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Abstract. This article aims at improving the El Niño Southern Oscillation (ENSO) prediction, which

is currently not reliable more than six months ahead. Topological properties of Climate Networks

of both a Zebiak–Cane-type model and observations are described and a hybrid model is introduced

for ENSO prediction. This hybrid model combines Autoregressive Integrated Moving Average and

an Artificial Neural Network. The predictions of the hybrid model improve the CFSv2 ensemble5

prediction by the National Centers for Environmental Prediction (NCEP), for predictions up to six

months ahead. Moreover, the addition of a network variable as input of the prediction model, results

in a twelve month lead time prediction with a comparable skill to the shorter lead time predictions.

1 Introduction

Approximately every four years, the sea surface temperature (SST) is higher than average in the10

eastern equatorial Pacific (Dijkstra, 2006; Dijkstra and Burges, 2002). This phenomenon is called

an El Niño and is likely to occur in boreal winter. Bjerknes (1969) found the equatorial zonal winds

have an eastward anomaly during such an event. Ocean-atmosphere interactions seemed to be an

important feature for the development of the SST in this area and an important part of the El Niño

Southern Oscillation (ENSO) dynamics. ENSO is seen as one of the most important drivers of cli-15

mate variability (Ludescher et al., 2014) and has teleconnections worldwide.

So far, both statistical and dynamical models are used to predict ENSO (Chen et al., 2004; Yeh

et al., 2009; Fedorov et al., 2003). However, El Niño events are not predicted well enough up to six

months ahead. Specifically, the prediction from spring is found to be difficult (Goddard et al., 2001).20

Some theories indicate this is due to the chaotic, yet deterministic behavior (Jin et al., 1994; Tziper-

man et al., 1994). Others point out the importance of atmospheric noise, acting as a high frequency

forcing sustaining a damped oscillation (Moore and Kleeman, 1999).
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Table 1. List of abbreviations

AI Artificial Intelligence ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average CN Climate Network

ENSO El Niño Southern Oscillation EOF Empirical Orthogonal function

ML Machine Learning NCEP National Centers for Environmental Prediction

NON Network of Networks NRMSE Normalized Root Mean Squared Error

PC Principal Component RNN Recurrent Neural Network

SC Seasonal Cycle SSH Sea Surface Height

SST Sea Surface Temperature SVM Support Vector Machine

TDNN Time Delay Neural Network VAR Vector Autoregressive model

WWB Westerly Wind Burst WWV Warm Water Volume

ZC Zebiak Cane

Recently, attempts have been made to improve the ENSO prediction skill beyond this spring-predictability

boundary, by using machine learning (ML) (Wu et al., 2006), also combined with network techniques

(Feng et al., 2016). So far, ML showed to be a promising tool, outperforming conventional methods

in more disciplines of physics (Hush, 2017). Besides, it did a better job than humans in a game of

Go, which is difficult for Artificial Intelligence (AI) since it requires intuition and creative thinking30

(Silver et al., 2016). As the amount of data in the climate sciences is increasing, ML methods are

becoming more interesting to apply it to.

In this article, a hybrid model is introduced for ENSO prediction. The model combines the sta-

tistical method Autoregressive Integrated Moving Average (ARIMA) and the AI based Artificial35

Neural Networks (ANN). First, ARIMA is a linear model, including a part of the forecast depend-

ing on the history. ANN is applied to predict the residual that is left after the ARIMA forecast, due

to the nonlinear processes (Wu et al., 2006). Briefly, ANN is a system of linked neurons that de-

scribes an optimized function from one or more input variables to the output variable(s). Generally,

two different approaches can be considered to applying the ANN. The first is to use a complicated40

ANN structure with a lot of different input variables (or attributes). This approach is situated on

the deep learning part of the ML spectrum and is believed to filter the important information from

the attributes itself. The deep learning approach requires a lot of input data and is computationally

intensive. Therefore, simpler ANN structures are used in this article. However, techniques will have

to be applied in order to reduce the amount of input variables and select the important ones, to make45

the problem appropriate for the simpler ANN. This reduction and selection problem can be tackled

in many ways, being crucial for the prediction. In this article, the focus will be on the attributes that
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are predictive according to the known ENSO mechanisms.

Moreover, complex networks are recently found to be an efficient way to represent spatial-temporal50

information (Tsonis et al., 2006; Steinhaeuser et al., 2012; Fountalis et al., 2015) and can be used as

an attribute reduction technique. These Climate Networks (CN) are in general constructed by linking

spatial-temporal points that are significantly associated with each other according to some measure.

It has been demonstrated that relationships exist between topological properties of CNs and nontriv-

ial statistical properties of the underlying dynamical system (Donner et al., 2010), also for ENSO55

specifically (Gozolchiani et al., 2011, 2008). Besides, CNs already appeared to be a useful tool for

ENSO prediction, by considering a warning of El Niño if a network variable exceeds some critical

value (Ludescher et al., 2014; Meng et al., 2016).

In this article however, multiple CNs of the pacific area are constructed and implemented in the hy-

brid model. This prevents the prediction method from being sensitive to some arbitrary chosen crit-60

ical value. Besides, with information from additional variables, a machine could recognize whether

a strong or weak signal from a network variable should be taken into account, reducing the amount

of false positives and false negatives. The network variables are chosen as attributes, such that a

conventional physical quantity is related, but spatial information is conserved. Moreover, the current

literature with respect to El Niño dynamics and network theory will be supplemented with a network65

of networks (NON) approach and the dynamics of the interacting networks (Donges et al., 2011) are

investigated. Because of the importance of ocean-atmosphere coupling in the ENSO dynamics, such

a variable can contain interesting properties of the system.

Section 2 describes the ZC model and the methods considering both the CNs and ML. In section70

3, the network methods are first applied to the ZC model. Second, the resulting attributes from ob-

servations are presented. These attributes, among which a network variable, are applied in the hybrid

prediction model in section 4, which discusses the prediction results. Finally, section 5 summarizes

and includes a discussion.

