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Chapter 1

Introduction

In all facets of modern life data is generated. Most of our choices and actions are documented,
both in obvious and less obvious ways. All this data contains a lot of information about us and the
world around us. To disclose this information, data mining algorithms can be used. machine learn-
ing and data mining have been a hot topic among businesses and governments. Machine learning
algorithms take large amounts of data, and find the patterns that it contains that might be too
subtle for human eyes to see. The aim of these algorithms is to discover the specific patterns that
can be found in large amounts of data.

Because of these large amounts of data, text mining, as a specific branch of data mining, is the
process of extracting interesting information from large bodies of text data. Examples are text
classification, sentiment analysis, topic mining and text summarization. This thesis focuses on text
classification. Text classification or text categorization is the task of labelling text documents.
Depending on the specific task, each document can have one or multiple labels that depend on the
content of the document. In text classification the goal is to create a model using training data
that, given new data, can classify the new documents correctly.

1.1 Problem description

The large databases of government agencies are an interesting source for analyzing. Using govern-
ment data, tax evaders might be found, and people could be called in for medical testing more or
less often based on their data. This thesis project, part of a project for the the WODC (Research
and Documentation Centre) of the Dutch Ministry of Security and Justice, is an effort to use text
mining for the classification of police reports.

Police reports and statements are written by police officers all the time. According to a 2016 report
from the Dutch Center for Statistics, just in 2015 there were 840.340 victim reports and statements
entered into the Dutch police registration database (Basisvoorziening Handhaving, BHV)D While
it is possible to enter a topic or category, this is sometimes forgotten or ignored. Other times a
report belongs to multiple categories, where only one might be given. These reports contain a lot of
text. To go through all of these by hand to label them would require immense amounts of time and
effort. However, having labeled reports is very practical for multiple reasons. It greatly improves
the ease and accuracy with which the yearly crime numbers are calculated for different categories
of crime, and can make it easier to spot at once with what category of crime a person is associated

'Source: CBS, Slachtofferregistraties bij de politie en Slachtofferhulp Nederland, 2010-2015



in the system.

This research project focuses on the latter. The goal is to create a model that could classify several
categories of online crime. This would enable researchers to calculate which people in the system
were associated with multiple different cases in a period of time, and thereby calculate how many
people recidivate on those categories of online crime. The research question of this thesis therefore is:

“How can we use text mining techniques to correctly classify police data?”

In the rest of this thesis I will give a short overview of some of the most common steps and algorithms
in text classification tasks. In chapter I will discuss the data set used in this specific project.
The chapter that follows is more general in nature, and discusses important steps in preprocessing
(section and feature selection (section . After that I will discuss some common supervised
and semi-supervised machine learning algorithms in section [3.5} The methods discussed in these
sections were all used in or considered for the experiment. The experiment and the results are
discussed in chapter [4, with some discussion and suggestions for future research in chapter



Chapter 2

Data set

2.1 Data

The data set used in this thesis is a set of police reports from the Dutch police. It includes statements
from both witnesses and suspects, and observations made by police officers on the scene or during
interviews. For each report the following data was available: report registration ID, the police-unit
responsible for the report, and ID, sex, place of residence, nationality and age of the suspect, and
the text of the report itself. In this project only the text was used, although the results can be
combined with the other data to possibly improve the results. The reports are from the years 2013,
2014 and 2015, and were preselected by a very broad query on the police databaseﬂ This query can
be found in appendix[A] and consists of a set of terms that may imply some relation to online crime.

The full data set contains over 242.987 uniqueﬂ records, all written in Dutch. Since a preliminary
report was needed about halfway during the allotted time for the project, the research was divided
in two phases. For the first phase of this projects, a small subset of 1896 of these records was
labeled by two annotators. These labeled records were evenly spread over the time period 2013-
2015. The records to be labeled were selected in smaller subsets of between 100 and 200 records,
by a semi-randomized selection algorithm. The query in appendix [A] that was used to retrieve the
data from the police database selected records if they contained words from at least one of three
categories. Since much more records fell in one of the three categories than in the other two, the
selection for annotation was done by randomly selecting ! /3 of the set for annotation from each of
these categories. So to clarify: each part of the query yielded 632 records for annotation. The goal
of this selection process was to try and keep the categories balanced as much as possible.

To annotate the records, the annotators established whether the incident described in a report
belonged to one or more of three categories: online threats, online distribution of sexually obscene
images, and computer trespassing. The criteria used for the annotation are shown in table To
ascertain that both annotators used the same criteria, 98 records of the set were annotated by both
annotators. In 5 cases they disagreed over the categorization of a record, of which 2 disagreements
were about online threats and 4 about computer trespassinéﬂ For these cases only the negative
categorization E| was taken into account for the remainder of the project, to avoid ambiguity in the

'Basis Voorziening Handhaving (BVH) of Dutch National Police

2Some records appear multiple times, for example once for every suspect in a case. In these cases the extra records
were filtered out.

31 record belonged to both categories

4Not belonging to the interesting class



Online threats

Threats issued through online means

On a smartphone: traditional text messages or calls are not seen as online, while apps (Whatsapp,
Skype, Facebook Messenger) is

Threats are defined as statements that show inclination to hurt someone. This can include
physical harm, but also publication of private information, etc.)

Online distribution of sexually obscene imagery

Distribution of sexual images without the consent of those depicted (minors cannot give their
consent)

Without actual online distribution, a record does not belong to this category. Illegally recording
or threats of distribution are not included.

Distribution by the depicted person is not included in this category, unless the depicted is a
minor, in which case it is seen as distributed without consent.

Webcam sex can be included in this category, if it was between a minor and an adult, or if one
of the participants was forced.

Computer trespassing

Logging into an account or computer without the permission of the owner of the computer or

account.

Suspect changed or removed something from a computer that he/she had no legitimate access
to. This can be either via an internet connection or not.

If a suspect had legitimate access to the computer or system, but made changes that were
undesirable for the victim (for example in case of a jilted system administrator), this is not
included.

Table 2.1: Criteria for annotating the data

positive data in the training set.

Since the preliminary resultsE] indicated that the number of positive records in some classes was too
low to train a well-performing classification model, extra data was annotated for the second phase.
A new set of 1200 records was annotated by one of the annotators of the first set, for a total training
set of 3096 instances. This new training set was selected in a slightly different manner: the best
general online crime model of the first phase (a Random forest classifier with AdaBoost boosting
and no resampling, filtered documents and basic tf-idf feature vectors) was trained and tested with
10-fold crossvalidation. In each of the ten testing phases, the instances were separated on whether
they were classified correctly or incorrectly. This produced sets of correctly and incorrectly clas-
sified instances. For these two sets, an adaptation of the filtering method described in section
was used to find a list of words that were characteristic for both groups. To select the new set for
annotation, the same methods as described for the first set were used, with the additional require-
ments that the document had to contain at least one of the characteristic words for the classification.

The idea of this sampling method was to annotate more data that either very clearly belonged to a
category, or was similar to document that were difficult to classify, and thereby decrease noise and
improve classification results. While this method may have introduced some bias, since the data
was not randomly selected anymore, the bias is likely to be small: the percentage of documents
with interesting labels only decreased using this method.

®Discussed in section m



Online threat Online Computer All online
distribution of trespass crime
obscene
imagery
Full set
Number of 198 68 80 320
records
Percentage of to- 6.40% 2.20% 2.58% 10.34%
tal
Preliminary
data
Number of 141 43 64 214
records
Percentage of to- 6.90% 2.27% 3.38% 11.29%
tal

Table 2.2: Categories within annotated data set online crime

Table shows the numbers of documents that fall in each of the categories for both phases of the
project. Out of the 3096 annotated records, 198 are about online threats, 68 about online distri-
bution of sexually obscene imagery, and 80 about computer trespass. In total 320 documents fall
within one or more of these three classes. For the preliminary data set, the percentages are a little
higher than for the full set. However, the difference is small, and the increased number of positive
instances can still have a positive effect. This is especially the case for the smallest class, for which
the absolute count of positive instances went from 43 to 68 documents. This increase gives the
model over 50% more positive examples of what might be relevant information to determine how
to classify a document.

Figure (created using T-SNE) gives an idea of how the full data set is distributed over the
feature space. It clearly shows that the data points of the different classes are not each assigned
their own part of the feature space. Instead all data seems to be scattered over the space, without
significant clustering for each category. This distribution means that there is quite some overlap in
the feature values for the different classes, which can be explained by the fact that it is text data.
Most features will be insignificant for the classification: for example, the word “you” is common
enough that it is unlikely to be relevant for the classification, but it occurs in many documents and
thus influences the way the data is distributed in the feature space.

The goal is to create a model that correctly classifies data for belonging to one or more categories
of online crime. This can be done through the use of multiple binary models that each determine
whether a document does or does not belong to a certain class. This combination of multiple
binary classifier is sometimes called a “one-vs-all approach”. However, most of the annotated data
belonged to none of the categories, which causes the training data to be imbalanced.
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Figure 2.1: 2-dimensional feature space of lemmatized annotated data, created using T-SNE

2.2 Class Imbalance

As shown in table the percentage of positive or interestingﬁ records is low: just over 10% of the

data falls in any category of online crime, and for two of the classes (Online distribution of sexually
obscene imagery and Computer trespass) the percentage of positively labeled data is just over 2%.
The majority of the records belongs to neither of the interesting categories. This means there is a
class imbalance: the data is not evenly distributed over the possible classes. This imbalance can
cause the negative samples (those records that do not belong to a category) to have a large influence
on the final model. For example, a model trained with imbalanced data can classify everything
as negative, since that results in high numbers of correctly classified documents and thus a high
accuracy score. Classifying every instance as negative is not very informative, which makes this

type of model practically useless.

Another issue that contributes to our class imbalance problem is the size of the training set. Since
the training set is not very large to begin with, the class imbalance might make it difficult for
the model to discern what features may be relevant for determining whether a records belong to a
specific category. Class imbalance is a frequently occurring problem in data mining, and there are

some ways to deal with it. Resampling algorithms such as SMOTE [Luengo et al., 2011}, Batista]

2004] can remedy this problem by artificially creating extra data for minority classes, or
removing data points from the majority class. Resampling will be discussed more in-depth in
section [3.4] Using different evaluation measures of the model’s performance can also help when

training a model on imbalanced data. This is discussed further in section [4.2

SDocuments that belong to one of the categories



Chapter 3

Methods

3.1 Preprocessing

To train a model on text data, some preprocessing is needed to make the data suitable for training
the model. Machine learning algorithms generally take numeric data, so the texts have to be
transformed into feature vectors. The first preprocessing steps are mostly on a linguistic level, and
can improve the classifier by removing unnecessary information or otherwise structuring the data.
Most preprocessing is optional and task- or algorithm dependent, so below multiple options are
discussed, all of which have been used or considered for this thesis. These include tokenization,
lemmatization and PoS tagging. In this project, the tool FROG (developed at Radboud University
by [Van den Bosch et al.| [2007]) was used for most of these preprocessing steps.

3.1.1 Tokenization

One of the first steps of preprocessing is tokenization. Tokenization is the process of breaking up a
document in specific part, often words, characters or sentences. While this may seem like an easy
task of just chopping the text into pieces at white spaces and punctuation marks, it can be very
difficult. In most languages word or sentence boundaries are not defined clearly by white space
and punctuation. In English and Dutch punctuation can occur at the end of a sentence or in a
contraction of words (‘it’s’, ‘Mr.”, “’s ochtends’). In other languages, such as Chinese, there is no
white space between words within a sentence. Sentences then need to be parsed before it can be
broken up into separate words. These problems show the need for tokenization to make the data

as uniformly formatted as possible.

FROG uses a rule- and heuristic-based tokenizer, called Ucto [Van den Bosch et al., 2007, van
Gompel et al., 2012]. Ucto first splits a text document into fragments based on spaces. These
fragments are then compared to language-specific regular expressions. If a match is found, the
matching part of the fragment is marked as a word token, and labeled with the matching regular
expression. Remaining parts are seen as a separate fragments that are subsequently matched. An
example of Ucto’s tokenization of the sentence Mr. Jones’s daughter had been sleeping on the sofa
is given in table [3. 1}

"While examples are all in English with the audience of this thesis in mind, it can be assumed that any cases in
Dutch would be similar if no examples for Dutch are given as well.



Word Word-level type Sentence-level type
Mr. ABBREVIATION-KNOWN | BEGINOFSENTENCE NEWPARAGRAPH
Jones WORD NOSPACE
s SUFFIX
daughter WORD
had WORD
been WORD
sleeping WORD
on WORD
the WORD
sofa WORD NOSPACE
PUNCTUATION ENDOFSENTENCE

Table 3.1: Ucto tokenization example of Mr. Jones’s daughter had been sleeping on the sofa

3.1.2 Irrelevant terms

After tokenization it can be worthwhile to remove words that are unlikely to be interesting from
the documents. There are multiple ways to do this. The first is to remove stop words. Stop words
removal consists of the removal of extremely common words. These words, such as “you”, “be” or
“it” in English, and “jij” en “hebben” in Dutch, occur so often in the language that they can be
assumed to carry no information on what the topic of the text is. Stop words can be derived from
the data to get a corpus-specific list of stop words, or a standardized list of stop words can be used.

Part-of-Speech (PoS) tagging can also be used to remove words that have low informative value.
A PoS-algorithm determines the part-of-speech tag of each word or word cluster. Since certain
parts-of-speech can provide more or less information about the topic of a text (nouns and verbs are
usually rich in information on the topic, prepositions usually are not), PoS tagging can be used to
filter out words that are unlikely to be useful in text classification, like articles or names [Bonatti
et al., 2016]. It also plays a crucial role in the next step of the linguistic preprocessing: lemmatizing
the text.

