
Utrecht University

Master Thesis

Mathematical Sciences

Numerical analysis of domain
walls in 2-dimensional

square-lattice random bond Ising
models using a new weighed-loop

algorithm

Author:
Pepijn Overbeeke

Supervisors:
Gerard Barkema

Rob Bisseling
Rick Keesman

May 23, 2017



Abstract

In this thesis we consider a 2-dimensional square-lattice random bond
Ising model with random bond strength J ±∆J which is subject to thermal
induced disorder and random bond induced disorder. We are interested in the
properties of domain walls in order to achieve a better understanding of the
behaviour of domain walls in real world magnetic materials.

Monte Carlo algorithms are often used to simulate the Ising models. When
introducing random bond induced disorder most conventional algorithms tend
to get stuck at low temperatures or systems with high disorder. To simulate
random bond Ising models in these regimes while not getting stuck we in-
troduce a new Monte Carlo algorithm; the weighed-loop algorithm. The new
weighed-loop algorithm works by walking the graph induced by the lattice
of the Ising model in order to form closed cycles in the graph. Flipping all
the spins inside the closed cycle formed by a loop results in a difference in
energy which is only determined by the bonds on the loop. By selecting more
bonds which are energetically favourable to change the weighed-loop algo-
rithm tends to get stuck less in the regimes where conventional algorithms
do get stuck.

In this thesis we provide the theoretical foundations of the 1-dimensional
domain walls in 2-dimensional Ising models and we provide the theory on
Monte Carlo algorithms on Ising models. We give a detailed description of
the new weighed-loop algorithm. We prove that the weighed-loop algorithm
correctly simulates the random bond Ising models. To show that the weighed-
loop algorithm tends to get stuck less than other algorithms we compare the
autocorrelation of the weighed-loop algorithm and an algorithm for glassy spin
systems, the Niedermayer’s algorithm. We show that our simulations agree
with the theoretical results of domain walls in the absence of random bond
induced disorder. Furthermore, we simulate the domain walls in the presence
of random bond induced disorder for different values in the parameter space
and we deduce the Larkin length Lc which is the typical length scale for which
a crossover takes place between random bond induced disorder and thermal
induced disorder.
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1 Introduction
In statistical physics the Ising model is one of the most well known and understood
physical models [1]. For 1 and 2 dimensions the Ising model has been exactly
solved [2, 3], but more complex models, like the random bond Ising model, have
not yet been exactly solved [4]. For these kind of models numerical computer
simulations are able to provide accurate results which can be used in practice. Since
the research on magnetic domain walls is a tough theoretical research, numerical
simulations can improve the knowledge of the properties of the domain walls in
magnetic materials. The domain wall moves through a disorder configuration by
the movement of segments between pinning sites. In this way the domain wall
moves through the energy landscape from metastable state to metastable state and
for a higher disorder the motion of the domain wall is slower.

Of the Monte Carlo type algorithms, Markov Chain Monte Carlo algorithms are
the most used type of algorithm for simulating physics in statistical models and on
the standard 2D Ising model. The first one of these algorithms is the Metropolis al-
gorithm [5, 6]. Prior to the Metropolis algorithm, Monte Carlo algorithms consisted
of repeatedly generating large numbers of configurations to compute the physical
properties. The publication of the Metropolis algorithm [5] introduced the samplic
method and it introduced periodic boundary conditions. Both have been a key part
of Monte Carlo algorithms in statistical physics ever since. Due to the fact that the
Metropolis algorithm is a single-spin flip algorithm, it is subject to critical slowing
down, meaning that the simulations are less efficient in the neighbourhood of the
critical temperature. To overcome the critical slowing down, Swendsen and Wang
created the Swendsen-Wang algorithm [7] which was later generalized by Wolff in
the Wolff algorithm [8]. The Swendsen-Wang algorithm and the Wolff algorithm are
cluster type algorithms for the standard 2D Ising model contrary to the single-spin
flip type algorithm like the Metropolis algorithm. Both the Swendsen-Wang and
Wolff algorithms showed a smaller scaling of the correlation time with respect to
the system size of the model. However, the Swendsen-Wang and Wolff algorithms
are not able to simulate frustrated models. Niedermayer proposed an extension of
the Swendsen-Wang and Wolff algorithm which is also applicable to glassy spin
systems and random bond Ising models[9].

When introducing disorder by means of random bond strength in square-lattice
Ising models the energy landscape of the system becomes rough and results in a
degenerate ground state. Conventional algorithms tend to get stuck which results in
the oversampling of parts of the phase space due to exponentially low probabilities
of leaving meta-stable states in the energy landscape. To overcome these obstacles
new algorithms have emerged with another update scheme [9, 10, 11, 12] as well
as algorithms with a different simulation scheme [13, 14]. These algorithms also
follow local updates but the local updates are not determined by the energy barrier
between different meta-stable states. We propose a new algorithm, the weighed-
loop algorithm, in which clusters of flippable spins are created by selecting bonds
which are energetically favourable to change.

This thesis is outlined as follows. In section 2 the random bond Ising model is
explained as well as the properties of domain walls. Section 3 describes the weighed-
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loop algorithm in detail and also provides a proof that the weighed-loop algorithm
satisfies the detailed balance equation and ergodicity. The results of the weighed-
loop algorithm and the application of the weighed-loop algorithm to domain walls
is presented in section 4. Finally we present possible future works and a conclusion
in the sections 5 and 6.
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2 Theory
In this section we give a description of the random bond Ising model (RBIM) and
list properties of domain walls in RBIM’s. We present the general theory on Monte
Carlo methods as well as the theory on the Metropolis algorithm, Wolff algorithm,
and Niedermayer’s algorithm. The last section of this chapter is devoted to the
autocorrelation of algorithms.

2.1 Random Bond Ising Model

This section is devoted to the theory of random bond Ising models. The RBIM is
based on the standard 2D Ising model, the key difference is that the bond strength
between neighbouring spins in the model is randomized. We only consider the 2-
dimensional square-lattice Ising models, but other models like triangular-lattices,
hexagonal-lattices or multidimensional lattices are also valid.

The standard Ising model consists of spins-1/2 particles σi ∈ {−1,+1} on a n-
dimensional LxH lattice Λ. We call a certain configuration of all the different
spins on the lattice a spin configuration σ. The Hamiltonian H(σ) of such a spin
configuration σ of the system is given by

H(σ) = −
∑
i∈Λ

∑
j∈Ni

Jijσiσj ,

where Ni is the set of indices of the all the neighbouring spins of spin i. Jij is
the strength of the bond between spins i and j. Bonds which contribute negatively
to the Hamiltonian are satisfied bonds while bonds which contribute positively to
the Hamiltonian are unsatisfied bonds. Since the Ising model is a thermodynamical
model, it is subject to the Boltzmann distribution. That is, the probability P (σ) of
the system being in a state σ is equal to

P (σ) =
e−βH(σ)

Z
, (1)

as shown in [15]. In the Boltzmann distribution β = 1
kbT

is the inverse temperature
defined by the Boltzmann constant kb and the temperature T of the system. Z is
a normalizing constant, also known as the partition function.

The one dimensional case of the Ising model was solved by Ising in 1925 [2]
in which Ising showed that the one dimensional case is not subject to a phase
transition. The two dimensional case of the Ising model was solved by Onsager in
1944 [3]. Onsager showed that without an external magnetic field and equal bond
strength J for all bonds in the system, the Ising model contains a continuous phase
transition around the critical temperature where the critical temperature Tc occurs
at

Tc =
2J

kb log
(
1 +
√

2
) ,
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so in other words kTc
J = 2.269... or equivalent βJ = 0.440....

To define a RBIM we introduce the following disorder which is characterized in
the bond strength Jij = J ±∆J . Here 0 ≤ ∆ ≤ 1 and

〈Jij〉 = J

〈JijJnm〉 = J2 + J2∆2δinδjm .

The RBIM somewhat resembles perpendicularly magnetized materials where the
domain walls are narrow. However, due to universality classes we can derive results
for these experimental systems by using the RBIM. A universality class is a collection
of thermodynamical models which behave the same under a scale invariant limit and
each member of an universality class has identical critical behaviour. The shape of
the domain wall does only depend on the dimension of the domain wall and the
roughness, but since the roughness is universal and does not depend on the micro-
scopic details of the system we expect to deduce properties of these experimental
systems using simulations on the RBIM.

2.2 Domain Wall

In this subsection we define the domain wall for Ising models and we also present
theoretical results for the behaviour of the domain walls in standard Ising models
and random bond Ising models.

The domain wall is defined as a 1-dimensional separation between two regions of
clusters of spins. Given a 2-dimensional Ising model on a LxH lattice we intro-
duce anti-periodic boundary conditions along the L-boundary and periodic bound-
ary conditions along the H-boundary. Using these boundary conditions the lattice
is topological equivalent to a Klein bottle and thus at least one domain wall must
always be present.

We describe the horizontal displacement of the domain wall by the function
dw(l) where 1 ≤ l ≤ L is the vertical position. The function dw(l) is defined by

dw(l) = −H
2

+
1

2

(
H∑
h=0

σlh (mod H)

)
.

Since dw(l) is single-valued for each value of l and t it means that dw(l) ignores
overhangs and local pockets of spins. This leads to dw(l) not representing the
domain wall accurately for high temperatures since for high temperatures there are
a relative large amount of overhangs and local pockets. However, for low temper-
ature there are little to no overhangs and local pockets since both overhangs and
local pockets of spins are energetic expensive. Below the critical temperature we
also assume that the probability of the domain wall being as wide as it is long is
negligible. A typical configuration of a part of a domain wall is in Figure 1.
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Figure 1: An example of a domain wall, displayed by the green line. This example
was simulated using the values L = 100, H = 100, β = 0.7 and ∆ = 0.0 The
vertical boundary has anti-periodic boundary conditions while the horizontal bound-
ary has periodic boundary conditions. In this example the system has local pockets
and the domain wall has overhangs so the definition of dw(l) is not an accurate
description of the separation between the regions of the red spins and the blue spins.
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The values of the horizontal displacement dw(l) can be transformed with the
fourier transformation to get the fourier coefficients S(p), C(p) and F(p).

S(p) =
1

L

L∑
l=0

sin

(
2πpl

L

)
dw(l) ,

C(p) =
1

L

L∑
l=0

cos

(
2πpl

L

)
dw(l) ,

F(p) =
1

L

L∑
l=0

e
2πipl
L dw(l) ,

We are interested in the equilibrium properties of the structure factor A(p, L, βJ) =〈
|F(p)|2

〉
of the fourier modes p of the domain wall as a disorder and thermal

average over all possible disorder configurations. Since the position of the domain
wall is real valued, we have that

〈
|F(p)|2

〉
=
〈
|F(−p)|2

〉
the fourier coefficients

are symmetric. When inducing a disorder ∆ in the Ising model, A(p, L, βJ) also is
dependent on ∆ which is denoted by A(p, L, βJ,∆).

