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Abstract

Utilizing models in software engineering is gaining popularity and there is an in-
creasing need to generate faster. There are many approaches available to fulfill
this need by leveraging the Atlas Transformation Language (ATL) model trans-
formation language and its underlying platform to improve the performance of
a generator. However, these approaches are specific for declarative transforma-
tion languages, like ATL. In this thesis we do a knowledge analysis of several
such approaches because of the good availability. These are ATL on MapReduce,
multi-threaded ATL, live transformations and lazy transformations. All of these
approaches rely on model element traceability which is why traceability approaches
are also analyzed. Our case study organization developed a generator where the
model transformation are programmed in a general-purpose language. This limits
the applicability of the available approaches in literature which is why a more
generic approach is researched that improves the performance of model transfor-
mations. A reference architecture is proposed with corresponding documentation.
This documentation describes important design decisions, required protocols and
practical issues that must be taken into account or addressed when developing
a generator aimed at faster model transformation. These design decisions and
processes result from the performed case study where we implement approaches
from the knowledge analysis. First, traceability is implement followed by partial
model transformation that use the insights gathered from traceability. Both are
prerequisites from parallel and incremental model transformation which are com-
mon approaches to reduce the time needed to finish a task. Finally, an experiment
is performed with parallel model transformation which shows a performance im-
provement of 2.5 to 3.5 times.

Keywords: Model-Driven Development, improve transformation performance,
traceability, partial generation, parallel generation, incremental generation
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1 Introduction

Researchers are constantly increasing the abstraction level at which software is
engineered. Sendall and Kozaczynski (2003) state that this is one of the best
ways to reduce complexity in software. Model-Driven Development (MDD) is a
software development method that uses abstractions in the form of models as main
development artifact (Hailpern and Tarr, 2006). Large parts of the software, if
not all, is generated from models. They define MDD as: “A software engineering
approach consisting of the application of models and model technologies to raise
the level of abstraction at which developers create and evolve software, with the
goal of both simplifying (making easier) and formalizing (standardizing, so that
automation is possible) the various activities and tasks that comprise the software
life cycle”. Supporting tools, such as modeling environments and IDEs exist that
assist the modeler and developer, respectively. Additional advantages of MDD are
increased code quality, maintainability, and productivity which are achieved as a
result of automation (Staron et al., 1994; Trask et al., 2006; Weigert and Weil,
2006). Moreover, Software Producing Organizations (SPOs) may offer end-user
variability to allow users to model the environment for their needs (Kabbedijk
et al., 2012; Brown, 2004). Changes are applied to the application by adjusting
the corresponding model and then by regenerating and redeploying. This flow
presents a problem in terms of waiting time when not handled efficiency.

1.1 Problem Statement

Utilizing models in software engineering is gaining popularity and there is an in-
creasing need to generate faster, since end-users want fast responding applications
(Hussmann et al., 2011). However, organization have difficulties achieving this.
Lussenburg et al. (2010) mention that industrial validation of available literature
on MDD is scarce and can thus only help organization marginally. Moreover,
there is currently a lack of any scientific documentation that presents informa-
tion to create an optimized generator in a structured way. Such an artifact could
greatly help MDD adopting organizations in building high performing generators.
There is literature available on declaratively model transformations such as ATL
(Benelallam et al., 2015b; Tisi et al., 2013). However, there is only very little
literature available on generators built in a general-purpose language in combina-
tion with reducing generation time. The case study organization encountered this
issue in their quest in reducing the generation time.

The current situation of the case organization is illustrated in Figure 1 and
described in detail in Section 2.2. This figure shows the execution flow of cre-
ating an application given an input model. Executing this flow typically results
in unnecessary waiting time for end-users since all transformation are executed
sequentially. The total generation time may take minutes up to hours (Varró,
2015) which negatively influences the user experience (Bergmann, G., Horváth,
Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., & Ökrös, 2010). For SPOs it is
therefore crucial to improve this process to reduce the time required to create the
initial application. This initial generation scenario is the first identified problem.
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1.2 Research Questions
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Figure 1: Generator architecture of the case study organization. The arrows show
the data flow between two stages. The transformation pipeline itself is not parallel
but sequential.

Furthermore, SPOs may offer end-user variability where the end-user manages
the model and can thus make modifications at any time. Therefore, the end-user
determines the moment when a regeneration of the model is trigged. The end-user
would normally choose to directly trigger a regeneration after a model modification
to apply the changes. This situation is opposed to when the organization that
build the generator is in control of the model and can choose its own time slot to
upgrade the applications.

Subsequent model generations form a second common use case which is called
incremental generation. Selic (2003) argues that incremental refinement is very
useful since it is a process that is executed far more frequent than a full generation.
An implicit issue with large organizations and MDD is the high capacity of hard-
ware resources needed for generating the applications. In case only a small portion
of the model is modified there are still many resources needed when the full model
is generated. This also means that a larger amount of hardware resources must be
available to handle peak moments to ensure high responsiveness. Cloud-scaling
cannot provide a solution because of the overhead of spawning additional servers.
This issue can also be solved by using incremental model transformation.

Problem statement summarized:

Current MDD methods that rely on imperative transformation
algorithms do not perform well on large input models. Conse-
quently, the perceived usability and adoption of MDD on large size
applications is decreased.

1.2 Research Questions

The subject for our research is the imperatively programmed generator provided
by the case study organization. The goal is to improve the performance of model
transformations. To solve the problems as defined in the problem statement the
following research question is defined:

RQ How can the performance of imperative model
transformations be improved?

7



1.3 Scientific contribution

The following sub research questions (SRQ) are designed to answer the main
research question.

SRQ 1 What is the current state of methods that reduce model trans-
formation time in Model-Driven Development?

SRQ2 How is insight gained in the model transformations in a
Model-Driven Development environment?

SRQ 3 How can these insights be utilized to improve the model trans-
formation performance in a Model-Driven Development en-
vironment?

SRQ 4 Does the utilization of the insights lead to an improved per-
formance?

1.3 Scientific contribution

This research provides several scientific contributions. We analyze and validate
existing literature on improving the model transformation performance and how
generic the researched techniques are. Literature is validated by researching the
feasibility of implementing the techniques. Finally, this thesis presents an artifact
as a structured document that contains a reference architecture that is designed
to improve the model transformation performance. The reference architecture
is based on observations and above all suggestions gathered during the research.
Additionally, the artifact Moreover, this artifact is a first attempt for creating such
a structured document which is in future work to be extended with observation
and suggestions from other case studies.

1.4 Thesis Overview

The remainder of this thesis is structured as follows. First, Chapter 2 describe
the research approach used and the research context. Then in Chapter 3 describes
related work and current state analysis.. Chapter 4 and 5 research traceability and
partial generation, respectively, as prerequisites for both incremental and parallel
generation techniques. Afterwards, partial generation and traceability techniques
are used to research incremental and parallel generation in Chapter 6. The fol-
lowing section combines all findings in Chapter 7 where a reference architecture is
presented and, finally, Chapter 9 provides the conclusions of this research.

8



2 Research Approach

This section describes the used research methodology and three research methods
that together form our research approach and the context in which the research
is performed. The research methods are a knowledge analysis, a single case study
and an experiment.

2.1 Design Science

Research in the Information Systems discipline is characterized by the behav-
ioral science and design science paradigms. Hevner et al. (2004) define the two
paradigms as follows:

Behavioral science addresses research through the development and justifica-
tion of theories that explain or predict phenomena related to the identified
business need.

Design science addresses research through the building and evaluation of arti-
facts designed to meet the identified business need.

Design science is more suitable for this thesis since the goal is to research and
implement model transformation methods to address a business need. Namely,
to reduce the generation time of a case study code generator used in a Model-
Driven Development setting. Figure 2 shows this thesis in the Information Systems
research framework of Hevner et al. (2004). The framework is composed of three
parts that together result in an addition to the scientific knowledge base. The
parts are environment, knowledge base and IS research. In the environment there
exists a business need of one or several organizations. The knowledge base is filled
with existing literature on foundations and methodologies within the context of the
problem and IS research. These foundations and methodologies together form the
applicable knowledge. Finally, the IS research project can be conducted based on
business needs and applicable knowledge. The IS research phase is a develop/build
and justify/evaluate cycle. The outcome should be applicable to the environment
and is meant to fill a gap in the current scientific knowledge.

2.2 Case Study Organization

This chapter describes the context in which this research takes place. The case
study company, AFAS Software, is introduced first including their product, Profit
Next. Finally, the AMUSE project is described of which this research is part of.

2.2.1 AFAS Software

AFAS is a Dutch vendor of ERP software. Their headquarters is located in Leus-
den in the Netherlands. Besides their office in Leusden, they have offices in Bel-
gium, Curaçao and Aruba. The privately held company currently employs over
350 people and annually generates e 100 million of revenue. AFAS offers a fully
integrated Enterprise Resource Planning (ERP) suite which is used daily by more
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2.2 Case Study Organization

Figure 2: The research of this thesis depicted on the Information System Research
Framework based on Hevner et al. (2004).

than 1.000.000 professional users of more than 10.000 customers. The ERP sys-
tem is offered as a Software-as-a-Service (SaaS), called AFAS Online, or it can be
hosted by the client on premise. Since 2011 AFAS Software also offers an online
expenditure book aimed at consumers, called AFAS Personal.

2.2.2 NEXT

The next version of AFAS’ ERP software is completely generated, cloud-based and
tailored for a particular enterprise, based on an ontological model of that enter-
prise. The ontological enterprise model will be expressive enough to fully describe
the real-world enterprise of virtually any customer. Furthermore, it will form the
main foundation for generating an entire software suite on a cloud infrastructure
platform of choice: AFAS NEXT is entirely platform- and database-independent.
AFAS NEXT will enable rapid model-driven application development and will
drastically increase customization flexibility for AFAS’ partners and customers.
All this is based on a software generation platform that is future proof for any
upcoming technologies. Since Profit Next can already provide a fully working,
not yet complete, code generator, AFAS is a great case study company for this
research.

10



2.2 Case Study Organization

2.2.3 Case Study Modeling Language

The case study organization is designing a declarative modeling language as part
of their model-driven software generation approach. This language is used for
modeling an enterprises consisting of people, products and processes. The lan-
guage is expressed in an Ontological Enterprise Model (OEM) and is explained by
Schunselaar et al. (2016). This is the first artifact in the MDD transformation flow
of the case organization. End users can use this language to tailor the application
to their business needs. The OEM language support several modeling constructs
that represent real-world phenomena. The five main supported constructs that rel-
evant for our research are Entity, Role, Event, Agreement and Work area. These
are explained below and depicted in Figure 3.

Figure 3: A simple OEM composed of the four NEXT language stereotypes

Entity An entity represents a distinguishable thing in the real world, such as an
individual, a location, or a good.

Role Roles are views on entities that describe how entities can manifest them-
selves. When used in events, roles represent the capacity in which entities
are involved in these events. As an example, an organization play the Role
of a customer.

Event Events are abstractions of transactions occurring within an enterprise.
Although at design-time an event is a static, timeless component, during
runtime an Event can be in a future or past phase.

Agreement An agreement represents a commitment between the modeled enter-
prise and an external party. Agreements may apply to a specific moment or
period in time.

A fifth modeling construct plays a large part in our research and that is the
Work area construct. There did not exist a definition for Work area and therefore
we created, together with the model designers, a definition that conforms to the
boundaries of our research.

Work area A collection of Events within an organization that have a direct re-
lation to one another, that can exist independently and have no or only
indirect relations to Events in other Work area.

2.2.4 Case Study Generator Architecture

In this section the case study MDD generator which is used during our research
is described. On a high level the generator architecture can be divided into three
parts. The first phase load and parse all source models. Then a model transfor-
mation phase is executed that is composed of many model transformations (MT).

11



2.2 Case Study Organization

At the end the output is written to disk. The source models themselves are a
collection of XML files and are modeled in the OEM language explained above.
In the parse phase an in-memory model representation is created that contains
model elements from the parsed source models. Moreover, the data structure is
enriched with additional model elements and some basic behavior that are de-
duced from original model elements. Furthermore, the in-memory model can be
traversed in the model transformation phase where more behavior is added to
model elements and gradually and sequentially transformed into more concrete
artifacts. The model transformations can be divided into three sections; query,
command and ui. These sections correspond to the CQRS pattern used for the
output application. The output created in the last phase are either DLL, JSON
or JavaScript files. This set of output files together form the entire application
and no modifications from the developer are required. Lastly, the entire gener-
ator is written in a general purpose language, namely C#. The case generator
architecture is shown in Figure 4.
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Figure 4: Generator architecture of the case study organization. The arrows show
the data flow between two stages. The transformation pipeline itself is not parallel
but sequential.

Rational of the Architecture

The architecture and modeling language described above are both customized for
the domain the case study organizations operates in. This section explains why
this architecture was chosen over standardized declarative or hybrid languages and
tools like ATL. The case organization desires a solutions that works for the entire
model transformation flow wheras ATL focus primarily on model-to-model trans-
formation and not model-to-text transformation. Moreover, a significant amount
of imperative programming is needed due to the complex nature of an ERP appli-
cation. Furthermore, strong training of employees and thorough technical knowl-
edge is required to turn the models into working applications with declarative or
hybrid approaches as stated by van Kooten (2016). Another drawback of using
third-party software in general is that developers have less or no control over ap-
plying bug-fixes to the underlying platform. This becomes especially an issue when
the platform is extensively used in an industry-setting. Additionally, developers
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2.3 Research Design

have less control over the performance and memory management in general since
this is managed by a compiler and virtual machine.

2.2.5 AMUSE

This research is part of the AMUSE (Adaptable Model-based and User-specific
Software Ecosystems) project. The AMUSE research project is an academic col-
laboration between Universiteit Utrecht, Vrije Universiteit Amsterdam, and AFAS
Software to address software composition, configuration, deployment and monitor-
ing challenges on heterogeneous cloud ecosystems through ontological enterprise
modeling.
At this moment, four PhD.’s and several master students are working as part
of the AMUSE project. More information about this project can be found at
https://www.amuse-project.org.

2.3 Research Design

We combined the Information Systems Research Framework by Hevner et al.
(2004) with the problem-solving cycle of Polya (2014) and this results in a re-
search design with five phases. These phases are problem statement description,
knowledge analysis, solution design, case study implementation and solution eval-
uation and are explained next. This design is depicted in Figure 5.

Knowledge 
Analysis

Solution Design

Case study 
implementation

Problem 
statement/

Solution 
evaluation

Knowledge
base

Solution

Evaluation

Problem 
description

Figure 5: Information system research framework of Hevner et al. (2004) combined
with the research cycle of Polya (2014).

2.3.1 Problem Statement

In this phase, a deep understanding of the problem is created. This is achieved by
doing an exploratory literature search, partially based on the business needs of the
case organization concerning the defined problem. This first search is conducted to
find out whether there is enough reference material to find one or more candidate
solutions. The exploratory literature study is done using snowballing. Scientific
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2.3 Research Design

literature is found by means of scientific search engines such as Google Scholar and
DBLP, a database aimed at publications in the computer science domain. The
deliverable of this phase is the Problem statement (Section 1.1) of this document.

2.3.2 Knowledge Analysis

The goal of the Knowledge analysis phase is to find a large collection of scientific
as well as non-scientific knowledge. Non-scientific knowledge such as blog posts
about incremental compilation and traceability in compilers. Moreover, existing
model transformation methods are discovered, described and analyzed. This lit-
erature study is performed by using the snowball method. Several such snowball
literature studies were performed for the different topics. Those topics are compil-
ers, model partitioning and distributed model transformation, and model element
traceability. Using this as a starting point new definitions and technologies are
discovered. These discoveries are then used to find new scientific literature in the
previously named search engines. The methods are described and analyzed in the
Related Work (Section 3) and can be used in the Solution Design phase.

2.3.3 Solution Design

This phase encompasses the design of one or more candidate solution by using
the information from the Knowledge analysis phase. Finding candidate solutions
is simplified by looking at the case study generator. This somewhat simplifies
the problem and context and make it more concrete and understandable. The
generator that will be used throughout the thesis is described in Section 2.2.4.
Furthermore, related literature of similar techniques and approaches of other do-
mains where code generation and model transformation is done are used to create
solutions from different aspects. At the end of this phase, one or more best fitting
candidate solutions are chosen for the problem defined in the Problem statement
phase.
For each of the found methods it is decided what parts of the method are in-
cluded in the case study. This depends, among others, on how clear the parts are
described and the properties they might rely on.

2.3.4 Case Study Implementation

The case study is composed of several smaller case studies where each research a
single approach. The approaches are chosen from the related work analysis pre-
sented in Section 3. Moreover, the topic selection depends on research performed
on the generator architecture which is explained in Section 2.2.4 to select a suit-
able a approach. For each research topic the best applicable approach is described
and justified and then implemented and validated. The implementation strictly
follows the presented technique by implementing all its features. The defined
research topics are traceability, partial -, parallel - and incremental model trans-
formation. The outputs of the validation step are captured in written observations
about any domain specifics, opportunities and limitations. Finally, an experiment
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2.3 Research Design

is performed with the implemented parallel model transformation approach to val-
idate whether an improved performance is achieved. The observations are written
in the format as described in Section 2.5.

Experiment

An experiment is performed with parallel model transformation by using the par-
tial generation implementation from Section 5. The hypothesis for this experiment
is that parallelism improves the model transformation performance for initial ap-
plication generation compared to sequential generation. To test this hypothesis
the total generation time of the baseline is compared to the parallel version. The
baseline is measured with the case generator without any modifications made for
our research and the pipeline is executed sequentially. Source models of different
sizes are used to measure how the generator behaves. This experiment leaves in-
cremental model transformation (Section 6.4) out of scope since a single work area
is the smallest granularity on which partial generation can currently be done.

Similar experiments were conducted by using the ATL and Map-Reduce in
Benelallam et al. (2015a) and Benelallam et al. (2015b) as described in Section 3.
Their approach shows a speed-up of up to 2.5 to 3 times and their results show
that larger models produce higher speed-ups. The speed-up is linear in the number
of computation nodes used but also shows that at a certain point it is no longer
effective to add more nodes. This is expected since many small partitions result
in a significant amount of overhead.

Parallel model generation is expected to add overhead (Benelallam et al.,
2015b) as a result of limited hardware resources since all parallel instances run
of the same machine. Adding multiple machines to divide the workload over is
a solution but additional overhead is introduced in the form of network latency
(Dean and Ghemawat, 2008). Overhead in the experiments can be approximated
by analyzing the timings of the pipeline from start to the parallel generation point.
Baseline timings can then for that phase be compared to hypothesis timings. Start-
ing and running multiple instances of the generator at the same time forms the
second part of the overhead. This would be the result of maximum CPU and/or
RAM utilization. Generating model elements that are needed in multiple partial
input models only have a small impact since there are only few duplicates. The
trade-off between a sequential generation versus a parallel generation could be-
come visible when the baseline and hypothesis timings are aggregated in a graph.
An important note here is that the input model is created in advance by hand so
no time or processing power is consumed for this process in the experiments.

Scope

The scope of the case study is limited to the generator only. Any piece of code
could be used to validate any of the found methods to improve performance. An
important note here is that only the concepts are validated and not the specific
implementation such as using ATL to define transformation rules. Moreover, local
optimizations that could improve performance are left outside of this scope. This
scope is chosen to make the validation feasible in the available time. For the time
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being, the case study company does not want to completely rewrite the generator
and committing to a different technology. Lastly, any steps needed for deploying
the generated application are also left out of scope.

2.3.5 Solution Evaluation

In this phase, the implemented approaches are evaluated as described in the Re-
liability paragraph. After that, the created framework as a result of the case
study is checked for generalizability. This entails looking for contextual elements
that are needed for a chosen technique. The goal of this comparison is to see
whether industry best practices are indeed generic enough to be applied any gen-
erator. Experiments are performed to evaluate the examined and implemented
techniques.

