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Abstract

Dzyaloshinskii-Moriya interaction (DMI) is an asymmetric exchange interaction that
originates from spin-orbit couplings combined with a broken inversion symmetry. Moti-
vated by recent experimental developments, we investigate the effects of DMI strength
on spin waves in a 2D lattice spin model with easy-axis anisotropy and an external mag-
netic field. Furthermore, we consider a setup that consists of a ferromagnetic medium
bounded by two metallic reservoirs. We compute the transverse and longitudinal spin
current in this setup using the stochastic Landau-Lifshitz-Gilbert equation with appro-
priate boundary conditions. We find that the transverse spin current vanishes, whereas
the longitudinal spin current is influenced by DMI.
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Preface

Spintronics (short for spin transport or spin based electronics) aims to understand and
control the behaviour of electrons with an emphasis on their spin degrees of freedom,
rather than only on their charge. It is a relatively young field of study, where its con-
ception is generally considered to be the discovery of the giant magnetoresistive effect
in 1988, a discovery that in 2007 was awarded with the Nobel Prize[1, 2]. The Nobel
committee argued that

“Applications of this phenomenon have revolutionized techniques for retriev-
ing data from hard disks. The discovery also plays a major role in various
magnetic sensors as well as for the development of a new generation of elec-
tronics. The use of Giant Magnetoresistance can be regarded as one of the
first major applications of nanotechnology.”[3]

Conventional electronics describes the behaviour of electric excitations that exist in
conducting, semiconducting and insulating materials. An electric current has massive
particles (electrons) moving through a medium. Spintronics deals with spin currents,
one example of which arises in the context of magnetic excitations that exist in magnetic
materials. In a ferromagnetic medium, for example, all particles share the same spin.
If one particle has an excitation that leads to the direction of its spin to deviate from
its equilibrium direction, this excitation will, through various mechanisms, lead to the
excitation traveling through the medium, like a wave. Quantizing this wave, we can
regard it as a quasiparticle travling through the medium. This quasiparticle is known
as the magnon. For magnon transport, there is no movement of massive particles, only
excitations of the magnetic field of particles. A short, but more thorough introduction
on spin waves is given in chapter 1.

In the future, we may be able to manipulate the spin degrees of freedom in such a way
that we can use them to transmit information. This is the reason that spintronics is such
a promising field of study with regard to its possible applications. As spin waves do not
involve the motion of electrons, they are free of Joule heat dissipation[5], which can lead
to a decrease in energy consumption of information transmitting systems. Furthermore,
the use of spin waves for the transmission of information allows operations with vector
rather than scalar variables[5]. This could have many advantages such as increased data
processing speed as well as an even larger decrease in electric power consumption[1].

With so many potential applications, it is not surprising that fundamental research into
spintronics has grown recently, with many exciting developments having occurred in the
past few years[6]. The spin Hall effect is an example of a recent discovery that has
rapidly grown into its own subfield[7]. Due to different phenomena, for example the
presence of spin-orbit interactions, it is possible to generate a spin current transverse to
the direction of an electric current through a (semi)conducting lateral surface. This is
further clarified in Fig. 1. The phenomenon also leads to the inverse spin Hall effect:
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Figure 1 – If a charge current is applied to a (semi)conducting lateral surface, the spin
Hall effect will lead to the appearance of a spin current transverse to the direction of the
charge current. Figure taken from [9].

if a spin current is injected into a (semi)conducting lateral surface, a charge current
transverse to the spin current will appear. Research into this effect has enabled us to
use the spin Hall effect as a tool to detect, measure and generate[8] spin currents. We
should note that, in this case, the spin current still involves the motion of electrons and
not magnons, with the direction in which the electrons move depending on their spin.
This is why this type of spin current is also know as an electron spin current.

We now regard a setup in which an (electron) spin current is generated by injecting an
electric current into the sample, and have this sample share an interface with a second,
insulating, magnetic sample. As the second sample is an insulator, the electric current
in the first, conducting sample will not be transmitted into the second sample. The
same goes for the electron spin current. It has been shown, however, that the electron
spin current in the (semi)conducting sample will induce a magnon spin current in the
insulating sample[12]. This way, we can (indirectly) electrically induce a magnon spin
current in an insulating, magnetic sample.

The generation of a magnon spin current in an insulating sample through the spin Hall
effect has been experimentally verified using the following setup: we view an insulating
magnetic sample, connected to (semi)conducting metallic lateral surfaces at both ends.
A current is applied to one of the conducting metals, leading to an electron spin current
transverse to this electric current due to the spin Hall effect. The spin current will also
propagate through the insulating sample as a magnon spin current, leading to another
electron spin current in the other (semi)conducting sample. This will, in turn, lead to
an electric current in the other (semi)conducting sample through the inverse spin Hall
effect, which can be measured. The setup is illustrated in Fig. 2.

Another means of magnon spin current generation in magnetic, insulating materials is
through thermal gradients, following the discovery of the spin Seebeck effect. This effect
seems to originate, amongst others, in the interaction between magnons and phonons[10].
In the spin Seebeck effect, a temperature gradient applied to a magnetic, insulating sam-
ple will lead to a spin current through this sample (see Fig. 3)[14]. This effect has been
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Figure 2 – Experimental setup to confirm electrically driven magnon spin currents. An
electric current in one conducting sample will lead to a spin current transverse to the
electric current due to the spin Hall effect, which will propagate through the insulating
material, denoted by F(YIG) in the figure. This spin current will lead to an electric
current transverse to this spin current in the second conducting sample due to the inverse
spin Hall effect. Figure taken from [16].

Figure 3 – A temperature gradient applied to a magnetic sample leads to a spin current
through this sample. Figure based on figure taken from [10].

experimentally verified. The measurement of this effect relies on the inverse spin Hall
effect[10]: at the ends of an insulating magnetic medium, two (semi)conducting samples
are placed. Upon generating a magnon spin current in the insulating medium through
the application of a thermal gradient, this spin current will also propagate through the
(semi)conducting samples as an electron spin current. Inside these conducting metals,
a charge current transverse to the spin current will appear due to the inverse spin Hall
effect. Measuring this charge current leads to the conclusion that a spin current has
appeared in the insulating sample. This setup is shown in Fig. 4.

Another interesting new phenomenon is the magnon Hall effect, which is analogous to the
Hall effect. The Hall effect was discovered by Hall in 1879[11]: if we apply a magnetic field
perpendicular to the direction of an electric current, an additional electric current will
appear, perpendicular to both the original electric current and the magnetic field. This
phenomenon is driven by the Lorentz force. In the magnon Hall effect, analogously, we
view a magnon spin current and apply a magnetic field, which leads to the appearance of
a magnon spin current transverse to the original spin current. Rather than by Lorentz
force, the magnon Hall effect is theorized to be driven by the Dzyaloshinskii-Moriya
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Figure 4 – Experimental setup to measure the Seebeck effect. A thermally generated spin
current in an insulating sample leads to electric currents transverse to the spin current
in conducting metals at the ends of the insulating sample through the inverse spin Hall
effect. Figure taken from [10].

interaction (DMI)[13]. One way of generating the (longitudinal) spin current is through
the spin Seebeck effect, by use of a temperature gradient. For a current generated this
way, the magnon Hall effect has been experimentally observed[13]. This experiment is
further clarified in Fig. 5.

It has been theorized that an electrically induced spin current will also exhibit the
magnon Hall effect[17]. This electrically induced magnon Hall effect is illustrated in Fig.
6. In this thesis, we set out to study the electrically induced magnon Hall effect by
computing the transverse current under the influence of an external magnetic field and
DMI. In the first chapter, some background on spin waves and DMI will be given. In
the second chapter, we look at the influence of different interactions on the free energy
of spin waves. We will use a 2D lattice model of a ferromagnet with easy-axis anisotropy
to examine 4 interactions, and see how different ratios between these interactions affect
the free energy, dispersion relations, the direction of the equilibrium of individual spins
and the ground states. We will see that the ratios of the different interaction strengths
have a very significant effect on the spin waves.

Using this knowledge, we define a setup in which we can perform our calculations in the
third chapter. We will look at the influence of DMI on transverse and longitudinal spin
currents through a ferromagnet bounded by metallic reservoirs. We will see that, even
with DMI present, the transverse current vanishes. We will also see that DMI does have
an effect on the longitudinal current. We will finally discuss the merits and drawbacks
of this model.
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Figure 5 – The magnon Hall effect with a spin current generated by a temperature gradient.
The blue arrow represents a spin current being bent into the transverse direction. The
grey arrows represents the external magnetic field. Figure taken from [15].

Figure 6 – The magnon Hall effect generated by a magnon potential gradient. We see a
spin accumulation µ′ on one side, and a resulting longitudinal spin current JL. If the
magnon Hall effect also applies to electrically induced magnon spin currents, we expect
to see a transverse magnon spin current to appear. Figure based on figure taken from
[18].
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Chapter 1

Short Introduction to Spin Waves

The spin of an electron, or its intrinsic magnetic moment, can only be understood
through quantum mechanics. To form an intuitive understanding of spin waves, however,
we can use a classical model in which each spin is represented by a small magnet. We
will first give a simple example of a spin wave by looking at a 1D lattice of spins with
two kinds of interactions. We will then examine the Landau-Lifshitz-Gilbert equation,
an equation that describes the precessional motion of the magnetization of a material.
Finally, we will take a closer look at DMI.

1.1 Spin waves explained using a 1D lattice model

We take a 1D lattice model (see Fig. 1.1) and assume that each electron interacts with
its environment in two different ways: by the Heisenberg exchange interaction and by
the interaction of the spins with an external magnetic field. The Heisenberg exchange
interaction describes the energy cost of the relative orientation between two neighbouring
spins:

HXC = −J
2

S1 · S2.

Here, S1 and S2 represent unit vectors that point in the direction of the magnetic field
generated by the small magnets that represent the spins, and J represents the exchange
constant of the material. The value of J depends on the material. For J > 0, the
material is called ferromagnetic, and the spins will favour parallel alignment. For J < 0,
the material is called antiferromagnetic, and the spins will favour antiparallel alignment.
In this thesis, we are only concerned with ferromagnetic materials.

Figure 1.1 – A 1D ferromagnetic lattice of spins, all aligned with eachother. Picture taken
from [23].
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(a) A spin precessing around its equilibrium. Figure
taken from [24].

(b) A spin wave. The
wave travels in the di-
rection of Js, with a
magnetic field pointing
upwards. Figure taken
from [22].

Figure 1.2 – Precession of a spin around its equilibrium can cause a wave propagating
through the medium.

The interaction of the spins with an external magnetic field describes the energy cost of
the orientation of a single spin with respect to an external magnetic field B:

HB = −B · S.

We see that this interaction will favour an alignment of each spin with an external
magnetic field. If we were to pull one spin from its equilibrium position, we can imagine
the spin starting to precess around its equilibrium position. This precessing motion is
shown in Fig. 1.2a.

Over time, its deviation from the equilibrium position will get smaller and smaller due
to a process called damping, analogous to a swinging pendulum that will decrease its
deviation of its equilibrium position over time. An illustration of this damping is shown
in Fig. 1.3.

In our 1D ferromagnetic lattice of spins, all the spins will align with the magnetic field
when at rest. If we now were to push the left spin, so that it will start to precess
around its equilibrium position, this spin will interact with its neighbor due to the
Heisenberg exchange interaction. This will cause its neighbor to start precessing around
its equilibrium as well. This in turn, will give the next neighboring spin a push as well,
and so on, leading to a wave propagating through the lattice. This is an example of a
very simple spin wave. In Fig. 1.2b an illustration of a spin wave is given.

We can quantize the spin wave and associate a quasiparticle with it: the magnon. If
we were to examine a ferromagnetic medium with an external magnetic field at zero
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S(t)

Be↵

↵S ⇥ Ṡ

Figure 1.3 – A representation of spin precession with damping. The direction of Beff

is what we refer to as our equilibrium direction. The Gilbert damping term is shown
pointing toward the equilibrium, with the blue arrow. Due to the damping process, the
precession of a spin around its equilibrium prosition will die out over time. Picture taken
from [26].
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temperature, we would see all spins aligning with this field and staying there. We can
now imagine increasing the energy in the system, which we can do by adding electric
energy, increasing the temperature, and many other ways. Adding energy to the system
will lead to excitations of individual spins. These excitations will then propagate through
the lattice. We could also view this system in a quantummechanical way, by viewing the
lattice of spins as still being at complete rest, and having more magnons appearing and
propagating through the medium as the temperature increases.

1.2 The Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz-Gilbert Equation (LLG) is a differential equation that describes
the magnetization m of a material. It is an extension of the Landau-Lifshitz equation.
In the Landau-Lifshitz equation, m is a continuous quantity, as opposed to the discrete
S, that denotes individual spins:

~∂tm = −γm× δE

δm
, (1.1)

where γ is the gyromagnetic ratio (from here on assumed 1) and E is the total energy of
the system, which arises from a combination of the external magnetic field as well as other
possible contributions. Here, δE

δm can also be written as the effective field Heff . This
equation tells us how the precession of the magnetization will dynamically evolve. The
precession, as described in the equation above, will continue indefinitely. In practice,
the precession will damp over time, causing the spin to re-align with its equilibrium
position, as explained before. Gilbert extended the Landau-Lifshitz equation to include
this damping:

~∂tm = −m×Heff − αGm× ~∂tm, (1.2)

where αG (which is greater than zero) is the Gilbert damping parameter. The damping
itself is a consequence of the magnetization interacting with other degrees of freedom in
the material. Ultimately, the damping of the spin precession will thus lead to heating of
the material.

1.3 DMI

The Dzyaloshinskii-Moriya Interaction (DMI) is a consequence of spin-orbit interactions
combined with a broken inversion symmetry[27]. The interaction acts in a plane. If we
let this plane be normal to ẑ, DMI can be written as

HDMI =
D

2
[x̂ · (m× ∂ym)− ŷ · (m× ∂xm)],
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Figure 1.4 – DMI causes neighbouring spins to favour orthogonal orientation. Image taken
from [28].

