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Abstract

Electrokinetic flow, i.e. the combined pressure driven and electroosmotic flow, in
charged micrometer sized channels is an important aspect of microfluidics. Numerical
models describing this flow often employ a constant surface charge or constant electric
potential boundary condition at the channel wall. This work proposes a model that uses
an alternative boundary condition, based on a single chemical reaction, to describe the
channel surface charge. The resulting streaming potential, axial velocity profiles and
axial ion concentration profiles of this model are then compared to a constant surface
charge model. We conclude that the model with the altered boundary condition pro-
duces similar values for the streaming potential and similar electrokinetic flow profiles
when the applied electric field is weak. Also, the timescales needed for the electric
potential and ion concentration profiles to reach equilibrium are consistent with the
constant charge model. When the applied electric field is strong, and dominates the
electrokinetic flow, a reduced axial velocity profile is found.
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Introduction

1 Introduction

Microfluidic devices, micrometer sized systems that process or manipulate small (10−9 to
10−18 L) amounts of fluids, are interesting theoretical systems with a multitude of practical
applications. Moreover, the reduced size and low volume makes them promising alterna-
tives for conventional laboratory set ups, with the added benefit of being very cost effective.
Electrokinetic flow, i.e. the flow of an electrolyte solution through a narrow capillary due to
the combined action of a pressure and potential gradient, is of great importance in microflu-
idic devices. In this context, charged micro- and nanochannels serve as interesting systems
in understanding facets of electrokinetic transport such as electroosmosis, streaming poten-
tial, current density distributions and velocity profiles, while also providing a multitude of
practical applications like separation of biomolecules [24, 37], detection [4], water desalina-
tion [18] and energy conversion [7, 40].

The theory of electrokinetic transport was first presented by Rice and Whitehead (1965) [30]
and has since been greatly expanded on with the addition of several textbooks [9, 14, 22, 29]
and numerous articles [5, 6, 16, 17, 20, 27, 28, 34, 41, 43, 44]. We note that these citations
are just a small part of the body of work concerning electrokinetic transport. Most of the
aforementioned studies only focus on steady state solutions of the governing equations.

Concurrently, developments in finite element method (FEM) software and increase in com-
puting power allows for the simulation of the fully coupled pressure driven and electroos-
motic flow with minimal technical knowledge and hardware requirements. This allows one
to go far beyond this theoretical framework and study the full physical behaviour of the sys-
tem. An example of this is the treatment of the flow of an electrolye in a charged cylindrical
capillary by Masliyah and Bhattacharjee (2006) [22].

The theoretical system under consideration consists of a microchannel with radius a and
length Lc and a surface charge density ρc connected to two reservoirs. Across the system
a pressure gradient, due to an applied pressure at the entrance reservoir, and an electric
potential gradient, due to an applied electric field at the exit reservoir, is applied. The system
is filled with a symmetrical electrolyte solution, and the ions in the solution are modelled as
monovalent point charges.

In this work, we will first derive analytical expressions for the electric potential, radial ve-
locity distribution and the streaming potential in the case of an infinitely long channel and
a low surface potential. Afterwards, we construct a model, employing the coupled Pois-
son, Nernst-Planck and Navier-Stokes equation, describing the combined pressure driven
and electroosmotic flow in a finite charged cylindrical channel. We will make a compari-
son between the quantities obtained through this numerical model and the derived analytical
expressions. Once we have validated the model, we present an alternative model, based on
a simple charge regulating process at the channel wall. By considering this altered bound-
ary condition, we hope to improve on the widely used constant surface charge boundary
condition [6, 27, 28, 34, 43] at the channel wall.
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Electrokinetic Theory

2 Electrokinetic Theory

2.1 The System

We consider an axisymmetric system consisting of two cylindrical reservoirs connected by a
cylindrical channel (Fig. 2.1). The reservoirs are considerably larger than the channel. The
feed reservoir contains a symmetrical electrolyte (one anion and one cation, with valency z)
with a constant concentration c∞. The channel length Lc is assumed to be far greater than
its radius a, which takes values between 50 nm and 5 µm. The channel surface carries a
surface charge density of ρc, which manifests itself due to electrochemical reactions beteen
the surface and the solution. The exit reservoir has an unspecified concentration of ions and
zero hydrostatic pressure. At the entrance reservoir, we apply a pressure p0. Furthermore, an
electrode connects the two reservoirs such that a potential difference can be applied across
the system, or equivalently an electric field Ex.

Figure 2.1: Choi and Kim (2009) [44] A schematic drawing of the considered system. The entrance reservoir
is filled with a electrolyte solution which is pushed through the channel by a pressure p. An electrode connects

the two reservoirs, applying a potential difference. The walls of the channel carry a negative charge.

2.2 Governing Equations

The saline solution is subject to two different forces. Firstly the hydrostatic pressure differ-
ence pushes the solution through the channel. Secondly, electroosmotic effects, due to the
applied electric field and the electric double layer, mobilize the free charges in the solution.
This interplay is described by the Nernst-Planck equation

−∂ni

∂ t
= ∇ · Ji = ∇ ·

[
niuuu−Di∇ni−

zieDini

kBT
∇φ

]
. (2.1)

Here, Ji is the molar flux of species i in ions/m2s. ni is the number concentration of species
i (1/m3), with Di being its diffusivity in m2/s. zi is the ion valency and φ is the local electric
potential (V). e is the elementary charge, kB is the Boltzmann constant and T is the tem-
perature in Kelvin. From this equation we see that the flux is determined by the number
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Electrokinetic Theory

concentration gradient, the changes in the local electric potential and the advection by the
velocity field u. When looking for steady state solutions, ∂tni = 0 and we obtain the steady
state Nernst-Planck equation

∇ · Ji = 0. (2.2)

The velocity field of the solution is described by the (incompressible) Stokes equation for
momentum transfer

−∇p+µ∇
2u−ρ f ∇φ = 0, (2.3)

~∇ ·uuu = 0. (2.4)

Here the flow is assumed to be laminar (low Reynolds number), µ is the viscosity (Pa·s), and
ρ f the local free charge density (C/m3). The electric potential is determined by the local free
charge density ρ f through the Poisson equation

∇
2
φ =−

ρ f

ε
. (2.5)

with ε the permetivity of the solution (F/m).

2.3 The Electric Double Layer

Substances that come into contact with aqueous medium often develop an electric surface
charge [9, 29]. This can be due to ionization of surface groups, adsorption of ions or other
mechanisms [22]. This charged surface attracts the ions and repels the co-ions in the solu-
tion, giving rise to the so called electric double layer [10]. Due to thermal movement, the
counterions that are attracted to the charged surface spread out and form a diffuse double
(Fig. 2.2) layer [14] with characteric width λD.

