifies the required initial conditions.

Historically, in 1981, Alan Guth [11] proposed the Cosmic Inflation paradigm as expo-
nential expansion of the Universe in a supercooled false vacuum state but he also recognized
that this model (now called as “old inflation”) has a problem of properly reheating in order
to generate radiation, known as graceful exit problem. One year later, in 1982, Andrei Linde
[52], Andreas Albrecht and Paul Steinhardt [53] refined it by proposing the slow-roll version
of inflation. In 1983, Linde [54] took next step further by removing the restriction of thermal
equilibrium in the early Universe and the form of potential to be almost arbitrary provided
having sufficiently flat region (now called as “chaotic inflation”).

Before the discovery of dark energy, astronomers had incorrectly assumed that Ω ≈ 0.3,
which compelled inflationary theorists to tweak their theorywithout success. In 1998, thefirst
direct observational evidence for dark energy came from accelerated expansion of supernovaby
Saul Perlmutter, Brian Schmidt and Adam Riess [55, 56]. This groundbreaking discovery led
to the 2011 Nobel Prize in Physics and revived significant interest in the Cosmic Inflation pa-
radigm. Since then, it has gained increasing popularity because its generic form provides very
good explanation for observations such as: i) Flat Universe, ii) Gaussian and adiabatic per-

16The volume ratio obtained from physical length vs. horizon scale at the last scattering surface is ≈ 106 .
17Unless we assume initial condition of a flat geometry where Ω(a) is exactly 1, the deviation from flatness is

more and more constrained from both sides as we look further to the past: ∣Ω(aPlanck) − 1∣ ≤ O(10−61) .
18This line of thought seems to alignwithwhat Einstein proclaimed, “What I’m really interested in is whether

God could have made the world in a different way.”
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turbation, iii) Nearly scale-invariant spectrum of density and iv) Specific peaks in the CMB’s
spectrum [13].

At this moment, the primordial B-mode polarization – Cosmic Inflation’s “smoking-gun”
signature – has not been confirmed either by Planck-2015 experiment [7] or BICEP2 and
Keck Array collaborations [12]. On the one hand, there have been raised concerns toward the
Cosmic Inflation paradigm from technical aspects such as unlikeliness problem, new initial
conditions problem, new measure problem [57–59] to a range of unresolved concepts: the
entropy problem [60], the Liouville problem [61], the multiverse unpredictability problem
[62, 63]. On the other hand, Linde and Guth [13, 64, 65] argued that “cosmic inflation is on
stronger footing than ever” while insisting that a class of chaotic inflation’s potential such as

V(ϕ) = 1
2
m2ϕ2(1 − aϕ + a2bϕ2)2 .

can easily match Planck’s constraint on As ,ns and r by using free parameters m,a and b in
above potential, even with non-discovery of primordial B-mode polarization [66–69].

Within our best knowledge, dust at this fierce battle19 between two camps still has not
settled down. Until now, theCosmic Inflation paradigm remains as theorists’ best shot among
several other rival theories such as pre-Big-Bang scenario, string gas cosmology, matter bounce,
Ekpyrotic scenario, cosmology in Hořava-Lifshitz gravity and Galilean Genesis.

2.2.2 ⧫ Conditions for Cosmic Inflation

During decelerating expansion, the increasing comovingHubble radius, 1/(aH), is associated
with an increasing comovingparticle horizon. That iswhy the terms “comovingHubble radius”
and “comoving particle horizon” were used interchangeably although they are not the same
concepts. This also implies comoving scales entering the horizon today have been far outside
the horizon at CMB decoupling that they can not be causally connected unless we assume
they were already homogeneous as initial conditions or invoke super-luminal propagation.

Cosmic Inflation paradigm suggests another scenario. The situation is radical different
during the inflationary period: the Universe undergoes accelerating expansion and so the co-
moving Hubble radius instead shrinks!

As shown in (Fig. 2.3), the proposed solution to both the horizon problem and flatness

19The renown mathematical physicist Roger Penrose went as far as to make a remark during day three of the
CMB@50 conference as “inflation is falsifiable and in fact has been falsified! […]BICEP did awonderful service
by bringing all the Inflation-ists out of their shell, and giving them a black eye.”
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Figure 2.3: Evolution of the comoving Hubble radius, 1/(aH), in the inflationary Universe. The comoving Hubble

sphere shrinks during inflation and expands during the conventional Big Bang evolution (at least until dark energy

takes over). Conformal time during inflation is negative. The spacelike singularity of the standard Big Bang is

replaced by the reheating surface: rather than marking the beginning of time, τ = 0 now corresponds to the

transition from inflation to the standard Big Bang evolution. All points in the CMB have overlapping past light cones

and therefore originated from a causally connected region of space [70].

problem is the shrinking of Hubble sphere.20 It gives “more conformal time” enough for pre-
viously mentioned ≈ 106 patches to be causally connected in the past and also exponentially
spreads out any primordial curvature. Assuming the Grand Unified Theory (GUT) energy
scale of inflationary period, we can calculate backward and obtain the required duration in

20Originally, inflation idea came to Guth in 1980 while he was investigating why no magnetic monopoles
are seen today. Cosmic Inflation solves monopole problem and flatness problem by the same mechanism. The
monopole is conjectured to be abundantly produced using various hypothetical Grand Unified Theories at high
temperature. This monopole problem however, arguably has a sense of “preventive medicine that is 100% ef-
fective against a disease that doesn’t exist.”
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terms of number of e-foldings:21

N ≡ ln( aend

astart
) ≳ 60 . (2.34)

In flat FLRW metric, the following conditions for Cosmic Inflation period are equivalent: i)
Shrinking Hubble sphere d

dt (
1
aH) < 0, ii) Accelerated expansion d2a

dt2 > 0, iii) Small fractional
change of Hubble parameter ε = − Ḣ

H2 < 1 and iv) Negative pressure p < − 1
3ρ .

2.2.3 ⧫ The Scalar Field Model

Theordinarymatter doesnot satisfy the above negative pressure condition (violation of Strong
Energy Condition) and therefore can not produce the accelerating expansion of the Universe.
The simplest form of energy that can give rise to such a behavior is the cosmological constant.
However, a pure cosmological constant is negligible in the early Universe and can not grace-
fully exit from inflation.

The simplest models of inflation involve a single hypothetical scalar field ϕ – the inflaton.
Although the physical nature of the field ϕ is still unknown, we simply use it as an order para-
meter (or a clock) to parameterize the time evolution of the inflationary energy density. The
dynamics of a scalar field minimally-coupled to gravity is governed by the following action :

S = ∫ d4x
√−g [ 1

2
R − 1

2
gµν∂µϕ ∂νϕ − V(ϕ)] = SEH + Sϕ . (2.35)

The action (2.35) is the sumof the gravitational Einstein-Hilbert action, SEH, and the action of
a scalar fieldwith canonical kinetic term, Sϕ. ThepotentialV(ϕ)describes the self-interactions
of the scalar field.

We obtain the energy-momentum tensor for the scalar field using:

T(ϕ)µν ≡ −
2
√−g

δSϕ
δgµν

= ∂µϕ∂νϕ − gµν (
1
2
∂σϕ∂σϕ + V(ϕ)) . (2.36)

The inflaton’s equation of motion is:

δSϕ
δϕ
= 1
√−g

∂µ(
√−g∂µϕ) + V,ϕ = 0 , (2.37)

21Weused the following relationduring inflation: ∣Ω(aend)−1∣∣Ω(astart)−1∣ = (
aend
astart
)
−2
= e−2N and the constraint at Planck

scale ∣Ω(aend) − 1∣ ≤ O(10−61) .
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where V,ϕ = dV
dϕ . Assuming the flat FLRW metric (2.2) and restricting to the case of a homo-

geneous field ϕ(t, x) ≡ ϕ(t), the scalar energy-momentum tensor takes the form of a perfect
fluid (2.20) with:

ρϕ =
1
2
ϕ̇2 + V(ϕ) , (2.38)

pϕ =
1
2
ϕ̇2 − V(ϕ) . (2.39)

The resulting equation of state is:

wϕ ≡
pϕ
ρϕ
=

1
2 ϕ̇2 − V
1
2 ϕ̇2 + V

, (2.40)

shows that a scalar field can lead to negative pressure (wϕ < 0) and accelerated expansion
(wϕ < −1/3) if the potential energy V dominates over the kinetic energy 1

2 ϕ̇2.
The dynamics of the (homogeneous) scalar field and the FLRW geometry is determined

by”

ϕ̈ + 3Hϕ̇ + V,ϕ = 0 and H2 = 1
3
( 1
2
ϕ̇2 + V(ϕ)) . (2.41)