2.4 Research Plan

This research is both a descriptive and an exploratory research. It describes and
analyzes the current state of multiple topics related to improving the performance
of model transformations in SRQ 1. After the descriptive part we continue with
the exploratory part which we research in a single case study. We start by ex-
ploring two prerequisites of improving the performance by means of parallel and
incremental generation. These requirements are traceability and partial gener-
ation and answer SRQ 2 and SRQ3, respectively. We explore these topics by
implementing and thereby validating a researched approach as part of the case
study. After that, we can combine the implementations and results from SRQ 2
and 3 to explore parallel and incremental generation themselves in SRQ 4. Dur-
ing the case study observations are made about the approaches and opportunities
and limitations they bring with them. Finally, all research and observations are
combined into a reference architecture that answers the main research question.
Observations are complemented with solutions on how to overcome the observed
issue. The solution should be sufficiently generic to be applicable in other context
as well.

2.5 Artifact Composition

During the two case studies observations are made which are then complemented
in with suggestions in the Reference Architecture chapter (Section 7). This section
shows the structure of the observations. An observation itself is composed of a
unique identifier, title and description as shown next:

Observation X:
A summarized description of the observed issue.

The structure of an observation that is complemented with one ore more sug-
gestions is described below. For better understandability we also added the topic
this observation belongs to. The reason for this is that these suggestions are added
in the reference architecture section and not their corresponding case study sec-
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tion.

Solution(s) for Observation X
One or multiple suggestions that can be used to overcome
the observed issue. Each suggestion contains a justification
explaining why this is a good alternative.

2.6 Treats to Validity

Here the threats to validity are described of the related work analysis, case studies
and experiment.

2.6.1 Construct Validity

Whenever possible, existing definitions of measures are used in case they are avail-
able in literature. However, when no standardized definitions can be found similar
definitions are either extended to fit the current context or new definitions are pro-
vided with a proper rationale. Where possible definitions from multiple sources
are compared to make sure the definitions are really applicable for the measure-
ments and the most widely accepted definition is chosen. The main metric used
throughout the thesis is the total model transformation time that the generator
needs to execute the entire pipeline. The total time is calculated by the stopwatch
that is implemented as part of the generator. The generator should be the only
active process on the computer to ensure that two separate measures are not pol-
luted by other active processes. Furthermore, the resulting measures are gathered
from the same computer to eliminate hardware differences.

2.6.2 Internal Validity

In order to increase the internal validity, the implementations are clearly reported
as well as the data collection methods used. Moreover, insight into the data analy-
sis is given to make it reproducible for others to reviews the outcomes. The method
used to compare the different implementations is documented extensively. Repro-
ducibility is limited since the generator is completely custom built and closed-
source.

2.6.3 External Validity

A literature study by snowballing is performed to gather relevant approach to
improve the performance of model transformations. Therefore, it is possible that
no all available approaches were found. Any libraries used to aid implementation
will be open standards and open-source software to ease reproduction in a dif-
ferent context. The constructed framework should be abstract enough to make
them applicable in other organizations. All tools that follow from this research
will be made open-source and will be published on GitHub with proper documen-
tation. The main threat to validity is that the case study is only performed at
one company. A threat to generalizability our the experiment results is that the
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number of elements is specific per case company. For example, our numbers are
a lot lower compared to experiments conducted with ATL. The model element
count itself does not say anything about the generation time or overhead without
knowledge of the generator architecture. Moreover, the experiment is only con-
ducted on a single generator and the impact of the generator architecture cannot
be determined. Furthermore, models are created by hand which means that no
partial model calculation is performed as part of the experiment. This calculation
of course adds additional overhead to the parallel approach and is not accounted
for in this experiment. Lastly, the granularity of the partitions is restricted by
the partial generation implementation to a single work area per partition. A
more efficient partitioning might have more and smaller partitions and should be
researched further.

2.6.4 Reliability

Some reliability checks have to be done in order check the reliability of the out-
put data. Firstly, the case study protocol is provided and checked to enable
reproducibility of the results. Secondly, the implementation of different model
transformation approaches are reviewed to check whether the method is indeed
correctly implemented. No audit will be performed on the output of the modified
generator, since it is considered out of scope to do any type and behavior checking
on the resulting application. Therefore, it is unknown whether the output of the
modified generator is the same as the one from the original generator.
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3 Related work

This section provide related work on the topics like ATL, MDD approaches that
intent to improve model transformation performance and, lastly, approaches that
aim to gather traceability information in a MDD setting. Each topic is comple-
mented with an analysis of current state of that topic and these analyses combined
provide an answer to SRQ 1: What is the current state of methods that reduce
model transformation time in Model-Driven Development?

3.1 ATLAS Transformation Language

ATLAS transformation language (ATL) is a rule-base language designed for model
transformations in the field of Model-Driven Development, Tisi et al. (2013), and
is widely used in the MDD domain. ATL conforms to specifications defined by
the MetaObject Facility (MOF) Object Management Group (OMG). ATL is a hy-
brid that supports both declarative as well as imperative constructs. Declarative
transformation definitions are preferred to raise the level of abstraction, however,
imperative definitions are sometimes needed in complex cases. The declarative
language is expressed in Object Constraint Language (OCL) designed to work
with UML models. Furthermore, ATL transformations are unidirectional and can
only work with read-only input models and produce write-only output models as
presented by Jouault et al. (2006). Moreover, the ATL transformation definitions
are processed by a transformation engine where input models and transformation
rules are compiled to byte-code which is executed by the ATL Virtual Machine
(VM). The ATL VM acts as the underlying engine that execute the model trans-
formations and resolve variables to their concrete value.

Analysis

The current state of ATL and its tools already allows solving nontrivial problems
as stated by Jouault et al. (2006). This is argued by the interest that the fast
growing ATL user community shows and the increase in implementations in ATL.
ATL is based on standards defined by OMG and conforms to its specifications
which make it suitable for industry to built further on. ATL focuses primarily
on model-to-model transformations which we consider to be a limitation. This
means that it can only be applied to a limited number of transformation scenarios.
For example, directly using ATL in our case study organization would not be
suitable because the model-to-model and model-to-code transformation have to
be addressed by separate transformation languages. Moreover, ATL itself does
not support incremental model transformation. On the other hand, ATL does
have strong parallelization properties as a result of its transformation formalisms
and automatically create traceability at run-time.
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3.2 Divide and Conquer Approach

3.2.1 Distributed Model Transformation

Distributed model transformation (DMT) is defined as the process of distributing
model transformation tasks over computer clusters. Each cluster contain multiple
nodes that are in charge of generating partial outputs that are later merged to
obtain the full result as explained by Clasen et al. (2012). DMT is used to over-
come the memory limits and long execution times when dealing with very large
models of several gigabytes in size. DMT introduce topics of concurrency, task
synchronization and shared data access which are considered complex. However,
model transformation languages with a high level of abstraction can mitigate these
issues in the form of implicit distributed execution by using declarative language
constructs. Such Domain Specific Languages have strong parallelization properties
that also handle the introduced complexity as stated by Benelallam et al. (2015b).

ATL-MapReduce

Benelallam et al. (2015b) propose an approach to automatically distribute the ex-
ecution of ATL model transformations on top of MapReduce. Source models are
partitioned into a set of partial models where the developer can control partition-
ing by adjusting parameters. A master node orchestrates what computing nodes
are used in the model transformation process itself (map phase). Each node reads
one or more partial model created before and execute an assigned map-function.
Intermediate transformation results are stored locally on the node and notifies
the master node that it completed its task. Then the master node search for idle
nodes that can be used for the reduce phase and are assigned a reduce-function.
Moreover, the location of the intermediate results that should be processes further
are passed to the reduce nodes together with collected trace information in the
map nodes. After that, the reduce nodes execute their reduce-function and use
the trace information to resolve variables to their actual values and finally yield a
result. An example of this reduce-function is a function that merges all interme-
diate result regarding the same source element of intermediate object instance or
type.
Furthermore, the authors argue that implicit data distribution is complex when
model transformations may interact with each other. Language properties for
ATL are defined to reduce the amount and types of interaction between model
transformations and are listed below. These properties are not necessarily spe-
cific for ATL or declarative model transformation languages but any more easily
enforced for those type of languages as they are more formal. Additionally, these
properties enable the decoupling of model transformation themselves and therefore
independent model transformation execution.

Locality The model transformation that creates an element must also initialize
its properties.

Property assignment A single-valued property created in a target model is only
updated in the transformation execution. A multi-valued property can only
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be modified by adding new values, but existing values cannot be deleted.

Non-recursive rule application (read-only output model) Target elements
are not subject to further matches and can thus not be used as intermediate
elements for further processing.

Forbidden target navigation Model transformations cannot navigate the tar-
get model to avoid assumptions on the rule execution order.

Analysis

Properties of ATL, like formalizations, are exploited to efficiently transform an
input by using a cluster of computing nodes. By adapting the ATL language to
fit the MapReduce distributed programming model a proven technology can be
leveraged to significantly improve the model transformation performance for large
and complex models. The proposed approach results in a performance improve-
ment of up to 2.5 to 3 times on average. Not all ATL constructs are included and
supported in the approach. The proposed technique does only a straightforward
partitioning by equally dividing the model elements of the available map nodes.
The model transformation structure is not taken into account for the partition-
ing even though dependencies exist to elements processed by other map nodes.
Nothing is said about more complex partitioning scenarios and therefore we can-
not apply this partitioning algorithm as part of our case study. Moreover, the
approach is quite novel and is for now only applicable to fully declarative trans-
formation languages.

3.2.2 Parallel Model Transformation

Tisi et al. (2013) research the scalability of model manipulation tools by using
parallel execution. They mention that it is complex to implement parallel model
transformation in a general-purpose language even though parallelism is a tradi-
tional way of scaling computations. The reason for this is the lack formalizations.
Furthermore, they argue that ATL and the like have strong parallelization prop-
erties which is supported in the literature mentioned before. Furthermore, the
default ATL compiler and virtual machine are adapted to support multi-threaded
processing. The authors include task parallelism and data parallelism into their
research as two common approaches to scale model transformations, both are ex-
plained next.

Task Parallelism

Each task processes the same and complete data set, but only executes a distinct
set of the operations on that data. This approach works well in the case that no
dependencies are introduced between tasks as a result of processing the same data
set. These dependencies are introduced when tasks rely on the output created by
other tasks to complete their computations as stated by Dongarra and Sorensen
(1987). This concept is of course not specific for languages like ATL but also for
imperative languages as is demonstrated in Subhlok et al. (1993). Transformation
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rules written in ATL are highly independent from other rules which makes this
approach suitable for implementing parallelism.

Data Parallelism

Data parallelism is the opposite approach in which the model is partitioned and
distributed to the tasks. All the tasks execute the same set of operations on the
assigned model partition. The model partitioning thereby determines how the
transformation is distributed for parallel execution as explained by Zima et al.
(1988). A main goal of this approach is to reduce cross-task interaction by re-
ducing or eliminating the access of shared model elements. This is especially an
interesting approach in a distributed setting where large models are processed
and the communication cost between processing unit become high. This approach
correspond with the ATL with MapReduce approach in the previous paragraph.

Analysis

The researched approach make use of parallelization which is a traditional way of
scaling computational tasks. The authors argue that it is complex to do doing
parallel model transformation in a general-purpose language and only focus on a
domain specific language. This is the first approach we encountered that make
use of multi-threading and has as benefit that there is no network latency intro-
duced. Again, this approach leverage ATL properties to make parallelization more
straightforward such as limited or no rule interdependency. The authors do pro-
vide a detailed description on how to deal with synchronization issues introduced
by concurrent data access in parallel transformations. Moreover, the prerequi-
sites of using ATL in combination with multi-threaded computing are explained
together with functions and artifacts that are introduced. Finally, an extensive
experiment was presented where a speed-up of over 2.5 was achieved for large
models.

3.3 Live Transformations

Jouault and Tisi (2011) present an incremental model transformation approach for
ATL. The output models are immediately updated when a change event originat-
ing from a source model is raised. This concept is called a live transformation and
the presented approach builds further on existing work on live transformations. A
requirement for this approach is that both source and target models are already
loaded into memory.
The counterpart of this approach is called an offline incremental transformation
and does not have both sets of model in memory. The source and target model
are loaded right before the target model is updated. The updated source model
is compared with the previous version of the model.

This incremental approach relies on two mechanisms from the ATL VM. First,
while evaluating the transformations dependency information is collected. This is
used to determine what transformation need to be triggered to update the target.
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The second mechanism is the execution of model transformations. By default all
model transformation are executed. However, with the dependency information
collected a precise order and subset can be calculated in which transformation are
executed.

Analysis

An efficient model transformation approach is proposed that is designed to incre-
mentally propagate small changes in the source to the corresponding target model.
The authors elaborate the modifications made to the ATL virtual machine in or-
der to handle live transformation. Moreover, a dependency tracking approach is
presented which is specific OCL expressions and the authors mentioned that their
approach is not optimal. They name an alternative method for dependency track-
ing as future work. We consider this approach novel since advanced constructs
are excluded from the research. The most important one for us are the imperative
statements and is excluded because the exact impact of a change would be hard
to determine.

3.4 Lazy Transformations

Tisi et al. (2011) argue that there is an increase in MDD adoption in industry
contexts. With this increase it becomes clear that scalability is limited in existing
MDD tools that are designed for the initial model transformation only. Moreover,
these tools have performance issues when used on very large models. The authors
present a lazy-evaluation model transformation approach for ATL. Furthermore,
a prototype implementation is described by adjusting the standard ATL VM. In
this lazy approach target elements are created at the moment when and if they
are actually needed. Additionally, the authors mention that lazy evaluation is a
classical method to improve performance but only under specific circumstances.
One such circumstance is when only a small part of the large model is needed in
one or more model transformations. The presented approach use lazy evaluation
for two phases. First, the model is navigated in a lazy way and second, the target
model is lazily generated. The flow of the lazy approach in combination with
model transformation is depicted in Figure 6.

Figure 6: Lazy model transformation flow.

3.4.1 Lazy Model Generation

A target model element is created on-demand when the consumer application need
that specific element. The element generation strategy is independent from the
model navigation strategy. This is in contrast with standard ATL where the souce

23



3.5 Traceability in Model-Driven Development

model determine the execution of model transformations. Because of deviation of
the standard ATL strategy some features are needed to support lazy generation:

• Request events to the target model have to be tracked. By tracking these
events a specific transformation is triggered and executed to create the ele-
ment.

• The model transformations must be able to create elements with the lowest
granularity as possible like a single element or property. A low granular-
ity maximizes the benefits of lazy transformation by only generating little
outputs.

• Keep track of completed model transformations to avoid duplicate transfor-
mations. At the same time trace links between elements in the target model
and their corresponding sources are created and stored. These traces can be
used analyze whether derived elements are already transformed or not.

3.4.2 Lazy Model Navigation

By using a lazy model navigation strategy the access to model element is delayed
and also reduce the number of accessed model elements. By using a lazy strategy
the the model navigation performance is improved makes it feasible to process
very large input either as a single model are by means of streaming. The model
navigation strategy is used on the source as well as the target model, since the
consumer application navigates the target model to start the transformation chain.

Analysis

A lazy model transformation technique is presented that enable model transfor-
mations on infinite data sets. An almost complete set of declarative ATL con-
structs are support by the approach. The authors mention options for future
work where the performance it improved further by storing intermediate values to
avoid recomputation. Moreover, a lazy OCL evaluator is needed to improve large
model navigation. Furthermore, incrementality by forward change propagation is
not supported at this time and the interaction between incrementality and lazy
transformation is left as future work. Lastly, model transformations cannot be
composed as a pipeline with this approach which is also kept as future work.

3.5 Traceability in Model-Driven Development

Software organizations use models to communicate with different stakeholders but
also to manage complexity. Each of the models can be created in a different nota-
tion and these models are only connected with few relations. Multiple definitions
of traceability or traceability links were found and the best suiting definition for
our research is from Czarnecki and Helsen (2003): Traceability is defined as links
that are created by a transformation between source and target elements used in
the transformation. Relations between models are usually implicit and together
with weak model integration in general introduce inconsistencies between models
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(Aizenbud-Reshef et al., 2006). An example of such implicit relations are depen-
dencies between model elements or even model transformations. Furthermore,
they argue that it is necessary that traces must be generated automatically. Inos-
troza et al. (2014) state that some traceability research has already been performed
for transformation systems like ATL, Epsilon and MOF. Huchard et al. (2006) de-
fine a trace as an ordered set of traceability links between multiple source and
target models. Traceability links can be used when model transformations are
done out-of-place. This means that separate source and target models exist and a
concept is needed to keep both of theses models consistent. All traces combined
form a traceability graph and (Czarnecki and Helsen, 2003) and Olsen and Oldevik
(2007) defined traceability usage scenario in MDD that use this graph. Some of
these scenarios are listed below:

Change impact analysis Analyze the impact of a change to a transformation
artifact on other artifacts. Other artifacts that use the contents of a changed
artifacts are possible affected depending on the type of change.

Coverage analysis Analyze whether all elements in the source model are used
by at least one transformation. If an element is not used in a transformation
it is either not needed in the model or a new or existing transformation has
to be extend to use that model element.

Orphan analysis Output artifacts may still exist after the corresponding model
element is deleted from the source model. In this case there exist no trace
to the source model element and as a consequence the orphan artifact must
be removed. This can b achieved by regenerating the source model to keep
the model, the output and the traces consistent.

Traceability can help in these scenarios since model transformation can be very
complex. MDD generator like in ATL and the case study generator are composed
of multiple successive model transformations and it is therefore difficult for de-
velopers to recognize the flow of a single element and where it ends up in the
output. To gather such traces a system is needed that collects trace information
on the behavior of model transformations while they are executed. This concept
is called a traceability framework in literature and such a framework is proposed
by Huchard et al. (2006). In their research a metamodel for trace information is
provided and explained how to collect trace information. They use Kermeta to
write model transformations which has both object-oriented and model-oriented
constructs and use imperative structures. Moreover, they note that it is difficult
to create traces for these model transformations because of the imperative syn-
tax of the Kermeta language. The proposed approach conforms to three defined
features:

1. Generic traceability items.
2. Trace serialization.
3. Simple transformation from traces to a dot graph for visualization.

Furthermore, the following definitions are provided:
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• Object An Object is the most general element and forms the base of all
other elements in the Kermeta language.

• Link A Link references one source and one target Object.
• Step A Step contains the traces of a single transformation and are composed

of multiple Link.
• Trace A transformation trace is a bipartite graph. The nodes are partitioned

into two categories: source nodes and target nodes. Step can be chained as
an ordered set to from a transformation chain trace.

Jouault (2005) also research how traceability information can be collected by
adding pieces of code to a program. However, no specifics on the structure of
the traceability information is provided.

In the MDD approach it possible to create trace information explicitly or im-
plicitly in the transformation specification (Olsen and Oldevik, 2007). Implicit
means that some underlying platform creates the traceability information auto-
matically during the execution of the transformation. Explicitly adding trace code
can be done in two ways. First, pieces of trace code have to be added into the
transformations themselves. Second, by using a higher order transformation that
analyses the model of the transformations. It is important that traces are created
for all transformations since this is required to provide end-to-end traceability.
The impact of a change for example can only be reliable determined when full
knowledge of traces is available. Moreover, the authors provide an alternative
traceability to the one presented previously but is specific to model-to-text trans-
formations in the MOFScript tool.