2 The Zebiak Cane-type model and methods75

This section first describes the ZC model, including its ENSO mechanisms. Then atmospheric noise,

which is not considered as an ’ENSO process’ itself, is incorporated into the model and its effects are

discussed. Second, methods are explained considering both the construction of CNs and describing

their topological properties. Finally, the methods concerning the ML are explained, including the

hybrid model.80
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Figure 1. Pacific area (red rectangle) from 140 to 280 ◦ E and −20 to 20 ◦ N and the NINO3.4 area (green

rectangle) from 170 to 120 ◦ W and −5 to 5 ◦ N

2.1 Zebiak Cane model with atmospheric noise

The ZC model represents the coupled ocean-atmosphere flow on an equatorial β-plane in the Pacific

area (figure 1), with planetary vorticity gradient β0. The basin has a zonal length L and is merid-

ionally unbounded. The ocean component consists of a shallow water layer with mean depth H and

constant density ρ. This layer contains an embedded well-mixed layer with mean depth H1, such85

that H =H1 +H2. The deep ocean has density ρ+∆ρ and is assumed to be at rest. Only long wave

motions are considered in this model.

The shallow water flow is governed by (Von Der Heydt et al., 2011):

∂u

∂t
+ amu−β0yv+ g′

∂h

∂x
=

τx

ρH

β0yu+ g′
∂h

∂y
= 090

∂h

∂t
+ amh+ c20

(
∂u

∂x
+
∂v

∂y

)
= 0

Here u, v are respectively the zonal an meridional velocity, h the thickness of the layer, τx the

zonal wind stress, g′ = g∆ρ
ρ is the reduced gravity, c0 =

√
g′H the phase speed of the first oceanic

baroclinic Kelvin mode and am a linear damping coefficient. The boundary conditions in the East

(x= L) and West (x= 0) of the basin are:95

∞∫
−∞

u(0,y, t)dy = 0

u(L,y,t) = 0

The equations for the surface layer velocities are:

asus−β0yvs =
H2

H

τx

ρH1

asvs−β0yus = 0100
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as is a linear damping coefficient. The evolution of sea surface temperature T is described by:

∂T

∂t
+αT (T −T0) +

w1

H1
Θ(w1)(T −Ts(h)) +u1

∂T

∂x
+ v1

∂T

∂y
= 0 (1)

In this equation, αT is a linear damping coefficient, u1 = us +u, v1 = vs + v and w1 = ws +w. T0

is the radiation equilibrium temperature and Θ the Heaviside function to assure cooling/heating only

occurs by upwelling and not by downwelling. Subsurface temperature Ts depends on the vertical105

temperature distribution, therefore on the thermocline depth h by:

Ts(h) = Ts0 + (T0−Ts0)tanh

(
h+h0

Ĥ

)
(2)

Here Ĥ and h0 control the steepness and the offset of the Ts profile. Ts0 is the characteristic tem-

perature of the water that is being upwelled into the surface layer.

110

The ocean component of the model is coupled to a Gill atmosphere model with horizontal veloc-

ities (ua,va), geopotential height φ and linear damping coefficient Am. The atmosphere is driven by

heat fluxes from the ocean, depending linearly on the anomaly of the sea surface temperature T with

respect to T0, with proportionality constant α0. The atmosphere is governed by:

∂ua
∂t

+Amua−β0yva−
∂φ

∂x
= 0115

∂va
∂t

+Amva +β0yua−
∂φ

∂y
= 0

∂φ

∂t
+Amφ− c2a

(
∂ua
∂x

+
∂va
∂y

)
= αT (T −T0)

Here ca is the phase speed of the atmospheric Kelvin wave.

The zonal wind stress τx is build up from a coupled and an external part:

τx = τxext + τxc (3)120

The external part τxext is independent of the coupling between the atmosphere and ocean. It represents

an easterly wind stress due to the Hadley circulation. It is assumed to be zonally constant and depends

on latitude according to:

τxext =−τ0e−
1
2 ( y

La
) (4)

Here τ0 ∼ 0.01 Pa, La the atmospheric Rossby deformation radius. The coupled part of the zonal125

wind stress is proportional to the zonal wind field: τxc = γτua. The meridional component of the

wind stress τy is neglected in this model.

This γτ is proportional to the coupling strength, which parameter determines the coupling between

ocean and atmosphere (or wind stress per temperature anomaly) and is defined by:

µ=
αT∆TL

c3a
(5)130
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Here ∆T is the typical horizontal temperature difference across the basin.

Without any included noise, a temperature anomaly damps out to a constant value and a stationary

state if µ < 3. However, if the coupling strength exceeds a critical value of µc = 3, a supercritical

Hopf bifurcation occurs. The system does not damp out, but an oscillation is sustained with a period135

of approximately four years.

Three positive feedbacks related to the thermocline depth, upwelling and zonal advection, cause

a positive SST anomaly to grow more (Dijkstra, 2006). However, the oscillatory behavior associated

with ENSO is caused by negative delayed feedbacks.140

The ’classical delayed oscillator’ paradigm assumes this negative feedback is caused by waves

through geostrophic adjustment, controlling the thermocline depth.

A complementary, different view is the ’recharge/discharge oscillator’ (Jin, 1997), also regarding

oceanic waves excited through oceanic adjustment. The waves excited to preserving the Sverdrup

balance, are responsible for a transport of warm surface water to higher latitudes, discharging the145

warm water in the tropical Pacific. The thermocline depth is raised, resulting in more cooling of

SST.

The warm water volume (WWV) is generally used to capture how much the tropical Pacific is

’charged.’ Specifically, this is the water volume above the 20 ◦C isotherm between 120◦ to 280◦

East and −5◦ to 5◦ North.150

Besides the ENSO processes discussed so far, the area is also suspect to other processes from the

atmosphere, which are considered as noise. An important example of atmospheric noise are the so

called westerly wind bursts (WWB). These are related to the Madden-Julian oscillation (Madden

and Julian, 1994). The WWB is a strong westerly anomaly in the zonal wind field, occurring every155

forty to fifty days and lasting approximately a week.

To represent the atmospheric noise in the model, we obtained a residual of the wind stress. We

used the extended reconstructed sea surface temperature (ERSST) over the Pacific for the period

1978-2004 and the Florida State University pseudo-wind-stress data for the same period. First the160

part of the wind stress anomalies linearly related to the SST anomalies, are subtracted from the wind

stress anomalies. Then the residual is projected on its empirical orthogonal function (EOF).