Figure 1.5 – Under the right conditions, DMI causes the ground state of a system to become
unstable and form a spiral. The colors indicate different angles.

where D is the DMI constant. Due to the cross product, two neighboring spins will
favour an orthogonal orientation in the plane in which the DMI is present, as is shown
in Fig. 1.4. We can imagine DMI competing with Heisenberg exchange interaction,
which could lead to a spiraling structure of the spins, as shown in Fig. 1.5. A system in
which this spiraling structure was the ground state of a spin wave has been observed[32].

As DMI depends on a broken inversion symmetry, it vanishes in inversion-symmetric
structures and can therefore be excluded for most simple bulk materials. Much more
relevant for DMI are surface or interface geometries, in which the inversion symmetry is
broken[27], as well as crystals with unconventional geometries, in particular multilayer
crystals, such as pyrochlore structures.
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Chapter 2

Influence of DMI on Spin Waves

We will investigate the dispersion relations of spin waves traveling through a ferromag-
netic medium, and in particular the influence of DMI. In our setup, we will consider four
different kinds of interaction: Heisenberg exchange interaction, interaction of spins with
a magnetic field, DMI and anisotropy.

Of these four interactions, three have been covered in chapter 1. The fourth, anisotropy,
concerns anisotropic properties of the material. It originates from spin orbit couplings
and dipole-dipole interactions. It means that, for a single spin, an orientation parallel
to a certain axis is favored:

HANI,x = −Kx

2
m2
x.

In this formula, spins favor parallel alignment with the x-axis, which is why this kind of
anisotropy is also referred to as easy axis-anisotropy. As can be seen from the formula,
it doesn’t matter whether the spin is pointed in the +x- or −x-direction.

We consider spins arranged in a 2D square lattice, where we choose the axes in such
a way that the lattice lies in the (x, y)-plane. An illustration of this setup is shown in
Fig. 2.1. We will investigate how different ratios of the interaction strengths will affect
the setup, and the consequences for the calculation of the transverse current that we

(a) The lattice in the z-regime. (b) The lattice in the x-regime.

Figure 2.1 – A 2D lattice of spins with their equilibrium positions aligned with the magnetic
field B.
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(a) The equilibrium posi-
tion of a single spin be-
ing “pulled” away from the
direction of the magnetic
field.

(b) A lattice with spins in an equilib-
rium position that isn’t aligned with
the magnetic field. Note that all spins
could also make an angle of −φ and
be in equilibrium.

Figure 2.2 – If an anisotropy perpendicular to the external magnetic field (Kx in this
example) is sufficiently large enough, the equilibrium position of a spin will make a
nonzero angle φ with the direction of the external magnetic field. We will see that a
nonzero φ appears if Kx > B +Kz.

will perform in the next chapter. When the influence of DMI is large when compared
to other interactions, the ground state becomes unstable, and takes on a spiraling form,
as illustrated in Fig. 1.5. In our later calculations, we would like a setup where this
unstable ground state does not appear.

Also, the effects of anisotropy, especially in directions perpendicular to the applied exter-
nal magnetic field, should be considered. Intuitively, we understand that the anisotropy
will have a certain influence on the equilibrium position of the spins. For some anisotropy
strenghts, the equilibrium position of the spins will not be parallel to the external mag-
netic field, which can drastically complicate calculations. An illustration of the equilib-
rium position of spins not aligned with the external magnetic field is shown in Fig. 2.2.
We need to find out how big this influence is, and choose our magnetic field strength
accordingly when we move towards calculating the transverse spin current. In our final
setup, we will use an external magnetic field with an interaction magnitude far greater
than that of the anisotropies and DMI.

2.1 Equilibria coinciding with an external magnetic field

As stated before, we consider a 2D square lattice with a lattice constant a, where we
choose the axes in such a way that the lattice lies in the (x, y)-plane. The system will
have an energy of

ETOT =

∫
dxHTOT =

∫
dx(HXC +HDMI +HB +HANI),

14



where

HXC = −Jxc
2

m · ∇2m,

HDMI =
D

2
[x̂ · (m× ∂ym)− ŷ · (m× ∂xm)] ,

HB = −B ·m,

HANI = −Kz

2
m2
z −

Kx

2
m2
x.

Here, HXC denotes the Heisenberg exchange interacion, HDMI the Dzyaloshinskii-Moriya
interaction, HB the interaction the spins with the magnetic field B and HANI the easy-
axis anisotropies in the z- and x-direction. A straightforward calculation leads to

δE

δmx
= −J∇2mx +D∂xmz −Bx −Kxmx,

δE

δmy
= −J∇2my +D∂ymz −By,

δE

δmz
= −J∇2mz −D(∂xmx + ∂ymy)−Bz −Kzmz. (2.1)

We will derive the equations of motion by linearizing around the equilibrium, using the
Landau-Lifschitz equation (Eq. 1.1). Throughout this chapter we will view the system
in two separate regimes. We define the axial regime and the planar regime to have a
magnetic field B pointed along the z-axis and the x-axis, respectively. These different
regimes are illustrated in Fig. 2.1.

2.1.1 Linearzing around an axial equilibrium

We assume B = Bẑ and Kx = 0, so that the equilibrium position of the spins is in the
z-direction. We now consider small deviations from the equilibrium in the in the x- and
y-direction, writing them as δmx and δmy, respectively. We consider these deviations
so small that we can neglect δm2

x and δm2
y, which leads to the z-component having a

length of
√

1− δm2
x − δm2

y = 1. We can thus take m = (δmx, δmy, 1)T . Using equation

1.1, we find

~∂t(δmx) = (B +Kz)δmy − J∇2δmy,

~∂t(δmy) = J∇2δmx − (B +Kz)δmx.

Taking Ansatzes δmx = Axe
i(k·x−ωt) and δmy = Aye

i(k·x−ωt) we see

−i~ωAx = (B +Kz + J |k|2)Ay,

−i~ωAy = −(B +Kz + J |k|2)Ax,

15



a²(B+Kz)/J=0

a²(B+Kz)/J=2* 10-3
a²(B+Kz)/J=4* 10-3

-4 -2 2 4
a* 10-2 kx

2

4

6

a²ℏω(kx)

103 Jxc

Figure 2.3 – The (ω, kx) dispersion relation, plotted for different values of B + Kz. An
increase in B has the same effect as an increase in Kz. An increase in B and Kz lead to
a larger ‘gap’ between the minimum and zero. Due to rotational symmetry, the (ω, ky)
dispersion relation look the same.

which leads to(
i~ω (B +Kz + J |k|2)

−(B +Kz + J |k|2) i~ω

)(
Ax
Ay

)
=

(
0
0

)
,

which gives us the dispersion relation

~ω = J |k|2 +B +Kz. (2.2)

This dispersion relation is plotted for multiple values of B and Kz in Fig. 2.3. We see
that, for increasing B and Kz, a ‘gap’ appears. Physically, this means that the lowest
excited state has a greater energy and frequency than without the ‘gap’. It is therefore
impossible to find particles with an energy level between the vacuum state and the first
excited state. A greater amount of energy is thus needed to have a particle ‘jump’ to
its lowest excited state. In a system of spins at zero temperature with a large external
magnetic field, adding a small amount of energy, like a small increase in temperature
or a moving electron (i.e. a small injected electric current), will therefore not lead to
any excitations in the system, as the ‘gap’ will not be overcome by these small energy
increases.

2.1.2 Linearzing around a planar equilibrium

We assume B = Bx̂ and Kz = 0, so that the equilibrium position of the spins is in the
x-direction. Considering fluctuations around this equilibrium in the y- and z-direction,
we can take m = (1, δmy, δmz)

T . Using equation 1.1, we find

~∂t(δmy) = J∇2δmz − (B +Kx)δmz −D∂y(δmy),

~∂t(δmz) = −J∇2δmy + (B +Kx)δmy +D∂y(δmz).
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Taking Ansatzes δmy = Aye
i(k·x−ωt) and δmz = Aze

i(k·x−ωt) we see

−i~ωAy = −(J |k|2 +Kx +B)Az − iDkyAy,
−i~ωAz = (J |k|2 +Kx +B)Ay + iDkyAz,

which leads to(
i~ω − iDky −(J |k|2 +Kx +B)

(J |k|2 +Kx +B) i~ω − iDky

)(
Ay
Az

)
=

(
0
0

)
,

which gives us the dispersion relation

~ω = J |k|2 +Dky +Kx +B. (2.3)

This relation is very similar to Eq. 2.2, but also has a term that is linear in ky. The
value of D does not effect the (ω, kx) dispersion relation, which is similar to the (ω, kx)
dispersion relation of the axial regime. The (ω, ky) dispersion relation is plotted in Fig.
2.4. In the (ω, ky) dispersion relation, a nonzero magnetic field is assumed. This leads
to the appearance of a ‘gap”, as discussed before. Increasing DMI leads to the minimum
(as well as the rest of the parabola that is the dispersion relation) moving downward
(i.e. the ‘gap’ closing again) and to the left. Physically, this means that, with a nonzero
DMI, a spin wave can assume an energy level that, without DMI, was inside the gap. At
low energy (e.g. ultracold temperatures), a small increase in energy can therefore lead
to excited states that would not appear without the presence of DMI. In this case, the
ky-component needs to be negative. Also, its frequency will be lower than that of the
lowest excited state without DMI. Analogously, for a spin wave to reach an excited state
with positive ky, a greater amount of energy is needed than without DMI, and a greater
frequency will be observed.

Furthermore, as we can see in 2.4a, for some combinations of the values of B,Kx and
D, the minimum has an ω-value lower than zero. In this case, the normal ground state
of the system becomes unstable, and we are likely to end up with a spiraling state, as
discussed earlier in section 1.3. In this state, the influence of the DM-Interaction is
manifest (see Fig. 1.5). We denote the value of D for which this happens by Dcrit. A
straightforward calculation tells us Dcrit = 2

√
J(B +Kx).

2.2 Expanding the Landau-Lifshitz equation

We now consider the same situation, but we add more terms to the Landau-Lifshitz equa-
tion: the Gilbert damping term, and two terms concerning spin orbit torques (SOT’s).
The expanded Landau-Lifshitz-Gilbert equation with SOT’s looks like this:

~∂tm = −m× δE

δm
− αGm× ~

dm

dt
+ aj [m× (ẑ × j)] + bj [m× (m× (ẑ × j))]. (2.4)
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Figure 2.4 – The effect of D on the (ω, ky) dispersion relation in the planar regime, with
a2Kz

J = a2B
J = 10−3. A larger value of D causes the minimum to shift to the left and

downward. A higher value of B and Kx cause the entire parabola to shift upward (a
larger ‘gap’), in a way that is analogous to Fig. 2.3.
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The second term, the one with αG, is called the Gilbert damping term. It governs the
equations of motion in such a way that deviations from the equilibrium will die out over
time, as discussed in chapter 1 (see Fig. 1.3). The third and fourth term, with aj and
bj , concern SOT’s. SOT’s are a consequence of the injection of an electric current j into
the 2D-plane, which induces a spin accumulation component transverse to the current,
as well as a longitudinal one that rotates[29]. The term proportional to aj is also called
the spin-transfer torque, in-plane torque or anti-damping torque. The term proportional
to bj is also called the perpendicular torque, out-of-plane torque or field-like torque. The
constants aj and bj depend on factors like the current j, the magnetization and the
materials. If j is chosen in a specific way, the Gilbert damping term can be cancelled.
In the computation of the transverse and longitudinal spin currents in chapter 3, we will
not consider SOT’s.

2.2.1 Linearzing around an axial equilibrium

In the axial regime (B = Bẑ), we will not look at SOT’s, as their contribution will cause
problems when linearizing: the linearized contribution of the SOT’s has no contributions
that are linear in m. Taking, again, m = (δmx, δmy, 1)T , and applying Eq. 2.4 we find

~∂t(δmx) = (B +Kz − J∇2 + αG~∂t)δmy,

~∂t(δmy) = −(B +Kz − J∇2 + αG~∂t)δmx.

Taking Ansatzes δmx = Axe
i(k·x−ωt) and δmy = Aye

i(k·x−ωt) we find

−i~ωAx = (B +Kz + J |k|2 − iαG~ω)Ay,

−i~ωAy = −(B +Kz + J |k|2 − iαG~ω)Ax,

and thus

(
i~ω (B +Kz + J |k|2 − iαG~ω)

−(B +Kz + J |k|2 − iαG~ω) i~ω

)(
Ax
Ay

)
=

(
0
0

)
,

which yields, neglecting α2
G, as α2

G � 1, the dispersion relation

~ω = −iαG(B +Kz + J |k|2) + (B +Kz + J |k|2). (2.5)

The effect of the damping term on the imaginary part of the dispersion relation is shown
in Fig. 2.5.
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Figure 2.5 – The imaginary part of the (ω, kx) dispersion relation in the axial regime

(B = Bẑ) for different values of αG, with a2B
J = a2Kz

J = 10−3 and Kx = 0. Due to
rotational symmetry, the (ω, ky) dispersion relation looks the same.
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In this relation we assumed k to be real and left room for ω to be complex. If we
view the effect of ω being complex (ω = ωr + iωi), the Ansatz will look like δmx =

Axe
i(k x−ωrt)eωit. If ωi is negative, like in Eq. 2.5, the Ansatz will approach zero as

time increases. We can thus view the complex part of ω as a term that damps the
excitation of a system. A complex ω thus governs the excitation of an entire system that
simultaneously damps over time.

We could also solve the relation by assuming that ω is real and k is complex (k = kr+iki).

If we enter this into the Ansatz, we see δmx = Axe
i(krx−ωt)e−kix. We can also write ki =

1
Λ . This way, the effect on the Ansatz looks very suggestive: δmx = Axe

i(krx−ωt)e−
x
Λ .

