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Abstract

I investigate whether reinforcement learning models can explain the emergence of social
norms in the Volunteer’s Dilemma. A three player version of this coordination game showed
that reward structures of the game have an immediate effect on the manifestation of behavioral
patterns, precursors of social norms. It is, however, unknown whether and how cognitive
mechanisms contribute to the emergence of social norms. I therefore describe how behavioral
patterns in the Volunteer’s Dilemma can be explained with simple cognitive mechanisms of
individuals. Using two classes of computational cognitive models, based on reinforcement
learning, I show that simple state-based learning does not suffice for pattern emergence.
Reinforcement of successful future-oriented strategies, however, predicts the same behavioral
patterns as found in the empirical data. Further, I show that certain characteristics of learning
either support (e.g., realistic propensities), or suppress the emergence of patterns (e.g.,
altruism).
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1. Introduction

Social norms shape human behavior in many situations of social interaction: Rules of
etiquette we obey when we dine together, going to the back of the line when we queue up at
the grocery store, and the ways we talk to family, friends, or superiors. All these examples
are guided by behavioral rules enforced by our fellow human beings. And although social
norms have been a long-term subject of sociological scholarship, it is often a big puzzle how
they are formed and how they change.

Consider an example of the Volunteer’s Dilemma (VOD) (Diekmann, 1985, 1993). Three
friends, Jane, John, and Jean, share a flat. They also have a dog, Spot, that needs to be
walked once a day. There are many solutions to prevent Spot from relieving himself in
the kitchen. They could all go together or maybe John volunteers every day. Suppose all
three friends are busy finishing an important scientific paper. Time becomes a precious
resource and cooperation comes with a cost. A fair solution would be if only one friend
walks Spot at a time. In order to coordinate, the friends could negotiate and draw up a
timetable. However, coordination might also emerge tacitly (i.e. without communication)
through repeated interactions in the same recurring situations: Maybe John takes over the
task today, because Jane walked Spot yesterday, and Jean volunteered two days ago. Thus,
a constant pattern of turn-taking emerged over time. In consequence, Jane and Jean expect
John to walk Spot, because the last time John volunteered dates three days back. Recurring
behavioral patterns therefore foster expectations. Wrong (1994) calls these expectations
towards the behavior of others that result from repeated interactions latent norms (p.48),
precursors of social norms. The stronger these expectations, the stronger the resentment in
cases of non-compliance, and the more likely a behavior becomes a norm (Opp, 2004, p. 14).

In a controlled experiment, Diekmann and Przepiorka (2016) asked human participants
to play computer based versions of the three player repeated VOD. Immediate rewards were
given in the form of scores, and monetary rewards eventually. Over the course of time
behavioral patterns emerged in the majority of games. Moreover, the study showed that
the structural conditions (i.e. the reward structure) of the VOD had an immediate effect on
the emerging patterns. That is, turn-taking when cooperation costs were the same for all
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participants, and solitary volunteering when one participant had lower cooperation costs than
the others. This research provides an early building block for a bottom-up theory on norm
emergence.

However, what is unknown yet is how individual players make decisions in order to
coordinate. More precisely: What are the cognitive mechanisms needed within each player
to coordinate with others in the VOD? This is necessary to understand how people behave
strategically in situations of social interaction. Especially a formalization of norm emergence
is indispensable to predict the effects of social norms on group behavior. This study will
advance a bottom-up theory on the emergence of social norms, thus adding a little piece to
the puzzle of how norms emerge. Although some research has been conducted on cognitive
mechanisms in strategic game playing (e.g., Camerer, 2003; Colman, 2003; Helbing et al.,
2005; Juvina et al., 2015; Stevens et al., 2016), it usually neglects the connection with social
norms. Further, it is mostly restricted to two player games. Thus, my study is a primer for
further research on cognitive mechanisms: firstly, in context of social norms and, secondly,
in groups with more than two participants.

The scenario of a VOD contains two relevant characteristics: repeated game play and
immediate feedback in the form of scores. This combination allows each player to reinforce
successful and demote unsuccessful actions. In other words, players can learn over time
which actions give the highest reward in different situations. Using computational cognitive
models based on reinforcement learning, I investigate whether simple models of learning
can explain the behavioral patterns in the VOD. This approach follows a prominent idea of
cognitive science that assumes simple underlying mechanisms as the reason for complex
phenomena (e.g., Anderson, 2002; Pfeifer and Scheier, 2001; Simon, 1969).

Before I introduce the model in chapter 5, I first discuss literature on norm emergence in
chapter 2, focusing on why the volunteers dilemma is a suitable paradigm for studying it, and
what the human data from the experiment by Diekmann and Przepiorka (2016) revealed. This
is followed by an overview of learning as a key cognitive mechanism in repeated interactions
and relevant methodological concepts of reinforcement learning in chapter 3; and potential
values of my research for the field of artificial intelligence in chapter 4. In chapter 6 I describe
the most important results. And finally, in chapter 7, I put the results back into a broader
context, discuss implications and limitations of my work, and outline possible paths for
future research.



2. Norm emergence in the Volunteer’s
Dilemma

2.1 The Volunteer’s Dilemma as a driving force for norm
emergence

The Volunteer’s Dilemma (VOD) describes a social scenario in which cooperation of a single
agent is necessary and sufficient for the benefit of the whole group (Diekmann, 1985, 1993).
A single agent, for example, provides a public good that can be used by the other group
members (Allison and Kerr, 1994). However, in the VOD, cooperation also comes with a
cost; and in case nobody cooperates, nobody benefits.

Let’s now tie these general characteristics of the VOD in with our example from the
introduction about who needs to walk the dog in a shared flat. The public good is taking
Spot for a walk. Everybody is very busy and volunteering requires time.1 Each friend might
decide individually not to volunteer. This however, results in a bad mutual outcome: a messy
kitchen. In contrast, they might come up with a better solution collectively. Together they
make a plan that increases welfare for the group as a whole. This discrepancy in reasoning
between individual and collective welfare constitutes a social dilemma (Rapoport, 1974).

More precisely, the VOD constitutes a coordination problem (Lewis, 1969). All group
members have the same interest: to maintain a clean kitchen. However, nobody prefers to
invest the costs for cooperation, as they are busy working on their papers. To resolve the
dilemma between individual preference (working on the paper) and, as a result, negative
effects for the group as a whole (messy kitchen) requires the friends to coordinate.

Coordination can, for example, be achieved through behavioral conventions that emerge
over time (e.g., turn-taking or solitary volunteering). As already mentioned, these conventions
result from patterns in repeated interactions and lead to expectations towards collective

1Of course the friends enjoy walking Spot. Thus, cooperation comes also with a benefit. That is why
walking the dog is still preferred over starving the dog.
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behavior – latent norms (Wrong, 1994, p. 48). Non-compliance leads to resentment. And the
stronger the resentment, the more likely a latent norm becomes a social norm (Opp, 2004,
p. 14). Based on a broad range of literature, Diekmann and Przepiorka (2016, p. 1310) define
social norm: "A rule guiding social behavior, the deviation from (adherence to) which is
negatively (positively) sanctioned."

Voss (2001, p. 110) argues that a reason to develop social norms is "to improve the
aggregate welfare of the norm beneficiaries". For example, taking turns to walk Spot keeps
the kitchen clean (and brings joy to the volunteer), while everyone minimizes cooperation
costs. As a result, the inherent need for coordination in the VOD generates a need for social
norms. For that reason, the VOD constitutes an ideal model to investigate the conditions of
norm emergence.

One-shot dilemmas, however, do not suffice to investigate the dynamics of norm emer-
gence. The VOD itself defines only the stage game. It merely defines the ways actors can
interact and the outcomes depending on collective behavior. In order for behavioral patterns
to emerge and actors to form expectations about each other’s actions, they need to encounter
the same situation repeatedly. As a result, only repeated interactions in the VOD provide
sufficient conditions for norms to emerge (e.g., Opp, 2004; Thibaut and Kelley, 1978b;
Wrong, 1994).

Another important characteristic of the VOD is that no salient solution exists (Diekmann,
1985). There are many ways to maintain a clean kitchen. In fact, there are several solutions
that guarantee minimal costs. That is, only one friend needs to go at a time. Technically
speaking, the VOD offers multiple (Nash) equilibria. That is, a combination of strategies
in which a single player cannot increase her own benefit by changing her strategy, while
all other players stick to their strategies (Osborne and Rubinstein, 1994). Consider, John
volunteers to walk Spot, while Jane and Jean keep working on their papers. Nobody can
increase benefit by being the only person to change the strategy: If John decides to also work
on his paper, Spot creates a mess in the kitchen. If Jane or Jean walk Spot together with John,
they have less time to finish their work. But the question "Who is the one that cooperates?" is
unsolved. There is no guideline for a single player that guarantees an outcome with minimal
costs on the group-level. As a result, top-down analysis, the typical approach of classical
game theory, cannot provide a satisfying answer.

The above example describes a symmetric VOD. That is, all players have the same costs
to cooperate. Consider, Jean is done early with her paper. Lack of time is not a big issue for
her anymore. Cooperation still comes with a cost, however, not as high as for her two friends.
Thus, she might want to support her friends and decides to volunteer solitarily from now on
(see Fig. 2.1). A VOD with different cooperation costs for at least one player is classified as
asymmetric VOD.
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Fig. 2.1 Example of a Volunteer’s Dilemma. Consider three friends sharing a house and a
dog. The dog needs to be walked every day. Walking the dog requires time (and brings joy to
the volunteer). If all three are equally busy (symmetric), they take turns. If one friend is less
busy (asymmetric), she volunteers solitarily.

2.2 Human data

A recent experiment on the three-player repeated VOD provided a first building block for a
bottom-up theory on norm emergence (Diekmann and Przepiorka, 2016). The goal of the
experiment was to investigate the structural conditions of latent norm emergence in the VOD.
More precisely, to determine the effects of three conditions with different payoff structures
on the emergence of behavioral patterns.

Prior to the experiment participants were randomly assigned to a group of three players.
Groups then played repeated versions of the VOD. In each round participants were asked
to select between cooperation and defection. This was done using a computer program and
with no means of communication. Participants clicked on either a button for cooperation or a
button for defection on the computer screen. A round was finished, after all players made a
choice. At the end of each round, participants saw what choices they and their co-players
made. In addition, they received a score to formalize the outcome.

Score calculation depended on the payoff condition. There were four different conditions,
of which three are relevant for this study: Symmetric, Asymmetric 1 and Asymmetric 2. Scores
were composed of two components: base utility (U) and cooperation costs (K). Base utility
was the same for every player in all conditions (U1,2,3 = 80). In case no player cooperated in
a round, none of the players received a reward. In case a player cooperated, the defecting
players received the full 80 points, while the cooperating player had to pay the cooperation
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costs (U −K). The amount of costs was defined by the payoff condition. In the symmet-
ric condition, all players had the same cooperation costs (K1,2,3 = 50). In the asymmetric
conditions, one of the players had lower cooperation costs than the other two (Asymmetric
1: K1 = 30, K2,3 = 50; Asymmetric 2: K1 = 10, K2,3 = 50). The player with lower coop-
eration costs is also referred to as the strong player. Table 2.1 shows the payoff structure
for the different conditions. Participants had full knowledge about the payoff structures.

Symmetric Asymmetric 1 Asymmetric 2
P1,2,3 P1 P2,3 P1 P2,3

Cooperate 30 50 30 70 30

Defect, while ≥ 1
co-players cooperate 80 80 80 80 80

Defect, while 0
co-players cooperate 0 0 0 0 0

Table 2.1 Payoff structures of the tested Volunteer’s Dilemmas. Px denotes players 1, 2,
and 3. P1 in the asymmetric conditions denotes the player with the lowest cooperation costs.

The results showed that different patterns emerged for the different conditions. The most
prominent pattern in the symmetric condition was turn-taking between all three participants
(49.5% of all rounds). Solitary volunteering by the participant with the lowest cost was
dominant in the asymmetric conditions. Moreover, the degree of asymmetry had an immediate
effect on the ratio of solitary volunteering (Asymmetric 1: 34.9% of all rounds; Asymmetric
2: 61.7% of all rounds). This result was not anticipated, as the degree of asymmetry does
not make a difference from a theoretical standpoint. That is, continuous volunteering by the
actor with the lowest cost guarantees lowest collective costs.

There are multiple explanations possible for the unanticipated result that the degree of
asymmetry affects the ratio of solitary volunteering. Diekmann and Przepiorka (2016) argue
that the effect that asymmetry has on the ratio of solitary volunteering may be a result of
social preferences. For example, actors who have a high aversion towards inequity might not
be content with earning less than others. Further, willingness to volunteer solitarily might be
higher, when costs are low. As a result, low cost cooperation causes only minor differences
between the actors.