From dimensional analysis one can derive for the structure factor thatA(p, L, βJ,∆) ∼
p−(1+2ζ) for the low modes p of the fourier transformation. In a system without
any disorder it is known that the shape of the domain wall are thermally induced
and ζT = 1

2 . When the system is subject to a random field the disorder compo-
nent is ζRF = 1 [16, 17]. Using a disorder ∆ in the bond strength introduces a
wandering exponent for the domain wall in equilibrium ζRB = 2

3 [18, 19], leading
to A(p, L, βJ,∆) ∼ p−7/3 for the low modes p. This wandering exponent was also
reproduced in experiments with thin films [20, 21, 22, 23]. When both the thermal
fluctuations and the bond strength is randomized in the system a crossover point
pc exists which separates the regions dominated by thermal disorder and dominated
by random bond induced disorder. The crossover point is also characterized as the
Larkin length Lc [24] in terms of lattice spacing, meaning that locally (on a length
scale below the Larkin length) thermal dynamics determine the shape of the domain
wall while on a global scale random bond induced disorder determines the shape.

We will show that for systems without disorderA(p, L, βJ) = A(L, βJ) csc2
(
πp
L

)
where A(L, βJ) is a scaling factor. For high temperatures it is known from capillary-
wave theory [25] and surface tension of the 2-dimensional Ising model [3] that for
systems without disorder the high temperature scaling factor Ahigh is given by

Ahigh(L, βJ) ∼ sinh−1 (2βJ + log (tanh [βJ ])) .

For low temperatures we can use a low temperature expansion to determine
the behaviour of A(p, L, βJ) in low temperatures which will yield a low temper-
ature scaling factor Alow(L, βJ). Using both the high temperature scaling factor
Ahigh(L, βJ) and the low temperature scaling factor Alow(L, βJ) we can determine
the scaling factor A(L, βJ) such that A(L, βJ) behaves correctly in both the high
temperature regime and the low temperature regime. The low temperature expan-
sion and the derivation of A(L, βJ) presented here are taken from [26].

8



Consider a square-lattice Ising model without disorder. Then the ground state
of the domain wall is defined as a straight wall without any excitations contributing
to the structure of the domain wall. We define a defect in the domain wall as an
excitation of the domain wall of height 1 over a certain length b. A defect increases
the length of the wall with 2 and thus increases the energy of the system with 4J .
Let Ad(p, L, βJ) be the average of A(p, L, βJ) given d defects. For the value of
A(p, L, βJ) using Ad(p, L, βJ) we have

A(p, L, βJ) =

∞∑
d=0

Ad(p, L, βJ)P (d, L, βJ) .

where P (d, L, βJ) is the probability of finding exactly d defects. We are now
considering the case where there is only one defect in the domain wall present.
Since we are not interested in the phase of the fourier coefficients, we can assume
without loss of generality that the defect starts at position l = 1. The horizontal
displacement of the domain wall dw(l) is given by

dw(l) =

{
1 if l ≤ b ,
0 otherwise .

Using these values of dw(l) we derive the following expressions for S(p) and C(p)

S(p) =
1

L

b∑
l=1

sin

(
2πlp

L

)
=

1

2L
csc
(πp
L

)(
cos
(πp
L

)
+ cos

(
2πbp+ π(L− p)

L

))
,

C(p) =
1

L

b∑
l=1

cos

(
2πlp

L

)
=

1

2L

(
1 + csc

(πp
L

)
sin

(
2πbp+ π(L− p)

L

))
.

Square both terms and adding them together yields

F2(p) = S2(p) + C2(p) =
1

L2
csc2

(πp
L

)
sin2

(
πbp

L

)
.

Averaging over all non-trivial values of b yields

A1(p, L, βJ) =
1

L− 1

L−1∑
b=1

(
S2(p) + C2(p)

)
=

1

4L2(L− 1)
csc2

(πp
L

)(
2L+ 1− csc

(πp
L

)
sin

(
πp(2L− 1)

L

))
≈ 1

2L2
csc2

(πp
L

)
, (2)
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where in the last step we used that L is large and that for 1 ≤ p ≤ bL−1
2 c we have

csc
(πp
L

)
sin

(
πp(2L− 1)

L

)
= 1 .

We now assume that for d � L the different defects do not interact and thus
behave independently. That is, Ad(p, L, βJ) ≈ dA1(p, L, βJ). So

A(p, L, βJ) = A1(p, L, βJ)

∞∑
d=0

dP (d, L, βJ) .

Since each defect changes the energy of the system, P (d, L, βJ) is determined by
the Boltzmann distribution (1). Using the Boltzmann equation we get

P (d, L, βJ) =
1

Z(L, βJ)
g(d, L)e−4dβJ ,

where g(d, L) is the number of configurations in which d defects can occur given
length L and Z(L, βJ) is the partition function. To estimate g(d, L) we assume
that we have to distribute d horizontal moves to the left and d horizontal moves to
the right over L positions. For large d this estimation is an overestimation since we
did not account for the fact that multiple moves of one kind can occur at the same
position and that moves to the left and right cannot occur in the same position. As
an estimation for g(d, L) we now have

g(d, L) =

(
L

d

)2

≈
(
Ld

d!

)2

.

We can use this estimation in the expression for P (d, L, βJ) together with (2) to
get

P (d, L, βJ) =
g(d, L)e−4dβJ

Z(L, βJ)

=

(
Ld

d!

)2

e−4dβJ

∑∞
δ=0

(
Lδ

δ!

)2

e−4δβJ

=

(
Ld

d!

)2

e−4dβJ

I0 (2Le−2βJ)
.

Here In is the modified Bessel function of the first kind. We can plug the expression
of P (d, L, βJ) in the expression of the structure factor A(p, L, βJ) to get

A(p, L, βJ) = A1(p, L, βJ)

∞∑
d=0

d
(
Ld

d!

)2

e−4dβJ

I0 (2Le−2βJ)

=
e−2βJ

2L

I1
(
2Le−2βJ

)
I0 (2Le−2βJ)

csc2
(πp
L

)
= Alow(L, βJ) csc2

(πp
L

)
. (3)
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Here we have defined the scaling factor of the low temperature expansion Alow as

Alow =
e−2βJ

2L

I1
(
2Le−2βJ

)
I0 (2Le−2βJ)

.

We will now unify the expressions for Alow(L, βJ) and Ahigh(L, βJ) in a com-
mon expression for A(L, βJ) such that A(L, βJ) behaves as Alow(L, βJ) for low
temperatures and Ahigh(L, βJ) for high temperatures.

For the unification we let

Ahigh(L, βJ) = a(L, βJ) sinh−1 (2βJ + log (tanh [βJ ])) ,

which results in

2βJ + log (tanh [βJ ]) ≈ 2βJ ,

so for Ahigh(L, βJ) we have for βcJ � βJ

Ahigh(L, βJ) ≈ a(L, βJ) sinh−1 2βJ

= 2a(L, βJ)
(
e2βJ − e−2βJ

)−1

≈ 2a(L, βJ)e−2βJ .

For Alow(L, βJ) we use the following approximation for the modified Bessel function
for small z

In(z) ≈ 1

Γ(n+ 1)

(z
2

)n
.

Using this approximation results in

Alow(L, βJ) =
2Le−2βJ

4L2

2Le−2βJ

2

=
4L2e−4βJ

8L2

=
e−4βJ

2
.

If 0 < βJ − βcJ � 1 we know that Ahigh(L, βJ) diverges as (βJ − βcJ)−1

[25]. To achieve this divergence we want that sinh (2βJ + log tanhβJ) → 0, in
other words we want x = 2βJ + log tanhβJ → 0. This leads to

Ahigh(L, βJ) ≈ a(L, βJ) sinh−1 x

≈ a (L, βJ)χ−1 ,

where χ = 4(βJ − βcJ). Hence

Ahigh(L, βJ) ≈ a(L, βJ)

4
(βJ − βcJ)−1 .

11



For small z we have the following approximation for the Bessel function

In(z) ≈ ez√
2πz

.

For 0 < βJ − βcJ � 1, this leads to

Alow(L, βJ) ≈ 2Le−2βJ

4L2

=
e−2βJ

2L
.

We determine a(L, βJ) such that Ahigh(L, βJ) for low temperatures is equal to
Alow(L, βJ) for high temperatures. This means that

2a(L, βJ)e−2βJ =
e−2βJ

2

a(L, βJ) =
1

4L
.

Using this value of a(L, βJ) we arrive at

Ahigh(L, βJ) =
1

4L
sinh (2βJ + log tanhβJ) .

If we now let

A(L, βJ) = Ahigh(L, βJ)
I1
(
4L2Ahigh(L, βJ)

)
I0 (4L2Ahigh(L, βJ))

, (4)

we have an expression forA(L, βJ) which best fits bothAhigh(L, βJ) andAlow(L, βJ)
in the respective temperature regimes.

The idea of this thesis is to use the proposed weighed-loop algorithm to investi-
gate the structure factor, the crossover point pc and the Larkin length Lc of the
different disorder regimes when changing the parameters L, β and ∆. By inves-
tigating the behaviour of both the thermal fluctuations induced disorder and the
random bond induced disorder the properties of the shape of the domain wall can
be compared with the known theory.

2.3 Monte Carlo methods

In this section we introduce Monte Carlo methods as well as Monte Carlo methods
on the Ising model and the detailed balance condition. We will explain the Metropo-
lis algorithm, the Wolff algorithm and Niedermayer’s algorithm in more detail.

Monte Carlo methods (or Monte Carlo algorithms) are algorithms which rely on
repeating random sampling to obtain results. The idea is that when using enough
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random samples the error in the sampling process decreases such that the averaged
values approximate the real values.

Monte Carlo methods are used in a wide variety of scientific fields, ranging
from mathematics, for the estimation the surface of an integral, to physics, for the
simulation of interacting particle systems, and to economics, determining the price
of an option of a share. Since there is such a wide variety on Monte Carlo methods
there is no standard description of Monte Carlo methods.

As an example of a Monte Carlo algorithm we present a Monte Carlo algorithm
for the calculation of an integral of a function. Consider a function f : R →
R≥0. We now want to calculate the integral of f over the domain [a, b]. We can
approximate this integral by taking random samples. Each iteration we pick a point
in the plane [a, b] × [0,max f ]. If this point is above f , do not count the point
and if the point is below f , count the point. If there are enough random samples
the fraction of counted points to the total points will approximate the fraction of
the area below the function and thus the value of the integral. This algorithm is
shown in algorithm 1. By the central limit theorem the error e in the approximation
decreases as 1/

√
n.