We can see that Λ governs the length scale over which the excitation will die out. Using
a complex k corresponds to viewing a local excitation of a system, with this excitation
damping as it gets further from the point of excitation. Λ is sometimes referred to as
the relaxation distance[14]. We can calculate Λ, and we find that, in the x-direction of
propagation,

Λx = 2

√
J(~ω − (B +Kz))

~ωα
. (2.6)

This formula has some interesting properties that are clarified in Fig. 2.6, where we can
see Λx as a function of ω. Fig. 2.6a shows us how Λx governs that when the system is
excited locally, the excitation diminishes the further it gets from the point of excitement.
Of course, the value of αG influences the damping of the excitation. If we look at Fig.
2.6b, however, some additional properties of Λx can be seen. Firstly, it appears that
Λ has no real value up to a certain value of ω, depending on the value of B. This is
because there are no spin waves until ω exceeds a certain value. This value is what we
have previously referred to as the ‘gap’. Secondly, we see a rapid increase of the value
of Λ, before its gradual decrease sets in. Obviously, Λ has a local maximum, which is
something that, at first, may not be very intuitive. Λ, being the relaxation length, has
a length dimension. It appears that Λx is proportional to vkτk, where vk is the wave

velocity defined by vk = ∂(~ω(k))

∂k
and τk is the relaxation time defined by τk = 1

αω(k)
.

As vk is linear in this case, knowing ω(k), a maximum is to be expected.

2.2.2 Linearzing around a planar equilibrium

It turns out it does make sense to include part of the spin-orbit torque term in the planar
regime (B = Bx̂), by setting j = (0, j, 0)T . We use Eq. 2.4 to find

~∂t(δmy) = −(−J∇2 +B +Kx + αG~∂t − ajj)δmz + (−D∂y + bjj)δmy,

~∂t(δmz) = (−J∇2 +B +Kx + αG~∂t − ajj)δmy + (−D∂y + bjj)δmz.
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Figure 2.6 – The behaviour of Λx for different values of α and B in the axial regime
(B = Bẑ). Note the scale difference on the axes.

Taking Ansatzes δmy = Aye
i(k·x−ωt) and δmz = Aze

i(k·x−ωt) we see

−i~ωAy = −(µ(k)− iαG~ω)Az + ν(k)Ay,

−i~ωAz = (µ(k)− iαG~ω)Ay + ν(k)Az,

where µ(k) ≡ (J |k|2 +B +Kx − ajj) and ν(k) ≡ (−iDky + bjj). This leads to(
i~ω + ν(k) −(µ(k)− iαG~ω)

(µ(k)− iαG~ω) i~ω + ν(k)

)(
Ay
Az

)
=

(
0
0

)
.

As α2
G � 1, we can neglect it. This yields the dispersion relation

~ω = i[bjj−αG(J |k|2+B+Kx−ajj)]+[(J |k|2+Dky+B+Kx−ajj)+αG(−iDky+bjj)].
(2.7)

In Fig. 2.7, the effect of the Gilbert damping term and spin-orbit torques on the imag-
inary part of the dispersion relation is shown. We see that the SOT-plots are straight
lines with positive value, and the Gilbert damping plots are parabolas with negative
value. We see that with a correctly chosen current j, the damping of a certain frequency
±ω is cancelled, as the inverted parabolas would intersect the straight lines twice. This
would lead to a spin wave that doesn’t die out over time for that particular ω.

In the same way as before, we can also solve the equation for k, where we consider ω to
be real and kx to be complex. This leads to

Λx =

√
J(~ω − (B +Kx − ajj))

α~ω − bjj
. (2.8)

It is easy to see that this relation is the same as the one in Eq. 2.6 if we set aj = bj = j =
0, which will lead to the same plots as in Fig. 2.6. The effects of different values of aj
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Figure 2.7 – Effects of different values of α, bj and aj in the planar regime (B = Bx̂).

Plotted with a2B
J = a2Kx

J = 10−3, aDJ = 0.05.

and bj is shown in Fig. 2.8. We see that choosing a current strength j can lead to waves
of certain frequencies being sustained (i.e. the damping is exactly cancelled), others to
be amplified, as if an inverted damping process was taking place, and yet others to damp
slower.

2.3 Linearizing around equilibria not coinciding with the
external magnetic field

In the above chapter we took Kx and Kz to be zero in the axial regime and in the planar
regime, respectively. If they are nonzero, the equilibrium may not be in the x- or z-
direction. As there is a competition between the different anisotropies and the magnetic
field interaction, the equilibrium will lie somewhere in the (x, z)-plane, as we saw in Fig.
2.2.

2.3.1 Linearizing around an equilibrium not coinciding with the mag-
netic field in the axial regime

In the axial regime (B = Bẑ), an equilibrium that doesn’t coincide with the z-direction
only appears when Kx > Kz + B, as is shown in Fig. 2.9. When Kx > Kz + B, the
equilibrium will make an angle with the z-axis of arccos( B

Kx−Kz
). The formulas resulting

from solving this new set of equations are too long to make any intuitive sense.

In Fig. 2.10 the effect of increasing Kx on the real, undamped (ω, kx) dispersion relation
is plotted. A small but nonzero Kx in the axial regime leads to decreasing the gap
between the minimum and zero created by Kz and B. After reaching the Kx = Kz +B
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J = 10−3and α = 0.1.

treshold, a larger Kx leads to the gap growing again. This means that, for a small
increase in Kx, less energy is needed to reach the lowest excited state. At the treshold,
the gap disappears, leading to a gapless dispersion relation. This means that the lowest
excited state is the same as the vacuum state, and that any nonzero amount of energy
added to the system will result in an excited state.

It turns out that, at this treshold, the second order derivative of the dispersion relation
with respect to k is equal to zero. Furthermore, the dispersion displays linear behaviour.
A linear approximation of the dispersion relation at this treshold is

~ω ≈
√
J(B +Kz)|k|, (2.9)

where we, of course, could also have written (B + Kz) instead of Kx. In Fig. 2.11a we
can see what the dispersion relation looks like at this treshold. Its linearity around zero
is manifest. In Fig. 2.12 we see the effect of increasing Kx on the real, undamped (ω, ky)
dispersion relation. In addition to the effects on the ‘gap’, which were discussed above,
after reaching a the Kx = Kz + B treshold, a larger Kx leads to the minimum moving
to the left as well, as the DM-interaction will have its influence when the equilibrium
doesn’t coincide with the z-axis. This means that the lowest excited state will have
a negative ky-value and that more energy is needed to reach an excited state with a
positive ky-value.

Fig. 2.13 shows the effect of increasing Kx on the imaginary, damping part of the (ω, kx)
dispersion relation. Increasing Kx leads to the gap closing for small, nonzero Kx, and
to the gap increasing once it passes the Kx = Kz + B threshold. In Fig. 2.14 we see
the effect of increasing Kx on the imaginary, damping part of the (ω, ky) dispersion
relation. Increasing Kx also leads to the gap closing for small, nonzero Kx, and to the
gap increasing once it passes the Kx = Kz +B threshold. In this case, after passing the
threshold the minimum also moves to the left as a consequence of DMI.
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Figure 2.9 – Free energy of the system in the axial regime (B = Bẑ) as a function of
the angle φ, where φ is the angle the equilibrium makes with the z-axis. Plotted with
a2Kz

J = a2B
J = 10−3.
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Figure 2.10 – Effect of Kx on the (ω, kx) dispersion relation in the axial regime (B = Bẑ).

Plotted with a2B
J = a2Kz

J = 10−3.
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Figure 2.11 – Effect of a specific value for Kx (left) and Kz (right). Plotted with a2B
J =

a2Kz

J = 10−3 and aD
J = 0.05.
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Figure 2.12 – Effect of Kx on the (ω, ky) dispersion relation in the axial regime (B = Bẑ).

Plotted with a2B
J = a2Kz

J = 10−3 and aD
J = 0.05. The ω-value of the minimum as a

function of Kx looks the same as Fig. 2.10b
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Figure 2.13 – Effect of Kx on the imaginary part of the (ω, kx) dispersion relation in the

axial regime (B = Bẑ). Plotted with a2B
J = a2Kz

J = 10−3.
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Figure 2.14 – Effect of Kx on the imaginary part of the (ω, ky) dispersion relation in the
axial regime (B = Bẑ). The plot of the ky-value of the minimum as a function of Kx is

the same as Fig. 2.12b. Plotted with a2B
J = a2Kz

J = 10−3, aDJ = 0.05, aj = bj = j = 0
and αG = 0.1.

2.3.2 Linearizing around an equilibrium not coinciding with the mag-
netic field in the planar regime

In the planar regime (B = Bx̂), an equilibrium that doesn’t coincide with the x-axis
only appears when Kz > Kx+B. The plots of the free energy will look the same as Fig.
2.9, where Kz and Kx should be substituted, and the φ-value of the minimum will start
off at π

2 and will start to move towards 0 once Kz passes the treshold Kz = B + Kx.
When this is the case, the equilibrium will make an angle arcsin( B

Kz−Kx
) with the z-axis.

Again, the formulas turn out to be too long to make any intuitive sense. It turns out that
the effect of increasing Kz on the real, undamped (ω, kx) dispersion relation is similar
to the effect of increasing Kx on the real, undamped (ω, kx) dispersion relation in the
axial regime (see Fig. 2.10). Its linear approximation will be the same as in Eq. 2.9,
where we, of course, substitute Kx with Kz. The effect on the real, undamped (ω, ky)
dispersion relation is shown in Fig. 2.15. Its linear approximation is

~ω ≈
√
J(B +Kx)|ky|+Dky, (2.10)

where we could have written Kz instead of (B + Kx). In Fig. 2.11b we can see what
the dispersion relation looks like at this treshold. Its linearity around zero is manifest.
The effect of increasing Kz on the imaginary, damping part of the (ω, kx) dispersion
relation is similar to the effect of increasing Kx on the imaginary, damping part of the
(ω, kx) dispersion relation in the axial regime (see Fig. 2.13). In Fig. 2.16 the effect of
increasing Kz on the imaginary, damping part of the (ω, ky) dispersion relation is shown.
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Figure 2.15 – The effect of increasing Kz in the planar regime (B = Bx̂) has an effect on
the ω-value of the minimum that can be somewhat expected, when comparing it to our
results in the axial regime (B = Bẑ), Fig. 2.10b. The effect on the ky-coordinate is less

intuitive. Plotted with a2B
J = a2Kz

J = 10−3 and aD
J = 0.05.
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Figure 2.16 – Increasing Kz in the planar regime (B = Bx̂) has an expected effect on
the ω-value of the minimum, but a less intuitive effect on its ky-value. Plotted with
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2.4 Consequences for our setup

We see that different ratios of the four interactions can have different, far-reaching con-
sequences. First off, the influence of increasing the external magnetic field is the same as
increasing the anisotropy term that points in the same direction as the external magnetic
field. Both lead to the appearance of a ‘gap’ in the dispersion relation. Physically, this
means that the lowest excited state has a greater energy and frequency than without
the ‘gap’. It is therefore impossible to find magnons with an energy level between the
vacuum state and the first excited state. A greater amount of energy is thus needed to
have a spin wave ‘jump’ to its lowest excited state. In a system of spins at zero temper-
ature with a large external magnetic field, adding a small amount of energy, like a small
increase in temperature or a moving electron (i.e. a small injected electric current), will
therefore not lead to any excitations in the system, as the ‘gap’ will not be overcome by
these small energy increases.

DMI only has linear contributions if the equilibrium is chosen not to be in the z-direction.
This makes sense, as DMI was defined to operate in a plane perpendicular to the z-
direction. We thus expect to see that an axial equilibrium will lead to a vanishing
transverse current when we linearize each contribution to the Hamiltonian. An appro-
priately chosen equilibrium direction, such as x̂, is therefore crucial if we want to perform
our calculation. Furthermore, for large values of DMI strength with respect to the mag-
netic field and the anisotropy term coinciding with the magnetic field, the ground state
becomes unstable. This would lead to a spiraling groundstate. In our setup, we choose
an external magnetic field for which this does not happen.

We also saw that, assuming a nonzero magnetic field, increasing DMI strength leads to
a decrease of the magnitude of the ‘gap’ in the ω − ky dispersion relation, as well as a
shift of the minimum (and the rest of the dispersion relation) to the left. Physically, this
means that, with a nonzero DMI, a spin wave can assume an energy level that, without
DMI, was inside the gap. At low energy, a small increase in energy can therefore lead
to excited states that would not appear without the presence of DMI. In this case, the
ky-component needs to be negative, making the asymmetric influence of DMI manifest.
Also, its frequency will be lower than that of the lowest excited state without DMI.
Analogously, for a spin wave to reach an excited state with positive ky, a greater amount
of energy is needed than without DMI, and a greater frequency will be observed if this
excited state is reached.

Increasing the anisotropy perpendicular to the magnetic field also has a big influence
on the spin waves. For a small increase in Kx, less energy is needed to reach the
lowest excited state, i.e. the ‘gap’ is diminished. If we keep increasing the perpendicular
anisotropy, at a certain point, the ‘gap’ will close, leading to a gapless dispersion relation
that displays linear behaviour around its minimum. This means that the lowest excited
state is the same as the vacuum state, and that any nonzero amount of energy added
to the system will result in an excited state. If we keep increasing the perpendicular
anisotropy, we will see the influence of DMI in a similar way as described above.
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Furthermore, a sufficiently large perpendicular anisotropy can lead to an equilibrium
position of the spins that is not aligned with this magnetic field. Having such an equi-
librium position has a very significant effect on the dispersion relation. We had to resort
to Mathematica in order to calculate the dispersion relation. As the computations in
the next chapter are already very involved with an equilibrium that does coincide with
the magnetic field, it makes sense to choose a setup in which the external magnetic field
is large enough to ensure that an anisotropy perpendicular to this field will not affect
the equilibrium position of the spins.

In the setup in the next chapter, all these considerations will be taken into account.
We also note that conventional experimental setups tend to employ a relatively large
external magnetic field.
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Chapter 3

Influence of DMI on Magnon
Spin Currents

In this chapter we consider magnon transport. Our setup consists of a ferromagnetic
medium through which spin waves propagate. We assume the medium to be bounded by
normal metals (e.g. platinum) at x = 0 and x = d, with a spin accumulation µ′ at the
x = 0-interface. The medium and its medium-metal interfaces are assumed to stretch
from −∞ to +∞ in the y- and z-direction. An illustration of this setup is shown in Fig.
3.1.

As before, we consider exchange interaction, magnetic field interaction, anisotropy and
DMI. We will let the magnitude of the external field be large enough for the contributions
from the interactions that arise due to the anisotropies and the external magnetic field
to be summarized by taking an effective field H in the same direction as the external
magnetic field. In chapter 2, we saw that for an appropriately large magnetic field, the
influence of the anisotropies can be accounted for in this way. We also assume that the
effects of DMI at the interfaces are similar to those in the bulk.