For large values of the potential, the field experiences significantHubble friction from the
term Hϕ̇. The acceleration equation for a Universe dominated by a homogeneous scalar field

reheating

Figure 2.4: Example of a slow-roll inflationary potential. Acceleration occurs when the potential energy of the

field, V(ϕ), dominates over its kinetic energy, 12 ϕ̇
2. Inflation ends at ϕend when the kinetic energy has grown to

become comparable to the potential energy, 12 ϕ̇
2 ≈ V . CMB fluctuations are created by quantum fluctuations δϕ

about 60 e-folds before the end of inflation. During reheating period, the energy density of the inflaton is converted

into converted into a thermal mix of elementary particles [45].
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can be written as follows:

ä
a
= − 1

6
(ρϕ + 3pϕ) = H2(1 − ε) , (2.42)

where

ε ≡ 3
2
(wϕ + 1) =

1
2
ϕ̇2

H2 . (2.43)

The so-called slow-roll parameter εmay be related to the evolution of the Hubble parame-
ter as:

ε = − Ḣ
H2 = −

d lnH
dN

, (2.44)

where we have used dN = Hdt to transform time variable into e-fold variable. Accelerated
expansion occurs if ε < 1. In the de Sitter limit, pϕ → −ρϕ corresponds to ε → 0. In this case,
the potential energy dominates over the kinetic energy: ϕ̇2 ≪ V(ϕ). Accelerated expansion
will only be sustained for a sufficiently long period of time if the second time derivative of ϕ is
small enough:

∣ϕ̈∣ ≪ ∣3Hϕ̇∣ , ∣V,ϕ∣ . (2.45)

This requires smallness of a second slow-roll parameter:

η = − ϕ̈
Hϕ̇
= ε − 1

2ε
dε
dN

, (2.46)

where ∣η∣ < 1 ensures that the fractional change of ε per e-fold is small.
The slow-roll conditions, ε, ∣η∣ < 1, may also be expressed as conditions on the shape of

the inflationary potential:

єv(ϕ) ≡
1
2
(
V,ϕ

V
)
2

, (2.47)

and
ηv(ϕ) ≡

V,ϕϕ

V
. (2.48)

In the slow-roll regime:
єv , ∣ηv∣≪ 1 , (2.49)

the background evolution is:

H2 ≈ 1
3
V(ϕ) ≈ const and ϕ̇ ≈ −

V,ϕ

3H
. (2.50)
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and the spacetime is approximately de Sitter. Inflation therefore realized as:

a(t) ∼ eHt . (2.51)

The parameters єv and ηv are called the potential slow-roll parameters to distinguish them
from the Hubble slow-roll parameters ε and η. In the slow-roll approximation the Hubble and
potential slow-roll parameters are related as follows:

ε ≈ єv , η ≈ ηv − єv . (2.52)

Inflation ends when the slow-roll conditions are violated:

ε(ϕend) ≡ 1 , єv(ϕend) ≈ 1 . (2.53)

The number of e-folds before inflation ends is:

N(ϕ) ≡ ln
aend
a

= ∫
tend

t
Hdt = ∫

ϕend

ϕ

H
ϕ̇
dϕ ≈ ∫

ϕ

ϕend

V
V,ϕ

dϕ , (2.54)

where we used the slow-roll results (2.50). The result (2.54) may also be written as

N(ϕ) = ∫
ϕ

ϕend

dϕ√
2ε
≈ ∫

ϕ

ϕend

dϕ√
2єv

. (2.55)

As mentioned before, we need the total number of inflationary e-folds exceeds about 60
to solve the horizon and flatness problems. The precise value depends on the energy scale of
inflation and on the details of reheating after inflation.22 Therefore, above integral can be used
to approximate the corresponding field value ϕcmb

∫
ϕcmb

ϕend

dϕ√
2єv
≈ 60 . (2.56)

22Theunknownenergy scale of inflation andunknownmechanismof reheating process havemotivated variety
of models of inflation in the literature.
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2.3 ∎ PERTURBATIONS DURING INFLATION

The idea from Cosmic Inflation paradigm is that the structure we observe today, such as the
CMB anisotropies and the galaxy distribution, formed starting from tiny quantum fluctuati-
ons set during inflationary period and later enhanced by gravitational instability. These pri-
mordial fluctuations are microscopic quantum vacuum fluctuations in the inflaton field. Du-
ring inflation, they were stretched and imprinted on superhorizon scales by the accelerated
expansion. Metric perturbations outside the horizon are preserved because there is no causal
physics available.23 These density fluctuations reentered the horizon after inflation ended and
served as initial conditions for the anisotropy and the growth of structure in the Universe.

Because the anisotropies in the CMB is of order O(10−5), it is a very good approxima-
tion to split all quantities X(t, x) (metric gµν and matter fields Tµν → ϕ ρ, p, etc.) into a
homogeneous background X̄(t) that depends only on cosmic time and a spatially dependent
perturbation:

δX(t, x) ≡ X(t, x) − X̄(t) . (2.57)

According toEinstein equations, inhomogeneities in thematter distribution induce themetric
perturbations and vice versa. Expanding the Einstein equations at linear order, δX ≪ X̄, we
have:

δGµν = δTµν . (2.58)

During inflation we define perturbations around the homogeneous background solutions for
the inflaton ϕ̄(t) and the metric ḡµν(t) as:

δϕ(t, x) = ϕ(t, x) − ϕ̄(t) , hµν ≡ δgµν(t, x) = gµν(t, x) − ḡµν(t) . (2.59)

These perturbations can be decomposed into the Scalar, Vector andTensor (SVT) parts accor-
ding to Lifshitz’s approach [71]. In the linear approximation, different types of perturbations
evolve independently and can be analyzed separately.24 The understanding of perturbations’
behavior allow us to obtain the power spectra of both scalar and tensor fluctuations during
inflation.

23This is valid only when there are no anisotropic stress fluctuations.
24Steven Weinberg’s “Cosmology” textbook is an excellent resource for this part [43].
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Metric Perturbations

The metric of a flat homogeneous and isotropic FRW universe with tiny perturbations can be
presented according to the SVT decomposition theorem as:

ds2 = gµνdxµdxν

= −(1 + 2ϕ)dt2 + 2aBidx idt + a2[(1 − 2ψ)δi j + Ei j]dx idx j . (2.60)

According to the SVT decomposition, we can represent Bi and Ei j as:

Bi ≡ ∂iB − Si , ∂iSi = 0 , (2.61)

and
Ei j ≡ 2∂i jE + 2∂(iF j) + hi j, ∂iFi = 0, h i

i = ∂ihi j = 0 . (2.62)

We call ϕ, ψ, Bi and Ei j the lapse function, spatial curvature, shift vector and shear tensor re-
spectively. The vector perturbations Si and Fi are not created by inflation and decay as a−2

with the expansion of the Universe.25

Matter Perturbations

For a perfect fluid, we would have:

Tµν = (ρ + p)uµuν + pgµν , (2.63)

with the timelike velocity 4-vector uµ ≡ dxµ
dτ and the normalization condition

gµνuµuν = −1 , (2.64)

which gives δu0 = δu0 = h00/2 while δui is an independent dynamical variable. Note that
δuµ ≡ δ(gµνuν) is not givenby ḡµνδuν .Thefirst order perturbation to the energy-momentum

25The case is different when there is vector source. For this reason we ignore vector perturbations in the case
of flat FLRW metric.
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tensor for a perfect fluid is:

δTi j = p̄hi j + a2δi jδp , (2.65)

δTi0 = p̄hi0 − (ρ̄ + p̄)δui , (2.66)

δT00 = −ρ̄h00 + δρ . (2.67)

Using δT µ
ν = ḡµλ[δTλν − hλκT̄κ

ν ], the perturbed mixed components are:

δT0
0 = −δρ , (2.68)

δT0
i = (ρ̄ + p̄)δui , (2.69)

δT i
0 = a−2(ρ̄ + p̄)(hi0 − δui) , (2.70)

δT i
j = δ ij(δp) + Σi

j , (2.71)

where Σi
j called anisotropic stress perturbation characterizes departures from the perfect fluid

form of the energy-momentum tensor.

Gauge-Invariant Variables

The gauge transformation on the unperturbed FLRW metric and energy-momentum tensor
will introduce unphysical perturbations.26 Therefore, we need to either fix the gauge27 to re-
move those extra degrees of freedom or choose to work only with special combinations of
metric and matter perturbations called gauge-invariant variable [72].
Scalar Perturbations:
There are two different sources for the scalar perturbations: One comes from the scalar com-
ponents of the metric, the other one comes from the scalar components of the matter field
perturbations. By combining these transformations, we have the following gauge invariant
quantities:

Curvature Perturbation on Uniform-Density Hypersurfaces: Geometrically, this measures
the spatial curvature of the constant-density hypersurfaces:

−ζ ≡ ψ + H
ρ̇
δρ . (2.72)

26This complication comes from the arbitrariness in choosing the way to map points on two different spaceti-
mes: perturbed and unperturbed spacetime.