The following analysis is largely derived from Rice and Whitehead (1965) [30]. The electric
potential φ in the channel is assumed to be a linear combination of the applied external
potential and the wall surface potential. If we assume that the potential due to the electric
double layer is independent of axial position, which is valid for infinitely long channels, we
can write

φ(x,r) = ψ(r)+ [φ0− xE0]. (2.6)

Here, ψ(r) is the electric potential due to the electric double layer at equilibrium without any
flow or applied electric field. φ0 is the imposed potential at x = 0, which we take to be zero,
while [φ0− xE0] is the electric potential at any location solely due to the application of an
electric field E0. For convenience, we consider the special case of a symmetric monovalent
electrolyte (z = z+ =−z−, z = 1)

The Poisson Eq. 2.5 in cylindrical coordinates reads

1
r

∂

∂ r

(
r

∂φ

∂ r

)
+

∂ 2φ

∂x2 =−
ρ f

ε
. (2.7)
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Figure 2.2: Masliyah and Bhattacharjee (2006) [22] The electric double layer (a) as envisioned by Helmholtz
(b) the diffuse double layer

After inserting Eq. 2.6 we obtain

1
r

d
dr

(
r

dψ

dr

)
=−

ρ f

ε
. (2.8)

where r = 0 is the axis of symmetry and r = a is the channel wall. The space charge density
of the free ions ρ f can be written as the sum of the number concentration and their valencies.

ρ f =
2

∑
i=1

zieni. (2.9)

Using the Boltzman distribution to express the number concentration ni in terms of the elec-
tric potential ψ and the number concentration in the absence of an electric double layer n∞

gives the Poisson-Boltzmann equation

1
r

d
dr

(
r

dψ

dr

)
=−2zen∞

ε
sinh

(
zeψ

kBT

)
. (2.10)

If we also consider a low enough surface potential (ψ ≤ 25 mV, or eψ/kBT ≤ 1 for z =
1 [11]), we can use the Debye-Hückel approximation

sinh
(

zeψ

kBT

)
≈ zeψ

kBT
, (2.11)

to obtain the linearised Poisson-Boltzmann equation

1
r

d
dr

(
r

dψ

dr

)
=−2z2e2n∞

εkBT
ψ = κ

2
ψ, (2.12)
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where κ−1 is the Debye length, which is interpreted as a measure of the thickness of the
electric double layer. With the boundary conditions being

r = h =⇒ ψ = ζ ,

r = 0 =⇒ dψ

dr
= 0,

the solution to Eq. 2.12 is

ψ = ζ
I0(κr)
I0(κa)

, (2.13)

with I0 the zeroth-order modified Bessel function of the first kind. Concluding, the full
potential is given by

φ(x,r) = ζ
I0(κr)
I0(κa)

+ xE0, (2.14)

and the free charge density is

ρ f =−εκ
2
ζ

I0(κr)
I0(κa)

. (2.15)

2.4 Axial Velocity

In this section we deduce an analytical expression for the axial velocity to compare to nu-
merical results. As a starting point we consider the axial component of the modified Stokes
equation.

µ
1
r

d
dr

(
r

dux

dr

)
=

d p
dx

+ρ f
dφ

dx
−ρgx (2.16)

where ux is the axial velocity, µ is the viscosity and ρ the mass density. gx is the gravitational
acceleration, which for a horizontal channel is zero, and p the pressure. Because we are
considering fully developed flow px =−d p/dx is a constant. Using this, Ex =−∂φ/∂x, and
Eq. 2.9 we obtain

µ
1
r

d
dr

(
r

dux

dr

)
=−px + εκ

2
ζ Ex

I0(κr)
I0(κa)

(2.17)

with the boundary conditions

r = a =⇒ ux = 0, (2.18)

r = 0 =⇒ dux

dr
= 0. (2.19)

The first boundary condition specifies that the parallel velocity of the fluid at the channel wall
is zero i.e. the no-slip boundary condition. The second condition is a symmetry condition on
the flow, which is valid due to the symmetry in the system. The solution of Eq. 2.17 subject
to the boundary conditions is given by

ux(r) =
a2

4µ

[
1−
( r

a

)2
]

px−
εξ

µ

[
1− I0(κr)

I0(κa)

]
Ex. (2.20)
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The first term is only dependent on the applied pressure gradient px and has a parabolic pro-
file. It is normally referred to as the Poisseuille flow. The second term is proportional to the
electric field Ex and describes the electroosmotic flow generated due to the applied electric
field E0. Fig. 2.3 shows the axial velocity profiles for pure dimensionless pressure driven
flow (Eq. 2.21) and pure dimensionless electroosmotic flow (Eq. 2.22). The electroosmotic
flow profile (Fig. 2.3(b)) becomes more constant throughout the channel as κa increases.

Ux,p =
ux

a2 px/2µ
= 1−

( r
a

)2
, (2.21)

Ux,E =
ux

−εExξ/µ
= 1− I0(κr)

I0(κa)
. (2.22)

Figure 2.3: The dimensionless axial velocity profile for pure pressure driven flow (a) and purely
electroosmotic flow for different values of the scaled channel width κa (b).

2.5 Streaming Potential

When we apply a pressure gradient to our system, the non-electroneutral double layer moves
and induces a net current. As a reaction, a potential builds up across the pore to prevent
a net current flow at steady state. This is called the streaming potential [30]. To deduce
an analytical expression, we first look at the local current density vector (A/m2). The local
current density iii is the sum of the individual fluxes of the ions in the solution

iii = e∑
i

ziJJJi. (2.23)

Using Eq. 2.1 we can write

iii = euuu∑
i

zini− e∑
i

Dizi∇ni−
e2∇ψ

kBT ∑
i

z2
i Dini. (2.24)

We now look at the total current I, given by

I
2π

=
∫ a

0
ixrdr, (2.25)
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with ix given by Eq. 2.24. Evaluating this expression gives

I
2π

=
∫ a

0
ux ∑

i
ezinirdr− e

∫ a

0
∑

i

(
Dizi

∂ni

∂x

)
rdr− e2

kBT

∫ a

0

∂φ

∂x ∑
i
(z2

i Dini)rdr. (2.26)

Using Eq. 2.9 for the space charge density and writing ∂φ/∂x =−Ex Eq. 2.26 becomes

I
2π

=
∫ a

0
uxρ f rdr+

e2

kBT
Ex

∫ a

0

(
∑

i
z2

i Dini

)
rdr. (2.27)