The six EOF components that explain most variability were considered to describe the spatial pat-

terns of the red noise and their principal components (PC) were used to construct the time series of

red noise (Feng, 2015). These time series are modeled as an independent AR1 process by:165

xt+1 = axt +σεt (6)
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a is the lag-1 autocorrelation of each PC and σεt is the white noise with variance σ. Every timestep

is one week, since weekly data are considered.

The effect of the noise on the model depends on whether the model is in the super- or sub-critical

regime (i.e whether µ above or below µc). If µ < µc, the noise excites the ENSO mode, causing ir-170

regular oscillations. In the supercritical regime, the cycle of approximately four years is still present,

but the noise causes a higher amplitude of ENSO variability.

2.2 Network variables

2.2.1 Climate network construction

Different methods can be used to construct CNs. Here only the Pearson correlation will be considered175

for the construction of two different types of CN. The Pearson correlation between variables pi, pj

associated with two points on the grid i, j ∈ [0, · · · ,N ] is defined as:

R(i, j) =

∑n
k=1 pi(tk)pj(tk)√

(
∑n
k=1 p

2
i (tk))

(∑n
k=1 p

2
j (tk)

) (7)

Here pi is a vector of size n of the time series. The data is detrended before the correlation is

calculated.180

In the first method an undirected and unweighted network is constructed. The links are stored in a

symmetric adjacency matrix A, where Aij = 1 if node i is connected to node j and zero otherwise.

It is defined by:

Aij = Θ(|Rij | − ε)− δij (8)

Here Rij is the Pearson correlation between node i and j. ε is the threshold value. If the Pearson185

correlation exceeds this threshold, the two points will be linked. Θ denotes the Heaviside function.

δij is the Kronecker delta function, implemented to prevent connection of nodes with themselves.

The second method creates a weighted, undirected network. The cross-correlation Cij(∆t) between

nodes i, j is considered: The Pearson correlation with a lag ∆t in time. Then the weights between190

the nodes are calculated by:

Wij =
max∆t(Cij)−mean(Cij)

std(Cij)
(9)

Here max∆t() denotes the maximum, std() the standard deviation and mean() the mean value over

all ∆t that are considered.

2.2.2 Topological properties195

Some methods are explained in this section, capturing the information about the topology of both

types of constructed networks.
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The first is the local degree di of node i in the CN:

di =
∑
j

Aij (10)

In the case of the unweighted network, the degree is equal to the amount of nodes that are connected200

to node i.

Second, the cross clustering contains information about the interaction between two networks. The

cross clustering of a node is the probability two connected nodes in the other network are also con-

nected to each other. The local cross clustering cv of node v is defined as:205

cv =
1

kv (kv − 1)

∑
p 6=q

AvpApqAqv (11)

Here p,q are the nodes in the other network and kv denotes the cross degree of node v. That is the

amount of cross links node v has with the other network. The global clustering coefficient is the

average of the local clustering coefficient over all nodes of a network.

210

Third, percolation theory is considered, describing the connectivity of different clusters in a network.

It has been found before, the connectivity of some CN increases when approaching an El Niño and

decreases afterwards (Rodríguez-Méndez et al., 2016), as local correlations between points increase

and decrease. At such a percolation-like transition, the addition of only a few links can cause a con-

siderable part of the network to become connected.215

Before the percolation transition, small cluster sizes will form. Therefore the variable cs will warn

for the transition. This is the fraction of nodes that are part of a cluster of (generally small) size s,

normalized by the amount of nodes in the network.

Moreover, ∆ can be used to capture the percolation-like transition (Meng et al., 2016). Links are

added to a network one by one, adding the link with the largest weight first (equation 9). At every220

step T that a link is added, the size of the largest cluster S1(T ) is calculated. At the point of the

transition, S1(T ) increases rapidly. The size of this jump is ∆:

∆ = max[S1(2)−S1(1),··· ,S1(T + 1)−S1(T ),··· ] (12)

Finally, the algebraic connectivity (λ2) is considered, determining the diffusivity of information

within a network. Suppose any node i is represented by a value ψi in an undirected network. In our225

case ψi is directly related to the time series. How much ψi changes by diffusion depends on the

values of nodes j it is connected to (Newman, 2010):

dψi
dt

= C
∑
j

Aij (ψj −ψi) (13)
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Here C is the diffusion constant and A the adjacency matrix. By separating the sum in equation 13,

this can be rewritten as:230

dψi
dt

= C
∑
j

(Aij − δijdi)ψj (14)

δij is the Kronecker delta function and di the degree of node i. In matrix notation this reduces to:

dψi
dt

= C (A−D)ψ (15)

Here D with Dij = δijdi is a square matrix that contains the degrees at the diagonal and zero else-

where. Now we define the graph Laplacian of the network as:235

L = A−D (16)

As you can see, equation 15 reduces to the diffusion equation, but with the graph Laplacian matrix

L in stead of∇2. By calculating the eigenvalues of the Laplacian matrix λ1, · · · ,λn with λ1 ≤ λ2 ≤
·· · ≤ λn, we can determine the diffusion within the network. Since the matrix is symmetric, the

eigenvalues are real. Moreover, the smallest eigenvalue λ1 is always zero and no eigenvalues are240

negative. This means the network will decay to a stable solution. The second smallest eigenvalue,

called the algebraic connectivity, is of particular interest. In general, λ2 > 0 if the network is fully

connected.

2.3 Machine Learning

Up to now the methods are explained to investigate CNs of both the ZC model and observations. This245

section first discusses some possibilities of predicting ENSO with ML and explains the eventual ap-

plied prediction scheme: The hybrid model. The ARIMA part of the prediction model is illustrated.

Then the problem of attribute selection is discussed. Finally the ANN part of the hybrid model is

explained, where the selected attributes will be applied to.

250

An ANN should be a well-suited AI method for the ENSO prediction problem, because of the non-

linearity of the system. A feed-forward ANN (figure 2) will describe a nonlinear function from the

currently known input variables to the NINO3.4 index in the future. However, the skill of the predic-

tion will improve if this function also depends on the history. In general this can be done by adapting

the general feed forward ANN structure, by implementing loops within the ANN to obtain internal255

memory. This is called a Recurrent Neural Network (RNN).

Another method is the Time Delay Neural Network (TDNN), where lags of attributes are imple-

mented as input.

However, both methods increase the complexity of the problem. Using RNN will increase the amount

of possible ANN structures. Using TDNN will rise the question which lags of variables will have260

to be implemented, such that no noise, but only complementary information is added. Besides the
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TDNN will increase the amount attributes, therefore the ANN structure will have to be more com-

plicated to solve the problem.