27There are various gauges like Newtonian gauge, synchronous gauge, co-moving gauge, constant density
gauge, etc. from which we can pick and also do conversion to facilitate the computation in different cases.
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ComovingCurvaturePerturbations: Geometrically, this is the curvatureperturbations that
is transverse to the comoving world lines:

R ≡ ψ − H
ρ + p

δq . (2.73)

Entropic Perturbation: This is the non-adiabatic part of the pressure:

δpnad = δp − δpad

= δp − ṗ
ρ̇
δρ . (2.74)

Note that there is a very important properties of ζ: for the adiabatic matters, where δpnad = 0,
it remains constant outside the horizon.

Comoving Density: This is the difference between the energy density and the scalar part
of the 3-momentum, q:

δρm = δρ − 3Hδq . (2.75)

Mukhanov-Sasaki Variable: This is the field perturbation in the flat gauge, i.e. ψ = 0, and
has the following definition:

δϕψ ≡ δϕ +
ϕ̇
H
ψ . (2.76)

Note that, in the case of single field inflation, the 3-momentum is given by δq = −ϕ̇δϕ. So we
obtain:

R ≡ ψ + H
ϕ̇
δϕ . (2.77)

We also have:
δρ/ρ̇ ≃ δϕ/ϕ̇ . (2.78)

Therefore, in this case, ζ and R are equal to each other.
Vector Perturbations:
In general case, there are two different sources for the vector perturbations. For a FLRWback-
ground, we can safely assume that there is no pure vectors in the matter sector and thus we are
only left with the vector perturbations in the metric sector. This assumption does not hold
when we consider the anisotropic Universe.
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The vectorial part of the metric perturbation is:

ds2 = −dt2 − 2a(t)Sidx idt + a2(t)[δi j + 2F(i , j)]dx idx j , (2.79)

where Si and Fi are divergence free vectors. The gauge invariant combination is Ḟi + Si/a.
Thismeans among 4 degrees of freedom for these two vectors, there are only two independent
components.
Tensor Perturbations:
The tensorial part of the metric is:

ds2 = −dt2 + a2(t)[δi j + hi j]dx idx j , (2.80)

where hi j are transverse, i.e. hi j,i = 0, and traceless, i.e. h i
i = 0. Tensor perturbations are gauge

invariant.

2.3.1 ⧫ Equations for Cosmological Perturbations

Scalar Perturbations

Byusing theEinstein field equations, we can correlate themetric perturbationswith thematter
field perturbations. We then have the following equations for the scalar perturbations:

3H (ψ̇ +Hϕ) + k2

a2
[ψ +H (a2Ė − aB]) = −4πGδρ , (2.81)

ψ̇ +Hϕ = −4πGδq . (2.82)

Combining above equations, we have:

k2

a2
Ψ = −4πGδρm , (2.83)

which is a gauge invariant generalization of the Poisson equation.

In addition, the spatial parts of the Einstein Field equations gives the following equations:

ψ̈ + 3Hψ̇ +Hϕ̇ + (3H2 + 2Ḣ)ϕ = 4πG (δp − 2
3
k2δΣ) , (2.84)

(Ė − B/a). + 3H (Ė − B/a) + ψ − ϕ
a2
= 8πGδΣ . (2.85)
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where the anisotropic stress is:

δΣi j = [∂i∂ j + (k2/3)δi j]Σ . (2.86)

If we rewrite Eqn. (2.85) in the longitudinal gauge, i.e. E = B = 0:

Ψ −Φ = 8πGa2δΣ . (2.87)

We can see that in the absence of the anisotropic stress, we have, Ψ = Φ.

By using the covariant conservation of the energy-momentum tensor, i.e. ∇µT µν = 0, we
can obtain relation between different perturbations as:

δρ̇ + 3H (δρ + δp) = k2

a2
δq + (ρ + p) [3ψ̇ + k2 (Ė + B/a)] , (2.88)

δq̇ + 3Hδq = −δp + 2
3
k2δΣ − (ρ + p)ϕ . (2.89)

This gives us the continuity equation and Euler equations respectively.

We can now rewrite Eqn. (2.88) in terms of the curvature perturbation, ζ , as:

ζ̇ = −H δpnad
ρ + p

−Π , (2.90)

where Π is the scalar shear along the comoving world-lines and can be measured with respect
to the Hubble rate as:

Π
H
= − k2

3H
{Ė − (B/a) + δq

a2(ρ + p)
}

= − k2

3a2H2 ζ −
k2Ψ
3a2H2 [1 −

2ρ
9(ρ + p)

k2

a2H2 ] . (2.91)

In the case of scalar field Lagrangian:

L = − 1
2
gµνϕ,µϕ,ν − V(ϕ) , (2.92)
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We can find the energy density, pressure and the momentum density as:

δρ = [ϕ̇ (δ̇ϕ − ϕ̇ϕ) + V,ϕδϕ] , (2.93)

δp = [ϕ̇ (δ̇ϕ − ϕ̇ϕ) − V,ϕδϕ] , (2.94)

δq,i = −∑
I
ϕ̇δϕ,i . (2.95)

Using above equations, we can calculate the gauge invariant comoving energy density as:

δρm = [ϕ̇ (δ̇ϕ − ϕ̇ϕ) − ϕ̈δϕ] . (2.96)

In addition, we can show that for the single field inflation the non-adiabatic perturbation is
proportional to the comoving energy density

δpnad = −
2V,ϕ

3Hϕ̇
δρm . (2.97)

On the other hand, according to Eqn. (2.83), since for the finite value of theΨ, the comoving
energy density is zero on the super-horizon scales, we can conclude that the perturbations are
adiabatic in this limit. Using those relations, we can finally find the equation of motion for
the scalar perturbations as:

δ̈ϕ + 3Hδ̇ϕ + k2

a2
δϕ + Vϕϕδϕ = −2Vϕϕ + ϕ̇ [ϕ̇ + 3ψ̇ +

k2

a2
(a2Ė − aB)] . (2.98)

Vector Perturbations

The vectorial part of the anisotropic stress is:

δΣi j = ∂(iΣ j) , (2.99)

Σi ,i = 0 . (2.100)

In this case, there are only two Einstein equations:

˙δqi + 3Hδqi = k2δΣi , (2.101)

k2(Ḟi + Si/a) = 16πG δqi . (2.102)
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In the absence of anisotropic stress tensor, δqi and the gauge invariant combination, Ḟi +Si/a,
are diluted by the expansion of the Universe. The vector perturbations hence suppressed.

Tensor Perturbations

In this case, the anisotropic stress plays the role of the source. In the absence of anisotropic
stress tensor, the equation of motion for the tensor part is:

ḧ + 3Hḣ + k2

a2
h = 0 . (2.103)

Eqn. (2.103) is the only equations which governs the evolution of the tensor components and
describes the evolution of the tensor mode in an expanding Universe.

We have briefly built up prerequisites by reviewing assumptions and basic equations star-
ting from standardBigBang cosmology until the formalism for calculation of spectrumpertur-
bation inCosmic Inflation. Further details about primordial power spectrumof the scalar and
tensor modes are given in Appendix A while the evolution of perturbations during inflation
are given in Appendix B.



“My goal is simple. It is a complete understanding of the Universe,
why it is as it is and why it exists at all.”

Stephen W. Hawking

3
The vector models in cosmic inflation

The 2006 Nobel prize in Physics was awarded jointly to John C. Mather and George
F. Smoot ”for their discovery of the blackbody form and anisotropy of the cosmic microwave
background radiation.” FromCOBE (Cosmic Background Explorer) data, we discovered that
the CMB is very smooth but it is not completely smooth. Assuming its statistical significance,
this feature therefore demands explanation from the standard phase of early inflation.