Data: n = 0, X = 0
Result: Approximation of

∫ b
a
f(x) dx

1 while Stopping criteria not met do
2 Pick a point (x, y) at random from [a, b]× [0,max f ].
3 Increment n.
4 If f(x) > y increment X.
5 end
6 return X

n (b− a) max f

Algorithm 1: Integral approximation using random sampling
Here the stopping criteria can be different criteria. For example, after a fixed

amount of n steps are executed the algorithm is terminated. Or the algorithm is
terminated if the squared error is below a certain tolerance.

As an example, suppose we want to integrate the function sinx on the interval
[0, π]. Integration by hand yields the result of 2. If we use random sampling we get
the results from Figure 2 and Figure 3. In Figure 2 we have the root square mean
plotted against the number of random samples used. The true value of the integral
is also plotted as a red line for comparison. We observe from the figure that the
root square mean converges to the true value of the integral meaning that random
sampling can be used to evaluate the integral. In Figure 3 the error of the average
of the random sampling and the true value of the integral is plotted against the
number of random samples used. The line 1/

√
n is also plotted as a red line to

show that the error decreases as 1/
√
n as the theory predicted.

Monte Carlo integration is most often used for higher dimensional integrals which
are too difficult to compute with known non-numerical methods. Dimensions up to
1000 are not uncommon with these kind of integrals.

The most used type of Monte Carlo methods used on the Ising model are Markov
Chain Monte Carlo algorithms. The idea is that each step the algorithm selects a
new state of the Ising model. Each step has a probability to transition from one

13
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Figure 2: The root square mean of the sampling of
∫ π

0
sinxdx (blue points) on a

log-log scale. Each step a new random samples is added to the RSM. The red line
corresponds to the true value of the integral. The data points converge to the true
value of the integral when more random samples are used to computed the average.
This shows that random sampling can be used to estimate the value of an integral.

state µ to another state ν. The resulting Markov chain has a limiting distribution
and we force the limiting distribution to be the same as the Boltzmann distribution
(1). Most Markov chain Monte Carlo algorithms follow a specific pattern, this is
also shown in algorithm 2.

1 while Stopping criteria not met do
2 Select a transition from the current state to µ to a new state ν.
3 Apply the transition with a certain probability.
4 end

Algorithm 2: A Markov Chain Monte Carlo algorithm
As with the Monte Carlo integration, the stopping criteria can be a variety of

criteria, but most of the time the algorithm is stopped after a fixed amount of
steps. The probability of applying the transition from µ to ν is defined such that
the detailed balance condition is satisfied.

2.3.1 Markov Chains and Detailed Balance

One can view most Monte Carlo methods on the Ising model as a discrete time
Markov Chain. The state space S exists of all possible spin configurations σ of the

14
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Figure 3: The error of the sampling of
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lattice of the Ising model and a Monte Carlo method transitions the system from
one state µ to another state ν with some probability which only depends on ν and
µ. We assume that for fixed temperature β and after a finite amount of time the
system, and thus the Markov Chain, reaches its equilibrium. For the Markov Chain
this means that there exists positive numbers π(ν) where ν ∈ S is a possible state,
summing to unity that satisfy the equilibrium equations

π(ν) =
∑
µ∈S

π(µ)p(µ, ν) ,

Here p(ν, µ) is the transition probability to transition from state ν to state µ. The
distribution π(ν) is called the stationary distribution of the Markov chain.

To determine the stationary distribution of the Markov Chain for a given tem-
perature β we use the following theorem:

Theorem 2.1. Let C be a stationary Markov chain. Suppose there exists π with∑
j∈S π(j) = 1. Also suppose that for each pair j, k ∈ S the detailed balance

equation

π(j)p(j, k) = π(k)p(k, j) , (5)

is satisfied. Then π is the stationary distribution of C.
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Proof. We start by summing the detailed balance equation (5) over all k ∈ S. We
get

π(j)
∑
k∈S

p(j, k) =
∑
k∈S

π(k)p(k, j) .

Since the sum on the left hand side equals to unity (a state always transitions to
a state in the state space), the above equation simply reduces to the equilibrium
equations. Hence π is the stationary distribution of C.

Using the above theorem we can now properly formulate the requirements for a
Monte Carlo algorithm on the Ising model. Fristly, we want the algorithm to satisfy
the detailed balance equations for the Ising model:

P (µ)Π(µ→ ν) = P (ν)Π(ν → µ) ,

where µ and ν are possible configurations of the system, P (σ) is as defined in
(1) and Π(µ → ν) is the transition probability to transition the system from µ to
ν. From theorem 2.1 we know that the stationary distribution of the algorithm is
equal to the Boltzmann distribution and thus in equilibrium the algorithm simulates
according to the Boltzmann distribution.

Since in most Monte Carlo algorithms on the Ising model the algorithm first
selects a possible transition before applying said transition, it is useful to split the
transition probability Π(µ → ν) = g(µ → ν)A(µ → ν). Here g(µ → ν) is the
selection probability, the probability that a transition from µ to ν us selected and
A(µ → ν) is the acceptance probability, the probability that the transition from µ
to ν is accepted.

We already know the distribution P (µ) so we can rearrange (5) as

g(µ→ ν)

g(ν → µ)

A(µ→ ν)

A(ν → µ)
= e−β(H(ν)−H(µ)) .

In the above equation we want the fraction A(µ→ν)
A(ν→µ) to be as large as possible to

increase the number of accepted transitions. If the number of accepted transitions
is smaller more computational time is wasted calculating new possible transitions
which are not accepted.

For the second requirement we want the algorithm to be ergodic so that we are
certain that we can reach each state from any given other state in a finite amount
of steps. For if the algorithm is not ergodic, we are not certain if there exists states
the algorithm will not reach meaning that the algorithm violates the Boltzmann
distribution.

2.3.2 Metropolis Algorithm

One of the most common and well known algorithms on Ising models is the Metropo-
lis algorithm, also known as the Metropolis-Hastings algorithm [5]. The Metropolis
algorithm is a single-spin flip algorithm where in each step a spin is selected and
then said selected spin is flipped with a certain probability.
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Suppose we have an Ising model with N spins and suppose that at the beginning
of a Monte Carlo step the system is in configuration µ. In each step the algorithm
first selects a random spin. Let us assume flipping this spin transitions the system
from µ to ν. Each spin has an equal probability of being chosen, so g(µ → ν) =
1/N . Note that this also means that g(ν → µ) = 1/N . The detailed balance
condition now tells us that

g(µ→ ν)

g(ν → µ)

A(µ→ ν)

A(ν → µ)
= e−β(H(ν)−H(µ)) ,

1
N
1
N

A(µ→ ν)

A(ν → µ)
= e−β(H(ν)−H(µ)) ,

A(µ→ ν)

A(ν → µ)
= e−β(H(ν)−H(µ)) .

We want to maximize A(µ→ν)
A(ν→µ) , so if we choose

A(µ→ ν) =

{
e−β(H(ν)−H(µ)) if H(µ) > H(ν)

1 otherwise ,

we have satisfied all the constraints and maximized A(µ→ν)
A(ν→µ) . Note that this equation

for A(µ→ ν) is also the same as

A(µ→ ν) = min
(

1, e−β(H(ν)−H(µ))
)
.

Since there are N spins in the system a step in the Metropolis algorithm con-
ventionally consists of proposing a spin to flip N times. This is also due to the
correlation length of the algorithm (section 2.4). The Metropolis algorithm is listed
by algorithm 3.

1 while Stopping criteria not met do
2 repeat
3 Select a spin at random. The spin transitions µ to ν.
4 Accept flipping of the spin with probability

A(µ→ ν) = min
(
1, e−β(H(ν)−H(µ))

)
.

5 until N times;
6 end

Algorithm 3: Metropolis algorithm
We already showed that the Metropolis algorithm satisfies the detailed balance

equation (5), but to show that the Metropolis correctly simulates the Ising model
we must also show that the Metropolis algorithm is ergodic. To this end suppose
we want to reach state ν from µ and µ and ν differ by k spins. Then doing k
single-spin flips flipping these exact spins transitions the system from µ to ν. Since
each of these spin flips has a non-zero probability, transitioning from µ to ν has a
non-zero probability and thus we can reach state ν from state µ in a finite amount
of steps.
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The above argument shows that to prove that a Monte Carlo method on an
Ising model is ergodic, it suffices to only prove that the algorithm can do any single-
spin flip with a non-zero probability. Then by the above argument the algorithm is
ergodic.

Although the Metropolis algorithm simulates the Ising model correctly, it has
some major drawbacks. When the temperature is close to the critical temperature
the Metropolis algorithm suffers from critical slowing down. That means that the
time it takes for steps of the Metropolis algorithm to decorrelate is larger. This
implies that around the critical temperature the Metropolis algorithm needs more
time to simulate to achieve the same error of the average results as the error of the
results with the temperature not in the neighbourhood of the critical temperature.
Cluster algorithms are a way to partially avoid the problem of critical slowing down.

Note that the acceptance probability of the Metropolis algorithm is only deter-
mined by the bonds connected to the selected spin. This means that the Metropolis
algorithm can simulate Ising models with random bond induced disorder. How-
ever, random bond Ising models tend to have meta-stable states. This means that
for a low temperature the probability of the Metropolis algorithm to get out of a
meta-stable state decreases exponentially.

2.3.3 Wolff Algorithm

One of the most well known cluster algorithm is the Wolff Algorithm [8], which is an
improvement of the Swedsen-Wang algorithm [7]. Like the Metropolis algorithm,
the Wolff algorithm is an algorithm on the standard Ising model without disorder.
Instead of using single-spin flips, the Wolff algorithm flips clusters of spins. A cluster
is created and grown by selecting each of the neighbours with the same spin of the
cluster with some probability.

To find the acceptance probability and selection probability let us suppose we
have an Ising model without disorder consisting of N spins. Also suppose that
during one iteration a cluster is selected which will transition the system from µ to
ν. The key observation is that flipping the cluster will only affect the bonds at the
edge of the cluster. So let us assume that if the cluster is flipped is will satisfy n
bonds and it will break k bonds. Each bond which is satisfied decreases the energy
of the system by 2J while each bond which is broken increases the energy by 2J .
Thus the difference in the energy between µ and ν is 2J(k − n).

For the selection of the cluster which brings the system from µ to ν we allow
the cluster to contain only spins with the same spin value. Since the cluster breaks
k bonds, these k bonds correspond to k spins outside the cluster with the same spin
value as the spins inside the cluster. Assuming all the spins are added to the cluster
with an equal probability Padd, not selecting the k spins outside of the clusters has
a probability of (1−Padd)k. To transition the system back from ν to µ we must use
the same cluster. Since the cluster from µ to ν satisfies n bonds, the cluster from
ν to µ breaks n bonds. Again, assuming all spins are added with equal probability
Padd the probability for not selecting these n spins in the cluster in ν is (1−Padd)n.