Another noteworthy argument on willingness to volunteer solitarily stems from critical
mass theory Oliver et al. (1985): Strong players might be willing to pay initial costs in order
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to produce a public good. This willingness, however, might fade over time. Consequently,
players might want to switch to turn-taking on the long run.

I will formalize the cognitive processes underlying acting in the VOD using cognitive
models, to see whether these results can also be explained based on human learning. In the
following chapter I will outline the theoretical foundations for my work, before I describe
the specific models in detail in chapter 5.





3. A cognitive psychological perspective
on social norms

The work by Diekmann and Przepiorka (2016) provided a first building block for a bottom-up
theory on norm emergence. They showed that structural conditions of social interactions
affect the formation of latent norms. However, the decision-making processes of individual
players in order to coordinate are yet unknown. Therefore, the question driving my current
research is: What are the cognitive mechanisms needed within each player to coordinate with
others in the VOD? And consequently, what are appropriate ways to investigate those?

3.1 Learning as key cognitive mechanism

To an outside observer, behavioral patterns such as turn-taking in the Volunteer’s Dilemma
might come across as the result of complicated cognitive mechanisms, such as high-order
reasoning. However, Simon (1969) argues that the actual mechanisms within an agent might
be considerably simpler than the emergent behavior might suggest (see also Pfeifer and
Scheier, 2001, p. 81). In fact, emerging complex behavior might be just a result of simple,
more generic mechanisms within an agent acting in a complex environment. Consequently,
there are two crucial elements for the emergence of complex behavior: an environment and
the agent acting within it.

Simon (1969, p. 51 ff.) exemplifies this with a simple example. Consider an ant on a
beach. It roams around, halting here and there resulting in a path that appears to be arbitrary.
However, the ant has a simple goal. That is, to get back to its anthill. The obstacles along
the way and the fact that the ant cannot foresee all events it encounters require the ant to
adapt to the environment constantly. Simon (1969) argues that a designer could create an
artificial ant, based on simple rules, that shows the same complex behavior as the real ant on
the beach. Thus, he argues, "the complexity of its behavior over time is largely a reflection
of the complexity of the environment in which it finds itself" (p. 52).
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In the above example the beach is the environment and the ant is the agent acting within
it. I argue that latent norms in the VOD constitute complex behavior that is also explainable
with simple underlying mechanisms: The game represents the environment (available actions,
payoff structures, repeated interactions, co-players, etc.) and a player is the agent acting
within it.

The idea of simple mechanisms giving rise to complex phenomena has also been discussed
in cognitive science. Newell (1990) introduced the concept of different bands of cognition. He
differentiated between four bands on four different time scales: the biological (milliseconds),
cognitive (milliseconds to seconds), rational (minutes to hours) and social bands (days to
months). Anderson (2002) picked up this idea and formulated the Decomposition Thesis
(p. 86). He suggested that bigger scale phenomena on the social band may be grounded in
smaller scale events on the cognitive band. Especially that the long-term effects of learning
can be broken down into smaller bits of cognition.

With the idea that learning on the cognitive band may inform about phenomena on the
social band, Anderson (2002) provides a sensible starting point for my study. I would in
particular like to stress a main feature of the environment: repetition. It has been argued that
repeated interactions are indispensable for latent norms to emerge (Opp, 2004; Wrong, 1994).
The empirical results further show that over time humans are able to adapt to the scenario and
produce coordinated behavior tacitly. Thus, experiences made in the previous rounds is one
of the crucial factors in this scenario. Further, Juvina et al. (2015) and Helbing et al. (2005)
showed that learning is key for successful strategic interaction in different game theoretic
scenarios (i.e. Chicken and the Prisoner’s Dilemma). Thus, I hypothesize that learning from
experience is the key cognitive mechanism that gives rise to latent norms in the VOD.

So what is the form of learning in the VOD? Note that the environment (the game)
provides immediate feedback after each round. This happens in the form of points received
for each action. I therefore hypothesize that a type of learning occurs within each single agent
which evaluates the success of actions based on the immediate rewards received from the
environment. This feedback is then used to promote or, in other words, to reinforce actions
that maximize reward positively and reinforce actions that minimize reward negatively.

3.1.1 Reinforcement Learning

Reinforcement learning is a formal theory that describes how an agent learns what to do in
order to maximize a reward (Sutton and Barto, 1998). A reinforcement model must meet
three requirements. First, an agent must be able to sense its environment. More precisely, it
must recognize the state of the environment the agent is in. Second, the agent must have a
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goal relating to the state of the environment. Third, the agent must have a set of actions that
allow her to change her state within the environment.

Consider the ant on the beach: The ant’s goal is to get back to the anthill. However, it
recognizes a big rock in an upright standing position on its way. Three actions are available:
walk left, walk right, or walk over it. In order to find the solution with the highest reward
(e.g., the shortest path) the ant must experience the same situation repeatedly and try all
available actions. This trial and error approach allows an agent to experience all the states of
the environment, the problem state, and find the solution with the highest reward.

However, things might change in a dynamic environment. Over time the ant learns
that walking left around the rock is the shortest path to the anthill and might exploit this
knowledge. After a while the rock falls over to the left. Now, walking around it on the right
is much shorter. Thus, the ant must also explore alternative actions from time to time to
realize changes within its environment. This balancing between exploration and exploitation
is crucial for the success of reinforcement learning, as it prevents that agents get stuck in
local or temporal optima.

Reinforcement learning is usually modeled in the form of a Markov decision process
(MDP). And since this is not the appropriate place to discuss all details, I limit myself to the
aspects important for my current work. For a detailed description, please refer to Sutton and
Barto (1998, ch. 3.6).

MDPs are mathematical representations of decision-making when outcomes are not fully
controlled by the decision maker. An MDP is a 5-tuple, consisting of:

1. a set of states, S

2. a set of actions available to the agent, A

3. a function that describes the probability to reach a certain state st+1 ∈ S,
given the current state st ∈ S and an action at ∈ A

4. a function that provides a reward (rt+1) after the transition from st to st+1;

5. rules what an agent observes

As a result, a reinforcement learning process happens in discrete time steps.
One approach of reinforcement learning that proved particularly successful is Q-Learning

(Watkins and Dayan, 1992). Q-Learning is a model-free approach of reinforcement learning.
That means an agent does not require a full representation of its environment. It merely
needs to know the state it is in and the actions available in that state. By exploring the whole
problem state an agent learns the best actions in any given state. An interesting property
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of Q-learning models is that they are mathematically guaranteed to achieve optimal results
given enough time to explore the entire problem state (Sutton and Barto, 1998, ch. 6.5)

Action selection in Q-Learning is based on a Q-Table. Table 3.1 shows an example
of propensities for action-state pairs in the ant on the beach example. Intersections de-
scribe the propensities (Q-Values) of an agent to perform a certain action (columns) in
a given state (rows). In the case of exploitation, the agent simply takes the action with
the highest value. In the case of exploration, the agent takes any of the remaining actions.

Go Left Go Right
Go Over

or Through

Stone 50 20 5
Stream of water 15 65 0
Hole 30 20 45

Table 3.1 Exemplary Q-Table for the ant on the beach example. Columns contain actions.
Rows contain states. Intersections describe propensities. In case of exploitation: the agent
takes the highest rated action. In case of exploration: the agent takes any other action.

After receiving a reward, an agent needs to update its Q-Table using Formula 3.1 (Sutton
and Barto, 1998). Q(st ;at) denotes the propensity, or Q-value, for action at in state st . α is the
learning rate. The higher the value, the more important recently earned rewards (0 < α ≤ 1).
rt+1 is the reward an agent actually receives. γ describes a discount factor. The higher the
value, the more important the newly learned over old rewards (0≤ γ ≤ 1). As there are no
proposed standard values in the literature for α and γ , they require either educated guesses
considering the modeled scenario, or some form of parameter fitting process. max

a
Q(st+1;a)

denotes the maximum reward an agent can expect to get after (st+1) choosing action a.

Q(st ;at)← Q(st ;at)+α[rt+1 + γ max
a

Q(st+1;a)−Q(st ;at)] (3.1)

I suggest, that the VOD scenario, as tested by Diekmann and Przepiorka (2016), conforms
to an MDP. Thus, Q-Learning provides an ideal framework for a model-based research. To
illustrate this, consider the following example: A player observes that she had not cooperated
for the last two rounds. Thus, her state s is defined by the sequence of actions in the two
preceding rounds. She decides to cooperate (C ∈ A), because in the past this was the action
that gave the highest rewards (highest Q-Value). After all players have chosen an action the
player changes from a state where she defected twice (s = DD) into a state in which she
defected once followed by cooperation (s′ = DC). Finally, the VOD notifies the player in
form of the reward for cooperation, before the process starts all over again.
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In support of a model-based approach, (Gigerenzer, 2007) argues that many aspects
in decision-making are of intuitive nature. That is why many traditional methods, like
self-reporting, are not of use. Thus, formal models based on existing theory and applied to
experimental data can be helpful to get a better understanding of the underlying cognitive
processes. Further, reinforcement learning models proved to be successful in cognitive
(neuro-)science (Dayan and Daw, 2008; Fu and Anderson, 2006; Janssen and Gray, 2012;
Schultz et al., 1997; Stocco, 2017; Walsh and Anderson, 2014, e.g.,). Reinforcement learning
is also used to formalize cognitive mechanisms in context of social interaction. For example,
Helbing et al. (2005) showed that reinforcement learning can capture turn-taking in a two-
player congestion game.

3.1.2 Model evaluation

Models based on theory allow many ways for technical realization (Lewandowsky, 1993;
Marewski and Mehlhorn, 2011). As with all model-based research, there are a few limitations.
For example, there is no single way to design a model based on theory (Lewandowsky, 1993;
Marewski and Mehlhorn, 2011). Personal interpretations, experiences, and preferences
for certain techniques play a significant role in the development of models. Further, a
model designer needs to manage the balance between being precise enough to capture the
issue of interest, while leaving room to allow for generalizations of the findings ("modeling
problem", Kangasrääsiö et al., 2017, p. 1). Once a model design is in place, there are different
approaches how to set reasonable parameters ("inference problem", Kangasrääsiö et al., 2017,
p. 1). As a result, no two model-based studies on the same issue will be the same.

In order to follow a structured process of model design and minimize the risk of un-
intended biases, Marewski and Mehlhorn (2011) propose five methodological principles:
nested, constrained, competitive, predictive, and distributional modeling. Nested modeling
suggests that a model should follow the same structure as the original experiment. The
principle of constrained modeling tells to constrict the parameter settings to the task of the
original experiment. Competitive modeling says that not just a single model, but multiple
alternatives ought to be compared with one another. Distributional modeling means to test
whether models can also account for rare phenomena of the original data. And predictive
modeling proposes follow-up experiments of model predictions that are not present in the
original data. Whenever appropriate I comply to these principles.

In practice, each model has also free parameters. An interesting side question is how
strongly the model depends on the model parameters for the goodness-of-fit (Roberts and
Pashler, 2000). This I investigate by comparing model predictions for alternative parameter
settings. In general, I compare the emerging patterns in the models and their dependence on



14 A cognitive psychological perspective on social norms

model fit with the actual empirical data gathered in the original empirical study. This way, I
am able to present qualitative and quantitative evidence for the role of learning involved in
the emergence of latent norms in the Volunteer’s Dilemma.



4. Value for the field of artificial
intelligence

Artificial intelligence is widely regarded as an interdisciplinary field of research in modern
science, as it integrates ideas findings and methodologies from many different fields (Russell
and Norvig, 2009, p. 1 ff.). The main focus of interest, however, lies on machines that mimic
functions of the human mind (Russell and Norvig, 2009, p. 2). Depending on personal
motivations, the main interest of research might be how computers and formal models can
help to understand the inner working of the human mind. This can be done by modeling
certain isolated mechanisms (e.g., Janssen et al., 2012; Payne et al., 2007), or following
more holistic approaches on cognition, such as "How can the human mind occur in the
physical universe?" (Anderson, 2009). In contrast, technical oriented scientists might ask
questions like "How can artificial agents collaborate effectively in order to solve problems?"
(e.g., Olfati-Saber et al., 2007; y López et al., 2006), "How can we interact with machines
in intuitive ways?" (e.g., Kollar et al., 2010; Severinson-Eklundh et al., 2003; Wu et al.,
2016) or "How can machines learn in order to adapt to novel situations?" (e.g., Sutton and
Barto, 1998; Watkins and Dayan, 1992). In order to find answers to all of these questions,
researchers frequently borrow from many different fields, such as psychology, sociology,
computer science, game theory, philosophy and linguistics.

