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1 Introduction

Riemannian manifolds are a pair of a smooth manifold and an inner product gp. The inner product gp is

a tensor field, and it enables the definition of notions from Euclidean space on manifolds. For example

lengths of curves and distances between points can be unambiguously defined on Riemannian manifolds.

These definitions naturally allow us to proof theorems, two of the major theorems are the Gauss-Bonnet

and Cartan-Hadamard theorem. The main goal of this thesis will be to proof these two theorems.

The first part will focus on the Gauss-Bonnet theorem, which relates the Gaussian curvature to the

Euler characteristic of a manifold. Curvature is in a way a generalization of the concept of straightness,

more formally it is a tensor field that measures how much the metric tensor is not locally isometric

to the metric tensor of Euclidean space. For surfaces for example, it is a measure of how much the

surface deviates from being flat. Curvature will be a generalization of this concept to n-dimensional

Riemannian manifolds. From curvature, Gaussian curvature can be defined, it is a local concept, which

the Gauss-Bonnet theorem relates to the Euler characteristic, a global number and a topological invariant

associated with a manifold. It describes the topological space’s structure independent of the way it is

embedded.

After the Gauss-Bonnet theorem we will focus on the Cartan-Hadamard theorem, it is another example

of a theorem that provides a link between local and global properties. And this theorem says that the

local condition of having non-positive sectional curvature together with being simply-connected has as

result that the Riemannian manifold is diffeomorphic to Rn.

We will start off with a formal introduction of Riemannian manifolds and the immediate definitions that

come with it, such as angles between tangent vectors and length of tangent vectors.

Then in chapter 3 we will define various curvatures, all of them are functions of the curvature tensor. As

we will see the curvature tensor arises when trying to take derivatives of tangent vectors on manifolds.

To take derivatives of tangent vectors, connections are introduced, after which the curvature tensor and

some other forms of curvature, e.g. the Gaussian and sectional curvature, will conclude chapter 3.

In chapter 4 we will consider submanifolds, and more importantly how the connection of an ambient

manifold is related to that of the submanifold. This combined with the results of the subsequent chapter,

in which we will generalize plane geometry to 2-dimensional Riemannian manifolds, enables us to state

and proof the Gauss-Bonnet theorem.

And in the final chapter we will consider geodesics, curves with ’constant’ tangent vector, comparable

to straight lines in Rn, the distance function on manifolds. We will also define a map known as the

exponential map, which is used to define coordinates known as normal coordinates in which the geodesics

are linear functions of time. Next we will discuss Jacobi fields along curves and use them to proof the

Cartan-Hadamard theorem.
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CHAPTER 1. INTRODUCTION

The reader is assumed to be familiar with basic differential geometry. In particular, the reader should

be familiar with tangent spaces, differential forms and Stokes’ theorem. The main references used in

writing this thesis were [Lee97,Pet98].



2 Riemannian manifolds

As the aim of this text is to obtain the aforementioned theorems from Riemannian geometry, we will

begin with an introduction to Riemannian geometry. The main objects in Riemannian geometry are

Riemannian manifolds, which will be the subject of this chapter together with the core definitions that

follow from the metric g on a manifold.

2.1 Preliminary Definitions

Definition 2.1. : A pair (M, g) is a Riemannian manifold, where M is a smooth manifold and g is the

Riemannian metric. The Riemanian metric is a 2-tensor field g : T 2(M)→ R, that is

1. Symmetric, i.e. (g(X,Y ) = g(Y,X) for all X,Y ∈ Tp(M))

2. Positive definite, i.e. (g(X,X) > 0)

The common shorthand for g(X,Y ) is 〈X,Y 〉 with X,Y ∈ Tp(M).

With the inner product defined as such, the tangent space is an inner product space. So the Cauchy-

Schwarz inequality is valid for tangent vectors X,Y ∈ TpM on a Riemannian manifold:

|〈X,Y 〉| ≤ 〈X,X〉〈Y, Y 〉

This Riemannian metric allows for the notions of length of tangent vectors and angles between them, in

a way that is similar to the definitions of these quantities in Euclidean space.

Definition 2.2. The length of a vector X ∈ Tp(M), denoted by |X| := 〈X,X〉1/2.

The angle between tangent vectors X,Y ∈ Tp(M) is the unique θ ∈ [0, π], such that cos(θ) = 〈X,Y 〉
|X||Y | .

Two vectors are said to be orthogonal if the angle between them is π/2, from the definition of angles it

can be seen that this is equivalent with X,Y ∈ TpM are orthogonal if and only if 〈X,Y 〉 = 0. Multiple

vectors E1, ..., En are said to be orthonormal if 〈Ei, Ej〉 = δij .

A diffeomorphism ϕ : M → M̃ is said to be an isometry if ϕ∗(g̃) = g. And (M, g) and (M̃, g̃) are

isometric if there exists an isometry between them.

For a local frame (E1, ..., En) with dual coframe (ϕ1, ..., ϕn) we can write g in terms of this local coframe

as g = gijϕ
i⊗ϕj To get an idea what this looks like, we can take Euclidean space, Rn, with the Euclidean
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metric, ḡ, as an example. This is an example of a Riemannian manifold, and the Euclidean metric is

defined as the usual inner product of tangent vectors at each TpRn. Because TpRn = Rn we can look at

the inner product of two vectors X,Y ∈ TpRn, written as X = xiEi and Y = yiEi for the unit vectors

{E1, ..., En} in Euclidean space. Then the inner product ḡ(X,Y ) = 〈X,Y 〉 =
∑
i x

iyi. From how ḡ acts

on unit elements Ei, we see that ḡij = δij .

Two important operations on tensors are commonly used, namely raising and lowering indices. They

change the type of tensor from an
(
a
b

)
-tensor to a

(
a−1
b+1

)
-tensor or a

(
a+1
b−1

)
-tensor for raising and lowering

an index respectively. On a Riemannian manifold TM is naturally isomporphic to T ∗M , where the

isomorphism is given by sending X ∈ TM to the linear map (Y → g(X,Y )) ∈ T ∗M . As this is an

isomorphism we can interchange one of the arguments of the tensor with the help of this isomorphism

and therefore changing the type of tensor. For
(

0
1

)
-tensors in coordinates this results in the following

operation.

Definition 2.3. Raising an index is a map from TM∗ to TM , by sending a covector ω → gijωi. Where

gij is the inverse, (gij)
−1, of the matrix of gij , which exists because the metric tensor is positive definite

so non-singular.

And for
(

1
0

)
-tensors this map is:

Definition 2.4. Lowering an index is a map TM → TM∗, by sending a vector X to the covector

gijX
idxj = g(Xi∂i, ·), whenever there are coordinates (xi) with tangent vectors (∂i) and covectors

(dxi).

Because Riemannian manifolds have additional structure when compared to smooth manifolds, there

also is a unique volume form.

Definition 2.5. On any oriented Riemannian n-manifold (M, g), there is a unique n-form known as the

volume form dV , satisfying the property that dV (E1, ..., En) = 1, whenever (E1, ..., En) is an oriented

orthonormal basis for a tangent space TpM .

By definition dV can be written as dV = E1 ∧ ... ∧ En for an oriented orthonormal basis (E1, ..., En).

We can proof uniqueness by considering (Ẽ1, ..., Ẽn) another oriented orthonormal basis. Then dV =

E1∧ ...∧En = detA · Ẽ1∧ ...∧ Ẽn, where detA is the transition matrix from E to Ẽ. Since both basis are

oriented and orthonormal detA = 1, which implies the defined volume form is unique. The expression for

dV with respect to any oriented local frame Ei with dual coframe (ϕi) is: dV =
√
det(gij)ϕ

1 ∧ ... ∧ ϕn

Because ϕ1 ∧ ... ∧ ϕn(E1, ..., En) = det(gij). The volume form is the first term we encouter that will

appear in the Gauss-Bonnet theorem.

2.2 Curves and Connections

In this section we will introduce curves and connections, as said in the introduction connections are com-

monly used to define curvature. While curves are used to define geodesics, objects which are commonly

studied in Riemannian geometry, and also play an important role in the Gauss-Bonnet theorem. We will
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start off with the general definition of curves and the definition of a connection will arise when we look

at the unit cicle in R2, which is an example of a curve.