Using these values the selection probabilities reduce to g(µ→ ν) = P (1−Padd)k

and g(ν → µ) = P (1 − Padd)n. Here P is the probability of selecting the spins in
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the cluster. Crucial to note is that the clusters for both transitions are equivalent
implying that the value of P is equal for both g(µ → ν) and g(ν → µ). We can
now reduce the detailed balance equation (5)

g(µ→ ν)

g(ν → µ)

A(µ→ ν)

A(ν → µ)
= e−β(H(ν)−H(µ)) ,

(1− Padd)k−n
A(µ→ ν)

A(ν → µ)
= e−2βJ(n−k) ,

A(µ→ ν)

A(ν → ν)
=
(
(1− Padd) e2βJ

)n−k
.

We observe that if we choose Padd = 1 − e−2βJ the right hand side of the
equation becomes unity, regardless of temperature or spin configuration. If we now
give both acceptance probabilities the value 1 a selected cluster of spins will always
be flipped.

The full Wolff algorithm is listed in algorithm 4.

1 while Stopping criteria not met do
2 Select a spin at random.
3 Keep trying to add neighbours with the same spin value as the spins in

the current cluster to the cluster with probability Padd. Spins which are
already in the cluster are not added again and spins which have been
rejected once can be still be added by another neighbour. This step is
repeated as many times until all neighbours of the cluster are rejected.

4 Flip the cluster.
5 end

Algorithm 4: Wolff algorithm
We also have to prove that the Wolff algorithm is ergodic. Since not adding a

spin to the cluster has a non-zero probability it is possible for the cluster to consist
of only one spin. Thus the Wolff algorithm can do single-spin flips and by the
argument we used at the Metropolis algorithm, the Wolff algorithm is ergodic.

The Wolff algorithm suffers less from critical slowing down as the Metropolis
algorithm does due to the correlation length (section 2.4). However, the Wolff
algorithm as presented above cannot be used to simulated RBIM’s.

2.3.4 Niedermayer’s Algorithm

The Wolff algorithm only works on standard Ising models without disored. To have
a cluster algorithm which also works on various glassy spin systems and Ising models
with non-homogeneous bonds a new algorithm was proposed by Niedermayer [9].
His proposed algorithm is an extension of the Wolff algorithm. In this section we
explain how Niedermayer’s algorithm works on a random bond Ising model where
each bond has strength J ±∆J such that 〈Jij〉 = J .

The main difference between Niedermayer’s algorithm and the Wolff algorithm
is that in Niedermayer’s algorithm the spins added to the cluster do not necessarily
have the same spin value. Instead, we let Padd depend on Jij .
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Suppose, by the same argument as with the Wolff algorithm, we have created a
cluster transitioning from µ to ν. Like in the Wolff algorithm the selection probability
from µ to ν only differs from the selection probability from ν to µ in the edges of
the cluster. Since all bonds have a strength of either J + ∆J or J −∆J , we only
have a view possibilities for each edge. Suppose when transitioning from µ to ν
we satisfy n+ amount of bonds with strength J + ∆J and n− amount of bonds
with strength J −∆J . Also suppose we break k+ amount of bonds with strength
J + ∆J and k− amount of bonds with strength J −∆J . Then the probability of
not selecting the bonds at the edges of the cluster in µ is equal to

(1− Padd(J + ∆J))n+(1− Padd(J −∆J))n− ·
(1− Padd(−J −∆J))k+(1− Padd(−J + ∆J))k− ,

and not selecting the bonds at the edges of the cluster in ν is

(1− Padd(−J −∆J))n+(1− Padd(−J + ∆J))n− ·
(1− Padd(J + ∆J))k+(1− Padd(J −∆J))k− .

The difference in energy of µ and ν is

H(ν)−H(µ) = 2J(n+ + ∆n+ + n− −∆n− − k+ −∆k+ − k− + ∆k−) ,

hence the detailed balance equation (5) reduces to

A(µ→ ν)

A(ν → µ)
=

(
e2β(J+∆J) 1− Padd(−J −∆J)

1− Padd(J + ∆J)

)n+−k+
,(

e2β(J−∆J) 1− Padd(−J + ∆J)

1− Padd(J −∆J)

)n−−k−
.

If we make sure that

1− Padd(−J −∆J)

1− Padd(J + ∆J)
= e−2β(J+∆J) ,

1− Padd(−J + ∆J)

1− Padd(J −∆J)
= e−2β(J−∆J) ,

the acceptance ratio becomes unity. If we set Padd(Jij) = 1− eβ(Jij−E0) we indeed
have satisfied both of the above equations. Here E0 is a free parameter. Padd(Jij)
must be a probability meaning it takes values between 0 and 1, so the best expression
for Padd(Jij) is

Padd(Jij) =

{
1− eβ(E−E0) if Jij ≤ E0 ,

0 otherwise .

The only thing that remains is the behaviour of the algorithm for different E0.
There are few possibilities for E0:
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• E0 ≥ J + ∆J : In this case the acceptance ratio will always be unity. Using
different values for E0 we can vary the size of the different clusters. If E0

becomes larger Padd also increases and thus clusters grow in size.

• −J−∆J ≤ E0 ≤ J+∆J : In this case the acceptance ration is not unity and
we cannot choose the acceptance probability equal to unity. As E0 decreases
the clusters become smaller but at the expense of an acceptance ratio which
decreases exponentially for increases in the energy of the system.

• E0 ≤ −J−∆J : Now Padd = 0 so all clusters consist of only one spin and the
acceptance ratio is equal to the acceptance ratio of the Metropolis algorithm.

Niedermayer’s algorithm includes both the Wolff algorithm and the Metropolis
algorithm but it is also an extension of both algorithms that work on RBIM’s.
Unfortunately there is not much known about the behaviour of the algorithm for
different values of E0 [27].

2.4 Autocorrelation

In this section we give the definition of the autocorrelation and we show why different
algorithms have different autocorrelations.

Each Monte Carlo algorithm on the Ising model consists of repeating a certain
number of steps. In each step an update of the system is proposed and then either
accepted or declined. If one is interested in a certain observable O one could for
example measure O after each Monte Carlo step. This might not always be the
best strategy since two states can be correlated, meaning that the two states are
not statistically independent. This results in a correlated value of the observable
O since certain states are over-sampled in the algorithm. For example, when using
the Metropolis algorithm on a large lattice, two consecutive states can only differ in
one spin meaning that the magnetization and Hamiltonian of both states are nearly
identical.

To measure the correlation of states, one can measure the autocorrelation CO(t)
of observable O which is defined by

CO(t) = 〈O(t)O(0)〉 − 〈O(0)〉2 .

Here t is the time after t = 0. O(t) is the value of the observable O at time t. In
the autocorrelation the time can be measured in real time or in Monte Carlo time
steps. If the Monte Carlo steps separated by time t are uncorrelated CO(t) should
be of order O

(
M−1/2

)
where M is the number of steps used to measure O.

For an infinite-size standard Ising model without disorder the correlation time
τ , the time it takes for the system to decorrelated, diverges by [28]

τ ∼ ξz ∼ 1

|β − βc|z
.

Here ξ is the correlation length, the length for which spins have to be apart to
not be correlated. The parameter z is called the dynamical critical exponent. The
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above equation for τ is called critical slowing down. Note that the critical slowing
down is connected to the autocorrelation of O.

For the Metropolis algorithm we know that z ≈ 2.1 [28]. Since for a finite
system size ξ cannot be larger than the system size, we have that ξ ∼ L. This
means that τ ∼ L2.1 ≈ N . Since the time of the Metropolis algorithm scales with
N , the time to generate independent configurations scales like Nτ ∼ N2 = L4.

A way to see why the Metropolis algorithm has z ≈ 2 is to note that around the
critical temperature the system has clusters of spins which are difficult to break. For
the system it is most likely that a change occurs by moving the entire cluster. Since
one sweep of a Metropolis step changes the location of the cluster by a maximum of
one site and since the moving of the cluster is a random walk for which the distance
scales as

√
t, moving a cluster a distance of ξ takes τ ∼ ξ2 steps.

This argument also suggest that to decrease the correlation times and thus to
increase the number of uncorrelated measurements is to use non-local updates.
Swendsen and Wang showed that for the Swendsen-Wang algorithm the steps scale
with at most N and z ≈ 0.35 [7]. Hence Nτ ∼ N1.175. The Wolff algorithm has
the same statistical properties as the Swendsen-Wang algorithm so for the Wolff
algorithm we also have Nτ ∼ N1.175.

In this thesis we use the autocorrelation to compare different algorithms. When
measuring the domain wall a faster decorrelation of C(t) means the algorithm
achieves a faster decorrelation. Since one would like to use as many uncorrelated
measurements as possible one strives to a faster decorrelation. We only measure
the autocorrelation of the first fourier mode of the fourier transformation of the
domain wall. This is due to the fact that the first mode corresponds with the length
of the lattice and it is the fourier mode which is the least prone to local changes in
the domain wall.
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3 Weighed-loop algorithm
In this section we present a new weighed-loop algorithm for the simulation of ran-
dom bond Ising models. We give a motivation and an accurate description of the
algorithm. We prove that the algorithm satisfies the detailed balance equation and
that the algorithm is ergodic. Both conditions are needed to simulate the model
correctly. At the end we list advantages and disadvantages of the algorithm.

When one introduces disorder in the Ising model the two-fold degeneracy of the
energy explodes into a highly degenerate energy landscape. The energy landscape
also has the tendency to be rough. At low temperatures traditional Monte Carlo
algorithms tend to get stuck in a meta-stable state. This is due to the fact that
the meta-stable state is surrounded by energy barriers for which the probability of
the algorithms to overcome the barriers decreases exponentially as the temperature
decreases. In both single-spin flip algorithms and cluster algorithms the transition
probabilities are dependent on all bonds and spins inside the cluster and neighbour-
ing the cluster.

Loop algorithms have an advantage, namely being the fact that they only depend
on the bonds on the loop and not on the bonds inside the cluster defined by the
loop. In Figure 4 is an example of such a loop. In the figure straight bonds are
ferromagnetic bonds while wiggled bonds are anti-ferromagnetic bonds. The loop is
indicated by the dashed line. Each spin inside the loop has three satisfied bonds and
one unsatisfied bond. This means that flipping each spin inside the loop individually
increases the energy of the system. However, if all spins inside the loop are flipped
simultaneously the energy of the system decreases.

The main idea of the weighed-loop algorithm is that bonds are chained iteratively
until a closed loop of bonds is formed. The energy changed by flipping all spins
in the cluster enclosed by the closed loop is only dependent on the bonds on the
loop. If the algorithm has a bias towards unsatisfied bonds which are energetically
favourable to swap the algorithm is able to transition out of meta-stable states much
faster.