For simplicity, we set Di = D and consider a symmetrical electrolyte (z2
+ = z2

− = z2). Using
the Boltzmann distribution we also note that

∑
i

ni = 2n∞ cosh
(

zeψ

kBT

)
≈ 2n∞

[
1+

1
2

(
zeψ

kBT

)2
]
, (2.28)

where we used the Debye-Hückel approximation (zeψ/kBT � 1). Using this, Eq. 2.27
becomes

I
2π

=
∫ a

0
uxρ f rdr+

2e2z2Dn∞Ex

kBT

∫ a

0

[
1+

1
2

(
zeψ

kBT

)2
]

rdr. (2.29)

The first term, which is dependent on the velocity field ux, represents the current due to
convection whereas the second term represents the current due to migration. Recognising
the electric conductivity

σ∞ =
2e2z2Dn∞

kBT
, (2.30)

and inserting Eq. 2.13 for the potential, we can write Eq. 2.29 as

I = 2π

∫ a

0
uxρ f rdr+πa2

σ
∞ExFcc, (2.31)

with

Fcc = 1+
(

zeζ

kBT

)2 1
I2
0 (κa)

∫ a

0
I2
0 (κr)rdr. (2.32)

The term Fcc accounts for the non-electroneutrality of the solution near the wall. Earlier
work, such as Rice and Whitehead (1965) [30] use Fcc = 1. However, Fcc can deviate signif-
icantly from unity, especially at higher potentials and for κa < 5, as shown in Fig. 2.4.

Eq. 2.31 can be evaluated using the expressions for ρ f and ux in Equations 2.15 and 2.20
respectively. This gives

I =−εζ pxAc

µ

(
1− 2A1

κa

)
−µExAc

(
εζ κ

µ

)2(
1− 2A1

κa
−A2

1

)
+ExAcσ

∞Fcc,

= Acσ
∞Fcc

[
1− (εζ κ)2

µσ∞Fcc

(
1− 2A1

κa
−A2

1

)]
Ex−

εζ Ac

µ

(
1− 2A1

κa

)
px.

(2.33)
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Figure 2.4: The value of Fcc given by Eq. 2.32 for different values of the dimensionless potential
φ̄ = zeζ/kBT and scaled radius κa. Fcc approaches unity for κa = 10.

with the channel crossection area Ac = πa2 and A1 = I1(κa)/I0(κa). Because we will be
looking at steady state solutions, we set I = 0 to obtain(

Ex

px

)
I=0

=
εζ

µσ∞

(
1− 2A1

κa

)
f (κa,β ,Fcc), (2.34)

with β = ε2φ 2
c κ2/µσ∞ and

f (κa,β ,Fcc) =
1

Fcc
(
1−β [1−2A1/(κa)−A2

1]/Fcc
) . (2.35)

Assuming a constant axial electric field Ex, we obtain

∆ψ = ExL. (2.36)

2.6 Slip Boundary Condition

In most fluid flow problems, a no-slip boundary condition is applied. However, in the case
of micro, nano-channels and non-wetting surfaces, several studies [2,31,39,46] suggest that
this boundary condition might not be suitable.

The common alternative is the application of a linear slip boundary condition (Fig. 2.5).
First proposed by Navier [26] and later by Maxwell [23], this boundary condition states that,
at the liquid-solid interface, the parallel component of the velocity of the fluid, relative to the
interface, is proportional to the shear rate at the surface:

ux = bsnnn ·
[
∇uuu+(∇uuu)T ] · (1−nnnnnn) · iiix. (2.37)

Or, in simpler form

ux = bs

(
∂uuu
∂ r

)
wall

, (2.38)

8
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where bs is the slip length. This expression replaces the boundary condition in Eq. 2.18. This
general boundary condition was explored, among others, by Yang and Kwok (2003) [16],
Lauga (2007) [19], and Tandon and Kirby (2008) [38].

bs = 0

ux

bs bs = ∞

Figure 2.5: A schematic depiction of the Navier slip boundary condition. The parallel velocity is extrapolated
linearly to zero behind the interface. The resulting length is the slip length bs.

The solution to Eq. 2.17 with the slip boundary condition is

ux(r) =
a2

4µ

[
1−
( r

a

)2
+

2bs

a

]
px−

εξ

µ

[
1− I0(κr)

I0(κa)
−κbs

I1(κa)
I0(κa)

]
Ex. (2.39)

2.7 Charge Regulation

The basis for the existence of the EDL is the electric surface charge of the boundary. Often,
a constant zeta potential [27, 43] or surface charge density [6, 28, 34] is used as a boundary
condition for the surface. However, it is known from theory and experiments [1,8,32,36] that
the surface charge is dependent on the pH, salt concentration and the extent of the double-
layer overlap because of the interactions of the ions with the channel surface.

Proposed alternatives are the Stern layer capacitance model [1,40,41] and the site-dissosciation-
binding model [12, 33, 35, 36]. In this thesis we employ a simple 1-pK model [21, 42].

We assume that the surface charge is assumed to be entirely localized on the surface and
stems from a concentration of ionized surface groups. Without loss of generality we consider
the ionization of a generic group S due to the absorption of OH−

SOH−
 S+OH−. (2.40)

The mass action law at equilibrium for this reaction states

10−pK =
[S][OH−]
[SOH−]

, (2.41)

where, for example [S] denotes the concentration of species S and pK is a constant that
depends on the reaction. Using Eq. 2.40 we can rewrite Eq. 2.41 in terms of the ionized
group SO−

[SOH−] =
[S]

10−pK

[OH−]0
+1

. (2.42)

9
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Denoting the number of surface groups [S] by Γ, we can express the surface charge density
ρc as a function of the material constants pK and Γ and the local ion concentration [OH]−

ρc =−e
Γ

10-pK

[OH−] +1
. (2.43)

10
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3 Modelling Approach

The finite element method (FEM) [3,45] is a powerful tool in the computation of highly com-
plex solutions to coupled partial differential equations (PDE) describing physical systems.
By subdividing a continuous domain into a set of discrete sub-domains, called elements, and
with enough computing power, approximate solutions to coupled PDE’s can be found. In
this thesis, we use the finite element method provided by Comsol Multiphysics software.

3.1 Geometry

The 3D system was modelled as a fully axisymmetrical geometry with axial coordinate x and
radial coordinate r. The entrance and exit reservoir were built using two squares with length
b. The channel consists of a rectangle with height a and length Lc (Figure 3.1).