3.1.3 Lemmatization

In text mining the amount of times a word occurs in a document is crucial for building the feature
vectors used to train a model. A word that occurs many times in a single document is likely to say
something about the topic of the text. However, counting word occurrences in a text document
is not as straightforward as it sounds in many cases. In many languages words can be inflected -
marked to show tense, grammatical case, or other information - which changes the word from its
basic form or lemma. An example for English would be “walk - walked - walking”. Since words
that are have been inflected usually have a different form than their lemmas, two words with the
same lemma are sometimes counted as occurrences of different words. The word frequencies are
intuitively more accurate when ‘walked’ and ‘walking’ both count toward the frequency of ‘walk’.
Lemmatization is the process that removes inflection and reduces words to their dictionary form,
which can improve statistical counting [Bonatti et al., 2016]. For example, the lemma of ‘better’ is
‘good’, the lemma of ‘found’ is ‘find’. This means that after lemmatization, the frequency of ‘good’
in the sentence I thought the cake was good, but I liked the ice cream better would be 2, instead of
the 1 of the unlemmatized sentence, since both ‘good’ and ‘better’ are counted towards the term

10



Word form PoS Delete | Insert | Resulting lemma
bijen N(soort,mv,basis) -en bij
haarspleten N(soort,mv,basis) -ten et haarspleet
spleten N(soort,mv,basis) -ten -et spleet
WW (pv,verl,mv) -eten -ijten splijten
haarstukje N(soort,ev,dim,onz,stan) haarstukje
N(soort,mv,basis) -ken -ak staak
WW (inf,nom,zonder,zonder-n) staken
WW (inf,prenom,zonder) staken
staken . ..
WW (inf,vrij,zonder) staken
WW (pv,tgw,mv) staken
WW (pv,verl,mv) -aken -eken steken

Table 3.2: Some examples of rewriting rules for Dutch for the FROG lemmatize

frequency of ‘good’.

Lemmatization is similar to stemming (a technique which removes the inflection from a word), but
unlike stemming it bases the lemmas on the context. Ambiguous words are usually lemmatized
to the correct lemma, while stemming these words can lead to the wrong words being counted.
The word “meeting” can be both a noun and a (form of a) verb. A stemmer reduces both to the
same form (“meet”), while a lemmatizer will select the appropriate base form based on context
(“meet” (verb) or “meeting” (noun)).

FROG’s lemmatizer uses combinations of words and PoS tags to determine the correct rewriting
rule for each word [Van den Bosch et al.l 2007]. Only the last 20 characters of a word are taken into
consideration, as in Dutch all morphological changes are made in the suffix of the word. If there is
only a single possible rewriting rule for a word form, that rule is used. If there are multiple options,
the rules for the PoS that matches the PoS of the word are selected. Since PoS includes things like
tense, this takes care of most options. In those very rare cases where this still leads to multiple
possibilities a random option is selected from the remaining rules. Some examples of rewriting rules
that FROG uses to lemmatize words are shown in table In the (Dutch) examples shown there,
we can see that some word forms have a single rule, such as bijen and haarstukje, and some have
multiple rewriting rules for every possible PoS tag, such as spleten and staken.

3.2 Feature vectors

To use text documents to train a classifier, the data has to be represented numerically. This is
done by determining features or properties of the document that can have a certain value. Usually
in text mining these features are directly derived from the words in the document, such as the
number of occurrences of a certain word in the document. Each document can be represented as
a high-dimensional vector of feature values. In this section I will discuss methods to go from text
document to ready-to-use feature vector. The mock documents in will be used as a
running example throughout this section.

2Source: FROG Documentation (available at https://languagemachines.github.io/frog/)

11
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Example 1

Document 1
The dogs are playing in the garden.

Document 2
The cats were sleeping.

Document 3
Dogs and cats are playing together

3.2.1 Word frequencies

The simplest characteristics of a text document are the words (or letters) contained within it. To
create numerical features from these words, word frequencies or word counts can be computed by
counting the number of occurrences of a word in the document. Combining the values for different
word features in a vector gives us a feature vector that characterizes the document. Each word in
the lexicon has its own place on the feature vector, which means the vector will be high-dimensional,
since there are often thousands of words in a lexicon. This resulting feature vector is an example of
sparse data: most words from the lexicon will not appear in a specific document, and even if they
appear, usually not multiple times. As discussed in section lemmatization can increase the
frequencies and reduce the sparsity by mapping all forms of a word to a single lexicon item, while
removing stop words can slightly reduce the number of dimensions of the feature space.

An example of the word frequencies for the documents in example [Example 1| can be found in
table The frequencies shown in the table make up the feature vectors: the feature vector for
documents 1, 2 and 3 would be

document 1:<1,0,1,1,1,0,0,2,0,0 >
document 2 : < 0,1,0,0,0,0,1,1,0,1 >
document 3:<1,1,1,0,0,1,0,0,1,0 >

The order of the features in the vector is arbitrary. So while in the above example the features are
sorted alphabetically based on the words they represent, this is not necessarily the case. However,
the order of the features is fixed across the corpus. If the feature vector for document 1 is based on
alphabetically-ordered features, then the same holds for the feature vectors for the other documents.

An alternative is to compute binary counts for the feature vectors instead of actual word frequencies.
In binary counts it does not matter how many times a term occurs within the document; instead
the only factor that is relevant is whether a term or N-gram does or does not occur in the document.
If it does, the value is set to 1, otherwise it is set to 0. A binary feature vector consists of only
ones and zeroes and shows what words appear in a document. Using binary counts removes the
extra influence of longer documents: longer documents have relatively many re-occurring words,
and thus often higher word frequencies. When binary counts are used, it becomes easier to compare
documents of different sizes.

12



Word in lexicon | Doc 1 | Doc 2 | Doc 3
are
cats
dogs

garden
in
playing
sleeping
the
together
were

Table 3.3: Word frequencies for corpus of example [Example 1

SO N OO - == O -
_— O == O OO oFO
O = OO = OO K = =

N-grams

While word frequencies are crucial to the text mining process, the bare number of occurrences
provides very little information about the order and context of the words in the document. N-
grams can be used to get a little more information. N-grams are sequences of N consecutive words
from a text. To illustrate, the bigrams (2 consecutive words) in document 1 of the example are

the dogs, dogs are, are playing, playing in, in the, the garden
The trigrams (3 consecutive words) for the same document are
the dogs are, dogs are playing, are playing in, playing in the, in the garden

Although the use of N-grams causes the data to be even more sparseE], it does provide more context
in which words are used. For this research, for example, knowing that the bigram “online threats”
appears within a document could be considered as more informative than the knowledge of the
separate words “online” and “threats” appearing in the document. This is why in some cases, N-
grams can improve classifier performance |[Joulin et al.,[2016]. N-grams frequencies can be computed
in the same way as word frequencies, and the two can co-occur. Using word and N-gram frequencies
together provides detailed information about words and their direct context. However, there is a
downside to the use of N-grams: because there are so many possible combinations of words, the
number of features gets very large when N-grams are used, especially for a high N. This can become
a problem in a later phase when training the model can demand more RAM than may be available.

3.2.2 Tf-idf term weighting

While word frequencies are a useful way to represent documents, they do not provide any infor-
mation about the usage of a word in the full corpus. For text mining purposes it is often useful
to know whether a particular word is a common word in general or used relatively much in a
specific document. Word frequencies do not provide information on this. Applying term weight-
ing can help to represent these types of information, for example by giving commonly used words
in the corpus a lower weight. An often-used term weighting mechanism in text mining is tf-idf,
term frequency - inverse document frequency [Feldman and Sanger, 2007]. Term frequency, inverse
document frequency and tf-idf are defined as follows:

3Most combinations of words do not occur multiple times, if any, in a single document

13



term frequency (tf) = number of occurrences of term ¢ in document d

number of documents in full corpus D

inverse document frequency (idf) = lo
v 4 y (idf) & number of documents in D that contain term ¢

tf-idf = tf.idf

The tf-idf value for a word in a document represents the frequency of the word in that document
relative how frequent it is across the whole corpus. A high tf-idf value shows that the word ap-
pear in a document relatively frequent, and thus can be considered characteristic for the document
[Feldman and Sanger, 2007]. A low value means the word appears often in the corpus, or maybe
only once in the specific document. If a word does not appear in the document at all, the tf-idf
is undefined. This can also be seen as a very low tf-idf score, and is often considered to be 0 for
further computations.

An example of some of the tf-idf values for the three-document corpus of example [Example 1] are

shown in table Take the term ‘the’: it occurs two times in document 1, and it occurs in

document 2 as well. The term frequency for ‘the’ in document 1 is 2, and the inverse document
3

frequency is log§ = 0.176. This means the tf-idf value is 2 - 0.176 = 0.352. All other values can be

computed in the same manner. The tf-idf feature vector consists of all these values in a set order,
similar to the word frequency vectors.

Word in lexicon | Doc 1 | Doc 2 | Doc 3
are 0.176 - 0.176
cats - 0.176 0.176
dogs 0.176 - 0.176

garden 0,477 - -
in 0,477 - -
playing - - 0,477
sleeping - 0,477 -
the 0.352 0.176 -
together - - 0,477
were - 0,477 -
are playing 0.176 - 0.176
cats are - - 0,477
the dogs 0,477 - -

Table 3.4: Tf-idf values for some words and N-grams from example

Using tf-idf to build feature vectors from documents has an important additional benefit: very com-
mon terms will automatically be less important, as those will occur in almost every document and
therefore will have a very low tf-idf value. In the same way words that are rare but occur often in a
single document are ‘boosted’ with a high tf-idf value. This means that it is possible to get a feeling
for what the most characteristic terms for a document are just by looking at its tf-idf feature vector.
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As with word frequency vectors it is possible to take binary counts instead of term frequency when
tf-idf is calculated. In that case the tf is replaced by a 1 if the word occurs in the document, or a
0 if it does not.

3.3 Feature reduction and selection

Since text document usually have thousands of features, it is often useful and efficient to somewhat
reduce the feature space. This can make the process of training computationally easier (since less
features mean less possibly relevant characteristics to take into consideration), and helps prevent
overfitting the model because the options for the model are more limited. In document classifi-
cation, often many words can be dropped without harming classifier performance [Feldman and
Sanger}, 2007]. The stop word removal mentioned above is a very simple way to remove some fea-
tures. However, stop word removal usually discards only a small number of features. Sometimes
it is possible to remove more features by computing their relevance and keeping only the most
relevant features.

There are three types of feature selection approaches: filter, wrapper, and hybrid |Liu and Yu,
2005|. Filter approaches make a selection based on data characteristics. Wrapper approaches use
some mining algorithm to evaluate relevance, instead of the immediate properties of the data, but
can be computationally inefficient. Hybrids combine the two types.

A method to reduce the number of features that is used in this research is based on tf-idf values.
As a first step, the data for a binary classification task is split into two subsets: the ‘positive’
and the ‘negative’ dataf] in the form of the tf-idf vectors for all documents. For each subset, the
mean feature vector is computed: this vector contains the mean value for each feature over the
whole subset. This results in two feature vectors: one representing the average positive document,
and one representing the average negative document. The values of these two vectors can then be
compared. If there is a large difference between the mean tf-idf values of a term in the two subsets,
this may indicate that the term is characteristic for either the positive or negative set. By taking
as features only the frequencies of these terms, the feature space could become more clearly divided
into separate areas. For this thesis, the filtering factor was set to 3. This means that all terms of
which the positive and negative mean tf-idf values have a difference of factor 3 are kept, and all
other terms are discarded. So, with P, and Ny as the positive and negative average tf-idf values for
term ¢:

1 kept ifPtZNtOI‘NtZPt
is
discarded otherwise

Applying this filter to the text documents usually discards the majority of the terms, since most
terms in a corpus do not appear significantly more often in on type of documents than in another.
In a way, this method is equal to generating a corpus-specific list of stop words and filtering out
those words. The main difference is the restrictiveness: applying this method on the police data
set left us only 2,878 out of 41,548 features for the general crime category. For online threat, online
distribution of sexually obscene imagery and computer trespass the remaining lexicon sizes were
2,425, 1,594 and 1,854 terms, respectively. This extreme reduction of the amount of features can
have a very large influence on the final results. This is amplified by the fact that only the most
relevant terms remain.

“Positive here means that a document belongs to the online crime category (the documents that are interesting),
while negative means it does not
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3.4 Resampling

As described in section the data set in this project has a large class imbalance. Since most
machine learning algorithms were developed with an equal distribution over the possible classes in
mind, this can make it difficult to create a model with optimal performance when data is imbalanced.
An optional step to help remedy this problem is to resample the data. Resampling is used to get
a more balanced set of training data by increasing the number of samples in the minority class, or
decreasing samples from the majority class. These two approaches can be distinguished in the two
main types of resampling algorithms: oversampling and undersampling algorithms.

3.4.1 Oversampling

Oversampling is used to to get more instances of data of a minority class. This can be done by
simply performing sampling with replacement of minority class instances, which is sometimes called
“bootstrapping”. This method is fast and efficient, but it comes with a large drawback: because
some of the samples in the minority class are sampled thus observed multiple times in the training
phase of the model, while others might not be observed even once, there might be a higher chance
of overfitting [Batista et al., 2004]. However, this simple oversampling method usually performs
quite well on data sets with minority classes that are not too small.

Figure 3.1: Illustration of the SMOTE oversampling algorithm

Another oversampling method is to create synthetic samples based on the samples in the minority
class. SMOTE (Synthetic Minority Oversampling TEchnique) is such an oversampling algorithm.
SMOTE first creates a high-dimensional feature space based on the features of the data set. All
instances in the minority class are mapped onto this feature space, which can then be used to create
a new sample. The first step of creating a new data point is to randomly select one of the existing
samples, X. From the k nearest neighbours of X in the feature space, a second sample, X;, is
selected randomly. By then choosing a random point on the line segment between X and X, a new
data point Y can be generated. The exact feature values are determined by the exact position in the
feature space. This process is repeated for different existing samples X, until the needed amount of

"Image from Xie et al.|[2015)
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synthetic samples is reached. An illustration of the problem is given in figure The idea behind
this method is that points between two instances of the same class will also be of that class. [Batista
et al.[[2004] have shown that SMOTE performs significantly better than bootstrapping, mainly since
it is less prone to overfitting the training data. However, it is computationally expensive for data
with many features, since all features are taken into account when the new instances are created.