3.1 Description

The weighed-loop algorithm walks over the lattice of the system by chaining bonds.
In other words, the algorithm walks a graph G of the lattice Λ of the Ising model.
Each spin of the lattice represents a face of the graph and each separation between
two spins represents an edge. Each of the different edges thus correspond to a
different bond. The points where the edges meet are nodes of G. The weighed-
loop algorithm then chains edges of G until a cycle in G is created. We call the
chained bonds a loop. A loop now defines a cluster of spins enclosed by the edges
of the cycle in G. Note that for each loop there are two possible clusters of spins
which are enclosed by the loop. An example of a loop is in Figure 4.

Using G, each step of the algorithm starts by selecting a starting node ns of
G at random with probability 1/N . Given that the algorithm cannot walk back
the algorithm has three possible edges to chain to the current loop. Each edge
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Figure 4: An example of a loop in a part of a typical spin configuration of a RBIM.
The red bonds are unsatisfied bonds and the green bonds are satisfied. Squiggly
lines represent anti-ferromagnetic bonds while straight lines represent ferromagnetic
bonds. Flipping each spin independent in the cluster increases the energy of the
system, but flipping the entire cluster decreases the energy of the system. Although
we have restricted ourself to not include anti-ferromagnetic bonds (∆ ≤ 1) the
same argument still applies. Note that flipping the spins inside the loop results in
the same change in energy as flipping the spins outside the loop.

corresponds to a bond Jij and the probability of choosing an edge has a weight
W (Jij). The algorithm now continues chaining edges. The chaining of edges
continues until the algorithm visits an already visited node of G. Since there are a
finite amount of edges in G, creating a loop takes a finite time. The constructed
loop will consist of a cycle and possibly a tail section. For example, the example
loop in Figure 4 does not have a tail section. The cluster of spins is now defined by
the cycle while the tail section may be reused for a next loop.

The weightW of the selection step is modelled after the Boltzmann distribution
(1) and is given by

W (Jij) = e−βJijσiσj

Using this weight the algorithm has a bias toward unsatisfied bonds over satisfied
bonds. Note that if β = 0 the chaining of edges reduces to a random walk on G
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while if β →∞ the algorithm always chains an unsatisfied bond if possible.
Since we simulate on an Ising model with periodic and anti-periodic boundary

conditions, it is possible for the constructed loop to wrap around one or both of the
edges. Since the lattice Λ is topological equivalent to a Klein bottle, the cluster
enclosed by a loop which wraps an odd amount of times around one of the edges
is the entire lattice. This results in the flipping of all the spins in the system which
does not change the energy. This means that time is wasted on a loop which does
change the domain wall. To solve this problem, the algorithm creates a second loop
every time a loop wraps around one of edges an odd amount of times. If this second
loop also wraps around the same edge an odd amount of times, the cluster of spins
is defined as the cluster of spins between the two loops. If the second loop does
not wrap an odd amount of times around the same edge as the first loop, the first
loop is discarded and the second loop is used instead.

To prove that the algorithm correctly simulates the Ising model we have to prove
the algorithm to be ergodic and prove that the algorithm satisfies the detailed bal-
ance condition. Showing that the algorithm is able to do single-spin flips proves
ergodicity. Since it is possible for the loop to select a single-spin and since the
probability of flipping this spin is also non-zero (see section 3.2), the algorithm can
perform single-spin flips and thus is ergodic.

3.2 Acceptance probabilities

Given a cluster of spins enclosed by a loop λ that transitions the system from µ to ν,
we denote the probability of selecting λ in µ as gµ(λ) and the acceptance probability
of accepting λ in µ as Aµ(λ). If the cluster is defined by two loops we denote λ
as the intersection of both loops. For the loops we have that gµ(λ) is simply the
product of the stochastic choices the algorithm made during the chaining of bonds
to create the loop. Note that λ is one of the many possible loops transitioning µ to
ν. As an example, reversing the direction of the cycle in the loop or removing the
tail section both transitions the system from µ to ν. If we call the set of all loops
which transition the system from µ to ν as Θµ→ν we have that

Π(µ→ ν) =
∑

λ∈Θµ→ν

gµ(λ)Aµ(λ) .

We also denote the set of all loops which transition the system from ν to µ as
Θν→µ, the probability of selection λ in ν as gν(λ) and the probability of accepting
λ in ν as Aν(λ) as the acceptance probability. Then we have equivalently

Π(ν → µ) =
∑

λ∈Θν→µ

gν(λ)Aν(λ) .

The key observation is that for every loop λ ∈ Θµ→ν we have that λ ∈ Θν→µ
and vice versa. This means that summing over all loops in Θν→µ yields the same
result as summing over all loops in Θµ→ν . Using this property, the detailed balance
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condition now becomes

P (µ)Π(µ→ ν) = P (ν)Π(ν → µ)

P (µ)
∑

λ∈Θµ→ν

gµ(λ)Aµ(λ) = P (ν)
∑

λ∈Θν→µ

gν(λ)Aν(λ)

P (µ)
∑

λ∈Θµ→ν

gµ(λ)Aµ(λ) = P (ν)
∑

λ∈Θµ→ν

gν(λ)Aν(λ) .

If we define the acceptance probabilities as

Aµ(λ) = min

(
1, e−β(H(µ)−H(ν)) gν (λ)

gµ(λ)

)
Aν(λ) = min

(
1, e−β(H(µ)−H(ν)) gµ (λ)

gν(λ)

)
,

the detailed balance condition reduces to

P (µ)
∑

λ∈Θµ→ν

gµ(λ)Aµ(λ) = P (ν)
∑

λ∈Θµ→ν

gν(λ)Aν(λ)

P (µ)
∑

λ∈Θµ→ν

gµ(λ) min

(
1, e−β(H(µ)−H(ν)) gν(λ)

gµ(λ)

)
=

P (ν)
∑

λ∈Θµ→ν

gν(λ) min

(
1, e−β(H(µ)−H(ν)) gµ(λ)

gν(λ)

)
∑

λ∈Θµ→ν

min (P (µ)gµ(λ), P (ν)gν(λ)) =
∑

λ∈Θµ→ν

min (P (ν)gν(λ), P (µ)gµ(λ)) .

Since the last equation is always valid we have satisfied the detailed balance condi-
tion using the acceptance probabilities as defined above.

Spins adjacent to the tail of a loop are not flipped when flipping the cluster of
spins. So the acceptance probability for the tail section of a loop λ in µ is the same as
the acceptance probability of the same loop in ν. Hence, in calculating the selection
probability, one only needs to calculate the selection probability of the cycle. This
also means that when reusing the tail section of a previous loop as the beginning of
a next loop, the detailed balance is still satisfied. To explain this in another way, as
stated above, the tail section does not contribute to the acceptance probability at
all. Hence a closed cycle in µ always has the same acceptance probability, regardless
of the tail which led to the construction of that particular cycle.

3.3 Advantages and disadvantages

The main advantage of the weighed-loop algorithm is that it is a loop algorithm.
This implies that each step the probability of flipping a cluster of spins only depends
on the bonds at the edges of the cluster. In contrast, other cluster type algorithms
or single-spin flip algorithms depend on all the bonds inside the cluster. The latter
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results in a exponential decrease probability of flipping energetically unfavourable
clusters as the temperature decreases.

The weighed-loop algorithm is flexible in the function for determining the weights
of the stochastic choices for the chaining of the bonds. There are no requirements for
the function for the weights except that the algorithm must retain ergodicity. This
means that one could use almost any possible function and still satisfy the detailed
balance condition. The weights function used in this thesis is only dependent on
the contribution to the energy of bonds. However, one can add preferred directions
to the weights function by adjusting the weights of optional bonds in different
directions. For example, if one increases the odds for straight paths the sizes of the
clusters enclosed by loops would increase while if one increases the odds for right
turns the clusters enclosed by loops would decrease.

Another advantage of the weighed-loop algorithm is with respect to simulating
domain walls. With the weights function presented in this thesis the algorithm
favours unsatisfied bonds over satisfied bonds hence the loop is inclined to walk
over the domain wall if given the opportunity. This means that a relative large
fraction of the spin flips will happen close to the domain wall and thus less time
is wasted on loops not updating the domain wall. Adding a preferred direction
when the loop diverges from the domain wall to increase the likelihood of the loop
returning to the domain wall will increase the flips close to the domain wall.

The main disadvantage of the algorithm is the complexity in the code and the
running time. While most Monte Carlo algorithms are fairly simple to implement,
the weighed-loop algorithm is more complex to implement. This also means that
the algorithm is more prone to errors. When a loop is created one cannot know
a priori which of the two clusters created by the loop is the smallest cluster. This
means that to flip the cluster one must the algorithm must consider all spins in
the entire lattice. This also means that this part is subject to scaling effects of the
lattice size. The construction of the loop is also subject to scaling effects. Since for
low temperatures the loops will walk along the domain wall a large amount of the
time, a relative large amount of computing time is wasted on constructing loops
which do not change the physics of the system.
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4 Results
In this section we present several results obtained using the weighed-loop algorithm.
All simulations were run on a single core of a Intel(R) Xeon(R) CPU E5-1620 and
32G RAM. For all the simulations we can set, without loss of generality, the bond
strength J = 1. The latter is valid since in all the usages of the weighed-loop
algorithm β is multiplied by J and thus we can view βJ as a single variable. In
other words we can set J = 1 and vary β instead of varying both β and J . All
simulations were run on a L by L random bond Ising model with anti-periodic
boundary conditions along one border and periodic boundary conditions along the
other border, unless specified otherwise. We start each simulation with exactly
one domain wall. Each domain wall costs a macroscopic amount of energy so by
initiating one domain wall we always have exactly one domain wall in the system
below the critical temperature.

First, we used simulations to investigate if it is more efficient to use wrapped
loops instead of discarding these constructed loops. In the next simulations we
looked at the effect of re-using the tails from the previous loops on the autocorrela-
tion of the first mode of the fourier transformation. Next we recorded the average
loop sizes and the acceptance probabilities for different system sizes L and different
temperatures β and we compared the results. Next we induce disorder in the Ising
model and using simulations of both Niedermayer’s algorithm and the weighed-loop
algorithm we can compare the performance of both algorithms given different pa-
rameters in the parameter space consisting of L, β and ∆ to derive a conclusion on
which algorithm is the best choice for different regions. Without disorder we mea-
sured the thermal averaging of the structure factor of the domain wall for different
temperatures and different lattice sizes and we show that these results agree with
the theory. Varying the different parameters we measured the typical length scale
Lc at which the system switches from a thermal dominated roughness to higher
length scales at which roughness is determined by disorder.

4.1 Using wrapped loops

When a loop wraps around one of the edges of the lattice an odd amount of times,
flipping the cluster of spins enclosed by the loop simply results in the entire lattice
being flipped. To solve this problem, a second loop can be constructed which also
wraps around the same edge as the first loop. However, constructing this second
loop takes computational time and it might be more efficient to not use loops which
wrap around of the edges whenever they occur.