Definition 2.6. A curve on a manifold is a smooth map γ : I →M , where I is some interval in R.

A curve segment is a curve whose domain is a closed bounded interval.

The velocity of a curve is defined as follows, for γ : I →M at any time t ∈M the velocity is defined as

the push-forward γ∗(
d
dt ), and is denoted by γ̇(t). In coordinates this corresponds to the usual definition

of velocity, if the coordinate representation of γ is γ(t) = (γ1(t), ..., γn(t)), then γ̇(t) = γi(t)∂i.

(a) Cartasian coordinates (b) polar coordinates

Connections arise when we try to differentiate the velocity vectors. We can take a look at the unit circle

in R2, then in Cartesian coordinates it is parametrized by (x(t), y(t)) = (cos(t), sin(t)). Differentiating

twice gives (x′′(t), y′′(t)) = (− cos(t),− sin(t)). While in polar coordinates the circle is parametrized by

(r(t), θ(t)) = (1, t), differentiating this twice gives (r′′(t), θ′′(t)) = (0, 0). This implies that acceleration

is not invariant under a change of coordinates, therefore we introduce the notion of connections.

The aim of connections is to obtain a coordinate independent notion of acceleration of curves. Specifically

they are defined as the directional derivative of sections of vector bundles.

Let π : E →M be a vector bundle over a manifold M , and let E(M) denote the space of smooth sections

of E.

Definition 2.7. A connection in E is a map:

∇ : T (M)× E(M)→ E(M)

written as (X,Y )→ ∇XY , satisfying the following properties:

1. ∇XY is linear over C∞(M) in X,

i.e. ∇fX1+gX2
Y = f∇X1

Y + g∇X2
Y , for f, g ∈ C∞(M)

2. ∇XY is linear over R in Y ,

i.e. ∇XaY1 + bY2 = a∇XY1 + b∇XY2, for a, b ∈ R)
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3. ∇ satisfies the following product rule:

∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M)

Then ∇XY is called the covariant derivative of Y in the direction of X

We mostly want to talk about the connection on the tangent bundle of M .

Definition 2.8. A linear connection on M is a connection in TM , so it is a map:

∇ : T (M)× T (M)→ T (M)

Satisfying property 1. to 3. of a connection.

We can look at the expression for a linear connection in components of TM . Given a local frame (Ei)

for TM on an open U ⊂M , for any i, j, the expression for the linear connection is

∇EiEj = ΓkijEk

This defines functions Γkij on U which are called the Christoffel symbols and leads to a formula for the

linear connection in terms of the Christoffel symbols

∇XY = (XY k +XiY jΓkij)Ek

This follows immediately from the properties of connections:

∇XY = ∇X(Y jEj)

= (XY j)Ej + Y j∇XiEi
Ej

= (XY j)Ej + Y jXi∇Ei
Ej = XY kEk +XiY jΓkijEk

Where in the last step the index name is just changed from j to k to get the desired result.

Theorem 2.9. The value of a connection at p only depends on values of X and Y in an arbitrary

neighborhood of p. Meaning that if two vector fields X̃ and Ỹ agree with X and Y on a neighborhood of

p, then ∇XY |p = ∇X̃ Ỹ |p.

Proof. We can show that ∇X(Y − Ỹ )|p = 0 if Y ′ := Y − Ỹ vanishes on a neighborhood p ∈ U , which

implies that ∇X(Y )|p = ∇X(Ỹ )|p.

By choosing a bump function ϕ ∈ C∞(M) with support in U , such that ϕ(p) = 1. Then the hypothesis

that Y ′ vanishes on U implies that ϕY ′ ≡ 0 everywhere on M , so ∇X(ϕY ′) = 0∇X(ϕY ′) = 0. And

therefore for any X ∈ T (M):

0 = ∇X(ϕY ′) = (Xϕ)Y ′ + ϕ(∇X)Y ′) (2.1)
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Because Y ′ ≡ 0 on the support of ϕ the first term on the right is zero. And by evaluating at p this gives

the desired result: ∇X(Y − Ỹ )|p = 0.

For X a similar argument holds: With the same bump function ϕ. For any Y ∈ E(M)

0 = ∇ϕ(X−X̃)Y = ϕ(∇XY −∇X̃Y ) (2.2)

Which when evaluated at p gives ∇XY = ∇X̃Y .

Since ∇ : T (M)×T (M)→ T (M) is linear over C∞(M) in its first argument, we can also think of ∇ as

a map

∇ : T (M)→ Γ(T ∗M ⊗ TM)

Where Γ(E) denotes the space of smooth sections of a vector bundle π : E →M .

The covariant derivative can be extended to covector fields as follows. Let α be a covector field and X,Y

vector fields on M , then its covariant derivative (∇Xα) is defined in a way that is compatible with the

pairing between covectors and vectors and satisfies the product rule so.

(∇Xα)(Y ) = ∇X(αY )− α(∇XY )

Then similar to the covariant derivatives of vector fields the covariant derivative is a map ∇ : Γ(T ∗M)→
Γ(T ∗M ⊗ TM).

Furthermore this can be extended to arbitrary tensor fields by imposing two conditions. For every pair

of tensor fields ϕ and ψ

∇X(ϕ⊗ ψ) = (∇Xϕ)⊗ ψ + ϕ⊗ (∇Xψ)

And for tensors of the same type

∇X(ϕ+ ψ) = ∇Xϕ+∇Xψ

As a result of these two rules. For a tensor field S of type
(
n
m

)
its covariant derivative is an

(
n

m+1

)
-tensor,

and for α1, ..., αn covector fields and Y1, ..., Yn vector fields on M is given by

∇S(X,α1, ..., αm, Y1, ..., Yn) =(∇XS)(α1, ..., αn, Y1, ..., Yn)

=∇X(S(α1, ..., αm, Y1, ..., Yn))

−
n∑
i=1

S(α1, ..., αm, Y1, ...,∇XYi, .., Yn)

−
m∑
i=1

S(α1, ...,∇Xαi, ...., αm, Y1, .., Yn)

Now we have the tools to define the acceleration of a curve, which we will do by defining the more general
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covariant derivative of vector fields along curves.

Given a curve γ : I → M , a vector field V along γ is by definition a function V : I → TM , with

V (t) ∈ Tγ(t)M for all t ∈ I.

Definition 2.10. A vector field V along a curve γ is said to be extendible if there exists a vector field

Ṽ on a neighborhood of the image of γ, such that V (t) = V ˜γ(t)
.

Definition 2.11. Let ∇ be a linear connection on M , and γ : I →M a curve. Then define the operator

Dt : T (γ)→ T (γ)

Satisfying the properties:

1. Linearity over R,

i.e. Dt(aV + bW ) = aDtV + bDtW for a, b ∈ R

2. Product rule:

Dt(fV ) = ḟV + fDtV for f ∈ C∞(I)

3. If V is extendible, then for any extensionṼ of V ,

DtV (t) = ∇γ̇(t)Ṽ

For any V ∈ T (γ), DtV is called the covariant derivative of V along γ.

This operator is uniquely determined by ∇, the values of DtV at t0 depend only on an arbitrary neigh-

borhood of t0. Let V (t) = V j(t)∂j for coordinates near γ(t0). Then by the properties of Dt:

DtV (t0) = V̇ j(t0)∂j + V j(t0)∇γ̇(t0)∂j = (V̇ k(t0) + V j(t0)γ̇i(t0)Γkij(γ(t0))∂k

Because any covariant derivative satisfies this local expressions, this implies uniqueness.

So by introducing connections we were actually able to define the operator Dt as a coordinate independent

way of taking derivatives of tangent fields.

2.3 Riemannian Connection

In this section we will look at the Riemannian connection, a connection that shares two properties

with the Euclidean connection. The Euclidean connection is torsion free and compatibility with the

Euclidean metric. And it turns out that there is a unique linear connection on all Riemannian manifolds

that satisfies both properties. As this connection is more similar to the Euclidean connection than a

general linear connection, and because compatibility with the metric is a nice property to work with the

Riemannian connection can be thought of as the natural connection on a manifold.