3.4.2 Undersampling

Undersampling methods remove data from the majority class from the training data set. This
removal can be random deletion of majority class samples, to try to get more balanced data. How-
ever, this is risky, since it might lead to discarding very characteristic samples from a class. Some
type of heuristics can be used to try and remove only uninteresting examples, outliers or noise.
The downside of using undersampling algorithms is that information is removed from the training
set. Especially if the training set is not very large to begin with, it is usually advised to be careful
about using undersampling to get a better ratio between classes, since it may cause the data set to
become too small.

An undersampling algorithm that aims to decrease noise in data is ENN. ENN uses Wilson’s Edited
Nearest Neighbour Rule [Wilson, 1972] to determine whether samples are typical for the class they
belong to. Similar to SMOTE, the first step of the ENN algorithm is to create a feature space.
The samples of all classes are mapped onto this feature space. For a randomly selected sample X,
the k nearest neighbours are determined. The class labels of these samples are compared to the
class label of X. If the majority of the neighbours’ classes is different from the class of X, X is
removed from the training data [Batista et al., 2004]. This is repeated until the required amount of
samples is reached. The underlying idea is that this process removes samples that have comparable
feature values to instances from another class, thereby removing noisy, ambiguous data. ENN can
be applied to remove samples from any class that differ in class label from their neighbours. In that
case, it is more of a data-cleaning than an undersampling algorithm. However, it is also possible
to only remove samples from certain classes (usually the majority class). This helps ensure a more
balanced set of training data.

It is possible to combine several types of resampling algorithms. In this project, SMOTE-ENN was
used, which first uses SMOTE to create synthetic minority class samples, and then removes some
majority class samples using ENN. This method was described by Batista et al.|[2004], who showed
that the combination of SMOTE and ENN usually performs well for very small minority classes
(100 positive instances or less).

3.5 Machine Learning

After feature selection, a classifier model can be trained with on a machine learning algorithm.
This algorithm takes the training data, and uses it to train a model which can be used for the
classification of new data. The goal is to create a model that predicts the correct label for each
feature vector, even the ones that do not appear in the training data. In this section I discuss some
of the most popular algorithms for text classification. Most of these algorithms are supervised
learning algorithms, in which all training data is labeled before the start of the training phase.
Since this project had so much unlabeled data available for training as well as labeled data, some
semi-supervised learning algorithms will be discussed in section These methods use both
labeled and unlabeled data to train the classification model.
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3.5.1 Supervised learning

Supervised learning algorithms use only labeled training data to train the model. The input for
these types of algorithms is a set of feature vector-label pairs. Although it is possible to train
models that are able to classify multiple classes at once using multiclass classification algorithms,
this thesis has selected a very simple approach: the multiclass classification problem is split into
three independent binary classification problems, as described by Hsu and Lin| [2002]. These three
problems are whether a document belongs to the either of the three categories mentioned before.
This means there is one model to determine whether a document is about online threats or not,
then a second and third model to determine whether the same document belongs to the categories
of online distribution of sexually obscene imagery and computer trespass, respectively. Therefore
this section will only discuss algorithms for binary classiﬁcatiorﬁ, including Naive Bayes, Random
Forest and Support Vector Machine classifiers.

Naive Bayes

Naive Bayes classifiers are a type of statistical probabilistic classifiers. These classifiers calculate
class probabilities based on the feature values of the training data and the vector that is being
classified. Naive Bayes classifiers combine Bayes’ theorenﬂ with the assumption that all features
of an object are mutually independent. By assuming the mutual independence of the features,
Bayes’ theorem can be used to compute the class probabilities from the feature values. Without
this assumption, the computation would become very complex, since it would require the depen-
dencies between the features. These dependencies are difficult to estimate, and with large amounts
of features this would be computationally expensive.

The assumption of mutual independence is usually very unrealistic in text mining, since linguis-
tic expression are built in a certain way which causes the separate words to be related and not
independent. However, even though the assumption is false, Naive Bayes classifiers are relatively
efficient and effective due to their simplicity, and therefore are often used in text categorization
tasks [Nigam et al., 2000} [Tang et al., 2016]. Their performance usually is best with large data sets,
but it is possible to get good results even when the training set is smaller.

The formal definition of Naive Bayes is as seen here, where x1,--- ,x, are the features (in text
mining these are usually term frequencies or tf-idf values), and C'is the class that is being considered:

P(Clzy,--+ ,zp) x P(C) HP(:U,]C)

i=1

Calculated here is the probability of the document being of a certain class (P(C|z1,- -+ ,zy)), based
on the probabilities of the separate words of the documents for that class. The product of the prob-
abilities of all separate words given a class ([]:; P(acl]C’))ﬁ is multiplied with the probability of
that class (P(C)). For every document this probability is calculated for each possible class, after
which the class with the highest probability is used to classify the document.

5Some of these algorithms are adaptable to multiclass classification problems with minor alterations
P(X|C)P(C)
7
P(C|X) =

8Based on relative word count of documents in the training set
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There are multiple variations of Naive Bayes models, each with their own strengths. These differ
mainly in the calculation used to compute feature probabilities. Examples include Bernoulli Naive
Bayes, Multinomial Naive Bayes and Gaussian Naive Bayes. It has been shown that Multinomial
Naive Bayes classifiers usually perform better than other variations for sparse data sets such as text
data [Tang et al., |2016]. These classifiers assume that term frequency within a document satisfies
a multinomial distribution. The probability of a term given a class in a Multinomial Naive Bayes
model is defined as follows by [Manning et al.| [2008|, with term z, class C, |X| as the vocabulary
size of C' and |Fy¢| as the number of occurrences of x in C.

|FzC’
X
S | Fiel

This means that the probability of a term given a class in Multinomial Naive Bayes is the number
of occurrences of that term in the class divided by the total number of occurrences of terms in
that class{ﬂ It is easy to see that this method for calculating probabilities is intuitive for text
classification: if a term occurs often in a document, the chance of it being relevant for the topic of
the text is higher as well.

P(z|C) =

Naive Bayes models can be combined with smoothing. Smoothing adds some constant value or
percentage to each word frequency, to prevent words that do not appear in the training set from
introducing the value zero into the product of probabilities. This would cause documents with
terms that did not occur in the training data to not be classified properly, since the probabilities of
these words are set to zero for each class. Smoothing solves this problem by applying some extra
value to a probability, making sure that the probability of an occurrence can never be zero, and
thus making sure that classification can happen.

Support Vector Machines

Support vector machines (SVMs) were first described by Cortes and Vapnik [1995] as a method
for non-probabilistic binary classification. To build SVMs first a high-dimensional feature space
is created. The feature vectors from the training set are mapped onto this feature space using
a non-linear mapping or kernel function. In this feature space a optimal separating hyperplane
can be constructed to separate the points belonging to two classes (see figure . This optimal
hyperplane maximizes the distance to the training data of both classes, so it is placed in such a
way that each data point is as far as possible from the hyperplane separating the two areas. The
goal of this maximization is to minimize noise.

It is always possible to separate two classes by a hyperplane when using a nonlinear mapping in
a feature space with sufficiently high dimensionality [Han et al. 2011]. This means dimensions
can be added to separate the instances of the two classes. An example of this can be seen in
figure where a 2-dimensional space is transformed to a 3-dimensional space to accommodate
the separating hyperplane. According to Han et al|[2011], the specific kernel function chosen for
the mapping process usually has limited impact on the resulting model’s accuracy.

Classification of a new data point is done by mapping it onto the same feature space, using the
same non-linear mapping. Based on its location in the feature space respective to the hyperplane
the new feature vector can be classified in one of the two classes. An important advantage of
SVMs is that they function well in large feature spaces, which makes feature selection less essential
[Hotho et al., 2005]. Since text data often had very large numbers of features, this makes SVMs

9Which is the sum of the term count of all documents in class C.
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complex in low dimensions simple in higher dimensions

Figure 3.2: Example of high-dimensional feature space and hyperplane for support vector machin

very interesting for text classification tasks. The algorithm also has its downsides: SVM training
is very memory-intensive, and it can be difficult to determine what kernel to use for the mapping
process.

3.5.2 Ensembles and boosting

There are some methods to increase the performance of a classification model. One of these meth-
ods is ensembling. An ensemble is a composite model, built from a combination of multiple less
complex classifiers [Han et al., 2011]. The models that form an ensemble model are often trained
on slightly different parts of the data set. How the selection is made can vary greatly depending on
the algorithm used. Some examples for the training set selection for Random Forests, AdaBoost
and XGBoost are given in the rest of this section. The output from the different simple classifiers is
combined to get the output of the ensemble classifier. The simplest method to combine the outputs
is majority vote, but weighted voting is also common. The intuition behind this is that a group
knows more than an individual: as long as the majority of the base classifiers gives the correct
classification, the total classification will be correct as well. Ensembling also prevents overfitting:
since each base classifier sees only part of the data, the chances of the model becoming too much
tailored on the training data are slim.

An ensemble is often more accurate than the base classifiers that it consists of, if these base clas-
sifiers meet certain requirements. The first requirement is that the base classifiers should perform
better than random classification. If many of the base classifiers do not perform better than ran-
dom, the chances of their combined input (for example, in a majority vote) being correct are low.
Second, the base classifiers should have relatively little correlation between themselves. No two
should be exactly the same, since that would lead to a bias. This is why the different base classi-
fiers are trained on different parts of the data in many ensemble algorithms.

A special category of ensemble algorithms is boosting. There are many different boosting algorithms
that differ in their exact approaches. The main intuition of boosting is similar to that of general
ensembling. However, boosting accomplishes increase of performance by training multiple models
on slightly different data, and take the weighted combination of their classification results as the
final output. In this section, two boosting algorithms will be discussed: AdaBoost and XGBoost.

%Source of image: https://inovancetech.com/how-to-trade-rsi.html

20


https://inovancetech.com/how-to-trade-rsi.html

Random Forests

Random Forest classifiers are a combination of multiple (much more simple) decision tree classifiers.
Decision trees are tree-structured models. Each split of of the tree divides the data set into multiple
subsets based on the value or presence of a certain feature. At the ends, the leaves of the tree, the
subsets consist (mostly) of data from a single class. Classification of a new instance is performed
by going through the tree, and at each split taking the path corresponding to the feature values of
the instance. The instance is then classified as the majority class of the leaf where it ends up. A
(bogus) example of a very basic decision tree is given in figure When starting at the arrow,
the presence of several words is checked with the features of the new instance. The path through
the tree for an instance depends on the feature values. In the final leaf, the instance gets one of
three labels: “not fast food”, “burger” or “pizza”.

|

Contains cheese?

No Yes
Not fast food Flat?
No Yes
Number of vegetables > 27 Pizza
No Yes
Burger Not fast food

Figure 3.3: Example decision tree for classification of fast food articles (not based on actual results
or data)

While decision tree classification is very intuitive and efficient, it is prone to overfitting the training
data. This means that the tree has become too specialized for the training data, which can cause
a loss of generalization power in the model. For example, in the training data fast food might not
contains vegetables, while there are fast food articles that do, causing all these items to be wrongly
classified. Another downside of decision tree classification is that the models often have too low
complexity to adequately perform more complex classification task such as text classification. Ran-
dom forests were designed to solve these issues |Breiman, 2001].

Random forest classifiers function by training multiple decision trees. Each tree is trained on only
a subset of the total set of features. Additionally, only a random sample of the training data is used
to train each tree, instead of the full training set [Breiman, 2001]. New data points are classified by
performing the classification with every decision tree, and then putting those classes to a majority
vote: the data point is classified as belonging to the class most individual decision trees labeled it
with. Because each tree in a random forest classifier only uses a subset of the features and a subset
of the training data for training, they are unlikely to overfit. By using only part of the training
data, it becomes very difficult for the model to be too specialized. This increases the accuracy of
the random forest classifier on previously unseen data and makes it less susceptible to overfitting.
This makes Random Forest classifiers a popular choice. It does have some disadvantages: training
the models requires much memory and computation power, since all trees are trained in parallel.
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AdaBoost

AdaBoost, short for “Adaptive Boosting” [Freund and Schapire, [1997], is a meta-algorithm to im-
prove classification results. It trains multiple classifiers, each on a sample of the full training set.
The AdaBoost algorithm starts by assigning weights to every instance in the full training set. Ini-
tially, all instances get equal weights. To train a each model, a sample S; is taken from the whole set
of training data, based on the weight of the individual instances. The higher the weight, the higher
the chance of the instance appearing in the sample. For the initial phase, all feature vectors are
given equal weight and thus have equal chance of appearance. The sample is used as training data
to train a basic classifief 1] The result is a classifier C;. This classifier is tested on its own training
data S;. The weights of the instances in the sample are adapted to represent the classification: if
an instance was classified correctly, its weight is decreased, if it is classified incorrectly, the weight
is increased. In the following steps, new classifiers are trained on a new sample [Schapire] [2013].
This places the focus of the classifier on the difficult cases.

The final classification is made by combining the results of the whole set of classifiers. However,
the output from each classifier is weighted by its performance. Classifiers with high accuracy have
higher weights, and therefore a bigger influence on the final classification. For classification, this
means that the weights for all classifiers that assign a certain class to an instance are summed,
and the class with the highest total weight is assigned in the final classification of the AdaBoost
classifier [Han et al., [2011].

When the base classifiers used in the ensemble already perform reasonably well, AdaBoost often
increases performance. However, the algorithm is susceptible to noise [Wang et al., 2009], since
outliers and atypical instances can also be included in the sample, and have a large probability of
being assigned higher weights. This causes the model to be overfit on those instances.