Analysis

The work of Huchard et al. (2006) present a simple yet complete traceability
framework. A language independent trace metamodel is presented together with
used definitions and features added to enable traceability. As the authors state it
is necessary to insert trace generation code and the paper provide complete code
examples of both the use in a transformation and classes and methods needed for
the creation and collection. Because of the imperative transformation language
used and complete code snippets we can use this approach in our case study.
The traceability approach described by Olsen and Oldevik (2007) in only briefly
elaborated since the authors focus on a range of traceability scenarios. The paper
itself present some code, trace scenario examples and a traceability analysis pro-
totype but all contain specifics of the used MOFScript tool which greatly limits
generalizability. Since trace generation is implicit in MOFScript which means that
all references and transformations can be traces, however, no real explanation is
provided on how to collect trace information. Therefore it is not applicable in our
case study.
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This section researches traceability in MDD in order to answer SRQ 2: How is
insight gained in the model transformations in a Model-Driven Development envi-
ronment? Traceability is the process where traces or dependencies are collected
from model transformations and the model itself. All collected dependencies to-
gether form a graph which provides insights that is needed to partition source
models and to determine what target elements need to be updated given a source
model change. We first describe the case study method and traceability technique
used for the case study. Then the case study itself is explained.

4.1 Huchards Traceability Framework Implementation

In Section 3 several traceability techniques are identified. For this case study
the approach proposed by Huchard et al. (2006) is selected as is referred to as
Huchards traceability framework. This approach is considered best applicable
because of the language independence. Before actually implementing this frame-
work model transformations are analyzed like the structure and references to other
transformations.
After the initialization phase Huchards framework can be implemented by build
the logic to create and store traces. The main logic is place inside a helper class
that contains a repository that stores created traces and a method for creating
the trace itself. We used a alternative setup for the traces and used different
definitions:

• Trace model. A Trace model is a directed graph and contains all created
traces. This corresponds to the Trace definition of Huchard et al. (2006).

• Trace. A Trace is an object with references to one source TraceElement and
1 or more target TraceElement. This definition resemble the Link definition
defined above.

• TraceElement. A TraceElement is a simple object in the helper class and
is created by converting a C# object. This element has an identifier property
and a object type property. This corresponds to the Object definition. The
create trace method in the helper class converts the source object in a model
transformation to a TraceElement. The type property is used solely in the
visualization explained later.

We omitted the Step concept because for now we have enough information to
construct the Trace model and do not need to know in what model transforma-
tion which trace was created. Moreover, the object type globally indicates what
transformation was performed or otherwise the TraceElement can be extended
to add more transformation specific details. We deviated from the structure and
definitions defined Huchards framework to make the trace model more compact.
We use the source element as repository key and must therefore be unique, the
corresponding values are string identifiers and are thus lightweight. Furthermore,
we do not serialize the entire Object where we argue that this is not necessary
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since object identifiers should be sufficient for analysis. Moreover, object serial-
ization result in circular dependencies in our case generator.

For the trace creation itself code must be added to the model transformation
code and this process is called explicit tracing. Since model transformations are
intertwined throughout the code it can be difficult to recognize a single atomic
model transformation. Therefore, it is difficult to choose the locations in the code
where trace generating code should be placed. Furthermore, while adding trace
generating code we noticed that it soon became arbitrary where this code was
added. The approach we followed was to track the flow of a single source element
through the transformation pipeline. At the point where the element is converted
to another object type(s) we added trace generating code. In literature we did not
came across a structured method on how to implement trace generating code into
the model transformation code. This is especially an issue when trace code is added
into an existing generator, otherwise the trace code could directly be added while
programming the model transformation logic. In both implementation scenarios
it would still be an issue to determine what object-to-object transformations must
be complemented with traceability code. Secondly, the approach requires signifi-
cant work to trace all relevant model transformation which becomes increasingly
complex for larger generators with over 200.000 lines of code. This observation is
summarized in Observation 1.

Observation 1: Adding trace generating code to a MDD
generator can be complex and time consuming. Transforma-
tions written in an imperative languages can be complex that
also make it difficult to correctly add trace code. Declarative
transformations are mostly one-to-one transformations which
are straightforward to trace and can usually be handled by
the underlying platform.

After having implemented trace generating code between the model transforma-
tion code it is important to keep the trace code up-to-date (Observation 2).
Model transformation can be adapted over time and the corresponding trace gen-
erating code must be kept up-to-date. Such an adaption can be a straightforward
deletion or can be an operation where some logic is changed regarding the model
transformation where the trace object themselves keep their meaning. This pro-
cess becomes more complex when the functional meaning of a traced object is
altered. The developer would in this case have to determine whether the trace is
still needed and/or whether additional traces have to be created in case a trace
chain is interrupted.
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Observation 2: It is important to keep the trace code up-
to-date to ensure that a trace model can be created and that
captures all traces between model transformations. The trace
model is considered incorrect when it does not represent all
traces that should exist given the source model and model
transformation and can in that case not reliably be used for
partial generation.

For efficiency purposes we only want to gather useful trace information (Ob-
servation 3). We noticed that it is hard as a developer to determine which
transformations have to be traced. There are situations where transformations do
not provide additional information regarding traceability. This might be the case
for a chain of one-to-one model transformation where no new complex dependen-
cies are introduced and the existing dependencies can be induced.

Observation 3: Eliminate redundant traces in the trace
model. For the sake of fast generation times it is useful to
not trace all model transformation when this is not necessary.

However, it can be difficult to recognize this type of transformation since exten-
sive knowledge is needed about the entire flow of the generator. This becomes
increasingly complex as the size of the MDD generator grows. Nonetheless, de-
velopers can be aided in this process by a visualization of the trace model which
makes it easier to recognize redundant traces. Moreover, by analyzing the trace
model a program can hint redundant trace links. A precondition of using these
supporting tools is that a complete trace model must be created. This is needed
since automatic analysis is only reliable when full knowledge of the domain is
available, otherwise invalid conclusion could be made. This complete trace model
can then based on analysis be slimmed down to reduce the amount of collected
traces. However, this would lead to an impasse when model transformation in
the generator are added, edited or deleted. These operation would likely alter the
trace model and again the complete trace model is needed to determine whether
the trace model is affected and what trace an safely be removed from the model.

Lastly, we store the trace model in a file to make it reusable during model evo-
lution. Therefore, we researched what format can efficiently store the trace model
since no literature could be found on which format can best be used to store the
trace model in and resulted in Observation 4. XMI is de facto standard in
declarative model transformation such as in ATL where all models are expressed
in XMI. In the case study we serialized the in-memory trace model to JSON since
the available XML serializer could not serialize our complex data structure. We
argue that JSON is a good format to use since it is more compact than XML and
might be faster to serialize and deserialize compared to XML. These properties
should make it more suitable format to make sure that trace model export and
import do not slow the pipeline more than it should.
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4.2 Case Study Evaluation

Observation 4: No literature is available on what format
is best used to store the trace model in. Several common
format, like XMI and JSON, can be used and each provide
benefits as well as limitations. XMI is more expressive where
JSON would normally yield a smaller file size. We consider
this an important matter since reading and writing an addi-
tional model next to the source models themselves imply also
additional computation time.

4.2 Case Study Evaluation

A final statement on the observations of this case study is that explicit tracing
is complex and little guidance is available. More specifically, there is only lit-
tle literature or industry best practices available to tackle the observed issues.
Furthermore, implementing trace generating code in a generator with no or lit-
tle formal structure, like model transformations programmed in a general-purpose
language, is difficult. This research topic is often omitted in existing literature
because of this complexity.
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5 Partial Generation

This section researches partial model generation in order to answer SRQ 3: How
can these insights be utilized to improve the model transformation performance in
a Model-Driven Development environment?. First, we explain why partial gener-
ation is needed as a brief recap. Secondly, this section describes the research on
model partitioning in Section 5.3 that utilize the gained insights from the traceabil-
ity section. Lastly, a partial generation technique from literature is implemented
and researched whether the technique is generalizable to other contexts in Section
5.4.

5.1 Partial Generation Rationale

Partial generation can be used when only a partition of a whole model must
be generated. Partial generation is used in areas where very large models must
be processed efficiently. Partial generation is just like traceability a prerequisite
for both incremental and parallel generation as explained in the Introduction.
Multiple partial generation instances can be executed in parallel to reduce the
total time needed to complete the transformation.

5.2 Data Parallelism Justification

Parallel generation (Tisi et al., 2013) or distributed model transformation (Benelal-
lam et al., 2015a) can be achieved in multiple ways. The first approach is achieved
by passing a partial model to each generator instance, also called a node. No
changes to the generator itself are made to process input models in parallel and
this approach is called data parallelism. However, there is some application logic
needed to partition the model(s) which is not elaborated in detail in the literature
presented earlier. The second approach distributes the transformation logic over
multiple nodes by statically analyzing the model and transformation rules. Each
node works on the entire source model but only the subset of transformations
assigned to the node process model elements. This is called task parallelism and
both data and tasks parallelism are presented in Section 3.2.2.
Additionally, Distributed Model Transformation, described in Section 3.2.1, is a
technique that leverage the computing capacity of one or more clusters in the
cloud. Moreover, the approach is fully dependent on transformations written in
ATL.

Based on the insights gathered (Section 4) on the case generator architecture
and the literature analysis the data parallelism approach is selected for im-
plementing in the case study. The rationale behind this decision was that no
modifications to the generator itself are necessary. Moreover, task parallelism is
not feasible for our case generator. The entire generation is built in an imperative
language with hundreds of thousands of lines of code with no clear separation be-
tween different transformations. It was not always clear where one transformation
ends and another one starts. Some transformations are merged into one and this

31



5.3 Model Partitioning Implementation

tight interconnection makes it unfeasible to try and parallelize model transforma-
tion to separate tasks as in task parallelism. Furthermore, it is not feasible to
research the Distributed Model Transformation approach further since we would
have to write the case generator to ATL.

5.3 Model Partitioning Implementation

Model partitioning, which is needed for data parallelism, is not straightforward.
The reason for this is that static analysis of the transformation is very complex for
imperatively written transformations. Benelallam et al. (2016) supports this claim
by outlining that model partitioning is very challenging because of the many de-
pendencies between model elements combined with complex transformation rules.
Moreover, literature is provided on model partitioning for ATL transformations
and is described in Section 3. However, there is insufficient applicable literature
on the topic of model partitioning for non-declarative transformations. Further-
more, they both focus on the domain of declarative transformation languages, i.e.
use formalizations to reason about model partitioning and transformations. These
papers cannot directly be validated as part of the case study since we do not pos-
sess such formalizations in the case generator. Consequently, we can only research
model partitioning of the source model of the case organization.

For this part of the case study we explore the possibilities to partition or pre-
pare the source model of the case organization for partial or parallel generation.
Only the source model is analyzed since the transformation themselves cannot
directly be analyzed in a formal way. The case organization model can be parti-
tioned by dividing the model on the Work area construct. By definition this is a
suitable model element and results in a high granularity. As a reminder we defined
the Work area as:

A collection of Events within an organization that have a direct relation
to one another, that can exist independently and have no or only indirect
relations to Events in other Work area.

This results in partitions with elements belonging to a work area and a separate
partition that contains all model elements that do not belong to any work area.

We visualized the model itself to get insight into the dependencies between
model elements of different work areas. We abstracted all underlying model el-
ements and only show work area elements and the dependencies between them
including type of dependency. The resulting graph is visualized in Figure 7. This
graph shows 21 partitions (the actual names of those partition are not important
here); there are 20 red dots which represent work areas on which the partition-
ing was done. In the center there is a gray dot which represents the ’remainder’
partition in which all model elements are placed that do not belong to a work
area. As can be seen from the figure there are only few dependencies between
work areas which would indeed make it a suitable element type to partition the
model on. Moreover, there is a significant amount of dependencies to and from the
’remaining’ partition. The reason is that this remaining partition contain many
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5.3 Model Partitioning Implementation

general elements that can be used to specify behavior on Event elements. Due
to the case generator architecture it was necessary to load the entire model into
memory for each generator task. This is needed to make sure that all objects in
the generator have access to model element they reference. Further, entities and
roles have to be in the same partition since these element type are more tightly
connected. These partitions are fine for the purpose of the case study and enable
us to do this partial generation case study.

Figure 7: Work area dependencies of the case organization source model. This
graph is used to gain insight into existing dependencies and what logical partitions
can be made.

From the visualization we can conclude that the case input model was not
designed with partial generation in mind. There are dependencies between work
areas, moreover, there are also many internal dependency relations within a single
work area. This makes it difficult to partition the model elements into equal par-
titions and this problem is recorded in Observation 5. This is generally desired
because equal partitions result in the highest time reduction when doing parallel
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5.4 Partial Generation Implementation

generation. That is, all partial instances should have more or less the same run-
ning time without any outlier which delays the generation and deployment flow.
It must then, however, also be the case that the model element type distribution
is approximately equal for the partitions since the generation time per element
type can differ significantly. For this research we only used a single input model,
the model-driven engineering development process becomes much more complex
when multiple models are added with different levels of abstraction as stated by
France and Rumpe (2007). Additional complexity is introduced when versioning,
refinement and dependency relationships exist between these models.

Observation 5: The structure of the source model signifi-
cantly affects the resulting partitioning. A source model can
usually be seen as a graph which means there are dependen-
cies. The number of dependencies is ideally kept to a min-
imum to partition the model into equal parts. This is turn
also reduce the number of overlapping elements in partitions.

Furthermore, the following questions were encountered during this case study
for which we nor literature could provide any answer to. The questions are cap-
tured as separate observations and listed below.

Observation 6: No guideline or protocol could be found to
determine what dependencies are relevant for a given change.
Related to that; how can this be leveraged to decrease the
number of elements that need to be processed?

Observation 7: No suitable element type or unit is found
that is best used to do model partitioning. Furthermore;
what properties does such an element type need to be effec-
tive and efficient for partitioning.

5.4 Partial Generation Implementation

For the model partitioning we chose a simplistic approach implemented as addi-
tional steps inside the transformation pipeline. Furthermore, we used the gath-
ered insights on the generator architecture to find a good location from where the
pipeline can continue with partial generation and this is depicted in Figure 8. The
partial generation filter (PGF) filters the source model on a specific element type
as described before. After this point the architecture is analogous to the data
parallelism approach in which a model partition is transformed by the complete
set of model transformations. This point is ideally located as early in the pipeline
as possible. The earlier such logic can eliminate model elements the better since
it reduces the number of in-memory objects and output artifacts created. As a
result, this elimination also reduces the generation time and unnecessary memory
usage.
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Figure 8: Generator architecture of the case study organization extended with
our partial generation filter (PGF). The arrows show the data flow between two
stages. The transformation pipeline itself is not parallel but sequential.

We slightly deviated from the data parallelization approach by not partition-
ing the source model before passing the model partitions to the nodes. A single
partition could not be transformed on its own since there are references to ele-
ments outside the current partition. As a result, it can be concluded that partial
transformation must succeed the model loading phase. Therefore, the PGF mod-
ules are added after that phase which is a filter to reduce the number of model
elements that are to be processed by succeeding model transformations.

In our case study we encountered an issue that is a consequence of partial
generation with a generator designed for sequential generation. Our sequential
generator assumes the availability of all objects but is not the case for partial gen-
eration. An example of this is the phase where in-memory objects are compiled to
a software component and is captured in Observation 8. To be able to compile
a subset of the generated artifacts much more dependency analysis has to be per-
formed. This means besides taking design-time and generate-time dependencies
into account to also include run-time dependencies. However, this would make
the partitioning phase even more complex. Moreover, the size of partitions will
grow by significantly since much more elements are needed in the partition. This
in turn reduce the number of parallel instances that can be used and increase the
time needed to analyze the trace model for partitioning.

Observation 8: When the MDD generator generates
source code for a compiled language it cannot be compiled
directly by that task itself. There are usually compile-time
dependencies to artifacts that are not created by the current
tasks and thus do no exist yet.

Moreover, a fundamental issue was encountered on how partial generation can
be implemented and how to do it efficiently. The model partitioning algorithm
require information that is needed to partition on. Other settings might be a set
of model element to process or a toggle that indicates whether the entire model
has to be generated. This information result from either pre-configured settings or
from intermediate generator artifacts. This information could either be globally
available or passed through the transformation pipeline up to the point where it
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5.5 Case Study Evaluation

is needed but no best practice is found and resulted in Observation 9.

Observation 9: Make partitioning properties or infor-
mation available to the partitioning algorithm. No efficient
strategy is found for any architecture.

We implemented the partitioning algorithm as the first phase after the source
model loading model. The reason for this is that all model elements should be
available during generation since there might be dependencies to elements outside
the created partition. This in turn is a consequence of our implemented filter
which can only partition in a simplistic way that does not explicitly take into
account any cross Work area dependencies. Because of this implementation in the
available architecture there are multiple locations which use the partitioning code
and results in Observation 10. The downside of this approach that the same
code has to be maintained and kept consistent multiple times. Currently, our
approach is very simple and partitioning very light-weight and thus does not have
a large impact on generation time or resource utilization. However, this approach
becomes an issue when an entire traceability model has to be analyzed multiple
times.

Observation 10: An early phase or a sufficiently high ab-
straction must be chosen to do the partitioning. Otherwise,
partitioning code is spread throughout the model transfor-
mation pipeline.

5.5 Case Study Evaluation

The observations indicate the novelty of partial model transformation in the do-
main of imperative model transformation. As is the case in our traceability domain
there is only little literature or industry best practices available to tackle the ob-
served issues. Guidelines or protocols are needed to handle the problems which is
lacking.
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6 Parallel and Incremental Generation

In this section the previously researched traceability and partial generation are
combined to research both parallelism and incremental generation. By doing this
we can provide an answer to SRQ 4: Does the utilization of the insights lead to
an improved performance?. We start with parallel generation where we perform
an experiment in Section 6.3. After that, we research the implementation of
incremental generation in the case study generator.

6.1 Parallel Generation Rationale

Issues might arise regarding limited memory and high execution times when deal-
ing with large and complex models as mentioned by Benelallam et al. (2015b).
Tisi et al. (2013) state that parallelism is a traditional way of scaling computa-
tions and is already extended to the context of MDD. Moreover, Benelallam et al.
(2015a) show that the generation time can be greatly reduced by using multiple
tasks over which the work is divided.

6.2 Data Parallelism Continued

Research on parallel generation continues with the n our partial generation re-
search and continue with the data parallelism approach. As was already stated in
the related work section no modification to the generator itself is needed to use
the approach for parallel model transformation. However, to be able to use our
case generator in a parallel setup we had to duplicate the source model for each
parallel task to avoid file locking conflicts. We define a parallel task as a process
that use the generator executable with a set of arguments that runs in parallel
with other instances of the generator. These argument are, among others, the
location to the source model, the partition to generate and the output location
where created artifacts are written to.

All partial generation tasks that are executed in parallel are generating their
own output artifacts, which are files in our case. However, in the case of duplicate
filenames, for example, the actual contents of the files has to be merged. When
this is the case each partial task needs a dedicated output folder to avoid file lock-
ing conflicts while writing to disk. Merging here comprise two operations, first
the separate output folders must be copied to a single folder which is used by the
application. Secondly, in case partial files are produced a merge operation must be
executed. This merge often requires domain information to know how 2 or more
files are to be merged into one. A merge as in version control systems does not
work in this case since two partial files are not actual versions of each other.

Observation 11: Partial output artifacts created by sep-
arate partial tasks must be merged to form a complete ap-
plication. The merge operation of these files require domain
knowledge such as what the content of the artifacts represent
and how it should be merged.
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6.3 Parallel Generation Experiment

6.3 Parallel Generation Experiment

The goal of the experiment is to prove a reduction of the total generation time
and possible overhead by using parallelism. Additionally, this chapter describes
in detail how the experiment is conducted and how the results are measured and
analyzed.

6.3.1 Initialization

Experiment hardware

All measurements are performed on a virtual machine (VM). The VM is installed
on a native hypervisor together with two other VMs. The hypervisor runs on a
host server with the following specifications:

• Microsoft Windows Server 2012 R2 Standard

• Processor: Intel Xeon CPU E5-2620 @ 2.40GHz v3, 8 Cores, 8 Logical Pro-
cessors. L1 cache: 8 x 32KB. L2 cache: 8 x 256KB. L3 cache 8 x 15MB.

• Memory: HP DDR4-2133MHz 16GB.