3.1 ∎ CMB OBSERVATION AND INFLATIONARY PERIOD

We briefly describe here how CMB observations can be related to the primordial value of ζ
after taking into account appropriate transfer functions to describe the sub-horizon evolution
of the fluctuations. First of all, we need to figure out how ζ and h are related to the observables.
Then, we also need to take into account the possible evolution of these parameters as soon as
they have entered the horizon. Generically we can write:

Qk(τ) = TQ(k, τ, τ∗)ζk(τ∗) , (3.1)

where τ∗ denotes the moment of the horizon crossing and TQ refers to the transfer function
between the time of horizon re-entry till the time of the observation, τ. The parameterQ may
be the temperature of the CMB and the goal is to use the CMB data to put constrains on the
primordial curvature power spectrum.
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For this purpose, it is convenient to use the harmonic expansion of the CMB map as:

Θ(n̂) ≡ ∆T(n̂)
T0

=∑
ℓm

aℓmYℓm(n̂) , (3.2)

where n̂ denotes the direction in the sky and aℓm is given by:

aℓm = ∫ dΩY∗ℓm(n̂)Θ(n̂) . (3.3)

Here, Yℓm(n̂) are the standard spherical harmonics and the magnetic quantum numbers sa-
tisfy m = −ℓ, . . . ,+ℓ. We can then combine the multipole moments aℓm and calculate the
rotationally-invariant angular power spectrum as:

CTT
ℓ =

1
2ℓ + 1∑m

⟨a∗ℓmaℓm⟩ , or ⟨a∗ℓmaℓ′m′⟩ = CTT
ℓ δℓℓ′δmm′ . (3.4)

Theangular power spectrum is a very important tool in the statistical analysis ofCMB.Because
CMB temperature fluctuations are dominated by the curvature perturbation, ζ , the transfer
function,∆Tℓ(k), correlates the curvature perturbation to that of the temperature fluctuation,
∆T through an integral over the k-space as:

aℓm = 4π(−i)ℓ ∫ d3k
(2π)3

∆Tℓ(k) ζk Yℓm(k̂) . (3.5)

Plugging Eq. (3.5) back into Eq. (3.4) and using the following identity:

ℓ

∑
m=−ℓ

Yℓm(k̂)Yℓm(k̂′) =
2ℓ + 1
4π

Pℓ(k̂ ⋅ k̂′) , (3.6)

we obtain
CTT

ℓ =
2
π ∫ k2dkPζ(k)∆Tℓ(k)∆Tℓ(k) . (3.7)

For a generic value of ℓ, the transfer functions are obtained numerically and the results depend
on the background cosmology. So for a fixed background, the shape of the power-spectrum
(according to Planck data, kp ≃ 0.05Mpc−1) give us information about the initial spectrum,
coming from the inflationary Universe:

Pζ(kp) = 2.4 × 10−9 . (3.8)
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3.2 ∎ CMB ANOMALIES

TheCMB observations are in very good agreement with the suggestion from cosmic inflation
paradigm. However, a number of studies of the data have obtained some features which seem
to be anomalous within this picture. The most well-known among these features are: the low
power in the quadrupolemoment [15–19], the alignment of the lowestmultipoles and claims
of statistical anisotropy [19–25], an asymmetry in power between the northern and southern
hemispheres [26–32] and a non-Gaussian deviation in the southern hemisphere, known as
the “cold-spot” [33–38].

Figure 3.1: Two Cosmic Microwave Background anomalous features hinted at by Planck’s predecessor, NASA’s

Wilkinson Microwave Anisotropy Probe (WMAP), are confirmed in the new high precision data from Planck. One is

an asymmetry in the average temperatures on opposite hemispheres of the sky (indicated by the curved line), with

slightly higher average temperatures in the southern ecliptic hemisphere and slightly lower average temperatures in

the northern ecliptic hemisphere. This runs counter to the prediction made by the standardmodel that the Universe

should be broadly similar in any direction we look. There is also a cold spot that extends over a patch of sky that is

much larger than expected (circled). In this image the anomalous regions have been enhanced with red and blue

shading to make them more clearly visible.

Although the statistical significance of these effects has been debated extensively in the
literature, they has increased in the latest studies. For anomalous alignment: the probability
for the obvious alignment to happen by chance is around 0.1%. In addition, the ecliptic plane
seems to be correlated to this alignment, and separates a hot spot in the northern sky and a
cold spot in the south. Up to today, there is no explanation for this correlation. For power
asymmetries in the CMB: No known systematic effects or foregrounds are found to be able
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to explain this asymmetry. For local features such as “cold-spot”: Systematics or foreground
effects were ruled out to be responsible for this local feature, and its chance to happen acci-
dentally is around or less then 1%, depending on the type of the analysis [26, 73, 74]. The
possibility that these unexplained features actually exist in the CMB has motivated theoreti-
cal cosmologists to extend Cosmic Inflation paradigm by including higher spin fields such as
vector fields, spinors and p-forms. It seems that the most straightforward and simplest next
step in making extension would be vector fields. However, this task is highly non-trivial.

3.3 ∎ THE INSTABLE VECTOR FIELD MODELS

One can obtain prolonged anisotropic inflationary solutions by introducing some ingredients
that violate the premises of Wald’s theorem [75]. This has been realized through the addition
of quadratic curvature invariants to the gravity action, with the use of theKalb-Ramond axion,
or of vector fields.

Thefirst one among studies on vector fields during inflation is theAckerman-Carroll-Wise
(ACW) model, where the vector field is forced to have a fixed norm through a Lagrange mul-
tiplier field. This model has attracted considerable attention, since it has a simple background
solution and a controllable anisotropy. However, it was shown in [40] that instabilities arise
when the perturbations cross the horizon scale. This is due to the longitudinal vector pola-
rization becomes a ghost at this moment. For the models where vector field non-minimally
coupled to the curvature, the same problem of negativemass squared term and therefore ghost
associated with its instability. This is because the requirements of slow-roll in the case of the
vector curvaton leads again to negative mass squared term [39, 41].

The existence of ghost makes it hard to cure the model even if we assume that the mo-
del could be regularized above a certain scale such that the theory with the ghost is only an
effective one.1 There are however stringent experimental constraints on an effective theory
with ghosts, coming from the amount of observed gamma ray background and the cut-off
scale satisfies ΛUV ≲ MeV when the ghost has only gravitational couplings to matter [76].
The limit is even more stringent when there are stronger couplings. Inflationary physics takes
place at much higher energy scales than MeV, therefore the inflationary predictions based on
such models are still questionable.

1Another way out is to straight away provide the UV completion of the theory. However, this is a very hard
task. For instance, in the Higgs mechanism, the field responsible for the mass would need to be itself a ghost.
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3.4 ∎ STABLE MODEL BUILDING APPROACH

In previous sections, we have seen that the firstly proposed vector field models for cosmic in-
flation are unstable due to the presence of ghost. Motivated by the flexibility of simple chaotic
inflation model using potential V(ϕ) = 1

2m2ϕ2 + V0 , we attempt to build stable vector field
models by making sure that the mass squared term m2 in our potential remains real and posi-
tive during the whole inflation period.

In order to build stable models in simple form for vector field cosmic inflation, we first
establish our base by obtaining known behaviors from single scalar field case in chaotic cosmic
inflation model. The subtleties in initial conditions (ϕ̇)0 that satisfy slow-roll constraints and
positive branch selection of the Hubble parameter are also addressed. Next, bringing along
this knowledge, we move in similar way toward our goal of building up a stable vector field
model for cosmic inflation. We obtain results aligned with our original goal: our stable vector
field model can indeed provide required slow-roll inflation period longer than 60 e-folds.

Furthermore, we observe a new behavior, the inflation period does not end like the single
scalar field case and instead goes on infinitely. This is because there is an important distinction
from the single scalar field case: the “clock” parameter ξ in vector field case does not reach the
chaotic potential’s minimum in finite time as the “clock” parameter ϕ in single scalar field case.
Therefore, we continue to investigate further by introducingminimal additionalmodifications
at the endof inflation period to the original chaotic potential.2 Weobtain next results showing
that our stable vector fieldmodels provide inflationperiod longer than60 e-folds thenproceed
to exit as expected. Finally, we also briefly show the stability analysis of our models through
different approaches.

3.4.1 ⧫ The scalar model as our base

The action for single scalar field in cosmic inflation model is:

S = ∫ d4x
√−g [− 1

2
gµν∂µϕ∂νϕ − V(ϕ)] . (3.9)

For single scalar field in chaotic inflation model, the potential is:

V(ϕ) = 1
2
m2ϕ2 + V0 , (3.10)

2Although this move seems to be ad hoc/artificial and the result potentials are slightly more complicated
than the original one, it is not a rare practice given the still unknown reheating era after inflation period.
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which gives:
∂V
∂ϕ
= m2ϕ . (3.11)

In order to obtain evolution of inflaton ϕ and Hubble parameter H, we need to solve the
following system of coupled non-linear differential equations:3

ϕ̈ + 3Hϕ̇ + ∂V
∂ϕ
= 0 , (3.12)

1
2
(ϕ̇)2 + 1

2
m2ϕ2 + V0 − 3H2 = 0 . (3.13)

We work in e-fold variable instead of time variable in order to directly verify the required
amount of more than 60 e-folds during inflation period. The relationship between e-fold
variable and time variable is dN = Hdt, which gives:

ϕ̇ = H(∂Nϕ) , (3.14)

ϕ̈ = H2(∂NNϕ) + (∂Nϕ)H(∂NH) . (3.15)

Using these relations for e-fold variable, our system of non-linear coupled partial differential
equations is:

∂NNϕ + (3 +
∂NH
H
) ∂Nϕ +

1
H2

∂V
∂ϕ
= 0 , (3.16)