Definition 2.12. A connection ∇ is said to be compatible with a metric g if the following product rule

is satisfied, for all vector fields X,Y, Z

∇X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉
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Proposition 2.13. For a Riemannian manifold (M, g) the following conditions are equivalent

1. ∇ is compatible with g

2. ∇g ≡ 0

3. If V,W are vector fields along a curve γ, d
dt 〈V,W 〉 = 〈DtV,W 〉+ 〈V,DtW 〉

Proof. The equivalence of 1. and 2. is proven by the fact that

(∇g)(X,Y, Z) = (∇Xg)(Y, Z) = X(〈Y,Z〉)− 〈∇XY, Z〉 − 〈Y,∇XZ〉

And the equivalence of 1. and 3. by

〈DtV,W 〉+ 〈V,DtW 〉 = 〈∇γ̇V,W 〉+ 〈V,∇γ̇W 〉

Which can easily be seen to be equal to d
dt 〈V,W 〉 if and only if g is compatible with the connection.

The Euclidean connection ∇, defined as ∇X(Y j∂j) = (XY j)∂j , is compatible with the Euclidean metric.

This implies that it may be natural to look at connections that are compatible with the metric. However

this property on its own is not enough to determine a unique linear connection on a manifold.

Definition 2.14. A linear connection is torsion-free if the torsion tensor

τ(X,Y ) = ∇XY −∇YX − [X,Y ]

vanishes identically.

The requirements of torsion-freeness and compatibility with the metric are enough to determine a unique

linear connection.

Theorem 2.15 (Fundamental theorem of Riemannian geometry). Let (M, g) be a Riemanian manifold.

There exists a unique linear connection ∇ on M that is compatible with g and torsion-free.

This connection is called the Riemannian connection or Levi-Civita connection

Proof. Compatibility with the metric implies that for X,Y, Z ∈ T (M)

X〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

Using the condition that the connection is torsion-free allows us to rewrite this to

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇ZX〉+ 〈Y, [X,Z]〉

By cyclically permutating X,Y, Z and adding the 3 resulting equations we obtain, with a minus sign for

the Z〈X,Y 〉
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X〈Y,Z〉+ Y 〈Z,X〉−Z〈X,Y 〉 =

2〈∇XY, Z〉+ 〈Y, [X,Z]〉+ 〈Z, [Y,X]〉 − 〈X, [Z, Y ]〉

Solving for 〈∇XY, Z〉 gives

〈∇XY,Z〉 = 1/2(X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉

− 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉)
(2.3)

Since the right hand side of this equation does not depend on the connection and holds for all X,Y

this implies that for 2 connections that are torsion-free and compatible with g: 〈∇̃XY −∇XY, Z〉 = 0.

Therefore the conditions imply uniqueness. We proof this theorem by explicitly computing the Christoffel

symbols in a coordinate chart, consider the standard coordinate vector fields ∂i. Applying (2.3) to the

coordinate vector fields gives

〈∇∂i∂j , ∂l〉 =
1

2
(∂i〈∂j , ∂l〉+ ∂j〈∂l, ∂i〉 − ∂l〈∂i, ∂j〉) (2.4)

Recall from the definitions that

gij = 〈∂i, ∂j〉

∇∂i∂j = Γlij∂l

Combining this with (2.4) gives

Γmij gml =
1

2
(∂igjl + ∂jgli − ∂lgij)

Which implies

Γmij =
1

2
gml(∂igjl + ∂jgli − ∂lgij)

The connection obtained from this equation is the desired connection.

Because of the fundamental theorem we can always use the Riemannian connection on any Riemannian

manifold, so in the rest of the text the connection will always be assumed to be the Riemannian one.

So connections on Riemannian manifolds will be assumed to be torsion-free and compatible with g. The

Riemannian connection is also natural in the sense that any isometry takes Riemannian connections to

Riemannian connections.

Proposition 2.16 (Naturality of the Riemannian Connection). Suppose ϕ : (M, g) → (M̃, g̃) is an

isometry. Then ϕ takes the Riemannian connection ∇ of (M, g) to ∇̃ of (M̃, g̃).

ϕ∗(∇XY ) = ∇̃ϕ∗X(ϕ∗Y )
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Proof. Define the map

(ϕ∗∇̃) : Γ(TM)× Γ(TM)→ Γ(TM)

as

(ϕ∗∇̃)XY = ϕ−1
∗ (∇̃ϕ∗X(ϕ∗Y ))

Then ϕ∗∇̃ is a connection on M and it is symmetric and compatible therefore ϕ∗∇̃ = ∇.



3 Curvature

Curvature in 2-dimensional Euclidean space is a concept used to measure the amount a smooth curve

differs from a plane. The generalization to n dimensional Riemannian manifolds certainly is nontrivial,

the motivation for the definition of curvature is the following.

Because for the Euclidean metric 〈Ei, Ej〉 = δij the Christoffel symbols are 0. Therefore in Rn with the

Euclidean metric, for vector fields X,Y, Z

∇X∇Y Z = ∇X(Y Zk∂k) = XY Zk∂k

∇Y∇XZ = ∇Y (XZk∂k) = Y XZk∂k

With the difference between the two

∇X∇Y Z −∇Y∇X = XY Zk∂k − Y XZk∂k = ∇[X,Y ]Z

Then by the naturality of the Riemannian connection, this equation holds for any Riemannian manifold

that is locally isometric to Rn. For an arbitrary manifold however these equations do not have to hold.

Therefore this motivates the definition of the curvature endomorphism, as some indication of the flatness

of a manifold.

Definition 3.1. The Curvature Endomorphism is the map

R : T (M)× T (M)× E(M)→ E(M) defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (3.1)

Riemannian manifolds that are locally isometric to Euclidean space are called flat, it can be proven a

manifold is flat if and only if its curvature tensor vanishes identically, see for example [Lee97, Theorem

7.3].

Lemma 3.2. The Riemannian curvature endomorphism is a
(

3
1

)
-tensor field.

Proof. By the tensor characterization lemma we need to show that R is linear over C∞(M) in all of its

arguments.

For f ∈ C∞(M),

13
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R(X, fY )Z = ∇X∇fY Z −∇fY∇XZ −∇[X,fY ]Z

= ∇X(f∇Y Z)− f∇Y∇XZ −∇f [X,Y ]+(Xf)Y Z

= (Xf)∇Y Z + f∇X∇Y Z − f∇Y∇XZ − f∇[X,Y ]Z − (Xf)∇Y Z

= fR(X,Y )Z

This shows that R is linear over C∞(M) in Y. And from this it also follows that R is linear over C∞(M)

in X, as R(X,Y )Z = −R(Y,X)Z. For linearity over C∞(M) in Z,

R(X,Y )fZ = ∇X∇Y fZ −∇Y∇XfZ −∇[X,Y ]fZ

= ∇Xf∇Y Z +∇X(Y f)Z −∇Y f∇XZ −∇Y (Xf)Z − f∇[X,Y ]Z − ([X,Y ]f)Z

= f∇X∇Y Z + (Xf)∇Y Z + (Y f)∇XZ +X(Y f)Z − f∇Y∇XZ − (Y f)∇XZ

− (Xf)∇Y Z − Y (Xf)Z −X(Y f)Z + Y (Xf)Z − f∇[X,Y ]Z

= f∇X∇Y Z − f∇Y∇XZ − f∇[X,Y ]Z

= fR(X,Y )Z

Because of the preceding lemma we can define the Riemannian curvature tensor Rm, a covariant 4-tensor

field obtained from R by lowering an index.

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉

Proposition 3.3. The Riemannian curvature tensor R(X,Y, Z,W ) has the following properties:

1. R is antisymmetric in the first and last two entries:

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(Y,X,W,Z)

2. R is symmetric between the first two and last two entries:

R(X,Y, Z,W ) = R(Z,W,X, Y )

3. R satisfies a cyclic permutation property called Bianchi’s first identity:

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0

4. ∇R satisfies a cyclic permutation property called Bianchi’s second identity:

(∇ZR)(X,Y )W + (∇XR)(Y,Z)W + (∇YR)(Z,X)W = 0
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Proof. The first part of 1. can be easily seen from the definition of the curvature endomorphism, for

the second part we proof that Rm(W,X, Y, Y ) = 0 then the desired result follows from Rm(W,X, Y +

Z, Y + Z) = 0.