• SSD: HP LK0800GEYMU 800GB.

The VM we used has the following specifications: 8 CPU cores, 16 GB RAM and
70GB SSD. Where possible all programs not needed for running the operating
system or conducting the test are shut down. This is done to eliminate unnecessary
load on the system. After every test there is a cool-down period to make sure any
CPU activity of the previous test does not affect the next test.

Input Models

For the experiments we created custom input models. We create a single model
for every test case and is composed of a predefined number of model elements as
specified in Table 1. This table specifies the model of one test, other tests have the
same ratios except for the number of Work areas. The tables for the other models
are listed in Appendix A. As can be seen from the table, this model consists of
nine work areas. All events are evenly distributed over the work areas. These
separate work areas form the lowest granularity on which parallel generation can
be done in the hypothesis test.

The model element distribution of these models are based on the existing
model of the case study organization. We used the ratio of entities, roles and
events (1:6:6) for designing the first model version. These element types form the
foundation of the model and add most behavior to the output application. Any
other element types are left out for this experiment. We then increased the amount
of each element type to create a model that was comparable in size with the model
the case organization currently uses. Since only Events are partitioned in Work
areas there would be a large separate partition in which the entities and roles are
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6.3 Parallel Generation Experiment

places. This partition would then for a large part influence the total generation
time averages. For this reason we choose to adjust the ratio to make sure that all
partitions that are to be generated in parallel are of equal size. This results in a
more or less ideal scenario where the highest speed-up can be demonstrated and
the resulting ratio was set to 1:1:18.

Table 1: Component distribution per test case.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 9 109
2 10 10 180 9 209
3 15 15 270 9 309
4 20 20 360 9 409
5 25 25 450 9 509
6 30 30 540 9 609
7 35 35 630 9 709
8 40 40 720 9 809
9 45 45 810 9 909
10 50 50 900 9 1009

The exact model structure of all models that are created for the experiment
can be found in Appendix A and have the same distribution as described above.
The models are designed to be as realistically as possible while still able to be
generated in parallel. A realistic ratio is desired since the type of model element
influences the time needed to generate it. The number of attributes per model
element is kept constant as well as the number of model elements per work area.
This is done to keep the number of model elements per model the only varying
factor in the test cases of the experiment.

Parallel Generation Comments

Parallel generation is accomplished by using the partial generation approach dis-
cussed in Chapter 5. In the current implementation each partial instance generates
to its own output folder due to duplicate file creation and with that file locking
conflicts. These outputs must be merged to form a working case study application.
This situation is the result of the implementation and programming language used
for the generator.

6.3.2 Experiment Structure

The experiment is executed by conducting ten sub-experiments and each experi-
ment consist of a baseline and hypothesis test which are described below. Each
test is composed of ten test cases where every subsequent test case uses a model
that contains a larger number of model elements. Each test case is repeated ten
times (called a run) and the averages will be used for analysis. All steps of the
tests themselves are automated in PowerShell. There is a cool-down period after
a run of three minutes. In this interval period the hardware utilization will be
restored to normal levels to make sure subsequent runs do not affect each other.
The generator itself creates a timings file that is automatically generated while
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6.3 Parallel Generation Experiment

generating. This file contains the timings of each step in the model transformation
pipeline of the generator and is used for later analysis.

Baseline Test

A baseline test is executed for each test case by generating the complete model
with the standard generator. This version of the generator does not contains any
changes made for this research like partial generation or traceability information
collection. This generator version is suitable for baseline measurements since it is
made before our research started. Moreover, its properties were used to formulate
the business problem of the case study company.

Hypothesis Test

The hypothesis test uses n+1 input models per test case, where n is the number of
Work areas. These tests use the partial generation implementation from Section
5 to run in parallel.

6.3.3 Analysis

Each sub-experiment results in two sets of ten total generation timings, one for the
baseline and one for the hypothesis. The total generation time for the hypothesis
test is the task with the longest running time. For the analysis itself we use the
averages of the total generation timings. The graph with ten parallel instances is
shown in Figure 9. Figure 10 compares all the parallel results from tests conducted
with the large models. The detailed data and corresponding graphs can be found
in Appendix B. These charts depicts a time reduction given a certain number of
model elements by using parallelism. On average we achieved a generation time
reduction of 2.5 to 3.5 times. This is slightly better than the results achieved
with ATL on MapReduce as explained earlier. However, it must be said that our
models are not real world models and in practice such an equal distribution would
be hard to accomplish due to model and transformation dependencies.
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Figure 9: Generation duration chart with standard model generation compared to
generation with 10 parallel generation instances.
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Figure 10: Parallel generation durations of 5 to 11 parallel tasks combined.

Moreover, overhead is introduced by, among others, running multiple generator
tasks at the same time, as described above. However, the overhead is not directly
visible from the results since we manually created the models and no partitions
are computed. Nonetheless, the experiment results do show that the parsing op-
eration becomes slower when generating in parallel compared to the baseline and
is summarized in Observation 12. The disk is normally a common bottleneck
but has only 10% utilization during the parsing phase. The probable bottleneck
in this case would be the CPU which is nearing 100% utilization when multiple
generator tasks are running at the same time. This observed trend holds for all
transformations before the introduction of our partial generation construct. These
transformations take up to 2 to 3 times longer in the hypothesis tests compared to
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their sequential counterpart. The experiment result that supports our observation
is depicted in Figure 11.

Observation 12: Loading multiple source models at the
same time adds transformation time to the model loading
phase.
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Figure 11: Source model loading overhead with 11 parallel task compared to
sequential model transformation.

Lastly, the separate steps in the pipeline can be compared where timings from
the parallel tasks are aggregated. The standard generation is again used as the
baseline and durations from the partial generations are compared against that.
The aggregated timings compared to the baseline timings shows the overhead of
parallelization as a whole.

6.4 Incremental Generation

6.4.1 Incremental Generation Rationale

When a user can make structural changes in a given environment the model for
that application changes. In the case of MDD, the application can simply be
regenerated in order to comply with the wishes of the user. However, it is not
efficient to regenerate all code when only a small portion on the model changes
Varró (2015). Regenerating the entire model results in unnecessary waiting time
for the end user. Efficient generation means only regenerating that part of the
model that changed combined with possible dependencies (Hearnden et al., 2006).
The part that changed between two model versions is called a delta. By only
applying transformation rules that match one of the model elements in the delta,
a performance gain can be achieved. This process is called incremental transfor-
mation and is formally defined by Czarnecki and Helsen (2006) as; the ability to
update existing target models based on changes in the source models.
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6.4 Incremental Generation

6.4.2 Live Transformation

No suitable approach was found that could be implemented as part of a case study.
The live transformation approach from the related work section is expected to po-
tentially achieve the highest performance improvement since both the source and
target model are continuously kept in-memory. This means that no read and write
operations haves to be performed. In our case study this would reduce the total
generation time by 36% for large models. However, we could not implement this
approach due to the lack of a traceability model and the infrastructure needed
to keep the application in memory is not readily available. The traceability case
study provide us only with a small set of traces for only a few model transfor-
mations. It was too time consuming to add trace generating code throughout the
complete generator as is elaborated in Observation 1. Despite not being able to
implement an incremental model transformation approach we could reason about
problems regarding the implementation and use an incremental transformation
approach. The first issue we foresee in doing incremental generation is the process
of calculating the delta of two model versions. In Observation 12 we observed
that is not desirable to load and parse multiple models at the same time. At some
point a delta of two models must be calculated to use in incremental transforma-
tion. These two models are the updated model and the previous model version
on which the changes are applied. We consider that is it useful to optimize this
process since it would take unnecessary time and hardware resources to load and
parse two complete sets of source model each time (see Observation 13).

Observation 13: Loading new and previous model to cal-
culate a delta is time consuming. This delta-calculation ap-
proach is best avoided when possible to prevent introducing
transformation overhead.

A second problem we expect regards the updating process of the trace model
after the model is adapted which in turn invalidates the existing trace model (Ob-
servation 14). Model dependencies can be analyzed from the model itself but
additional dependencies are introduced in the generator itself. The trace model
can be updated by transforming the new model which automatically creates a new
trace model as a result. However, this would defeat the purpose of using a trace
model and incremental transformation since the transformation already created
the complete application. Moreover, there is no applicable literature available that
directly addresses this issue in our domain.

Observation 14: Efficiently creating a traceability model
from an updated model is not straightforward. A native
approach would execute the entire model transformation
pipeline with the new model to collect all relevant traces
for that model. However, this approach does not use any
benefits of the incremental model transformation approach.
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7 Reference Architecture

This chapter describes our reference architecture that can be used to design a
MDD generator tailored to fast model transformation. The references architec-
ture is based on observations made in the case studies described in the previous
chapters. The reference architecture answers the main research question: How
can the performance of imperative model transformations be improved? and is
presented in Figure 12

Furthermore, in this chapter the observations made previously are comple-
mented with suggestions on how to deal with the observed problem. Not all ob-
servations could be complemented with one or more suggestions when no solutions
could be researched or due insufficient experience. Providing suggestions for these
observations is considered future research since we did not have the time to exten-
sively research all observations. Moreover, we aim to provided suggestions that
are also applicable to other generator architectures than the one we researched.
This is needed to design the reference architecture is a more generic way. Those
suggestions are where possible based on literature, experiment results or domain
experts from the case study company. Besides the reference architecture itself also
documentation is provided in which design decision, protocol and practical notes
are described.
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Figure 12: The proposed reference architecture based on identified problems or
observations made during the case studies and on solutions to these problems.

During the case studies short-comings and bottlenecks of the current setup are
observed. Moreover, we primarily focused on architectural patterns and excluded
detailed implementation specifics that might influence the model transformation
performance. Only observations on the researched aspects are included and thus
not all steps needed to create a MDD generator are explained in detail. Expanding
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7.1 Initial Model Transformation

our proposed reference architecture is left to future research where additional case
studies provide new insights and validate existing observations.

In the remainder of this section we gradually built and explain our proposed
architecture. All observations and suggestions made are numbered and linked to
elements or arrows in the provided figures. First, the initial model transforma-
tion scenario is covered and depicted in Figure 13. After that, the incremental
generation scenario is covered and shown in Figure 14.

7.1 Initial Model Transformation

7.1.1 Model Partitioning

The first artifact in Model-Driven Development flow are one or more source models
(A). These source models contain dependencies and form the traceability model
as explained in traceability case study (Section 4). Observation 5 states that
the number of dependencies should be kept to a minimum since dependencies
are disadvantageous when creating partitions with an equal distribution of model
element types. We propose a solution in which the modeler is made aware of the
dependencies he or she created either explicitly or implicitly by modifying the
model. A source element relies on a specific property in the target element and
thus any change that might modify this property also affects the source element.
The modeler could be assisted while creating or modifying the source model about
introducing new dependencies and the number of existing dependencies between
two elements. It is beneficial to reduce the number of dependencies on properties
from other elements. This can be achieved by following the dependency inversion
idea of the SOLID programming principles by Robert C. Martin. This means for
example that a base element is responsible for the calculation and a dependent
element only requests the resulting value. This setup makes sure that a minimal
amount of existing artifacts are recreated after a model modification.

Solution(s) for Observation 5: Make the modeler aware
of the existing dependencies in the source model. Further-
more, indicate the impact a given model adaption has on the
dependency or trace model. SOLID principles can be used to
guide the modeler in designing the model that is best struc-
tured for model partitioning.

In general, loading the source model(s) into memory is the first operation per-
formed by a MDD generator. This is needed before analysis and thus partitioning
of the source models can be performed. We researched this phase and during our
parallel generation experiment we observed that additional model transformation
time in introduced in the model loading phase. This issue is elaborated in Ob-
servation 12 and corresponds to B in Figure 13. We proposed two solutions to
deal with the problem. First, start the pipeline sequentially where is single model
is loaded and preparation steps are performed (B). This approach is still equiv-
alent to the data parallelism approach. After that, the partition can be created
(C) and executed in parallel in remainder of the pipeline (D). Secondly, in case

45



7.1 Initial Model Transformation

there is an existing generation an external tool can be used that partitions the
source models. Following this approach the existing generator architecture can be
left unaltered and multiple instances of the generator can be executed with each
a different model partition. It is the responsibility of the partition algorithm to
create partitions that can be generated by itself without additional dependencies
to other elements.

Solution(s) for Observation 12:

1. Postpone the model partitioning phase to ensure that
only one instance of a source model has to be loaded
which is used throughout the remainder of the gener-
ator. After the model is loaded it can be analyzed for
partitioning and later parallel model transformation.

2. In case an existing generator is used an external tool
can be leveraged that partitions the source models.

For both approaches see Observation 1 and the correspond-
ing solution on issues observed with collecting trace informa-
tion used for model partitioning.

Model v1

Generator

Partition 
algorithm

Create

Model
transformations

Model 
transformations

Model 
transformations

ApplicationWrite
Model 

transformations

B C

E

FA

Trace 
model v1

D

Figure 13: Initial model transformation reference architecture. A source model
(A) is passed to the generator. A first set of model transformation, among others,
load the model into memory (B). Then a partition algorithm is executed that
analyze the in-memory source model (C) and a trace model (D) to partition the
model for parallel model transformation (E). The trace model is either based on
involved model transformation given a source model or a model of all dependencies
in the generator. Finally, each parallel model transformation task write a distinct
set of output artifacts that together form the output application.

7.1.2 Compute the Trace Model

Creating the trace model (D) in a generator programmed in a general-purpose
language is not straightforward. Moreover, this process is time-consuming since
trace generating code is insert by every model transformation as mentioned in Ob-
servation 1. However, we could not find a solution that is less time-consuming
and yields the same result. The traceability approach where trace generating code
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7.1 Initial Model Transformation

is added to model transformation requires that the transformations have to be
executed with a source model in order to create a trace model. We consider this
as a drawback since a large part of the transformation pipeline if not all is exe-
cuted to collect all traces as described in Observation 14. We propose several
solutions to create the trace model more efficiently. First, we describe a simula-
tion approach where only a part of the transformation pipeline is executed up to a
certain point. At this point all dependencies that exist are either known or can be
deduced. This approach might require changes in the architecture to ensure that
at some point only one-to-one transformation are executed of which the depen-
dencies can be deduced. Since no new dependencies are introduced beyond this
point there is no need to generate any further. It is of course desirable that this
point comes as early in the transformation pipeline as possible. A re-run of the
pipeline is needed with the new source model and the newly created trace model
to generate the output artifacts themselves. Secondly, we propose an alternative
method where model transformations are formalized to enable static analysis and
thereby collecting trace information. A downside of this approach is that the ab-
stract and imperative transformation rules must be kept in sync. A second issue is
that all transformations must be extracted and rewritten in a formal language. A
benefit of this approach is that the trace information is independent from source
models and can be reused for all end user. Lastly, theory from abstract interpreta-
tion could be used to statically analyze the model transformations. Muthukumar
and Hermenegildo (1992) propose a new algorithm to analyze logic programs by
using abstract interpretation. The algorithm focus on inferring dependencies be-
tween program expressions. However, no direct applicable approach is found for
transformations programmed in a general-purpose language.

Solution(s) for Observation 14:

1. A simulation approach where a part of the transforma-
tion pipeline is executed with the new model to gather
traceability information. The pipeline is re-run to uti-
lize the trace model for model partitioning to generate
in parallel.

2. Formalize all model transformation and store them as a
separate artifact. The formalization ensures that static
analysis can be applied to create the trace info. The
created trace model can be reused for all end users that
use that version of the generator.

3. Use abstract interpretation to statically collect depen-
dencies in model transformations.

7.1.3 Apply the Trace Model

In Observation 10 we observed that partition code was duplicated and used at
multiple locations in the transformation pipeline. Before we already suggested a
partition algorithm and therefore we also include this as a module in our reference
architecture (C) to solve the observation. This module contains all partitioning
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7.1 Initial Model Transformation

logic in a central location and use the generated traceability model to partition
the source models into a number of partitions. These partitions should be com-
plete to make sure no external dependencies are present. These partitions are then
generated in parallel (E).

Solution(s) for Observation 10: We propose a model
partitioning module which should be a single phase in the
generation pipeline that partitions the source model(s). By
conforming to this property we can also provide a solution to
Observation 12, where we observed that the entire model
is needed for each parallel instance. The created partitions
are then given to the parallel generation instances to parallel
model transformation.

We argue that the most important feature of an efficient partitioning algorithm
is that small and evenly distributed partitions are created. This can be achieved
by selecting the right model element type with the right granularity. This is easier
said than done since no suitable element type or unit is found that is best used
to do model partitioning. Furthermore, no element properties could be defined
taht are needed to be effective and efficient for partitioning and is elaborated in
Observation 7.

7.1.4 Practical Notes

During our case study we researched how to best implement our partial generation
algorithm. No literature was found and resulted in Observation 9. However, we
could not provide any well-reasoned suggestions for the observation and is left
to future research. Moreover, compiling the output artifacts separately did not
work in D as observed in the partial generation case study and is elaborated in
Observation 8. We describe a work-around on how to deal with this observed
issue. The work-around is to avoid generating source code for a compiled language.
This is the approach our case study organization is already migrating to. This
approach entails that the generator generates artifacts that are interpreted at
runtime.

Solution(s) for Observation 8: Avoid generating source
code for a compiled language in partial generation. This elim-
inates many dependencies between output artifacts. Instead
generate artifacts that can be interpreted. Since the actual
use of the artifacts are delayed to runtime all partial out-
puts are combined which means that all dependencies can be
resolved.

Lastly, the partial model transformation tasks at D (Figure 13) all write their
output to a single output location (F). In Observation 11 we described the file
locking conflict problem with this approach. Therefore, we propose a solution
by ensuring, where possible, that the partial model transformation tasks to not
produce overlapping output artifacts. This eliminates the need to copy different
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7.2 Incremental Model Transformation

output folders and to merge files with the duplicate filenames. The internals of the
generator must be adapted in such a way that each partial task creates a disjoint
set of artifacts. This can primarily be achieved by conforming to this requirement
during model partitioning.

Solution(s) for Observation 11: Ensure that the par-
tial model transformation tasks to not produce overlapping
output artifacts. This eliminates the need to copy different
output folders and to merge files.

7.2 Incremental Model Transformation

The incremental model transformation scenario starts somewhat different com-
pared to the initial scenario. There are two versions of the source model, namely
the previous model which is already transformed into an application, and the
newly created model. Model modifications are made incrementally in the same
way that an application is incrementally updated according to the model changes.
The two model versions are then passed to the model transformation phase F in
Figure 14). In Observation 13 we mentioned the inefficiency of an approach
where the generator determined the delta given the two source models. We ar-
gue that it might not be needed to load two complete models to determine the
delta. In case the developers have control over the modeling environment it would
be beneficial to keep track of changes whilst they are made. This way the delta
itself is directly created and does not have to be computed using the two model
versions. We see from the experiments that it takes 0.5 second to load a small
model (less than 30 elements), like a delta, whereas it takes about 20 seconds to
load the largest tested model (more than 1000 elements). Moreover, the modeling
environment has knowledge and access to the latest model version and can thus
directly include other elements that are connected through dependency relation-
ships. This of course works only for dependencies in the model and traceability
for model transformations is still required. However, we were unable to propose a
solution for situations where no access to the modeling tool is available.

Solution(s) for Observation 13: We propose a solution
where only the delta model itself is passed the generator.
Access is needed to the modeling tool to directly create a
delta model when a change is made by the end user.
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Figure 14: Reference model evolution handling after the initial model transforma-
tion. An updated source model is passed to the generator which is loaded into
memory. After that an updated version of the trace model must be calculated (G)
on which the Incremental algorithm is dependent (H). Then the calculated delta
model can be transformed by the generated incrementally and in possibly parallel
depending on the overhead (I). Finally, a partial output is written to the already
existing set of application files to update the application.