1
2
H2(∂Nϕ)2 +

1
2
m2ϕ2 + V0 − 3H2 = 0 . (3.17)

According to equation 2.55, the initial value of the inflaton (ϕ)0 can be determined from the
required 60 e-folds duration of the inflation period.4 Given the calculated value of (ϕ)0, we
can specify the initial values of (∂Nϕ)0 and H0. At the beginning of inflation, the slow-roll
conditions are in effect, we have:

ε = − Ḣ
H2 = −

∂NH
H
< 1 , (3.18)

η = − ϕ̈
Hϕ̇
= −

∂NNϕ + (∂Nϕ) ( ∂NHH )
∂Nϕ

< 1 . (3.19)

3They are the equation of motion for inflaton ϕ and the Friedmann equation.
4In this case, we have (ϕ)0 =

√
4 × 60.
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Using the above constraints to simplify equation 3.16, we can selectively obtain the initial real
values of (∂Nϕ)0 and H0 by solving the following algebraic system of equations:5

3(∂Nϕ)0 +m2 ϕ0

H0
2 = 0 , (3.20)

1
2
(∂Nϕ)02H0

2 + 1
2
m2ϕ0

2 + V0 − 3H0
2 = 0 . (3.21)

The value of V0 and m are free parameters in the single scalar field model. They can be deter-
mined when we know the energy scale of the inflation period. In the range of GUT scale, we
picked 6 their values in reduced Planck mass framework to beV0 = 5× 10−15 andm = 5× 10−8.

The calculated results below show expected behaviors from the single scalar field model.
Inflation ends when the slow-roll conditions are violated. The graphs therefore show that the
model provides stable evolution and graceful exit after required amount of 60 e-folds duration.
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Figure 3.2: Single scalar field in chaotic inflation model: The evolution of the inflaton ϕ and Hubble parameter H
during inflation period. The model provides stable evolution and graceful exit after required amount of 60 e-folds
duration.

Wealso observed the discrepancy between twodefinitions of η. We adapted the definition
η ≡ −ϕ̈Hϕ̇ because its straightforward extension to the case of vector field models in anisotropic
background.

5Note that we have to select the positive branch of the Hubble parameterH due to the appearance of theH2

term in our equations.
6The value of V0 needs to be nonzero if we use e-fold variable due to the diverged behavior at zero value of

the Hubble parameterH. We have also verified this behavior by re-solving this same system of equations in time
variable when V0 = 0.
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Figure 3.3: Single scalar field in chaotic inflation model: The evolution of the slow-roll parameters: є and η during

inflation period. Inflation ends when the slow-roll conditions are violated.
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Figure 3.4: Single scalar field in chaotic inflation model: The evolution of different definitions of the second slow-roll

parameter η ≡ − ϕ̈
Hϕ̇ = −

∂NNϕ+(∂Nϕ)(
∂N ϕ
H )

∂Nϕ
and η̃ ≡ 1

H
ε̇
ε =

−∂NNH+
(∂NH)2

H
−∂NH during inflation period.

3.4.2 ⧫ The vector field model in simple form

Following the pioneer paper on building vector field model [77], we choose the Lagrangian
for vector field in cosmic inflation model as:7

L = 1
4
FµνFµν + V(ξ) , (3.22)

where Fµν = ∂µAν − ∂νAµ , ξ = AαAα and V is a “potential”.

Motivated by the flexibility of chaotic inflation model, we started with the potential:

V(ξ) = 1
2
m2ξ + V0 , (3.23)

7The behavior of the system remains the same if wemultiply its Lagrangian by a scalar. Nowadays, we usually
see such Lagrangian instead written as: L = − 1

4FµνF µν − V(ξ) .
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which gives:
∂V
∂ξ
= 1
2
m2 . (3.24)

The energy momentum tensor is:

Tµν = FµβF
β
ν −

1
4
gµνFαβFαβ − gµνV + 2(∂ξV)AµAν . (3.25)

From this energy momentum tensor and assuming a perfect fluid case, we obtain the energy
density and pressures for the vector field:

ρ = T0
0 =

1
2
Ȧz

2

b2
+ V ,

pz = T3
3 = −ρ + 2ξ(∂ξV) ,

px = py = T 1
1 = T2

2 =
1
2
Ȧz

2

b2
− V , (3.26)

where

ξ = Az
2

b2
. (3.27)

Because the stress tensor need not be isotropic, the spacetime will not be the usual FLRW
metric. For our purpose, we assume the Bianchi type-I metric:

ds2 = −dt2 + a2(t)(dx2 + dy2) + b2(t)dz2 . (3.28)

The Christoffel symbols, Ricci tensor Rµν and Ricci scalar are routinely calculated from Bian-
chi type-I metric and give us following Einstein equations:

2
ȧ
a
ḃ
b
+ ȧ2

a2
= ρ , (3.29)

2
ä
a
+ ȧ2

a2
= −pz . (3.30)

The equation of motion for Aµ:

◻Aµ −∇ν(∇µAν) − 2(∂ξV)Aµ = 0 . (3.31)

We are interested in homogeneous solutions, so Aµ = Aµ(t).Therefore, equation for the only
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nonzero component Az becomes:

Äz + [2
ȧ
a
− ḃ
b
] Ȧz + 2(∂ξV)Az = 0 . (3.32)

In order to obtain the evolution of the vector field Az and the Hubble parametersHa andHb ,
we need to solve the following system of coupled non-linear partial differential equations:8

2
ȧ
a
ḃ
b
+ ȧ2

a2
−
⎡⎢⎢⎢⎢⎣

1
2
Ȧz

2

b2
+ V
⎤⎥⎥⎥⎥⎦
= 0 , (3.33)

2
ä
a
+ ȧ2

a2
+
⎡⎢⎢⎢⎢⎣
− 1
2
Ȧz

2

b2
− V + 2ξ(∂ξV)

⎤⎥⎥⎥⎥⎦
= 0 , (3.34)

Äz + [2
ȧ
a
− ḃ
b
] Ȧz + 2(∂ξV)Az = 0 . (3.35)

Because a(t) ≠ b(t) in Bianchi-type I metric, we now have two different Hubble parameters
Ha ≠ Hb . Although the e-fold variables derived from Ha , Hb or their combinations such
as (2Ha + Hb)/3 are equivalent, for facilitation in computation process, we pick the e-fold
variable as Nb which corresponds to dNb = Hbdt,. This gives us:

b = eNb , (3.36)

Ȧz = Hb(∂NbAz) , (3.37)

Äz = Hb
2(∂NbNbAz) + (∂NbAz)Hb(∂NbHb) . (3.38)

Using these relations for e-fold variable, our system of non-linear coupled partial differential
equations is:

2HaHb +Ha
2 − [ 1

2
(Hb

b
)
2

(∂NbAz)2 + V] = 0 , (3.39)

2Hb(∂NbHa) + 3Ha
2 + [− 1

2
(Hb

b
)
2

(∂NbAz)2 − V + 2(
Az

b
)
2

(∂ξV)] = 0 , (3.40)

∂NbNbAz +
∂NbHb

Hb
(∂NbAz) +

2Ha −Hb

Hb
(∂NbAz) + 2

Az

Hb
2 (∂ξV) = 0 . (3.41)

8They are the equation of motion for Az and the Einstein equations.
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The initial value of the vector field (Az)0 can be adjusted to obtain the required 60 e-folds
duration of the inflation period. Also, by observing the late time behavior of Ha and Hb that
they converge to the same asymptotic value9 of

√
V0/3, we can attempt to specify initial value

of Hb to be (Hb)0 = (1 − 1
β)
√
V0/3, where the value of β = 10 is chosen to influences the

behavior of the slow-roll parameters at the beginning of inflation. Given the value of (Az)0
and (Hb)0, we can specify the initial values of (∂NbAz)0 and (Ha)0. At the beginning of
inflation, the slow-roll conditions are in effect, we have:

εb = −
Ḣb

Hb
2 = −

∂NbHb

Hb
< 1 , (3.42)

η = − Äz

HbȦz
= −

∂NbNbAz + (∂NbAz) (
∂NbHb

Hb
)

∂NbAz
< 1 . (3.43)

Therefore, we can selectively obtain the initial real values of (∂NbAz)0 and (Ha)0 by solving
the following algebraic system of equations:10

2(Ha)0(Hb)0 + (Ha)02 − [
1
2
((Hb)0

1
)
2

(∂NbAz)02 + (V)0] = 0 , (3.44)

2(Ha)0 − (Hb)0
(Hb)0

(∂NbAz)0 + 2
(Az)0
(Hb)02

(∂ξV)0 = 0 . (3.45)

Similar to the single scalar field model, the value of V0 and m are free parameters. They can
be determined when we know the energy scale of the inflation period. In the range of GUT
scale, we picked 11 their values in reduced Planck mass framework to be V0 = 1 × 10−15 and
m = 4.5 × 10−9.