WX|Y |2 = W (2〈∇XY, Y 〉) = 2〈∇W∇XY, Y 〉+ 2〈∇XY,∇WY 〉

WX|Y |2 = 2〈∇X∇WY, Y 〉+ 2〈∇WY,∇XY 〉

[W,X]|Y |2 = 2〈∇[W,X]Y, Y 〉

Subtracting the second and third equation from the first we obtain

0 = 2〈∇W∇XY, Y 〉 − 2〈∇X∇WY, Y 〉 − 2〈∇[W,X]Y, Y 〉

= 2〈R(W,X)Y, Y 〉

= 2Rm(W,X, Y, Y )

This finishes the proof for 1.

3. Extends to

(∇W∇XY −∇X∇WY −∇[W,X]Y )

+ (∇X∇YW −∇Y∇XW −∇[X,Y ]W )

− (∇Y∇WX −∇W∇YX −∇[Y,W ]X)

=∇W (∇XY −∇YX) +∇X(∇YW −∇WY )+∇Y (∇WX −∇XW )

−∇[W,X]Y −∇[X,Y ]W −∇[Y,W ]X

=∇W [X,Y ] +∇X [Y,W ] +∇Y [W,X]

−∇[W,X]Y −∇[X,Y ]W −∇[Y,W ]X

=[W, [X,Y ]] + [X, [Y,W ]] + [Y, [W,X]]

The Jacobi identity [Lee13, p. 188] for commutators says that this is zero.

2. Is obtained by combining the other identities.

R(X,Y, Z,W ) =−R(Z,X, Y,W )−R(Y, Z,X,W )

=R(Z,X,W, Y ) +R(Y,Z,W,X)

=−R(W,Z,X, Y )−R(X,W,Z, Y )

−R(W,Z,X, Y )−R(X,W,Z, Y )

=2R(Z,W,X, Y ) +R(R,X, Y, Z) +R(W,Y,X,Z)

=2R(Z,W,X, Y )−R(Y,X,W,Z)

=2R(Z,W,X, Y )−R(X,Y, Z,W )

Where the properties 3, 1, 3, 1, 3, 1 are applied in succession, this implies that 2R(X,Y, Z,W ) =

2R(Z,W,X, Y ).

The proof of 4. Because R is a tensor without loss of generality one can assume that X,Y, Z mutually
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commute, e.g. their Lie brackets are 0. Then

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z = [∇X ,∇Y ]Z

Because R is a tensor field

(∇ZR)(X,Y )W =∇Z(R(X,Y )W )−R(∇ZX,Y )W

−R(X,∇ZY )W −R(X,Y )∇ZW

=[∇Z , R(X,Y )]W −R(∇ZX,Y )W −R(X,∇ZY )W

Therefore

(∇ZR)(X,Y )W + (∇XR)(Y,Z)W + (∇YR)(Z,X)W

=[∇Z , R(X,Y )]W + [∇X , R(Y,Z)]W + [∇Y , R(Z,X)]W

−R(∇ZX,Y )W −R(X,∇ZY )W

−R(∇XY,Z)W −R(Y,∇XZ)W

−R(∇ZX,Y )W −R(Z,∇YX)W

=[∇Z , R(X,Y )]W + [∇X , R(Y,Z)]W + [∇Y , R(Z,X)]W

+R([X,Z], Y )W +R([Z, Y ], X)W +R([Y,X], Z)W

=[∇Z , [∇X ,∇Y ]]W + [∇X , [∇Y ,∇Z ]]W + [∇Y , [∇Z ,∇X ]]W = 0

Where the second equality follows because the connection is torsion-free, in the third equality the Lie

brackets are used and the last step is again because of the Jacobi equality.

Another important tensor is the Ricci Curvature, defined as follows:

Definition 3.4. The Ricci curvature tensor Rc is the tensor defined to be the trace of R. Meaning that

if e1, ..., en ∈ TpM is an orthonormal basis, then

Ric(v, w) =

n∑
i=1

g(R(ei, v)w, ei) =

n∑
i=1

g(R(v, ei)ei, w) (3.2)

It can also be defined as the symmetric
(

1
1

)
-tensor:

Ric(v) =

n∑
i=1

R(v, ei)ei

Another type of curvature is the sectional curvature sec, defined by:

sec(v, w) =
g(R(v, w)v, w)

g(v, v)g(w,w)− g(v, w)2
=

Rm(v, w,w, v)

g(v, v)g(w,w)− g(v, w)2

And the last one is the scalar curvature S defined as the trace of the Ricci curvature. For an orthonormal
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basis e1, ..., en ∈ TpM :

S = tr(Ric)

=

n∑
i=1

g(Ric(ej), ej)

=

n∑
i=1

n∑
j=1

g(R(ei, ej)ej , ei)

The sectional curvature will see much use in the last chapter. The most well-known example of an

application of the Ricci curvature is in physics, as it appears in the Einstein field equations

Ric− 1

2
Sg = T (3.3)

Which assumes that space-time is modeled by a 4−manifold that carries a metric whose Ricci curvature

satisfies (3.3). Where T is a symmetric 2-tensor called the stress-energy tensor that describes the physical

properties of the matter. [Sus]

The geometric interpretation of the scalar curvature is the following, in chapter 6 we will define balls on

manifolds. Then the scalar curvature tells you how the volume of a small ball differs from how much

volume such a ball would have in Euclidean space.



4 Submanifolds

In this chapter we will look at Riemannian submanifolds and connections on these submanifolds. As

these will allow us to get an interpretation of the curvature tensor. We will study the relation between

the connections and curvatures of the ambient manifold and the submanifold. As well as expressing

the different curvature tensors in terms of the Gaussian curvature, which is an intrinsic property of the

Riemannian manifold. The Gaussian curvature is the main object of study in this chapter, as it is one

of the terms in the Gauss-Bonnet theorem.

Definition 4.1 (Riemannian submanifold). A Riemannian submanifold M of a Riemannian manifold

(M̃, g̃) is an immersed submanifold of M̃ together with the metric inherited from M . Meaning that for

some immersion ι : M → M̃ , M has the induced metric g = ι∗g̃ and in addition when ι is injective M is

said to be a Riemannian submanifold of M̃ .

All operations such as covariant derivatives and curvatures that are taken with respect to g̃ are denoted

with a tilde, the inner product is unambiguously denoted as 〈X,Y 〉, because g is just the restriction of

g̃ to TM .

The restriction of a smooth vector bundle on M̃ to M, is a smooth vector bundle on M .

TM̃ |M = qp∈MTpM̃

As each local trivialization can be restricted to M and from the Vector bundle chart lemma (Lee lemma

10.6 Vector bundle chart lemma.) it follows that TM̃ |M , called the ambient tangent bundle over M , is a

smooth vector bundle over M . At each point p ∈M the ambient tangent bundle consists of a direct sum

TpM̃ = TpM ⊕NpM , by defining NpM = (TpM)⊥ called the normal space at p. The union of which is

called the normal bundle NM = qp∈MNpM , which is also a vector bundle. For any point p ∈M , there

is a neighborhood Ũ of p in M̃ and a smooth orthonormal frame (E1, ..., Em) on Ũ , called an adapted

orthonormal frame, such that the restriction of this frame to M is a local orthonormal frame for TM :

(E1, ..., En). Then the last m − n vectors form a basis for NpM at each p ∈ M , and the components

of normal vectors in NM with respect to this basis can be used to construct a normal trivialization of

NM . It can be checked that the transition functions are smooth, then by [Lee97, Lemma 2.2] it follows

that NM is a vector bundle.

So we can project vectors at p ∈ M orthogonally onto TpM , by projecting onto span(E1, ..., En) and

onto NpM by projecting onto span(En+1, ..., Em). For a section X of TM̃ |M , we use the notation X⊥

and X> to denote the orthogonal and tangential projections of X respectively.

Vector fields on M extend to vector fields on M̃ , by the extension lemma for vector fields on submanifolds

[Lee13, p.201]. Therefore for looking at the shape of the manifold M inside of M̃ with this decomposition

18
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Figure 4.1: The normal space at p.

we can decompose the covariant derivative of M̃ into:

∇̃XY = (∇̃XY )> + (∇̃XY )⊥

And by extending vector fields on M to M̃ we can define the second fundamental form II : TM×TM →
NM :

II(X,Y ) = (∇̃XY )⊥

The second fundamental form is symmetric because II(X,Y )−II(Y,X) = (∇̃XY −∇̃YX) = [X,Y ]⊥ = 0,

where the last equality follows because both X,Y are tangent to M then so is their Lie bracket.