To overcome these problems, the hybrid model (Valenzuela et al., 2008) will be applied to predict

ENSO. Previous work showed the results of a hybrid model are in general more stable and reduce the265

risk of a bad prediction, compared to a single prediction method (Hibon and Evgeniou, 2005). The

problem is split into two parts: An ARIMA part depending on history and a nonlinear part making

use of feed-forward ANN. The hybrid model represents the observation Zt at time t by:

Zt = Yt +Nt (17)

Here Yt is the linear part and Nt the nonlinear part. Let Ỹt be the prediction of the part Yt using270

ARIMA. Then Zt− Ỹt is the residual between the ARIMA prediction and the observed value.

In the second part the residual Zt− Ỹt will be predicted by the feedforward ANN:

Ñt = f (x1(t), · · · ,xN (t)) (18)

Here f is a nonlinear function of the N attributes x1(t), · · · ,xn(t) and Ñt the prediction of residual

Zt−Ỹt at time t. Notice the nonlinear function f does not depend on history. Therefore, a longer lead275

time prediction of the model could have a better prediction skill. This results in the final prediction

Z̃t of the hybrid model:

Z̃t = Ỹt + Ñt (19)

This scheme describes a ’supervised’ model, implying the predictant is ’known.’ This known quan-

tity is the NINO3.4 index. The standard procedure for supervised learning is to optimize the ML280

method on a ’training set’ to define an optimal model, which predicts ENSO up to a prediction time

τ ahead. This function will then be tested on a test set. In this article generally a training set of 80 %

and an test set of 20 % of the total time series is used.

The data set can be represented by a T ×N matrix, where T represents the length of the time series

and each time t= 1,··· ,T has a set of N attributes x1(t),··· ,xN (t). Note that, since we are predict-285

ing time series, for any training set [ttraini , ttrainf ] and test set [ttesti , ttestf ], must hold ttesti > ttrainf

(where ttraini , ttrainf , ttesti , ttestf ∈ [1,T ]).

2.3.1 Autoregressive Integrated Moving Average

First, the training set is used to optimize an ARIMA(p,1,1) process for the NINO3.4 time series. The

standard method maximizing the log likelihood function is used to fit α1, · · · ,αp,β1 and define the290

ARIMA(p,1,1) process for some time series Xt:

Xt =Xt−1 +α1Xt−1 + · · ·+αpXt−p +β1εt−1 (20)

Here εt is the residual between the ARIMA prediction and observation at time t. Only p≤ 13 is

considered. Making a prediction using the ARIMA model k steps ahead, implies equation 20 is
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applied k times.295

For a k > 1 month lead ARIMA prediction, the real residual εt−1 cannot be determined, because the

observed value of Xt−1 is in the future. Therefore we will have to work with the difference between

the k month lead prediction of the hybrid model and the ARIMA prediction as residual.

Besides, an ARIMA(p,1,0) model will be considered, implying that β1 = 0 in equation 20 and no

moving average part is considered.300

2.3.2 Attribute selection

If the ARIMA prediction is performed, other variables than the NINO3.4 index itself are added to

the attribute set, to be implemented in the ANN. Deciding which of the variables to add, is not a

straightforward problem, yet crucial for the eventual prediction. Sometimes a pair of two variables

can be compatible in the prediction, but perform poor when applied alone. Other pairs can be re-305

dundant and cover important information alone, but solely noise is included when used together

(Guyon and Elisseeff, 2003). Adding a variable to the attribute set and see if it improves prediction,

can only conclude whether it improves prediction with respect to the old attribute set, not whether

the variable is predictive in itself. To determining the attribute set, it is considered which variables

physically represent a certain mechanism that is important for the ENSO prediction. Besides, it is310

tested whether the prediction skill is reduced if a variable is dropped out of the attribute set.

Moreover, the attributes should be selected at optimal lead times. Two methods will help to decide

which variables can improve the prediction, although these methods are not necessarily decisive in

determining the most optimal attribute set. First, correlation between the predictor and predictant is315

a commonly used measure for attribute selection. Therefore the cross-correlation is calculated for

the attributes to show the predictability of a time series, using again the Pearson correlation from

equation 7:

Rτ (p,q) = max
τ

( ∑n
k=1 p(tk)q(tk − τ)√

(
∑n
k=1 p

2(tk))(
∑n
k=1 q

2(tk − τ))

)
(21)

Here p is the predictor, q is the predictant and lag τ ≤ 64 weeks such that no information too far in320

the past is considered.

However, the effect of a variable on ENSO at a short lead time, increases the cross-correlation at a

longer lead time, due to the effect of autocorrelation (Runge, 2014). To solve this autocorrelation

problem, variables can be tested for Granger causality. In general, a first signal Granger causes a

second signal, if the first has a statistically significant effect on the second variable, taking past325

values of the second signal into account as regressors. Note Granger causality is not the same as

a ’true’ causality. To test if a signal xt Granger causes a second time series yt at some lag τ , an

F-test is performed to test the significance of the parameter bτ in the sum of squares optimized linear
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Figure 2. 3× 3× 3 feed-forward artificial neural network. This implies it consists of three layers with each

three neurons, without any internal loops.

regression equation:

yt = a0 + a1yt−1 +···+anyt−τ + b1xt−1 +···+bτxt−τ + εt (22)330

Here εt is the error at time t. The p-value of this hypothesis is considered for different lags τ . A low

p-value means the null hypothesis that xt does not Granger cause yt is rejected at a lower significance

level: The variable is more likely to Granger cause ENSO.

Notice these methods give us merely an idea of which variables can be used for the prediction

at different lead times. These methods are linear, while the attributes will be used in a nonlinear335

method.

2.3.3 Artificial Neural Network

Finally, the T×N dataset with selected attributes is used to predict the residual between the ARIMA

forecast and the observations in an ANN. Besides using the NINO3.4 sequence itself, the additional

attributes can be applied to add important information and improve the prediction.340

Generally, a feed-forward ANN has a structure without loops, similar to figure 2. The input variables

are linearized and projected to the first layer neurons according to (Bishop, 2013):

zj = h

(
D∑
i=1

w
(1)
ji xi +w

(1)
j0

)
(23)

Here zj is the value of the j-th neuron of the layer, w(1)
ji is the weight between input xi from neuron

i to neuron j, where the (1) denotes the first layer. w(1)
j0 is referred to as the bias. h is the nonlinear345

activation function and is generally a sigmoidal function: h(a) = 1
1+exp(−a) . The activation function

is important to incorporate the nonlinearity in the optimization scheme. Without activation function,

a linear function will still exist from the input to output variables.