I consider the study at hand interdisciplinary, as well. I seek to explain a sociological
phenomenon (norm emergence). This I do by investigating the cognitive mechanism of
individuals (psychology). I use reinforcement learning, a formal method that is grounded
in psychology and performed using computer technology. Even though my main interest is
understanding how human cognition works in situations of social interaction, I believe this
study will provide benefits for the field of A.I. on different levels.

For human centered research this study provides a model-based description of human
behavior and the corresponding cognitive aspects in the context of social interaction. This
ties in with the goal of AI to understand human behavior by modeling it. More specifically,
it shows how the investigation of cognitive mechanisms at the individual level can help us
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understand social phenomena like the emergence of behavioral patterns at the group level
(Anderson, 2002).

Moreover, there is value for technical oriented research. The concept of norms is already
utilized for distributed problem solving in multi agent systems and coordination of actions
within agent societies (Wooldridge, 2009). Although many studies on the emergence of latent
norms in agent-based simulations exist, there are only few human-based studies. Further,
these studies mostly focus on sanctioning mechanisms (Diekmann and Przepiorka, 2016).
Following a cognitive approach to modeling emergent patterns of interaction provides another
perspective to already existing models (e.g., Shoham and Tennenholtz, 1992; Walker and
Wooldridge, 1995). Consequently, findings of my study can be used to create coordination
in artificial agent societies. This work can further help to lay ground for social behavior
within artificial agents that get integrated into human society. That is, enabling agents to act
according to human expectations. This would allow intuitive interaction between agent and
human without the aspect of learning new ways of interaction for the human.



5. Methods

5.1 General design

Corresponding to the principle of nested modeling (Marewski and Mehlhorn, 2011), the
layout of my research follows the same structure as the experimental setup used by Diekmann
and Przepiorka (2016). I simulate three players engaged in a repeated VOD. However, instead
of using human participants to investigate the group-level effects of payoff structures on
norm emergence, I use cognitive models in a multi-agent simulation to investigate the role of
learning within individuals on the emergence of social norms. This means, that simulated
players can differ in the way they incorporate experiences from previous rounds into their
decision-making process. More precisely and complying with the principle of competitive
modeling (Marewski and Mehlhorn, 2011), I compare three different model classes:

1. Random – a model that serves as control and always chooses actions randomly no
matter what happened before

2. ClassicQ – a model that learns the best action depending on game states (classical
Q-Learning)

3. CoordinateX – a model that plans a sequence of actions ahead by considering expecta-
tions towards the actions of co-players

The key question is whether these basic models of learning can reproduce the empirical
results of coordination in the Volunteer’s Dilemma, as described by Diekmann and Przepiorka
(2016).

My general assumption is that the main structure of the cognitive architecture is the
same for all players. Therefore, within a single block of runs, all players are instances of
the same model class with the same initial parameter settings. However, I am uncertain
about the exact structure (modeling problem, Kangasrääsiö et al., 2017) and parameter values
(inference problem, Kangasrääsiö et al., 2017) of the model. Therefore, I vary both between
runs of the model. This allows to investigate each model by itself, without any interference
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or side-effects resulting from cross-comparison. Just like in the original study, I use three
conditions with different payoff structures: Symmetric (U1,2,3 = 80, K1,2,3 = 50), Asymmetric
1 (U1,2,3 = 80, K1 = 30, K2,3 = 50) and Asymmetric 2 (U1,2,3 = 80, K1 = 10, K2,3 = 50).

5.2 Simulation procedure

Fig. 5.1 shows the general procedure of each simulation. The VOD (left box) serves as the
overarching framework that coordinates the repeated game playing, calculates scores, and
notifies the players of these scores. The VOD behaves exactly the same in each simulation,
no matter the type of players engaged in it. As a result, only player models and/or parameter
settings differ between simulations.

Fig. 5.1 Simulation procedure. A simulation consists of two entities: the VOD and a set of
players. The VOD coordinates the repeated game playing. The players resemble different
theories of human learning-based decision-making. Each round follows the same process:
(i) the VOD requests an action for the current round from each player, (ii) players select an
action according to their underlying theory of decision-making, (iii) the VOD evaluates the
actions of each player, (iv) informs each player about the actions and scores for all players
in the current round, (v) players can integrate the information into their decision-making
process.

A single round is simulated as follows: First, the VOD requests each player to choose an
action (cooperate, defect). Players then choose an action according to their underlying model
as set by the modeler. The VOD collects all actions, computes the utilities for each player,
and finally notifies each player of the actions and utilities of all players. Players then decide
how to incorporate the information concerning that round in their decision-making process.
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This procedure is generally repeated 150 times (in special cases up to 5.000, for details see
section 5.4). This results in an repeated VOD with 150 rounds (or 5.000 rounds, respectively).
Thus, the models simulate a higher number of rounds than in the original experiment (first
part: 56 rounds; second part: 48 rounds). This increase is required to ensure a sufficient
exploration of the problem state space and to allow investigations of long-term pattern
stability. Furthermore, depending on parameter settings and preconditions, computational
models may take many more rounds to converge than humans in similar settings (e.g., Helbing
et al., 2005). Obviously, this results in a possible shift of fitting measures. For that reason I
do not only compare fitting measures, but also the resulting behavioral patterns (see section
5.5).

Note that as a result of this design, only the way how players decide which action to
choose (action selection, Fig. 5.1) and what to do with the resulting information (action
assessment, Fig. 5.1) differs between model classes.

5.3 Model classes

In the following, I describe in detail the three different model classes (Random, ClassicQ
and CoordinateX) used to investigate the role of learning in the emergence of social norms.
For this purpose, special attention is paid to the key processes of action selection and action
assessment (as noted in 5.2 Simulation procedure). For a summary overview, please refer to
5.3.3 Summary of the model classes.

5.3.1 Random

The Random model class does not contain any form of learning. Action selection is solely
based on a probability distribution. Note that an optimal solution in each round requires
exactly one out of three players to cooperate, while the other two players defect. Thus, the
probability is 0.33 for cooperation and 0.67 for defection (see Fig. 5.2). Consequently, any
information about the actions and utilities of all players is ignored.

The purpose of the Random model class is to serve as control condition with no underlying
learning-based cognitive processes in play. Since any form of coordination between the
players would occur due to pure chance, the results of the Random model class are used
as a measuring stick to investigate whether learning-based models are able to improve
resemblance to the empirical data.
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Fig. 5.2 Decision-making in the Random model. Action selection in the Random model
does not incorporate any form of learning, but is solely based on a probability distribution of
0.33 for cooperation and 0.67 for defection. That is because the optimal solution in a VOD
requires one out of three players to cooperate and two out of three players to defect.

5.3.2 Learning-based model classes

I created two different model classes based on Q-Learning: ClassicQ and CoordinateX. Both
represent the propensities for actions (ClassicQ), or strategies (CoordinateX), in the form
of a Q-Table. Thus, a first parameter is the initial setting for propensities in the Q-Table
(ι). Based on the propensity update function (see Formula 3.1), both classes also possess
parameters for the learning rate (α) and the discount factor for previous experiences (γ).

As described in section 3.1.1 Reinforcement Learning, both learning-based models
require some form of balancing between exploitation of the currently most effective strategy
and exploration of all other strategies. For each class I use four different approaches for
balancing between exploration and exploitation (E), which I explain in detail below: ε-greedy,
ε-decreasing, ε-noise and ε-noise-decreasing.

ε-greedy uses the ε parameter (0 < ε < 1) to define a ratio between exploration (e.g.,
ε = 0.1 =⇒ 10% of the rounds) and exploitation (1− ε = 0.9 =⇒ 90% of the rounds).
ε-decreasing follows the same general approach like ε-greedy. However, parameter δ

(0 < δ < 1) is introduced to ensure that ε decreases over time (see Formula 5.1). Thus,
ε-decreasing represents a learning approach in which a preference is increasingly exploited
after an initial phase of strong exploration.

ε−decreasing : εi+1 = δ ∗ εi (5.1)

ε-noise adds a random noise value (ρ) to the actual Q-Values of the current state in the
range of −ε and +ε (see Formula 5.2). In contrast to ε-greedy and ε-decreasing, where
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less preferred strategies are still explored for a certain share of the trials, ε-noise considers
the actual propensities for strategies and explores only when preferences are ambiguous.
For a direct comparison between ε-greedy and ε-noise decision-making please refer to the
decision-making examples in the ClassicQ (Fig. 5.3 and Fig. A.1) and CoordinateX (Fig.
B.1 and 5.4) model classes.

Analogous to ε-decreasing, ε-noise-decreasing reduces the effect of ε (see Formula 5.1)
and thus resembles a situation in which confidence in the existing propensities increases over
time. Technically, ε-greedy and ε-noise conform to ε-decreasing and ε-noise-decreasing
with δ = 1.

ε−noise : Q(st ;a) = Q(st ;a)+ [Q(st ;a)∗ρ], ∀a : {C,D} and ρ ∼ [−ε,ε] (5.2)

Finally, I investigate whether social preference (S) affects coordination in the VOD. To do
this, I compare two different simplified versions of social preference: selfishness and altruism.
Selfish players maximize personal rewards. Altruistic players keep track of the rewards of
all players and maximize cumulated collective rewards. Technically this is realized in the
calculation of maximum expected reward (see Formula 3.1).

An altruistic player expects rewards based group payoffs. That is, a share of the collective
reward when only the player with the lowest costs cooperates at a time: max

D,C
Q(st+1;D) =

[U +U +(U −Kmin)]/3. This calculation is used for both model classes. The calculation
for a selfish player depends on the model class (ClassicQ or CoordinateX), and is explained
with the aid of specific examples in the next two sections.

I do this because in scenarios with social context, mental score representations might
integrate the scores of co-players. In fact, it has been argued for a long time that we might
need to consider also the outcomes of others in scenarios of social interactions (Thibaut
and Kelley, 1978a). That is in contrast to some research designs of cognitive science. In
situations without social context participant are frequently asked to optimize their behavior
by maximizing the outcome of a score that does not depend on the actions of others (e.g.,
Gray et al., 2006; Janssen and Brumby, 2015; Zhang and Hornof, 2014).

5.3.2.1 ClassicQ

The ClassicQ model class is based on a classical Q-Learning approach by reinforcing action-
state pairs (see section 3.1.1). That is, ClassicQ first determines the state a player is currently
in. Then it infers the best action for that state, based on the propensities in the Q-Table.

The set of actions consist of cooperation (C) and defection (D). States in the ClassicQ
models are defined by actions performed in the previous rounds and depend on two param-
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eters: (i) the amount of actions per state (A ≥ 1) and (ii) the amount of players per state
(Φ ∈ {1,3}). The amount of players per state consists either of the player’s own actions
(Φ = 1) or all players’ actions (Φ = 3). Consequently, the amount of actions in a single state
is defined by Formula 5.3, and the size of the problem state space is defined by Formula 5.4.

ClassicQ state length : A∗Φ (5.3)

ClassicQ problem state space size : 2(A∗Φ) (5.4)

As an example, Fig. 5.3 shows an instance of ClassicQ with parameter settings as depicted
in Table 5.1. The scenario corresponds to a symmetric VOD with the same utilities and
cooperation costs for all players (U1,2,3 = 80, K1,2,3 = 50). Each round (horizontal align-
ment) is divided into two parts: action selection, and action assessment (see Fig. 5.1 for
bigger context). Consecutive rounds of the game are aligned vertically. For a comparison
of ε-greedy and ε-noise while all other parameters are the same, please see Fig. 5.3 and
Appendix A.

Exploration
vs.

Exploitation

Social
Preference

Initial
Propensities

Learning
Rate

Discount
Rate

Explor.
Rate

Explor.
Decrease

Actions
per State

Players
per State

ε-greedy selfish ι = 50 α = 0.4 γ = 0.6 ε = 0.1 δ = 1 A = 2 Φ = 1

Table 5.1 Exemplary ClassicQ parameter settings. Each parameter describes a certain
aspect of learning. The first seven parameters are shared with the CoordinateX class. The
last two parameters define a state specific to the ClassicQ class.