In discussing the dynamics of the spin waves, we also include a stochastic term. This term
simulates (thermal) fluctuations, which can then be taken into account. We assume these
simulated fluctuations to be Gaussian distributed, enabling us to predict the behaviour
of these fluctuations in the long run[30][31]. If we regard fluctuations at a certain point
in our setup, we can predict their contribution to the overall transverse current by
employing the fluctuation dissipation theorem (FDT). The FDT states that the linear
response of a system to an external perturbation can be expressed in terms of fluctuation
properties of the system in thermal equilibrium[33]. This can be expressed as follows:

〈
h∗(x,q, ω)h(x′,q′, ω′)

〉
= 2(2π)3α

~
s

~ω
tanh

[ ~ω
2T

]δ(x− x′)δ(q− q′)δ(ω − ω′).

Approximating this for small ~ω yields〈
h∗(x,q, ω)h(x′,q′, ω′)

〉
= 4(2π)3α

~
s
Tδ(x− x′)δ(q− q′)δ(ω − ω′), (3.1)
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Figure 3.1 – A ferromagnet (FM) bounded by normal metals at x = 0 and x = d, together
with an effective field H = Hx̂ and a spin accumulation µ′, which leads to a longitudinal
spin current JL. If a transverse current JT appears in the calculations, this would imply
a prediction of the magnon Hall effect. Figure based on figure taken from [18].

which is the equation we will use from now on. We note that this stochastic term is not
the most natural way to simulate magnon fluctuations, as magnons interacts with many
degrees of freedom in the material. The stochastic term is added to the LLG equation,
and we express it as

(1 + αn×)~ṅ + n× (H + h)−An×∇2n = 0. (3.2)

Here, H is the effective field, h the stochastic field and A the exchange stiffness rather
than J , which we used before. Also, we now use n rather than m now. Linearizing the
LLG using n = (1, δny, δnz), we find the equation of motion1

A(∂2
x − κ2)n = h, (3.3)

where

κ2 = |q|2 +
H +Dqy + (1− iα)~ω

A
, (3.4)

and n ≡ ny − inz and h ≡ hy − ihz. We should note that, in the equation of motion,
integrals over d2q and dω, as well as powers of e have been omitted for brevity, after
having appeared because of Fourier transforming in y, z and t. We will reintroduce them
if necessary. A complete version of these equations can be found in Appendix A.

1A detailed calculation can be found in Appendix A.
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At x = 0, the boundary condition without DMI contribution reads2

js(x = 0) = −Asn× ∂xn|x=0 = −
[
g↑↓

4π
(n× (n× µ′) + n× ~ṅ) + n× h′L

]
x=0

, (3.5)

whereas at x = d, the boundary condition without DMI contribution reads

js(x = d) = −Asn× ∂xn|x=d =

[
g↑↓

4π
(n× ~ṅ) + n× h′R

]
x=d

, (3.6)

where we assume the spin accumulation µ′ = µ′x̂ vanishes at the x = d-interface,
and h′L,h

′
R represent the stochastic terms at the left and right interface, respectively.

Furthermore, s is the spin density, g↑↓ is a mixing constant picked up at the interfaces,
and the contribution of the effective field H vanishes at the boundaries.

Linearization tells us that the linearized DMI contribution vanishes at the boundaries,
and that the linearized boundary conditions are

{
A∂x + i

g↑↓

4πs
[~ω − µ′]

}
ψ =

hL√
s

(3.7)

At x=0, and

{
A∂x − i

g↑↓

4πs
~ω
}
ψ = −hR√

s
(3.8)

At x=d, where ψ ≡ n√s.

3.1 A solution for ψ at the interface

We want to to find a ψ that solves the boundary conditions from Eq. 3.7 and 3.8. We
know that

ψ = ψB + ψI ,

where ψB is a general solution for the bulk, and ψI is a particular solution of the boundary
conditions at the interfaces.

We insert the Ansatz ψI = C1e
κx + C2e

−κx into the boundary conditions from Eq. 3.7
and Eq. 3.8, where κ is defined in Eq. 3.4, as this Ansatz solves the equation of motion
given by Eq. 3.3.

2A detailed calculation of this boundary condition and the following linearization can be found in
Appendix B.
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At x = 0 we have

hL√
s

= Aκ(C1 − C2) + i
g↑↓

4πs
[~ω − µ′](C1 + C2)

=

[
Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
C1 +

[
−Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
C2

= AC1 + BC2,

where we defined A ≡
[
Aκ+ i g

↑↓

4πs [~ω − µ′]
]

and B ≡
[
−Aκ+ i g

↑↓

4πs [~ω − µ′]
]
. At x = d

we see

hR√
s

= −Aκ(C1e
κd − C2e

−κd) + i
g↑↓

4πs
~ω(C1e

κd + C2e
−κd)

=

[
−Aκ+ i

g↑↓

4πs
~ω
]
C1e

κd +

[
Aκ+ i

g↑↓

4πs
~ω
]
C2e

−κd

= CeκdC1 +De−κdC2,

where we defined C ≡
[
−Aκ+ i g

↑↓

4πs~ω
]

and D ≡
[
Aκ+ i g

↑↓

4πs~ω
]
. Combining these

results leads to (
A B
Ceκd De−κd

)(
C1

C2

)
=

1√
s

(
hL
hR

)
,

so that, finally, (
C1

C2

)
=

1

D

(
De−κd −B
−Ceκd A

)
1√
s

(
hL
hR

)
,

where D ≡ ADe−κd − BCeκd

3.2 The transverse interfacial spin current

To compute the interfacial current in the y-direction, we use the formula3

〈
ĵ(I)
y (x)

〉
=

〈
ψ∗(x)

v̂q,y
2
ψ(x)

〉
,

3A motivation this formula and the following computation of the transverse interfacial current can
be found in Appendix C.
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where v̂q,y =
∂~ωq
∂qy

. We use the dispersion relation from Eq. 2.3 to see that

〈
ĵ(I)
y (x)

〉
= (Aqy +

D

2
) 〈ψ∗(x)ψ(x)〉 .

Computations lead to

〈ψ∗ψ〉 = 16g↑↓~T
4πD∗Ds

[
A2κ∗κ cosh[κ∗(d− x)] cosh[κ(d− x)]

−iAκ∗ g
↑↓

4πs
~ω cosh[κ∗(d− x)] sinh[κ(d− x)]

+iAκ
g↑↓

4πs
~ω sinh[κ∗(d− x)] cosh[κ(d− x)]

+

(
g↑↓

4πs
~ω
)2

sinh[κ∗(d− x)] sinh[κ(d− x)]

+Aκ∗κ cosh[κ∗x] cosh[κx]

−iAκ∗ g
↑↓

4πs
[~ω − µ′] cosh[κ∗x] sinh[κx]

+iAκ
g↑↓

4πs
[~ω − µ′] sinh[κ∗x] cosh[κx]

+

(
g↑↓

4πs
[~ω − µ′]

)2

sinh[κ∗x] sinh[κx]

]
.

Noting that D only enters into 〈ψ∗ψ〉 through κ, we now redefine qy → q̃y = qy + D
2A so

that

κ2 = q̃2
y + q2

z −
(
D

2A

)2

+
H + (1− iα)~ω

A
.

We see that κ is symmetric under q̃y → −q̃y. This leads to 〈ψ∗ψ〉 being symmetric under
this transformation as well. We know that

〈
ĵ(I)
y

〉
= (Aqy +

D

2
) 〈ψ∗ψ〉 = Aq̃y 〈ψ∗ψ〉 ,

where, of course, we still have to integrate over q̃y to end up with the current (and qz
and ω, but those are not important for now). Obviously, 2Aq̃y is antisymmteric under
q̃y → −q̃y. Knowing that 〈ψ∗ψ〉 is symmetric, we see that upon integrating over q̃y,〈
ĵ

(I)
y

〉
vanishes.
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3.3 A solution for ψ in the bulk

As before, we know

ψ = ψB + ψI ,

where ψB is a general solution for the bulk, and ψI is a particular solution of the boundary
conditions at the interfaces. To find ψB, we make use of the equation of motion (Eq.
3.3), the fluctuation dissipation theorem (Eq. 3.1) and the bulk boundary conditions,
which are similar to the interfacial boundary conditions (Eq. 3.7 and Eq. 3.8) but with
hL = hR = 0. Furthermore, we make use of

ψ(x) =

∫ d

0
dyG(x, y)ψ(y) =

∫ d

0
dyG(x, y)

√
s

A
h(y), (3.9)

where the second equality is due to the equation of motion and where

(∂2
x − κ2)G(x, y) = δ(x− y).

We now integrate this:

∫ y+ε

y−ε
dx(∂2

x − κ2)G(x, y) =

∫ y+ε

y−ε
dxδ(x− y) = 1.

If we let ε→ 0, we can conclude

(∂xG
> − ∂xG<)|x=y = 1. (3.10)

Defining G<(x, y) as the Green’s function for x ≤ y and G>(x, y) as the Green’s function
for x ≥ y, we use Ansatz

G(x, y) =

{
G<(x, y) = aeκx + be−κx for x < y

G>(x, y) = ãeκx + b̃e−κx for x > y,

where, of course

G<(x = y) = G>(x = y), (3.11)

with boundary conditions

{
A∂x + i

g↑↓

4πs
[~ω − µ′]

}
ψ = 0 at x = 0,
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and

{
A∂x − i

g↑↓

4πs
~ω
}
ψ = 0 at x = d. (3.12)

After some calculations,4 we find

a =
σ

2κ

(
σ̃−1e−2κdeκy + e−κy

σ̃−1e−2κd − σ

)
,

b =
1

2κ

(
σ̃−1e−2κdeκy + e−κy

σ̃−1e−2κd − σ

)
,

ã =
σ̃−1e−2κd

2κ

(
σeκy + e−κy

σ̃−1e−2κd − σ

)
,

b̃ =
1

2κ

(
σeκy + e−κy

σ̃−1e−2κd − σ

)
,

where

σ ≡ Aκ− i g↑↓4πs [~ω − µ′]
Aκ+ i g

↑↓

4πs [~ω − µ′]
= −BA ,

and

σ̃−1 ≡ Aκ+ i g
↑↓

4πs~ω
Aκ− i g↑↓4πs~ω

= −DC .

3.4 The transverse bulk spin current

We use the formula from section 3.2:

〈
ĵ(B)
y

〉
= (Aqy +

D

2
) 〈ψ∗(x)ψ(x)〉 .

We set out to compute 〈ψ∗(x)ψ(x)〉. Using Eq. 3.9 leads to

〈ψ∗(x)ψ(x)〉 =

〈[∫ d

0
dzG(x, z)

√
s

A
h(z)

]∗ [∫ d

0
dyG(x, y)

√
s

A
h(y)

]〉
.

4A detailed version of these calculations can be found in Appendix D
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Using the Ansatz

G(x, y) =

{
G<(x, y) = aeκx + be−κx for x < y

G>(x, y) = ãeκx + b̃e−κx for x > y

with the values obtained in the previous chapter, we set out to perform some heavy
calculations5. We end up with a formula for the transverse bulk current:

〈
j(B)
y

〉
= Im

[
(Aqy +

D

2
)Ω̃β̃1

(
A2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗x]

]}

+χAκ

{
κ

[
sinh[κx] sinh[κ∗x]

]

−κ∗
[

cosh[κx] cosh[κ∗x]

]
+ κ∗

}

+χ2

{
− κ
[

cosh[κx] sinh[κ∗x]

]})

+(Aqy +
D

2
)Ω̃β̃2

(
A2κ∗κ

{
κ

[
sinh[κ(d− x)] cosh[κ∗(d− x)]

]}

+ξAκ

{
κ

[
sinh[κ(d− x)] sinh[κ∗(d− x)]

]

−κ∗
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]
+ κ∗

}

+ξ2

{
− κ
[

cosh[κ(d− x)] sinh[κ∗(d− x)]

]})]
,

where

χ ≡ i
g↑↓

4πs
[~ω − µ′],

ξ ≡ i
g↑↓

4πs
~ω,

Ω̃ ≡
∫

d2q

(2π)2

∫
dω

2π

−4T

ωAκ∗κ

1

D∗D
m

β̃1 ≡ A2κ∗κ
(

cosh[κ∗(d− x)] cosh[κ(d− x)]
)

+ ξ2
(

sinh[κ∗(d− x)] sinh[κ(d− x)]
)
,

β̃2 ≡ A2κ∗κ
(

cosh[κ∗x] cosh[κx]
)

+ χ2
(

sinh[κ∗x] sinh[κx]
)
.

5These can be found in Appendix E.

40



We now follow the same reasoning as with the interfacial transverse current
〈
ĵ

(I)
y

〉
. If

we define q̃y ≡ qy + D
2A , we can split up the formula for the current in a part that is

antisymmetric under q̃y → −q̃y (the part which previously was (Aqy+D
2 )) and a part that

is symmetric under q̃y → −q̃y (the rest), as κ is symmetric under this transformation.
This leads to the bulk current vanishing as well upon integration over q̃y.

3.5 The longitudinal spin current evaluated at x = d

The vanishing result of the transverse current leads us to investigate whether there is
any influence of DMI in the longitudinal spin current. We therefore do a less extensive
computation of the longitudinal current by evaluating it at x = d.6 We use the formula7

〈
ĵx(x)

〉
= AIm[〈ψ∗∂xψ〉]d.

Using the same shorthand notation as before, we see that the longitudinal interfacial
current at x = d equals

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
16
g↑↓

4πs

~T
D∗D

κ

(
ξAκ∗

+A2κ∗κ cosh[κ∗d] sinh[κd]

−χAκ∗ cosh[κ∗d] cosh[κd]

+χAκ sinh[κ∗d] sinh[κd]

−χ2 sinh[κ∗d] cosh[κd]

)]
,

and that the longitudinal bulk current at x = d equals

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
− 16

g↑↓

4πs

~T
D∗D

κ

(
+χAκ∗

A2κ∗κ sinh[κx] cosh[κ∗d]

+χAκ sinh[κd] sinh[κ∗d]

−χAκ∗ cosh[κd] cosh[κ∗d]

+χ2 − cosh[κd] sinh[κ∗d]

)]
.