These zj can again be used as input for a second layer, which can be used for a third layer etc.. Even-

tually this leads to some output which can be compared with the time series that must be predicted.350

Using a backward propagating technique, the squared error
∑
t(yt− ŷt)2 between the residual we

are predicting yt and the output of the ANN ŷt, will be minimized over the weights. Initially, some
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random distribution of weights is used. Generally, this backward propagating technique will always

decrease the squared error if the activation function h is chosen to be a sigmoidal function.

3 Analysis of network properties and other attributes attributes355

In this section, the resulting topological properties of CNs are analysed. Firstly, the network vari-

ables from the ZC model are explained. Secondly, this results in a network variable of observations

containing interesting properties, which will be explained along with all attributes that are applied

in the hybrid model in section 4.

3.1 ZC model results360

Weekly spatial-temporal data on a 31× 30 grid in the pacific area are obtained for forty-five years

from the ZC model, to construct the CNs. The first five years are not considered, such that the system

does not depend on the initial conditions of the model.

Generally, a sliding window approach is used to calculate the network variables. This implies the

network is calculated for some sequence in time, which is slided four weeks ahead every time step.365

For the ZC model, either the thermocline network (from h), SST network (from T ), wind network

(from τx) or a combination of these are considered for CN construction. The following network

variables are discussed in this section:

– Skewness of the SST degree distribution

– Cross clustering of the zonal wind and temperature network370

– Zonal skewness in the degree field of the thermocline network

– Two variables describing a percolation-like transtition

– Algebraic connectivity of the zonal wind and thermocline network

3.1.1 Skewness of the SST degree distribution

Determining how strong noise can excite the ENSO mechanisms in the sub-critical case, or determin-375

ing whether the feedbacks sustain an oscillation in the supercritical state, could provide information

to increase the prediction skill. Feng (2015) has found a network variable which relates to the cou-

pling strength (µ).

First an undirected, unweighted network is constructed of the SST field, with a threshold of ε= 0.5.

The skewness of the probability distribution for some node in the network to have a certain degree380

(Sd), decreases monotonically over increasing coupling strength µ (see figure 3).
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Figure 3. Sd (in blue) and the variance of the NINO3.4 index (in green) for different coupling strength µ in the

ZC model from Feng (2015). The vertical dotted red line denotes the critical coupling strength µc

Figure 4. Global cross clustering between the SST and wind network in blue and its variance in green. The

coupling strength µ defined as a sinusoid around µc = 3 with an amplitude of 0.25 in red. The sliding window

is applied with a window of five years.

3.1.2 Cross clustering of the zonal wind and temperature network

Although Sd relates to the climate stability and coupling strength, it does not inform whether the

system is in either the supercritical or sub-critical state. A NON variable has a related property:

The global cross clustering (Cv) between the SST and wind network. In this case, the global cross385

clustering coefficient is a measure of the amount of triangles in the networks, containing one wind

node and two SST nodes.
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In figure 4 this cross clustering is calculated, when coupling strength µ changes in time. In the

beginning the system is in the supercritical state, the state is sub-critical after µc = 3 is crossed.

When the critical point is passed, the noise has a larger influence on local correlations. This causes390

triangles to break and the variance of the cross clustering coefficient to increase. The cross clustering

Cv is a diagnostic network variable, informing in which state the system is.

3.1.3 Zonal skewness in the degree field of the thermocline network

Figure 5. Zonal skewness of the degree field with ε= 0.6 in red, NINO3.4 in black. Left the sub-critical and

right the supercritical case.

From the classical view of the oscillatory behavior of ENSO, the waves should contain memory of

the system, because of their negative delayed feedback. From this point of view, the changing struc-395

ture of the thermocline network is of interest when predicting ENSO. Calculating the network with

threshold ε= 0.6, a zonal pattern in the change of the network close to the equator can be observed

during an ENSO cycle. Generally, the degree field is quite symmetric, but when ENSO turns either

from upward to downward, or from downward to upward, the degree of the nodes in the east de-

creases. This is at the peak El Niño or La Niña.400

To capture this zonal asymmetry around the equator with a variable, the zonal skewness of the

degree field will be used between −7◦ to 7◦ North. The higher the skewness, the more the degree

will be located west of the basin. If the skewness is close to zero, the degree is symmetrically dis-

tributed over the basin. If it is low, most of the degree is situated in the east. The skewness will show405

a negative peak when the sign of the first ENSO derivative changes (figure 5).

In the supercritical case µ= 3.25 this effect is indeed observed. Nevertheless, in the sub-critical

case, the pattern is only visible once ENSO shows a clear oscillation (around year 32).
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3.1.4 Percolation theory providing a warning precursor

Figure 6. c2 of the thermocline network in red. NINO3.4 in black. Left the sub-critical case with threshold

ε= 0.99999 and right the supercritical case with ε= 0.999.

For the ZC model, c2 (the amount of clusters of size two) of the thermocline network is found to in-410

dicate a percolation transition of the network (figure 6). c2 increases approximately one to two years

before an El Niño event. This is mainly clear in the supercritical case. In the sub-critical case, a clear

warning of an event occurs when the oscillation of ENSO is more clear and the El Niños are stronger.

∆ shows the same behavior as c2 (see figure 7).

Figure 7. ∆ in red and ENSO in black. Left the sub-critical and right the supercritical case.

415

Although ∆ is not sensitive to a chosen threshold, it tends to show a warning closer to an event,

compared to c2.
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3.1.5 Algebraic connectivity of the zonal wind and thermocline network

Figure 8. Algebraic connectivity λ2 in red and ENSO in black. Left the sub-critical and right the supercritical

case.