After the delta is loaded it must be transformed to update the application.
Before this process can start additional calculations on the delta are needed to
complement the delta with generation-time dependency elements. This is ex-
plained in detail in the Related work and Traceability case study sections. We
group the logic required for these calculations in a new and separate module and
place it into the model transformation pipeline. We call this module ”Incremental
algorithm” and can be found at letter I in Figure 14. This module requires a delta
model and a traceability model. A traceability model is created in the same way
as for the initial model transformation described earlier where it is used for model
partitioning. For the simulation approach the new source model is used since the
delta cannot be used to create a complete trace model.

Again, the last phase of the generator is to write the created artifacts to the
application folder (J in Figure 14). Since at this point only a partial output is
created the new and existing artifacts have to be merged in some way. As already
described earlier file locking conflicts could occur when naively merging the partial
out with existing artifacts. This problem can be solved by the suggestion provided
for Observation 11 above.

7.3 Open Concerns Regarding Traceability

While researching traceability we made additional observations that do not influ-
ence the design of the reference architecture. These observations are of a more
practical nature and are therefore also important to take into account. First, in-
serted trace generation code must be kept up-to-date otherwise it cannot be used
reliably (Observation 2). An IDE that can support the developer in this task
but we could not find such an IDE or any other mechanism to aid the developer in
keeping the code snippets up-to-date. Observation 3 argues that only relevant
traces have to be collected. We consider it the responsibility of the developer to
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7.3 Open Concerns Regarding Traceability

determine what is relevant what is not. However, no structured protocol or guide-
lines were found that could aid the developer in this process. This can reduce the
number of traces collected which increase model transformation performance as is
discussed in Observation 6. However, no structured method to do this is found
in literature because of the many implementation details and possibly language
specifics. Lastly, a suitable format in which the trace model can be stored is re-
searched and analyzed in Observation 4. We could not compare both XMI and
JSON formats in our case study generator and can therefore not provide a best
practice or solution and depends also on the transformation platform used.
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8 Discussion and Opportunities

8.1 Findings and Implications

The most important finding in our research is the complexity of traceability in a
MDD generator written in a general-purpose language. Inserting trace generat-
ing code into model transformations is time-consuming. However, a more efficient
method is not proposed in the MDD literature. As a result, no complete traceabil-
ity model could be generated. This in turn means that parallel generation could
only be researched on a basic level and incremental generation could not be re-
searched as part of a case study at all. All findings and corresponding implications
are described as observations and solutions in Section 7.

8.2 Limitations

This research is part of a master thesis which means time was a large constraint.
This constraint limits our research in several ways. First, only a limited num-
ber of approaches to improve the performance could be researched and validated.
Secondly, a single case study organization could be researched which leaves the
reference architecture novel and unvalidated. Limitations in applicable available
literature changed our research direction to a more exploratory research and could
only address certain topics briefly and in high level. The experiment results are
only limited generalizable since the time for creating partitions is not accounted
for in the total model transformation time. Moreover, no experiment could be
performed to prove a performance improvement of incremental model transforma-
tion.

8.3 Opportunities

Many limitations are recognized in the conducted research, therefore, several in-
teresting opportunities can be identified for further research. The primary op-
portunity to actually improve the performance of model transformation is to find
and use an efficient approach to built a trace model. A requirement is that the
trace model creation process must be automated and is preferably more feasi-
ble than inserting trace generating code snippets which has additional drawbacks
attached to it as explained in Section 7.3. We briefly looked into abstract inter-
pretation which has potential to quickly determine all dependencies independent
of any source model. Statically analyzing the dependencies of a Prolog program
is already researched. Therefore, extending their methods to handle imperative
languages is interesting and considered future research.
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9 Conclusion

This section concludes the research by answering the designed sub-research ques-
tions. Finally, the main research question is answered.

SRQ1 What is the current state of methods that reduce generation
time in Model-Driven Development?

A related work study and analysis is performed to explore the available methods
for improving the performance of a MDD generator. The domain of Model-Driven
Development exist already for a long time and have matured over the years. Mul-
tiple transformation languages and tools are proposed where ATL is the most
mature. All researched approaches aimed at improving the performance use ATL
as the transformation language and leverage the underlying virtual machine for
optimizations. The extensive focus on ATL is a drawback since the case organiza-
tion use a different transformation language, i.e. a general-purpose programming
language. This has significantly different properties compared to ATL that is
a Domain Specific Language regarding model transformation. There is only lit-
tle applicable literature available to our context which limits this research in the
number of approaches that can be researched.

SRQ2 How is insight gained in the model transformations in a
Model-Driven Development environment?

A common approach to gain insight into the transformations of a MDD generator
is traceability. Traces are collected from the model transformations in the MDD
generator and form a trace model. Traces are dependencies between two elements
that take part in a model transformation. By analyzing the trace model the MDD
generator can be visualized in terms of model dependencies. Moreover, it is used to
reason about how a model is transformed into an output application. We consider
traceability as a prerequisite for both model partitioning and incremental model
transformation. Our case study shows that it is complex to collect all traces needed
to use it effectively for model partitioning of incremental model transformation.
We observed that it is time-consuming to modify our case generator due to the
general-purpose language used for the model transformations. Since this approach
is very expensive or even unfeasible another approach is briefly researched, namely
abstract interpretation.

SRQ3 How can these insights be utilized to improve the model trans-
formation performance in a Model-Driven Development en-
vironment?

The insights provided by the trace model are utilized in the generator by par-
titioning the source model into one or more partitions. This can be achieved
by analyzing the dependencies captured in the trace model and enables partial
- and incremental model transformation. We researched a data parallelism ap-
proach which provides all components needed for partial model transformation.
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A valid partition can only be created when the trace model contains all possible
dependencies given a source model. Valid here means that the partition can be
generated without additional knowledge of other elements or dependencies. By
implementing the data parallelism approach as part of a case study observations
could be made which provide insights on what properties and processes are needed
to improve transformation performance by using partial model transformation.

SRQ4 Does the utilization of the insights lead to an improved per-
formance?

Finally, parallel and incremental model transformation are researched in a case
study. Multiple partial model transformation tasks are combined to research
parallel model transformation. An experiment is performed to prove that the
implemented parallelization technique does indeed work and yield a performance
improvement compared to sequential model transformation. Our parallel transfor-
mation reduce the total generation duration by 2.5 to 3.5 times which corresponds
to experiment performed with ATL on MapReduce. A limitation of our approach
is that the model partitioning is not based on traces since no complete trace model
could be created. Instead, a certain model element type is used and the explicit
dependencies from the source model are used. This approach does not work for a
source model with more complex relationship where dependency information from
the model transformations are needed to be able to generate a correct output.

RQ How can the model transformation time be reduced
in Model-Driven Development?

The main research question is answered by our presented reference architec-
ture and the corresponding design decision, protocols and practical take-aways
described in Section 7. The reference architecture and corresponding documen-
tation combined present a novel artifact and is designed to aid organizations in
improving their MDD generator. We proved and argued that both parallel - and
incremental model transformation, respectively, improve the performance of model
transformations in MDD. The reference architecture is based on observations made
during the case studies and single experiment and are to be extended and validated
by performing additional case studies.
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Appendices

A Experiment models specified per element type

Table 2: Model for test 1 with 5 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 4 104
2 10 10 180 4 204
3 15 15 270 4 304
4 20 20 360 4 404
5 25 25 450 4 504
6 30 30 540 4 604
7 35 35 630 4 704
8 40 40 720 4 804
9 45 45 810 4 904
10 50 50 900 4 1004

Table 3: Model for test 2 with 6 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 5 105
2 10 10 180 5 205
3 15 15 270 5 305
4 20 20 360 5 405
5 25 25 450 5 505
6 30 30 540 5 605
7 35 35 630 5 705
8 40 40 720 5 805
9 45 45 810 5 905
10 50 50 900 5 1005

Table 4: Model for test 3 with 7 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 6 106
2 10 10 180 6 206
3 15 15 270 6 306
4 20 20 360 6 406
5 25 25 450 6 506
6 30 30 540 6 606
7 35 35 630 6 706
8 40 40 720 6 806
9 45 45 810 6 906
10 50 50 900 6 1006
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Table 5: Model for test 4 with 8 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 7 107
2 10 10 180 7 207
3 15 15 270 7 307
4 20 20 360 7 407
5 25 25 450 7 507
6 30 30 540 7 607
7 35 35 630 7 707
8 40 40 720 7 807
9 45 45 810 7 907
10 50 50 900 7 1007

Table 6: Model for test 5 with 9 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 8 108
2 10 10 180 8 208
3 15 15 270 8 308
4 20 20 360 8 408
5 25 25 450 8 508
6 30 30 540 8 608
7 35 35 630 8 708
8 40 40 720 8 808
9 45 45 810 8 908
10 50 50 900 8 1008

Table 7: Model for test 6 with 10 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 9 109
2 10 10 180 9 209
3 15 15 270 9 309
4 20 20 360 9 409
5 25 25 450 9 509
6 30 30 540 9 609
7 35 35 630 9 709
8 40 40 720 9 809
9 45 45 810 9 909
10 50 50 900 9 1009
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Table 8: Model for test 7 with 11 parallel instances.

Test case # Entities # Roles # Events # Work areas Total
1 5 5 90 10 110
2 10 10 180 10 210
3 15 15 270 10 310
4 20 20 360 10 410
5 25 25 450 10 510
6 30 30 540 10 610
7 35 35 630 10 710
8 40 40 720 10 810
9 45 45 810 10 910
10 50 50 900 10 1010

Table 9: Model for test 8 with 5 parallel instances and fewer model elements.

Test case # Entities # Roles # Events # Work areas Total
1 10 0 12 4 27
2 10 0 24 4 39
3 10 0 36 4 51
4 10 0 48 4 63
5 10 0 60 4 75
6 10 0 72 4 87
7 10 0 84 4 99
8 10 0 96 4 111
9 10 0 108 4 123
10 10 0 120 4 135

Table 10: Model for test 9 with 4 parallel instances and fewer model elements.

Test case # Entities # Roles # Events # Work areas Total
1 10 0 12 3 26
2 10 0 24 3 38
3 10 0 36 3 50
4 10 0 48 3 62
5 10 0 60 3 74
6 10 0 72 3 86
7 10 0 84 3 98
8 10 0 96 3 110
9 10 0 108 3 122
10 10 0 120 3 134
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Table 11: Model for test 10 with 3 parallel instances and fewer model elements.

Test case # Entities # Roles # Events # Work areas Total
1 10 0 12 2 25
2 10 0 24 2 37
3 10 0 36 2 49
4 10 0 48 2 61
5 10 0 60 2 73
6 10 0 72 2 85
7 10 0 84 2 97
8 10 0 96 2 109
9 10 0 108 2 121
10 10 0 120 2 133

B Experiment results

B.1 Results of 5 parallel generation instances
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Figure 15: Generation duration chart with standard model generation compared
to generation with 5 parallel generation instances.
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B.1 Results of 5 parallel generation instances

Table 12: Test 1: baseline test.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 61,355 136,009 199,128 279,472 364,739 457,927 563,404 674,544 824,683 960,786
run 2 61,294 131,802 201,895 279,147 365,229 461,461 564,311 698,512 815,380 964,431
run 3 62,228 127,037 205,158 280,005 366,431 458,954 562,740 674,380 822,387 956,996
run 4 61,542 130,760 201,709 279,066 365,603 458,106 571,613 674,636 825,104 969,137
run 5 61,737 129,057 203,893 284,095 366,593 460,920 560,247 671,022 830,898 959,646
run 6 61,464 140,212 203,270 279,429 367,714 459,029 562,401 672,536 828,220 963,376
run 7 61,816 129,122 201,473 279,039 366,888 459,926 562,521 675,545 825,998 968,039
run 8 61,478 126,685 202,885 279,262 366,363 461,001 563,896 671,286 819,555 962,220
run 9 61,556 131,311 200,543 278,924 364,855 469,690 561,585 711,485 823,255 970,980
run 10 61,605 130,260 199,433 279,314 365,060 458,429 562,002 719,938 818,346 969,923
average 61,608 131,226 201,939 279,775 365,948 460,544 563,472 684,388 823,383 964,553

SD 0,269 4,115 4,115 1,922 0,995 3,453 3,089 18,435 4,672 4,779

Table 13: Test 1: 5 parallel tasks.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 22,156 43,004 72,538 105,935 137,065 177,768 224,530 278,212 332,887 388,781
run 2 23,342 49,966 69,846 102,116 135,543 174,306 222,217 271,185 329,790 390,742
run 3 23,963 43,218 80,830 102,339 137,737 174,791 223,147 274,842 327,475 388,197
run 4 22,662 44,062 80,780 103,187 136,509 176,546 221,901 275,947 330,897 390,540
run 5 23,367 43,318 70,683 102,259 132,922 177,453 223,595 272,204 325,946 388,655
run 6 23,411 43,715 70,808 107,315 141,775 177,483 225,802 275,015 330,065 389,093
run 7 22,675 43,632 79,770 101,016 135,543 176,777 227,561 268,903 333,018 389,922
run 8 23,488 43,977 70,915 100,844 133,807 179,201 224,653 273,124 331,364 390,493
run 9 24,193 43,605 73,732 101,443 137,150 177,120 225,696 267,472 330,156 390,148
run 10 23,957 44,696 86,825 101,067 133,114 175,418 223,835 267,839 336,421 388,806
average 23,321 44,319 75,673 102,752 136,117 176,686 224,294 272,474 330,802 389,538

SD 0,652 2,041 2,041 5,893 2,624 1,483 1,737 3,628 2,940 0,929
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B.2 Results of 6 parallel generation instances
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Figure 16: Generation duration chart with standard model generation compared
to generation with 6 parallel generation instances.

Table 14: Test 2: baseline test.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 61,219 123,778 196,221 274,878 360,397 457,911 560,653 669,879 794,160 937,534
run 2 60,868 123,453 195,171 275,779 359,797 459,750 562,445 667,939 793,618 948,904
run 3 60,728 122,706 195,099 274,345 360,543 458,100 561,641 668,366 792,248 935,347
run 4 61,224 123,661 195,498 274,704 360,815 458,018 561,109 668,297 827,855 939,818
run 5 60,997 123,108 195,876 275,099 359,913 459,160 563,946 666,823 800,797 945,793
run 6 60,340 123,487 195,578 275,082 360,946 459,992 563,697 669,739 810,070 1021,749
run 7 60,833 123,597 195,236 275,524 360,847 458,258 562,966 670,719 805,858 1110,181
run 8 60,990 123,377 196,462 274,785 359,565 458,365 561,733 668,008 809,632 1100,623
run 9 60,711 122,788 195,812 273,596 358,765 458,723 560,458 668,275 797,255 1051,533
run 10 60,907 123,153 195,320 274,864 360,510 458,343 559,500 668,214 807,814 952,525
average 60,882 123,311 195,627 274,866 360,210 458,662 561,815 668,626 803,931 994,401

SD 0,259 0,363 0,363 0,459 0,692 0,734 1,449 1,143 10,822 70,385
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B.3 Results of 7 parallel generation instances

Table 15: Test 2: 6 parallel tasks.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 21,467 41,413 63,526 91,756 124,024 160,357 204,696 245,745 292,093 343,462
run 2 23,758 39,997 61,749 90,903 122,649 164,352 202,323 248,066 293,452 341,151
run 3 24,046 40,055 62,464 92,689 124,484 158,476 203,557 248,516 292,342 338,699
run 4 22,071 40,678 63,265 90,961 125,811 158,658 199,483 245,680 288,250 339,552
run 5 23,415 40,366 64,155 94,016 126,774 160,336 206,922 246,997 288,817 340,263
run 6 24,466 39,624 60,973 93,141 124,716 173,442 203,230 247,050 291,381 339,419
run 7 22,538 40,575 63,335 91,919 125,874 163,006 202,344 251,946 288,903 342,540
run 8 23,518 40,418 63,253 92,117 122,653 162,998 204,725 247,308 288,551 341,813
run 9 24,064 40,251 62,702 91,148 125,443 164,302 207,819 247,272 291,502 342,941
run 10 24,062 40,302 63,511 90,948 125,653 160,996 205,616 244,071 291,555 340,946
average 23,341 40,368 62,893 91,960 124,808 162,692 204,072 247,265 290,685 341,079

SD 0,988 0,476 0,476 0,946 1,381 4,334 2,437 2,089 1,869 1,608
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Figure 17: Generation duration chart with standard model generation compared
to generation with 7 parallel generation instances.
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B.3 Results of 7 parallel generation instances

Table 16: Test 3: baseline test.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 61,662 124,901 198,243 281,015 367,636 462,121 569,593 682,237 895,989 956,820
run 2 61,395 125,409 198,856 279,839 369,977 463,154 569,423 677,809 806,782 979,169
run 3 61,814 125,334 199,661 278,182 366,876 462,684 569,129 678,009 850,469 959,913
run 4 61,376 125,029 198,859 280,793 367,987 464,754 570,105 680,334 971,261 964,296
run 5 61,597 125,473 198,186 279,308 366,905 465,576 569,853 680,195 1022,688 963,072
run 6 61,091 124,529 198,810 278,956 366,881 464,367 569,139 679,282 1115,180 958,789
run 7 61,763 125,099 199,466 278,917 368,474 463,128 569,826 679,250 901,585 956,709
run 8 61,678 124,577 198,324 277,212 366,387 464,338 568,844 679,685 1168,466 958,606
run 9 61,807 125,433 197,827 279,138 370,183 463,321 569,002 677,671 1235,839 957,838
run 10 61,885 125,002 199,094 278,346 368,811 463,710 567,846 680,386 940,248 956,913
average 61,607 125,079 198,733 279,171 368,012 463,715 569,276 679,486 990,851 961,213

SD 0,249 0,341 0,341 0,586 1,334 1,042 0,649 1,415 142,024 6,825

Table 17: Test 3: 7 parallel tasks.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 22,258 38,928 60,688 88,472 117,498 154,318 195,201 234,046 275,321 323,580
run 2 20,407 38,676 59,546 87,847 118,406 154,538 195,097 234,242 337,288 315,418
run 3 20,381 39,786 60,058 89,916 120,912 152,496 194,286 229,584 273,446 323,989
run 4 20,541 39,693 60,637 88,229 119,395 155,088 190,528 232,489 272,408 321,514
run 5 18,814 37,177 59,680 85,938 118,766 156,423 191,840 235,764 274,788 325,786
run 6 20,738 39,493 59,758 90,523 118,729 154,728 195,295 233,558 273,993 319,721
run 7 18,998 38,709 58,812 87,753 116,492 151,102 192,157 232,772 273,661 320,156
run 8 20,328 37,034 60,627 87,098 117,967 157,727 191,463 234,495 269,957 320,935
run 9 18,932 38,714 60,615 90,854 119,833 154,900 190,286 233,911 270,403 321,670
run 10 20,655 39,566 57,591 87,200 119,782 155,169 194,056 236,126 272,413 321,131
average 20,205 38,778 59,801 88,383 118,778 154,649 193,021 233,699 279,368 321,390

SD 1,050 0,979 0,979 0,991 1,279 1,841 1,977 1,842 20,424 2,813
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B.4 Results of 8 parallel generation instances
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Figure 18: Generation duration chart with standard model generation compared
to generation with 8 parallel generation instances.