P

bEntrance

A
b

B

C D

E F

Exit

Q
a

Lc

x

r

Figure 3.1: A schematic drawing of the geometry. The dashed line PQ represents the axis of symmetry

The Electrostatics, Laminar Flow and Transport of Diluted Species interfaces of COMSOL
were employed to couple the Poisson-Boltzmann (Eq. 2.5), Navier-Stokes (Eq. 2.3) and
Nernst-Planck equation (Eq. 2.1) respectively.

3.1.1 Poisson Equation

The electrostatics interface is a part of the AC/DC module in Comsol Multiphysics and is
used to calculate the electrostatic potential in the system. We specified the solvent relative
permettivity εr according to Table 4.1 and a space charge density of Q = eNA · (c1− c2)
(C/m3) on the entire domain. On the boundaries AB, EF and FQ (Fig. 3.1) the ’Zero Charge’
(nnn ·DDD = 0) boundary condition was specified. The potential was set to 0 at AP, grounding the
system. The sidewalls BC and DE carry a surface charge density of ρsw (C/m2). The channel
wall CD carries a surface charge density of ρc which at first is taken to be constant, but is
later determined through a charge regulation scheme. A schematic overview of the relevant
boundary conditions is presented in Fig 3.2.

11
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φ = 0
ρ = ρc

ρ = 0
or E0

r = 0

Q,εr Q,εr
Q,εr

ρ = ρsw

No Charge

Figure 3.2: The boundary conditions for the Poisson equation. The entrance is grounded (φ = 0), whereas the
exit either carries zero charge or has an applied electric field E0. The channel side walls carry a charge density
ρsw, and the channel carries a charge density ρc. The interior is filled with a fluid with relative permetivity εr

and charge Q. The boundaries representing the reservoir interior carry no charge.

3.1.2 Navier-Stokes Equation

The laminar flow interface provides the options needed for Comsol Multiphysics to calculate
the velocity field uuu (m/s) and the local pressure p (Pa). The flow was set to be incompressible
and non-turbulent and the density ρ (kg/m3) and dynamic viscosity µ (Pa·s) were set to the
values given by Table 4.1. On the sidewalls BC and ED (Fig. 3.1), the no-slip boundary
condition was specified while BC, CD and DE satisfied the linear slip condition (Figure 3.3).
In the case of zero slip length bs = 0, the no-slip boundary condition was recovered. A
pressure of p0 (Pa) on the inlet PA and a zero pressure on the outlet FQ was applied. On the
entire domain, the ions experience a Lorentz force of Q ·EEE (N/m3). Intitally the pressure and
velocity were taken to be zero. A schematic overview of the relevant boundary conditions is
presented in Fig 3.3.

p = p0 p = 0

r = 0

ux = bs

(
∂ux
∂ r

)
wall

Slip

Figure 3.3: The boundary conditions for the Navier-Stokes equation. There is an applied pressure of p0 on the
entrance of the system, whereas the exit experiences zero pressure. The walls representing the interiors of the
reservoirs have full slip (bs = ∞), whereas the channel and the sidewalls have either a no slip or a partial slip

boundary condition.

3.1.3 Nernst-Planck Equation

The movement of the ions in the solution are handled by the Transport of Diluted Species
interface. In the Nernst-Planck equation, convection and migration terms were included
and the existence of two ion species (c1 and c2), with valency -1 and 1 respectively, were
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specified. The velocity field, given by the Laminar Flow Interface, as well as the electric
potential, determined by the Electrostatics Interface, were given as input. The temperature T ,
the diffusion coëfficients Di =D (m2/s) and charge coëfficients zi were set to the values given
by Table 4.1. On the boundary AB, BC, CD, DE and EF (Fig. 3.1) a no-flux (−nnn ·ccci = 0)
boundary condition was applied. The concentration of the ion species c1 and c2 (mol/m3) at
the inlet PA was set to the constant value c∞. For the outlet FQ, some situations demanded a
constant concentration of the ion species, similar to the condition on AP. In other cases, the
concentration was not specified and an outflowing boundary condition (−nnn ·D∇ci = 0) was
applied. A schematic overview of the relevant boundary conditions is presented in Fig 3.4.

ci = c∞

ci = c∞ or
−nnn ·D∇ci = 0

r = 0

n∇ · Ji = 0

n ·∇Ji = 0

Figure 3.4: The boundary conditions for the Nernst-Planck equation. The inlet has a fixed concentration of
ci = c∞. The outlet either has the same fixed concentration, or an outflowing boundary condition of

−−nnn ·D∇ci = 0. There is no flux through any of the other walls.

3.2 Meshing

To employ the finite element method, an appropriate mesh needs to be created for the system.
If the mesh is too coarse, the FEM fails to find a suitable approximate solution. When the
mesh is too fine, the program uses a significant amount of computing power and a long time
to find a solution. Ideally, our mesh is just fine enough to arrive at a solution.

We divide our system into two domains. One subdomain consists of the first four Debye
lengths near the channel wall, which was implemented as a Mesh Control Domain. Here,
the minimimum element size was set to λD/6 and the maximum element size was set to
λD/4. For a concentration of, for example, c∞ = 1× 10−5 M, the resulting element size
was between 0.16nm and 0.24nm. This resulted in a mesh of at least 4 elements (radially)
per Debye length, ensuring ample resolution for the electric double layer. For the rest of
the geometry, the mesh was calibrated for fluid dynamics and set to Exta fine, resulting in
element sizes ranging from 0.24 nm to 30 nm. The mesh was then created using the built in
options of Comsol Multiphysics, covering the entire domain in triangular elements. Fig. 3.5
shows the entire meshed geometry and the entrance of the channel.

13
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Figure 3.5: A screenshot of the entire meshed geometry and a zoomed in picture, generated by
Comsol Multiphysics, for κa = 5 and Lc = 10a. The more densely meshed area represents the first four Debye

lengths near the wall.

14



Results and Discussion

4 Results and Discussion

In this section we will discuss the results obtained from the numerical simulation of a com-
bined pressure and electric potential gradient driven flow through a system consisting of two
reservoirs and a micro/nanochannel. We will first compare the non-charge regulating model
with the theoretical results derived in section 2. We will also analyse the various assumptions
made to derive these expressions, and how they pertain to the simulation. Afterwards, we
explore the effects of changing certain physical parameters, like the bulk salt concentration
c∞, the applied pressure p0, the capillary radius a and the slip length bs. Finally, we visit the
charge regulating model and compare it to the non charge regulating model.