The calculated results below show behaviors of the vector field in chaotic inflation model.
The graphs show that the model can provide stable evolution for the required amount of 60
e-folds duration. We observe that the vector component Az and “clock” parameter ξ are sup-
pressed quickly due to the exponential term eNb in the denominator that represents b. We also
observe the confirmation of Wald’s cosmic no hair theorem [75] as the model settles down to

9This is the consequence of Wald’s cosmic no hair theorem [75] as the vector field Az → 0.
10Note that we have to select the positive branch of the Hubble parameter Ha due to the appearance of the

Ha
2 term in our equations.

11The value of V0 needs to be nonzero if we use e-fold variable due to the diverged behavior at zero value of
theHubble parameterHb . We have also verified this behavior by re-solving this same system of equations in time
variable when V0 = 0.
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isotropic expansion Ha = Hb when Az → 0.
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Figure 3.5: Vector field in chaotic inflation model: The evolution of the vector field Az and “clock” parameter ξ
during inflation period. The vector field Az does not reach the minimum of the potential in finite time while ξ
decreases exponentially but does not reach zero value.
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Figure 3.6: Vector field in chaotic inflation model: The evolution of the Hubble parameters Ha and Hb during

inflation period. We also observe the confirmation of Wald’s cosmic no hair theorem [75] as the model settles

down to isotropic expansionHa = Hb when Az → 0.
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The vector field Az does not reach the minimum of the potential in finite time while ξ
decreases exponentially but does not reach zero value. Therefore, inflation does not end and
the slow-roll conditions are maintained as shown.
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Figure 3.7: Vector field in chaotic inflation model: The evolution of the slow-roll parameters εa , εb and η during

inflation period. The slow-roll conditions are maintained and show that inflation does not end.

3.4.3 ⧫ The stable vector model for complete inflation period

Wehave successfully obtained slow-roll inflation for vectorfield in simple chaoticmodelwhich
provide the required amount of 60 e-folds duration. We are going to investigate further by
introducing minimal additional modifications at the end of inflation period to the original
chaotic potential.12 We look for the property of the potential that allows the same chaotic
behavior as before when the vector field is large but provide a sharp decrease near 60 e-folds
when the vector field becomes small to end the period of inflation. There are of course various
kinds of potential that satisfy our requirements. We only provide below two candidates where
the mass squared term is keep positive definite for the whole inflation period. As the discre-
pancy in behavior is negligible, the graphs below for the two different modified potentials are
representative for both cases.

First candidate for vector field potential

V1(ξ) =
1
2
m2ξ + V0 exp(

−κ
ξ
) , (3.46)

which gives:
∂V1

∂ξ
= 1
2
m2 + V0

κ
ξ2

exp(−κ
ξ
) . (3.47)

12We also briefly investigated another possibility to obtain graceful exit scenario by using the combination of
both vector field and the inflaton ϕ cascaded like a waterfall.
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Figure 3.8: Vector field in modified chaotic inflation model: The evolution of the vector field Az and “clock” para-

meter ξ during inflation period. We see now that ξ can reach zero value in finite time.
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Figure 3.9: Vector field in modified chaotic inflation model: The evolution of the Hubble parameters Ha and Hb
during inflation period. As in the case of the unmodified potential, the behavior of Ha and Hb after a few e-folds
converged. However, after inflation exits, they depart into two different directions. This interesting phenomenon

can be seen to have effect on the short scale power spectrum and links to the bound on the amounts of primordial

black holes.
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Figure 3.10: Vector field in modified chaotic inflation model: The evolution of slow-roll parameters εa , εb and η
during inflation period. The inflationary duration proceeds to end as expected. This is clearly shown above by the

violation of the slow-roll parameters

Second candidate for vector field potential

V2(ξ) =
1
2
m2ξ + V0 [1 −

κ
κ + ξ

] , (3.48)
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which gives:
∂V2

∂ξ
= 1
2
m2 + V0κ

(κ + ξ)2
. (3.49)

We observe that the inflationary duration proceeds to end as expected. This is clearly shown
above by the violation of the slow-roll parameters. Note also that, our choice of parameters
and initial conditions are rather general because of the flexibility in chaotic inflation potential
model. We observe again as in the case of the unmodified potential, the behavior of Ha and
Hb after a few e-folds converged. However, after inflation exits, they depart into two different
directions. This interesting phenomenon can be seen to have effect on the short scale power
spectrum and links to the bound on the amounts of primordial black holes.

3.5 ∎ STABILITY ANALYSIS

This section will show that our system’s stability is ensured by the constraints ∂V
∂ξ > 0 and

V(ξ) > 0. We show how this same conditions manifested using different approaches.

3.5.1 ⧫ The Hamiltonian approach

First, we consider the following Lagrangian:

L = − 1
4
FµνFµν − V(A2) . (3.50)

The Euler-Lagrange equation is:

∂L
∂Aµ
− ∂λ (

∂L
∂(∂λAµ)

) = 0 , (3.51)

which gives us the equation of motion:

−2 ∂V
∂A2A

µ + ∂λFλµ = 0 . (3.52)

We obtain the 0-component of the vector field A0 from:

−2 ∂V
∂A2A

0 + ∂λFλ0 = 0 , (3.53)

which gives us:

A0 = −
∇⋅E

2 ( ∂V
∂A2 )

. (3.54)
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Note that, A0 is non-dynamical because Π00 = 0.
The momentum density is calculated as:

Πµν = ∂L
∂(∂µAν)

= ∂νAµ − ∂µAν = −Fµν ⇒ Π00 = 0, Π0i = −E i . (3.55)

Finally, we obtain the Hamiltonian density:

H = Π0µ∂0Aµ − L = Π0i∂0Ai − (
1
2
(E2 − B2) − V(A2)) (3.56)

= −E⋅Ȧ+ 1
2
(B2 − E2) + V(−(A0)2 + A2) . (3.57)

We simplify further the above equation by using:

E = −∂A
∂t
−∇A0⇒ Ȧ = −E −∇A0 , (3.58)

and
E⋅∇A0 = ∇(EA0) − A0(∇⋅E) = −A0(∇⋅E) . (3.59)

We have:

−E⋅Ȧ = −E⋅(−E −∇A0) = E2 − A0(∇⋅E) (3.60)

= E2 + (
∇⋅E)2

2 ( ∂V
∂A2 )

. (3.61)

In simple case when A0 = 0, we obtain the Hamiltonian density as:

H = 1
2
(E2 + B2) + V(A2) , (3.62)

which is bounded from below when V(A2) = V(A2) > 0.
In general case, when A0 ≠ 0, we obtain the Hamiltonian density as:

H = 1
2
(E2 + B2) + V

⎛
⎜
⎝
−
⎛
⎝
−
∇⋅E

2 ( ∂V
∂A2 )
⎞
⎠

2

+ A2
⎞
⎟
⎠
+ (
∇⋅E)2

2 ( ∂V
∂A2 )

, (3.63)

which is bounded from below when ∂V
∂A2 > 0 and V(A2) > 0.
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Here we take an example, using the following potential:

V(A2) = 1
2
m2A2⇒ 2( ∂V

∂A2) = m
2 . (3.64)

We have:

H = 1
2
(E2 + B2) + 1

2
m2 (−(−

∇⋅E
m2 )

2
+ A2) + (

∇⋅E)2

m2

= 1
2
(E2 + B2) + 1

2
m2A2 + 1

2m2 (∇⋅E)
2 , (3.65)

which is bounded from below when m2 > 0.

We apply this formalism to the following more general potential:

V(A2) = λA2n ⇒ 2( ∂V
∂A2) = 2λnA

2(n−1) , (3.66)

We have:

H = 1
2
(E2 + B2) + λ(−(−

∇⋅E
2λnA2(n−1))

2
+ A2)

n

+ (∇⋅E)2

2λnA2(n−1)

= 1
2
(E2 + B2) + λ(

∇⋅E
2λnA2(n−1))

2n
− λ
⎛
⎝
n
1
⎞
⎠
(A2 + (Ao)2)(

∇⋅E
2λnA2(n−1))

2(n−1)

+ . . . − λ
⎛
⎝

n
n − 1
⎞
⎠
(A2 + (Ao)2)(n−1)(

∇⋅E
2λnA2(n−1))

2
+ λA2n + (∇⋅E)2

2λnA2(n−1) (3.67)

Therefore, we can see that the conditions ∂V
∂A2 > 0 and V(A2) > 0 are used to ensure that the

Hamiltonian is positive definite and free from ghost.

3.5.2 ⧫ Other approaches

Although the following approaches to find ghost in a system are not given for the general case
ofV(A2) as above, they are still very illuminating. Hence we present themhere closely to [40]
in this section. We consider the action for the vector field in conformal time:

S = ∫ dη d3x [− 1
4
F2 − M2

2
A2] . (3.68)
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The longitudinal vector (3.68) is a ghost in thismodel depends on the sign of themass squared
term. Following are three arguments to show thatM2 < 0 leads to a ghost. In all the discussion
below, M ≡ ∣M2∣ > 0.