Table 18: Test 4: baseline test.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 62,349 126,949 202,270 285,049 376,758 474,837 577,885 691,472 834,932 1014,882
run 2 62,425 128,542 201,790 285,254 377,133 470,528 580,602 693,945 832,613 998,512
run 3 62,128 126,419 201,875 286,671 376,798 475,042 579,447 694,116 833,472 992,814
run 4 62,296 126,685 202,233 297,491 377,104 475,135 576,586 694,656 831,209 1003,178
run 5 62,264 126,478 202,617 292,049 376,949 475,893 580,141 717,653 832,724 1030,800
run 6 62,568 127,400 202,388 297,263 376,291 474,934 576,969 704,017 843,645 1095,868
run 7 62,014 126,804 202,100 295,357 375,959 473,488 577,969 800,602 844,967 1031,355
run 8 62,445 126,033 202,310 288,166 377,709 475,157 576,608 711,063 832,313 1000,328
run 9 62,640 126,138 202,163 285,051 376,713 466,289 579,976 694,170 835,698 996,791
run 10 62,414 127,287 202,322 285,000 377,206 472,443 578,037 696,483 831,676 1005,142
average 62,354 126,874 202,207 289,735 376,862 473,375 578,422 709,818 835,325 1016,967

SD 0,189 0,737 0,242 5,292 0,489 2,966 1,512 33,042 4,937 30,851
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B.5 Results of 9 parallel generation instances

Table 19: Test 4: 8 parallel tasks.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 22,715 38,746 59,006 87,275 116,766 147,661 184,650 225,821 264,597 310,191
run 2 21,685 39,066 58,437 86,014 115,590 150,020 182,513 218,467 263,810 321,264
run 3 21,991 38,608 60,602 87,927 114,035 148,706 182,862 222,954 292,506 321,958
run 4 20,707 38,416 59,860 88,251 116,838 148,232 183,704 219,740 299,070 323,615
run 5 21,334 36,873 60,499 88,211 116,394 149,416 184,489 224,429 266,401 321,817
run 6 20,411 38,461 58,090 87,156 114,653 152,121 185,463 224,580 271,729 321,676
run 7 22,201 37,327 60,208 87,105 116,801 153,807 181,580 222,303 282,353 322,143
run 8 19,252 38,576 58,674 85,921 114,838 149,332 185,319 221,703 268,215 324,424
run 9 21,147 37,355 59,468 88,035 117,341 146,240 186,913 222,318 267,311 325,642
run 10 20,359 39,240 59,342 84,696 113,070 145,748 185,634 219,980 264,962 324,549
average 21,180 38,267 59,419 87,059 115,633 149,128 184,313 222,230 274,095 321,728

SD 1,030 0,799 0,872 1,178 1,426 2,465 1,639 2,345 12,718 4,316
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Figure 19: Generation duration chart with standard model generation compared
to generation with 9 parallel generation instances.
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B.5 Results of 9 parallel generation instances

Table 20: Test 5: baseline test.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 63,479 131,088 205,539 289,963 381,206 480,905 588,266 706,778 977,257 1005,953
run 2 63,824 129,650 206,297 289,591 383,696 479,498 590,711 702,504 839,904 1086,633
run 3 63,591 130,441 206,014 289,368 381,786 477,255 587,729 698,194 877,363 1026,001
run 4 63,039 130,511 206,274 289,177 382,782 478,904 585,849 698,638 962,817 1002,679
run 5 63,509 132,669 206,128 288,292 379,665 478,785 587,171 698,314 905,326 1003,724
run 6 63,057 130,416 206,373 290,012 381,475 478,052 586,221 697,625 936,121 998,815
run 7 63,347 129,833 205,733 288,723 381,754 478,303 588,163 699,317 995,881 998,345
run 8 63,366 131,049 206,207 290,171 380,636 477,895 585,653 695,540 870,342 999,442
run 9 63,640 129,898 205,936 289,076 380,160 477,984 587,894 694,419 841,115 1038,842
run 10 63,417 129,816 206,244 288,015 383,230 477,242 588,506 700,572 836,419 1168,711
average 63,427 130,537 206,075 289,239 381,639 478,482 587,616 699,190 904,255 1032,915

SD 0,264 0,940 0,294 0,661 1,236 1,125 1,659 3,484 56,113 30,223

Table 21: Test 5: 9 parallel tasks.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 20,021 36,764 63,442 89,722 119,770 158,699 196,201 237,656 280,604 324,350
run 2 23,671 40,377 61,938 85,778 122,824 149,326 191,572 234,930 275,859 318,257
run 3 21,025 39,450 61,609 87,901 118,738 151,839 191,082 232,500 277,355 324,262
run 4 22,744 35,111 64,256 87,384 118,490 156,825 192,616 230,265 270,737 325,768
run 5 21,462 40,434 61,948 88,613 118,784 151,790 186,635 229,285 275,698 322,757
run 6 23,102 36,965 60,976 90,758 119,635 155,109 191,344 234,099 271,106 315,929
run 7 21,250 40,383 64,454 88,519 118,295 152,053 191,606 234,536 274,480 323,991
run 8 22,914 41,535 63,892 91,516 117,614 155,105 192,196 235,752 269,692 316,575
run 9 21,503 37,631 62,312 89,751 118,532 158,733 194,457 232,603 271,757 313,306
run 10 19,989 34,655 62,301 88,878 119,080 152,209 190,591 234,601 296,230 314,910
average 21,768 38,331 62,713 88,882 119,176 154,169 191,830 233,623 276,352 320,011

SD 1,260 2,288 1,346 1,856 1,596 3,105 2,605 2,801 3,731 3,920
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B.6 Results of 10 parallel generation instances

B.6 Results of 10 parallel generation instances

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

110 210 310 410 510 610 710 810 910 1010

D
u

ra
ti

o
n

 in
 s

ec
o

n
d

s

# model elements

Total generation duration

baseline(10) parallel(10)

Figure 20: Generation duration chart with standard model generation compared
to generation with 10 parallel generation instances.

Table 22: Test 6: baseline test.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 61,79 126,715 204,036 285,613 371,922 468,335 690,52 699,078 840,018 990,717
run 2 62,283 127,917 203,006 283,893 370,504 467,949 596,884 699,63 834,587 988,115
run 3 61,758 126,861 203,917 285,353 370,695 469,567 653,44 698,747 837,629 987,045
run 4 62,194 127,434 202,909 283,155 371,024 470,780 661,29 702,366 837,515 985,1
run 5 61,951 127,052 202,957 282,273 372,312 470,791 604,024 696,394 837,507 989,654
run 6 62,530 126,87 203,412 282,814 371,610 469,327 655,376 698,78 837,519 990,194
run 7 62,398 126,892 202,293 282,466 370,684 469,352 610,325 694,883 836,253 990,001
run 8 62,509 132,126 204,029 283,249 372,264 469,156 626,155 699,179 833,507 990,477
run 9 62,481 127,519 202,452 281,281 371,017 470,785 619,431 695,069 835,918 981,508
run 10 62,362 127,964 203,794 281,124 371,478 469,991 665,879 698,968 835,268 984,895
average 62,226 127,735 203,281 283,122 371,351 469,603 638,332 698,309 836,572 987,771

SD 0,310 1,818 0,636 1,265 0,741 1,012 32,924 2,221 2,022 1,991
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B.7 Results of 11 parallel generation instances

Table 23: Test 6: 10 parallel tasks.

PPPPPPPPRun
# elem.

110 210 310 410 510 610 710 810 910 1010

run 1 24,219 44,614 70,707 97,591 129,228 160,618 203,504 263,939 304,225 351,458
run 2 24,039 39,769 67,364 92,971 129,429 164,996 212,706 253,374 323,773 350,301
run 3 26,424 42,923 65,721 99,678 130,120 162,997 205,732 266,384 308,812 349,740
run 4 24,417 43,464 67,848 94,150 125,754 165,411 201,646 253,964 304,248 355,930
run 5 24,122 44,076 65,118 98,179 128,910 166,755 201,749 249,259 306,750 345,912
run 6 25,851 40,983 68,906 93,757 125,770 163,342 206,661 251,962 306,985 354,070
run 7 21,570 43,826 66,757 98,229 123,331 164,835 206,157 255,584 315,216 347,628
run 8 24,225 41,095 69,284 98,406 131,225 160,903 203,184 253,753 303,024 359,164
run 9 26,098 44,335 67,910 100,520 125,094 162,643 254,657 250,062 306,718 346,915
run 10 24,716 43,137 67,726 98,027 123,252 163,921 224,933 255,959 299,984 339,143
average 24,568 42,822 67,734 97,151 127,211 163,642 212,093 255,424 307,974 350,026

SD 1,438 1,752 1,875 2,567 2,701 2,177 3,608 5,962 7,041 4,393
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Figure 21: Generation duration chart with standard model generation compared
to generation with 11 parallel generation instances.
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B.7 Results of 11 parallel generation instances

Table 24: Test 7: baseline test.

H
HHHH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 72,873 149,378 235,597 338,688 453,112 576,501 735,861 901,663 811,104 962,083
run 2 72,811 148,429 235,862 335,697 446,206 572,724 725,869 999,396 813,272 1202,636
run 3 72,747 146,223 234,599 338,285 454,305 577,257 728,004 894,402 807,8 959,232
run 4 72,511 149,204 236,226 335,466 445,255 579,606 733,632 902,925 811,151 961,398
run 5 72,162 146,471 234,863 337,564 439,788 576,17 726,808 899,768 808,679 966,088
run 6 73,191 148,846 236,044 336,796 442,457 574,318 730,188 899,255 811,715 964,278
run 7 72,3 147,342 237,656 337,734 442,672 577,26 731,812 899,822 808,675 1122,096
run 8 72,986 148,824 238,366 335,044 441,39 580,876 731,447 928,913 815,761 1048,394
run 9 72,83 148,684 234,689 334,993 446,578 574,637 731,369 1033,643 815,037 1150,409

run 10 72,588 147,891 235,214 335,935 444,309 576,986 731,573 993,408 817,101 1111,74
average 72,700 148,129 235,912 336,620 445,607 576,634 730,656 935,320 812,030 1044,835

SD 0,349 1,242 1,290 1,374 5,380 2,623 3,434 35,395 2,657 93,345

Table 25: Test 7, 11 parallel tasks.

HHH
HH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 23,816 52,589 59,323 116,171 150,431 193,761 241,716 277,218 289,33 329,334
run 2 27,129 44,543 79,022 111,545 155,041 175,254 241,412 287,09 274,16 326,213
run 3 24,318 47,661 79,101 109,088 145,071 188,409 236,836 290,805 269,309 328,686
run 4 26,955 44,425 76,75 112,164 148,988 186,555 238,098 289,826 283,918 323,777
run 5 32,291 43,972 76,314 111,433 129,053 191,062 237,498 287,014 281,822 331,324
run 6 26,146 44,345 77,034 115,123 149,206 189,383 239,122 284,278 282,903 329,986
run 7 26,939 44,865 76,66 112,01 150,917 189,247 233,681 287,743 273,961 322,537
run 8 31,779 44,08 73,541 112,38 148,817 189,907 239,136 292,883 279,991 323,678
run 9 23,803 44,207 75,334 111,093 155,424 188,873 234,594 286,771 274,796 328,704

run 10 26,929 44,371 73,616 114,056 150,273 190,13 231,942 284,136 283,643 326,622
average 27,011 45,506 74,670 112,506 148,322 188,258 237,404 286,776 279,383 327,086

SD 3,105 2,984 6,458 2,217 7,832 5,534 2,584 4,790 6,507 3,335

72



B.8 Results of 5 parallel generation instances with a small model
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Figure 22: Generation duration chart with standard model generation compared
to generation with 5 parallel generation instances for a smaller amount of model
elements.

Table 26: Test 8, standard model generation.

HHH
HH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 13,299 19,178 25,694 33,24 40,674 49,016 56,336 64,808 72,178 80,859
run 2 13,424 18,274 25,932 33,23 40,734 48,82 56,352 64,12 72,244 80,439
run 3 13,422 18,274 25,813 33,238 40,738 48,604 56,149 64,436 72,732 80,424
run 4 13,459 18,22 25,69 33,132 40,722 48,744 56,095 64,399 72,688 80,383
run 5 13,453 18,208 25,932 33,311 40,627 48,757 56,121 64,698 72,478 81,018
run 6 13,452 18,36 25,739 33,299 40,669 48,604 56,092 64,455 72,614 80,691
run 7 13,41 18,198 25,757 33,265 40,803 48,746 56,585 64,395 72,444 80,72
run 8 13,423 18,281 25,92 33,236 40,707 48,497 56,446 64,335 72,552 80,091
run 9 13,435 18,31 26,089 33,278 40,534 48,856 56,421 64,546 72,612 80,013
run 10 13,507 18,25 25,816 33,02 40,89 48,777 56,339 64,205 72,326 80,196
average 13,428 18,355 25,838 33,225 40,710 48,742 56,294 64,440 72,487 80,483

SD 0,060 0,329 0,105 0,055 0,053 0,159 0,185 0,213 0,199 0,299

73



B.9 Results of 4 parallel generation instances with a small model

Table 27: Test 8, parallel model generation.

H
HHHH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 9,059 9,411 14,207 14,229 17,221 19,344 21,654 24,271 27,033 29,635
run 2 8,969 9,568 13,754 14,556 16,292 18,844 21,801 24,522 26,857 29,26
run 3 9,239 9,437 13,763 14,212 16,743 19,536 21,757 24,29 27,38 29,546
run 4 8,828 9,987 13,06 14,425 17,301 19,301 21,637 24,627 26,33 29,112
run 5 9,004 9,996 13,542 14,642 16,184 19,65 22,071 24,452 27,219 29,867
run 6 9,484 9,606 13,586 14,273 16,696 19,394 21,581 24,208 26,813 30,396
run 7 9,11 9,384 12,376 14,342 16,984 19,085 22,033 24,876 26,815 29,341
run 8 9,029 9,873 12,865 14,396 16,621 19,452 21,935 24,74 26,873 29,542
run 9 9,28 10,072 13,633 14,352 16,99 18,816 21,218 24,113 26,608 29,069
run 10 9,064 9,14 13,775 14,311 17,382 19,449 21,68 24,482 26,902 29,515
average 9,107 9,647 13,456 14,374 16,841 19,287 21,737 24,458 26,883 29,528

SD 0,232 0,258 0,587 0,154 0,402 0,257 0,186 0,239 0,314 0,402

B.9 Results of 4 parallel generation instances with a small
model
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Figure 23: Generation duration chart with standard model generation compared
to generation with 4 parallel generation instances for a smaller amount of model
elements.
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B.9 Results of 4 parallel generation instances with a small model

Table 28: Test 9, standard model generation.

H
HHHH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 11,727 18,476 25,768 33,408 41,448 49,085 57,159 65,571 73,702 81,338
run 2 11,842 18,351 25,946 33,501 40,979 49,196 56,937 65,146 73,044 79,318
run 3 11,833 18,5 25,894 33,281 41,153 49,264 57,094 64,98 73,731 82,041
run 4 11,904 18,432 25,789 33,372 41,337 49,451 56,844 64,786 73,262 79,455
run 5 11,79 18,503 25,875 33,429 41,153 49,051 57,085 65,071 73,795 79,971
run 6 11,794 18,401 26,081 33,511 41,169 48,79 57,392 64,887 73,258 78,814
run 7 11,899 18,424 25,889 33,444 41,106 49,13 57,08 65,606 73,377 79,422
run 8 11,909 18,387 25,878 33,517 41,404 49,005 57,201 65,014 73,35 79,326
run 9 11,869 18,382 25,952 33,488 41,265 49,265 56,834 65,078 73,515 78,974
run 10 11,977 18,519 26,076 33,446 40,93 49,116 57,049 64,901 73,198 79,171
average 11,854 18,438 25,915 33,440 41,194 49,135 57,068 65,104 73,423 79,783

SD 0,060 0,055 0,096 0,080 0,161 0,194 0,165 0,302 0,271 1,128

Table 29: Test 9, parallel model generation.

HHH
HH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 9,672 11,639 13,602 16,626 19,396 22,571 26,045 28,485 31,561 35,152
run 2 9,04 11,698 13,586 16,538 19,99 22,783 25,92 28,665 32,205 35,438
run 3 8,961 11,628 13,594 16,613 19,653 22,451 25,557 28,847 32,501 35,275
run 4 8,939 11,64 14,05 16,316 19,591 22,807 25,267 28,786 32,467 35,647
run 5 9,011 11,883 13,69 16,536 19,855 22,704 25,443 30,071 31,861 35,548
run 6 8,959 11,737 13,356 16,696 19,469 22,661 25,458 29,072 32,1 35,313
run 7 8,859 11,688 13,57 16,362 19,651 22,612 25,964 28,533 32,036 36,273
run 8 9,072 11,609 13,305 16,473 19,462 22,845 25,652 28,509 31,932 35,897
run 9 9,046 11,757 13,404 16,663 19,471 22,688 25,315 28,442 32,176 34,943
run 10 8,944 12,482 13,469 16,815 19,517 22,543 25,8 28,924 31,974 35,449
average 9,050 11,776 13,563 16,564 19,606 22,667 25,642 28,833 32,081 35,494

SD 0,284 0,089 0,226 0,131 0,204 0,133 0,283 0,524 0,313 0,369
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B.10 Results of 3 parallel generation instances with a small
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Figure 24: Generation duration chart with standard model generation compared
to generation with 3 parallel generation instances for a smaller amount of model
elements.

Table 30: Test 10, standard model generation.

HHH
HH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 12,756 17,742 25,355 33,022 40,575 48,301 56,376 63,89 71,949 79,85
run 2 12,911 17,841 25,35 32,806 40,73 48,157 56,265 64,198 72,307 80,108
run 3 12,901 17,793 25,284 32,907 40,757 48,32 56,045 63,929 72,101 80,128
run 4 12,838 17,895 25,347 32,762 40,252 48,196 55,979 64,076 71,882 80,31
run 5 12,857 18,179 25,403 32,744 40,27 48,071 55,743 63,79 72,067 81,016
run 6 12,833 17,97 25,368 32,887 40,552 48,129 56,185 64,248 72,015 80,091
run 7 12,867 17,871 25,27 32,893 40,545 48,08 55,956 64,024 71,83 80,181
run 8 12,849 17,85 25,563 32,89 40,288 48,409 55,866 64,04 71,915 80,211
run 9 12,909 17,824 25,462 32,854 40,463 48,51 55,807 64,242 71,903 79,917
run 10 12,812 17,884 25,464 32,769 40,603 48,403 56,113 63,91 71,924 80,111
average 12,853 17,885 25,387 32,853 40,504 48,258 56,034 64,035 71,989 80,192

SD 0,056 0,134 0,090 0,090 0,203 0,123 0,211 0,154 0,152 0,341

76



B.11 Parallel generation durations combined

Table 31: Test 10, parallel model generation.

H
HHHH

# elem.
110 210 310 410 510 610 710 810 910 1010

run 1 8,994 11,402 15,108 19,006 23,045 27,058 31,546 35,762 40,269 45,038
run 2 8,884 11,425 15,214 19,117 23,005 27,498 31,306 36,152 40,157 44,621
run 3 8,88 11,259 15,168 19,08 22,931 26,993 31,245 35,597 40,828 44,747
run 4 8,857 11,171 15,242 19,121 22,944 27,253 31,538 35,624 40,39 45,036
run 5 8,941 11,161 15,084 18,859 23,113 27,256 31,425 35,768 39,974 44,509
run 6 8,803 11,343 15,16 19,332 23,033 27,265 31,233 35,676 39,93 44,636
run 7 8,9 11,229 15,246 19,103 22,783 27,168 31,432 36,269 39,948 45,161
run 8 8,902 11,205 15,241 18,755 22,882 27,15 31,374 36,014 40,699 44,445
run 9 8,777 11,261 15,199 18,957 23,447 26,987 31,556 35,901 40,18 44,467
run 10 8,827 11,259 15,088 18,782 22,882 27,09 31,731 35,902 40,204 44,375
average 8,877 11,272 15,175 19,011 23,007 27,172 31,439 35,867 40,258 44,704

SD 0,067 0,103 0,063 0,177 0,104 0,154 0,121 0,254 0,344 0,270

B.11 Parallel generation durations combined
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Figure 25: Parallel generation durations of 5 to 11 parallel instances combined.
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B.12 Overhead of loading the source model with 11 par-
allel instances
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Abstract— Utilizing models in software engineering is gaining
popularity and there is an increasing need to generate faster.
There are many approaches available to fulfill this need by
leveraging the Atlas Transformation Language (ATL) model
transformation language and its underlying platform to improve
the performance of a generator. However, these approaches are
specific for declarative transformation languages, like ATL. In
this thesis we do a knowledge analysis of several such approaches
because of the good availability. These are ATL on MapReduce,
multi-threaded ATL, live transformations and lazy transforma-
tions. All of these approaches rely on model element traceability
which is why traceability approaches are also analyzed. Our
case study organization developed a generator where the model
transformation are programmed in a general-purpose language.
This limits the applicability of the available approaches in liter-
ature which is why a more generic approach is researched that
improves the performance of model transformations. A reference
architecture is proposed with corresponding documentation. This
documentation describes important design decisions, required
protocols and practical issues that must be taken into account
or addressed when developing a generator aimed at faster model
transformation. These design decisions and processes result from
the performed case study where we implement approaches from
the knowledge analysis. First, traceability is implement followed
by partial model transformation that use the insights gathered
from traceability. Both are prerequisites from parallel and incre-
mental model transformation which are common approaches to
reduce the time needed to finish a task. Finally, an experiment
is performed with parallel model transformation which shows a
performance improvement of 2.5 to 3.5 times.