Parameter Value/Range

Relative solvent permetivity, εr 78.54
Bulk electrolyte concentration, c∞ 10−3- 10−5 M
Ion diffusivity, D 10−9 m2/s
Temperature, T 298 K
Fluid mass density, ρ 1000 kg/m3

Fluid viscosity, µ 0.001 Pa·s
Applied pressure gradient, px 1×107−1×108 Pa/m
Capillary radius, a 50 - 500 nm

Table 4.1: Parameters used in the model.

The model in question was built according to the specifications outlined in Section 3 and
represents a cylindrical, charged channel connected to two cylindrical reservoirs, filled with
a symmetrical electrolyte solution as shown in Fig. 2.1. The boundaries AP, AB, EF and FQ
represent regions where bulk conditions, unperturbed by the channel, apply. Consequently,
they are taken to be uncharged, as they represent interiors. Furthermore, we apply a slip
boundary condition (bs = ∞) on AB and EF. The walls of the reservoirs are also incorporated
in the model (BC and DE) and can carry appropriate surface charge densities or be considered
electrically neutral. The channel wall CD carries a surface charge density of ρc, which can
be taken to be constant, or determined through the charge regulation scheme (2.7).
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Throughout this section we consider the transport of a symmetrical electrolyte solution, with
bulk concentration c∞ and diffusivity Di = D, through our system. The solution is subject to
forces as a result of an applied pressure gradient (pressure driven flow), an applied external
electric field (electroosmotic flow) or both. The radius and depth of the reservoir b are taken
to be to be 5 times the channel radius a to justify bulk conditions at AP, AB, EF and FQ.
The channel length Lc was taken to be at least 10 times a. The potential at AP was set to
zero, grounding the system. The values of several parameters used in the model are shown
in Table 4.1. The Debye length λD was determined used Eq. 2.12 and took values between
50 and 500 nm. Some variables are referenced in their dimensionless form for convenience.
Table 4.2 outlines these variables.

Variable Expression

x-coordinate, x̄ x
L

r-coordinate, r̄ r
a

Surface charge density, ρ̄c
ze

εkBT κ
ρc

Electric potential, φ̄
ze

kBT φ

Electric field, Ē ze
kBT κ

E

Pressure, p̄ z2e2

εk2
BT 2κ2 p

Velocity, ūuu uuu
κD

Table 4.2: The dimensionless form of some key variables referenced throughout this section
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4.1 Validation

Before considering the charge regulating model, we need to check whether the simple non
charge regulating model produces physical results. For this, we have derived analytical ex-
pressions for some key variables like the streaming potential and axial velocity in Section
2. Furthermore, we will aim to recreate the results presented in Chapter 14 of Electrokinetic
and Colloid Transport Phenomena [22].

Most of the numerical validation used a channel radius such that κa = 5, meaning the radius
of the channel was 5 times the Debye length, and a bulk salt concentration of c∞ = 10−5

M. This implies a Debye length of roughly 100 nm and thus a channel radius of a = 500
nm. The channel surface was either taken to carry a constant surface charge of ρ̄c = −1.15
(roughly −0.2 mC2/m) or a constant surface potential of φ̄c =−1.

4.1.1 Pressure Driven Flow

As described in Section 2.5, when we apply a pressure gradient px, a potential sets up as a
reaction to the flow of the non-electroneutral double layer. In this section we simulate this
streaming potential and strive to emulate the results obtained from the analytical approach
in Section 2.5. We also consider the various assumptions made in this section and how they
affect the simulation results.

4.1.1.1 Boundary and Initial Conditions The derived analytical expressions in Section
2.5 assume no axial variation in the concentration, and thus do not consider ion rejection
by the channel due to the obstructing force exerted by the negatively charged channel wall.
Accordingly, at both AP and FQ, the concentration was set to be c∞. Eq. 2.20 and 2.34 are
formulated using the channel electric potential, and thus we apply a constant potential of
φ̄c = −1 (φ ≈ 0.025V ) on the channel wall. The simulation was run for κa = 1− 9 and a
pressure gradient of px = 1×107 Pa/m. An overview of the relevant boundary conditions is
given in Table 4.3.

Boundary Poisson Nernst-Planck Navier-Stokes
PQ Axial symmetry Axial symmetry Axial symmetry
AB, EF No charge No Flux Full slip
BC, DE No charge No Flux No slip
CD Constant potential, φ̄c No Flux No slip
AP V = 0 ci = c∞ Pressure p0

FQ No charge ci = c∞ Zero pressure

Table 4.3: A summary of the boundary conditions of the governing equations, used in the analysis of the
streaming potential at steady state.

17



Results and Discussion

4.1.1.2 Comparison to Analytical Results We will first dicuss the approximations made
in Section 2 and what implications they have. It was assumed that our channel is infinitely
long, neglecting any entrance/exit effects and axial concentration gradients, and that the
linearisation of the Poisson-Boltzzmann equation holds. The midsection (x = 0.5) is furthest
removed from the extrance and exit and thus we expect conditions there to be the most similar
to the ones used in the theoretical analysis.

Figure 4.1: (a) The scaled electric potential φ̄ and the pressure with the corresponding scaled axial electric
field Ēx and scaled axial pressure gradënt px (b) along the axis of symmetry obtained by solving the governing
equations. The solid lines represent the electric potential and field, while the dashed lines represent the pressure
and pressure gradient. The simulation was run for κa = 5 with a pressure gradient of 1×107 Pa/m and constant

surface potential of φ̄c =−1 on the channel wall. The vertical lines represent the entrance and exit of the
channel.

Fig. 4.1a shows the electric potential and pressure along the symmetry axis PQ for κa= 5, φ̄c

= -1 and px = 1×107 Pa/m. The values of x̄ = 0.25 and x̄ = 0.75 correspond to the entrance
and exit, respectively, of the channel. We see that both variables are roughly constant in
the reservoirs and we see marked variations at the entrance and exit, as we should expect.
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Inside the channel, the electric potential has a non-linear decrease whereas the pressure drops
off linearly. This is more clearly depicted in Fig. 4.1b which shows the axial electric field
Ēx =−∂ φ̄/∂x and pressure gradient p̄x =−∂ p̄/∂x.

We will now compare the results for the axial velocity profile to the analytical expressions
derived in 2. Firstly, we look at the axial component of the velocity, given by Eq. 2.20.

ux =
a2

4µ

[
1−
( r

a

)2
]

px−
εζ

µ

[
1− I0(κr)

I0(κa)

]
E0, (4.1)

where ζ is the zeta potential, which we take to be equal to the potential on the channel
wall. Furthermore, px =−∂ p/∂x and Ex are the axial pressure gradient and axial electrical
field respectively measured at the capillary midsection. Fig. 4.2 shows the comparison of
the measured axial velocity and the analytical expression for κa = 1,5 and 9. For all three
values of κa, the analytic and measured values match extremely well.