To test what is the most efficient in terms of computational time, we ran sim-
ulations with using the wrapped loops and with not using the wrapped loops and
we measured the autocorrelation C(t) of the first mode of the fourier transforma-
tion. For both algorithms we ran 10 simulations, both algorithms were run on the
same 10 disorder configurations. We used the parameters L = 64, ∆ = 0.15 and
β = 2. For small t we assume an exponential decay in the autocorrelation, that
is C(t) ∼ exp (−at) with equal prefactors for both algorithms. An example of the
autocorrelation of the simulation for one specific disorder configuration is shown in
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Figure 5.
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Figure 5: The negative log of the autocorrelation of the first mode of the fourier
coefficients C(t) for both using the wrapped loops (blue disks) and not using the
wrapped loops (purple squares) on a log-log plot for the values L = 64, ∆ = 0.15
and β = 2 as a function of real computing time t. The decorrelation occurs
exponentially at first after which a slowing down occurs. The best unweighed
exponential fits up to t = 103 are shown as corresponding straight lines. In this
particular plot the result from using the wrapped loops are faster decorrelated that
the results from not using the wrapped loops.

To compare the results we fitted an exponential function to the data up to
t = 103. From the fits we extracted the constant in the exponent a for the different
simulations and averaged the result over the different disorder configurations. A
larger value for a leads to a faster decorrelation. We found that a = 3.6(6) · 10−6

for the simulations without using wrapped loops and a = 1.5(2) · 10−5 for the
simulations with using wrapped loops. From this we conclude that using wrapped
loops leads to a faster decorrelation compared with without using wrapped loops.
Hence, it is computational more efficient to use wrapped loops.

4.2 Reusing the tails

Re-using the tails in the weighed-loop algorithm for the construction of the next
loop is a method that decrease the time wasted on the construction of loops by
making sure that every selected bond will be used at some time in the algorithm.
One expects that the different simulated systems are now more correlated than
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without reusing the tails so the question is whether the gain in computational time
is beneficial compared to the increase in correlation.

To compare the two different algorithms we created 10 runs with both reusing
the tails and not reusing the tails. Each simulation was run on a disorder con-
figuration with L = 64, ∆ = 0.15 and β = 2. Both algorithms were simulated
on the same 10 disorder configurations. From these simulations we measured the
autocorrelation C(t) in the first mode of the fourier transformation. As with the
results on wrapping the loops, we assume an exponential decay in the autocorrela-
tion with equal prefactors for both algorithms, i.e. C(t) ∼ exp (−at). An example
of the results of one particular simulation of one specific disorder configuration is in
Figure 6.
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Figure 6: The negative log of the autocorrelation of the first mode of the fourier
coefficients C(t) for both not reusing the tail (blue disks) and reusing the tail (purple
squares) is shown in a log-log plot for the values L = 64, ∆ = 0.15 and β = 2
as a function of real computing time t. The decorrelation occurs exponentially at
first after which a slowing down occurs. The best unweighed exponential fits up
to t = 103 are shown as corresponding straight lines. In this figure the simulations
with reusing the tail are faster uncorrelated that the simulations without reusing the
tail.

All other simulations for both reusing the tail and not reusing the tail show the
same shape for the autocorrelation as in Figure 6, first an exponential decorrelation
occurs after which a slowing down occurs. To compare the two algorithms we fitted
an unweighed exponential function to the data up to t = 103 from which we deduced
the constant in the exponent a for both algorithms and we averaged the results over
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the disorder configurations. Using this we obtained a = 1.2(2) ·10−5 for not reusing
the tail and a = 4.1(7) ·10−6. The value of a is larger without reusing the tail. This
implies that on average not reusing the tail results in faster decorrelation compared
to using the tail. From this we conclude that it is computational more efficient to
discard the tail sections from loops.

4.3 Acceptance probability and loop size

It is interesting to look at the acceptance probabilities and loop sizes of the loops
created by the weighed-loop algorithm. To this end we simulated the Ising model for
different lattice sizes L and for different temperatures β with a disorder ∆ = 0.15.
We measured the average length of the cycles of the accepted loops and the fraction
of accepted loops to the total constructed loops. When a cluster is selected using
two loops, the length is the sum of the lengths of the two individual loops. The
data of the average length and the fraction of accepted loops are plotted in figure
Figure 7 and Figure 8 respectively.
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Figure 7: The fraction of accepted loops to the total constructed loops for different
lattice sizes L and different temperatures β using a disorder of ∆ = 0.15 on a
log scale. From the plot one can see that the fraction of accepted loops decreases
for lower temperatures, however for smaller lattice sizes the fraction of accepted
loops increases after the decrease for lower temperatures. For large lattice sizes the
fraction shows a ’jump’ around β = 0.64.

From Figure 7 we observe that the fraction of accepted loops decreases as
the temperature decreases. This can be attributed to the construction of the
loops. During the chaining of the bonds, the algorithm is presented with three
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Figure 8: The average size of the accepted loops for different lattice sizes L and
different temperatures β using a disorder of ∆ = 0.15 on a log scale. Lowering
the temperature decreases the average size of the loops but further decreasing the
temperature increases the average size of the loops. Large lattice sizes show a
’jump’ around β = 0.64. The sizes for L = 4 and L = 8 converge to 8 and 16
respectively, meaning that for low temperature two loops are used each time, each
having a total length of 2L.

bonds to choose from, each bond having a weight equal to the Boltzmann factor
W (Jij) = e−βJijσiσj . This means that for decreasing temperatures the likelihood
of choosing satisfied bonds over unsatisfied bonds decreases exponentially. So, when
transitioning from µ to ν, the selection probability in µ increases while the selection
probability in ν decreases and thus the acceptance probability decreases. From the
results in Figure 7 we observe that it is indeed the case that for lower tempera-
ture the fraction of accepted loops decreases. For small lattice sizes however, the
fraction of accepted loops increases when the temperature decreases. This can be
explained due to the fact that the size of the loops also increases since the loop
is more likely to walk along the domain wall. With a larger loop size it is possible
to have a large negative contribution to the energy and thus a higher acceptance
probability. It is also possible that two loops are constructed which are exactly the
same and both lie on the domain wall, meaning that the acceptance probability is
unity. We can also observe this behaviour from Figure 8.

A remarkable observation is that in the simulations for L = 128 and L = 256
both the fraction of accepted loops and the size of the loops show a jump in the data
around temperature β = 0.64. To further investigate this jump we also simulated
the lattice sizes L = 90, L = 100, L = 110 and L = 120. These results are in
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Figure 9: A close-up of the jump in the fraction of accepted loops to the total
constructed loops on a log scale for different lattice sizes L and for different tem-
peratures β and with a disorder ∆ = 0.15. We added lines between data points for
visibility. This plot shows that the size of the jump increases when the lattice size
increases.

Figure 9. From the figure we observe that the jump becomes more explicit for larger
lattice sizes. This can be explained by the specific heat.

In Figure 10 the specific heat per spin for different lattice sizes L is plotted for
different temperatures β. From the figure it is clear that for larger lattice sizes the
specific heat drops sharper around the β = 0.64 mark, since the phase transition
of the system occures at this temperature. By the definition of the acceptance
probability of the loops, a larger specific heat amounts to a larger acceptance rate
and due to the definition of the chaining of bonds in the loop a larger specific heat
amounts to larger loop sizes. Thus a sudden drop in the specific heat results in a
sudden drop in the loop sizes and in the fraction of accepted loops.

4.4 Comparison to Niedermayer’s algorithm

We are interested in how the weighed-loop algorithms compares to other already
existing algorithms. To this end we compared the weighed-loop algorithm with
a known algorithm for disordered Ising models, Niedermayer’s algorithm. For both
the weighed-loop algorithm and Niedermayer’s algorithm we ran multiple simulations
for a fixed amount of time of 10 minutes each on the same 24 different disorder
configurations for different values of L, β and ∆ to find the regime in the parameter
space where the weighed-loop algorithm outperforms Niedermayer’s algorithm. We
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Figure 10: A plot of the specific heat per spin for different lattice sizes L and
different temperatures β using a disorder of ∆ = 0.15 on a log-scale. We joined the
data points for visibility. From the plot it is clear that the phase transition occurs
around β = 0.6 and the specific heat per spin shows a sharp drop after the phase
transition.

measured the autocorrelation of the first mode of the fourier transformation C(t)
since the first mode takes the most time to reach the equilibrium.

For small time t we can assume an exponential decay in the autocorrelation
with equal prefactors such that C(t) ∼ exp (−at) for both Niedermayer’s algorithm
and the weighed-loop algorithm. To compare the different algorithms we fitted the
exponential function to the data up to t = 103 for both algorithms. From the fit
we extracted the constant in the exponent a and averaging the values of a over the
disorder configurations. Figure 11 shows typical autocorrelations for both algorithms
on the same disorder configuration. The averaged values of a are listen in Table 1.

From the data we can conclude that for the temperature β = 2 there is a larger
regime where the weighed-loop algorithm achieves faster decorrelation than Nieder-
mayer’s algorithm. However, for larger lattice sizes the value of the disorder for
which the weighed-loop algorithm decorrelates faster than Niedermayer’s algorithm
also increases. This means that the weighed-loop algorithm is the superior algorithm
in the relative small lattice sizes as well as a larger disorder on larger lattice sizes.
In short, the weighed-loop algorithm has a faster decreasing autocorrelation in the
regions where conventional algorithms get stuck.

From the data we can also observe that the weighed-loop algorithm decorrelates
exponentially on longer time scales. This can be an indication that the weighed-
loop algorithm simulates more different local minimums which are far apart, meaning
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Figure 11: The negative log of the autocorrelation of the first mode of the fourier
coefficients C(t) for the weighed-loop algorithm (blue disks) and Niedermayer’s
algorithm (purple disks) on a log-log plot for the values L = 128, ∆ = 0.50 and
β = 1 as a function of real computing time t. The decorrelation occurs exponentially
at first after which a slowing down occurs. The best unweighed exponential fits up
to t = 103 are shown as corresponding straight lines. In this particular plot the
result from Niedermayer’s algorithm are faster decorrelated that the results from
the weighed-loop algorithm.

that the weighed-loop algorithm is more efficient in changing local clusters to hop
to different minimums in the energy spectrum.