6A detailed calculation can be found in Appendix G.
7A motivation for this formula can be found in Appendix C.
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Adding these together yields

〈
ĵx

〉
= A

∫
d2q

(2π)2

∫
dω

2π
16

(
g↑↓

4πs

)2 ~T
D∗D

Aκ∗κµ′.

Here, D enters the equation through κ, as well as through D. Even if we define q̃y
as before, this would still have κ depending on D, which means that the longitudinal
current depends on D either way. This shows that, in this setup, DMI does affect the
spin current, even though a nonzero transverse spin current dependent on D is not
predicted. We also see that the longitudinal spin current directly depends on µ′, which
makes intuitive sense. Without a magnon potential gradient, no spin current will appear
in this setup.
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Chapter 4

Conclusion and Outlook

Spintronics is a field of study that still has many open questions. One of the areas that
has seen a lot of recent activity is the magnon Hall effect. In this thesis, we set out to do
a theoretical examination of this effect as a consequence of DMI on electrically induced
magnon spin currents. We introduced some basic concepts about spin waves in general,
and DMI in particular. We saw that the ratios between the interaction constants of the
Heisenberg exchange interaction, magnetic field interaction, anisotropy and DMI play
a big part in the properties of the ground state and the dispersion relations. We then
defined our setup in such a way that the contribution of the external magnetic field was
bigger than that of the anisotropy and DMI, and pointed into the plane (our x-direction).

The magnon hall effect as a consequence of a spin current driven by a thermal gradient
has been observed experimentally[14]. We know that a magnon spin current can also
be driven electrically[14][19]. With an electrically driven spin current, intuition could
lead us to expect a similar effect, especially in the presence of DMI. In our calculations,
however, we ended up with a vanishing transverse current.

One of the reasons that the transverse current vanishes is that our calculation relies on
linearization. If we regard our setup with an external magnetic field in the z-direction,
we see that the DMI contribution vanishes upon linearization, making it impossible to
examine DMI in this regime. In practice, DMI can definitely influence the setup, even
if the external magnetic field is applied in the z-direction. We note that the experiment
in which the thermally driven magnon Hall effect was measured employed an external
magnetic field that was pointed in what we defined to be our ẑ-direction. Especially if
the DMI constant D is large compared to the constants of the the external magnetic
field and the anisotropies, we would expect to measure some influence of DMI. At second
order, DMI does enter in this regime. Linearization is a tool often employed in physics,
but it can have its drawbacks. We have seen in chapter 2 that the ratios of different
interaction constants has a large effect on the dispersion relations, so we can assume
that some significant effects may be lost when linearizing.

In our model, we also assumed that DMI affects the spins at the boundary in the same
way that it affects the spins in the bulk. It has, however, been confirmed experimen-
tally that, in certain materials, spin behaviour near the interfaces can be different from
their behaviour in the bulk. In these materials, if we regard our setup and orient the
equilibrium on the z-axis, DMI will cause the spins at the interfaces to point inward,
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Figure 4.1 – In certain materials, the spins near the interface tend to point inward under
the influence of DMI.

as shown in Fig. 4.1. This interfacial behaviour is mainly due to spin torques[34]. In a
more general calculation, these effects should also be taken into account.

Our setup only applies for media in which our assumptions do justice to the materials
used. There are materials for which these simplifications do not apply. A medium with
a pyrochlore structure would lead to band structures in the medium, possibly leading to
a different outcome. The observed (thermally driven) magnon Hall effect was measured
using such a medium[13]. Also, a setup that accounts for dipole-dipole interactions may
lead to different results. Furthermore, the use of a lattice model to describe the bulk
rather than a continuous medium could lead to a prediction of the transverse current,
through band structures and anomalous velocities.

The method of calculation itself, in general, can have fruitful results when examining
spin currents, as can be seen from our calculation of the longitudinal spin current. We
see that DMI does manifest itself in the longitudinal spin current.

Looking forward, it seems a logical step to redefine this setup so that it would apply
to different materials, such as pyrochlore structures. Interfacial DMI effects and dipole-
dipole interactions could be taken into account, which may lead to the prediction of a
nonzero transverse spin current.
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Appendix A

Calculation of the equation of motion

We start from the stochastic LLG:

∂tn = −n× δE

δn
− n× h− αn× ~∂tn.

As we saw in chapter 2, the linear order contribution of DMI vanishes if we orient
the external magnetic field along the z-axis. We will therefore consider the field to be
oriented along the x-axis, and linearize the above equation using n = (1, δny, δnz). First
off,

δE

δn
= −A∇2

 0
δny
δnz

+D

 ∂xnz
∂ynz
−∂yny

−H
 1

0
0

 ,

where we have used the values from Eq. 2.1, relabeled J → A and B → H, where H
also includes any anisotropic terms. This leads to

~∂tny = −A∇2nz −D∂yny +Hnz + hz + α~∂tnz
~∂tnz = A∇2ny −D∂ynz −Hny − hy − α~∂tny.

If we define n ≡ ny − inz and h ≡ hy − ihz this leads to

~∂tn = −iA∇2n−D∂yn+ ih+ iα∂tn+ iHn,

so that

[
(−i− α)~∂t +A∇2 + iD∂y −H

]
n = h.

Fourier transforming n and h in y, z and t leads to
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∫
d2q

(2π)2

∫
dω
[
(−1 + iα)~ω +A∂2

x −A|q|2 −Dqy −H
]
n(x,q, ω)ei(qyy+qzz−ωt)

=

∫
d2q

(2π)2

∫
dωh(x,q, ω)ei(qyy+qzz−ωt),

or

∫
d2q

(2π)2

∫
dωA(∂2

x−κ2)n(x,q, ω)ei(qyy+qzz−ωt) =

∫
d2q

(2π)2

∫
dωh(x,q, ω)ei(qyy+qzz−ωt),

where

κ2 = |q|2 +
H +Dqy + (1− iα)~ω

A
,

which, for brevity, we will write as

[
(−1 + iα)~ω +A∂2

x −A|q|2 −Dqy −H
]
n = h

and

A(∂2
x − κ2)n = h,

where we will re-introduce the integrals and powers of e if necessary.
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Appendix B

Calculation of the boundary conditions

From the definition of the current we know

−∇ · j = s∂tm.

Using the LLG, this leads to

js(s = 0) = −As 〈n× ∂xn〉 |x=0,

where any DMI contributions vanish, as we will explain later. In computing the right
hand side of the equation above, we perform the integral

∫ 0+

0−
dx− n×Heff − n× h− (1 + αn×)~∂tn.

The contribution of Heff vanishes if we perform this integral, whereas, at the boundary,

α is represented by g↑↓

4π , where g↑↓ is a mixing constant. Obviously, a spin accumulation
µ′ is picked up as well. At x = 0, the boundary condition without DMI contribution
reads

js(x = 0) = −Asn× ∂xn|x=0 = −
[
g↑↓

4π
(n× (n× µ′) + n× ~ṅ) + n× h′L

]
x=0

,

whereas at x = d, the boundary condition without DMI contribution reads

js(x = d) = −Asn× ∂xn|x=d =

[
g↑↓

4π
(n× ~ṅ) + n× h′R

]
x=d

,

where we assume the spin accumulation µ′ = µ′x̂ vanishes at the (x=d)-interface, and
h′L,h

′
R represent the stochastic terms at the left and right interface, respectively. Fur-

thermore, s is the spin density, and the contribution of the effective field H vanishes at
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the boundaries. Calculations tell us that the DMI contribution at the boundary vanishes.
To account for DMI, we start from (see Eq. 2.1)

δEDMI

δn
= D

 ∂xnz
∂ynz

−(∂xnx + ∂yny)

 .

In the LLG equation, the contribution will look like

−n×HDMI = −D

 −ny(∂xnx + ∂yny)− nz∂ynz
nz∂xnz + nx(∂xnx + ∂yny)

nx∂ynz − ny∂xnz

 .

If we want to find the interfacial boundary condition at x = 0, we have to solve the
integral

∫ 0+

0−
dx− n×HDMI ,

where 0± denotes 0 ± ε, with ε → 0. In this case, we can discard all partial derivatives
which are not with respect to x, as they will vanish upon taking this integral. We are
thus left with

∫ 0+

0−
dxD

 −ny∂xnxnz∂xnz
−ny∂xnz

 .

We see that the first and third coordinate are impossible to integrate this way. We
will try a different method of incorporating DMI into the boundary condition. Rather
than first computing the boundary condition and then linearizing, we linearize the DMI
contribution, and only then incorporate it into the linearized boundary condition without
DMI. Linearizing with n = (1, δny, δnz), we end up with

∫ 0+

0−
dxD

 0
∂yny
∂ynz

 .

We thus conclude that, at x = 0, the DMI contribution vanishes. Analogously, we can
say the same for the DMI contribution at x = d.

Starting from Eq. 3.5 and linearizing around x, we see that

−Asn× ∂xn|x=0 = −As∂x

 0
−nz
ny

∣∣∣∣∣
x=0

,
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and the right hand side of Eq. 3.5 becomes

−

g↑↓
4π

{
µ′

 0
ny
nz

+ ~∂t

 0
−nz
ny

}+

 0
−h′L,z
h′L,y


x=0

.

Defining, as before, n ≡ ny − inz and hL ≡ h′L,y − ih′L,z we see

−As∂xn|x=0 = −
[
g↑↓

4π

{
iµ′n+ ~∂tn

}
+ h

]
x=0

,

so that the boundary condition at x = 0 becomes

As∂xn−
g↑↓

4π
[iµ′ + ~∂t]n = h.

Fourier transforming n and h in t and defining ψ ≡ n√s, this becomes

{
A∂x + i

g↑↓

4πs
[~ω − µ′]

}
ψ =

hL√
s
.

Analogously, Eq. 3.6 leads to

{
A∂x − i

g↑↓

4πs
~ω
}
ψ = −hR√

s
.
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Appendix C

Computation of the interfacial transverse current

To compute the interfacial current in the y-direction, we use the formula

〈
ĵ(I)
y (x)

〉
=

〈
ψ∗(x)

v̂q,y
2
ψ(x)

〉
.

What follows is an intuitive motivation for this formula. We start from a setup without
DMI, and look at the longitudinal current. As we’re looking for a current of spins pointed
in the x-direction (the direction of the equilibrium), we see〈

ĵ(I)
x (x)

〉
= −Asx̂ · 〈n× ∂xn〉 .

First off,

x · 〈n× ∂xn〉 = 〈ny∂xnz − nz∂xny〉 .

Defining n ≡ ny − inz, we see that

Re
[
i∂x(n)n∗

]
= ∂x(nz)ny − nz∂x(ny),

so that

x · 〈n× ∂xn〉 = Im
[
− ∂x(n)n∗

]
.

Plugging this into the formula for
〈
ĵ

(I)
x (x)

〉
above, and setting ψ = n

√
s, we get〈

ĵ(I)
x (x)

〉
= AIm

[
〈ψ∗(x)∂xψ(x)〉

]
.

If we now want to calculate the transverse current, it is an intuitive step to say
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〈
ĵ(I)
y (x)

〉
= AIm

[
〈ψ∗(x)∂yψ(x)〉

]
,

which equals, as we Fourier transformed the y-direction,

AIm
[
iqy 〈ψ∗(x)ψ(x)〉

]
= Aqy 〈ψ∗(x)ψ(x)〉 .

We now make the step to define a velocity operator v̂q ≡
∂(~ωq)

∂q , where ~ω is taken from
the dispersion relation from chapter 2. Still working without DMI, we can write

〈
ĵ(I)
y (x)

〉
= A

〈
ψ∗(x)

v̂qy
2
ψ(x)

〉
.

If we now include DMI, the dispersion relation changes (see Eq. 2.3), so that v̂qy =
2Aqy +D

So that

〈
ĵ(I)
y (x)

〉
= (Aqy +

D

2
) 〈ψ∗(x)ψ(x)〉 .

We now continue to calculate ψ(x);

ψ(x) = C1e
κx + C2e

−κx

= (De−κdhL − BhR)
eκx

D
√
s

+ (−CeκdhL +AhR)
e−κx

D
√
s

=

([
Aκ+ i

g↑↓

4πs
~ω
]
e−κ(d−x) −

[
−Aκ+ i

g↑↓

4πs
~ω
]
eκ(d−x)

)
hL
D
√
s

+

(
−
[
−Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
eκx +

[
Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
e−κx

)
hR
D
√
s

=

[
Aκ cosh[κ(d− x)]− i g

↑↓

4πs
~ω sinh[κ(d− x)]

]
2hL
D
√
s

+

[
Aκ cosh[κx]− i g

↑↓

4πs
[~ω − µ′] sinh[κx]

]
2hR
D
√
s
.

As 〈h∗LhR〉 = 〈h∗RhL〉 = 0, 〈ψ∗ψ〉 equals

4〈h∗LhL〉
D∗Ds

[
A2κ∗κ cosh[κ∗(d− x)] cosh[κ(d− x)]
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−iAκ∗ g
↑↓

4πs
~ω cosh[κ∗(d− x)] sinh[κ(d− x)]

+iAκ
g↑↓

4πs
~ω sinh[κ∗(d− x)] cosh[κ(d− x)]

+

(
g↑↓

4πs
~ω
)2

sinh[κ∗(d− x)] sinh[κ(d− x)]

]
4〈h∗RhR〉
D∗Ds

[
A2κ∗κ cosh[κ∗x] cosh[κx]

−iAκ∗ g
↑↓

4πs
[~ω − µ′] cosh[κ∗x] sinh[κx]

+iAκ
g↑↓

4πs
[~ω − µ′] sinh[κ∗x] cosh[κx]

+

(
g↑↓

4πs
[~ω − µ′]

)2

sinh[κ∗x] sinh[κx]

]
.