The process for the ClassicQ model is as follows: In the beginning of each simulation,
ClassicQ needs to select actions randomly to build up experience (action selection in Fig.
5.3). This is done with a cooperation ratio of 0.33 as in the Random model class. Initial
built-up of experience is required, because a state is, inter alia, defined by the amount of
actions in the previous rounds. Once a state can be defined (starting from round 3 in Fig. 5.3),
actions can be selected according to the Q-Table. In case of ties (as in round 3), actions are
chosen randomly with an equal probability of 0.5. That is to ensure that actions get the same
chance to be explored when there is no clear preference. In case that there is a preference for
one of the actions (as in round n), ε-greedy ensures that the less preferred action is explored
with a chance of 0.1, while the more preferred action is exploited with a chance of 0.9.

In order to update the Q-Values, the maximal expected utility must be defined in each
round (last step of action selection). In case of defection (as in round 3), a player expects
another to cooperate and thus to receive a reward of U = 80 herself. Whenever a player
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Fig. 5.3 Learning and decision-making in the ClassicQ model (ε-greedy). Learning and
decision-making consists of two parts: action selection and action assessment (horizontal
alignment). Action selection is based on propensities for action state pairs (Q-Table). Here,
a state is defined by the previous two actions of the player (rows). Before a state can be
determined (rounds 1,2 – vertical alignment), a player cooperates with a probability of
0.33. This is because the optimal solution for a VOD is when one out of three players
cooperates in a single round. In case of ties (round 3), actions are selected randomly with
equal probabilities (0.5 each), to allow a fair exploration of both actions. In all other cases,
ε-greedy balances between exploration of less preferred strategies (round n). That is, with a
probability of 0.1 the less preferred action is being explored, while with a probability of 0.9
the more preferred action is being exploited. As a final step, the maximum expected utility is
defined – D: U = 80; C: U−K = 80−50 = 30. During action assessment the propensity for
the performed action is updated using Formula 3.1.
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cooperates (as in round n), the maximum expected utility is U−K = 80−50 = 30. During
action assessment a player adds the information about the actions of all players to her private
game history and updates the corresponding Q-Values according to Formula 3.1 (as in action
assessment rounds 3 and n).

5.3.2.2 CoordinateX

In contrast to ClassicQ, CoordinateX is a modified version of Q-Learning that plans a
sequence of actions ahead and assesses success by comparing the expected rewards with the
actual outcome. The basic idea of CoordinateX is inspired by the principle of latent norms
(Opp, 2004; Wrong, 1994).1 A player incorporates expectations towards the actions of others
in the decision-making process based on experiences from the past. For example: A player
chooses the strategy to defect twice and cooperate once. That is because she expects any of
her co-players to cooperate in the next two rounds, but to defect in the third round. The basis
for the decision is the experience that this strategy worked best in previous rounds, and the
expectation that it will persist.

This future-oriented behavior is represented by a set of strategies, which simply define a
sequence of actions. For these strategies, X denotes the expected group size. Technically
X describes the round when to cooperate the latest (see Table 5.2). A player who expects a
group size of three players, has a set of four strategies: {D,C,DC,DDC}. More strategies
(e.g., DDDC) are not feasible, because this would require a single co-player to cooperate at
least twice before the player cooperates herself.

x X = 1 X = 2 X = 3 . . . X = n

0 {D, {D, {D, {D,
1 C} C, C, C,
2 DC} DC, DC,
3 DDC} DDC,
...

...
n [(n-1)*D]C}

Table 5.2 CoordinateX strategies. X denotes the expected group size. Technically, X
specifies the round when to cooperate the latest. A player who expects to be in a group of
three (X = 3), has four strategies: "D" (immediate defection), "C" (immediate cooperation),
"DC" (defection followed by cooperation), and "DDC" (double defection followed by single
cooperation).

1To be clear: CoordinateX is merely inspired by the concept of latent norms, not a full-fledged formalization.
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As plain defection (D) is a strategy in all possible strategy sets, the the amount of available
strategies is always one element bigger than X . The set of available strategies complies to
the problem state space of CoordinateX, and is defined by Formula 5.5.

CoordinateX problem state space size : X +1 (5.5)

The process of learning in the CoordinateX model classes is realized basically in the
same way as in ClassicQ. The only difference is that instead of reinforcing action-state pairs,
CoordinateX reinforces the available strategies. Fig. 5.4 shows an instance of CoordinateX
with parameter settings as depicted in Table 5.3. As before, the scenario corresponds to a
symmetric VOD with the same utilities and cooperation costs for all players (U1,2,3 = 80,
K1,2,3 = 50). The model instance in this example, however, uses ε-noise to balance between
exploration and exploitation. For a comparison between ε-noise and ε-greedy in the Coordi-
nateX model, please see Fig. 5.4 and Appendix B. Again, each round (horizontal alignment)
is divided into two parts: action selection, and action assessment (see Fig. 5.1 for bigger
context). Consecutive rounds of the game are aligned vertically.

Exploration
vs.

Exploitation

Social
Preference

Initial
Propensities

Learning
Rate

Discount
Rate

Explor.
Rate

Explor.
Decrease

Max. Coord.
Position

ε-noise selfish ι = 50 α = 0.4 γ = 0.6 ε = 0.1 δ = 1 X = 3

Table 5.3 Exemplary CoordinateX parameter settings. Each parameter describes a certain
aspect of how learning is realized. The first seven parameters are shared with the ClassicQ
model class. The X parameter defines the available strategies (see Table 5.2).

In contrast to ClassicQ, CoordinateX does not require to build up experience first, because
the future-oriented strategies are available from the first round. Further, the depicted ε-noise
approach adds noise to the propensities (rounds 1, n), so that even in situations without clear
preferences (e.g., with initial propensities as in round 1) a clear decision can be made. Once
a strategy has been chosen, all associated actions are performed sequentially (e.g., round 2).
Only when no more actions are left, a new strategy needs to be selected (round n).

As in action assessment for ClassicQ, an expected utility is required to assess the success
of a strategy. However, to allow a fair assessment for each strategy (no matter the amount
of actions within it) the average value for expected utility in each round is considered. For
example strategy DDC as in round 1: [U +U +(U−K)]/3 = [80+80+(80−50)]/3 = 63.3.
If total amounts were to be taken, strategies with more actions would have a very high lever
making a direct comparison of different strategies disproportionate. During action assessment
a player first adds the information about the actions of all players to her game history and
then updates the corresponding strategy according to Formula 3.1.
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Fig. 5.4 Learning and decision-making in the CoordinateX model (ε-noise). Learning
and decision-making consists of two parts: action selection and action assessment (horizontal
alignment). Action selection is based on propensities for strategies (tables). A strategy (rows)
is defined by a distinct sequence of actions, which are to be performed in the upcoming
round(s). ε-noise simply adds a random noise factor to each propensity, which makes clear
decisions even in situations with equal preferences possible (round 1). As long as there
are still actions left in the current strategy (round 2), they will be performed sequentially.
Only when no more actions are left, a new strategy is selected (round n). As a final step for
strategy selection, the average expected utility is defined, in order to allow a fair assessment
no matter the amount of actions within it. For example round 1: [U +U +(U −K)]/3 =
[80+80+(80−50)]/3 = 63.3. During action assessment the propensity for the strategy is
updated using Formula 3.1.
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5.3.3 Summary of the model classes

I created a total of three different model classes: Random, ClassicQ, and CoordinateX
(for a parameter summary, see Table 5.4). The Random model class serves as control
condition. It selects actions randomly (cooperates with a probability of 0.33), and therefore
does not use any form of learning. The ClassicQ and CoordinateX classes use versions
of Q-Learning for action selection and action assessment. The main difference between
ClassicQ and CoordinateX is the basis for decision-making. ClassicQ reinforces action-state
pairs. CoordinateX, on the other hand, plans a sequence of actions ahead and evaluates the
efficiency by comparing the expected reward with the actual reward.

5.4 Model fitting

The three model classes have multiple parameters, with little theory to guide the decision
for specific parameter values. Therefore, I use a model fitting procedure to identify suitable
parameters. The goal is to see whether the model is, in principle, able to fit the data and to
understand under what conditions. The goal is not to achieve a perfect fit between model
and empirical results, as overly fitted models are not necessarily a better evidence for the
underlying theories. In fact, they might even lose fundamental characteristics like flexibility,
variability of data, and likelihood of unexpected outcomes (Roberts and Pashler, 2000, p.359).

However, due to the amount of available parameters, the corresponding parameter ranges
and a lack of agreement on general settings for some of the parameters (e.g., α , γ), which
makes educated guesses hard if not even impossible, I implemented a simple parameter
fitting procedure. This is done, following the principle of constrained modeling (Marewski
and Mehlhorn, 2011), to roughly constrict the parameter settings to the task of the original
experiment.

As for categorical parameters (see Table 5.4), I explored the full range of parameters:
E ∈ {ε-greedy, ε-decreasing, ε-noise, ε-noise-decreasing}; S ∈ {selfish, altruistic}. Numer-
ical parameters haven been explored using parameter sets in an iterative approach. Two
parameter sets have been selected based on educated guesses. First, ε ∈ {0.05,0.1,0.2,0.4}
resembles an agent with different exploration behavior ranging from very conservative to
highly exploratory. Second, δ ∈ {0.98,0.995} resembles agents that are either more or less
explorative in the late stage of a game.

ClassicQ players regarded either two or three previous rounds (A ∈ {2,3}), and either
their own actions or the actions of all players (Φ ∈ {1,3}). CoordinateX players expected
group sizes of two, three, and four players (X ∈ {2,3,4}). Initial propensities for actions
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Random ClassicQ CoordinateX

I. Principles of decision-making

Formal Framework Randomness Q-Learning
Modified form of

Q-Learning

Action Selection random
based on

propensities
for actions

based on
propensities
for strategies

Action Assessment – propensity update propensity update

Decision Basis – action-state pairs
future-oriented

strategies

II. Categorical Parameters

Exploration vs.
Exploitation

–

E ∈ {ε-greedy,
ε-decreasing,

ε-noise,
ε-noise-decreasing}

E ∈ {ε-greedy,
ε-decreasing,

ε-noise,
ε-noise-decreasing}

Social Preference – S ∈ {selfish,
altruistic}

S ∈ {selfish,
altruistic}

III. Numerical Parameters

Coop. Ratio 0.33 0.33 –

Initial Propensities – ι ≥ 0 ι ≥ 0

Learning Rate – 0 < α ≤ 1 0 < α ≤ 1

Discount Rate – 0≤ γ ≤ 1 0≤ γ ≤ 1

Explor. Rate – 0 < ε < 1 0 < ε < 1

Explor. Decrease – 0 < δ < 1 0 < δ < 1

Actions per State – A≥ 1 –

Players per State – Φ ∈ {1,3} –

Exp. group size – – X ≥ 1

Table 5.4 Summary of the model classes. The Random model class has only one parameter,
namely cooperation ratio. This is a fixed value of 0.33 in order to resemble that an optimal
solution in each round requires exactly one out of three players to cooperate, while the other
two players defect (for details see section 5.3.1). Note, that the cooperation ratio for ClassicQ
models only applies in early stages of the simulation. That is when not enough rounds were
simulated to define the current state. All other parameters of ClassicQ and CoordinateX
define the characteristics of learning and decision-making (for details see section 5.3.2).
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and strategies were defined to cover a broad range of values, because the actual effects
were uncertain (ι ∈ {0,60,100,120,300}). α and γ were selected randomly, as there is no
consensus standard settings for these values. All parameter sets have been combined with
another, resulting in a total amount of 4.864 unique parameter combinations (ClassicQ: 1.948,
CoordinateX: 2.916). A single simulation consisted of a unique parameter combination for
the three conditions (Symmetric, Asymmetric 1 and Asymmetric 2) and ten repeated VOD
scenarios per condition.

The vast majority of simulations for ClassicQ (1.944) used only a small problem state,
with only the player’s own actions defining a state (Φ = 1). That is due to the fact that
the problem state size increases exponentially (see Formula 5.4), resulting in 512 different
states for all three players (Φ = 3) and three actions per state (A = 3). The standard amount
of 150 rounds for a repeated VOD simulation does not allow to explore the full problem
state space, not to mention exploitation of most preferred strategies. For that reason and
due to computational constraints, another four simulations using the best parameter fit for
ClassicQ and the actions of all three players defining a state (Φ = 3) were performed. These
simulations were used to compare the different four balancing strategies for exploration and
exploitation (ε-greedy, ε-decreasing, ε-noise, ε-noise-decreasing) and consisted of repeated
VODs with 5.000 rounds.