4.5 Domain walls

The weighed-loop algorithm is mainly used to simulate domain walls in RBIM’s. First
we simulated a standard Ising model without random bond induced disorder and we
measured the structure factors for different temperatures on different lattice size and
we compare these simulated results to the theory from section 2.2. A 265x256 lattice
and a 64x64 lattice were simulated using the weighed-loop algorithm with a disorder
∆ = 0 and the temperature β ranges from 0.5 to 3.5 with a step size of 0.1. For each
different temperature β we get a set of L/2 fourier coefficients and we fit the fourier
modes to the expression for the structure factor (3). From the fit we get the scaling
factor A(L, βJ). We expect the values of the scaling factor to fit the theory, except
in the high temperature region, since for high temperatures the approximation of
the domain wall does not hold. In Figure 12 the values of LA(L, βJ) are plotted for
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β = 1, H = 32 Niedermayer Loop
∆ = 0.1 a = 6.5(2) · 10−4 a = 1.35(4) · 10−5

∆ = 0.3 a = 1.8(6) · 10−5 a = 1.42(8) · 10−5

∆ = 0.5 a = 2.1(3) · 10−5 a = 1.3(2) · 10−5

β = 1, H = 64 Niedermayer Loop
∆ = 0.1 a = 9.4(9) · 10−7 a = 8.7(6) · 10−7

∆ = 0.3 a = 1.4(1) · 10−6 a = 8.9(8) · 10−7

∆ = 0.5 a = 1.0(1) · 10−6 a = 1.2(2) · 10−6

β = 1, H = 128 Niedermayer Loop
∆ = 0.1 a = 2.0(2) · 10−7 a = 4.5(4) · 10−8

∆ = 0.3 a = 5.3(6) · 10−7 a = 8.1(7) · 10−8

∆ = 0.5 a = 6.4(5) · 10−7 a = 1.1(2) · 10−7

β = 2, H = 34 Niedermayer Loop
∆ = 0.1 a = 7.9(4) · 10−5 a = 9.4(6) · 10−6

∆ = 0.3 a = 1.1(2) · 10−6 a = 1.1(1) · 10−5

∆ = 0.5 a = 0.5(1) · 10−6 a = 1.3(3) · 10−5

β = 2, H = 64 Niedermayer Loop
∆ = 0.1 a = 2.6(3) · 10−7 a = 8.4(9) · 10−7

∆ = 0.3 a = 4.7(5) · 10−7 a = 1.2(2) · 10−6

∆ = 0.5 a = 1.9(2) · 10−7 a = 1.8(5) · 10−6

β = 2, H = 128 Niedermayer Loop
∆ = 0.1 a = 0.4(2) · 10−6 a = 6.1(8) · 10−8

∆ = 0.3 a = 1.9(3) · 10−7 a = 1.3(2) · 10−7

∆ = 0.5 a = 8.7(9) · 10−8 a = 2.5(3) · 10−7

Table 1: The values of a for both Niedermayer’s algorithm and the weighed loop
algorithm for different values in the parameter space of L, β and ∆. For each set
of parameter points the algorithms with the fastest decorrelation is coloured blue.
The values of a are obtained by averaging the best fits for the first 120 data points
for each data set.

different temperatures β with the theory plotted as reference in the corresponding
colours.

From Figure 12 it is clear that the simulated data agrees with the theory as
predicted. For the low and high temperature regimes of Figure 12 the data is less
accurate. In the high temperature regime there exist more thermal fluctuations as
well as more local pockets of spins and overhangs in the domain wall, which means
that the approximation of the domain wall does not hold. For low temperatures the
probability of accepting moves is lower which results in the domain wall changing
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Figure 12: The simulated values of LA(L, βJ) are plotted against the temperature
β for the values L = 256 (blue circles) and L = 64 (purple squares) on a log scale.
The values of A(L, βJ) are calculated using the fit (6) with ∆ = 0. The plot also
shows the theory (4) as a reference with the corresponding colours. The simulated
values agree with the theory. For both the high and low temperature the simulated
values are less accurate since for high temperatures the model of the domain wall
is not accurate enough and for low temperatures the domain wall collapses to an
equilibrium making it harder for the algorithm to change the domain wall.

less between different simulated steps in the algorithm.

Introducing disorder ∆ in the system creates a parameter space consisting of the
three parameters L, β and ∆. As described in section 2.2 the behaviour of the low
modes is dominated by the random bond induced disordered while the behaviour
of the high modes is dominated by the thermal fluctuations. We are interested in
the typical length Lc scale for which the separation between the two dominated
regions occurs. This Larkin length Lc and the crossover point relate to each other
by Lc = 1

2pc
.

To investigate the Larkin length for different regimes in the parameter space we
performed three sets of simulations. In each set of simulations we fixed two of the
three parameters L, β and ∆ and varied the third parameter. The default values
of the parameters we used are L = 64, β = 2 and ∆ = 0.15. We fit each set of
fourier modes to

A(p, L, βJ,∆) = A(L, βJ,∆)

([
c (L, βJ,∆) p−7/3

]b
+ csc2b

[πp
L

])1/b

, (6)
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where c(L, βJ,∆) is a prefactor and b is a smoothing factor such that the function
transition smoothly at the crossover point. Using A(L, βJ,∆) and c(L, βJ,∆) one
is able to find the crossover point pc and Larkin length Lc.

When introducing randomness ∆ in the system simulating becomes more time
inefficient. First of all the simulations need to be averaged across different disorder
configurations, next to the standard thermal averaging. This means that more
simulations are needed in order to achieve an accurate result. Also with disorder,
there are more regions of local energy in the energy landscape due to an increase
of roughness and meta-stable states in the energy landscape. This implies that
more simulations are needed in order to simulate all different pockets to achieve
an accurate averaged result. When simulating, one must therefore choose: either
small systems with higher disorder or lower temperature, or larger systems with
lower disorder or higher temperature.

4.5.1 Varying L

We are interested in the behaviour of the Larkin length when varying the lattice size
L. Due to finite size effects we expect the Larkin length to increase for larger lattice
sizes and converge to a certain typical length scale for infinite sized systems. To
investigate the length scale we simulated different lattices sizes where 8 ≤ L ≤ 128
with a step size of 8. We combined the different fourier modes and we fitted the
modes unweighed to (6). However, for small lattice sizes, more simulations do not
yield any results above the typical length scale and thus for small systems the fit
is not possible since the higher-mode portion does not collapse. Hence we did not
used any fourier modes for which L ≤ 40 in the fit. The results of the simulations
are in Figure 13. In Figure 13 we also fitted the best unweighed fit (6) as a solid
black line as well as the power-laws in both the low and high mode regimes as
dashed lines.

From Figure 13 we find the crossover point pc ≈ 0.37 which is plotted in the
figure as a red dashed line, from which we can derive that Lc ≈ 13.4. The fit also
shows that the fourier modes align to the same curve, for large enough lattice sizes
L. For the modes with small L this is not the case as we described earlier.

The fit was made using all fourier modes with L ≥ 48 from which a Larkin length
of Lc ≈ 13.4 was obtained. However, if one would drop more fourier modes from
the data sets of increasing lattice sizes L, a different length scale can be obtained.
In Figure 14 is a plot of the Larkin length as a function of the lowest value of L used
in the fit showing an increase in length scale when less fourier modes are used. This
implies that the different sets of fourier modes collapse less onto each other. Since
there is no clear limit to the different values of the Larkin length, we are unable to
derive the Larkin length for infinite system sizes.

4.5.2 Varying ∆

Another parameter we are interested in for the behaviour of the Larkin length is the
disorder parameter ∆. We expect an increase in the crossover point (or decrease
in the Larkin length) for larger disorder since for a system with more disorder the
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Figure 13: The thermal and disorder averaged squared of the fourier modes
A(p, L, βJ,∆) as a function of p/L for β = 2 and ∆ = 0.15 for different lat-
tice sizes 8 ≤ L ≤ 128 on a log-log scale. The best unweighed fit from (6) is
also plotted as a black line for reference, as are the power-law behaviours for the
low-mode and high-mode regime as dashed lines. For the best fit the fourier modes
from the lowest lattice sizes with L ≤ 40 were not used since the higher-mode por-
tion did not collapse onto the power-law behaviour induced by the random bonds.
In this plot the value of the crossover point happens at pc/L ≈ 0.037 and is show
as a dashed red line. From the crossover point we can conclude that Lc ≈ 13.4.

random bond induced disorder dominates a larger part of the high modes. Also,
we expect the prefactor A(L, βJ,∆) to increase for larger ∆. This means that a
natural data collapse and the fit (6) are not possible for the fourier modes, as is
possible with the fourier modes when varying the lattice size L.

For the simulations we fixed the size L = 64 and the temperature β = 2.0 and
we let the disorder ∆ vary such that 0.00 ≤ ∆ ≤ 0.30 with step sizes of 0.02. For
each value of ∆ we fitted (6) to the fourier modes to get the values of the prefactor
A(L, βJ,∆) and c(L, βJ,∆). The fourier modes and the best fit for each value of
∆ are shown in Figure 15.

From each set of fourier modes we can determine the crossover point and Larkin
length. In Figure 17 the Larkin lengths for different values of ∆ are plotted. We
fitted the Larkin lengths to

Lc(δ) = x+
y

δz
, (7)

where δ is a parameter, in this case ∆.
In Figure 17 we have that, as expected, for higher values of ∆ the crossover point
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Figure 14: The Larkin length Lc calculated by using the fit (6) to the fourier modes
of all data sets with the lattice size L larger than a certain value. Dropping more of
fourier modes for the lower lattice sizes results in a higher Larkin length Lc. There
is no clear limit to the value of the Larkin length so we are unable to derive the
Larkin length for infinite system sizes.

increases and thus the Larkin length decreases. From the fit we derive the value
x ≈ 3.55 which means that in the limit ∆→∞ the Larkin length converges to the
value Lc ≈ 3.55. Note that we restricted ourselves to not use anti-ferromagnetic
bonds (∆ ≤ 1) but the same value holds for values of ∆ > 1. Also, using an infinite
∆ results in a rigid domain wall hardly subject to thermal fluctuations since each
breaking of a satisfied bond has zero probability of being chosen in the loop.

We plotted the prefactor A(L, βJ,∆) for different values of ∆ in Figure 17. We
fitted the different prefactors to

A(L, βJ,∆) = x+ y∆z , (8)

and we also plotted the fit in Figure 17. From the fit we find that z ≈ 1.66 which
suggests that the prefactors increase polynomial as disorder increases.

4.5.3 Varying β

As the temperature decreases one expects an increasing of the crossover point and a
decreasing of the Larkin length. We expected this result since for lower temperatures
there are less fluctuations in the domain wall due to thermal disorder, resulting in
more random bond induced disorder. We also expect there to be a limiting value for
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Figure 15: The thermal and disorder averaged squared of the fourier modes
A(p, L, βJ,∆) as a function of p/L for L = 64 and β = 2.0 for different val-
ues of ∆ with 0.00 ≤ ∆ ≤ 0.30 on a log-log scale. The best fit (6) for each value
of ∆ is also plotted.

the crossover point and the Larkin length in the case of zero temperature. This due
to the fact that lowering the temperature in an already cold system hardly affects
the dynamics of the system.