XGBoost

XGBoost (eXtreme Gradient Boosting, as described by |Chen and Guestrin| [2016))is a gradient tree
boosting algorithm that was used to win several machine learning challenges. It is much faster than
most other resampling algorithms and able to perform well for sparse data sets, which makes it a
good fit for text data. XGBoost has similarities to both Random Forest and AdaBoost classifiers,
since it trains multiple tree classifiers successively and combines their output to get the final clas-
sification. The XGBoost algorithm uses regression trees. These models are similar in structure to
decision trees, with the main difference being the output: decision trees give each input instance a
class label as output, while the output of a regression tree is a class probability.

The global idea of training an XGBoost model is as follows. The training data set is used to train
a single regression treﬂ C1. The performance of C is tested using the training set, outputting a
value for each data point. For binary classification, this value p; is the probability that the data
point belongs to the interesting class. It then calculates for each data point how much the predicted
probability value p; differs from the actual value I; (which will be 1 if the instance does and 0 if it
does not belong to the interesting class). This means that after the first round of testing it is known
how large the error of the first regression tree is for each training instance. These error values p; — I

1 Any of the previously mentioned algorithms could be combined with AdaBoost
12For more background on how the regression tree is built and how the splits are computed, see|Chen and Guestrin
|2016]. Instead of regression trees, linear classifiers can be used as XGBoost’s base estimators as well.
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are used as the goal values or labels for the data for training a second classifier(/estimator). Thus,
the second estimator tries to predict how much the prediction of the first classifier will be off the
mark. This continues for several iterationd™| with each new estimator predicting the error of the
previous one. The goal is to minimize the sum of the errors of all estimators together.

Classification of a new instance is done by using all estimators to give a value. These values
are weighted by the complexity of their corresponding estimators: complex models get a lower
weight, while simpler models get high weights. This prevents the complete XGBoost model from
overfitting. The weighted outputs are then summed to get the final probability for the classification.

To clarify this, an example is given in table In this example, there are five documents. As the
second column shows, documents 1, 2 and 5 are in the interesting class, while documents 3 and 4
are not. The third column then gives the probabilities p; that the document is in the interesting
class as calculated by the first regression tree of the model. Let’s look at document 1. pp is 0.8,
which means the first regression tree gives it a high probability of belonging to the interesting class.
However, the error E; is 0.2, since the estimated probability is not equal to the label. The next
classifier gets this value Ei, as its training label. After training, this classifiers outputs py 0.1,
which gives an error Fo of 0.1. This continues for the third classifier, which predicts a value P3 of
-0.1, which equals an error F3 of 0.2. The classification of document 1 is then done by summing
the probabilities outputted by all regression trees. In this case it would be 0.8 4 0.1 + —0.1 = 0.8
(assuming that all regression trees have equal weight). So, the document would be classified as
interesting.

Document ‘ Label [} ‘ Predicted probability p; ‘ Error F; ‘ Predicted value ps ‘ Error F, ‘ Predicted value p3 ‘ Error Fs3

Doc 1 1 0.8 0.2 0.1 0.1 -0.1 0.2
Doc 2 1 0.75 0.25 0.05 0.2 0.15 0.05
Doc 3 0 0.15 -0.15 -0.2 0.05 0 0.05
Doc 4 0 0.2 -0.2 -0.3 0.1 0.15 -0.05
Doc 5 1 0.9 0.1 0.4 -0.3 -0.15 -0.15

Table 3.5: Example for first three iterations of XGBoost classification (not based on actual data)

3.5.3 Semi-supervised learning

Because the data set consists mainly of a large amount of unlabeled data, using semi-supervised
learning methods might be worth including in the experiment. These approaches combine labeled
and unlabeled data in the training phase. While using unlabeled data might seem counter-intuitive,
it can increase classification accuracy. One way unlabeled data might provide extra information
is information about the joint probability distribution. After using the labeled data to extract
information about relevant features, the unlabeled set (which is often much more data than the set
of labeled items) might provide features that seem correlated to these earlier features.

Expectation Maximization

The expectation maximization (EM) algorithm is a useful method to use unlabeled data to find a
local optimum for the model [Nigam et al. [2000]. First an initial model is trained on labeled train-
ing data, using any supervised algorithm. Then this first model is used to classify the unlabeled

130ne can specify how many estimators should be trained, with an early stop if results don’t change over several
iterations
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data (the E-step), after which all data (both the training set and the newly labeled larger data
set) is used to train a new model (the M-step). This model classifies the previously unlabeled data
again. These steps of classifying the data, then training a new model using the new class labeling,
are repeated until the process converges: until the classifier parameter values do no longer change
[Feldman and Sanger} 2007]. At this point a local optimum is reached.

The specifics of the algorithm are not discusses here, since there are many different implementations
of the EM algorithm, none of which were used for this project. For an implementation of EM with
Naive Bayes, readers can turn to Nigam et al.| [2000], who compared multiple implementations of
EM. They found that weighting the unlabeled data to be less influential than labeled data can
further improve the classification results. Since there is usually much more unlabeled data than
labeled data, the information of the labeled data can be easily overwhelmed, even though it is most
likely more accurate. Giving the unlabeled data a lower weight than the labeled data can solve this
problem.

Label propagation

Label propagation algorithms are based on the assumption that two points that are close in the
feature space will belong to the same class. So, when we have a large amount of unlabeled data, and
some labeled instances, we can label the unlabeled data by looking at the labels of the instances
closest to them.

The general process for label propagation starts with constructing a feature space containing the
feature vectors of both labeled and unlabeled data. Similarly to the SVM algorithm, a mapping
function is used to create this feature space. Using some algorithm (for example the -nearest neigh-
bour algorithm) the feature vectors are linked to those close to them. Another option for connecting
the instances is to create a fully connected graph between the feature vectors with edges weighted
to represent how much two data points are alike |[Zhu and Ghahramani, [2002]. For each data
point, probabilities for each possible class are stored. Usually all probabilities are initialized to
equal values. The labeled nodes then propagate or push their labels to the connected nodes: each
neighbouring node gets increased probability for the label of its neighbour. The exact increase or
decrease of the probabilities is heavily dependent on the implementation of the algorithnrﬂ The
class probabilities for each node are normalized after this push. The labeled data is then clamped,
that is, their class probabilities are reset to their original values, to keep them from becoming influ-
enced by their neighbouring data points. This process is repeated until the probabilities converge,
after which each node is assigned the class for which its probability is highest.

A simplified example of label propagation is shown in figure The distance between the nodes
corresponds with the weights of the connections. In figure there are two labeled instances, and
six unlabeled instances. After the first propagation step, the labels are pushed through the con-
nections, leaving only three unlabeled nodes. In figure the last instances are labeled, ending
the process. The instance on the top right that is labeled dark red in this last step gets this label
because of the weights on the connections: both labels are pushed by a neighbour, but the red la-
bel is assigned the highest probability, since it was propagated by the closest neighbouring instance.

Label propagation can outperform SVM when there are few labeled data points [Chen et al., [2006].
Although there are obvious reasons why the algorithm will work best with data that is very clearly

4 One description of a specific label propagation algorithm is given by [Zhu and Ghahramanil 2002].
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Figure 3.4: Label propagation example. In the first step only 2 instances are labeled, during the
second and third step the labels are propagated through the connected neighbours

clustered, it might be interesting to use a multi-label label propagation approach, such as the one
described by Kang et al. [2006]. This approach simultaneously propagates multiple labels.

3.5.4 Tested algorithms

Most of the algorithms described in this section were used in the experiment. Each of the algo-
rithms has properties that seem to fit well with the data described in section [2.1l Below a short
motivation for each algorithm is given, as well as some background on why other algorithms were
not included in the experiments.

As discussed earlier, text data usually contains many features, since the features are based on the
occurrences of different words. With this data the ability to handle large feature sets is a big
advantage. Random forest classifiers are very efficient on data sets with many features, since only
a limited amount of features is taken into account for each tree, and by extension for the final clas-
sification model [Han et al. 2011]. With the additional advantage of a low chance of overfitting,
these classifiers are an interesting option to examine. The same goes for SVMs: these deal well
with large numbers of features, since they use non-linear mapping to find a separating hyperplane
[Hotho et al., [2005, Joachims, |1998].

Moreover, text data is usually sparse, since the lexicon is large and the number of different words
that occur in a document is not. Naive Bayes classifiers usually perform reasonably well on text and
other types of sparse data [Tang et al., [2016, Chen et al., [2009]. This makes them good candidates
for the sparse data seen in this data set. In this project mostly multinomial Naive Bayes classifiers
were trained, as these perform better for sparse data than Gaussian or multivariate Bernoulli Naive
Bayes models [McCallum et al.l [1998]. The same argument is important for XGBoost. XGBoost
has been used more and more recently, and has performed well for many different tasks, even win-
ning some Kaggle competitions with text mining solutions. Its performance with sparse data is
very good. Additionally, it is interesting to compare the results of the three aforementioned models
(which are all already established as text mining algorithms) to a high-performing newer algorithm.

AdaBoost was selected to examine the effect of boosting. AdaBoost is a popular boosting algorithm
and was chosen because it has been shown to perform well on text classification tasks [Schapire and
Singer, 2000]. It can also be combined with different simpler models, which is a way to incorporate
the advantages of these models into the ensemble.
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There are many other common algorithms that can be used for text classification tasks. The specific
data set of this thesis project, however, puts some limitations on which algorithms might perform
well. Because the data is sparse, with many features, algorithms that work well on other types of
problems might perform very differently for text mining problems. Two examples of algorithms
that do not match what is known about the data are neural networks and K-nearest neighbour
algorithms.

Neural network approaches require a large set of training data to get good results. Since in this
project the amount of annotated data is limited, the chances of a neural network yielding good
results are very slim. Additionally, neural networks are difficult to interpret and take a long time
to train. Because of these combined factors, these models were not considered in this project.

The K-nearest neighbour algorithm creates a high-dimensional feature space based on the features
of the training data. The feature vectors from the training set are then placed within this feature
space. When a new, unlabeled vector is presented for classification, the k£ vectors closest to this
vector in the feature space are selected. The classifier predict the class for new data by a majority
vote from its neighbours [Hotho et al., 2005, Feldman and Sanger, 2007]. K-nearest neighbour
classifiers are simple, but they perform well mostly if the classes each cover a distinct area of the
feature space. The data used in this research project contains some noise, since the documents
differ majorly in form, length and the words they contain, even within categories. As can also be
seen in figure it is difficult to distinguish specific areas in the feature space that correspond
to a certain class. Instead, the classes seemingly overlap. Because of this, a K-nearest neighbour
algorithm seems unlikely to perform well for this data.

Finally, the semi-supervised algorithms mentioned above seemed like a good option, given the
data. There was a lot of unlabeled data available alongside with the limited amount of labeled
data. However, this proved to be very computationally expensive. Since the amount of memory
available was limited to that of a single desktop computer, it was not feasible to train these models
within the scope of this project.
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Chapter 4

Experiments

4.1 Setup

The goal of the experiment was to create a model to accurately classify police records in belonging
to three separate categories: online threats, online distribution of sexually obscene imagery, and
computer trespassing. Any records can belong to zero or more of these categories. To explore
the possibilities of creating such a model from the available data, multiple combinations of the
preprocessing steps and algorithms discussed above were used. Some combinations were left out
because of limitations to time or computational power. Because the amount of data available for
training was relatively small, four different binary classifiers were trained for each combination: one
for each of online threats, online distribution of sexually obscene images, computer trespassing and
general online crime (which combines the three other categories). For the first three categories, this
choice was mostly about convenience: there are more algorithms for binary classification than for
multi-class classification. The fourth category was added as a safeguard in case of too little data:
since there are very few positive samples for each of the three main categories, training a classifier
for general online crime was a good method to see whether at least the ‘online’ aspect could be
captured by a model.

All parts of the experiment were performed using Python. Python’s libraries and options for text
processing and data mining made it preferable over other programming languages such as R. The
linguistic preprocessing steps, such as tokenization, lemmatization and PoS-tagging, were done us-
ing the FROG, a tool for Dutch language processing developed at Radboud University, Nijmegen
[Van den Bosch et al.| [2007]. In some cases these documents were used as is, in other cases a
further selection was made by application of term filtering as discussed in section The docu-
ments were then transformed to feature vectors based on either word frequencies or tf-idf values by
using the Scikit-learn FEATURE_EXTRACTION library. The last preprocessing step was done using
Scikit-learn’s IMBLEARN library and applied one or more of the resampling algorithms described in

section [B.41

To preprocess the text data, the documents were first tokenized and lemmatized using Frog, as
discussed in section During this phase the interpunction, sentence end markers and names
were filtered using Frog’s PoS-tagging system: all terms that had no PoS tag or one indication
punctuation or names were removed. While this did not work perfectly, it removed most names
from the documents. This was desirable since some of the documents in the data set covered the
same cases. If names were included, the resulting model might determine some name a relevant
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feature for classification, causing new documents containing that name to be classified similarly.
Since names are not unique identifiers, this was deemed unwanted behaviour and prevented by
preemptively removing the names from the text data. In the cases where it was necessary, the filter
described in section [3.3] removed all terms that were deemed irrelevant: this were all terms that
had an average tf-idf value for one class that was less than 3 times as high as the average tf-idf
value for the other class.

Next, the lemmatized documents were transformed into feature vectors. During this process, the
words were lowercased, to remove the chance of capitalized, uppercased and lowercased words not
being considered as occurrences of the same term. Any features that occurred in less than 0.2 per-
cent of the documents were excluded, to prevent the number of features occurring only once from
becoming too high. To determine the differences in performance between binary and non-binary
word frequencies, and basic word frequencies and tf-idf values, for each model all four combinations
were tested: binary word frequencies, basic word frequencies, tf-idf values based on binary frequen-
cies and basic tf-idf values. After the feature vectors were created, resampling was performed. In
the case of SMOTE and bootstrapping the oversampling was performed until a 0.5:1 ratio for the
minority /majority classes was reached. Undersampling in ENN stopped when there were no more
instances of which all nearest neighbours were of a different class.