5.5 Analysis of the simulation and model validation

Based on exemplary model predictions, I compare model and empirical results in three steps.
In the first step I investigate whether learning is a crucial factor for the emergence of tacit
norms in general. Or in other words: Do the models predict the same behavioral patterns as
they occur in the empirical data? To answer this question, I first calculate the Latent Norm
Index (LNI), as described by (Diekmann and Przepiorka, 2016, p. 1318 f.). This measure
provides the ratio of behavioral patterns compared to the overall amount of rounds. Just as in
the experiment, I analyze three different types of patterns: solitary volunteering, turn-taking
between two players, and turn-taking between three players.

One important formal requirement is that, in a three player game, a pattern needs to be
stable for at least three consecutive rounds. Consider, for example, the following sequence
of actions. Numbers denote a cooperative player in a single round: 1112312123. In order
to comply with ’solitary volunteering’, one player needs to cooperate three times in a row
while no other player cooperates at the same time. 1112312123 has a sequence of player 1
cooperating three times in a row. A game of 10 rounds therefore results in a ratio of 30%
solitary volunteering.
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In order to comply with ’turn-taking between two players’, two players need to cooperate
successively for at least three consecutive rounds. Here, 1112312123 maps to 40% turn-
taking between two players. 1112312123, 1112312123, 1112312123, and 1112312123
alternate only in two consecutive rounds. Thus, these sections do not comply with ’turn-
taking between two players’.

In order to comply with ’turn-taking between three players’, all three players need to
cooperate successively for at least three consecutive rounds. Consequently, 1112312123
maps to 70% turn-taking between three players. For a detailed description of the LNI
algorithm, please refer to Diekmann and Przepiorka (2016, p. 1318 f.).

In contrast to the empirical data, which is described using the mean LNIs over all
experimental trials, I use the median LNIs over all 10 simulations for each unique parameter
combination. This is due to heavily skewed distributions of the mean score differences in
some of the model predictions.

Following the LNI computations, I use root-mean-square errors (RMSE) and normalized
root-mean-square errors (NRMSE) to describe the error size between model predictions and
empirical data. NRMSE is computed by comparing the value of RMSE to the standard
defection of the empirical data, with an RMSE that has the value of 1 SD equating to 100%.
To investigate how much of the variation in the empirical data can be explained using the
models, I use R-Squared (R2) measures.

For the learning-based models, I define a relative model fit. That is when RMSE and
NRMSE show lower values and R2 shows a higher value compared to the predictions of
the Random model. This is because any form of coordination in the Random model would
be due to pure chance. And therefore, an increase of model fit over Random predictions
indicates an improvement of coordinative behavior.

In the second step I investigate whether emerging behavioral patterns have similar
qualitative aspects as the empirical data. That means, I investigate (i.) how many rounds
a pattern needs to emerge, (ii.) whether patterns persist once they have emerged, and (iii.)
whether certain parameters have a direct influence on speed and stability of tacit norm
emergence.

Consider a ratio of 50% turn-taking between three actors. This can occur for various
reasons. One example of such a pattern is a block of trials in which the first half does not
have any turn-taking, but the later half does. Another example for 50% turn-taking is when
turn-taking occurs from the beginning, but is periodically disrupted (e.g., three rounds of
turn-taking followed by three rounds of no cooperation at all).

Furthermore, I mostly compare 150 simulated rounds with about 50 experimental rounds
(see section 5.2). Suppose that humans and simulations require 10 rounds to coordinate
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(humans: 20% of all rounds; simulation: 6.67% or all rounds). Consequently, this results in
different fitting measures, but shows the same speed and stability of pattern emergence.

As an alternative, I could compare the same amount of rounds. For example, I could
analyze the last 50 simulated rounds. However, this would not provide information on how
patterns emerged. Another alternative could be to simulate only 50 rounds in total. But
as described earlier (see section 5.2), for big problem state spaces it might not suffice to
converge. Further, this would not allow to examine long-term pattern stability.

In the wake of this, I also investigate whether rare patterns of the empirical data are
predicted by the models. For example, turn-taking between two players sometimes occurs
in symmetric VODs. This follows the principle of distributional modeling (Marewski and
Mehlhorn, 2011) and serves as another indicator of model validity.

In the third and final step I describe whether certain characteristics of learning are
necessary for the emergence of tacit norms. Or in other words: Do certain parameter settings
suppress the emergence of tacit norms? To analyze this, I investigate the effects of different
isolated parameter settings on the fitting measures. That means, I compare the average model
fit for certain parameter settings (e.g., social preference = selfish vs. altruistic) with the fitting
measures of the Random model. An increase in model fit for only one of the values is a
strong indicator for a necessary parameter setting.





6. Results

In the following sections I investigate three things. First, I investigate whether certain model
instances predict the same patterns as in the original experiment by Diekmann and Przepiorka
(2016). Second, I investigate whether certain characteristics of learning have major influence
on speed and stability of norm emergence. Third, I investigate whether certain characteristics
of learning are necessary for norms to emerge.

Eight representative model instances provide the basis for my analysis: ClassicQ: CQ.362,
CQ.1280, CQ.1442, CQ.1947; CoordinateX: CX.1009, CX.1981, CX.1983, CX.2807. The
names describe the model type (CQ, CX), and the number of the simulation per model
type. They do not provide further information about specific parameter settings or instance
characteristics. For a detailed overview of the instances’ parameter settings and fitting
measures, please refer to Table 6.1.

I selected these instances, because they had the best fitting measures and most represen-
tative behavioral patterns. Thus, they show the general capabilities of the model classes.
Further, all instances within each model class have only slight variations in parameter settings.
This allows to compare the effects of parameter settings on model predictions.

6.1 General performance

Fig. 6.1 compares the observed empicial pattern (black bars) with model predictions (colored
bars) for the three model types (rows). That is, for Random (gray) and the best performing
model instances for ClassicQ (orange) and CoordinateX (blue).

The Random model’s reference fit was: RMSE = 34.2 (NRMSE = 165.8%, R2 = 0.12).
The ClassicQ and CoordinateX models had better fits overall. CoordinateX had the best fit
with RMSE = 6.92 (NRMSE = 33.5%, R2 = 0.94). ClassicQ by comparison had a moderate
fit with RMSE = 20.83 (NRMSE = 101%, R2 = 0.48).
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Random ClassicQ CoordinateX

CQ.362
(best fit)

CQ.1280 CQ.1442 CQ.1947 CX.1009 CX.1981 CX.1983
(best fit)

CX.2807

I. Parameter Settings

Exploration vs.
Exploitation

– εεε-greedy ε-noise ε-noise ε-noise
ε-

decreasing
ε-noise-

decreasing
εεε-noise-

decreasing ε-noise

Social Preference – selfish selfish selfish selfish selfish selfish selfish selfish

Coop. Ratio 0.33 000...333333 0.33 0.33 0.33 – – – –

Initial Propensities – ιιι === 111222000 ι = 60 ι = 120 ι = 60 ι = 100 ι = 100 ιιι === 111000000 ι = 300

Learning Rate – ααα === 000...222555 α = 0.25 α = 0.25 α = 0.25 α = 0.4 α = 0.4 ααα === 000...444 α = 0.6

Discount Rate – γγγ === 000...666 γ = 0.6 γ = 0.6 γ = 0.6 γ = 0.5 γ = 0.5 γγγ === 000...555 γ = 0.9

Exploration Rate – εεε === 000...000555 ε = 0.2 ε = 0.2 ε = 0.2 ε = 0.05 ε = 0.05 εεε === 000...000555 ε = 0.1

Exploration Decr. – δδδ === 111 δ = 1 δ = 1 δ = 1 δ = 0.98 δ = 0.98 δδδ === 000...999888 δ = 1

Actions per State – AAA === 333 A = 3 A = 3 A = 3 – – – –

Players per State – ΦΦΦ === 111 Φ = 1 Φ = 1 Φ = 3 – – – –

Exp. group size – – – – – X = 2 X = 2 XXX === 444 X = 3

II. Goodness of Fit
II.a. Combined

RMSE 34.2 222000...888333 25.19 21.65 28.3 29.44 32.08 666...999222 19.14

NRMSE 165.8 111000111 122.1 105 137.6 142.7 155.5 333333...555 92.8

R2 0.12 000...444888 0.45 0.48 0.43 0.39 0.38 000...999444 0.55

II.b. Symmetric

RMSE 32.3 333444...444111 35.63 35.79 35.06 35.04 37.85 555...777999 11.76

NRMSE 141.6 111555000...888 156.1 156.9 153.7 153.6 165.9 222555...444 51.5

R2 0.17 000...111111 0.12 0.12 0.18 0.14 0.16 000...999666 0.78

II.c. Asymmetric 1

RMSE 27.96 999...777666 20.99 10.49 29.52 32.3 34.75 999...444444 27.38

NRMSE 165.4 555777...777 124.2 62.1 174.7 191.1 205.6 555555...888 162

R2 0.5 000...999777 0.49 0.95 0.29 0.25 0.21 000...999333 0.48

II.d. Asymmetric 2

RMSE 41.05 444...777 13.9 3.85 17.72 18.14 21.13 444...555777 14.54

NRMSE 149.5 111777...111 50.6 14 64.6 66.1 77 111666...777 53

R2 0.01 000...999777 0.91 0.99 0.87 0.85 0.83 000...999999 0.66

Table 6.1 Parameter settings and fitting measures of representative model instances.
Columns contain nine model instances: Random, four ClassicQ and four CoordinateX. Rows
show parameter settings (I.) and fitting measures (II.). Fitting measures are divided into
combined fit for all types of VODs (II.a) and each type of VOD individually (II.b.–d.). All
model instances have representative fitting measures and representative behavioral patterns.



6.1 General performance 35

Fig. 6.1 Ratios of behavioral patterns for the best performing model instances. The
figure is divided into nine plots. Rows contain plots for the different model instances
(Random, CQ.362, CX.1983). Columns contain plots for the different conditions (Symmetric,
Asymmetric 1, Asymmetric 2). Each plot consists of six bars, depicting pattern ratios: solitary
volunteering, turn-taking between two players, and turn-taking between three players. Three
bars show the ratios for the empirical data (black). The remaining bars depict the ratios of
the corresponding model instances (gray: Random, orange: CQ.362, blue: CX.1983).
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For asymmetric VODs, both model classes had similarly good fits. Especially the
reference fit for Asymmetric 2 was clearly improved. The fit of the Random model was
RMSE = 41.05 (NRMSE = 149.5%, R2 = 0.01). CoordinateX had a very good fit with
RMSE = 4.57 (NRMSE = 16.7%, R2 = 0.99). ClassicQ also showed a very good fit with
RMSE = 4.7 (NRMSE = 17.1%, R2 = 0.97). Further, Fig. 6.1 shows that both learning-
based models predicted similar ratios of solitary volunteering for the asymmetric VODs as
found in the experiment. Note that the lower ratio for solitary volunteering in Asymmetric 1
compared to Asymmetric 2 is also predicted accurately.

For the symmetric VOD however, only CoordinateX showed a good fit. The reference fit
of the Random model was: RMSE = 32.3 (NRMSE = 141.6%, R2 = 0.17). CoordinateX had
a very good fit with RMSE = 5.79 (NRMSE = 25.4%, R2 = 0.96). ClassicQ however, had a
poor fit with RMSE = 34.41 (NRMSE = 150.8%, R2 = 0.11). Fig. 6.1 shows that CQ.362
predicted only a very small ratio of turn-taking between two actors. Turn-taking between
three actors, the most common behavioral pattern in the experiment, was not predicted at all.
CoordinateX on the other hand, predicted almost the same ratio of turn-taking between three
actors as in the experiment.

In summary, these results show that both learning-based model classes successfully
predict similar ratios of solitary volunteering for asymmetric VODs as found in the empirical
data. Further, only CoordinateX predicts turn-taking between three actors for the symmetric
VOD. The ratios produced by CoordinateX for all types of VOD are very close to the ratios
of the empirical data.

6.2 Speed and stability of pattern emergence

An open question is whether the models that have the best quantitative fit also show the best
learning speed and stability of the human pattern. In order to allow all models to explore
the full range of parameter space and investigate long-term pattern stability, I simulated 150
rounds instead of about 50 rounds as in the experiment (see section 5.2). This has a direct
effect on fitting measures (see section 5.5). For that reason, I investigate in the following
section whether the patterns of model predictions show similar speed and stability of pattern
emergence, as in the experiment.