I. INTRODUCTION

Utilizing models in software engineering is gaining popu-
larity and there is an increasing need to generate faster, since
end-users want fast responding applications [8]. However,
organization have difficulties achieving this. [9] mention that
industrial validation of available literature on MDD is scarce
and can thus only help organization marginally. Moreover,
there is currently a lack of any scientific artifact that presents
information to create an optimized generator in a structured
way. This artifact could greatly help MDD adopting orga-
nizations in building high performing generators. Literature
is available on declaratively model transformations such as

This is an AMUSE paper. See amuse-project.org for more information.

Atlas Transformation Language (ATL). However, there is only
very little literature available on generators built in a general-
purpose language in combination with improving performance.
The case study organization encountered this issue in their
quest in reducing the generation time.

Figure 1 shows a typical MDD execution flow where an
application is created given an input model. Executing this
flow typically results in unnecessary waiting time for end-
users since all transformations are executed sequentially. The
total generation time may take minutes up to hours [14] which
negatively influences the user experience as stated by [4].
For Software Producing Organizations (SPOs) it is therefore
crucial to improve this process to reduce the time required to
create the initial application and is the first identified problem.
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Fig. 1: Generator architecture of the case study organization.
The arrows show the data flow between two stages. The
transformation pipeline itself is not parallel but sequential.

Furthermore, SPOs may offer end-user variability as explained
in the introduction where the end-user manages the model
and can thus make modifications at any time. Additionally,
the end-user determines the moment when a regeneration of
the model is triggered. The end-user would normally choose
to directly trigger a regeneration after a model modification
to apply the changes. This situation is opposed to when the
organization that build the generator is in control of the model
and can choose a point in time to upgrade the applications.
These subsequent model generations form a second common
use case which is called incremental generation. [11] argues
that incremental refinement is very useful since it is a process
that is executed far more frequent than a full generation.
An implicit issue with large organizations and MDD is the
high capacity of hardware resources needed for generating
the applications. In case only a small portion of the model is



modified there are still many resources needed when the full
model is generated. This also means that a larger amount of
hardware resources must be available to handle peak moments
to ensure high responsiveness. Cloud-scaling cannot provide
a solution because of the overhead of spawning additional
servers. This issue can be solved by using incremental model
transformation.

The subject for our research is the imperatively programmed
generator provided by the case study organization. The goal
is to improve the performance of model transformations. The
partial generation technique is used as a means to scope the
research. This paper answers the question: How can the per-
formance of imperative model transformations be improved?.
The following sub research questions (SRQ) are designed to
answer the main research question. First, available literature
on improving the performance of model transformation is
gathered and analyzed to answer SRQ1: What is the current
state of methods that reduce model transformation time in
Model-Driven Development?. Research topics are parallel gen-
eration to reduce generation time for the initial generation and
incremental generation for subsequent generations. Moreover,
traceability and partial generation are researched which are
considered prerequisites for both parallel and incremental gen-
eration. Next, insight into the model transformations is needed
to further research and reason about applicable improvements
and answers SRQ2: How is insight gained in the model trans-
formations in a Model-Driven Development environment?.
With the insights available the second prerequisite for both
incremental and parallel generation is researched, namely
partial generation. This research answers SRQ3: How can
these insights be utilized to improve the model transformation
performance in a Model-Driven Development environment?.
Research from SRQ2 and SRQ3 can be combined to handle
both the initial and the subsequent generation scenarios. This
is accomplished by utilizing parallelism and incremental gen-
eration and answers SRQ4: Does the utilization of the insights
lead to an improved performance?

The remainder of the paper is structured as follows:

II. RELATED WORK

A. Parallel Model Transformation

[13] research the scalability of model manipulation tools
by using parallel execution. They mention that it is complex
to implement parallel model transformation in a general-
purpose language even though parallelism is a traditional
way of scaling computations. The reason for this is the lack
formalizations. Furthermore, they argue that ATL and the like
have strong parallelization properties which is supported in
the literature mentioned before. Furthermore, the default ATL
compiler and virtual machine are adapted to support multi-
threaded processing. The authors include task parallelism and
data parallelism into their research as two common approaches
to scale model transformations, both are explained next.

1) Task Parallelism: Each task processes the same and
complete data set, but only executes a distinct set of the
operations on that data. This approach works well in the

case that no dependencies are introduced between tasks as
a result of processing the same data set. These dependencies
are introduced when tasks rely on the output created by other
tasks to complete their computations as stated by [6]. This
concept is of course not specific for languages like ATL
but also for imperative languages as is demonstrated in [12].
Transformation rules written in ATL are highly independent
from other rules which makes this approach suitable for
implementing parallelism.

2) Data Parallelism: Data parallelism is the opposite ap-
proach in which the model is partitioned and distributed to
the tasks. All the tasks execute the same set of operations on
the assigned model partition. The model partitioning thereby
determines how the transformation is distributed for parallel
execution as explained by [15]. A main goal of this approach
is to reduce cross-task interaction by reducing or eliminating
the access of shared model elements. This is especially an
interesting approach in a distributed setting where large models
are processed and the communication cost between processing
unit become high. This approach correspond with the ATL
with MapReduce approach in the previous paragraph.

B. Huchards Traceability Framework

Trace info can help in these scenarios since model transfor-
mation can be very complex. MDD generator like in ATL and
the case study generator are composed of multiple successive
model transformations and it is therefore difficult for devel-
opers to recognize the flow of a single element and where
it ends up in the output. To gather such traces a system is
needed that collects trace information on the behavior of model
transformations while they are executed. This concept is called
a traceability framework in literature and such a framework
is proposed by [7]. In their research a metamodel for trace
information is provided and explained how to collect trace
information. They use Kermeta to write model transformations
which has both object-oriented and model-oriented constructs
and use imperative structures. Moreover, they note that it
is difficult to create traces for these model transformations
because of the imperative syntax of the Kermeta language.
The authors propose the following definitions:

• Object An Object is the most general element and forms
the base of all other elements in the Kermeta language.

• Link A Link references one source and one target Object.
• Step A Step contains the traces of a single transformation

and are composed of multiple Link.
• Trace A transformation trace is a bipartite graph. The

nodes are partitioned into two categories: source nodes
and target nodes. Step can be chained as an ordered set
to from a transformation chain trace.

III. GAIN INSIGHT INTO MODEL TRANSFORMATIONS

As already explained in Section II traceability is a prerequi-
site for both incremental and parallel generation. Dependency
information is needed to partial source models and to deter-
mine what target elements need to be updated given a source
model change. We first describe the case study method and



traceability technique used for the case study. Then the case
study itself is explained.

A. Huchards Traceability Framework Implementation

Huchards traceability framework is implemented in the case
study generator to validate the approach. This approach is con-
sidered best applicable because of the language independence.
For the trace creation itself code must be added to the model
transformation code and this process is called explicit tracing.
Since model transformations are intertwined throughout the
code it can be difficult to recognize a single atomic model
transformation. Therefore, it is difficult to choose the locations
in the code where trace generating code should be placed. Fur-
thermore, while adding trace generating code it soon became
arbitrary where this code should be added. In literature we did
not came across a structured method on how to implement
trace generating code into the model transformation code.
The executed approach requires significant work to trace all
relevant model transformation which becomes increasingly
complex for larger generators with over 200.000 lines of code.
This observation is summarized in Observation 1.

Observation 1: Adding trace generating code to a MDD
generator can be complex and time consuming. Trans-
formations written in an imperative languages can be
complex that also make it difficult to correctly add trace
code. Declarative transformations are mostly one-to-one
transformations which are straightforward to trace and can
usually be handled by the underlying platform.

After having implemented trace generating code between the
model transformation code it is important to keep the trace
code up-to-date (Observation 2). Model transformation can
be adapted over time and the corresponding trace generating
code must be kept up-to-date. Such an adaption can be a
straightforward deletion or can be an operation where some
logic is changed regarding the model transformation where
the trace object themselves keep their meaning. This process
becomes more complex when the functional meaning of a
traced object is altered. The developer would in this case have
to determine whether the trace is still needed and/or whether
additional traces have to be created in case a trace chain is
interrupted.

Observation 2: It is important to keep the trace code
up-to-date to ensure that a trace model can be created
and that captures all traces between model transformations.
The trace model is considered incorrect when it does not
represent all traces that should exist given the source model
and model transformation and can in that case not reliably
be used for partial generation.

For efficiency purposes we only want to gather useful trace
information (Observation 3). We noticed that it is hard as
a developer to determine which transformations have to be
traced. There are situations where transformations do not pro-
vide additional information regarding traceability. This might
be the case for a chain of one-to-one model transformation
where no new complex dependencies are introduced and the
existing dependencies can be induced.

Observation 3: Eliminate redundant traces in the trace
model. For the sake of fast generation times it is useful
to not trace all model transformation when this is not
necessary.

However, it can be difficult to recognize this type of transfor-
mation since extensive knowledge is needed about the entire
flow of the generator. This becomes increasingly complex as
the size of the MDD generator grows. Nonetheless, developers
can be aided in this process by a visualization of the trace
model which makes it easier to recognize redundant traces.
Moreover, by analyzing the trace model a program can hint
redundant trace links. A precondition of using these supporting
tools is that a complete trace model must be created. This
is needed since automatic analysis is only reliable when
full knowledge of the domain is available, otherwise invalid
conclusion could be made. This complete trace model can then
based on analysis be slimmed down to reduce the amount
of collected traces. However, this would lead to an impasse
when model transformation in the generator are added, edited
or deleted. These operation would likely alter the trace model
and again the complete trace model is needed to determine
whether the trace model is affected and what trace an safely
be removed from the model.

Lastly, we store the trace model in a file to make it reusable
during model evolution. Therefore, we researched what format
can efficiently store the trace model since no literature could
be found on which format can best be used to store the trace
model in and resulted in Observation 4. XMI is de facto
standard in declarative model transformation such as in ATL
where all models are expressed in XMI. In the case study
we serialized the in-memory trace model to JSON since the
available XML serializer could not serialize our complex data
structure. We argue that JSON is a good format to use since it
is more compact than XML and might be faster to serialize and
deserialize compared to XML. These properties should make
it more suitable format to make sure that trace model export
and import do not slow the pipeline more than it should.

Observation 4: No literature is available on what format
is best used to store the trace model in. Several common
format, like XMI and JSON, can be used and each provide
benefits as well as limitations. XMI is more expressive
where JSON would normally yield a smaller file size. We
consider this an important matter since reading and writing
an additional model next to the source models themselves
imply also additional computation time.

IV. USE THE GATHERED INSIGHTS TO IMPROVE MODEL
TRANSFORMATION PERFORMANCE

The insights can be used to partition the source model and
is described in Section IV-A. Secondly, a partial generation
technique from literature is implemented and researched on
whether the approach is generalizable to other contexts in
Section IV-B. Based on the insights gathered on the case
generator (Section III) and the related work analysis the data
parallelism approach from [13] is selected for implementing
in the case study.



A. Model Partitioning Implementation

Model partitioning, which is needed for data parallelism,
is not straightforward. The reason for this is that static anal-
ysis of the transformation is very complex for imperatively
written transformations. [3] supports this claim by outlining
that model partitioning is very challenging because of the
many dependencies between model elements combined with
complex transformation rules. Literature is provided on model
partitioning for ATL transformations. However, there is insuf-
ficient applicable literature on the topic of model partition-
ing for non-declarative transformations. Since the case study
generator does not possess formalizations like in declarative
transformation only model partitioning of the source model
can be researched.

1) Partitioning the case organization model: This part of
the case study prepares the case organization source model
for partial or parallel generation. Only the source model is
analyzed since the transformation themselves cannot directly
be analyzed in a formal way. A specific element type in the
model is chosen to partition the model on. This element type
can be seen as a module element to which other elements
are attached. From the resulting partitioning we can conclude
that the case input model was not designed with partial gen-
eration in mind. There are dependencies between work areas,
moreover, there are also many internal dependency relations
within a single work area. This makes it difficult to partition
the model elements into equal partitions and this problem is
recorded in Observation 5. This is generally desired because
equal partitions result in the highest time reduction when
doing parallel generation. That is, all partial instances should
have more or less the same running time without any outlier
which delays the generation and deployment flow. It must
then, however, also be the case that the model element type
distribution is approximately equal for the partitions since the
generation time per element type can differ significantly.

Observation 5: The structure of the source model signif-
icantly affects the resulting partitioning. A source model
can usually be seen as a graph which means there are
dependencies. The number of dependencies is ideally kept
to a minimum to partition the model into equal parts. This
is turn also reduce the number of overlapping elements in
partitions.

Furthermore, the following questions were encountered
during this case study for which we nor literature could
provide any answer to. The questions are captured as separate
observations and listed below.

Observation 6: No guideline or protocol could be found
to determine what dependencies are relevant for a given
change. Related to that; how can this be leveraged to
decrease the number of elements that need to be processed?
Observation 7: No suitable element type or unit is found
that is best used to do model partitioning. Furthermore;
what properties does such an element type need to be
effective and efficient for partitioning.

B. Partial Generation Findings

An issue is encountered that is a consequence of partial
generation with a generator designed for sequential generation.
Our sequential generator assumes the availability of all objects
but is not the case for partial generation. An example of
this is the phase where in-memory objects are compiled to
a software component and is captured in Observation 8. To
be able to compile a subset of the generated artifacts much
more dependency analysis has to be performed. This means
besides taking design-time and generate-time dependencies
into account to also include run-time dependencies. However,
this would make the partitioning phase even more complex.
Moreover, the size of partitions will grow by significantly
since much more elements are needed in the partition. This
in turn reduce the number of parallel instances that can be
used and increase the time needed to analyze the trace model
for partitioning.

Observation 8: When the MDD generator generates
source code for a compiled language it cannot be compiled
directly by that task itself. There are usually compile-time
dependencies to artifacts that are not created by the current
tasks and thus do no exist yet.

Moreover, a fundamental issue was encountered on how
partial generation can be implemented and how to do it effi-
ciently. The model partitioning algorithm require information
that is needed to partition on. Other settings might be a set of
model element to process or a toggle that indicates whether the
entire model has to be generated. This information result from
either pre-configured settings or from intermediate generator
artifacts. This information could either be globally available
or passed through the transformation pipeline up to the point
where it is needed but no best practice is found and resulted
in Observation 9.

Observation 9: Make partitioning properties or informa-
tion available to the partitioning algorithm. No efficient
strategy is found for any architecture.

The partitioning algorithm is implemented directly after the
source model loading model. This is required to ensure that
all model elements are available during generation since there
might be dependencies to elements outside the created par-
tition. Moreover, the available generator architecture resulted
in duplicate partitioning logic and is summarized in Observa-
tion 10.

Observation 10: An early phase or a sufficiently high
abstraction must be chosen to do the partitioning. Oth-
erwise, partitioning code is spread throughout the model
transformation pipeline.

V. EXPERIMENT WITH PARALLEL GENERATION

In this section the previously researched traceability and
partial generation are combined to research both parallelism
and incremental generation. By doing this we can provide an
answer to SRQ 4: Does the utilization of the insights lead to
an improved performance?. We start with parallel generation
where we perform an experiment in Section V-C. After that,



we research the implementation of incremental generation in
the case study generator.

A. Parallel Generation Rationale

Issues might arise regarding limited memory and high
execution times when dealing with large and complex models
as mentioned by [2]. [13] state that parallelism is a traditional
way of scaling computations and is already extended to the
context of MDD. Moreover, [1] show that the generation time
can be greatly reduced by using multiple tasks over which the
work is divided.

B. Data Parallelism Continued

Research on parallel generation continues with the data
parallelism approach used earlier for research on partial gen-
eration. As was already stated in the related work section
no modification to the generator itself is needed to use the
approach for parallel model transformation. However, to be
able to use our case generator in a parallel setup we had
to duplicate the source model for each parallel task to avoid
file locking conflicts. We define a parallel task as a process
that use the generator executable with a set of arguments that
runs in parallel with other instances of the generator. These
argument are, among others, the location to the source model,
the partition to generate and the output location where created
artifacts are written to.

All partial generation tasks that are executed in parallel are
generating their own output artifacts. However, in the case of
duplicate filenames, for example, the actual contents of the
files has to be merged. When this is the case each partial task
needs a dedicated output folder to avoid file locking conflicts
while writing to disk. Merging here comprise two operations,
first the separate output folders must be copied to a single
folder which is used by the application. Secondly, in case
partial files are produced a merge operation must be executed.
This merge often requires domain information to know how 2
or more files are to be merged into one. A merge as in version
control systems does not work in this case since two partial
files are not actual versions of each other.

Observation 11: Partial output artifacts created by sep-
arate partial tasks must be merged to form a complete
application. The merge operation of these files require
domain knowledge such as what the content of the artifacts
represent and how it should be merged.

C. Parallel Generation Experiment

The goal of the experiment is to prove a reduction of
the total generation time and the overhead that parallelism
might introduce. Additionally, this section describes how the
experiment is conducted and how the results are measured and
analyzed.

1) Initialization: For the experiments we created custom
input models which are based on the models designed by the
case organization. A single model is created for every test case
and is composed of a predefined number of model elements.

All measurements are performed on a virtual machine (VM).
The VM is installed on a native hypervisor together with two

other VMs. The hypervisor runs on a host server with the
following specifications:

• Microsoft Windows Server 2012 R2 Standard
• Processor: Intel Xeon CPU E5-2620 @ 2.40GHz v3, 8

Cores, 8 Logical Processors. L1 cache: 8 x 32KB. L2
cache: 8 x 256KB. L3 cache 8 x 15MB.

• Memory: HP DDR4-2133MHz 16GB.
• SSD: HP LK0800GEYMU 800GB.

The VM we used has the following specifications: 8 CPU
cores, 16 GB RAM and 70GB SSD. Where possible all
programs not needed for running the operating system or
conducting the test are shut down. This is done to eliminate
unnecessary load on the system. After every test there is
a cool-down period to make sure any CPU activity of the
previous test does not affect the next test.

2) Experiment Structure: The experiment is executed by
conducting ten sub-experiments and each experiment consist
of a baseline and hypothesis test which are described below.
Each test is composed of ten test cases where every subsequent
test case uses a model that contains a larger number of model
elements. Each test case is repeated ten times (called a run) and
the averages will be used for analysis. There is a cool-down
period after a run of three minutes. In this interval period the
hardware utilization will be restored to normal levels to make
sure subsequent runs do not affect each other. A timings file
is created while generating and contains the timings of each
step in the model transformation pipeline of the generator and
is used for later analysis.

a) Baseline Test: A baseline test is executed for each test
case by generating the complete model with the unmodified
generator. This version of the generator does not contains
any changes made for this research like partial generation or
traceability information collection. This generator version is
suitable for baseline measurements since it is developed before
our research started. Moreover, its properties were used to
formulate the business problem of the case study company.

b) Hypothesis Test: These tests use the partial generation
implementation from Section IV to run in parallel. Each partial
tasks is passed a separate source model since a single model
cannot be used in more than one program at the same time.