The tangential term in ∇̃XY is just ∇XY , as seen in the following theorem.

Theorem 4.2. If X,Y ∈ TM are extended to arbitrary vector fields on M̃ , the following formula holds:

∇̃XY = ∇XY + II(X,Y )

Proof. Because of the decomposition of ∇̃XY we want to show that ∇̃XY > = ∇XY on M . One can

easily check that ∇̃XY satisfies the conditions to be a connection. And it is symmetric because:

∇>XY −∇>YX = (∇̃XY − ∇̃YX)> = [X,Y ]> = [X,Y ]

Also it is compatible with g, the metric on M . For let X,Y, Z ∈ TM be extended to M̃ . Then because

of he compatibility of ∇̃ and g̃.

X〈Y,Z〉 = 〈∇̃XY,Z〉+ 〈Y, ∇̃XZ〉

= 〈(∇̃XY )>, Z〉+ 〈Y, (∇̃XZ)>〉

Therefore ∇̃> is compatible with g, so the uniqueness property of Riemannian connections implies

∇̃> = ∇ for vector fields on M .
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We can also look at covariant derivatives of vector fields normal to M , for which the following result

holds.

Theorem 4.3 (The Weingarten equation). Suppose X,Y ∈ TM and N ∈ NM . When X,Y,N are

extended to M̃ :

〈∇̃XN,Y 〉 = −〈N, II(X,Y )〉

Proof.

0 = X〈N,Y 〉

= 〈∇̃XN,Y 〉+ 〈N, ∇̃XY 〉

= 〈∇̃XN,Y 〉+ 〈N,∇XY + II(X,Y )〉

= 〈∇̃XN,Y 〉+ 〈N, II(X,Y )〉

Initially, we will be define Gaussian curvature for 2-dimensional manifolds embedded in R3. For such

manifolds, we can pick a normal vector N , unique up to a minus sign. A generalization of this are

hypersurfaces in Euclidean space, e.g. submanifolds of dimension n embedded in Rn+1 and with the

induced metric. By picking a sign for the normal vectors one gets a smooth section of NM , a vector

field N . When N is normalized, we can replace the second fundamental form by a symmetric 2-tensor

h:

h(X,Y ) = 〈II(X,Y ), N〉

From which a
(

1
1

)
-tensor field S can be constructed by raising an index, e.g. 〈X,SY 〉 = h(X,Y ).

From the symmetry of h, it follows that s is a selfadjoint endomorphism of TM , for all X,Y ∈ TM :

〈SX, Y 〉 = 〈X,SY 〉. Therefore we can define the Gaussian curvature

K = detS

This Gaussian curvature seems to rely on the normal vector, so therefore one would expect it to be

dependent on the way the manifold is embedded in Euclidean space. However as proven in the theorema

Egregrium for 2 dimensions the Gaussian curvature does not depend on the embedding. For hypersurfaces

in any dimension it is in fact an intrinsic invariant of the manifold (M, g). A reference for this is [Spi,

Corollary 23].

Theorem 4.4 (Theorema Egregrium). Let M ⊂ R2 be a 2 dimensional submanifold and g the induced

metric on M . For any p ∈M and any basis (X,Y ) for TpM , the Gaussian curvature of M at p is given

by

K =
RM(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2
(4.1)

Before we proof this we first need another theorem by Gauss, the Gauss equation.
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Theorem 4.5 (The Gauss equation). For any X,Y, Z,W ∈ TpM , the following equation holds:

R̃m(X,Y, Z,W ) = Rm(X,Y, Z,W )− 〈II(X,W ), II(Y,Z)〉+ 〈II(X,Z), II(Y,W )〉

Proof of the Gauss equation: Let X,Y, Z,W be extended arbitrarily to vector fields on M̃ , such that

they are tangent to M . Then from theorem 4.2 we know that:

R̃m(X,Y, Z,W ) =〈∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,W 〉

=〈∇̃X(∇Y Z + II(Y, Z))− ∇̃Y (∇XZ + II(X,Z))

−∇[X,Y ]Z − II([X,Y ], Z),W 〉

Since W ∈ TpM , the inner product of W and II([X,Y ], Z) is zero, the rest of the terms involving the

second fundamental form are given by the Weingarten equation.

R̃m(X,Y, Z,W ) =〈∇̃X(∇Y Z),W 〉 − 〈II(Y, Z), II(X,W )〉−

〈∇̃Y (∇XZ),W 〉+ 〈II(X,Z), II(Y,W )〉

− 〈∇[X,Y ]Z,W 〉

Again because W is tangential to M only the tangential part of ∇̃ survives which is exactly ∇ by theorem

(4.2).

R̃m(X,Y, Z,W ) =〈∇X(∇Y Z),W 〉 − 〈II(Y, Z), II(X,W )〉−

〈∇Y (∇XZ),W 〉+ 〈II(X,Z), II(Y,W )〉

− 〈∇[X,Y ]Z,W 〉

= 〈R(X,Y )Z,W 〉 − 〈II(Y, Z), II(X,W )〉+ 〈II(X,Z), II(Y,W )〉

�

Proof of the Theorema Egregrium: For any basis X,Y of TpM , the Gram-Schmidt procedure gives an

orthonormal basis:

E1 =
X

|X|

E2 =
Y − 〈Y,X〉|X|2 X

|Y − 〈Y,X〉|X|2 X|
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These can be used to calculate K:

K = Rm(E1, E2, E2, E1)

=
Rm(X,Y − 〈Y,X〉|X|2 X,Y −

〈Y,X〉
|X|2 , X)

|X|2|Y − 〈Y,X〉|X|2 X|2

=
Rm(X,Y, Y,X)

|X|2
(
|Y |2 − 2 〈Y,X〉|X|2

2
+ 〈Y,X〉
|X|2

)
=

Rm(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2

Where the 2nd step follows because:

Rm(X,Y − 〈Y,X〉
|X|2

X,Y − 〈Y,X〉
|X|2

, X) = Rm(X,Y, Y − 〈Y,X〉
|X|2

X,X)

− 〈Y,X〉
|X|2

Rm(X,X, Y − 〈Y,X〉
|X|2

X,X) = Rm(X,Y, Y − 〈Y,X〉
|X|2

X,X)

= Rm(X,Y, Y,X)

And the fact that Rm(X,X, ·, ·) = Rm(·, ·, X,X) = 0 is used, because of the symmetry property of the

curvature tensor. �

By defining the Gaussian curvature K as (4.1), we gain a way to define the Gaussian curvature for

abstract Riemannian 2-manifolds. Independent of how the manifold is embedded, not necessarily in

Euclidean space, that agrees with our previous definition of K for manifolds that are embedded in R3.



5 Gauss-Bonnet Theorem

We now have all the differential geometry theory needed in order to prove the first big result, the Gauss-

Bonnet theorem. For this proof we need two theorems, the rotation angle theorem which roughly says

that the tangent vector to a piecewise smooth curve rotates an angle of 2π. We will use this result to

proof the Gauss-Bonnet formula, a preliminary result of the Gauss-Bonnet formula. From this result

the step to the Gauss-Bonnet theorem is quite small and we will conclude with the implications of the

Gauss-Bonnet theorem.

5.1 Rotation angle theorem

We need a way to track the angular change of the tangent vector along a curve. So we will need to

introduce a few notions concerning angles along a curve. We will also first prove the theorem in the

plane and then extend all the definitions to manifolds, as that trivializes the proof on manifolds.

Definition 5.1. An admissible curve is a continuous map γ : [a, b]→M , such that there exists a finite

subdivision a = a0 < a1 < ... < al = b, γ(t) is a smooth curve for all t ∈ [ai−1, ai] and γ̇(t) 6= 0 for all

t ∈ [ai−1, ai].

In this chapter γ : [a, b] → R2 is a unit speed admissible curve in the plane. Such a curve γ is called

simple if it is injective on the interval [a, b), and closed if γ(a) = γ(b).