6.2.1 ClassicQ

As the pattern ratios in Fig. 6.1 suggest, there is no form of stable and reliable coordination
for ClassicQ in the symmetric condition. Fig. 6.2 shows two exemplary interaction and
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convergence patterns for the symmetric VOD. The upper plot for each instance (CQ.362 and
CQ.1947) shows the interactions of all three actors. An ’x’ denotes ’cooperation’. The lower
plot shows whether a stable pattern emerges. Remember that for the formal recognition of a
pattern, at least three consecutive rounds of a sequence is required (see section 5.5).

Consider, for example, player 1 in simulation CQ.362. In rounds 29 till 34, player 1
cooperates five times in a row without any other player cooperating at the same time. This
translates into a pattern of solitary volunteering. However, in rounds 56 and 57, player 1
cooperates twice in a row. This sequence does not meet the requirement of three consecutive
rounds and thus is not recognized as a pattern. A different pattern can be found in rounds 2,
3 and 4. Here, player 1 and 2 alternate which translates into a pattern of turn-taking between
two players.

Although there are some short stretches of patterns for CQ.362 in the symmetric VOD,
none of them is stable over a longer period of rounds. In fact, behavior seems random
throughout the whole course of the simulation. Further, sub-optimal behavior predominates
most of the rounds. That is, either none or more than one actor cooperates at the same time.

Various parameter combinations are possible within the ClassicQ model. In the following,
I discuss the impact of specific combinations on model fit, and explain why the parameter
values lead to a specific result.

Just as CQ.362, CQ.1947 does not show any form of coordination in the symmetric
condition either. In contrast to CQ.362, CQ.1947 has an increased problem state space.
That is because decision-making of CQ.1947 is not only based on the player’s own actions
in the previous three rounds (CQ.362: A = 3, Φ = 1), but based on the last three actions
of all players (CQ.1947: A = 3, Φ = 3). This means CQ.1947 has a much more complex
representation of memory, considering all the information available in the previous rounds.

For both instances, CQ.362 and CQ.1947, the amount of rounds should suffice to converge
at some form of optimal behavior. That is because the problem state space in both cases
is much smaller than the amount of rounds (CQ.362: 2A∗Φ = 21∗3 = 8; CQ.1947: 2A∗Φ =

23∗3 = 512; for details see Formula 5.4). This means that all states should have had the chance
to be visited at least once during the course of a simulation. Furthermore, a total of 19.480
simulations were computed (1.948 unique parameter combinations, with 10 simulations
each). None of them showed any form of stable coordination in the symmetric VOD.

However, stable coordination did emerge in the asymmetric VOD. The lower six plots
of Fig. 6.2 depict exemplary results for the asymmetric conditions: five interaction patterns
(Asymmtric 2: CQ.362, CQ.1442, CQ.1280, CQ.1947; Asymmetric 1: CQ.1280) and
one convergence pattern (Asymmetric 2: CQ.1947). All five simulations show solitary
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Fig. 6.2 Exemplary patterns (ClassicQ). Two types of patterns are presented: behavioral
patterns and convergence patterns. Behavioral patterns depict cooperation of players in
corresponding rounds with an ’x’. Convergence patterns show whether a sequence of actions
complies with one of the considered patterns (marked with a dot). Note that a sequence of at
least three consecutive actions is required to be recognized as a pattern. For example, ’solitary
volunteering’ requires a single player to volunteer three times in a row, while no other player
cooperates at the same time (e.g., Symmetric, CQ.362, player 1, rounds 29–34). ’Turn-taking
(3)’ requires a sequence of cooperation where each player successively cooperates for at least
three rounds (e.g., Symmetric, CQ.362, rounds 118–120). For details see section 5.5. Red
lines in the asymmetric conditions mark the player with the lowest costs to cooperate.
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volunteering of the actor with the lowest cooperation costs (player 1, highlighted with a red
line). However, they differ in speed and stability of pattern emergence.

CQ.362 showed the best overall fitting measures. This means a similar ratio of solitary
volunteering is predicted by the model as found in the empirical data. However, the models
simulate 150 rounds and are compared to about 50 experimental rounds. As a result, a stable
pattern requires quite long to emerge (∼ 30 rounds). Further, it is occasionally disrupted by
either coordination of other players or defection of player 1.

Instead of ε-greedy, as used by CQ.362, CQ.1442 uses ε-noise to balance between
exploration and exploitation. This still results in about equally good fitting measures (see
Table 6.1). However, the patterns are much more stable, but require around 60 rounds to
emerge.

CQ.1280 also uses ε-noise. Additionally, initial propensities for the available strategies
are lower: 60 instead of 120. This means that a player is less optimistic about the success
of strategies in the beginning of the game. In fact, she is more realistic because the payoff
structure allows only a maximum reward of 80 points (actor defects while another actor
cooperates). In case of defection, the actual reward is even lower due to cooperation costs.
These parameter settings result in the quickest and most stable pattern emergence. Stable
patterns emerge after about 10 to 15 rounds.

CQ.1280 further shows how the degree of asymmetry affects pattern emergence. While
solitary volunteering emerges after 10 rounds in the Asymmetric 2 condition, CQ.1280
requires more than 90 rounds to converge to solitary volunteering in the Asymmetric 1
condition. That is because player 1 shows a long stretch of fluctuation between cooperation
and defection (rounds 34 – 91), while the other two players stopped comparatively early in
the game: after 34 rounds for player 2, and after 59 rounds for player 3.

Memory representation is the same for all three models. That is, they consider their own
actions of the last three rounds, resulting in 8 different action combinations (2A∗Φ = 21∗3 = 8;
for details see Formula 5.4). Thus, optimistic settings for initial propensities (here: 120),
require more rounds to lower expectations to realistic values, and thus to settle on a preferred
action than initial realistic propensities (here: 60). CQ.1947 even shows that realistic initial
propensities require each problem state to be visited only once to settle at preferable actions.
That is, the problem state space consists of 512 action combinations for all three players in
the previous three rounds. Further, the simulation requires just over 500 rounds to converge
at solitary volunteering of the player with the lowest cost to cooperate.

Taken together, the results show that ClassicQ model cannot predict turn-taking in the
symmetric condition. Solitary volunteering, however, is reliably predicted in the asymmetric
VODs. Speed and stability of pattern emergence depend on parameter settings. ε-noise
produces the most stable patterns. Realistic initial propensities (here: ι = 60) produce quicker
convergence than optimistic initial propensities (here: ι = 120).
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6.2.2 CoordinateX

CX.1983 shows good performance on different levels. It has a good overall model fit and
pattern ratios for all types of VODs (see Fig. 6.1). In contrast to ClassicQ model instances,
this also holds for symmetric VODs. Fig. 6.3 shows that CoordinateX instances predict very
stable turn-taking beginning after a minimum of 25 rounds. These patterns are consistently
optimal in the sense that only one actor cooperates at a time.

However, sometimes even more complex patterns than in the original experiment emerge.
For example, the first interaction pattern of CX.1983 shows a stable sequence of cooperation
for players: 12131213. . . This complies formally with turn-taking between two and turn-
taking between three players at the same time. This pattern is only possible, because players
expect a maximum amount of four players in the group (X = 4). As a result, the most
promising strategy for players 2 and 3 is to defect three times before coordinating once (for
details on strategy creation, see section 5.3.2.2).

Just like ClassicQ, the CoordinateX model allows different parameter combinations. In
the following I discuss effects of specific combinations on model fit, and explain why certain
parameter setting lead to specific results.

The effect of lowering the expected amount of players to the actual group size (X = 3)
is depicted by the patterns for CX.2807. Both simulations end up with strict turn-taking
between three players. More complex patterns do not emerge anymore.

The first interaction pattern of CX.2807 shows another remarkable feature. After 20
rounds, player 1 stopped to cooperate. This lead, after 42 rounds, to successful coordination
and thus turn-taking between players 2 and 3. However, this did not prove to be successful
on the long run and player 2 dropped out after round 87. Then, after only nine rounds and
starting from round 96, the actors managed to coordinate and converge towards turn-taking
between all three. This ultimately resulted in evenly distributed rewards and cooperation
costs for all players.

The lower three interaction patterns of Fig. 6.3 show exemplary simulations for Asym-
metric 2. Asymmetric 1 is omitted, due to strong similarities of the results. Patterns for
CX.2807 are also omitted, as they don’t add further insights. Solitary volunteering by the
strong player was also dominant for CX.2807. Red lines mark the player with the lowest
cooperation costs.

As discussed before, CX.1983 showed the best fit and ratio for behavioral patterns of
all model instances. However, the emerging patterns are not optimal. Player 1 cooperates
consistently beginning from round 16. The other two players however, do not recognize that
cooperation on their behalf is not necessary anymore. On the one hand, this leads to a stable
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Fig. 6.3 Exemplary patterns (CoordinateX). Two types of patterns are presented: behav-
ioral patterns and convergence patterns. Behavioral patterns depict cooperation of players in
corresponding rounds with an ’x’. Convergence patterns show whether a sequence of actions
complies with one of the considered patterns (marked with a dot). Note that a sequence of at
least three consecutive actions is required to be recognized as a pattern. For example, ’turn-
taking (3)’ requires a sequence of cooperation where each player successively cooperates for
at least three rounds (e.g., Symmetric, CX.2807, rounds 96–150). For details see section 5.5.
Red lines for Asymmetric 2 mark the player with the lowest costs to cooperate.
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pattern that complies with the same ratio as in the original experiment. On the other hand,
coordination is disrupted every four rounds.

In contrast to CX.1983, CX.1981 has a lower expected group size, namely from X = 4 to
X = 2. Consequently, CX.1981 has a smaller strategy space with only three strategies in total
(defect, cooperate, defect-cooperate). This results not only in much quicker coordination
(starting from round 8), but also in a pattern of consistent turn-taking between three players.

The effect of ε-greedy on pattern stability is pictured by the comparison of CX.1981
and CX.1009. All other parameters being equal, CX.1009 shows occasional disruptions
of coordination, while coordination of CX.1981 is stable after 8 rounds. This confirms the
effects of the two balancing strategies (ε-noise and ε-greedy) on pattern stability as already
found for ClassicQ.

A final notable property of CoordinateX is reflected by the second simulation for sym-
metric CX.1983 and the second simulation for asymmetric CX.1009. In both cases, two
players engage in stable turn-taking. Turn-taking between two players sometimes also occurs
in symmetric VODs of the original experiment. Further, general turn-taking in asymmetric
VODs can also be found in a few experimental games. Therefore, CoordinateX can also
account for infrequent events of the original experiment and thus meets the principle of
distributional modeling (Marewski and Mehlhorn, 2011).

Taken together, the results show that CoordinateX is the only model class that creates
patterns for all conditions that are close to the original data. More precisely, CoordinateX
predicts turn-taking in the symmetric VOD, and solitary volunteering in the asymmetric
VODs. Simple patterns of turn-taking between three players occur consistently when expected
group size meets actual group size (X = 3). As for ClassicQ, fully stable patterns are only
predicted by ε-noise. Finally, CoordinateX also predicts rare patterns from the original data,
like turn-taking between two players in the symmetric and asymmetric VODs.

6.3 Necessary characteristics of learning

Fig. 6.4 provides a direct comparison of model fits for best fitting model instances (plot a.),
average fits (plot b.), and the effects of selected parameter settings on model fit (plots c., d.:
social preference; plots e., f.: initial propensities). Each plot shows average fit (y-axis) for
Random (gray), ClassicQ (orange) and CoordinateX (blue) per condition (x-axis).

As I described earlier, both learning-based models, ClassicQ and CoordinateX, had a
better fit to the human data compared to the Random model. This is further illustrated by Fig.
6.4, plot a. However, the average fits for all simulations are comparatively poor (see Fig. 6.4,
plot b. and Appendix ??, Tables ?? and ??). That is, ClassicQ has a bad combined fit with
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RMSE = 37.89 (NRMSE = 183.7%, R2 = 0.14). CoordinateX has only slightly improved
combined fit with RMSE = 30.33 (NRMSE = 147%, R2 = 0.18). As a reminder, Random
had a combined fit of RMSE = 34.2 (NRMSE = 165.8%, R2 = 0.12). The question therefore
arises whether there is any structure in the model fits; or do some particular parameters
produce better results than others?

Fig. 6.4 Effects of parameter settings on model fit. Each plot displays model fit (y-axis:
RMSE) for all three model types (gray: Random, orange: ClassicQ, blue: CoordinateX)
and each type of VOD (x-axis: Symmetric, Asymmetric 1, Asymmetric 2, combined). Plot
a. compares fitting measures for the best performing model instances. Plot b. shows the
average fits over all instances per model type. Plot c. and d. compare model fit between the
two different settings for social preference: selfish and altruistic. Plot e. and f. compare
model fit between optimistic and realistic initial propensities (ι ≥ 60) and pessimistic initial
propensities (ι < 60).
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Of all 9 parameters for ClassicQ and 8 parameters for CoordinateX, two parameters had
an immediate effect on model fit. First, social preference. Altruism lead to worse model fits
for all types of VOD compared to the Random model (see Fig. 6.4, plot d.). Selfishness on
the other hand, showed an increase of model fit, especially for Asymmetric 2 (see Fig. 6.4,
plot c.).