It is at this point that we re-introduce the integrals and powers of e that were previ-
ously omitted. Noting that 〈ψ∗ψ〉 stands for 〈ψ∗(x,q, ω)ψ(x,q’, ω′)〉, we now set out to
compute

∫
d2q

(2π)2

∫
d2q′

(2π)2

∫
dω

2π

∫
dω′

2π

〈
ψ(x,q, ω)∗ψ(x,q′, ω′)

〉
ei[(q

′
y−qy)y+(q′z−qz)z−(ω′−ω)t].

Using Eq. 3.1 with all its δ’s we see that this equals

∫
d2q

(2π2)

∫
dω

2π

(
16~T
D∗Ds

g↑↓

4π
A2κ∗κ cosh[κ∗(d− x)] cosh[κ(d− x)]

−iAκ∗ g↑↓4πs~ω cosh[κ∗(d− x)] sinh[κ(d− x)]

+iAκ g
↑↓

4πs~ω sinh[κ∗(d− x)] cosh[κ(d− x)]

+
(
g↑↓

4πs~ω
)2

sinh[κ∗(d− x)] sinh[κ(d− x)]

+A2κ∗κ cosh[κ∗x] cosh[κx]

−iAκ∗ g↑↓4πs [~ω − µ′] cosh[κ∗x] sinh[κx]

+iAκ g
↑↓

4πs [~ω − µ′] sinh[κ∗x] cosh[κx]

+
(
g↑↓

4πs [~ω − µ′]
)2

sinh[κ∗x] sinh[κx]

)
.

In Appendix F a dimensional analysis of this formula can be found. We further note
that D only enters into 〈ψ∗ψ〉 through κ. We now redefine qy → q̃y = qy + D

2A so that
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κ2 = q̃2
y + q2

z −
(
D

2A

)2

+
H − (1 + iα)~ω

A
.

We see that κ is symmetric under q̃y → −q̃y. Furthermore,
∫
dqy =

∫
dq̃y, so that 〈ψ∗ψ〉

is symmetric under this transformation as well.

Finally, the current
〈
j

(I)
y

〉
reads

(Aqy +
D

2
) 〈ψ∗ψ〉 = Aq̃y 〈ψ∗ψ〉 .

Here, of course, both sides have to be integrated over q̃y. As q̃y is antisymmetric under

q̃y → −q̃y we conclude that, upon integrating over q̃y,
〈
j

(I)
y

〉
vanishes.
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Appendix D

Computation of ψB

To find ψB, we make use of the equation of motion (Eq. 3.3), the fluctutation dissipation
theorem (Eq. 3.1) and the bulk boundary conditions, which are similar to the interface
boundary conditions (Eq. 3.7 and Eq. 3.8) but with hL = hR = 0.

Equation of motion:

A(∂2
x − κ2)ψ(x, t) = h(x, t)

√
s,

where

κ2 = |q|2 +
H +Dqy + (1− iα)~ω

A
.

Fluctuation dissipation theorem:

〈
h∗(z,q, ω)h(y,q′, ω′)

〉
= 4(2π)3α

~
s
Tδ(z − y)δ(q− q′)δ(ω − ω′).

Boundary conditions:

{
A∂x + i

g↑↓

4πs
[~ω − µ′]

}
ψ = 0 at x = 0,

{
A∂x − i

g↑↓

4πs
~ω
}
ψ = 0 at x = d.

Furthermore, we make use of

ψ(x) =

∫ d

0
dyG(x, y)ψ(y) =

∫ d

0
dyG(x, y)

√
s

A
h(y),
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where the second equality is due to the equation of motion and where

(∂2
x − κ2)G(x, y) = δ(x− y).

Integrating this as follows

∫ y+ε

y−ε
dx(∂2

x − κ2)G(x, y) =

∫ y+ε

y−ε
dxδ(x− y) = 1,

with ε→ 0, we can conclude

(∂xG
> − ∂xG<)|x=y = 1.

Defining G<(x, y) as the Green’s function for x ≤ y and G>(x, y) as the Green’s function
for x ≥ y, we write as an Ansatz:

G(x, y) =

{
G<(x, y) = aeκx + be−κx for x < y

G>(x, y) = ãeκx + b̃e−κx for x > y,

where, of course,

G<(x = y) = G>(x = y).

At x = 0, we use G<, which leads to

{
A∂x + i

g↑↓

4πs
[~ω − µ′]

}
G<(x, y) = 0,

so that

0 = Aκ(a− b) + i
g↑↓

4πs
[~ω − µ′](a+ b)

= a

[
Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
+ b

[
−Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
,

so

a = σb,

where

σ ≡ Aκ− i g↑↓4πs [~ω − µ′]
Aκ+ i g

↑↓

4πs [~ω − µ′]
= −BA .
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At x = d, we use G>, which leads to

{
A∂x − i

g↑↓

4πs
~ω
}
G>(x, y) = 0,

so that

0 = Aκ(ãeκd − b̃e−κd)− i g
↑↓

4πs
~ω(ãeκd + b̃e−κd)

= ã

[
Aκ− i g

↑↓

4πs
~ω
]
eκd + b̃

[
−Aκ− i g

↑↓

4πs
~ωb̃

]
e−κd,

so

ã = σ̃−1b̃e−2κd,

where

σ̃−1 ≡ Aκ+ i g
↑↓

4πs~ω
Aκ− i g↑↓4πs~ω

= −DC .

From Eq. 3.11, we see

aeκy + be−κy = ãeκy + b̃e−κy.

Plugging in our values for a and ã leads to

(
σeκy + e−κy

)
b =

(
σ̃−1e−2κdeκy + e−κy

)
b̃,

so that

b =

(
σ̃−1e−2κdeκy + e−κy

σeκy + e−κy

)
b̃.

From Eq. 3.10 we see

1 = (ã− a)κeκy − (b̃− b)κe−κy
= (σ̃−1b̃e−2κd − σb)κeκy − (b̃− b)κe−κy

=
[
σ̃−1e−2κdκeκy − κe−κy

]
b̃+

[
−σκeκy + κe−κy

]
b
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=

{[
σ̃−1e−2κdeκy − e−κy

]
+
[
−σeκy + e−κy

]( σ̃−1e−2κdeκy + e−κy

σeκy + e−κy

)}
κb̃

=
κb̃

σeκy + e−κy

{[
σ̃−1e−2κdeκy − e−κy

] [
σeκy + e−κy

]
+
[
−σeκy + e−κy

] [
σ̃−1e−2κdeκy + e−κy

]}

=
2κb̃[σ̃−1e−2κd − σ]

σeκy + e−κy
,

so

b̃ =
1

2κ

(
σeκy + e−κy

σ̃−1e−2κd − σ

)
,

so

b =

(
σ̃−1e−2κdeκy + e−κy

σeκy + e−κy

)
1

2κ

(
σeκy + e−κy

σ̃−1e−2κd − σ

)
=

1

2κ

(
σ̃−1e−2κdeκy + e−κy

σ̃−1e−2κd − σ

)
,

so

a =
σ

2κ

(
σ̃−1e−2κdeκy + e−κy

σ̃−1e−2κd − σ

)
,

so

ã =
σ̃−1e−2κd

2κ

(
σeκy + e−κy

σ̃−1e−2κd − σ

)
.
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Appendix E

Computation of the transverse bulk current

We use the formula

j(B)
y = (Aqy +

D

2
) 〈ψ∗(x)ψ(x)〉 .

We set out to compute 〈ψ∗(x)ψ(x)〉. We know

ψ(x) =

∫ d

0
dyG(x, y)ψ(y) =

∫ d

0
dyG(x, y)

√
s

A
h(y),

which leads to

〈ψ∗(x)ψ(x)〉 =

〈[∫ d

0
dzG(x, z)

√
s

A
h(z)

]∗ [∫ d

0
dyG(x, y)

√
s

A
h(y)

]〉
.

We note that if we were to write out all the integrals and powers of e, the left hand
side will have integrals over q, ω. On the right hand side, the conjugated part will have
integrals over q’, ω′, and the non-conjugated part over q, ω. Using the Ansatz

G(x, y) =

{
G<(x, y) = aeκx + be−κx for x < y

G>(x, y) = ãeκx + b̃e−κx for x > y

leads to

〈ψ∗(x)ψ(x)〉 =

(∫ x

0
dzG>(x, z)

√
s

A
h(z) +

∫ d

x
dzG<(x, z)

√
s

A
h(z)

)∗

×
(∫ x

0
dyG>(x, y)

√
s

A
h(y) +

∫ d

x
dyG<(x, y)

√
s

A
h(y)

)
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=

(∫ x

0
dz

∫ x

0
dy[G>(x, z)]∗G>(x, y)

s

A2

+

∫ d

x
dz

∫ d

x
dy[G<(x, z)]∗G<(x, y)

s

A2

)
〈h∗(z)h(y)〉 .

We use Eq. 3.1, which leads to

∫
d2q

(2π)2

∫
dω

2π
4α

~
A2
T︸ ︷︷ ︸

Θ

(∫ x

0
dy[G>(x, y)]∗G>(x, y) +

∫ d

x
dy[G<(x, y)]∗G<(x, y)

)

= Θ

(∫ x

0
dy
[
ãeκx + b̃e−κx

]∗ [
ãeκx + b̃e−κx

]
+

∫ d

x
dy
[
aeκx + be−κx

]∗ [
aeκx + be−κx

])

= Θ

(∫ x

0
dy
[
σ̃−1e−2κdeκx + e−κx

]∗
b̃∗b̃
[
σ̃−1e−2κdeκx + e−κx

]
+

∫ d

x
dy
[
σeκx + e−κx

]∗
b∗b
[
σeκx + e−κx

])

= Θ

(∫ x

0
dye−(κ+κ∗)x

[
σ̃−1e−2κ(d−x) + 1

]∗
b̃∗b̃
[
σ̃−1e−2κ(d−x) + 1

]
+

∫ d

x
dye−(κ+κ∗)x

[
σe2κx + 1

]∗
b∗b
[
σe2κx + 1

])

= Θe−(κ+κ∗)x

(∫ x

0
dy

{
1

4κ∗κ

(
σeκy + e−κy

σ̃−1e−2κd − σ

)∗(
σeκy + e−κy

σ̃−1e−2κd − σ

)

×
[
σ̃−1e−2κ(d−x) + 1

]∗ [
σ̃−1e−2κ(d−x) + 1

]
︸ ︷︷ ︸

η1

}

+

∫ d

x
dy

{
1

4κ∗κ

(
σ̃−1e−2κdeκy + e−κy

σ̃−1e−2κd − σ

)∗(
σ̃−1e−2κdeκy + e−κy

σ̃−1e−2κd − σ

)

×
[
σe2κx + 1

]∗ [
σe2κx + 1

]︸ ︷︷ ︸
η2

})
.

In order to compare
〈
j

(B)
y

〉
to
〈
j

(I)
y

〉
we will write

〈
j

(B)
y

〉
with D∗D in the denominator

as well.

σ̃−1e−2κd − σ = −DC e
−2κd +

B
A = −e−κdDAe

−κd − BCeκd
AC = −e−κd D

AC ,
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so that
〈
j

(B)
y

〉
reads

Θe(κ+κ∗)(d−x)

4κ∗κ

A∗AC∗C
D∗D︸ ︷︷ ︸

Φ

(
η1

∫ x

0
dy[σeκy + e−κy]∗[σeκy + e−κy]

+η2

∫ d

x
dy[σ̃−1e−2κdeκy + e−κy]∗[σ̃−1e−2κdeκy + e−κy]

)

= Φ

(
η1

∫ x

0
dy

{
σ∗σe(κ+κ∗)y + σ∗e−(κ−κ∗)y + σe(κ−κ∗)y + e−(κ+κ∗)y

}

+ η2e
−(κ+κ∗)d︸ ︷︷ ︸
η̃2

∫ d

x
dy[σ̃−1e−κ(d−y) + eκ(d−y)]∗[σ̃−1e−κ(d−y) + eκ(d−y)]

)

= Φ

(
η1

∫ x

0
dy

{
σ∗σe(κ+κ∗)y + σ∗e−(κ−κ∗)y + σe(κ−κ∗)y + e−(κ+κ∗)y

}

+η̃2

∫ d

x
dy

{
[σ̃−1]∗σ̃−1e−(κ+κ∗)(d−y) + [σ̃−1]∗e(κ−κ∗)(d−y)

+σ̃−1e−(κ−κ∗)(d−y) + e(κ+κ∗)(d−y)

})

= Φ

(
η1

[
σ∗σe(κ+κ∗)y

κ+ κ∗
− σ∗e−(κ−κ∗)y

κ− κ∗ +
σe(κ−κ∗)y

κ− κ∗ −
e−(κ+κ∗)y

κ+ κ∗

]y=x

y=0

+η̃2

[
[σ̃−1]∗σ̃−1e−(κ+κ∗)(d−y)

κ+ κ∗
− [σ̃−1]∗e(κ−κ∗)(d−y)

κ− κ∗

+
σ̃−1e−(κ−κ∗)(d−y)

κ− κ∗ − e(κ+κ∗)(d−y)

κ+ κ∗

]y=d

y=x

)

= Φ

(
η1

{
σ∗σ[e(κ+κ∗)x − 1]

κ+ κ∗
− σ∗[e−(κ−κ∗)x − 1]

κ− κ∗ +
σ[e(κ−κ∗)x − 1]

κ− κ∗ − e−(κ+κ∗)x − 1

κ+ κ∗

}

+η̃2

{
[σ̃−1]∗σ̃−1[1− e−(κ+κ∗)(d−x)]

κ+ κ∗
− [σ̃−1]∗[1− e(κ−κ∗)(d−x)]

κ− κ∗

+
σ̃−1[1− e−(κ−κ∗)(d−x)]

κ− κ∗ − 1− e(κ+κ∗)(d−x)

κ+ κ∗

})
.