3) Analysis: Each sub-experiment results in two sets of ten
total generation timings, one for the baseline and one for the
hypothesis. The total generation time for the hypothesis test
is the task with the longest running time. For the analysis
itself we use the averages of the total generation timings.
The graph with ten parallel tasks is shown in Figure 2 and
depicts a time reduction given a certain number of model
elements by using parallelism. All others tests show the same
trend in performance improvement with a different number
of parallel tasks. On average a generation time reduction
of 2.5 to 3.5 times is achieved. This is slightly better than
the results achieved with ATL on MapReduce as explained
earlier. However, it must be noted that our models are not
real world models and in practice such an equal distribution
would be hard to accomplish due to model and transformation
dependencies.
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Fig. 2: Generation duration chart with standard model gen-
eration compared to generation with 10 parallel generation
instances.

Moreover, overhead is introduced by, among others, running
multiple generator tasks at the same time, as described above.
However, the overhead is not directly visible from the results
since we manually created the models and no partitions
are computed. Nonetheless, the experiment results do show
that the parsing operation becomes slower when generating
in parallel compared to the baseline and is summarized in
Observation 12. The disk is normally a common bottleneck
but has only 10% utilization during the parsing phase. The
probable bottleneck in this case would be the CPU which
is nearing 100% utilization when multiple generator tasks
are running at the same time. This observed trend holds
for all transformations before the introduction of our partial
generation construct. These transformations take up to 2 to
3 times longer in the hypothesis tests compared to their
sequential counterpart. The experiment result that supports our
observation is depicted in Figure 3.

Observation 12: Loading multiple source models at the
same time adds transformation time to the model loading
phase.
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Fig. 3: Source model loading overhead with 11 parallel task
compared to sequential model transformation.

Lastly, the separate steps in the pipeline can be compared
where timings from the parallel tasks are aggregated. The
standard generation is again used as the baseline and durations
from the partial generations are compared against that. The
aggregated timings compared to the baseline timings shows
the overhead of parallelization as a whole.

D. Incremental Generation

Research on incremental generation is limited to literature
study and to applying findings from the case studies to reason
about possible issues incremental generation. No existing ap-
proach could be implemented due to the lack of a traceability
model and the infrastructure needed to keep the application in
memory is not readily available. The traceability case study
provide us only with a small set of traces for only a few
model transformations. It was too time consuming to add
trace generating code throughout the complete generator as
is elaborated in Observation 1. Despite not being able to
implement an incremental model transformation approach we
could reason about problems regarding the implementation and
use an incremental transformation approach. The first issue
we foresee in doing incremental generation is the process of
calculating the delta of two model versions. In Observation 12
we observed that is not desirable to load and parse multiple
models at the same time. At some point a delta of two models
must be calculated to use in incremental transformation. These
two models are the updated model and the previous model
version on which the changes are applied. We consider that is it
useful to optimize this process since it would take unnecessary
time and hardware resources to load and parse two complete
sets of source model each time (see Observation 13).

Observation 13: Loading new and previous model to
calculate a delta is time consuming. This delta-calculation
approach is best avoided when possible to prevent intro-
ducing transformation overhead.

A second problem we expect regards the updating process
of the trace model after the model is adapted which in
turn invalidates the existing trace model (Observation 14).
Model dependencies can be analyzed from the model itself
but additional dependencies are introduced in the generator
itself. The trace model can be updated by transforming the
new model which automatically creates a new trace model as a
result. However, this would defeat the purpose of using a trace
model and incremental transformation since the transformation
already created the complete application. Moreover, there is no
applicable literature available that directly addresses this issue
in our domain.

Observation 14: Efficiently creating a traceability model
from an updated model is not straightforward. A native
approach would execute the entire model transformation
pipeline with the new model to collect all relevant traces
for that model. However, this approach does not use any
benefits of the incremental model transformation approach.

VI. REFERENCE ARCHITECTURE

This section describes our reference architecture that can be
used to design a MDD generator tailored to fast model trans-
formation. The references architecture is based on observations
made in the case study described in the previous section.
By proposing our reference architecture the main research
question is answered: How can the performance of imperative
model transformations be improved?



In this section the observations made previously are
complemented with suggestions on how to deal the observed
problem. Not all observations could be complemented
with one or more suggestions when no solutions could
be researched or due insufficient experience. providing
suggestions for these observations is considered future
research since we did not have the time to extensively
research all observations. Moreover, we aim to provided
suggestions that are also applicable to other generator
architectures than the one we researched. This is needed to
design the reference architecture is a more generic way and is
not focused on the case study organization. Those suggestions
are where possible based on literature, experiment results or
domain experts from the case study company.

The guideline artifact itself is created by looking at the as-
is situation in detail combined with conclusion and results
from the case studies. An outline of the as-is situation of
the case study company and is described in the research
approach section. During the case studies we looked at short-
comings and bottlenecks of the current setup. Moreover, we
primarily focused on architectural patterns and excluded de-
tailed implementation specifics that might influence the model
transformation performance. We could only make observations
on the aspects we research and thus not all steps needed to
create a MDD generator are explained in detail. Expanding
our proposed reference architecture is left to future research
where additional case studies provide new insights. In the
remainder of this section we gradually built and explain our
proposed architecture. All observations and suggestions made
are numbered and linked to elements or arrows in the provided
figures. First, the initial model transformation scenario is
covered and depicted in Figure 4. After that, the incremental
generation scenario is covered and shown in Figure 5.

A. Initial Model Transformation

1) Model Partitioning: The first artifact in Model-Driven
Development flow are one or more source models (A). These
source models contain dependencies and form the traceability
model as explained in traceability case study (Section III).
Observation 5 states that the number of dependencies should
be kept to a minimum since dependencies are disadvantageous
when creating partitions with an equal distribution of model
element types. We propose a solution in which the modeler
is made aware of the dependencies he or she created either
explicitly or implicitly by modifying the model. A source
element relies on a specific property in the target element and
thus any change that might modify this property also affects
the source element. The modeler could be assisted while
creating or modifying the source model about introducing
new dependencies and the number of existing dependencies
between two elements. It is beneficial to reduce the number
of dependencies on properties from other elements. This can
be achieved by following the dependency inversion idea of
the SOLID programming principles by Robert C. Martin. This
means for example that a base element is responsible for the

calculation and a dependent element only requests the resulting
value. This setup makes sure that a minimal amount of existing
artifacts are recreated after a model modification.

Solution(s) for Observation 5: Make the modeler aware
of the existing dependencies in the source model. Further-
more, indicate the impact a given model adaption has on
the dependency or trace model. SOLID principles can be
used to guide the modeler in designing the model that is
best structured for model partitioning.

In general, loading the source model(s) into memory is the
first operation performed by a MDD generator. This is needed
before analysis and thus partitioning of the source models can
be performed. We researched this phase and during our parallel
generation experiment we observed that additional model
transformation time in introduced in the model loading phase.
This issue is elaborated in Observation 12 and corresponds
to B in Figure 4. We proposed two solutions to deal with the
problem. First, start the pipeline sequentially where is single
model is loaded and preparation steps are performed (B). This
approach is still equivalent to the data parallelism approach.
After that, the partition can be created (C) and executed in
parallel in remainder of the pipeline (D). Secondly, in case
there is an existing generation an external tool can be used
that partitions the source models. Following this approach
the existing generator architecture can be left unaltered and
multiple instances of the generator can be executed with each a
different model partition. It is the responsibility of the partition
algorithm to create partitions that can be generated by itself
without additional dependencies to other elements.

Solution(s) for Observation 12:

1) Postpone the model partitioning phase to ensure that
only one instance of a source model has to be loaded
which is used throughout the remainder of the gener-
ator. After the model is loaded it can be analyzed for
partitioning and later parallel model transformation.

2) In case an existing generator is used an external tool
can be leveraged that partitions the source models.

For both approaches see Observation 1 and the corre-
sponding solution on issues observed with collecting trace
information used for model partitioning.
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Fig. 4: Initial model transformation reference architecture.
A source model (A) is passed to the generator. A first set
of model transformation, among others, load the model into
memory (B). Then a partition algorithm is executed that ana-
lyze the in-memory source model (C) and a trace model (D) to
partition the model for parallel model transformation (E). The
trace model is either based on involved model transformation
given a source model or a model of all dependencies in the
generator. Finally, each parallel model transformation task
write a distinct set of output artifacts that together form the
output application.

2) Create and Use Traceability: In Observation 10 we
observed that partition code was duplicated and used at
multiple locations in the transformation pipeline. Before we
already suggested a partition algorithm and therefore we also
include this as a module in our reference architecture (C) to
solve the observation. This module contains all partitioning
logic in a central location and use the generated traceability
model to partition the source models into a number of
partitions. These partitions should be complete to make sure
no external dependencies are present. These partitions are
then generated in parallel (E).

Solution(s) for Observation 10: We propose a model
partitioning module which should be a single phase in the
generation pipeline that partitions the source model(s). By
conforming to this property we can also provide a solution
to Observation 12, where we observed that the entire
model is needed for each parallel instance. The created
partitions are then given to the parallel generation instances
to parallel model transformation.

We argue that the most important feature of an efficient
partitioning algorithm is that small and evenly distributed
partitions are created. This can be achieved by selecting the
right model element type with the right granularity. This is
easier said than done since no suitable element type or unit is
found that is best used to do model partitioning. Furthermore,
no element properties could be defined taht are needed to
be effective and efficient for partitioning and is elaborated in
Observation 7.

Creating the trace model (D) in a generator programmed
in a general-purpose language is not straightforward. More-
over, this process is time-consuming since trace generating
code is insert by every model transformation as mentioned
in Observation 1. However, we could not find a solution
that is less time-consuming and yields the same result. The
traceability approach where trace generating code is added to

model transformation requires that the transformations have
to be executed with a source model in order to create a
trace model. We consider this as a drawback since a large
part of the transformation pipeline if not all is executed to
collect all traces as described in Observation 14. We propose
several solutions to create the trace model more efficiently.
First, we describe a simulation approach where only a part of
the transformation pipeline is executed up to a certain point.
At this point all dependencies that exist are either known
or can be deduced. This approach might require changes in
the architecture to ensure that at some point only one-to-
one transformation are executed of which the dependencies
can be deduced. Since no new dependencies are introduced
beyond this point there is no need to generate any further. It
is of course desirable that this point comes as early in the
transformation pipeline as possible. A re-run of the pipeline is
needed with the new source model and the newly created trace
model to generate the output artifacts themselves. Secondly,
we propose an alternative method where model transforma-
tions are formalized to enable static analysis and thereby
collecting trace information. A downside of this approach is
that the abstract and imperative transformation rules must be
kept in sync. A second issue is that all transformations must
be extracted and rewritten in a formal language. A benefit of
this approach is that the trace information is independent from
source models and can be reused for all end user. Lastly, theory
from abstract interpretation could be used to statically analyze
the model transformations. [10] propose a new algorithm to
analyze logic programs by using abstract interpretation. The
algorithm focus on inferring dependencies between program
expressions. However, no direct applicable approach is found
for transformations programmed in a general-purpose lan-
guage.

Solution(s) for Observation 14:

1) A simulation approach where a part of the transfor-
mation pipeline is executed with the new model to
gather traceability information. The pipeline is re-run
to utilize the trace model for model partitioning to
generate in parallel.

2) Formalize all model transformation and store them
as a separate artifact. The formalization ensures that
static analysis can be applied to create the trace info.
The created trace model can be reused for all end
users that use that version of the generator.

3) Use abstract interpretation to statically collect depen-
dencies in model transformations.

3) Practical Take-aways: During our case study we re-
searched how to best implement our partial generation algo-
rithm. No literature was found and resulted in Observation 9.
However, we could not provide any well-reasoned suggestions
for the observation and is left to future research. Moreover,
compiling the output artifacts separately did not work in D as
observed in the partial generation case study and is elaborated
in Observation 8. We describe a work-around on how to
deal with this observed issue. The work-around is to avoid



generating source code for a compiled language. This is the
approach our case study organization is already migrating to.
This approach entails that the generator generates artifacts that
are interpreted at runtime.

Solution(s) for Observation 8: Avoid generating source
code for a compiled language in partial generation. This
eliminates many dependencies between output artifacts.
Instead generate artifacts that can be interpreted. Since the
actual use of the artifacts are delayed to runtime all partial
outputs are combined which means that all dependencies
can be resolved.

Lastly, the partial model transformation tasks at D (Figure 4)
all write their output to a single output location (F). In Obser-
vation 11 we described the file locking conflict problem with
this approach. Therefore, we propose a solution by ensuring,
where possible, that the partial model transformation tasks to
not produce overlapping output artifacts. This eliminates the
need to copy different output folders and to merge files with
the duplicate filenames. The internals of the generator must be
adapted in such a way that each partial task creates a disjoint
set of artifacts. This can primarily be achieved by conforming
to this requirement during model partitioning.

Solution(s) for Observation 11: Ensure that the partial
model transformation tasks to not produce overlapping
output artifacts. This eliminates the need to copy different
output folders and to merge files.

B. Incremental Model Transformation

The incremental model transformation scenario starts some-
what different compared to the initial scenario. There are two
versions of the source model, namely the previous model
which is already transformed into an application, and the
newly created model. Model modifications are made incre-
mentally in the same way that an application is incrementally
updated according to the model changes. The two model
versions are then passed to the model transformation phase F
in Figure 5). In Observation 13 we mentioned the inefficiency
of an approach where the generator determined the delta given
the two source models. We argue that it might not be needed
to load two complete models to determine the delta. In case
the developers have control over the modeling environment it
would be beneficial to keep track of changes whilst they are
made. This way the delta itself is directly created and does
not have to be computed using the two model versions. We
see from the experiments that it takes 0.5 second to load a
small model (less than 30 elements), like a delta, whereas it
takes about 20 seconds to load the largest tested model (more
than 1000 elements). Moreover, the modeling environment
has knowledge and access to the latest model version and
can thus directly include other elements that are connected
through dependency relationships. This of course works only
for dependencies in the model and traceability for model
transformations is still required. However, we were unable
to propose a solution for situations where no access to the
modeling tool is available.

Solution(s) for Observation 13: We propose a solution
where only the delta model itself is passed the generator.
Access is needed to the modeling tool to directly create a
delta model when a change is made by the end user.
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Fig. 5: Reference model evolution handling after the initial
model transformation. An updated source model is passed
to the generator which is loaded into memory. After that
an updated version of the trace model must be calculated
(G) on which the Incremental algorithm is dependent (H).
Then the calculated delta model can be transformed by the
generated incrementally and in possibly parallel depending
on the overhead (I). Finally, a partial output is written to
the already existing set of application files to update the
application.

After the delta is loaded it must be transformed to update
the application. Before this process can start additional calcu-
lations on the delta are needed to complement the delta with
generation-time dependency elements. This is explained in
detail in the Related work and Traceability case study sections.
We group the logic required for these calculations in a new
and separate module and place it into the model transformation
pipeline. We call this module ”Incremental algorithm” and
can be found at letter I in Figure 5. This module requires a
delta model and a traceability model. A traceability model is
created in the same way as for the initial model transformation
described earlier where it is used for model partitioning. For
the simulation approach the new source model is used since
the delta cannot be used to create a complete trace model.

Again, the last phase of the generator is to write the created
artifacts to the application folder (J in Figure 5). Since at this
point only a partial output is created the new and existing
artifacts have to be merged in some way. As already described
earlier file locking conflicts could occur when naively merging
the partial out with existing artifacts. This problem can be
solved by the suggestion provided for Observation 11 above.

C. Open Concerns Regarding Traceability

While researching traceability we made additional observa-
tions that do not influence the design of the reference architec-
ture. These observations are of a more practical nature and are
therefore also important to take into account. First, inserted
trace generation code must be kept up-to-date otherwise it
cannot be used reliably (Observation 2). An IDE that can



support the developer in this task but we could not find
such an IDE or any other mechanism to aid the developer in
keeping the code snippets up-to-date. Observation 3 argues
that only relevant traces have to be collected. We consider
it the responsibility of the developer to determine what is
relevant what is not. However, no structured protocol or
guidelines were found that could aid the developer in this
process. This can reduce the number of traces collected which
increase model transformation performance as is discussed in
Observation 6. However, no structured method to do this is
found in literature because of the many implementation details
and possibly language specifics. Lastly, a suitable format in
which the trace model can be stored is researched and analyzed
in Observation 4. We could not compare both XMI and JSON
formats in our case study generator and can therefore not
provide a best practice or solution and depends also on the
transformation platform used.

VII. CONCLUSIONS AND FUTURE WORK

This section concludes the research by answering the de-
signed research questions and presents our contribution to
research on improving the performance in MDD. A related
work study and analysis is performed to explore the available
methods for improving the performance of a MDD generator
(SRQ1). The domain of Model-Driven Development exist
already for a long time and have matured over the years. Mul-
tiple transformation languages and tools are proposed where
ATL is the most mature. All researched approaches aimed at
improving the performance use ATL as the transformation
language and leverage the underlying virtual machine for
optimizations. The extensive focus on ATL is a drawback
since the case organization use a different transformation
language, i.e. a general-purpose programming language. This
has significantly different properties compared to ATL that is
a Domain Specific Language regarding model transformation.
There is only little applicable literature available to our context
which limits this research in the number of approaches that
can be researched.

A common approach to gain insight into the transforma-
tions of a MDD generator is traceability (SRQ2). Traces
are collected from the model transformations in the MDD
generator and form a trace model. Traces are dependencies
between two elements that take part in a model transformation.
By analyzing the trace model the MDD generator can be
visualized in terms of model dependencies. Moreover, it is
used to reason about how a model is transformed into an
output application. We consider traceability as a prerequisite
for both model partitioning and incremental model transfor-
mation. Our case study shows that it is complex to collect
all traces needed to use it effectively for model partitioning of
incremental model transformation. We observed that it is time-
consuming to modify our case generator due to the general-
purpose language used for the model transformations. Since
this approach is very expensive or even unfeasible another
approach is briefly researched, namely abstract interpretation.

The insights provided by the trace model are utilized in
the generator by partitioning the source model into one or
more partitions (SRQ3). This can be achieved by analyzing
the dependencies captured in the trace model and enables
partial - and incremental model transformation. We researched
a data parallelism approach which provides all components
needed for partial model transformation. A valid partition can
only be created when the trace model contains all possible
dependencies given a source model. Valid here means that the
partition can be generated without additional knowledge of
other elements or dependencies. By implementing the data
parallelism approach as part of a case study observations
could be made which provide insights on what properties and
processes are needed to improve transformation performance
by using partial model transformation.

Finally, parallel and incremental model transformation are
researched in a case study as two methods to improve the
performance. Multiple partial model transformation tasks are
combined to research parallel model transformation. An ex-
periment is performed to prove that the implemented paral-
lelization technique does indeed work and yield a performance
improvement compared to sequential model transformation
(SRQ4). Our parallel transformation reduce the total gen-
eration duration by 2.5 to 3.5 times which corresponds to
experiment performed with ATL on MapReduce. A limitation
of our approach is that the model partitioning is not based
on traces since no complete trace model could be created.
Instead, a certain model element type is used and the ex-
plicit dependencies from the source model are used. This
approach does not work for a source model with more complex
relationship where dependency information from the model
transformations are needed to be able to generate a correct
output.

The presented reference architecture and the corresponding
design decision, protocols and practical take-aways answer the
main research question: How can the performance of model
transformations be improved in Model-Driven Development?.
The reference architecture and corresponding documentation
combined present a novel artifact and is designed to aid
organizations in improving their MDD generator. We proved
and argued that both parallel - and incremental model trans-
formation, respectively, improve the performance of model
transformations in MDD. The reference architecture is based
on observations made during the case studies and single
experiment and are to be extended and validated by performing
additional case studies.
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