Using the created feature vectors, classifiers were trained with four different algorithms: Naive
Bayes, Random Forest, Support Vector Machines and XGBoost. Each of these algorithms was also
combined with AdaBoost, to examine the effect of boosting on the data. The exception to this
were the XGBoost models, which were not combined with AdaBoost to prevent the process from
becoming to lengthy by combining two boosting algorithms. The training set was not weighted: all
instances initially had equal weight. Similarly, classes were not weighted.

To ensure that scores would not depend too much on the specific distribution of the data set over
training and test sets 10-fold crossvalidation was used. For 10-fold cross-validation the data is split
in 10 equal parts. Then 10 separate classifiers are trained, each using a different part as its test
set, and the remaining 9 parts as its training set. By taking the average score of the 10 classifiers
the effect of data distribution is diminished, improving the reliability of the results.

4.1.1 Algorithm parameters and tuning

Most machine learning algorithms have several parameters that can be tuned to obtain the best
possible combination for the data used. Since in this project, there were already many larger steps
to test, like different algorithms, preprocessing steps and methods of building feature vectors, there
were limitations on what combinations could be tested. This led to the following setup: the first
step was to determine what type of models performed best with a standard set of hyperparame-
ters. The second was to try different combinations of hyperparameters to tune the best-performing
models. In this section the hyperparameters for the different algorithms will be discussed. The
values mentioned below are mostly the standard parameters of the Scikit-learn libraries. While
some tuning was done on the best models, this did not have any significant positive effect on the
results, and so the other values will not be discussed here in-depth.

The Naive Bayes models all used Laplace smoothing to prevent feature probabilities of 0. This

form of additive smoothing adds 1 to all term frequencies. Uniform prior probabilities were used
to initialize the probabilities.
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Random Forest have a more complex set of hyperparameters, since the decision trees themselves
need to be built according to certain requirements. Each individual tree was assigned no maximal
depth or number of leaf nodes, but a split into a new node was only allowed if the bigger node
contained at least 2 samples, and each resulting node at least 1. Gini impurity was used to measure
the quality of each possible split when building the tree, with node not being allowed to split again
if their impurity was under 1-10~7. To improve training times, the number of features that were
considered for each split was reduced to \/W , with |F| being the total number of features. The
number of trees trained for each Random Forest classifier is 10. To create a sample of the training
data for each tree, bootstrap samples were used: instances were sampled with replacement, and
thus had some chance of occurring multiple times in a single training sample.

For the Support Vector Machine models, the hyperparameters were set as follows. A linear kernel
was used for the mapping of feature vectors. The penalization in the learning process was done
combining Lo regularization R and a squared hinge loss function (L), with the standard penalty
parameter P set to 1: the goal is to minimize total loss Py ;" | L(f(x;),yi) + R(w). Intercept is
calculated, but intercept scaling is set in such a manner that the regularization does not affect this
value as much, with a value of 1.

XGBoost again, has multiple parameters to define the boundaries for building the regression trees.
The maximum tree depth is 3, with a number of 100 trees in the whole classifier. The minimum
reduction of the loss function for a new split is set to 0: a split should not increase loss. The loss
function uses L2 regularization. The problem is set to binary classification, with tree boosting and
a learning rate of 0.1.

The other boosting algorithm, AdaBoost, was mostly dependent on the parameters of its base
classifiers. The number of base classifiers or estimators was 50. The learning rate, which decreases
the contribution of the estimators, was 1. SAMME.R boosting was used, which means that the
predicted class probabilities are used to adapt the model, instead of the errors.

4.2 Evaluation measures

The values given in the tables are F-scores, unless otherwise indicated. Binary classifier results are
usually given as four numbers, each for the number of test instances that are classified in a certain
manner. True positives (TP) are the instances that were correctly classified as belonging to the
interesting class, false positives (FP) are those that were incorrectly classified as such, and true
negatives (TN) and false negatives (FN) are similar for instances not classified as belonging to the
interesting class. These numbers can be used to calculate values that give some measure of how well
a classifier performs. Accuracy shows the proportion of the test set that was classified correctly,
precision shows what proportion of those instances that were classified as interesting actually are
interesting and recall measures what proportion of the interesting instances in the test set were
actually classified as such. F-score (or F-measure) is the harmonic mean of precision and recall.
Below the definitions of these measures are given.
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TP+TN

A =
Y = TP FP TN + FN
Prosision — TP
recision = TP+ FP
TP
Recall = m
2 - Precision - Recall
F — score =

Precision + Recall

Precision and recall are usually considered to be more informative than accuracy, since these mea-
sures contain information on what type of misclassification has occurred and how often. This aspect
is even more important when dealing with imbalanced data, as is the case in this project. Majority
vote classification would give an accuracy of over 90% for general online crime, even though this
type of classification is not informative at all. Since F-score is the harmonic mean of precision
and recall, en thus provides some insight in how well the different types of misclassification are
balanced, F-score was used as the measure of performance. An F-score approaching 1 means every
classification in the test set is correct, while an F-score approaching 0 would mean that no True
Positives were found during classification.

All results shown are F-scores based on the average scores of the model in 10-fold crossvalidation,
unless otherwise indicated. This means that to calculate each score, ten classifiers were trained
on different folds of the data. These were scored, and their numbers for TP, FP, TN, FN were
averaged. These averages were used to calculate the F-score.

An additional evaluation measure is the degree of overfitting of a model. Overfitting happens when
a model is too specifically tailored for the training data. The model then takes features into account
that might work for the training set, but not quite as well on generalized, previously unseen data.
When a model is overfit, a model performs better on the training set than on a test set. It might
be the case that the best model is still somewhat overfit. However, overfitting should be avoided if
possible, since it usually means the model is not general enough.

4.3 Results

Table shows the F-scores for the five best scoring classification models for each of the four
binary categories. The highest score for each binary class is in bold print. The F-scores for the
other algorithms with the same preprocessing and boosting are included as well, to provide some
sense of the range in which the different algorithms score in the same context. Table shows
more detailed information about the performance of the best model for each binary classification
category, and gives some extra information about the ten most relevant features for classification.
For general online crime, the top performing model is a SVM that used unigrams and bigrams,
and bootstrapping resampling. The feature vectors were created using basic tf-idf values, and the
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. . . . . Naive | Random
Filter | N-grams | Resampling | Boosting | TF-idf | Binary Bayes | Forest SVM | XGBoost

none No No No 0.603 | 0.276 0.668 | 0.488
General Yes 19 SMOTE No Yes No 0.634 | 0.348 0.680 | 0.551
online crime ’ Bootstrapping | No Yes No 0.645 0.429 0.696 | 0.570
Yes 0.658 | 0.404 0.668 | 0.600
ENN No No Yes 0.630 | 0.296 0.690 | 0.439
SMOTE-ENN | No No Yes 0.594 | 0.372 0.691 | 0.522
none No No No 0.696 | 0.118 0.497 | 0.440
Yes 0.689 | 0.134 0.447 | 0.417
Online threat | Yes 1 No 0.694 | 0.117 0.480 | 0.413
ENN No No Yes 0.693 | 0.119 0.468 | 0.426
SMOTE-ENN | No No No 0.478 | 0.473 0.682 | 0.540
. R

e e . . es . . . .
S;Sst::::ﬁ;n Ves ! Bootstrapping | No Yes No 0.327 | 0.449 0.222 | 0.691
obscene ENN No No Yes 0.667 | 0.128 0.413 | 0.444
imagery 1.9 none No No Yes 0.725 | 0.000 0.444 | 0.426
’ ENN No No Yes 0.724 | 0.029 0.409 | 0.400
1 none No Yes Yes 0.598 | 0.274 0.274 | 0.537
Computer ENN . No Yes Yes 0.605 0.274 0.303 | 0.513
trespass Yes Bootstrapping | No Yes Yes 0.427 0.291 0.211 | 0.594
1,2 ENN No No No 0.423 | 0.091 0.581 | 0.447
SMOTE-ENN | No No Yes 0.274 | 0.116 0.616 | 0.524

Table 4.1: F-scores of the top-5 best-performing models for all four binary categories

F-score of the model was 0.696. As can be seen in table the accuracy for this model was the
lowest of the top models, with 94% accuracy. The model is also very likely overfit, since there is a
large difference between the F-scores for the training set and test set.

The best model for online threat scored the same, 0.696. It used basic word count vectors of uni-
grams to train a Naive Bayes classifier without resampling algorithms. This model seems to have
the least degree of overfitting, since the difference between training set and test set F-scores is only
0.112.

The best model for online distribution of sexually obscene imagery had the highest F-score overall,
0.725, and the highest accuracy of 98.7%. This was surprising, since the models for this class often
had no true positives (and thus an F-score of 0) in the first phase of the project. This Naive Bayes
classifier used unigrams and bigrams to create binary term frequency vectors without resampling.

For computer trespass the best model was an SVM with an F-score of 0.616, meaning that is scores
a bit lower than the best models for the other classes. This one also used binary term counts of
unigrams and bigrams, and SMOTE resampling.

All of the four best-performing models used the term filtering and no boosting algorithm. The

results shown in this section are only a selection of the full experimental results. The full results
can be found in appendix section
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Online

distribution of Computer tres-
Online threat obscene imagery | pass All online crime
F-score | 0.113 | 0.042 | 0.049 0.171

Table 4.2: F-scores for random classification for each class

F- F-
Category Accuracy | Precision | Recall score SC.O 1:e Most relevant features
(test set) | (training set)

gebruiken, boos, aangifte,

General online crime 0.940 0.735 0.661 0.696 0.999 computervredebreuk, bedreiging, met,
krijgen, naaktfoto, bedreigen, via
hoerenkind, tijdlijn, uitspoken,

Online threat 0.955 0.614 0.803 0.696 0.808 verdiepen, wedden, whatapp, kk,

whatsap, zometeen, tweets

verwijderen jou, via in, een naakt, jou haar,
Online distributio.n of 0.987 0.667 0.79 0.725 0.864 nAzAxakt‘foto zi-jnA, van kinderporno,

sexually obscene imagery zijn verspreiden, de naaktfoto,

getint foto, kinderpornografisch
overmaken, zij, vies,

Computer trespass 0.977 0.543 0.713 0.616 0.820 computervredebreuk, bedreiging, ongeveer,
aangifte, via, de, hacken

Table 4.3: Scoring information and top-10 most relevant features for classification for best model
for each category

4.3.1 Analysis

To start, we compare the F-scores in the table with the estimated scores of random classification]!]
shown in table [4.2]

For all binary classification tasks, the best models have a performance of 3.5-11 times the ran-
dom classification, which is a very large increase. The highest F-scores for all four models are in
the range 0.6-0.75. While these numbers indicate that there is still some amount of data that is
classified incorrectly by the models, the scores and the improvements from random show clearly
that the information needed for the classification can be extracted from the text documents in the
form of features. It might well be possible that further improvements can be made to increase the
reliability of the classifiers.

Table shows the most relevant features for classification for the best model of each binary cate-
gory. It is interesting to see that many of those are very intuitive: “hoerenkind” (literally ‘whore’s
child’) is relevant for classification of online threat, “de naaktfoto” (nude picture) is relevant for
classification of online distribution of sexually obscene imagery, and “hacken” (hacking) for com-
puter trespass. Some are less obvious to see: for example “wedden” (to bet) is probably deemed
relevant for classification of online threat since in police reports it is often used in a context like
“He said: ‘You don’t believe I can kill you? Wanna bet?”’. It is good to note that this are the
terms that are seen as relevant for determining the class. This means that these terms can occur
relatively often in the interesting class, or in the uninteresting class. This explains the presence of
terms like “ongeveer” (more or less, approximately) and “met” (with).

These relevant features also show a new factor that might have had a large influence on the model

!Giving each instance a random label with equal weight for each class. For binary classification this means that
the distribution over the two classes would be approximately 50/50. Half of the positives would be classified correctly,
half incorrectly, with the same holding for the negatives.

32



performance: spelling. Terms like “whatapp” and “whatsap” both obviously refer to Whatsapp.
However, they are treated as separate terms by the model, which means they don’t increase the
term frequency of the term “Whatsapp”. Taking measures to somehow connect these terms, as
well as synonyms, might improve the model performance and decrease the number of features.

It is possible to calculate the most relevant features for getting the classification for each instance
along with the class label. These features are calculated by getting the feature probabilities given
a class for all features. The 10 featuresﬂ with the highest absolute feature probabilities that occur
in the document are estimated to be the most relevant for the classification. This means that both
the features that have high probability for the positive and the negative class are included for any
instance, since these both impact the final classification. This information can be very useful to
provide some justification for the classification given by the model, as the presence of key words is
something that is both easily checked and easily grasped by humans.

Preprocessing comparison

When we look at all models represented in table there are some properties that they have in
common. All of these models work with filtered data, which means that there has already been a
pre-selection made on the terms in the documents that are used for creating the model and classi-
fying new instances. A possible explanation for this lies in the dimensionality of the data. A text
corpus of the size of the training set has a large lexicon. Since each term is a feature, the number of
features can be extremely high, with most features having very low values for almost all instances.
These features are removed when the filter is applied, which means all features that are left have a
relatively high chance of being relevant for the classification.

Such an obvious explanation is not as easily found for the fact that all winning models make no
use of AdaBoost boosting. Since the strength of AdaBoost is the fact that it combines multiple
weaker models into a single stronger classifier, it seems strange that a single model is less accurate
in its classification than the combination of several of those same models.

The full results for the general online crime class are summarized in figure Similar graphs for
the other 3 classes can be found in appendix section [C] These graphs give an overview the aver-
age performance of the algorithms, and of how the preprocessing steps influence the performance.
These graphs are purely meant as an indication: it is very well possible that a combination of
steps that each perform below average can be a combination leading to a very good classifier. A
good example is found in the graph comparing the results of tf-idf values to those that are based
on word frequencies (figure bottom left). The graph shows a very large difference in average
performance between Naive Bayes models that do and do not use tf-idf values. However, when we
look at the best-performing models, there are multiple models in which Naive Bayes is coupled with
tf-idf feature vectors, while getting good scores. It is dangerous to draw strong conclusions from
these graphs about what works and what does not. However, it can be very interesting to see what
general ideas can be seen in them. When we look at the same graph for the other categories in
appendix section [C] we see that for those categories the same holds for SVMs. The scores for mod-
els based on word frequencies on average perform better than those of models based on tf-idf values.