Figure 4.2: A comparison of the scaled axial velocity profile at the midsection of the channel, obtained
through the numerical simulation, with the prediction given by the expression 4.1 for κa = 1,5 and 9.

Next up, we take a look at the streaming potential. Masliyah and Bhattacharjee (2006) [22]
calculated the streaming potential by first evaluating the expression for the axial component
of the electric field divided by the pressure gradient (Eq. 2.34) and then determining the
streaming potential using ∆φ = ExL. The values used for px and Ex are calculated by taking
their respective values in the entrance and exit reservoir, and then dividing by their sepera-
tion. This calculation scheme assumes that the axial component of the electric field and the
pressure are linear throughout the system. From Fig. 4.1 we already know this is not the
case for the axial electric field. Fig. 4.3 shows the values of the streaming potential and the
values obtained using the calculation scheme for various channel lengths. It is clear that the
values, for Lc = 50λ , are in good agreement. For shorter and longer channels, however, the
discrepancies between the analytic and measured values become larger.

It is worthwhile to look at the implications of the fixed concentration on the boundary FQ.
When we substitute this condition for a convective flux boundary condition, as we will in
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Figure 4.3: A comparison of the scaled streaming potential obtained from the numerical simulation and the
prediction given by the calculation scheme of Masliyah and Bhattacharjee (2006) [22] for different values of the

scaled channel radius κa and channel lengths Lc.

the coming sections, the concentration in the exit reservoir will no longer match the con-
centration in the entrance reservoir. Fig. 4.4 depicts the ion concentration profile and the
electric potential along the axis (r = 0) of the channel for both boundary conditions. Fig.
4.4(a) shows that the axial variation of the concentration is greatly affected by changing the
boundary condition. The electric potential along the axis (Fig. 4.4(b)) is nearly identical in
the entrance reservoir and channel, and slightly higher in the exit reservoir for the convective
flux boundary condition.

Figure 4.4: The axial concentration profiles of the relative concentrations ci/c∞ for κa = 5 and px = 1×107

Pa/m. The concentration stays relatively constant in the reservoirs (x≤ 0.25 and x≥ 0.75), whereas the
negatively charged channel wall partially rejects ions entering the channel.
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4.1.1.3 Velocity Profiles for Pressure Driven Flow with a Finite Slip Length As dis-
cussed in section 2.6, the commonly used no-slip boundary condition on the channel is not
always applicable. Here, we look into the effect of specifying a non-zero slip length bs. The
simulation was run for bs = 0,25,50,75 and 100 nm, with px = 1× 107 and 1× 108 Pa/m.
The scaled channel radius κa was set to 5.

Fig. 4.5 shows the numerical results together with the analytical curve given by Eq. 2.39.
We see that, due to the non-finite slip length, the axial velocity at the wall (r/a = 1) is non-
zero. Moreover, the entire profile seems to be shifted by a constant factor. The analytic curve
seems to match reasonably well with the simulated values.

Figure 4.5: The axial velocity profile, ūx = ux/κD, measured at the midsection (x̄ = 0.5) for various values of
the slip length bsand pressure gradient px = 107 (a) and 108 Pa/m, compared to the analytical expression 2.39.

It is clear that a finite slip length has a significant effect on the axial velocity in the channel.
Due to this increased flow, especially near the wall, we also expect a higher streaming po-
tential. Fig. 4.6 depicts the streaming potential for px = 1×107 and 1×108 Pa/m. We see
that our expectation is correct, and that the streaming potential increases linearly. Moreover,
this effect is enhanced at higher pressures.

Figure 4.6: The scaled streaming potential for different values of the slip length bs, with κa = 5 and
px = 1×107 and 1×108 Pa/m. As we can see, the streaming potential increases linearly with the slip length.
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4.1.2 Time Evolution of Electrolye Transport in a Microchannel

We now consider the dynamical behaviour of our system. Particularly, we are interested in
the time scales needed for equilibrium to set up. Electrokinetic studies [17, 25] predict that
the streaming potential sets up within the time scale of the hydrodynamic relaxation whereas
simulations involving the extended Nernst-Planck equation [20] predict a time scale in the
order of the ion diffusion.

4.1.2.1 Boundary and Initial Conditions It is known that, when the channel width a
is in the order of the Debye length, there is significant ion rejection [5, 22]. Consequently,
we set an outflowing boundary condition (−nnn ·∇ci =) on the boundary FQ, as opposed to
fixing the concentration. The time dependent governing equations were used to determine
the evolution of the streaming potential and ion concentration distribution. The initial con-
dition (τ = 0) was determined by solving the model without considering an applied pressure
gradient. A summary of the boundary conditions is given in table 4.4.

Boundary Poisson Nernst-Planck Navier-Stokes

PQ Axial symmetry Axial symmetry Axial symmetry
AB, EF No charge nnn ·JJJi = 0 Full slip
BC, DE No charge nnn ·JJJi = 0 No slip
CD Constant charge density, ρc nnn ·JJJi = 0 No slip
AP V = 0 ci = c∞ Pressure p0

FQ No charge −nnn ·∇ci = 0 Zero pressure

Table 4.4: A summary of the boundary conditions of the governing equations, used in the analysis of the time
evolution of the electrokinetic flow.
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4.1.2.2 Simulation Results We ran the simulation for κa = 5 and with a constant surface
charge density ρ̄c of −1.15 (ρc = 0.2 mC/m2). The geometry and parameters, apart from
the outflowing boundary condition, are identical to the previous case. The output of the
simulation was stored for various values of τ = κ2Dt, ranging from 0.1 to 10.000. The
results are shown in 4.7. In these plots, the dashed line represents the steady-state solution
obtained using the time independent equations.

The graphs on the left side represent the potential and ion concentration within the first
milisecond (τ ≤ 10, i.e. t ≤ 0.1ms), whereas the right side represents times up to τ = 10.000,
which equates to the first second. We can see that the potential sets up very rapidly, ap-
proaching the steady state value within 0.1 milisecond. The relative ion concentrations take
significantly longer to equilibriate. For τ ≤ 10 the ion concentration does not seem to re-
act, and even after τ = 10.000 the relative ion concentration has not come within 5% of the
steady state value. These observations are consistent with Masliyah (2006) [22].