For a smooth curve γ we define the tangent angle θ(t) as the unique continuous map θ : [a, b] → R by

γ̇ = (cos(t), sin(t)) for all t ∈ [a, b] and with the property that θ(a) ∈ (−π, π].

This tangent angle exists, because γ̇ can be seen as a map from [a, b] to S1, since the tangent space to

R2 can be naturally identified with itself and γ is unit speed. By the path lifting property [Hat01, p.60]

the path γ̇ : [a, b]→ S1 can be lifted for the universal covering p : R→ S1 given by p(θ) = (cos θ, sin θ).

Then the tangent angle function θ is the unique continuous lift such that θ(a) ∈ (−π, π]. So from the

smoothness of γ̇ and the fact that p is a local diffeomorphism, it follows that θ is a smooth map.

If γ is a unit speed smooth closed curve with γ̇(t) 6= 0, for all t ∈ [a, b], and γ̇(a) = γ̇(b). Then the

rotation angle of γ, denoted by Rot(γ), is defined as Rot(γ) = θ(b) − θ(a). So the rotation angle is the

total amount of change in the tangent angle of the curve.

We can extend these definitions beyond smooth curves to admissible curves, at the points where the

change in tangent vector is not continuous there is a ’jump’ in tangent angle. So for admissible curves

we need to define exterior angles describing how big this jump is.

The exterior angle measures the change in tangent angle. Let ai be a point where the change in tangent

angle is not continuous, then the oriented angle εi from γ̇(a−i ) to γ̇(a+
i ) in the interval [−π, π]. This angle

23
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should have a positive sign if (γ̇(a−i ), γ̇(a+
i )) is an oriented basis for R2 and a negative sign otherwise.

If γ̇(a−i ) = −γ̇(a+
i ) we have no unambiguous way to choose between ±π so we will not consider curves

with angles of ±π.

From now on we want to consider curved polygons, which are simple, closed, piecewise smooth, unit speed

curve segments, whose exterior angles do not equal ±π. If a = a0 < a1 < ... < ak = b is a subdivision of

[a, b] the restrictions of γ|[ai−1,ai] are called the edges of the curved polygons and γ(ai) called its vertices.

Then by the Jordan curve theorem [Tve] the curve is the boundary of some open Ω ∈ R2. On smooth

pieces of γ, whenever γ̇ is consistent with the orientation induced from Stoke’s theorem, we call γ

positively oriented. Sometimes curved polygons are defined as the Ω of which γ is the boundary, but for

simplicity we will refer to γ as the curved polygon.

For a curved polygon γ we define the tangent angle θ : [a, b] → R to be the following: Starting with

θ(a) ∈ (−π, π] we define θ(t) for t ∈ [a, a1) to be the tangent angle defined as above, as the angle between
∂
∂x and γ̇(t). At the point γ(a1) define:

θ(a1) = lim
t→a1

θ(t) + ε1

Then define θ on [a1, a2) as above and continue this inductively for all i, until γ(b):

θ(b) = lim
t→b

θ(t) + εn

Taking the same definition of the rotation angle, Rot(γ) = θ(b) − θ(a), we can obtain the following

theorem on the rotation angle.

Theorem 5.2 (Rotation angle theorem). If γ is a positively oriented curved polygon in the plane, the

rotation angle of γ is 2π.

Proof. In the simplest case, the curved polygon has no exterior angles. Therefore γ̇ is continuous and

γ̇(a) = γ̇(b), so we can extend γ to a continuous map, with continuous first derivative, from R→ R2 by

requiring it to be periodic of period b− a.

By reparametrization we can consider γ as a function being defined on [a′, b′] of length b − a, without

changing Rot(γ). Picking a′ such that the y-coordinate of γ has a minimum for t = a′. For simplicity we

relabel the new interval to [a, b]. Also by translation we may as well think of γ(a) as the origin, without

changing the rotation angle. Then the y-coordinate of γ is bigger than 0, and γ̇(a) = γ̇(b) = ∂/∂x

The tangent angle function θ : [a, b] → R is continuous, because γ̇ is continuous. We can define a

continuous extension of the tangent angle function, the secant angle function ϕ(t1, t2)

Let T be the triangle T = {(t1, t2) : a 6 t1 6 t2 6 b}, and define the map V : T → S1 as:
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V (t1, t2) =


γ(t2)−γ(t1)
|γ(t2)−γ(t1)| if t1 6 t2 and (t1, t2) 6= (a, b)

γ̇(t1) if t1 = t2

−γ̇(a) if (t1, t2) = (a, b)

The map V is continuous along the line t1 = t2, because

lim
(t1,t2)→(t,t)

V (t1, t2) = lim
(t1,t2)→(t,t)

γ(t2)− γ(t1)

|γ(t2)− γ(t1)|

= lim
(t1,t2)→(t,t)

γ(t2)− γ(t1)

t2 − t1
/

∣∣∣∣γ(t2)− γ(t1)

t2 − t1

∣∣∣∣
= γ̇(t)/|γ̇(t)|

= V (t, t)

Where the last step follows, because γ is unit speed.

V is also continuous at (a, b) as:

lim
(t1,t2)→(a,b)

V (t1, t2) = lim
(t1,t2)→(a,b)

γ(t2)− γ(t1)

|γ(t2)− γ(t1)|

= lim
(t1,t2)→(a,b)

γ(t2)− γ(t1)

t2 − t1
/

∣∣∣∣γ(t2)− γ(t1)

t2 − t1

∣∣∣∣
= lim

(a,t2)→(a,b)

γ(t2)− γ(a)

t2 − a
/

∣∣∣∣γ(t2)− γ(a)

t2 − a

∣∣∣∣
= −γ̇(b)/|γ̇(b)|

= −γ̇(a)

= V (a, b)

Then from the fact that T is simply connected, the theory of covering spaces and the universal cover

p : R → S1 implies that V : T → S1 has a unique continuous lift we call ϕ : T → R, by requiring

ϕ(a, a) = 0. This functionϕ is called the secant angle function and represents the angle between the

x-axis and the vector from γ(t1) to γ(t2).

With this interpretation of the secant angle function we can express the rotation angle in terms of the

secant angle function

Rot(γ) = θ(b)− θ(a) = ϕ(b, b)− ϕ(a, a) = ϕ(b, b)

As ϕ(a, a) = 0. Looking at the part of T where t1 = a, the image of V lies in the upper half of S1,

therefore ϕ(a, t2) ∈ [0, π]. From this it follows that ϕ(a, b) = π, as ϕ is continuous and ϕ(a, b) represents

the angle between −γ̇(a) = −∂/∂x and ∂/∂x.

In the part of T where t2 = b, the image of V lies in the lower part of S1. Which implies ϕ(t1, b) ∈ [π, 2π],

so since ϕ(b, b) represents the angle between γ̇(a) = ∂/∂x and ∂/∂x ϕ(b, b) = k ·2π for some k ∈ Z. Then

by continuity ϕ(b, b) = 2π which proofs the desired result for curved polygons without exterior angles.

For curved polygons γ with exterior angles we proof the theorem, by proving that there exists a curve with
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continuous tangent vector with the same rotation angle as γ. Intuitively this curve will be constructed

rounding the corners of γ. In this part the interval [a, b] will be chosen such that at γ(a) = γ(b), γ̇(t) is

continuous, and we call points at which γ̇(t) is not continuous vertices.

Let γ(ai) be a vertex, εi the corresponding exterior angle and let α be a small positive number depending

on εi, we will define it later. θ(t) is continuous from the right by definition, and limt→a−i
θ(t) = θ(ai)−εi,

where the − sign denotes a limit from the left. From the definition of limit it follows that there exists

a δ small enough such that |θ(t) − (θ(ai) − εi)| < α when t ∈ (ai − δ, ai), and |θ(t) − θ(ai)| < α when

t ∈ (ai, ai + δ).