If the feedbacks between two variables in the system are stronger, the diffusion of information be-

tween the networks associated to these variables could increase (see section 2.2.2). The algebraic420

connectivity of a NON might capture the amount of interaction between them. λ2 of a network con-

structed from the thermocline and wind network shows the diffusion in this network is larger before

and after an event (figure 8). In the supercritical case (µ= 3.25), clearly peaks are observed in λ2

before and after an El Niño, implying the spread of information in the network is the highest at these

moments. In the sub-critical case (µ= 2.7) λ2 is noisy. Nevertheless, if some clear oscillations are425

excited around the year 35, again the peaks before and after El Niño can be observed.

3.2 Attributes from observations

Up to now it is demonstrated how CNs can describe properties of the dynamical system that is as-

sociated with ENSO. The variables from the CNs could be used to predict El Niño. Although the

network variables show interesting behavior when applied to the model in the previous section, this430

is not always the case for the observations. This section describes which variables, among which

network variables, are implemented in the hybrid model and the selection of these attributes at dif-

ferent lead times.

To quantify ENSO, the NINO3.4 index is used: The three month running mean of the SST between

170◦ to 120◦ West and −5◦ to 5◦ North.435

First, from the recharge/discharge oscillator point of view, the WWV shows great potential for the

prediction of ENSO (Bosc and Delcroix, 2008; Bunge and Clarke, 2014). Therefore it is used in the

attribute set.
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Figure 9. Evolution of the local degree of the SSH network with threshold ε= 0.9 during the 1982 El Niño.

440

The second attribute considers a WWV related network variable. For the CN construction, the

Figure 10. The WWV and c2 of the SSH network with ε= 0.9. On the left for the whole time series and on the

right only during the 1997 El Niño where a warning is visible of the WWV and c2. c2 gives a warning almost a

year before El Niño, while WWV warns almost seven months ahead.
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sea surface height (SSH) is used from the weekly ECMWF reanalysed dataset from 1979 to 2014

between 140◦ to 280◦ East and −20◦ to 20◦ North. The SSH is by approximation proportional to

the thermocline depth (Rebert et al., 1985), thus related to propagating waves and strength of the

thermocline feedback. A grid of 27 latitude points and 30 longitude points in the Pacific area is used

with a threshold ε= 0.9, such that the network is not fully connected. During an El Niño event, the445

link density of this network increases in the warm pool and the cold tongue specifically (figure 9),

causing a percolation-like transition. As discussed in the previous section, c2 gives an early warning

of this event. This variable allows us to extend the lead time of the WWV.

Third, atmospheric noise from the WWB are a limitation for the prediction of ENSO (Moore and

Figure 11. Left the second PC and right the second EOF of the residual of the wind stress associated with the

WWB’s.
450

Kleeman, 1999; Latif et al., 1988). To obtain a variable related to the WWB, the linear effect of

the SST is subtracted from the zonal component of the wind stress. The second principle compo-

nent (PC2), explaining 8 % of the variance, is associated with these WWB’s. In figure 11, the PC

and its EOF are presented. Clearly the peaks in the PC are visible before the great El Niño events

of 1982 and 1997. Thereby, the EOF has the typical WWB structure, being positive west from the455

dateline and negative east. The HadISST dataset of the Hadley center has been used for the SST and

the NCEP/NCAR Reanalysis dataset for the wind stress, to compute the principle component of the

residual of the wind stress for the period 1980-2014.

Finally, the attribute set does not contain any information about the seasonal cycle (SC) yet. The460

phase locking of an El Niño event is something typical to ENSO. Therefore a sinusoid with the pe-

riod of a year is used as attribute, to see if it can improve the prediction skill.
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To determine at which lead time the different attributes should be applied, the cross-correlation

Figure 12. Left the cross correlation of the PC2, WWV and c2 with respect to ENSO. On the right the p-value

of the Wiener-Granger hypothesis test. A low p-value means the null hypothesis that the time series causes

ENSO in the Granger sense is not rejected up to a low significance level. The p-value of the PC2 and WWV is

almost zeros for all lags

and the p-value of the Granger test are considered (figure 12). The cross-correlations of PC2 and465

the WWV show clear peaks at respectively 12 and 20 weeks, although the cross-correlation only

increases up to the 64 weeks.

Mainly for c2, the Granger causality test with respect to ENSO shows interesting properties. While

the cross correlation increases for a higher lag, the p-value of the Granger causality test has a local

minimum at a lag of approximately 44 weeks. This indicates c2 can be more predictive at this order470

of lead times. The p-value of the WWV and PC2 is close to zero at all lags, implying that the effect

of autocorrelation is not large and the variable will be more predictive at a shorter lead time.

To summarize, we are interested in the variables that represent a specific physical mechanism re-

lated to the prediction of ENSO, in order to define the attribute sets. Both c2 and the WWV are475

related to the recharge/discharge mechanism. PC2 is related to the atmospheric noise from WWBs.

The seasonal cycle (SC) is related to the phase locking of El Niño events in Boreal winter.

Moreover, the hybrid model allows us to implement different variables in the attribute set at differ-

ent lead times. Therefore, the cross correlations and Wiener-Granger causality are taken into account

to determine which attribute is more optimal at some lead time. This implies c2 could replace the480

WWV at lead times of more than 40 weeks.

4 Results of the predictions

This section presents the results of predictions from the hybrid model. The skill with ANN structures

up to three hidden layers is investigated. If possible, a simple structure is preferred to reduce the risk
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Figure 13. Prediction from all months during the year 2010 up to nine months ahead. Blue is the hybrid model

prediction with attributes the three month running mean of WWV, PC2 and SC. The black line is the observa-

tion. Red is the mean of the CFSv2 ensemble prediction.

of overfitting. The predictions are compared to several predictions of the CFSv2 model ensemble of485

NCEP (from their website: http://www.cpc.ncep.noaa.gov/). First, a comparison between both pre-

dictions is made for the year 2010 (figure 13). Moreover, several lead time predictions are shown

and compared to the available CFSv2 lead time predictions. Besides, the seasonal bias of the hybrid

model and CFSv2 ensemble are compared. Finally, a recent forecast is made and it is shown how the

hybrid model predicts the development of ENSO the coming year.490

From now on, the Normalized Root Mean Squared Error (NRMSE) is used to indicate the skill

of predictor yA to predict yB . A low NRMSE indicates the prediction skill is better. The NRMSE is

defined as:

NRMSE(yA,yB) =
1

maxk (yA,yB)−mink (yA,yB)

√∑
t (y

A(t)− yP (t))
2

n
(24)495

Here t are the time steps of the time series and n is the number of points in the time series.