For the simulations we fixed L = 64 and ∆ = 0.15 and we let 0.5 ≤ β ≤ 3.0
vary with a step size of 0.1. For each different value of β we fit the fourier modes
to (6) to get the prefactors A(L, βJ,∆) and c(L, βJ,∆). These fourier modes for
different values of β and their respective fits (6) are shown in Figure 18.

For the different values of β with β sufficiently large we derived the Larkin
length. This derivation is not possible for high temperatures since the fourier modes
cannot be fitted to (6), as can be observed from Figure 18. We fitted the different
Larkin lengths to (7) and we plotted the different Larkin lengths and the fit in
Figure 19. From Figure 19 we can observe that the Larkin length decreases when
the temperature decreases as expected. From the fit (7) we can derive the Larkin
length in the limit β →∞ to be Lc ≈ 8.85.

From the fit (6) we derive the prefactors A(L, βJ,∆). We can compare these
prefactors with the prefactors A(L, βJ) in the absence of random bond disorder. In
Figure 20 we have plotted the prefactors A(L, βJ,∆) with disorder and A(L, βJ)
without disorder. The figure also shows the theory (4). At high temperatures the
thermal fluctuations in the domain wall dominate the disorder and thus no difference
in the prefactors. When the temperature is lower the random bond induced disorder
begins to affects the prefactor resulting in different values for the prefactors with
disorder relative to the prefactors without disorder.
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Figure 16: The Larkin length for different ∆’s with β = 2.0 and L = 64 on a log-log
scale. The fit (7) is also plotted as aline. As expected, the Larkin length decreases
for larger values of ∆. From the fit (7) we can derive that in the limit ∆→∞ we
have that Lc ≈ 3.55.

5 Future work
The weighed-loop algorithm as presented in this thesis is an algorithm for the simula-
tion of domain walls in random bond Ising models. There are possible improvements
on the weighed-loop algorithm for special use cases.

A first possible improvement is in the creation of the loops. A next bond is
added to the loop with a weight equal to the Boltzmann distribution and only
dependent on the bonds the algorithm can choose from. From section 3 it is clear
that this selection probability results in a low acceptance probability of loops on
large lattice sizes and high β. Other weight functions result in other selection
probabilities and these weight functions can increase the fraction of accepted loops
in these regimes while not decreasing the acceptance probability of the loops in
other regimes. Further investigation can lead to a better weight function.

As already discussed, the weighed-loop algorithm also presents the possibility
to incorporate a preferred direction. When for example the loop diverges from
the domain wall, a preferred direction can be added when chaining the bonds to
increase the likelihood of the loop returning to the domain wall. In this way the
loop will return to the domain wall more often and thus there are less updates away
from the domain wall which do not influence the domain wall and there are more
updates in the neighbourhood of the wall decreasing the correlation in the modes
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Figure 17: The prefactors A(L, βJ,∆) as a function of ∆ with L = 64 and β =
2.0. The fit (8) is also plotted as reference showing that the prefactors increases
polynomial as the disorder increases.

of the domain wall between consecutive measurements. However, such a preferred
direction increases the complexity of the weighed-loop algorithm.

In each step of the weighed-loop algorithm only a single loop is created. The al-
gorithm can be extended to construct multiple loops simultaneously. This increases
the running time of the algorithm in each step, but since there are on average more
updates each step, it lead to less correlation between consecutive measurements.
However, there is also the possibility that constructing more loops leads to an al-
location of more computational time to areas of the system which are not close to
the domain wall and which are not relevant to update.

Finally, the parameter space for the properties of the domain wall in RBIM’s consists
of the three parameters L, β and ∆. We only investigated along straight lines in
the parameter space parallel to the axes of the space. This does not cover the entire
parameters space and there can exists possible regions in the parameter space for
which unexpected behaviour of the domain wall occurrs. A more diverse study using
varying more than one of the parameters at the same time leads to a more accurate
understanding of the behaviour of the crossover point in the entire space.
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Figure 18: The thermal and disorder averaged squared of the fourier modes
A(p, L, βJ,∆) as a function of p/L for L = 64 and ∆ = 0.15 for different temper-
atures with 0.5 ≤ β ≤ 2.8 on a log-log scale. The best fit (6) for each value of β
is also plotted. For low values of β the fourier modes cannot be fitted to (6) since
the model of the domain wall dies not hold due to overhangs and local pockets of
spins.

6 Conclusion
Introducing more efficient methods for the simulation of domain walls in random
bond Ising models can improve the knowledge of real world magnetic domain walls
in magnetic materials. This in turn will lead to a better understanding of magnetic
memory devices. The goal of this thesis was to introduce a new weighed-loop
algorithm for more efficient simulations of domain walls in random bond Ising models
and using this new weighed-loop algorithm to simulate properties of the typical
length scale of the domain wall at which a crossover occurs for different types of
induced disorder.

In section 3 we proposed a new weighed-loop algorithm. This weighed-loop
algorithm selects clusters of spins by chaining bonds of the Ising model to form
closed loops in the spin lattice. The different options on each lattice point on
the graph G induced by the Ising model are biased such that is more favourable to
choose unsatisfied bonds over satisfied bonds, which in turn increases the acceptance
probability of the loop and thus decreases the autocorrelation of the algorithm,
especially at low temperatures or with large disorder in the bond strength of the
system. Extra care should be taken when the constructed chains loop around the
edges of the lattice since in these cases it is possible for the loop to enclose the
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Figure 19: The Larkin length Lc for different values of β > 1.2 with L = 64 and
∆ = 0.15 on a log-log scale. For high temperatures the model of the domain
wall does not hold. This implies that the Larkin length deduced from the fit (6),
if possible, is not an accurate value of the Larkin length. The Larkin lengths for
β > 1.2 are used to fit (7) from which the Larkin length Lc ≈ 8.85 in the infinte β
limit can be derived.

entire lattice. The algorithm can be implemented for any graph-type model in which
the energy of the system is defined by the bond strength between spins. We have
proven that the weighed-loop algorithm satisfies the detailed balance equation and
we have proven that the algorithm is ergodic. With both these conditions it is
proven that the algorithm simulates the Ising model correctly. The new algorithm
as presented in section 3 does have clear advantages for simulating domain walls,
but the algorithm also has disadvantages.

The weighed-loop algorithm can use multiple loops prevent wrapped loops from
flipping all the spins in the lattice. However, the construction of more loops needs
more computational time. We compared the autocorrelation of the weighed-loop
algorithm using these wrapped loops and thus constructing more loops against the
autocorrelation of the algorithm which discards the wrapped loops. We observed
that it is more favourable for the autocorrelation to use the wrapped loops in contrast
to discarding the wrapped loops.

Each constructed loop in the weighed-loop algorithm consists of a closed loop
and a tail section. The tail section does not contribute to a change in the dynamics
of the system and can be seen as wasted computational time. The tail section can
be used as the start of the next loop in the next step of the algorithm. This decreases
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Figure 20: The prefactors A(L, βJ,∆) as a function of β with L = 64 for ∆ = 0.00
(blue disks) and ∆ = 0.15 (purple squares). The theory for the behaviour of the
domain wall in the absence of disorder (4) is plotted as a blue line. From the plots
it is clear that a minimal disorder-induced roughness is present for both with and
without disorder.

the wasted computational time but it increases the correlation between consecutive
steps in the algorithm. We compared the autocorrelation of the weighed-loop algo-
rithm which reuses the tails for the next loops against the algorithm which discards
the tails. We observed that it is more favourable for the autocorrelation to discard
the tail sections of each loop.

Since the new weighed-loop algorithm is designed for simulating domain walls
in the random bond Ising model we are interested in the regimes of the parameter
space consisting of the parameters L, β and ∆ for which the weighed-loop algorithm
simulates more efficient than current known algorithms. Niedermayer’s algorithm
is one of such algorithms for simulations on glassy spin systems and random bond
Ising models and in section 4.4 we compared the weighed-loop algorithm against
Niedermayer’s algorithm. As a measure of effectiveness we measured the auto-
correlation in the first mode of the fourier transform of the domain wall for both
algorithms since the first mode is the least dependent on local changes and more
dependent on global changes and takes the longest time to reach its equilibrium.
This implies that the first mode takes the longest time to decorrelate. A smaller
autocorrelation implies more updates on the domain wall, or larger updates on the
domain wall. For both Niedermayer’s algorithm and the weighed-loop algorithm
we measured the autocorrelation for different regimes in the L,β,∆-space. From
the simulations it followed that the weighed-loop algorithm is the more efficient

46



algorithm in the regime at which conventional algorithms on the Ising model tend
to get stuck, the regime with low temperatures and high disorder. These are the
regimes in the parameters space for which many issues arise due to a rough energy
landscape and exponentially high energy barriers.

From theory, properties of the behaviour of the domain walls are known and
we verified these properties experimentally. For Ising models without disorder we
have (4). We used the weighed-loop algorithm to simulate the domain walls in Ising
models without disorder. For different lattice sizes the simulated results agree with
the theory. For high and low temperatures the simulated values are less accurate
since for high temperatures the domain wall contains a significant amount of over-
hangs and the system contains more local pockets of spins. For high temperatures
a relative larger number of simulations is needed since for large temperatures less
loops are accepted.

When disorder is introduced in the system the system shows a minimal disorder-
induced roughness, even when the temperature goes to zero. We found that when
increasing the system size, both disorder and temperature increases the roughness
of the domain wall. It is known from theory that for Ising models with disorder
the fourier modes can be divided into two regimes separated by the crossover point
pc/L. Low modes below pc/L behave like the power law p−(1+2ζ) and high modes
above pc/L behave like csc2

(
pπ
2

)
. Without disorder the domain wall is only subject

to thermal induced disorder and ζT = 1/2 in contrast with ζRB = 2/3 when the
domain wall is also subject to random bond induced disorder. When simulating
different regimes in the parameter space we confirmed that the modes follow the
power laws in both regimes. Also, decreasing the temperature or increasing the
disorder increases the crossover point and thus decreases the typical length scale
Lc. Increasing β or ∆ to infinite, one expects the crossover point to reach a
limiting value, since for low temperatures decreasing the temperature hardly affects
the dynamics of the system. The same holds for increasing the disorder when the
system is already subject to a large disorder. We found the limiting values Lc ≈ 8.85
in the limit β →∞ limit and Lc ≈ 3.55 in the limit ∆→∞. The methods we used
to determine the limiting values of the Larkin length have no theoretical foundation
so we cannot accurately known whether these limiting values are the true physical
limiting values. Longer and more simulations may provide a clearer convergence for
the Larkin length Lc.

To conclude, in this thesis we introduced a new weighed-loop algorithm and we
have proven that the algorithm simulates the Ising model correctly. We also showed
that there exists a regime in the L,β,∆-space for which the algorithm simulates the
domain wall more efficient than Niedermayer’s algorithm. We used the weighed-loop
algorithm for the simulation of the domain wall in the random bond Ising model
and we showed that the simulated results agree with the theoretical results.
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