20ften there are less than 10 for filtered data, since the most important features of a model will not occur in every
document, and filtered data has relatively few features to begin with.
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Figure 4.1: Graphs comparing the scores of different models and model choices for the general
online crime category
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The graphs also show that the Random Forest classifiers on average perform a lot worse than the
models trained on other algorithms, independently from what preprocessing step is being examined.
This could be an indication that this algorithm is not a good fit for the data. An explanation could
be that Random Forest classifiers use a relatively small amount of features in the final classification
process. It might be the case that this number of features is too little to completely cover what
characterizes the interesting class, especially since the data contains such large amounts of features.

While some of the graphs do not show very large differences between options, there are a few inter-
esting points. Firstly, applying the filter to decrease the amount of features significantly increases
the average scores. The reason for this is probably that it removes noise: text data naturally
contains large amounts of words that have appeared once in the lexicon, and never in multiple
documents. These words carry very little information information about the characteristics of the
class, and so can be removed to get a feature space that is more easily navigated during the learning
process.

Of the four machine learning algorithms, Random Forest and XGBoost seems to benefit most from
choosing the right resampling method. Especially the application of SMOTE-ENN resampling to a
Random Forest classifier, seems to cause a spectacular increase in performance compared to other
sampling methods. For Naive Bayes and SVM classifiers, the average score seems to be less de-
pendent on the resampling algorithm: the average performance is comparable over the different
methods. The difference in performance between the different resampling methods is slightly larger
for the other three categories than for the general online crime class. This can easily be explained
by the fact that the resampling has more influence in those classes, since the training data was
more imbalanced for these categories than for the general online crime category.

The application of AdaBoost boosting did not have a large positive influence on the performance
of the models, as can be seen in figure This may be due to the noise in the data: since the data
is relatively noisy, and has many outliers, it is possible that AdaBoost overfits on these instances
by assigning them high weights during the training process. This way the boosting reinforces the
mistakes of the base classifiers, instead of their correct classifications.

An interesting observation that can be seen from looking at the complete results in appendix
section [B] is that Random Forest classifiers usually seem to profit from the use of tf-idf values
instead of raw (binary) term frequencies. This is especially true when these classifiers are combined
with AdaBoost boosting. In the cases where the data was filtered before training, almost all scores
of Random Forest classifiers that combined tf-idf values and AdaBoost are significantly better than
their non-tf-idf counterparts. For Naive Bayes and SVM classifiers, using TF-idf values instead of
term frequencies only seemed to lower the average score.

Preliminary results

Halfway through this project, some classifiers were trained on only part of the data (1896 instances
out of the total of 3096). The selection of algorithms and preprocessing steps in this phase of the
experiment was much smaller. The results of this preliminary phase will not be discussed in depth,
as the second phase contained models that performed much better overall. The full preliminary
results can be found in the appendix, in table However, it is interesting to look at the difference
that the increased amount of training data made.
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM
No 0.372 0.228 0.396
No Yes 0.287 0.181 0.376
Yes 0.371 \ 0.123 0.363
none 0.282 0.140 0.359
Yes 1 No 0.375 | 0.492 0.421
AdaBoost | Yes 0.305 0.459 0.378
General online crime Yes 0.383 ‘ 0.426 0.389
0.295 0.443 0.391
0.236 0.237 0.236
SMOTE-ENN | No Yes No 0.277 ‘ 0.341 0.372
No 0.256 ] 0.087 0.252
No 1 none No Yes 000 (o LSl
Yes 0.167 ] 0.076 0.211
0 0.129 0.286
N 0.220 [0 0.200
[¢]

No Yos 0.114 0.095 0.179
Vo 0.188 [0.015 0.176
none 0.123 0.076 0.176
ves |1 No 0.235 [0.177 0.199
AdaBoost | Yes 0.163 0.447 0.180
Online threat Yes 0.201 ‘ 0.204 0.198
0.144 0.462 0.180
. 0.156 0.188 0.156
SMOTE-ENN | No Yes No 0.233 ‘ 0.336 0.349
0.162 | 0.015 0.211
N . N Ves No 0 0.076 0.340
© none © o Ve 0.045 0 0.074
0 0.010 0.161
No 0.083 | 0.046 0.122
No Yes 0.419 0.057 0.000
Yes 0.085 [0 0.083
one 0.437 0.081 0.027
Yes 1 No 0.125 [0 0.083
Online distribution AdaBoost | Yes LD ke L0
of sexually obscene Yes 0.043 ‘ 0 0.042
EETH— T —
SMOTE-ENN | No Yes No 0.198 0.376 0.392

0 [0 0

No

No 1 none No Yes v v L5

Yes 0 ‘ 0 0

0 0 0
No 0.194 ] 0.114 0.282
No Yos 0.581 0.232 0.289
You 0.222 [0.114 0.243
none 0.598 0.274 0.274
ves |1 No 0.243 [0.225 0.243
AdaBoost | Yes 0.265 0.182 0.289
Computer trespass Yes 0.267 ‘ 0.200 0.270
0.284 0.159 0.271
0.175 0.210 0.176
SMOTE-ENN | No Yes No 0.202 ‘ 0.321 0.295
0.171 | 0.031 0.197
No 0 0.093 0.178
No 1 none No Yes - 0.061 ‘ 0.031 0.081
s 0 0.071 0.116

Table 4.4: Comparison of F-scores for preliminary results (white, 1896 training instances) and final
results (grey, 3096 training instances).
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Table contains most of the results of the preliminary phase (white background), together with
the respective results from the second phase (grey background) for comparison. At first glance,
the results of the extra data seem unimpressive: many of the differences are small enough that
they may be due to differences in the exact distribution over the folds for crossvalidation. Some of
the results are even a little worse for the full training set than for the smaller data set. When we
look at the lower half of the table, however, the differences are much more impressive. Especially
the Naive Bayes classifiers without boosting show large improvements, scoring 3-5 times as high as
with the smaller training set.

As has been explained in section [2.1] the last two classes, Online distribution of sexually obscene
imagery and Computer trespass are very small. The amount of positively labeled instances for these
two classes is low: only a couple of instances from the data set were labeled as belonging to these
classes. The results may be an indication that while the amount of instances labeled as belonging
to the classes General online crime and Online threat was adequate for training a model, the same
did not hold for the remaining classes. These profited in a large degree from the increase in training
data. This gives a good idea of the importance of data set size and balance: if there are not enough
positive instances, it is nearly impossible for a machine learning algorithm to adequately generalize
and model what the relevant features are.

A related note on the preliminary results in appendix [B} the F-score of many of the classifiers for
online distribution of sexually obscene images is 0. This can most likely be blamed on the very low
percentage (2.27%) and count (43) of positive training data for this class in the first phase. With
this little data to use in training, the chance of finding a correct generalization is very slim. As we
can see from the new results, this was improved by increasing the amount of data.
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Figure 4.2: Histogram showing the F-scores for different parameter combinations for the best
performing model of the general online crime classification
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Parameter tuning

To try and find the optimal set of values of the hyperparameters of the best performing model,
many different combinations of values were considered. For the best-performing model for the
general online crime class, the results are summarized in figure [£.2] The earlier score of the model
was an F-score of 0.696. As the histogram shows, none of the models with alternative parameter
values had a score over 0.67. Tuning results for other models were similar to these. Further research
is needed to determine the cause of this low performance, and to find an optimal hyperparameter
configuration for this data.
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Chapter 5

Conclusion

5.1 Discussion

In this thesis, I tried to find an answer to the question how text mining can be used to classify police
reports. To make this question concrete, the goal was to train a model based on text mining for
correct classification of three classes of online crime: online threat, online distribution of sexually
obscene imagery, and computer trespass. A fourth umbrella class of general online crime was added
as well. To this end different approaches for building a model were compared. Preprocessing steps
and model options included linguistic preprocessing, multiple methods of feature construction and
selection, boosting and resampling. Four different base algorithms were compared: Naive Bayes,
Random Forest, SVM and XGBoost.

The experiment resulted in models with F-score of over 0.6 for all four binary categories. The
best-performing model across all categories had an F-score of 0.725. All top-5 scores were great
improvements over random classification, with F-scores of 3.5-11 times as high. The binary clas-
sifiers for the different classes can be combined to create a multiclass classifier for the complete
classification task.

In this project, boosting (in the form of AdaBoost), and resampling (multiple algorithms) seemed
to have very limited effect on the performance of the different classifiers. This might be due to con-
ditions that can be improved, such as the amount of data, but this cannot be stated with certainty.
Other factors, such as filtering out terms of low relevance, had a large positive impact on the model
performances. However, more research on different data sets is needed to make any general claims.

The results of this research project are very promising, and they show that using text mining to
classify police data is a very feasible option. However, the data set used in this project is small
and the imbalance of the classes is very large. This causes problems for the classification, since it
becomes difficult to generalize is there are few positive examples. Repeating the experiment with
a larger training set would give more robust and reliable results. When increasing the training set,
it might be advisable to have multiple experts annotate the data, to decrease possible ambiguity
and ensure clear, correct annotation.

The impact that tuning the models has on model performance has not been a focus in this project.

However, it is likely that using hyperparameters that are suited to the data will improve the
performance of the classifiers. Ideally, the testing would have covered less algorithms, with a more
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in-depth analysis on which parameter values created a model most suited to the data set. This
is especially true for the XGBoost models, which are known to rely heavily upon tuning for their
performance. With that in mind, the average performance of the XGBoost models in this project
is already quite impressive, but it could probably be improved. Other algorithms would most likely
also profit from more consideration in this area.

5.1.1 Future research

As mentioned above, one of the main disadvantages of this project was the training set size. Since
it is impossible to label all data, semi-supervised learning algorithms would be a good method
to use the unlabeled data for training as well. This project did not have enough computational
capacity to experiment with these algorithms, but with the large amount of unlabeled data in this
set, chances of improvement are reasonably high.

Boosting algorithms usually increase performance. In this study, boosting results were not very
good: many results actually got worse when boosting was applied. A worthwhile option would be
to include more text-specific boosting algorithms, to see whether these would perform better than
AdaBoost for this specific data set. More tuning on the (boosting) algorithms might also improve
results. In this project, there was not enough focus on finding the optimal parameter values for
each algorithm, which could have a large impact on the results.

Another step that has not been included, but which could have significant impact on the per-
formance, is term normalization. Written text contains many synonyms, spelling errors and al-
ternatives. In this projects, these were all counted as separate features, which means the total
term frequency of those features is lower. Implementing some type of method to combine multiple
spellings and synonyms into a single term, comparable to what lemmatization does, might make it
easier for a model to discern relevant features. Additionally, this could greatly decrease the number
of features, which could improve memory- and computational requirements, making it easier and
faster to train the models.

In general, feature selection and reduction is seen by some as one of the most important steps of
data mining. In this thesis, feature selection and reduction was limited to removing terms with
certain PoS tags and the filtering of seemingly irrelevant terms by using tf-idf values. It would
be interesting to look at other method of feature selection, including removing more stop words,
more PoS tags and feature reduction algorithms such as Principal Component Analysis or feature
clustering.
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Appendix A

Query

Listing A.1: Query for retrieving cybercrime data from the database Basis Voorziening Handhaving,
Dutch National Police

contains\ _oracle ([Incidenten |.[ Product zoeken (incident inner join)].]
Incident productinhoud] ; ’'(Whatsapp_or_twitter_or._facebook_or.
instagram._or.snapchat_or_4chan_.or._skype_or_pinterest._or_wechat_or.
ask.fm_or_kik _or_dumpert_or_messenger_or.msp_or_moviestarplanet._or.
habbo.or._gosupermodel _.or_youtube_or_momio_.or_minecraft_or_tinder._or.
webcam.or._camera_or_{world_of _warcraft}._._or_gsm_or_mobiel_or.
mobieltje_or_telefoon.or_foto.or_.filmpje_or_account._or_accountnaam.
or_.profielfoto_or_chatten_or_nepaccount._or_{ip—adres}_or_game_or.
xbox.or_playstation._or_meme_or_website_or_platform._or_online_or.
computer)_and._(dreigen._or.__bedreigen._or._dwang_or._chantage_or_dood_or
~dwingen._or._druk_or_afpers_or._laster_or_radicalisering._or_.{haat.
zaaien}__or_{SR.284/1} _or_{SR.285/1} _or_{SR_318/1})." ; 1 ) > 0

or

contains\ _oracle ([Incidenten ].[ Product zoeken (incident inner join)|.]
Incident productinhoud] ;