4.1 The year 2010

The year 2010 is a recent example of an under-performing CFSv2 ensemble. Especially in January,

all members of the ensemble overestimate the NINO3.4 index, resulting in an overestimation of the

ensemble mean (see figure 13). In the figure, a hybrid model is used to predict the same period, with500

ARIMA(12,1,1) and a 2× 1× 1 ANN structure with the three month running mean of the WWV,

PC2, the SC and ENSO itself as attributes. Taking the three month running mean from the attributes
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is found to increase the prediction skill, because a three month running mean is predicted as well. A

2×1×1 structure means a feed-forward structure with three layers of respectively two, one and one

neuron. This ANN structure is found to be the best performing structure at a three month lead time505

prediction. It will probably not even be the most optimal ANN structure at other lead times.

Figure 14. Predictions of the CFSv2 ensemble (red) and the hybrid model, including an ARIMA(12,1,0) model

(blue), compared to the observations (black). From an ensemble of eighty-four different ANN structures, some

structures resulting in a low NRMSE are presented. Upper left the three month lead time prediction of CFSv2

(red) and four month lead time prediction of the hybrid model. On the upper right the six month lead time

predictions. Down left the twelve month lead prediction of the hybrid model. The CFSv2 ensemble does not

have a twelve month lead prediction. The table contains informations about the NRMSE of all predictions,

ANN structures and attributes used in the hybrid model predictions.

4.2 Lead time predictions

Considering the three, six and twelve month lead time predictions, both the three and six month lead

time prediction of the CFSv2 ensemble show some lag and amplification of the real NINO3.4 index

(figure 14).510

Comparing the three month lead prediction of the CFSv2 ensemble with the four month lead predic-

tion of the hybrid model, the lag of the prediction is less and the amplification is not as large in the

hybrid model. While the lead time of the hybrid model is one month longer, the prediction skill is

22



better in terms of NRMSE.

The prediction skill of the hybrid model decreases at a six month lead compared to the four month515

lead time prediction. Thereby the lag and amplification of the CFSv2 prediction increase. Although

the hybrid does not suffer as much from the lag, it underestimates the El Niño event of 2010. In

terms of NRMSE the hybrid model obtains a better prediction skill.

To perform a twelve month lead prediction, the attributes from the shorter lead time predictions are

found to be insufficient. However, c2 of the SSH network has shown to be predictive at this lead520

time, according to the Granger causality and cross-correlation. Therefore the WWV is replaced by

c2 for this prediction, which is related to the same mechanism. In terms of NRMSE, the twelve

month lead prediction even improves the six month lead prediction of the hybrid model. On average

the prediction does not contain a lag in this period.

525

To show the results of figure 14 can be generalized, the mean of the predictions with the nine

lowest NRMSE of an ensemble with eighty-four different ANN structures is considered (figure 15).

The eighty-four different structures, are all structures up to three hidden layers with up to four neu-

rons. This ensemble does not differ much from the best predictions of figure 14: The spread of the

ensemble remains limited, although it is a bit larger in the six and twelve month lead prediction530

compared to the four month lead prediction.

To test the robustness of these results, a series of cross-validations has been performed. Several

percentage splits have been chosen (65-35, 70-30, 75-25 and 80-20), but 200 different initial times

of the test set ttesti are randomly chosen between March 1985 and December 2014. This implies that535

ttesti > ttrainf is not necessarily satisfied anymore. If the results for different training and test sets do

not deviate much, it is evidence the model also generalizes to an arbitrary training and test set. The

cross validation results of the hybrid models of figure 14 are presented in figure 16.

At all three the prediction lead times, the peaks coincide at the same NRMSE for different training-

test set ratios. Therefore the different sizes of training and test sets do not seem to influence the540

result. However, the spread of the peaks increases when the prediction lead time increases. That is

why the model results differ more between different parts of time at a higher lead time. Interestingly,

at the four and six month lead time predictions, the average NRMSE is lower than the NRMSE of

the prediction of figure 14. This implies the predictions at other parts of the set are even better than

the prediction shown in figure 14.545

4.3 Bias

The hybrid model results in a prediction that is much closer to unbiased, compared to the CFSv2

model ensemble (figure 17). This means the hybrid model underestimates as much as it overesti-

mates. Notice the spring predictability barrier for the CFSv2 ensemble in figure 17, for predictions
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Figure 15. The same predictions as figure 14, but the average of the nine ANN structures with the lowest

NRMSE in an ensemble of eighty-four structures is taken for the hybrid model prediction. The shaded blue

area denotes the spread of the nine predictions. The NRMSE of the ensemble mean predictions are respectively

0.15, 0.18, 0.17

starting before spring at longer lead times. The predictions of the ensemble from spring, underesti-550

mate ENSO on average.

4.4 Recent prediction: From May 2017

Finally, a prediction is made for the coming year in figure 18. Different hybrid models are used,

such that ANN structures are chosen that are founs to be optimal at the different lead times. For the

predictions up to five months, the attributes WWV, PC2 and SC are used from 1980 until present.555

For the twelve month lead prediction, the WWV is replaced by c2 again. This time it is computed

from the Salto/Duacs dataset. Therefore, only a dataset from 1993 until present has been used to

train the model and perform the twelve month lead prediction.
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Figure 16. Cross validations of the four, six and twelve month lead predictions of hybrid models from figure

14. The vertical dashed line denotes the NRMSE of the predictions of figure 14.

Interestingly, as can be seen in figure 18, the hybrid model typically predicts much lower ENSO

development than the CFSv2 ensemble. The uncertainty of the CFSv2 ensemble is large, since the560

spread of predictions is between a strong El Niño (NINO3.4 index between 1.5 and 2) and a moderate

La Niña (NINO3.4 index between -1 and -1.5) for the coming 9 months. The hybrid models predict

development to a strong La Niña (NINO3.4 index lower than -1.5) the coming year. From the time

of writing, only time will tell which prediction is better.

5 Summary and Discussion565

In this article, it is demonstrated how network theory can describe different properties of the ZC

model. This resulted in several variables: A network variable which relates to the parameter control-

ling the strength of the ocean-atmosphere coupling (Sd), a NON variable that distinguishes between
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Figure 17. The average bias from all initial months of different predictions. The bias of the CFSv2 ensemble

over the period 1982-2009 and of the hybrid model over the period 2007-2014.

super- and sub-critical state of the model (cross clustering between wind and SST network), a vari-

able related to the waves (the zonal skewness in the degree field of the thermocline network), two570

variables anticipating a percolation-like transition (∆, c2) and finally the diffusivity of information

in the wind and SST network (λ2).