The second parameter that had an immediate effect on model fit was initial propensity.
Pessimistic settings for initial propensities (ι < 60) also resulted in worse model fits for all
VOD types compared to Random (see Fig. 6.4, plot f.). Optimistic or realistic settings for
initial propensities however, lead to an increase of model fit (see Fig. 6.4, plot e.). Again the
biggest effect was for Asymmetric 2.

These results, and further examination of behavioral patterns, showed that altruism and
pessimistic initial propensities suppressed any form of coordination. That is, there was no
form of turn-taking in the symmetric VOD. Further, there was no form of stable solitary
volunteering in the asymmetric VODs.

6.4 Summary of the results

In the previous sections I showed three things. First, I showed that models based on
reinforcement learning predict the emergence of behavioral patterns. I showed that both
models of learning successfully predict solitary volunteering in the asymmetric VODs. That
is, reinforcement of action-state pairs by the ClassicQ model on the one hand. And the
use of future-oriented strategies (i.e. planning a sequence of actions ahead with subsequent
evaluation of success) by the CoordinateX model on the other hand.

However, turn-taking in the symmetric VOD can be only predicted by planning ahead
(CoordinateX). This form of learning produces a very good fit, and ratios of behavioral
patterns that are close to the empirical data. It also predicts patterns that occur on a very
limited basis in the empirical data. These are turn-taking between two actors in the symmetric
VOD and general turn-taking in the asymmetric VOD. CoordinateX is therefore the most
likely model to capture the cognitive mechanisms of latent norm emergence in the VOD.

Second, I showed that certain characteristics of learning have a significant influence
on speed and stability of pattern emergence. I showed that ε-noise produces very stable
patterns as found in the empirical data, while ε-greedy shows occasional disruptions. Further,
realistic initial propensities for certain actions or strategies, meaning propensities close to
actually received rewards, lead to quick coordination. This effect was confirmed by both
learning-based model. Furthermore, CoordinateX showed very stable turn-taking between
three players, when the expected group size matches the actual group size (here: three actors,
thus X = 3).
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Third and finally, I showed that certain characteristics of learning are necessary for
patterns to emerge. I showed that two parameters are necessary for coordination. These
are selfishness and non-pessimistic initial propensities for actions or strategies. In fact,
altruism and pessimistic initial propensities suppressed any form of coordination for both
learning-based models and all types of VOD.

An overview of these results is also presented in Table 6.2.
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Random ClassicQ CoordinateX

I. Complexity

Amount of parameters 1 10 8

II. Goodness of fit of the best fitting models

RMSE 34.2 20.83 6.92
NRMSE 165.8 101 33.5

R2 0.12 0.48 0.94

III. Coordination in symmetric VOD

Existent ✗ ✗ ✓

Emerging patterns – – turn-taking
(3 and 2 players)

Minimum of rounds required – – 27

IV. Coordination in asymmetric VODs

Existent ✗ ✓ ✓

Emerging patterns – solitary volunteering
solitary volunteering,

turn-taking

Minimum of rounds required – 13 8

V. Effects of parameter settings
V.a. Balancing between exploration and exploitation

ε-greedy, ε-decreasing – disruptions in patterns disruptions in patterns
ε-noise, ε-noise-decreasing – stable patterns stable patterns

V.b. Initial propensities

Pessimistic (ι ≪ 60) – no coordination no coordination
Realistic (ι ≈ 60) – quick coordination quick coordination
Optimistic (ι ≫ 60) – slow coordination slow coordination

V.c. Social preference

Selfish – coordination possible coordination possible

Altruistic – no coordination no coordination

Table 6.2 Summary of results. Columns contain the different model types. Rows show the
most important findings, as discussed in the previous section. Fitting measures are displayed
for the best performing model instances (ClassicQ: CQ.362, CoordinateX: CX.1983).



7. General discussion

7.1 Summary of the study

In the present study, I investigated whether reinforcement learning (Sutton and Barto, 1998)
can explain the emergence of social norms in the Volunteer’s Dilemma (VOD). A sociological
study on the three player repeated VOD served as the basis for my work: Diekmann and
Przepiorka (2016) showed that the reward structures of the game have an immediate effect
on manifestation of behavioral patterns, precursors of social norms (Opp, 2004; Wrong,
1994). That is turn-taking for symmetric VODs (when rewards are distributed equally among
the group), and solitary volunteering for asymmetric VODs (when one player has lower
costs for cooperation than the others). It is, however, unknown whether and how cognitive
mechanisms contribute to the emergence of social norms. Using two classes of computational
cognitive models based on reinforcement learning, I investigated whether coordination in the
Volunteer’s Dilemma can be explained with cognitive mechanisms of the individuals.

Results showed that the future-oriented model (CoordinateX), which compared a set of
pre-defined action sequences, predicted the results of the empirical data very closely (see
sections 6.1, and 6.2.2). The memory-based model (ClassicQ), which makes decisions based
on reinforcement of action-state pairs, predicted only solitary volunteering in asymmetric
VODs (see sections 6.1, and 6.2.1). This makes CoordinateX the most likely model to capture
the cognitive mechanisms of latent norm emergence in the VOD.

Further, the data showed that different parameter settings had an immediate effect on
the the emergence of behavioral patterns (see section 6.3). Altruistic behavior, that is
maximization of collective rather than personal rewards, suppressed the emergence of patterns
completely. Realistic initial propensities, that is a Q-Table1 with initial values close to actual
rewards, lead to quick pattern emergence.

1For an exemplary Q-Table, see Table 3.1.
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7.2 Learning as a key cognitive mechanism for norm emer-
gence

The CoordinateX model predicted quick, stable and reliable patterns across all conditions,
consistent with the results from the empirical data (see Fig. 6.3). That is, it predicted
turn-taking between three players in the symmetric VOD and solitary volunteering in the
asymmetric VODs. Both learning-based model classes, CoordinateX and ClassicQ, further
showed that the degree of asymmetry in reward structures has an immediate effect on the
likelihood to solitarily volunteer for the actor with the lowest costs. The study therefore shows
that complex outward behavior can emerge from simple underlying mechanisms (Anderson,
2002; Pfeifer and Scheier, 2001; Simon, 1969). On this account, I propose learning as the
key cognitive mechanism in the emergence of behavioral patterns, and thus a precursor of
social norms (Wrong, 1994).

One of the most striking results was that both learning-based models predicted solitary
volunteering for the asymmetric VODs, while only CoordinateX successfully predicted
turn-taking in the symmetric VOD. In the following, I first describe that coordination in the
asymmetric conditions is a necessary consequence of asymmetry itself. In the course of
this, I also describe how the degree of asymmetry in the VOD affects the ratio of solitary
volunteering. In the second step, I explain how future-oriented strategies facilitate turn-taking
in the symmetric VOD.

7.2.1 Solitary volunteering as necessary consequence of asymmetric
VODs

At the system level, that is considering the collective rewards of all agents, solitary volunteer-
ing by the strong player is clearly optimal in the asymmetric conditions. Any other outcome
creates more costs for the group (i.e. is Pareto inferior). An asymmetric condition therefore
provides a focal point, as there is only one single system optimum. Logical inference, or top-
down analysis, allows to find the focal point. The reinforcement learning models, however,
do not use top-down analysis. They do not use any form logical inference. Further, the focal
point in form of the system optimum does not necessarily mean that it is the agents’ optimum.
Nevertheless, reinforcement learning leads to reliable and stable solitary volunteering in the
asymmetric conditions. But why is that? In the following, I illustrate certain aspects with the
aid of ClassicQ examples. The same reasoning, however, also applies to CoordinateX.

First, let’s recall how learning and decision-making works in general: At the beginning
of a round each actor chooses an action that gives the most expected reward. Once all actors
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have performed the selected action, they receive feedback in form of actually received reward.
This information is then used to reinforce actions that meet or exceed expected reward
and demote actions that fall short of expected reward. Consequently, the actual received
reward and the expected reward are crucial factors in the decision-making process, as they
provide the yardstick by which success is being measured. Technically this is reflected
in the propensity update function (see Formula 3.1), with (rt+1) being received reward,
and (maxa Q(st+1;a)) being expected reward. This function holds the key to why solitary
volunteering is a dominant solution in the asymmetric conditions.

Consider a selfish player with optimistic initial propensities (e.g., CQ.1442 with ι = 120).
First, a selfish player maximizes personal rewards (for details, see sections 5.3.2.1, and
5.3.2.2). Thus, she expects to receive 80−K points in case of cooperation, with K being
the personal costs. Second, asymmetry results in lower cooperation costs for exactly one
player, the strong player. As a result, the strong player expects and receives a higher reward
for cooperation than the other two players. All other parameters being equal, the propensity
update function computes higher results when actual and expected rewards increase. As the
strong player has the highest values for rewards, the propensity for cooperation levels off at
the highest value for the strong player in a repeated game. Thus, rewards have an immediate
effect on propensities: the higher the reward for an action, the higher the potential propensity
for that action.

To illustrate this, consider the early stages of a game. No form of coordination has
emerged yet. Sub-optimal outcomes occur frequently. As a result, initially high propensities
lower constantly for all actions (cooperation and defection) within all players. At some point
a weak player cooperates. She still has relatively high propensities for cooperation. But
due to her high cooperation costs, she receives only a small reward. Thus, propensity for
cooperation decreases, as the received value is below current propensity. The next round
the strong player cooperates. She still has a relatively high propensity for cooperation, as
well. Due to her low cooperation costs, however, her current propensity is met by the actual
reward and cooperation gets reinforced. Consequently, cooperation for the strong player gets
reinforced in a stage of the game when cooperation for the weak players gets demoted. Over
time, this imbalance results in repeated cooperation by the strong player. Defection can now
be reinforced repeatedly for the weak players, and solitary volunteering has emerged.

This example also provides insights on how the degree of asymmetry affects the ratio of
solitary volunteering, an effect also found by Diekmann and Przepiorka (2016). CQ.1280,
for example, predicts stable solitary volunteering in both asymmetric conditions (see Fig.
6.2). In Asymmetric 2 solitary volunteering is stable after 7 rounds. However, more than
90 rounds are required in Asymmetric 1. Note that the only difference between the two
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simulations is the cooperation costs of the strong player. In Asymmetric 2 the strong player
gets 70 points for cooperation; in Asymmetric 1 only 50. In both cases defection results in
80 points, given another player cooperates. All other conditions are the same (i.e. model type
and parameter settings). Thus, the different results depend solely on the degree of asymmetry
in the two asymmetric conditions.

From the strong player’s perspective asymmetry has the following effect: When rewards
for cooperation and defection are close to another (i.e. Asymmetric 2: 70 vs. 80 points),
convergence towards cooperation happens fast. When rewards for cooperation and defection
are further apart (i.e. Asymmetric 1: 50 vs. 80 points), convergence requires more rounds.
This is because cooperation comes with a guaranteed reward. Defection, however, requires
another player to cooperate. Therefore, defection is a very unreliable source of utility, which
results in a lower average reward for defection than the potential 80 points. It follows that the
closer the reward for cooperation is to the reward for defection, the quicker it can outperform
unreliable defection.

7.2.2 Turn-taking in symmetric VODs

As shown in the previous section, asymmetry allows reinforcement learning models to
converge at different propensity levels for cooperation, depending on cooperation costs. In
the symmetric VOD, however, all actors have the same cooperation costs. Any behavioral
pattern of a single cooperating player creates a system optimum. That means there is an
almost innumerable amount of system optima in repeated symmetric VODs. This erases
different propensity levels and solitary volunteering disappears. As a result, ClassicQ is
not able to achieve any form of system optimum in the given time. That is, no form of
coordination between the players is achieved, and sub-optimal action combinations occur
frequently (see Fig. 6.2). In contrast, CoordinateX models coordinate in the given time.
Players achieve optimal solutions where only a single player cooperates at a time. In some
simulations players take turns in twos, in most simulations players take turns in threes.
Obviously, ClassicQ lacks a crucial property in order to coordinate – a property that exists in
CoordinateX. But what might that property be?