"(Whatsapp.or_twitter .or._facebook_or_instagram._or_snapchat_or_4chan_or.
skype_or_pinterest _or_wechat_or_ask.fm_or_kik_or_dumpert_or.
messenger._or._msp.or.moviestarplanet._or_habbo_or._.gosupermodel._or.
youtube._or_momio_or._.minecraft _or_tinder _or._webcam._or_camera.or.{
world _of _warcraft }._or_gsm_or_mobiel _or_.mobieltje_or_telefoon _or.
foto.or_filmpje_or_account._or_accountnaam._or_profielfoto._or_chatten.
or._nepaccount._or._{ip—adres}_or._game_or_xbox._or_playstation.or _meme.
or_.website_or_platform_or_online_or_computer)._and._(Cracken_or.
Cracking._or_Hacken_or_hacking_or_.inloggen_or_identiteitsfraude_or.
wachtwoord_or_nepprofiel _or_credits_or_username._or._password._or .
gebruikersnaam _or _wachtwoord._or_spionage_or_sabotage_or_{black_hat}.
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or_{grey_hat}_or_{white_hat}_or_computervredebreuk._or_ransomware.or .
exploit._or_{Angler_Nuclear}_or_RIG_or_Magnitude_or_Neutrino._or._{
Sweet _Orange}_or_Fiesta_or .CK_or _Sundown._or._.Blackhole_or_cryptoware.
or_.malware_or_{bit_crypter}_or.cryptolocker_or_cryptowall _or .{CTB-
Locker}._or._.Locky_or_{Cybercrime—as—a—service } .or_.Booterservice._or.
DDos_or _KeRanger_or_Server_or_Nemucod_or_Encryptoraas_or_Crowti_or.
Coinvault cor_Alphacrypt._or_Teslacrypt._or_{Watering—hole}_or.
Infecteren_or_Jailbreak _or_.Acedeceiver_or_{Flash_Player}._or_{Zero.
days}_or_.Trojan_or_{Remote_Access_Tool}_ or_Phishing._or.
Amplificatieaanval _or .{USB-thief}_or_{Cherry_Picker}_or_Duqu_or.
Doxing.or_Cybervanda\%.or._Scriptkiddies _or_grooming._or._ransomware.or
-roqueware.or.sofwarerobots_or_.BOT_.or_virus.or_defacing._or_cyber\%.

or .{SR_.138A\%}_or .{SR_139C/1}_or .{SR_139D/\%})-.> ; 2 ) > 0

or

contains\ _oracle ([Incidenten |.[ Product zoeken (incident inner join)].]
Incident productinhoud] ; ’'(Whatsapp_or_twitter._or._facebook_or.

instagram._or.snapchat_or_4chan_.or._skype_or_pinterest._or_wechat_or.
ask.fm_or_kik _or_dumpert_or_messenger_or._msp._or_moviestarplanet._or.
habbo.or._gosupermodel _or_youtube_or_momio_.or_minecraft_or_tinder._or.
webcam._or_camera._or._.{world_.of _warcraft}__or_gsm_or_mobiel_or.
mobieltje_or_telefoon_or_foto_or._filmpje_or_account._or._accountnaam .
or_profielfoto_or_chatten_or_nepaccount._or_{ip—adres}_or_game_or._
xbox.or_playstation._or_meme_or_website_or_platform._or_online_or.
computer)._and.(naaktfoto_or_naaktfilmpje_or_seksfilmpje_or_sexting.
or_sextortion._or_sexchatting._.or_selfie_or.sexy_or_bloot_or_borsten.
or_borst._or_piemel _or_penis_or.vagina.or._.bh_.or_ondergoed._or_seksueel
~or._nude_or._kinderporno.or._smaad._or_laster _or_.belediging._or.
portretrecht _or_.webcamseks_.or._.seks._or__sex.or.pose._or_porno.or.
pornobeelden._or._seksplaatjes._or_{SR.240/1} _or_{SR_240A}__or_{SR.
261/1}_or_{SR.262/1}.)" ; 3 ) >0
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Appendix B

Full experimental results
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM | XGBoost
No No 0.652 0.236 0.515 | 0.346
No Yes 0.644 0.209 0.508 | 0.370
Yes No 0.287 0.181 0.376 | 0.407
one Yes 0.282 0.140 0.359 | 0.415
No No 0.489 0.071 0.485 | -
AdaBoost Yes 0.493 0.083 0.476 | -
Yes No 0.305 0.459 0.378 | -
Yes 0.295 0.443 0.391 | -
No No 0.558 0.356 0.477 | 0.453
No Yes 0.564 0.351 0.484 | 0.417
Ves No 0.579 0.468 0.484 | 0.543
SMOTE Yes 0.590 0.476 0.470 | 0.560
No No 0.486 0.214 0.486 | -
AdaBoost Yes 0.481 0.171 0.475 | -
Yes No 0.323 0.505 0.505 | -
Yes 0.325 0.502 0.505 | -
No No 0.539 0.392 0.500 | 0.523
No Yes 0.538 0.391 0.487 | 0.553
Yes No 0.588 0.558 0.510 | 0.579
) Bootstrapping Yes 0.586 0.516 0.507 | 0.578
No No 0.521 0.393 0.485 | -
AdaBoost Yes 0.493 0.319 0.509 | -
Yes No 0.317 0.472 0.485 | -
Yes 0.297 0.486 0.490 | -
No No 0.648 0.212 0.495 | 0.366
No Yes 0.646 0.215 0.492 | 0.351
Yes No 0.322 0.231 0.413 | 0.425
ENN Yes 0.313 0.173 0.390 | 0.420
No  Ive oI o e
es . . . -
Yes AdaBoost Vs No 0.325 0.384 0411 |-
Yes 0.302 0.411 0.396 | -
No No 0.536 0.447 0.565 | 0.487
No Yes 0.545 0.464 0.537 | 0.490
e uaross —Tosm osn
es . . . 9] .
SMOTE-ENN No No 0.515 0.429 0.531 | -
AdaBoost Yes 0.524 0.459 0.534 |-
Yes No 0.340 0.345 0.366 | -
Yes 0.349 0.342 0.363 | -
No No 0.603 0.276 0.668 | 0.488
one No Yes 0.629 0.246 0.662 | 0.433
Yes No 0.037 0.251 0.596 | 0.462
Yes 0.193 0.227 0.579 | 0.419
No  Ive oo o7 0816 0
es . . . .
SMOTE No Yes No 0.634 0.348 0.680 | 0.551
Yes 0.658 0.440 0.650 | 0.556
No No 0.587 0.419 0.662 | 0.575
19 Bootstrapping | No Yes 0.585 0.406 0.667 | 0.602
’ Vs No 0.645 0.429 0.696 | 0.570
Yes 0.658 0.404 0.668 | 0.600
No No 0.600 0.292 0.667 | 0.462
ENN No Yes 0.630 0.296 0.690 | 0.439
Yes No 0.118 0.265 0.651 | 0.518
Yes 0.239 0.274 0.618 | 0.446
No go 0.558 0.469 823(1] 8.533
es 0.594 0.372 . )
SMOTE-ENN | No Yes No 0.189 0.196 0.202 | 0.205
Yes 0.188 0.189 0.189 | 0.190
Table B.1: Results for general online crime

46




Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM XGBoost
No No 0.439 0.080 0.440 0.417
none No Yes 0.154 0.086 0.438 0.385
Yes No 0.000 0.133 0.381 0.398
Yes 0.000 0.129 0.286 0.377
No $0 0.508 0.240 0.429 0.468
es 0.480 0.091 0.418 0.405
! SMOTE No Yes No 0.000 0.215 0.521 0.481
Yes 0.036 0.196 0.421 0.458
No No 0.502 0.180 0.423 0.563
Bootstrapping | No Yes 0.489 0.202 0.435 0.571
Yes No 0.000 0.226 0.528 0.511
Yes 0.025 0.171 0.423 0.522
No No 0.495 0.167 0.416 0.359
No Yes 0.489 0.161 0.376 0.342
Yes No 0.000 0.189 0.329 0.391
Yes 0.000 0.137 0.217 0.370
none
No No 0.178 0.031 0.440 -
AdaBoost Yes 0.358 0.012 0.354 -
Yes No 0.041 0.012 0.314 -
Yes 0.480 0.006 0.182 -
No No 0.501 0.244 0.426 0.409
No No Yes 0.465 0.089 0.475 0.388
Yes No 0.120 0.156 0.422 0.451
SMOTE Yes 0.257 0.224 0.316 0.447
No No 0.208 0.110 0.437 -
AdaBoost Yes 0.418 0.012 0.427 -
Yes No 0.200 0.053 0.430 -
19 Yes 0.393 0.134 0.316 -
’ No No 0.520 0.274 0.424 0.553
No Yes 0.475 0.267 0.354 0.512
Yes No 0.124 0.343 0.470 0.514
Bootstrapping Yes 0.248 0.21.9 0.308 0.486
No No 0.391 0.164 0.418 -
AdaBoost Yes 0.443 0.149 0.340 -
Yes No 0.441 0.159 0.450 -
Yes 0.470 0.128 0.318 -
No No 0.5022222222 | 0.1628498728 0.4393673111 | 0.3918918919
ENN No Yes 0.488946684 0.1322751323 0.3765690377 | 0.3551401869
Yes No 0 0.1855670103 0.3556581986 | 0.4044444444
Yes 0 0.1832061069 0.2356020942 | 0.3686635945
No $0 0.439 0.347 0.372 0.449
es 0.216 0.192 0.197 0.199
SMOTE-ENN | No Yes No 0.1880141011 | 0.1978227061 0.2155525239 | 0.238
Yes 0.1880693506 | 0.1885900089 0.1888132584 | 0.188

Table B.2: Results for general online crime - part 2
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM | XGBoost
No No 0.696 0.118 0.497 | 0.440
No Yes 0.689 0.134 0.447 | 0.417
Yes No 0.114 0.095 0.179 | 0.511
Hone Yes 0.123 0.076 0.176 | 0.519
No No 0.453 0.086 0.475 | -
AdaBoost Yes 0.484 0.095 0.490 | -
Yes No 0.163 0.447 0.180 | -
Yes 0.144 0.462 0.180 | -
No No 0.457 0.297 0.472 | 0.515
No Yes 0.467 0.301 0.494 | 0.487
Yes No 0.500 0.506 0.340 | 0.568
SMOTE Yes 0.503 0.433 0.329 | 0.593
No No 0.558 0.293 0.495 | -
AdaBoost Yes 0.489 0.211 0.472 | -
Yes No 0.194 0.513 0.302 | -
Yes 0.225 0.517 0.317 | -
No No 0.390 0.332 0.491 | 0.529
No Yes 0.370 0.401 0.480 | 0.526
Yes No 0.456 0.548 0.335 | 0.596
1 Bootstrapping Yes 0.457 0.510 0.317 | 0.586
No No 0.519 0.338 0.500 | -
AdaBoost Yes 0.527 0.318 0.447 | -
Yes No 0.171 0.508 0.313 | -
Yes 0.185 0.490 0.323 | -
No No 0.694 0.117 0.480 | 0.413
No Yes 0.693 0.119 0.468 | 0.426
Yes No 0.123 0.152 0.197 | 0.510
ENN Yes 0.123 0.137 0.201 | 0.526
No e —Tum 00 EONE
es . . 440 -
Yes AdaBoost Vs No 0.175 0.444 0.194 | -
Yes 0.164 0.473 0.197 | -
No No 0.446 0.410 0.540 | 0.536
No Yes 0.460 0.434 0.534 | 0.539
Yo e tom i TN
es . . . .
SMOTE-ENN No No 0.544 0.375 0552 | -
AdaBoost Yes 0.531 0.441 0.539 | -
Yes No 0.237 0.322 0.349 | -
Yes 0.249 0.321 0.345 | -
No No 0.557 0.157 0.634 | 0.476
Yes 0.620 0.082 0.614 | 0.434
none No
Yes No 0.000 0.076 0.464 | 0.495
Yes 0.000 0.065 0.318 | 0.443
No e —Tusm 113 doi0 (04T
es . . . .
SMOTE No Yes No 0.581 0.257 0.599 | 0.560
Yes 0.614 0.359 0.570 | 0.513
No No 0.508 0.379 0.(?47 0.576
12 Bootstrapping | No Yes 0.517 0.297 0.636 | 0.556
’ Yes No 0.608 0.390 0.627 | 0.591
Yes 0.628 0.441 0.542 | 0.599
No No 0.552 0.144 0.624 | 0.510
ENN No Yes 0.619 0.123 0.648 | 0.444
Yes No 0.000 0.171 0.551 | 0.531
Yes 0.000 0.092 0.332 | 0.469
No No 0.478 0.473 0.682 | 0.540
} Yes 0.520 0.239 0.665 | 0.558
SMOTE-ENN | No e Mo 0.121 0.143 0.148 | 0.156
Yes 0.120 0.130 0.122 | 0.135

Table B.3: Results for online threat
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM XGBoost
No No 0.314 0.000 0.441 0.464
none No Yes 0.047 0.057 0.380 0.373
Yes No 0.000 0.076 0.340 0.444
Yes 0.000 0.010 0.161 0.362
No go 0.442 0.159 0.415 0.484
es 0.378 0.048 0.358 0.423
! SMOTE No Yes No 0.010 0.085 0.455 0.508
Yes 0.048 0.119 0.328 0.500
No No 0.434 0.142 0.412 0.572
Bootstrapping | No Yes 0.403 0.132 0.393 0.513
Yes No 0.020 0.115 0.479 0.545
Yes 0.020 0.090 0.306 0.519
No No 0.441 0.082 0.420 0.444
No No Yes 0.395 0.029 0.327 0.360
Yes No 0.000 0.048 0.267 0.427
Yes 0.000 0.048 0.059 0.385
none
No No 0.073 0.010 0.453 -
AdaBoost Yes 0.263 0.010 0.338 -
Yes No 0.048 0.000 0.244 -
19 Yes 0.409 0.000 0.086 -
’ No No 0.433 0.159 0.458 0.447
No Yes 0.368 0.047 0.327 0.417
Yes No 0.117 0.115 0.426 0.509
SMOTE Yes 0.288 0.171 0.246 0.479
No No 0.347 0.112 0.427 -
AdaBoost Yes 0.317 0.000 0.311 -
Yes No 0.170 0.000 0.428 -
Yes 0.217 0.063 0.239 -
No No 0.431 0.169 0.445 0.582
No Yes 0.407 0.278 0.353 0.519
Yes No 0.117 0.218 0.439 0.540
Bootstrapping Yes 0.225 0.145 0.208 0.471
No No 0.389 0.188 0.456 -
AdaBoost Yes 0.420 0.207 0.349 -
Yes No 0.406 0.232 0.442 -
Yes 0.412 0.159 0.231 -
No No
ENN No Yes 0.4045584046 | 0.037037037 0.3247232472 | 0.3736263736
Yes No 0 0.049 0.270 0.471
Yes 0 0.0921658986 0.0943396226 | 0.4217687075