Of these network variables, c2 constructed from observations, being the amount of clusters of size

two in a SSH network, is found to provide a warning of a percolation-like transition in the SSH

network. This percolation-like transition coincides with an El Niño event. This variable relates to575

the WWV and the recharge/discharge mechanism, but extends the prediction lead time of the WWV

when applied in the prediction scheme.

Furthermore, apart from both ’recharge/discharge’ related quantities, the PC2 and SC improve the

prediction skill, representing respectively the WWBs and the phase locking of ENSO.

Moreover, the hybrid model is introduced as method to predicting ENSO. The flexibility of imple-580

menting different variables at different lead times, allows the model to improve the CFSv2 ensemble

at short lead times (up to six months). Furthermore, it had a better prediction result than all members

of the CFSv2 ensemble in January 2010. Thereby the predictions of the hybrid model do not have a

systematic bias, as is the case for the CFSv2 ensemble.

Including the network variable c2 obtained a twelve month lead time prediction comparable to the585

predictions at shorter lead times. This prediction shows a step towards beating the spring predictabil-
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Figure 18. In black the observations until May 2017. Red is the CFSv2 ensemble prediction mean and the

shaded area is the spread of the ensemble. The hybrid model prediction in blue is given by predictions from

hybrid models found to be most optimal at the different lead times. The dashed blue line is the twelve month

lead time prediction.

ity barrier.

Using ML had the advantage of recognizing the early warning signal of c2 as either a false or true

positive. Therefore it can be a more reliable method then considering a warning when the signal

exceeds a certain threshold (Ludescher et al., 2014). Moreover, the early signal from the network590

variable is not only used to predict an El Niño event, but the development of ENSO, as the hybrid

model provides a regression of the NINO3.4 index.

ML serves as a tool which is able to recognize important, but subtle patterns. Something the conven-

tional statistical and dynamical models fail to do in the chaotic system.

In the end, the predictions from May 2017 are discussed. By the time of writing, this is the prediction595

for the coming year. The CFSv2 ensemble mean predicts neutral conditions the coming nine months,

with the spread between different members ranging from a strong El Niño to a moderate La Niña.

The hybrid model predicts moderate to strong La Niña conditions for the coming year.

Although the results of the methods are promising, some adaptations to the methods might still600

improve predictions. Several network variables resulted in a clear signal in the ZC model, but not

necessarily for the observations. Perhaps the naked eye, the cross-correlation and a Granger causal-

ity test are not enough, to determining the suitability of a variable in the observations. Testing all
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possible attribute sets in the prediction scheme and comparing results costs time. As a solution, the

nonlinear methods ’lagged mutual information’ and ’transfer entropy’ can be considered techniques605

to select variables. After all, the attributes are applied in the nonlinear part of the prediction scheme.

Consequently, more variables might be found to increase the prediction skill.

Even though the currently applied network measures showed interesting properties, different CN

construction methods can still be interesting to apply. The Pearson correlation is a simple, effective610

method to define links between nodes. However, different properties of CNs could be found, when

using mutual information instead. Moreover, the effect of spatial distance between nodes can be in-

vestigated and corrected for (Berezin et al., 2012).

Besides, we have limited ourselves to networks within the Pacific area itself. As ENSO is an impor-

tant mode in the whole climate system, the area used for CN construction might as well be extended.615

More specifically, it can be interesting to include the Indian Ocean in the CN construction. Evidence

is found that a cold SST in the West of the Indian Ocean is related to a WWB a few months later

(Wieners et al., 2016). This could result in a variable related to WWBs, but increasing the lead com-

pared to PC2, which is comparable to c2 increasing the lead compared of the WWV.

620

Using ARIMA as simple, yet effective statistical method to apply in the first step of the scheme,

the hybrid model shows promising results. However, the exact reason how this model works, re-

mains a topic of investigation. The ARIMA prediction could be related to the linear wave dynamics.

It can be interesting to replace the ARIMA part of the scheme, by a dynamical model accounting for

these linear wave dynamics. For the same reason Vector Autoregression (VAR) can be used instead625

of ARIMA. Being a multivariate generalization of an autoregressive model, this can determine the

linear effect of other variables on ENSO. The moving average part is not implemented anymore in

this case.

Next to investigation of the exact reason the hybrid model works, some adaptations could still im-

prove the prediction scheme. For example, it is assumed the linear and nonlinear part of the model630

are additive (see equation 17). This is not necessarily the case for the real system (Khashei and Bi-

jari, 2011). Besides, the current model does not take into account possible nonlinear effects from the

history, since the ANN describes a nonlinear function which does not depend on the history.

Moreover, a simple ANN structure is chosen in the hybrid model if possible, to reduce the risk of

overfitting. However, the ANN could be replaced by a support vector machine (SVM) (Pai and Lin,635

2005). In contrast to the backward propagating algorithm of the ANN, the optimization scheme of

a SVM does not only search for an optimal solution in terms of least squares minimization. It also

searches a solution that is simple.

640
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Appendix

Table 2. List of frequently used mathematical symbols

A Adjacency matrix (section 2.2.1)

c2 Amount of clusters of size two in the thermocline network (section 3.2)

cv Local cross clustering (section 2.2.2)

Cv Global cross clustering between SST and wind network (section 3.1.2)

di Degree of a node i in a network (section 2.2.2)

∆ Variable showing a percolation transition (equation 12)

h Thermocline depth

λ2 Algebraic connectivity (section 3.1.5)

µ Coupling strength between the ocean and atmosphere (equation 5)

PC2 Second principle component of the residual of the wind stress (section 3.2)

NRMSE(yA,yB) Normalized Root Mean Squared Error between predictor yA and predictant yB (equation 24)

R(i, j) Pearson correlation (equation 7)

Rτ (p,q) Cross-correlation (equation 21)

Sd Skewness of the degree distribution of the SST network (section 3.1.1)

τx Zonal wind stress in the Zebiak Cane model (equation 3)

Wij Weight between two nodes i, j in a network (equation 9)
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