Figure 4.7: Time evolution of the scaled electric potential φ̄ and relative ion concentration profiles ci/c∞ along
the channel axis. The scaled channel radius is κa = 5 and the pressure gradient is 1×107 Pa/m. The graphs on

the left show the electric potential and ion concentration directly after application of a pressure gradient
(τ ≤ 10), while the graphs on the right show later times up to τ = 10.000. Here, SS denoted the steady-state

solution.
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4.1.3 Pressure Driven and Electroosmostic Flow

Finally, we look at the effect of an applied external electric field on the exit reservoir. Now,
apart from pressure driven flow, electrokinetic flow is also present. Moreover, the electric
field can be chosen such that the generated electrokinetic flow works opposite to the pressure
driven flow, leading to interesting axial velocity profiles.

4.1.3.1 Boundary Conditions This general case of electroosmotic flow is treated as a
variation on the steady-state analysis of the streaming potential. As such, all the boundary
conditions of the first case are retained, except for the application of an electric field on
the boundary FQ. This boundary condition is implemented in COMSOL by specifying the
components of the displacement vector DDD = εEEE. For the used values of c∞ = 1×10−5 M and
κ = 1.038× 107 m−1, a scaled axial field of E0 = ĒEEx · iiix = 0.01 corresponds to an applied
electric field of 2.67×103 V/m.

Boundary Poisson Nernst-Planck Navier-Stokes

PQ Axial symmetry Axial symmetry Axial symmetry
AB, EF No charge nnn ·JJJi = 0 Full slip
BC, DE No charge nnn ·JJJi = 0 No slip
CD Constant charge density, ρc nnn ·JJJi = 0 No slip
AP φ = 0 ci = c∞ Pressure p0

FQ nnn ·DDD = nnn ·DDD0 ci = c∞ Zero pressure

Table 4.5: A summary of the boundary conditions of the governing equations, used in the analysis of the
combined pressure driven and electroosmostic flow.

4.1.3.2 Velocity Profiles for Electroomostic Flow Fig. 4.8(a) shows the axial velocity
uuux, taken at the midsection (x̄ = 0.5) of the channel, in the case of pressure driven flow
(p = p0 , Ē0 = 0), purely electrokinetic flow (p = 0 , Ē0 = 0.01) and full electroosmotic
flow (p = p0 , Ē0 = 0.01). The dashed line represents the sum of the axial velocity of the
pressure driven and electroosmotic flow. As we can see, the linear superposition of the two
pure flows deviates slightly from the numerical solution. While this indicates that the linear
superposition is not exact, it does show that it is a decent approximation. This difference
can be explained by looking at the pressure gradient (Fig. 4.8(a). In the case of combined
pressure driven and electroosmotic flow, the resulting pressure gradient is vastly different
from the superposition.

When the applied electric field E0 is negative, the resulting electroosmotic flow counteracts
the pressure driven flow. This is presented in Fig. 4.8b. For Ē0 = −0.05 we see that the
parabolic velocity profile, found in the case of no applied electric field, is diminished. For
Ē0 = −0.01 the fluid at the wall flows opposite to the fluid in the interior. When the elec-
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Figure 4.8: The steady-state scaled axial velocity profile, ux/κD, taken at the channel midsection x̄ = 0.5 for
κa = 5. (a) compares the sum of pressure driven and electroosmotic flow to the full electrokinetic flow profile,

while (b) shows the axial velocity profile for several values of the applied electric field E0.

tric field is increased further, electrokinetic flow takes over and the flow direction reverses
completely. For all these situations, Eq. 2.20 describes the flow profile reasonably well.
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4.2 Charge Regulating Model

Our basis is the model as described in section 4.1.2. This incorporates only pressure driven
flow, but does account for ion rejection by the pore by specifying an outflowing boundary
condition on FQ. Furthermore, we now replace the constant surface charge density at BC,
CD and EF with the expression

ρc =−e
Γ

10−pK

c2
+1

. (4.2)

Consequently, because the ion concentration varies greatly throughout the system, the sur-
face charge will no longer be constant.

Fig. 4.9 shows the surface charge density profile of the side and channel wall, obtained by
running the simulation for Γ = 8 1/nm2, commonly cited as the value for the total amount of
sites for nonporous, fully hydrated sylica [15], and pK = 7.5, the value for silica obtained
using a surface complexation model [13]. The pressure gradient took the values 1,5 and
10×107 Pa/m. Here, the scaled channel wall position α is determined by α = x̄+sign(x̄) · r̄.
In this figure, The domain 0.25 ≤ x ≤ 0.75 represents the channel wall CD. The marked
variations, occuring at the transition between the sidewall and channel wall, are due to the
sharp corners in the geometry, which are relatively highly charged, and will be neglected in
the following analysis.

We see that the surface charge density varies between −0.45 and −0.48 mC/m2 and the
dimensionless potential takes values between −2.1 and −1.5. Although significantly higher
than the chosen surface charge density and dimensionless potential of section 4.1, these
physical quantities are still well within the same order of magnitude.

Figure 4.9: The value of the surface charge density and scaled electric potential at the channel and sidewalls.
The scaled wall position α is determined by α = (x̄+sign(x̄) · r̄)/κ . The domain −25≤ x≤ 25 represents the

channel wall CD. The site density Γ was 8 1/(nm)2 and pK was taken to be 7.5
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4.2.1 Tuning the Surface Charge

Now we look at the effects of changing the parameters in our charge regulation model. These
parameters, Γ and pK, can be physically manipulated by considering different solutions and
channel materials. This effectively changes the equilibrium reaction 2.40, which leads to
different surface charge density profiles. Fig. 4.10(a) shows the surface charge density on
the channel and sidewalls for pK = 7, 8 and 9 and Γ = 8 and 12 1/nm2. As we can see,
the variation of pK has a significantly greater effect on the surface charge than changing the
number of sites. This is due to the surface charge being determined by a small fraction of
ionized sites 4.10(b).

Figure 4.10: The value of the surface charge density taken at the channel wall and sidewalls for pK = 8 and 9
and Γ = 8 and 12. The scaled channel wall position α is determined by α = (x̄+sign(x̄) · r̄)/κ The domain

−25≤ x≤ 25 represents the channel wall CD.
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4.2.2 Comparison to the Non Charge Regulating Model

To get a better understanding of the consequences of the charge regulation boundary condi-
tions, we will compare the results obtained using the charge regulating (CR) model against
the constant surface charge density (non-CR) model. Throughout this section we set the total
number density of sites to be 8 nm−2 as to match silica and pK = 8.3, resulting in a surface
charge density ranging from -0.20 to -0.22 mC/m2 for κa = 5. This value of the surface
charge density roughly matches the value used for the constant value in the previous section.