We can look at the set γ([a, b]− (ai− δ, ai + δ)) which is a compact set and γ 6∈ γ([a, b]− (ai− δ, ai + δ)),

so a small enough disk Br(ai) around γ(ai) with radius r can be chosen, such that γ(t) is only in Br(ai)

for t ∈ (ai − δ, ai + δ). Denote the times when γ enters and leaves the ball by t1, t2 ∈ (ai − δ, ai + δ)

respectively. From our choice of δ, the total change in tangent angle θ(t) for t ∈ [t1, ai) is smaller than

α, and the same holds for t ∈ (ai, t2]. This means by choosing α small enough, the total change ∆θ in

tangent angle between t1 and t2 is between εi − 2α and εi + 2α. So by choosing an α < 1/2(π− |εi|), we

get −π < ∆θ < π.

Now we can construct a smooth curve by following γ except for the interval [t1, t2], where γ can be

replaced by a smooth curve segment σ. Since for σ the tangent angle changes between γ̇(t1) and γ̇(t2),

must be exactly equal to ∆θ. By repeating this process for every vertex, we obtain the a smooth curve,

which is the edge of a curved polygon and which has the same rotation angle as γ, therefore completing

the proof.

Obviously we want to extend the definitions to oriented Riemannian 2-manifolds as the aim of this

chapter is to proof the Gauss-Bonnet theorem on 2-dimensional manifolds. For a Riemannian 2-manifold

(M, g) we begin with a curved polygon, which is a unit speed curve γ : [a, b] → M such that γ is the

boundary of some open set Ω with compact closure, and such that there is a coordinate chart containing

γ and Ω under whose image γ is a curved polygon in R2. Using the coordinates of the coordinate chart,

we can transfer γ,Ω and g to the plane and assume g is a metric on some open U ∈ R2.

Again we say that γ is positively oriented if the direction of the parametrization of γ is the same as

the direction of Stokes theorem on the boundary of Ω. The exterior angle εi at a vertex ai, a point

where γ̇ is not continuous, is defined as the angle from γ̇(a−i ) to γ̇(a+
i ). Combining the definition of

angles on a Riemannian manifold and the given the orientation on M , we getεi > 0 if (γ̇(a−i ), γ̇(a+
i )) is

a positively oriented frame for R2. The definition of tangent angle is in terms of angles, just as in R2 we

can define the tangent angle on pieces of [a, b] where γ̇ is continuous. The tangent angle θ : [a, b] → R
is defined as the continuous angle from ∂/∂x to γ̇, with respect to the metric g. The rotation angle is

Rot(γ) = θ(b)− θ(a). And the same theorem can be proven as in the plane.

Theorem 5.3. For a positively oriented curved polygon γ in M , the rotation angle is 2π.

Proof. By using the coordinate chart we can consider γ as a curved polygon in the plane and compare

the tangent angles on the Riemannian manifold and in the plane. So on the Riemannian manifold θ is

a function of g, while in the plane it is a function of the Euclidean metric. In both cases, Rot(γ) = 2πl,

for l ∈ Z, as θ(a) and θ(b) represent the same angle, because γ̇(a) = γ̇(b).
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Now define gs = sg + (1 − s)g, for 0 6 s 6 1. From the same reasoning as for the other metrics

Rotgs(γ) = 2πl′, for l′ ∈ Z. So the function 1/2πRotgs(γ) is continuous and integer valued, therefore

must be constant and equal to 2π.

5.2 Gauss-Bonnet Formula and Theorem

We have done all the plane geometry necessary to prove the Gauss-Bonnet theorem. As mentioned

before we will do this with the help of the Gauss-Bonnet formula as this relates the Gaussian curvature

of a curved polygon to its signed curvature and exterior angles, a result that is already similar to the

Gauss-Bonnet theorem.

In our 2-dimensional manifold, on segments where γ is smooth, each point of γ has a normal vector,

which is unique up to a minus sign. So there exists a normal vector field N(t). By adding the condition

that (γ̇(t), N(t)) is an oriented orthonormal basis for Tγ(t)M we get a unique normal vector field to γ.

The vector field N(t) can then be thought of as the inward pointing normal vector.

We define the signed curvature κN (t) at smooth points of γ by

κN (t) = 〈Dtγ̇(t), N(t)〉

As the name suggests, there also exists a curvature κ. And the relation between the signed curvature and

the curvature κ is κ(t) = |κN (t)|. It can be seen from differentiating |γ̇(t)|2 ≡ 1, that 〈Dtγ̇(t), γ̇(t)〉 = 0.

Therefore Dtγ̇(t) = κN (t)N(t) follows. Now we have everything we need for the statement and proof of

the Gauss-Bonnet theorem.

Theorem 5.4 (Gauss-Bonnet Formula). Suppose γ is a curved polygon on an oriented Riemannian

2-manifold (M,g), and γ is positively oriented as the boundary of an open set Ω with compact closure.

Then

∫
Ω

KdA+

∫
γ

κNds+
∑
i

εi = 2π (5.1)

With K the Gaussian curvature of g and dA its Riemannian volume element.

Proof. Let a = a0 ≤ ... ≤ ak = b be a subdivision into parts of [a, b] such that γ is smooth on these

parts. From the rotation angle theorem, and the fact that the rotation angle is the sum of all exterior

angles plus the total change in tangent angle on the smooth parts of γ we get

2π =

k∑
i=1

εi +

k∑
i=1

∫ ai

ai−1

θ̇(t)dt (5.2)

The Gauss-Bonnet formula will now be derived from expressing θ̇ in terms of K,κN .

First we will obtain an expression for κN , from the coordinates of the coordinate chart containing γ, we
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can obtain (x, y) oriented coordinates on the open U containing γ. Applying Gram-Schimdt algorithm

to the frame (∂/∂x, ∂/∂y) results in an oriented orthonormal frame we call (E1, E2), where E1 is in the

direction of ∂/∂x. Using the fact that θ(t) is defined as the angle between E1 and γ̇(t) with respect to

g, we get the following relations on points where γ is smooth

γ̇(t) = cosθ(t)E1 + sinθ(t)E2

N(t) = −sinθ(t)E1 + cosθ(t)E2

Differentiating the first relation yields

Dtγ̇ = −θ̇(sinθ)E1 + (cosθ)∇γ̇E1 + θ̇(cosθ)E2 + (sinθ)∇γ̇E2

= θ̇N + (cosθ)∇γ̇E1 + (sinθ)∇γ̇E2

(5.3)

We also need the relations obtained from the covariant derivatives of E1 and E2.

0 = ∇X |E1|2 = 2〈∇XE1, E1〉

0 = ∇X |E2|2 = 2〈∇XE2, E2〉

0 = ∇X〈E1, E2〉 = 2〈∇XE1, E1〉

Where the last one is true, because (E1, E2) is orthonormal.

Because the tangent space at each point is 2-dimensional, the first equation implies that ∇XE1 is a

multiple of E2 and ∇XE2 is a multiple of E1. Therefore the 1-form ω defined by

ω(X) = 〈E1,∇XE2〉 = −〈E1,∇XE2〉

Therefore by the definition of ω

∇XE1 = −ω(X)E2

∇XE2 = −ω(X)E1

(5.4)

So ω completely determines the connection in U . Combining the results (5.3) and (5.4) we can compute

κN

κN = 〈Dtγ̇, N〉

= 〈θ̇N,N〉+ cosθ〈∇γ̇E1, N〉+ sinθ〈∇γ̇E2, N〉

= θ̇ − cosθ〈ω(γ̇)E2, N〉+ sinθ〈ω(γ̇)E1, N〉

= θ̇ − cos2θω(γ̇)− sin2θω(γ̇)

= θ̇ − ω(γ̇)
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Thus (5.2) can be rewritten to

2π =

k∑
i=1

εi +

k∑
i=1

∫ ai

ai−1

κN (t)dt+

k∑
i=1

∫ ai

ai−1

ω(γ̇(t))dt

=

k∑
i=1

εi +

∫
γ

κNds+

∫
γ

ω

It remains to be shown that ∫
γ

ω =

∫
Ω

KdA (5.5)

We can use Stoke’s theorem to smooth curves γj , obtained from a construction similar to the curve

obtained in the proof of the rotation angle theorem, whose length approach the length of γ and which

are the boundary of Ωj , whose area approaches that of Ω. By taking the limit for j → ∞, we get∫
γ
ω =

∫
Ω
dω.

What is left is to show that dω = KdA. Which follows from a straightforward calculation.