Previous research with memory-based models (e.g., Juvina et al., 2015; Martin et al.,
2014; Stevens et al., 2016) showed that the amount of information players have on the options
and rewards of their co-players has a direct effect on the likelihood of coordination. In other
words, successful coordination requires a player to select actions in accordance with the
behavior of others. ClassicQ however, a model based on action-state pairs, never achieves any
form of coordination in the symmetric VOD no matter how much information is integrated
into the decision-making process. Consider CQ.1947, an instance of ClassicQ that integrates
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the actions of all players in the previous rounds into the decision-making process (Φ = 3,
A = 3; see Table 6.1). As a result, CQ.1947 has a big problem state space with 512 states (see
Formula 5.4). However, CQ.1947 never achieves any form of coordination in the symmetric
VOD in the given time (see Fig. 6.2). CoordinateX models, on the other hand, have small
problem state spaces. Consider CX.1983 which expects to be in a group of four (X = 4; see
Table 6.1), and therefore has a problem state space of 5 states (see Formula 5.5). CX.1983
however achieves coordination in form of turn-taking. Thus, pure amount of information is
not a crucial factor for coordination in the VOD.

The difference lies in the different mechanisms for learning and decision-making. Let’s
recall how the two models learn and make decisions. First, ClassicQ (see also section
5.3.2.1): ClassicQ reinforces action-state pairs. A state is defined by a sequence of previously
performed actions. A player selects the action with the highest propensity according to her
current state. Propensities are affected by rewards (see Formula 3.1). Thus, a player chooses
the action that produced the highest rewards in the same previously experienced situation. To
illustrate this, consider a player who determines that she has defected in the previous two
rounds. She then decides to cooperate, because from experience she knows that cooperation
was usually the best action to perform after she defected twice.

Second, CoordinateX (see also section 5.3.2.2): CoordinateX reinforces future-oriented
strategies, inspired by the concept of latent norms. CoordinateX players choose the strategy
that produced the highest rewards in the past. A strategy consists of a sequence of actions a
player performs in the upcoming rounds, considering what the player expect her co-players
do. To illustrate this, consider a player who plans to defect twice (because she expects any of
her co-players to cooperate) and then to cooperate once (because she expects nobody else to
volunteer in the third round), because this usually produced the best outcome.

The main difference between the two models is that CoordinateX selects from predefined
action sequences, while ClassicQ selects from single actions. The advantage of action
sequences over single actions is that sequences add structure. That is, they incorporate the
potential for effortless and consistent repetitions. For example, a CoordinateX player plans
to defect twice and cooperate once (DDC). In case this sequence meets the propensities,
the strategy is replayed and creates a complex six move pattern with only two decisions.
ClassicQ players however, can only plan for the upcoming round. A six move pattern requires
six decisions for ClassicQ models. Thus, the CoordinateX model reduces complexity, as
there are only a few action sequences available, that have the potential to create complex
behavior. Thus, CoordinateX has a structural advantage over ClassicQ.

But why is turn-taking the dominant pattern in the symmetric VOD? The answer is
that the structural advantage in the CoordinateX model comes along with a quantifiable
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advantage for propensities. Consider, a player who believes to be in a group of three (X = 3,
for details see section 5.3.2.2). The set of available strategies is: {D,C,DC,DDC}. For DDC
the player’s expected (and potential) reward per round is: 80+ 80+(80− 50)/3 = 63.3
points. In contrast, DC gives only a potential reward of 80+(80−50)/2 = 55 points. As
discussed in the previous section, rewards have an immediate effect on propensities. Thus,
the propensity for DDC levels off at a higher value than for DC and C. This causes that DDC
is considered more often than DC, and C. Note that the reward for DDC is only a potential
reward, as it requires coordination with the other players. D has a higher potential reward
(80 points vs. 63.3 points), but it is a single action strategy as in ClassicQ. The previous
paragraph shows that coordination for single actions has not been established. Thus, actual
reward for D drops below DDC and turn-taking has emerged.

However, turn-taking could also occur in many different ways. For example, players
could alternate by volunteering for three rounds in a row each. Complex patterns like this,
however, do not show in the empirical data (see Diekmann and Przepiorka, 2016). This is
in line with observations in previous studies, which also showed a predominance of simple
patterns (e.g., Goldstone et al., 2015; Helbing et al., 2005; Juvina et al., 2015). In fact,
complex patterns would require a higher cognitive load within each individual: In order to
cooperate three times in a row and to start doing so in seven rounds from now, a player needs
to keep track of more information than a player who simply cooperates once every three
rounds. Humans choose feasible strategies based on constraints given by the task and their
own cognitive architecture (Howes et al., 2009). Simple turn-taking provides a profitable
strategy (as in CoordinateX), while minimizing cognitive load (small problem state space).
Simple turn-taking therefore presents a feasible strategy. It provides a simple solution for
the task with few demands on the cognitive architecture. More complex patterns are less
feasible, as they merely increase memory, but do not necessarily change the overall outcome
of the task. This is also in line with the literature on strategic game playing, claiming that
humans only use a minimal amount of information to form cognitive strategies (Camerer,
2003; Colman, 2003; Juvina et al., 2015).

Additionally, predictions of models with lower demands on memory are closer to the
empirical data. This becomes evident from three different aspects of the simulations. First,
ClassicQ instances, that consider more information in the decision-making process require
more rounds to coordinate in the same way like players that consider a minimal amount of
information. CQ.1947, for example, keeps track of the previous three actions of all players
(Φ = 3, see Table 6.1). CQ.1280 however, considers only her own previous three actions
to make a decision (Φ = 1, see Table 6.1). This results in a problem space of 23∗3 = 512
states for CQ.1947, and 21∗3 = 8 states for CQ.1280 (see Formula 5.4). As a result, solitary
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volunteering requires more than 500 rounds for CQ.1947 to emerge, while CQ.1280 shows
the same pattern after only 7 rounds.

Second, CoordinateX players, who create their strategies according to the actual group
size (X = 3, see section 5.3.2.2), do not show more complex patterns than simple turn-taking.
In fact, more complex patterns emerge only when expected group size exceeds actual group
size. CX.1983 (X = 4), for example predicts a pattern where player 1 cooperates every
second round, while players 2 and 3 cooperate every fourth round (see Fig. 6.3).

Third and finally, altruistic players keep track of the utilities of all players, in order to
maximize group rewards. Selfish players, however, keep track only of their own utilities in
order to maximize personal rewards. As a result, only selfish players coordinate successfully
with their co-players. Interestingly, pre-dominance of myopic behavior can also be found
in other contexts of social interaction, such as network formations (e.g., Van Dolder and
Buskens, 2014).

7.3 Implications

In the current study I developed computational cognitive models to investigate whether
reinforcement learning models can explain the emergence of social norms in the Volunteer’s
Dilemma. These have practical and theoretical value for a wide range of disciplines. With
regard to cognitive psychology, I showed that simple mechanisms can help to understand
complex behavior (Pfeifer and Scheier, 2001; Simon, 1969). Specifically, I showed that
research at the cognitive band (milliseconds, seconds) can inform about phenomena on the
social band (days, weeks, months) (Anderson, 2002). More precisely, I showed that reinforce-
ment learning (cognitive band) explains the emergence of behavioral patterns, precursors of
social norms (social band). Further, I provided a formal description of a cognitive mechanism
in the context of social interaction. Finally, I showed that strategies adjusted to the problem
at hand (CoordinateX), provide a structural and quantifiable advantage for decision-making
processes, that allow to reduce cognitive demands and increase the ability to coordinate in a
social scenario.

With regard to sociology, my study provides a new perspective on norm emergence. That
is, rather than looking at group-level aspects (e.g., Diekmann and Przepiorka, 2016), my
research focused on the individuals involved in norm emergence. I showed that expectations
towards the actions of others (i.e. future-oriented strategies in the CoordinateX model) are
necessary for successful tacit coordination. Additionally, I provided predictions for human
behavior. Specifically, the model predicts that the stronger the disparity in the asymmetric
conditions, the more rounds are required to coordinate. Finally, the models also predicted that
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altruistic players fail to coordinate entirely. These results can help to establish a bottom-up
theory on norm emergence, as started by Diekmann and Przepiorka (2016).

With regard to (behavioral) game theory, my study provides a formal description of
a human solution concept in strategic game-playing. I showed that humans learn from
experience and integrate knowledge as presented during the course of the game. That is a
different approach to top-down analyses, such as backwards induction, as typically proposed
by classical game theory (Camerer, 2003; Colman, 2003). Further, the way humans make
decisions in context of the VOD applies to utility maximization within the bounds of the
given scenario. Finally, the scenario itself, the Volunteer’s Dilemma, is a three-player game.
That is particularly interesting for game theoretic research, as games with more than two
players are clearly under-represented in scientific studies (e.g., Helbing et al., 2005).

With regard to applied artificial intelligence, my study provides a mechanistic and
self-learning model for human behavior in the domain of social interaction. Especially in
the design of multi-agent systems and multi-agent learning, game theory forms the basis
for autonomous rational behavior within individual agents (e.g., Peters, 2015; Shoham
et al., 2009). Norms are further used to achieve coordination in artificial agent societies
(Wooldridge, 2009, p. 173 ff.). A formal description of the emergence of social norms based
on a game-theoretic setting can therefore be instrumental to create coordinative behavior
within societies of artificial agents. This can support an easy deployment of artificial agents
into human societies. That is because such agents would allow for intuitive interaction with
human counterparts without the need to get acquainted with unfamiliar behavior.

7.4 Limitations and future work

As with all model-based research, there are a few limitations. As described in section 3.1.2,
model-based research is under the influence of personal interpretations, experiences and
preferences. Thus, no two model-based studies on the same issue are the same. This also
holds for the current study. Juvina et al. (2015) for example, introduced the concept of trust to
account for the actions of other players. In my study however, I use future-oriented strategies
to integrate expectations towards the actions of co-players.

Aside from the general limitations of model-based research, there are also some specific
limitations on my study. First, my simulations currently assume all players to possess equal
characteristics. That is, a comparison of different initial parameter settings and thus different
a priori characteristics were left out. Other research does account for a direct comparison of
personal differences, such as myopic vs. altruistic behavior (e.g., Bogaert et al., 2008). This
approach I deliberately omitted to avoid interferences or side-effects due to cross-comparison.
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My models however, can easily simulate such a priori differences, by simply initializing
players in the same VOD with different parameter settings.

A second shortcoming of the study is that the representation of altruism might be too
simple. In my study altruistic players merely maximize group rewards, while selfish players
maximize personal rewards. This black and white representation of social preference is very
unlikely in real life and a better differentiation might lead to different results. As an example,
Van Dolder and Buskens (2014) represent social preference with a formula that incorporates
weights for own rewards, rewards of others and the preference for equality. This could be
easily integrated into my current models and would allow a more differentiated view on
social preference.

Third, the ClassicQ model might require more time to coordinate. However, 150 rounds
for a problem state space size of 9 (CQ.1 – CQ.1944), and 5.000 rounds for a problem state
space size of 512 (CQ.1945 – CQ.1948) provide plenty of opportunity to explore all available
states multiple times.

Fourth, to further generalize my results additional steps are required. That is, predictions
I made (disparity of asymmetry affects time to coordinate, altruistic players fail to coordinate)
need to be tested in sufficient follow-up experiments. This step is also described by Marewski
and Mehlhorn (2011) as the principle of predictive modeling.

One opportunity for future work I would like to point out relates to the mental representa-
tion of rewards. As described by Camerer (2003) and Colman (2003) this is also one of the
central issues in behavioral game theory. Currently, my models use rewards as presented by
the game. However, mental representation of rewards might be different than actual rewards
given by the VOD. For example, in case of no cooperation between players, 0 points are
rewarded. This translates into no gain for that round. For a human player, however, a situation
of dysfunctional coordination might feel like a loss, synonymous with a negative reward.
This could be easily tested with minor adjustments in the current model implementation.
The idea of different mental representations of rewards goes in line with Janssen and Gray
(2012). They argue that rewards can take many different forms within the same task, based,
for example, on either accuracy or speed of task performance.

7.5 Conclusion

My results show that learning is the key cognitive mechanism in the emergence of latent
norms. In particular, future-oriented strategies based on expectations towards the actions of
others provide a structural and quantifiable advantage in decision-making processes, that
facilitate quick coordination with minimum cognitive load.
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A. Learning and decision making
(ClassicQ, ε-noise)

Fig. A.1 Learning and decision-making in the ClassicQ model (ε-noise).





B. Learning and decision making
(CoordinateX, ε-noise)

Fig. B.1 Learning and decision-making in the CoordinateX model (ε-greedy).
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