4.2.2.1 Pressure Driven Flow The application of a non-constant surface charge can
greatly affects the electric double layer, by locally changing the width of the Stern layer.
Moreover, when the channel radius is small we expect a greater depletion of ions in the
channel. Due to the dependence of the surface charge density on the salt concentration in the
channel, we expect that, for different channel widths, the surface charge will vary consider-
ably. This will make a comparison convoluted.

We again analyse the streaming potential by demanding that the entrance and exit reservoirs
have the same concentration c∞. The pressure gradient was set to px = 1×107 Pa/m and the
scaled channel width κa was taken to be 6. Due to the relatively small difference in charge
density between the side walls and the channel, we do not expect the potential to diverge
greatly from the constant charge model. Fig. 4.11 depicts the potential and the axial electric
field obtained used the CR and non CR model. The streaming potential is slightly diminshed,
while the axial electric field, removed from the entrance and exit, is now constant. It is a well
known fact that physical systems try to minimise their potential energy. Thus, the fact that
the streaming potential is diminished speaks in favour of the CR model.

Figure 4.11: (a) The scaled electric potential φ̄ and the corresponding scaled axial electric field Ēx (b) along
the axis of symmetry obtained by solving the governing equations with the charge regulating boundary

condition. The solid lines represents the the CR-model, while the dashed lines represent non-CR model. The
simulation was run for κa = 5 with a pressure gradient of 1×107 Pa/m, pK = 8.3 and Γ = 8 1/(nm)2. The

vertical lines represent the entrance and exit of the channel.

Mirroring Section 4.1.1, we can compare the numerical solution against the ’analytical’ ex-
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pression 2.34. This is depicted in Fig. 4.12. We see that, for Lc = 25λD and 50λD, there
is a considerable mismatch between the numerical values and the analytic expression. We
attribute this to the fact that analytical expression assumes a constant axial electric field. For
Lc = 75λD, the comparison seems to hold reasonably well.

Figure 4.12: A comparison of the scaled streaming potential obtained from the numerical simulation and the
prediction given by the calculation scheme of Masliyah and Bhattacharjee (2006) [22] for different values of the

scaled channel radius κa. Here, pK is 8.3 and the density of sites Γ is 8 1/nm2.

29



Results and Discussion

4.2.2.2 Time Evolution In Section 4.1.2 we explored the time evolution of electric po-
tential and ion concentration profiles. We concluded that the electric potential has a rapid
buildup, whereas the ion concentration takes significantly longer to reach its steady state
value. We now look at the effect of our charge regulating boundary condition on this time
evolution. Just like in Section 4.1.2, the output of the simulation was stored for various values
of the scaled time τ = κ2Dt. The initial state (τ = 0) was determined by solving the model
without an applied pressure gradient. The simulation was run for κa = 5 and px = 1× 107

Pa/m.

The left side of Fig. 4.13 shows the electric potential and ion concentration profiles directly
after the application of the pressure (τ ≤ 10, i.e. t = 0.1 ms), whereas the right figure shows
later times. Again we see that the electric potential sets in rapidly, whereas the ion concentra-
tion takes significantly longer to react. We conclude that the altered boundary condition does
not seem to affect the time evolution of the electric potential and ion concentration profiles.

Figure 4.13: Development of the scaled electric potential φ̄ and relative ion concentration profiles ci/c∞ along
the channel axis. The scaled channel radius is κa = 5 and the pressure gradient is 1×107 Pa/m. The graphs on

the left show the electric potential and ion concentration directly after application of a pressure gradient
(τ ≤ 10), while the graphs on the right show later times up to τ = 10.000. Here, SS denoted the steady-state

solution.
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4.2.3 Effect of an External Electric Field

Finally we look at the effect of applying an external electric field on the boundary FQ. Apart
from exhibiting a force on the fluid, we also expect the channel surface charge to react to
the electric field and redistribute accordingly. Fig. 4.14 shows the surface charge density
for Ē0 = −0.01,0 and 0.01, where x ≤ 25 and x ≥ 75 represent the sidewalls BC and DE,
and 25≤ x≤ 75 represents the channel wall CD. As we can see, instead of the charge being
constant on the channel wall, it now appears to be increasing linearly along the wall.

Figure 4.14: The surface charge density at the channel wall and sidewalls for different values of the applied
electric field E0. The scaled channel wall position α is determined by α = (x̄+sign(x̄) · r̄)/κ The domain
−25≤ x≤ 25 represents the channel wall CD. The site density Γ was 8 1/(nm)2 and pK was taken to be 8.3.

We again compare the axial velocity profile at the midsection of the channel to the analytical
expression Eq. 4.1. For low field strength, the comparison between the numerical values and
the anaytic expression seems to hold reasonably well. However, when the electroosmotic
flow starts to dominate the electrokinetic flow, a far lower axial velocity is obtained. We
attribute this to the strong electric field having a greater effect on the surface charge.

Figure 4.15: The steady-state scaled axial velocity profile, ux/κD, taken at the channel midsection x̄ = 0.5 for
κa = 5. (a) compares the sum of pressure driven and electroosmotic flow to the full electrokinetic flow profile,

while (b) shows the axial velocity profile for several values of the applied electric field E0.
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5 Conclusion and Outlook

We have developed a numerical model that describes the ion transport and fluid flow through
a charged microchannel under the application of a pressure gradiënt and an external electric
field. Moreover, we succcesfully replaced the conventional constant surface charge boundary
condition on the channel in favour of a surface charge that is determined through a simple
charge regulation scheme.

Due to the altered boundary condition, the surface charge on the channel wall and sidewalls
redistributes, resulting in a lower streaming potential and a constant axial electric field at the
channel wall. Just as in the constant surface charge model, the electric potential reaches near
equilibrium within the first 0.1 ms, while the axial ion concentration profiles take far longer
to reach their equilibrium values. When an external electric field is applied, the surface
charge on the boundary reacts accordingly and redistributes. When the applied electric field
is weak (E0 ≤ 0.01) the axial velocity profiles are similar to the values found by employing
the constant charge model. However, when the electroosmotic flow starts to dominate the
electrokinetic flow, a far lower axial velocity is predicted. Our explanation for this is the
redistribution of the channel surface charge under the applied electric field which causes a
weaker axial electric field inside the channel.

Further insights may be gained by considering smaller channels and looking at the effect of
overlapping electric double layers. Furthermore, more complex charge regulation mecha-
nisms, such as multiple chemical reactions, can be considered.
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