The first approach is to using the propagator. The quadratic Lagrangian in (3.68) can be
cast in the form (1/2)Aµ P−1µν Aν , where

Pµν = −
ηµν +

kµ kν
M2

k2 +M2 . (3.69)

is the propagator. In general, the propagator needs to be diagonalized. However, we can
choose a frame in which it is diagonal because the number and nature of physical modes does
not depend on the frame. For a positive M2, the pole is at k2 = −M2 < 0, and we can
go in the rest frame, where kµ = −kµ = (M , 0, 0, 0) . In this case, − (ηµν + kµkν/M2) =
diag (0, −1, −1, −1), indicating that the theory has three well behaved physical particles (−1
indicates a well behaved mode due to the signature). For M2 < 0, we cannot go in the rest
frame; however, we can choose a frame where the energy vanishes, kµ = kµ = (0, 0, 0, M) .
In this case, − (ηµν + kµkν/M2) = diag (1, −1, −1, 0), indicating that one mode (the longitu-
dinal vector) is a ghost.

The second approach is to use the Stueckelberg formalism. For simplicity, here M is trea-
ted as a constant (the time dependence of M does not modify the quadratic kinetic term, but
it complicates the diagonalization). If we redefine:

Aµ = Bµ +
1
M

∂µϕ . (3.70)

We promote the action (3.68) to a gauge invariant action, with the symmetry:

ϕ → ϕ + ξ , Bµ → Bµ −
1
M

∂µϕ . (3.71)

The action (3.68) is recovered in the unitary gauge, ϕ = 0. But one can also choose a gauge in
which Bµ is transverse, ∂µBµ = 0 . In this gauge, the action of the system is:

S = ∫ dη d3x [− 1
4
F (B)2 − M2

2
B2 ∓ 1

2
(∂ϕ)2] , (3.72)

where the field strength Fµν does not contain ϕ, and where the kinetic term of ϕ has opposite
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sign to M2 . We stress that the two actions (3.68) and (3.72) describe the same theory in two
different gauges. We again see that the longitudinal component ϕ is a normal field forM2 > 0,
and a ghost for M2 < 0 .

The third approach to find the ghost is to decompose the vector as Aµ = (α0, ∂iα + αi) ,
where ∂iαi = 0 . The action (3.68) then separates in two decoupled pieces:

S = ∫ dηd3k { 1
2
[∣α′i ∣2 − (k2 +M2) ∣αi ∣2]}

{+ 1
2
[k2∣α′∣2 − k2 (α′∗ α0 + h.c.) −M2 k2∣α∣2 + (k2 +M2) ∣α0∣2]} , (3.73)

where prime denotes derivative with respect to conformal time, and in the second line we have
Fourier transformed the modes. The action splits into two decoupled parts. The first part go-
verns the two transverse polarizations, which are well behaved. The second part contains only
one physical mode, since α0 enters without time derivatives and must be integrated out. The
equation of motion for this field obtained from (3.73) is α0 = [k2/ (k2 +M2)] α′ . Inserting
this back into the second part of (3.73), we obtain:

Slongitudinal = ∫ dη d3k
k2 M2

2
[ ∣α

′∣2
k2 +M2 − ∣α∣

2] . (3.74)

Again, we see that the longitudinal vector is well behaved if M2 > 0, and a ghost if M2 < 0 .

Finally, as our choice of positive potentials satisfy the constraint ∂V
∂ξ > 0 as:

∂V1

∂ξ
= 1
2
m2 + V0

κ
ξ2

exp(−κ
ξ
) > 0 , (3.75)

and
∂V2

∂ξ
= 1
2
m2 + V0κ

(κ + ξ)2
> 0 , (3.76)

the systems are ensured to be free from ghost instability throughout more than 60-e folds
slow-roll inflationary duration driven by a vector field.



“I have no special talents. I am only passionately curious.”

Albert Einstein

4
Conclusion and Outlook

So far, the cosmic inflation paradigm remains the theorist’s top choice to explain phenomena
such as observed flat Universe, Gaussian and adiabatic perturbation, nearly scale-invariant
spectrum of density and specific peaks in the CMB’s spectrum. However, recent data obtai-
ned fromCOBE,WMAP and Planck have hinted at the possibility of anomalies in the CMB.
These experimental findings havemotivated the development of higher spin fieldsmodel such
as vector fields, spinors and p-forms for cosmic inflation. Although being the close step upgra-
ded from the scalar field, the vector field models for cosmic inflation are easily troubled with
the instabilities associated with ghost in the system. We have shown the required constraint
to keep the system ghost-free by keeping themass squared term in the potential that keeps real
and positive during the whole inflation period. Therefore, by carefully choosing appropriate
potential, we have shown the realization of stable vector fieldmodel using chaotic inflation po-
tential for slow-roll inflation throughoutmore than 60 e-folds. We also investigate and obtain
different graceful exit scenarios. During this process, we also observe interesting phenomenon
which can be seen to have effect on the short scale power spectrum and links to the bound on
the amounts of primordial black holes. This suggests further development in the direction of
this theoretical research as it suggests the revival of interest in the possibility of using simple
vector field model for anisotropic cosmic inflation.

Furthermore, as another outlook, we also investigate the possibility of using a more com-
plicated potential in order to directly influence behavior of the “clock” parameter ξ during
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inflation period.
The idea is that we are going to use ξ directly as the “clock”. Based on the following relation:

log(ξ) = log (AµAµ) = log( Az

eNb
)
2

, (4.1)

We can construct the following potential:

V3(ξ) = λ2 [
1
2
log(κ + ξ) + Nbend]

2
+ V0 , (4.2)

which gives:
∂V3

∂ξ
=
λ2 [ 12 log(κ + ξ) + Nbend]

κ + ξ
. (4.3)
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Figure 4.1: Vector field in model where ξ is direct “clock”: The evolution of the vector fieldAz and “clock” parameter

ξ during inflation period.

Although that potential is rather complicated, the results appear to be very useful for furt-
her developments in vector field model building endeavor.



A
Primordial Spectra

The power spectrum of R (or ζ) is an important statistical measure of the primordial scalar
fluctuations:1

⟨RkRk′⟩ = (2π)3 δ(k + k′)PR(k) , ∆2
s ≡ ∆2

R =
k3

2π2PR(k) . (A.1)

Here, ⟨ ... ⟩ defines the ensemble average of the fluctuations. The scale-dependence of the po-
wer spectrum is defined by the scalar spectral index (or tilt):

ns − 1 ≡
d ln ∆2

s

d ln k
, (A.2)

where scale-invariance corresponds to the value ns = 1. We may also define the running of the
spectral index by:

αs ≡
dns

d ln k
. (A.3)

The power spectrum is often approximated by a power law form:

∆2
s(k) = As(k⋆) (

k
k⋆
)
ns(k⋆)−1+ 1

2 αs(k⋆) ln(k/k⋆)

, (A.4)

1The normalization of the dimensionless power spectrum ∆2
R(k) is chosen such that the variance of R is

⟨RR⟩ = ∫∞0 ∆2
R(k)d ln k.
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where k⋆ is an arbitrary reference or pivot scale.

IfR is Gaussian then the power spectrum contains all the statistical information. Primor-
dial non-Gaussianity is encoded in higher-order correlation functions of R. In single-field
slow-roll inflation the non-Gaussianity is predicted to be small, but non-Gaussianity can be
significant inmulti-fieldmodels or in single-fieldmodels with non-trivial kinetic terms and/or
violation of the slow-roll conditions. We restrict our computation to Gaussian fluctuations
and the associated power spectra.