We use σ = − BA and σ̃−1 = −DC to see that this equals
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Φ

(
η1

{
B∗B
A∗A

e(κ+κ∗)x − 1

κ+ κ∗
+
B∗
A∗

e−(κ−κ∗)x − 1

κ− κ∗ − BA
e(κ−κ∗)x − 1

κ− κ∗ − e−(κ+κ∗)x − 1

κ+ κ∗

}

+η̃2

{
D∗D
C∗C

1− e−(κ+κ∗)(d−x)

κ+ κ∗
+
D∗
C∗

1− e(κ−κ∗)(d−x)

κ− κ∗

−DC
σ̃−1[1− e−(κ−κ∗)(d−x)]

κ− κ∗ − 1− e(κ+κ∗)(d−x)

κ+ κ∗

})

= Φ

(
η1

A∗A

{
B∗B e

(κ+κ∗)x − 1

κ+ κ∗
+ B∗Ae

−(κ−κ∗)x − 1

κ− κ∗ −A∗B e
(κ−κ∗)x − 1

κ− κ∗

−A∗Ae
−(κ+κ∗)x − 1

κ+ κ∗

}

+
η̃2

C∗C

{
D∗D1− e−(κ+κ∗)(d−x)

κ+ κ∗
+D∗C 1− e(κ−κ∗)(d−x)

κ− κ∗

−C∗D σ̃
−1[1− e−(κ−κ∗)(d−x)]

κ− κ∗ − C∗C 1− e(κ+κ∗)(d−x)

κ+ κ∗

})

=
Φ

(κ+ κ∗)(κ− κ∗)︸ ︷︷ ︸
Φ̃

(
η1

A∗A

{
B∗B[e(κ+κ∗)x − 1][κ− κ∗] + B∗A[e−(κ−κ∗)x − 1][κ+ κ∗]

−A∗B[e(κ−κ∗)x − 1][κ+ κ∗]−A∗A[e−(κ+κ∗)x − 1][κ− κ∗]
}

+
η̃2

C∗C

{
D∗D[1− e−(κ+κ∗)(d−x)][κ− κ∗] +D∗C[1− e(κ−κ∗)(d−x)][κ+ κ∗]

−C∗D[1− e−(κ−κ∗)(d−x)][κ+ κ∗]− C∗C[1− e(κ+κ∗)(d−x)][κ− κ∗]
})

.

We introduce the shorthand notations χ ≡ i g↑↓4πs [~ω − µ′] and ξ ≡ i g↑↓4πs~ω and compute

A∗A = A2κ∗κ− χAκ+ χAκ∗ − χ2

A∗B = −A2κ∗κ+ χAκ+ χAκ∗ − χ2

B∗A = −A2κ∗κ− χAκ− χAκ∗ − χ2

B∗B = A2κ∗κ+ χAκ− χAκ∗ − χ2

C∗C = A2κ∗κ+ ξAκ− ξAκ∗ − ξ2

C∗D = −A2κ∗κ− ξAκ− ξAκ∗ − ξ2

65



D∗C = −A2κ∗κ+ ξAκ+ ξAκ∗ − ξ2

D∗D = A2κ∗κ− ξAκ+ ξAκ∗ − ξ2,

so that 〈ψ∗ψ〉 equals

Φ̃η1

A∗A

(
A2κ∗κ

{
[e(κ+κ∗)x − 1][κ− κ∗]− [e−(κ−κ∗)x − 1][κ+ κ∗]

+[e(κ−κ∗)x − 1][κ+ κ∗]− [e−(κ+κ∗)x − 1][κ− κ∗]
}

+χAκ

{
[e(κ+κ∗)x − 1][κ− κ∗]− [e−(κ−κ∗)x − 1][κ+ κ∗]

−[e(κ−κ∗)x − 1][κ+ κ∗] + [e−(κ+κ∗)x − 1][κ− κ∗]
}

+χAκ∗

{
−[e(κ+κ∗)x − 1][κ− κ∗]− [e−(κ−κ∗)x − 1][κ+ κ∗]

−[e(κ−κ∗)x − 1][κ+ κ∗]− [e−(κ+κ∗)x − 1][κ− κ∗]
}

+χ2

{
−[e(κ+κ∗)x − 1][κ− κ∗]− [e−(κ−κ∗)x − 1][κ+ κ∗]

+[e(κ−κ∗)x − 1][κ+ κ∗] + [e−(κ+κ∗)x − 1][κ− κ∗]
})

+
Φ̃η̃2

C∗C

(
A2κ∗κ

{
[1− e−(κ+κ∗)(d−x)][κ− κ∗]− [1− e(κ−κ∗)(d−x)][κ+ κ∗]

+[1− e−(κ−κ∗)(d−x)][κ+ κ∗]− [1− e(κ+κ∗)(d−x)][κ− κ∗]
}

+ξAκ

{
−[1− e−(κ+κ∗)(d−x)][κ− κ∗] + [1− e(κ−κ∗)(d−x)][κ+ κ∗]

+[1− e−(κ−κ∗)(d−x)][κ+ κ∗]− [1− e(κ+κ∗)(d−x)][κ− κ∗]
}

+ξAκ∗

{
[1− e−(κ+κ∗)(d−x)][κ− κ∗] + [1− e(κ−κ∗)(d−x)][κ+ κ∗]

+[1− e−(κ−κ∗)(d−x)][κ+ κ∗] + [1− e(κ+κ∗)(d−x)][κ− κ∗]
}
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+ξ2

{
−[1− e−(κ+κ∗)(d−x)][κ− κ∗]− [1− e(κ−κ∗)(d−x)][κ+ κ∗]

+[1− e−(κ−κ∗)(d−x)][κ+ κ∗] + [1− e(κ+κ∗)(d−x)][κ− κ∗]
}
,

which equals

2Φ̃η1

A∗A

(
A2κ∗κ

{
sinh[(κ+ κ∗)x][κ− κ∗] + sinh[(κ− κ∗)x][κ+ κ∗]

}

+χAκ

{(
cosh[(κ+ κ∗)x]− 1

)
[κ− κ∗]−

(
cosh[(κ− κ∗)x]− 1

)
[κ+ κ∗]

}

+χAκ∗

{
−
(

cosh[(κ+ κ∗)x]− 1

)
[κ− κ∗]−

(
cosh[(κ− κ∗)x]− 1

)
[κ+ κ∗]

}

+χ2

{
− sinh[(κ+ κ∗)x][κ− κ∗] + sinh[(κ− κ∗)x][κ+ κ∗]

})

+
2Φ̃η̃2

C∗C

(
A2κ∗κ

{
sinh [(κ+ κ∗)(d− x)] [κ− κ∗] + sinh [(κ− κ∗)(d− x)] [κ+ κ∗]

}

+ξAκ

{(
cosh [(κ+ κ∗)(d− x)]− 1

)
[κ− κ∗]

−
(

cosh [(κ− κ∗)(d− x)]− 1

)
[κ+ κ∗]

}

+ξAκ∗

{
−
(

cosh [(κ+ κ∗)(d− x)]− 1

)
[κ− κ∗]

−
(

cosh [(κ− κ∗)(d− x)]− 1

)
[κ+ κ∗]

}

+ξ2

{
− sinh [(κ+ κ∗)(d− x)] [κ− κ∗] + sinh [(κ− κ∗)(d− x)] [κ+ κ∗]

})
,

which equals

2Φ̃η1

A∗A

(
A2κ∗κ

{
κ

[
sinh[(κ+ κ∗)x] + sinh[(κ− κ∗)x]

]

−κ∗
[

sinh[(κ+ κ∗)x]− sinh[(κ− κ∗)x]

]}

67



+χAκ

{
κ

[
cosh[(κ+ κ∗)x]− cosh[(κ− κ∗)x]

]

−κ∗
[

cosh[(κ+ κ∗)x] + cosh[(κ− κ∗)x]

]
+ 2κ∗

}

+χAκ∗

{
− κ
[

cosh[(κ+ κ∗)x] + cosh[(κ− κ∗)x]

]

+κ∗
[

cosh[(κ+ κ∗)x]− cosh[(κ− κ∗)x]

]
+ 2κ

}

+χ2

{
− κ
[

sinh[(κ+ κ∗)x]− sinh[(κ− κ∗)x]

]

+κ∗
[

sinh[(κ+ κ∗)x] + sinh[(κ− κ∗)x]

]})

+
2Φ̃η̃2

C∗C

(
A2κ∗κ

{
κ

[
sinh[(κ+ κ∗)(d− x)] + sinh[(κ− κ∗)(d− x)]

]

−κ∗
[

sinh[(κ+ κ∗)(d− x)]− sinh[(κ− κ∗)(d− x)]

]}

+ξAκ

{
κ

[
cosh[(κ+ κ∗)(d− x)]− cosh[(κ− κ∗)(d− x)]

]

−κ∗
[

cosh[(κ+ κ∗)(d− x)] + cosh[(κ− κ∗)(d− x)]

]
+ 2κ∗

}

+ξAκ∗

{
− κ
[

cosh[(κ+ κ∗)(d− x)] + cosh[(κ− κ∗)(d− x)]

]

+κ∗
[

cosh[(κ+ κ∗)(d− x)]− cosh[(κ− κ∗)(d− x)]

]
+ 2κ

}

+ξ2

{
− κ
[

sinh[(κ+ κ∗)(d− x)]− sinh[(κ− κ∗)(d− x)]

]

+κ∗
[

sinh[(κ+ κ∗)(d− x)] + sinh[(κ− κ∗)(d− x)]

]})
.

We use

sinh[(κ+ κ∗)x] + sinh[(κ− κ∗)x] = 2 sinh[κx] cosh[κ∗x]

sinh[(κ+ κ∗)x]− sinh[(κ− κ∗)x] = 2 cosh[κx] sinh[κ∗x]
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cosh[(κ+ κ∗)x]− cosh[(κ− κ∗)x] = 2 sinh[κx] sinh[κ∗x]

cosh[(κ+ κ∗)x] + cosh[(κ− κ∗)x] = 2 cosh[κx] cosh[κ∗x],

and see

4Φ̃η1

A∗A

(
A2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗x]

]
− κ∗

[
cosh[κx] sinh[κ∗x]

]}

+χAκ

{
κ

[
sinh[κx] sinh[κ∗x]

]
− κ∗

[
cosh[κx] cosh[κ∗x]

]
+ κ∗

}

+χAκ∗

{
− κ
[

cosh[κx] cosh[κ∗x]

]
+ κ∗

[
sinh[κx] sinh[κ∗x]

]
+ κ

}

+χ2

{
− κ
[

cosh[κx] sinh[κ∗x]

]
+ κ∗

[
sinh[κx] cosh[κ∗x]

]})

+
4Φ̃η̃2

C∗C

(
A2κ∗κ

{
κ

[
sinh[κ(d− x)] cosh[κ∗(d− x)]

]

−κ∗
[

cosh[κ(d− x)] sinh[κ∗(d− x)]

]}

+ξAκ

{
κ

[
sinh[κ(d− x)] sinh[κ∗(d− x)]

]

−κ∗
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]
+ κ∗

}

+ξAκ∗

{
− κ
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]

+κ∗
[

sinh[κ(d− x)] sinh[κ∗(d− x)]

]
+ κ

}

+ξ2

{
− κ
[

cosh[κ(d− x)] sinh[κ∗(d− x)]

]

+κ∗
[

sinh[κ(d− x)] cosh[κ∗(d− x)]

]})
. (E.1)

Before going any further, we have to take a closer look at η1 and η̃2. We see that

σ̃−1e−2κ(d−x) + 1 =
−De−2κ(d−x) + C

C =
−e−κ(d−x)

C
(
De−κ(d−x) − Ceκ(d−x)

)
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=
−e−κ(d−x)

C

[
(Aκ+ ξ) e−κ(d−x) + (Aκ− ξ) eκ(d−x)

]

=
−2e−κ(d−x)

C

[
Aκ cosh[κ(d− x)]− ξ sinh[κ(d− x)]

]
,

and

σe2κx + 1 =
−Be2κx +A

A =
eκx

A
[
−Beκx +Ae−κx

]
=

eκx

A
[
(Aκ− χ)eκx + (Aκ+ χ)e−κx

]
=

2eκx

A [Aκ cosh[κx]− χ sinh[κx]] ,

so that

η1 =
[
σ̃−1e−2κ(d−x) + 1

]∗ [
σ̃−1e−2κ(d−x) + 1

]
=

4e−(κ+κ∗)(d−x)

C∗C

[
Aκ cosh[κ(d− x)]− ξ sinh[κ(d− x)]

]∗

×
[
Aκ cosh[κ(d− x)]− ξ sinh[κ(d− x)]

]

=
4e−(κ+κ∗)(d−x)

C∗C

[
A2κ∗κ

(
cosh[κ∗(d− x)] cosh[κ(d− x)]

)
−ξAκ∗

(
cosh[κ∗(d− x)] sinh[κ(d− x)]

)
+ ξAκ

(
sinh[κ∗(d− x)] cosh[κ(d− x)]

)
+ξ2

(
sinh[κ∗(d− x)] sinh[κ(d− x)]

)]

and

η̃2 = [σe2κx + 1]∗[σe2κx + 1]e−(κ+κ∗)d

=
4e−(κ+κ∗)(d−x)

A∗A

[
Aκ cosh[κx]− χ sinh[κx]

]∗[
Aκ cosh[κx]− χ sinh[κx]

]

=
4e−(κ+κ∗)(d−x)

A∗A

[
A2κ∗κ

(
cosh[κ∗x] cosh[κx]

)
− χAκ∗

(
cosh[κ∗x] sinh[κx]

)
+χAκ

(
sinh[κ∗x] cosh[κx]

)
+ χ2

(
sinh[κ∗x] sinh[κx]

)]
.

70



We now define

Ω ≡
∫

d2q

(2π)2

∫
dω

2π
α

~
A2
T

32

κ∗κ

1

D∗D
1

(κ+ κ∗)(κ− κ∗) .

Also,

(κ+ κ∗)(κ− κ∗) = κ2 − (κ∗)2 = −2iα~ω
A

,

so that we can write Ω as

Ω =

∫
d2q

(2π)2

∫
dω

2π

16iT

ωAκ∗κ

1

D∗D
.

We also define

β̃1 ≡ A2κ∗κ
(

cosh[κ∗(d− x)] cosh[κ(d− x)]
)

−ξAκ∗
(

cosh[κ∗(d− x)] sinh[κ(d− x)]
)

+ ξAκ
(

sinh[κ∗(d− x)] cosh[κ(d− x)]
)

+ξ2
(

sinh[κ∗(d− x)] sinh[κ(d− x)]
)

β̃2 ≡ A2κ∗κ
(

cosh[κ∗x] cosh[κx]
)
− χAκ∗

(
cosh[κ∗x] sinh[κx]

)
+χAκ

(
sinh[κ∗x] cosh[κx]

)
+ χ2

(
sinh[κ∗x] sinh[κx]

)
,

so that

4Φ̃η1

A∗A =
Ω

2
β̃1 and

4Φ̃η̃2

C∗C =
Ω

2
β̃2.