Table B.4: Results for online threat - part 2
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM | XGBoost
No No 0.667 0.082 0.454 | 0.388
No Yes 0.642 0.054 0.409 | 0.408
Ve No 0.419 0.057 0.000 | 0.490
ome Yes 0.437 0.081 0.027 | 0.495
No No 0.316 0.000 0.379 | -
AdaBoost Yes 0.344 0.000 0.449 |-
Yos No 0.031 0.187 0.000 |-
Yes 0.087 0.111 0.027 | -
No No 0.264 0.137 0.417 | 0.481
No Yes 0.260 0.108 0.392 | 0.538
Ve No 0.304 0.412 0.258 | 0.569
SMOTE Yes 0.312 0.431 0.182 | 0.632
No No 0.364 0.133 0.426 | -
AdaBoost Yes 0.426 0.228 0417 | -
Ve No 0.158 0.348 0.196 | -
Yes 0.088 0.375 0.264 | -
No No 0.176 0.175 0.429 | 0.569
No Yes 0.178 0.205 0.451 | 0.514
Vo No 0.327 0.449 0.222 | 0.691
) Bootstrapping Yes 0.301 0.362 0.205 | 0.723
No No 0.423 0.220 0.409 |-
AdaBoost Yes 0.328 0.198 0.429 |-
Ve No 0.131 0.449 0.227 | -
Yes 0.109 0.469 0222 |-
No No 0.628 0.028 0.409 | 0.454
No Yes 0.667 0.128 0.413 | 0.444
YVos No 0.437 0.028 0.053 | 0.475
ENN Yes 0.455 0.029 0.000 | 0.475
SR L B E— A
es . . . -
Yes AdaBoost Vs No 0.087 0.057 0.027 |-
Yes 0.031 0.111 0.027 |-
No No 0.256 0.156 0.430 | 0.534
No Yes 0.268 0.173 0.431 | 0.526
v e Tom o o
es e . . .
SMOTE-ENN No No 0.431 0.103 0.419 |-
AdaBoost Yes 0.369 0.028 0.434 | -
Vo No 0.154 0.341 0.330 | -
Yes 0.160 0.359 0.343 | -
No No 0.472 0.056 0.505 | 0.458
one No Yes 0.725 0.000 0.444 | 0.426
Ve No 0.000 0.029 0.056 | 0.349
Yes 0.000 0.029 0.000 | 0.396
No 2{0 Ollﬁ 0.135 0.468 | 0.515
es 0.0 0.029 0.376 | 0.412
SMOTE No Vs No 0.330 0.154 0.341 | 0.480
Yes 0.265 0.230 0.111 | 0.537
No No 0.108 0.158 0.489 | 0.574
Lo Bootstrapping | No Yes 0.031 0.104 0.432 | 0.500
' Vo No 0.327 0.133 0.337 | 0.574
Yes 0.318 0.378 0.083 | 0.640
No No 0.495 0.107 0571 | 0.495
ENN No Yes 0.724 0.029 0.409 | 0.400
Vs No 0.000 0.057 0.056 | 0.326
Yes 0.000 0.029 0.000 | 0.454
No o et 101 o5 [0t
es . . . .
SMOTE-ENN | No Vo No 0.043 0.059 0.049 | 0.055
Yes 0.043 0.051 0.043 | 0.051

Table B.5: Results for online distribution of sexual images
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM | XGBoost
No No 0.044 0.000 0.214 | 0.302
none No Yes 0.000 0.000 0.227 | 0.322
Yes No 0.000 0.000 0.156 | 0.286
Yes 0.000 0.000 0.000 | 0.262
No e —tomm 00 w37 Toa0s
es . . . .
! SMOTE No Vs No 0.082 0.025 0431 | 0.422
Yes 0.177 0.027 0.272 | 0.472
No No 0.338 0.000 0.242 | 0.455
Bootstrapping | No Yes 0.340 0.000 0.295 | 0.487
Yes No 0.081 0.000 0.396 | 0.487
Yes 0.107 0.000 0.317 | 0.454
No No 0.254 0.029 0.239 | 0.364
No Yes 0.028 0.029 0.080 | 0.292
Yes No 0.000 0.029 0.108 | 0.286
none Yes 0.000 0.029 0.000 | 0.212
No No 0.000 0.000 0.240 | -
AdaBoost Yes 0.177 0.000 0.056 | -
Yes No 0.000 0.000 0.108 | -
Yes 0.000 0.000 0.000 | -
No No 0.277 0.056 0.252 | 0.430
No No Yes 0.234 0.000 0.083 | 0.304
Yes No 0.348 0.029 0.273 | 0.426
SMOTE Yes 0.316 0.027 0.000 | 0.419
No No 0.175 0.028 0.214 | -
AdaBoost Yes 0.288 0.000 0.056 | -
Yes No 0.187 0.000 0.311 | -
12 Yes 0.081 0.077 0.029 | -
' No No 0.247 0.056 0.214 | 0.504
No Yes 0.053 0.056 0.110 | 0.420
Yes No 0.196 0.000 0.311 | 0.475
Bootstrapping Yes 0.277 0.110 0.029 | 0.462
No No 0.093 0.000 0.192 | -
AdaBoost Yes 0.189 0.000 0.057 | -
Yes No 0.083 0.029 0.289 | -
Yes 0.103 0.057 0.000 | -
No No
ENN No Yes 0.0833333333 | 0.000 0.056 | 0.203
Yes No 0 0.029 0.108 | 0.295
Yes 0 0.0289855072 0 0.217
oy
SMOTE-ENN | No -
No
Yes
Yes

Table B.6: Results for online distribution of sexual images - part 2
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM | XGBoost
No No 0.507 0.151 0.479 | 0.483
No Yes 0.523 0.245 0.456 | 0.466
Ve No 0.581 0.232 0.289 | 0.500
ome Yes 0.598 0.274 0.274 | 0.537
No No 0.369 0.118 0.458 | -
AdaBoost Yes 0.325 0.025 0.460 | -
Yos No 0.265 0.182 0.289 |-
Yes 0.284 0.159 0271 |-
No No 0.371 0.263 0.426 | 0.496
No Yes 0.364 0.308 0.480 | 0.463
Ve No 0.414 0.508 0.376 | 0.564
SMOTE Yes 0.418 0.464 0.330 | 0.562
No No 0.390 0.277 0471 |-
AdaBoost Yes 0.368 0.222 0.446 | -
Ve No 0.258 0.504 0.365 | -
Yes 0.256 0.557 0.407 | -
No No 0.308 0.345 0.425 | 0.466
No Yes 0.313 0.291 0.512 | 0.449
Vo No 0.415 0.472 0.383 | 0.562
) Bootstrapping Yes 0.417 0.526 0.393 | 0.531
No No 0.310 0.308 0.410 | -
AdaBoost Yes 0.348 0.252 0.492 |-
Ve No 0.269 0.535 0.356 | -
Yes 0.228 0.567 0.362 | -
No No 0.496 0.172 0.414 | 0.448
No Yes 0.502 0.283 0.487 | 0.446
Ves No 0.569 0.217 0.271 | 0.517
ENN Yes 0.605 0.274 0.303 | 0.513
SR L S— om |
es . . . -
Yes AdaBoost Vs No 0.267 0.182 0.289 |-
Yes 0.292 0.182 0.289 |-
No No 0.347 0.336 0.510 | 0.487
No Yes 0.353 0.272 0.510 | 0.458
O el B A
es s . . s
SMOTE-ENN No No 0.395 0.345 0.446 | -
AdaBoost Yes 0.377 0.277 0.510 | -
Yes No 0.233 0.333 0.288 |-
Yes 0.246 0.345 0.290 | -
No No 0.430 0.182 0.574 | 0.427
one No Yes 0.504 0.138 0.561 | 0.426
Yos No 0.000 0.115 0.182 | 0.431
Yes 0.000 0.178 0.000 | 0.438
No o e —tiam 0% 0517 0.5
es . . . .
SMOTE No Vs No 0.345 0.151 0.364 | 0.446
Yes 0.369 0.207 0.267 | 0.440
No No 0.268 0.190 0.562 | 0.543
Lo Bootstrapping | No Yes 0.209 0.269 0.491 | 0.493
' Vo No 0.411 0.130 0.446 | 0.550
Yes 0.427 0.291 0.211 | 0.594
No No 0.423 0.091 0.581 | 0.447
ENN No Yes 0.510 0.161 0.544 | 0.427
Vs No 0.000 0.140 0.274 | 0.392
Yes 0.000 0.118 0.000 | 0.369
No o e —room 0116 0sis 05t
es 0.274 . . 5
SMOTE-ENN | No Yo No 0.050 0.057 0.051 | 0.060
Yes 0.049 0.053 0.050 | 0.055

Table B.7: Results for computer trespass
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Filter | N-grams | Resampling | Boosting | TF-idf | Binary | Naive Bayes | Random Forest | SVM | XGBoost
No No 0.227 0.025 0.336 | 0.459
none No Yes 0.047 0.025 0.342 | 0.364
Yes No 0.000 0.093 0.178 | 0.340
Yes 0.000 0.071 0.116 | 0.309
No e o0 Ok WOE
es . . . .
! SMOTE No Yes No 0.260 0.109 0.473 | 0.504
Yes 0.294 0.172 0.306 | 0.484
No No 0.357 0.068 0.286 | 0.506
Bootstrapping | No Yes 0.376 0.088 0.308 | 0.456
Yes No 0.262 0.085 0.493 | 0.441
Yes 0.296 0.069 0.314 | 0.490
No No 0.295 0.136 0.365 | 0.404
No Yes 0.219 0.071 0.229 | 0.330
Yes No 0.000 0.136 0.138 | 0.303
none Yes 0.000 0.182 0.048 | 0.247
No No 0.081 0.000 0.288 | -
AdaBoost Yes 0.147 0.000 0.196 | -
Yes No 0.024 0.000 0.138 | -
Yes 0.362 0.000 0.071 | -
No No 0.332 0.176 0.286 | 0.414
No No Yes 0.295 0.049 0.419 | 0.422
Yes No 0.338 0.154 0.345 | 0.496
SMOTE Yes 0.380 0.188 0.172 | 0.423
No No 0.207 0.023 0.312 | -
AdaBoost Yes 0.231 0.000 0.456 | -
Yes No 0.121 0.025 0.296 | -
12 Yes 0.132 0.108 0.172 | -
’ No No 0.326 0.158 0.326 | 0.459
No Yes 0.289 0.216 0.167 | 0.497
Yes No 0.331 0.167 0.360 | 0.496
Bootstrapping Yes 0.389 0.047 0.172 | 0.496
No No 0.239 0.088 0.321 | -
AdaBoost Yes 0.318 0.068 0.204 | -
Yes No 0.317 0.112 0.357 | -
Yes 0.281 0.070 0.172 | -
No No
ENN No Yes 0.190 0.095 0.152
Yes No 0.000 0.072 0.116 | 0.306
Yes 0.000 0.198 0.071 | 0.294
oo e
SMOTE-ENN | No -
No
Yes
Yes

Table B.8: Results for computer trespass - part 2

93




(seouregsur Sururel) 9gOE Jo peasur 9gRT) oseyd 3sIy oy ul synsol Areurwur[old I0J SISYISSRID JO S9I09S-;] POSRIOAY :6'¢ 9[qR],

€0L2°0 L1700 GL6T0 G88¢°0 ON sox  Areurg seuror 1soode
4374\ €€80°0 8861°0°0 L0¢v0 ON A IPHL PV + INAS
4374l €€80°0 19.T°0 0€9€°0 ON SOA
80€0°0 0 G€eL0’0 v11c0 ON ON  Areurg
LIST°0 0 186C°0 9r6€°0 NNH-HLOWS ON semmery INAS
GGLT°0 CLLTO 6451°0 65€2°0 NNH-HLOINS  S9A
0282’0 V¢l 0 ¢0 ¢96¢°0 ON SOA JPHL
¢L61°0 0 G01C0 61520 ON ON 1s00gepy
¢'0 0 170C°0 Gacy o ON Sox  Areurg seuror + 15910,
¥4¢c0 0 69.1°0 S16¥°0 ON A JPHL WOPURY
eVIT0 0 Gy10°0 06210 ON SOA
€1€0°0 0 0 65.0°0 ON ON  Areurg
S1'o 0 98L1°0 G61¢0 NNH-HLOWS ON SBWWTT  S1S9I0,] wopury
G60¢°0 Gvv10 ¢881°0 1LEC0 NNH-HLONS  S9A
EVITO0 Gsv0°0 0 18¢¢0 ON SOA JPHL
€1€0°0 0 0ST10°0 9980°0 ON ON 1s00gepy
L99¢°0 9¢r0°0 €10c0 vE8e0 ON SoX  Areurq seuro + sodeq
¢E¥¢0 acro 9vEC 0 v6LE0 ON SOA  JPHL QATRN]
[qaéall 1680°0 GL8T0 €ILED ON SOA
909070 0 8¥¥0°0 L991°0 ON ON  Areurg
0LET°0 0 <v92°0 9¢8E0 NNH-HLONS SN semery sodeq aaTeN
VLT 0 69L.1°0 946170 €9¢¢°0 NNH-HLOINS  S9A
¥¥61°0 €€80°0 G61¢°0 8TLE0 ON SOA JPHL
VILTO 0 ¢G91°0 944¢0 ON ON
surduresey 1091 JYSA\ wWeIs-N odAIpIop WIS Y
A1a3euut
Sur N
-ssedsaa) ouessqo - 3o e8] SUI[U( PUWILIDIDQA))
uornqrij
Teinduro) ot :
fp |uluo

o4



Appendix C

Comparison graphs
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Figure C.1: Graphs comparing the scores of different models and model choices for the online threat
category
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Figure C.2: Graphs comparing the scores of different models and model choices for the online
distribution of sexually obscene imagery category
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Figure C.3: Graphs comparing the scores of different models and model choices for the computer
trespass category
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