The power spectrum for the two polarization modes of hi j, i.e. h ≡ h+, h×, is defined as:

⟨hkhk′⟩ = (2π)3 δ(k + k′)Ph(k) , ∆2
h =

k3

2π2Ph(k) . (A.5)

We define the power spectrum of tensor perturbations as the sum of the power spectra for the
two polarizations:

∆2
t ≡ 2∆2

h . (A.6)

Its scale-dependence is defined analogously to Eqn. (A.2) but for historical reasons without
the −1:

nt ≡
d ln ∆2

t

d ln k
, (A.7)

which gives

∆2
t (k) = At(k⋆) (

k
k⋆
)
nt(k⋆)

. (A.8)

The results for power spectra of the scalar and tensor fluctuations created by inflation are:2

∆2
s(k) ≡ ∆2

R(k) =
1

8π2
H2

M2
pl

1
ε
∣
k=aH

, (A.9)

∆2
t (k) ≡ 2∆2

h(k) =
2
π2

H2

M2
pl
∣
k=aH

, (A.10)

where
ε = −d lnH

dN
. (A.11)

The horizon crossing condition k = aH makes (A.9) and (A.10) functions of the comoving

2The additional factor of 2 in the tensor mode is due to the polarizations of the gravitational waves.
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wavenumber k. The tensor-to-scalar ratio is:3

r ≡ ∆2
t

∆2
s
= 16 ε⋆ . (A.12)

Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of theHubble parame-
ter and is quantified by the spectral indices:

ns − 1 ≡
d ln ∆2

s

d ln k
, nt ≡

d ln ∆2
t

d ln k
. (A.13)

We split this into two factors:

d ln ∆2
s

d ln k
= d ln ∆2

s

dN
× dN
d ln k

. (A.14)

The derivative with respect to e-folds is:

d ln ∆2
s

dN
= 2d lnH

dN
− d ln ε

dN
. (A.15)

The first term is just −2ε and the second term may be evaluated:

d ln ε
dN

= 2(ε − η) , where η = −
d lnH,ϕ

dN
. (A.16)

The second factor in Eqn. (A.14) is evaluated by rewriting the horizon crossing condition:

ln k = N + lnH . (A.17)

Hence,
dN
d ln k

= [d ln k
dN
]
−1

= [1 + d lnH
dN

]
−1

≈ 1 + ε . (A.18)

We therefore find to first order in the Hubble slow-roll parameters:

ns − 1 = 2η⋆ − 4ε⋆ . (A.19)

3Here, (...)⋆ indicates that a quantity is to be evaluated at horizon crossing.
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Similarly, we find:
nt = −2ε⋆ . (A.20)

Any deviation from perfect scale-invariance (ns = 1 and nt = 0) is an indirect probe of the
inflationary dynamics as quantified by the parameters ε and η.

Slow-Roll Results

In the slow-roll approximation the Hubble and potential slow-roll parameters are related as
follows:

ε ≈ єv , η ≈ ηv − єv . (A.21)

The scalar and tensor spectra are then expressed purely in terms of V(ϕ) and єv (or V,ϕ):

∆2
s(k) ≈

1
24π2

V
M4

pl

1
єv
∣
k=aH

, ∆2
t (k) ≈

2
3π2

V
M4

pl
∣
k=aH

. (A.22)

The scalar spectral index is:
ns − 1 = 2η⋆v − 6є⋆v . (A.23)

The tensor spectral index is:
nt = −2є⋆v , (A.24)

and the tensor-to-scalar ratio is:
r = 16є⋆v . (A.25)

We obtain an important consistency condition between the tensor-to-scalar ratio r and
the tensor tilt nt for single-field slow-roll models:

r = −8nt . (A.26)

The Energy Scale of Inflation

Tensor fluctuations are often normalized relative to the (measured) amplitude of scalar fluctu-
ations, ∆2

s ≡ ∆2
R ∼ 10−9. The tensor-to-scalar ratio is:

r ≡ ∆2
t (k)

∆2
s(k)

. (A.27)



56

Since ∆2
s is fixed and ∆2

t ∝ H2 ≈ V , the tensor-to-scalar ratio is a direct measure of the energy
scale of inflation

V 1/4 ∼ ( r
0.01
)
1/4

1016GeV . (A.28)

Large values of the tensor-to-scalar ratio, r ≥ 0.01, correspond to inflation occuring at GUT
scale energies.



B
Evolution of Perturbations during Inflation

Scalar Perturbations

The equations of motion for scalar perturbations in flat gauge ψ = 0 is:

δ̈ϕψ + 3Hδ̇ϕψ + [
k2

a2
+ Vϕϕ −

8πG
a3

d
dt
(a

3ϕ̇2

H
)] δϕψ = 0. (B.1)

Now in order to further simplify the above equation, we can define the following variables:

v ≡ aδϕψ and z ≡ aϕ̇/H. (B.2)

Using above variables, we can rewrite Eqn. (B.1) as:

v′′ + (k2 − z′′

z
) v = 0, (B.3)

where a prime denotes the derivative with respect to conformal time.

We rewrite the mass term in terms of the slow-roll variables as:

z′′

z
= (aH)2 [2 + 5є − 3η + 9є2 − 7єη + η2 + ξ2] , (B.4)
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where

є ≡ − Ḣ
H2 , η ≡ 2є − є̇

2Hє
, ξ2 ≡ (2є − η̇

Hη
) η. (B.5)

We can neglect the time dependence of the slow-roll parameters:

τ ≃ − 1
(1 − є)aH

, (B.6)

as well as:
z′′

z
=
ν2R − (1/4)

τ2
, νR ≃

3
2
+ 3є − η. (B.7)

Plugging these expressions back into Eqn. (B.3), we can easily find the solution of this diffe-
rential equation as:

v ≃
√
π∣τ∣
2

e i(1+2νR)π/4 [c1H(1)νR (k∣τ∣) + c2H
(2)
νR (k∣τ∣)] . (B.8)

There are still two free parameters that must be fixed in the above solution, i.e. c1 and c2. They
can be fixed by assuming a preferred ansatz for the initial condition which we choose it to be
the Baunch-Davis vacuum in the far past, kτ → −∞:

v → e−ikτ√
2k

. (B.9)

This leads to c1 = 1 and c2 = 0.

So, the power spectrum on the short scales, k ≫ aH is:

Pδϕ ≡
4πk3

(2π)3
∣v
a
∣
2

= ( k
2πa
)
2

. (B.10)

In addition, for the large scales k ≪ aH, we have:

Pδϕ ≃ ((1 − є)
Γ(νR)
Γ(3/2)

H
2π
)
2

(∣kτ∣
2
)
3−2νR

, (B.11)
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where we have used the following asymptotic behavior of the Hankel functions in the limit
kτ → 0

H(1)ν (k∣τ∣)→ −(i/π)Γ(ν)(k∣τ∣/2)−ν . (B.12)

For amassless scalar field, wewould get the following power spectrum in the de SitterUniverse,

Pδϕ → (
H
2π
)
2

,
k
aH
→ 0. (B.13)

So far we were looking for the solution of Eqn. (B.3) at the slow-roll approximation. At la-
ter times, we need to use a large-scale limit which can be derived in terms of the comoving
curvature perturbation,R:

1
a3є

d
dt
(a3єṘ) + k2

a2
R = 0. (B.14)

On large scale limit, we would have:

R = C1 + C2 ∫ dt
a3є

. (B.15)

where C1 and C2 are the constants of the integration. Since after the horizon exit the second
term in Eqn. (B.15) would decay very fast, we are left with the constant term,C1. Bymatching
the power spectrum at the horizon crossing, we can find C1 as:

C1 =
H2
√
2k3ϕ̇

. (B.16)

The power spectrum of the comoving curvature perturbation is:

PR = (
H
ϕ̇
)
2

Pδϕ ≃ (
H2

2πϕ̇
)
2

k=aH
. (B.17)

We can rewrite the above equation in terms of the potential as well as its first derivative as:

PR = (
128π
3M6

P

V 3

V 2
ϕ
)
k=aH

. (B.18)

The amplitude of the comoving curvature perturbation is constant outside the horizon on
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very large scale. This means that its amplitude at the first and second horizon crossing which
happen during the inflation and very late time, either during the radiation or matter epoch,
respectively would be the same. The spectral indices for this model is:

ns − 1 = 3 − 2νR
= −6є + 2η. (B.19)

Since both of є and η are quite small during inflation, we can conclude that the generated sca-
lar perturbations during inflation are nearly scale invariant, ns ≃ 1.

Tensor Perturbations

Similarly, we start from the main equation for the tensor mode, Eqn. (2.103), and rewrite it
in terms of the new variable, u ≡ ah/2

√
8πG, as:

u′′ + (k2 − a′′

a
)u = 0. (B.20)

Comparing this equation with that for the scalar field, we see that they are very similar except
that z′′/z has been replaced with a′′/a:

a′′

a
= (aH)2(2 − є). (B.21)

Using the slow-roll approximation, we can simplify a′′/a as:

a′′

a
≃
ν2T − (1/4)

τ2
, νT ≃

3
2
+ є. (B.22)

We can now find the power-spectrum of the tensor mode on very large scale, k ≪ aH, as:

PT ≃
64π
M2

P
((1 − є) Γ(νT)

Γ(3/2)
H
2π
)
2

(∣kτ∣
2
)
3−2νT

. (B.23)

Quite similar to the scalar perturbations, we can also try to solve Eqn. (B.20) on large scales:

h = D1 + D2 ∫ dt
a3

. (B.24)
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So again one of the terms decays very quickly and we are left with the constant solution. The-
refore, the power spectrum for the tensor mode is:

PT ≃
64π
m2

P
( H
2π
)
2

k=aH
≃ 128

3
( V
m4

P
)
k=aH

. (B.25)
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