We now want to employ a certain trick, for which we have to rewrite the formula for the
current. We first had

j(B)
y = (Aqy +

D

2
) 〈ψ∗ψ〉 . (E.2)

As the right hand side is real (as it should be), we can also write this as

Im

[
i× (Aqy +

D

2
) 〈ψ∗ψ〉

]
. (E.3)

We note that β̃∗1 = β̃1 and β̃∗2 = β̃2. If we absorb the “i” from the expression above into
Ω, letting Ω̃ ≡ iΩ, we see that Ω̃∗ = Ω̃. In our new expression for the current, the only
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parts that may be imaginary are contained within the round brackets in Eq. E.1. We
know that, for any complex number W, Im [W] = Im [−W∗]. We can use this identity on
the imaginary parts of our expression for the current.

For the first part in the round brackets (the part behind η1) in Eq. E.1 this means

A2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗x]

]
+κ

[
cosh[κ∗x] sinh[κx]

]
︸ ︷︷ ︸

changes

}

+χAκ

{
κ

[
sinh[κx] sinh[κ∗x]

]
− κ∗

[
cosh[κx] cosh[κ∗x]

]
+ κ∗

}

+ χAκ︸︷︷︸
changes

{
− κ∗

[
cosh[κx] cosh[κ∗x]

]
+ κ

[
sinh[κx] sinh[κ∗x]

]
+ κ∗

}
︸ ︷︷ ︸

changes

+χ2

{
− κ
[

cosh[κx] sinh[κ∗x]

]
−κ
[

sinh[κ∗x] cosh[κx]

]
︸ ︷︷ ︸

changes

}
,

and for the second part in the round brackets (the part behind η̃2) in Eq. E.1 this means

A2κ∗κ

{
κ

[
sinh[κ(d− x)] cosh[κ∗(d− x)]

]
+κ

[
cosh[κ∗(d− x)] sinh[κ(d− x)]

]
︸ ︷︷ ︸

changes

}

+ξAκ

{
κ

[
sinh[κ(d− x)] sinh[κ∗(d− x)]

]

−κ∗
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]
+ κ∗

}

−ξAκ︸ ︷︷ ︸
changes

{
κ∗
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]
︸ ︷︷ ︸

changes

−κ
[

sinh[κ(d− x)] sinh[κ∗(d− x)]

]
− κ∗

}
︸ ︷︷ ︸

changes

+ξ2

{
− κ
[

cosh[κ(d− x)] sinh[κ∗(d− x)]

]
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−κ
[

sinh[κ∗(d− x)] cosh[κ(d− x)]

]
︸ ︷︷ ︸

changes

}
.

As all the other parts of the expression for the current have no imaginary part, they are
unaffected by this operation. The two expressions above equal

2A2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗x]

]}

+2χAκ

{
κ

[
sinh[κx] sinh[κ∗x]

]
− κ∗

[
cosh[κx] cosh[κ∗x]

]
+ κ∗

}

+2χ2

{
− κ
[

cosh[κx] sinh[κ∗x]

]}

and

2A2κ∗κ

{
κ

[
sinh[κ(d− x)] cosh[κ∗(d− x)]

]}

+2ξAκ

{
κ

[
sinh[κ(d− x)] sinh[κ∗(d− x)]

]

−κ∗
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]
+ κ∗

}

+2ξ2

{
− κ
[

cosh[κ(d− x)] sinh[κ∗(d− x)]

]}
,

so that j
(B)
y equals

Im

[
(Aqy +

D

2
)Ω̃β̃1

(
A2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗x]

]}

+χAκ

{
κ

[
sinh[κx] sinh[κ∗x]

]
− κ∗

[
cosh[κx] cosh[κ∗x]

]
+ κ∗

}

+χ2

{
− κ
[

cosh[κx] sinh[κ∗x]

]})

+(Aqy +
D

2
)Ω̃β̃2

(
A2κ∗κ

{
κ

[
sinh[κ(d− x)] cosh[κ∗(d− x)]

]}
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+ξAκ

{
κ

[
sinh[κ(d− x)] sinh[κ∗(d− x)]

]

−κ∗
[

cosh[κ(d− x)] cosh[κ∗(d− x)]

]
+ κ∗

}

+ξ2

{
− κ
[

cosh[κ(d− x)] sinh[κ∗(d− x)]

]})]
.

A dimensional analysis of this formula can be found in Appendix F.
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Appendix F

Dimensional analysis of the currents

From Eq. 3.4 we see [κ] = 1
length , [A] = (energy)(length)2 (as [~ω] = (energy), and

[α] = 1.

From Eq. 3.5, where we want to have [j] = energy
(length)2 ,

Knowing that [A] = (energy)(length)2, we see that [s] = (length)−3.

Also, as [~] = (energy)(time) we see [g↑↓] = 1
(length)2 .

Hence [µ′] = energy,

And [h(x, t)] = (energy)
(length)2 .

These dimensions lead to A = (energy)(length) and D = (energy)2(length)2.

We can use these values in the FDT (Eq. 3.1) to obtain [T ] = (energy).

F.1 Interfacial current

Looking at the final formula for 〈ψ∗ψ〉 from section 3.2, writing length ≡ l, energy ≡
E, time ≡ t, we see that its dimension is

[∫
d2q

(2π2)

∫
dω

2π

16~T
D∗Ds

g↑↓

4π
A2κ∗κ cosh[κ∗(d− x)] cosh[κ(d− x)]

]

= (l)−2(t)−1 (E)(t)× (E)

(E)4(l)4 × (l)−3
(l)−2 × (E)2(l)4 × (l)−2

=
(l)−2(E)4(t)0

(l)1(E)4
= (length)−3,

which is what we want, as Aqy has dimensionality (energy)(length), so that the current
has unit energy

(length)2 .
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F.2 Bulk current

We first compute the dimensionality of Ω̃:

[Ω̃] =

[∫
d2q

(2π)2

∫
dω

2π

−16T

ωAκ∗κ

1

D∗D

]

= (l)−2(t)−1 (E)

(t)−1 × (E)(l)2 × (l)−2

1

(E)4(l)4
=

(l)−2(t)−1(E)1

(l)4(t)−1(E)5
=

(l)−6

(E)4
.

Also, as [A2κ∗κ] = (E)2(l)2, β̃1 = β̃2 = (E)2(l)2, which leads to the final formula for the
bulk current from section 3.4 having dimensionality

[
AqyΩ̃β̃1A

2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗x]

]}]

= (E)(l)2 × (l)−1 × (l)−6(E)−4 × (E)2(l)2 × (E)2(l)4 × (l)−3 =
E

(l)2
.

Given that current has unit energy
(length)2 , this is what we want.
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Appendix G

Computation of the longitudinal current with DMI

at x = d

G.1 The interfacial longitudinal current at x = d

To compute the interfacial longitudinal current at (x = d), we use the formula〈
ĵ(I)
x (x)

〉
d

= AIm[〈ψ∗∂xψ〉]d.

The motivation for this formula can be found in the beginning of Appendix C. We see.
that

〈
ĵ(I)
y (x)

〉
d

= AIm

〈((C1e
κx + C2e

−κx︸ ︷︷ ︸
Ξ

)∗κ (C1e
κx − C2e

−κx)︸ ︷︷ ︸
Γ

〉
d

.

We now calculate this current at x = d:

Ξ = C1e
κd + C2e

−κd

= (De−κdhL − BhR)
eκd

D
√
s

+ (−CeκdhL +AhR)
e−κd

D
√
s

=

([
Aκ+ i

g↑↓

4πs
~ω
]
−
[
−Aκ+ i

g↑↓

4πs
~ω
])

hL
D
√
s

+

(
−
[
−Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
eκd +

[
Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
e−κd

)
hR
D
√
s

= Aκ
2hL
D
√
s

+

[
Aκ cosh[κd]− i g

↑↓

4πs
[~ω − µ′] sinh[κd]

]
2hR
D
√
s
,
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and

Γ = C1e
κd − C2e

−κd

= (De−κdhL − BhR)
eκd

D
√
s
− (−CeκdhL +AhR)

e−κd

D
√
s

=

([
Aκ+ i

g↑↓

4πs
~ω
]

+

[
−Aκ+ i

g↑↓

4πs
~ω
])

hL
D
√
s

+

(
−
[
−Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
eκd −

[
Aκ+ i

g↑↓

4πs
[~ω − µ′]

]
e−κd

)
hR
D
√
s

= i
g↑↓

4πs
~ω

2hL
D
√
s

+

[
Aκ sinh[κd]− i g

↑↓

4πs
[~ω − µ′] cosh[κd]

]
2hR
D
√
s
.

As 〈h∗LhR〉 = 〈h∗RhL〉 = 0, 〈ψ∗∂xψ〉 equals, using the same shorthand as in section 3.4

κ
4 〈h∗LhL〉
D∗Ds

ξAκ∗

+κ
4 〈h∗RhR〉
D∗Ds

{
A2κ∗κ cosh[κ∗d] sinh[κd]

−χAκ∗ cosh[κ∗d] cosh[κd]

+χAκ sinh[κ∗d] sinh[κd]

−χ2 sinh[κ∗d] cosh[κd]

}
.

Using the FDT (Eq. 3.1) leads to

4κ

D∗Ds
4(2π)3 g

↑↓

4π
~Tδ(q− q′)δ(ω − ω′)

{
ξAκ∗

+A2κ∗κ cosh[κ∗d] sinh[κd]

−χAκ∗ cosh[κ∗d] cosh[κd]

+χAκ sinh[κ∗d] sinh[κd]

−χ2 sinh[κ∗d] cosh[κd]

}
,

so that the current equals

78



A

∫
d2q

(2π)2

∫
dω

2π
Im

[
16κ

D∗Ds
g↑↓

4π
~T

{
ξAκ∗

+A2κ∗κ cosh[κ∗d] sinh[κd]

−χAκ∗ cosh[κ∗d] cosh[κd]

+χAκ sinh[κ∗d] sinh[κd]

−χ2 sinh[κ∗d] cosh[κd]

}]
.

G.2 The bulk longitudinal current at x = d

We start from the formula 〈
j(B)
x

〉
d

= AIm[〈ψ∗(x)∂xψ〉]d,

Following the same first steps as in Appendix E, we see that

〈ψ∗(x)∂xψ(x)〉d =

[(∫ x

0
dz

∫ x

0
dy[G>(x, z)]∗∂xG

>(x, y)
s

A2

+

∫ d

x
dz

∫ d

x
dy[G<(x, z)]∗∂xG

<(x, y)
s

A2

)
〈h∗(z)h(y)〉

]
d

.

At x = d, only the first term is relevant:

〈ψ∗(d)∂xψ(d)〉 =

[∫ d

0
dz

∫ d

0
dy[G>(x, z)]∗∂xG

>(x, y)
s

A2

]
x=d

.

From the boundary condition at x = d (Eq. 3.12), we know

∂xG
> = i

g↑↓

4πsA
~ωG>,

so that

〈ψ∗(x)∂xψ(x)〉x=d =

[
i
g↑↓

4πsA
~ω
∫ x

0
dz

∫ x

0
dy[G>(x, z)]∗G>(x, y)

s

A2

]
x=d

= i
g↑↓

4πsA
~ω 〈ψ∗(x)∂xψ(x)〉x=d ,
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so that the longitudinal current equals, using the shorthand ξ ≡ i g↑↓4πs~ω

Im [ξ 〈ψ∗(x)∂xψ(x)〉]x=d .

Comparing this to Eq. E.3 from Appendix E, we see that this expression is the same if
we substitute i× (Aqy + D

2 ) with ξ and evaluate the expression at x = d. Continuing to
the final expression of Appendix E, we see that the longitudinal current at x = d equals

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
−16T

D∗D
g↑↓~
4πs

(
A2κ∗κ

{
κ

[
sinh[κx] cosh[κ∗d]

]}

+χAκ

{
κ

[
sinh[κd] sinh[κ∗d]

]
− κ∗

[
cosh[κd] cosh[κ∗d]

]
+ κ∗

}

+χ2

{
− κ
[

cosh[κd] sinh[κ∗d]

]})]
,

where we note that, at x = d, β̃1 equals A2κ∗κ.

G.3 Adding the currents

We take the interfacial current:

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
16κ

D∗Ds
g↑↓

4π
~T

{
ξAκ∗

+A2κ∗κ cosh[κ∗d] sinh[κd]

−χAκ∗ cosh[κ∗d] cosh[κd]

+χAκ sinh[κ∗d] sinh[κd]

−χ2 sinh[κ∗d] cosh[κd]

}]

which equals

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
16
g↑↓

4πs

~T
D∗D

κ

{
ξAκ∗

+A2κ∗κ cosh[κ∗d] sinh[κd]

−χAκ∗ cosh[κ∗d] cosh[κd]
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+χAκ sinh[κ∗d] sinh[κd]

−χ2 sinh[κ∗d] cosh[κd]

}]
,

and compare it to the bulk current:

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
− 16

g↑↓

4πs

~T
D∗D

κ

(
A2κ∗κ

{[
sinh[κx] cosh[κ∗d]

]}

+χAκ

[
sinh[κd] sinh[κ∗d]

]
−χAκ∗

[
cosh[κd] cosh[κ∗d]

]
+χAκ∗

+χ2

{
−
[

cosh[κd] sinh[κ∗d]

]})]
.

Adding these together yields

A

∫
d2q

(2π)2

∫
dω

2π
Im

[
16
g↑↓

4πs

~T
D∗D

κ
[
ξAκ∗ − χAκ∗

]]

= A

∫
d2q

(2π)2

∫
dω

2π
Im

[
16i

(
g↑↓

4πs

)2 ~T
D∗D

κ
[
µ′Aκ∗

]]

= A

∫
d2q

(2π)2

∫
dω

2π
16

(
g↑↓

4πs

)2 ~T
D∗D

Aκ∗κµ′.
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