KdA(E1, E2) = K = RM(E1, E2, E2, E1)

= 〈∇E1
∇E2

E2 −∇E2
∇E1

E2 −∇[E1,E2]E2, E1〉

= 〈∇E1(ω(E2))E1 −∇E2(ω(E1))E1 − ω[E1, E2]E1, E1〉

= 〈E1(ω(E2))E1 + ω(E2)∇E1
E1 − E2(ω(E1))E1

− ω(E1)∇E2E1 − ω[E1, E2]E1, E1〉

= E1(ω(E2))− E2(ω(E1))− ω[E1, E2]

= dω(E1, E2)

The Gauss-Bonnet formula can already be used for geometric results in the plane, such as the following:

1. The sum of the interior angles of a Euclidean triangle is π.

2. The circumference of a Euclidean circle of radius R is 2πR.

1. Follows by writing the exterior angles in terms of the interior angles. While for 2. you need to know

that the signed curvature of the sphere is 1/R.

But we will use the Gauss-Bonnet formula to proof the Gauss-Bonnet theorem, which links the Euler

characteristic with the curvature. Therefore we will first need to triangulate the surface.

A triangulation of M is a finite collection of 3-sided curved polygons, such that when (Ωj) denotes

the area bounded by a triangles, and such that the union of Ω̄j is M . Together with the condition

that the intersection of 2 triangles is either empty, a single vertex, or a single edge. It was proven

by Tibor Radò [Rad25] that every 2-dimensional topological manifold admits a triangulation, so every

2-dimensional Riemannian manifold admits a triangulation.
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Definition 5.5. For a triangulated 2-dimensional manifold M , the Euler characteristic is defined as

χ(M) = Nv −Ne +Nf

Where Nv,Ne and Nf are defined as the number of vertices, edges and faces of the triangulation of M .

The Euler characteristic is a topological invariant and independent of the triangulation [Sie92]

Theorem 5.6 (The Gauss-Bonnet theorem). If M is a compact, oriented, Riemannian 2-manifold, then∫
M

KdA = 2πχ(M)

Proof. Denote each face the triangulation by Ωi; i = 1, ..., N . As each triangle has 3 edges, denote the

edges of the i-th triangle by γij : j = 1, 2, 3 and its interior angles by θij ; j = 1, 2, 3. We can express the

interior angles in terms of exterior angles, each interior angle is π minus the corresponding exterior angle.

Now we can use the Gauss-Bonnet formula on the individual triangles and sum over them

Nf∑
i=1

∫
Ωi

KdA+

Nf∑
i=1

3∑
j=1

∫
γij

κNds+

Nf∑
i=1

3∑
j=1

(π − θij) =

Nf∑
i=1

2π (5.6)

The 2nd term is zero, because each edge is the boundary of exactly 2 triangles. And the orientation of

the edges is opposite therefore the integrals of κN cancels out. Also the faces add up to M , so (5.6)

becomes:

∫
M

KdA+ 3πNf −
Nf∑
i=1

3∑
j=1

(θij) = 2πNf

Furthermore, at each vertex the sum of all the interior angles is 2π. And as each interior angle appears

only once we get ∫
M

KdA = 2πNv − πNf

To rewrite this in terms of the Euler characteristic note that the total number of edges is three times

the number of faces, but as each edge is part of 2 triangles, the total number of edges is 2Ne = 3Nf . So

Nf = 2Ne − 2Nf , this means that∫
M

KdA = 2πNv − 2πNe + 2πNf = 2πχ(M)

The Gauss-Bonnet theorem can be combined with the classification theorem for compact 2-manifolds,

see for example [Mas67, Theorem I.5.1]. Which states that every compact orientable 2-manifold is

homeomorphic to a sphere or the connected sum of tori, and every nonorientable compact 2-manifold is

homeomorphic to the connected sum of projective planes. This yields the following corollary.

Corollary 1. Let M be a compact Riemannian 2-manifold and K its Gaussian curvature.

• if M is homeomorphic to the sphere or the projective plane then K > 0 somewhere.
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• If M is homeomorphic to the torus or the Klein bottle, then either K ≡ 0 or K takes on both

positive and negative values.

• If M is any other compact surface, then K < 0 somewhere.

Proof. First not that the Euler characteristic of a sphere is 2, for a connected sum of tori the Euler

characteristic is 2 − 2g, where g is the number of tori and for the connected sum of projective spaces

the Euler characteristic is 2 − g, with g the number of projective spaces. Then if M is orientable the

corollary follows immediately by the Gauss-Bonnet theorem.

If M is nonorientable the result follows by applying the Gauss-Bonnet theorem to the orientable double

cover π : M̃ → M with the lifted metric g̃ = π∗g, using the fact that M̃ is the sphere if M = P2, the

torus if M is the Klein bottle, and otherwise has χ(M̃) < 0.



6 Comparison Theorems

The aim of this chapter will be the proof of the Cartan-Hadamard theorem. This theorem will be

proven with the help of the theory of Jacobi fields, which requires three concepts to be defined first.

The concepts of geodesics, which are the generalization of straight lines to manifolds, the definition of

distances on Riemannian manifolds and also the exponential map, a map that maps tangent vectors

to the manifold by following a geodesic in the direction of said tangent vector. With the definitions of

distances and exponential map the Hopf-Rinow theorem will be stated, which says that for a connected

Riemannian manifold geodesical completeness and completeness as a metric space are equivalent. This

theorem allows us to define a single notion of completeness, which will be used in the Cartan-Hadamard

theorem.

6.1 Geodesics

Now we start off with geodesics, this can be defined in terms of the operator D, but also in terms of

parallel vector fields. The latter approach has the advantage that existence and uniqueness come quite

naturally.

Given a curve γ a vector field V along γ is said to be parallel if V̇ ≡ 0.

Theorem 6.1 (Existence and uniqueness of parallel vector fields). If t0 ∈ I and V ∈ Tγ(t0)M , then

there is a unique parallel vector field V (t) defined on all of I with V (t0) = V

Proof. Begin by choosing a vector fields that form a basis for Tγ(t)M , denote the basis by E1(t), ..., En(t).

Then any vector field V (t) along γ can be written in the form, V (t) =
∑
V i(t)Ei(t).

d

dt
V = DtV (t) = V̇ i(t)Ei(t) + V i(t)∇γ̇Ei(t)

= V̇ i(t)Ei(t) + V i(t) · αji (t)Ej(t), where ∇γ̇Ei =
∑

αjiEj

= V̇ j(t) + V i(t)αji (t))Ej(t)

So V is parallel whenever for all j

V̇ j(t) = V i(t)αji (t)

From the theory of ordinary differential equations it follows that these equations have a unique solution

given initial values (V i(t0)).

A curve γ : I → M is called a geodesic if γ̇(t) is parallel along γ, or equivalently if Dtγ̇(t) ≡ 0. For a

geodesic γ, |γ̇| is constant, and whenever |γ̇| ≡ 1 we say that γ is parametrized by arc length. Geodesics

32
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are the equivalent to straight lines in Euclidean geometry. First of all we will prove that at every point

there is a unique geodesic in each direction.

Theorem 6.2 (Existence and uniqueness of Geodesics). Let M be a manifold with a linear connection.

For any p ∈ M , and any V ∈ TpM , there exists an open interval I ⊂ R containing 0 and a unique

geodesic γ : I →M satisfying γ(0) = p, γ̇(0) = V .

Proof. Given a coordinate chart ϕ : U → Rn on an open U containing p with coordinate vector fields

∂1, ..., ∂n, ∂i = ∂/(∂xi). Recall that

∇∂i∂j =

n∑
k=1

Γkij∂k

Then consider a curve γ : I → U for which we can write (ϕ ◦ γ)(t) = (ϕ1(t), ..., ϕn(t)). And γ̇(t) can be

written as γ̇(t) = ϕ̇i(t)∂i|γ(t). Then using the definition of the covariant derivative along curves we get

γ̈ = ϕ̈i∂i|γ(t) + ϕ̇i(t)∇γ̇∂i

= ϕ̈i∂i|γ(t) + ϕ̇i(t)ϕ̇j(t)Γkij |γ(t)∂k|γ(t)

So the curve is a geodesic if and only if its component functions satisfy the geodesic equations:

ϕ̈k(t) + ϕ̇i(t)ϕ̇j(t)Γkij |ϕ−1(ϕ1(t),...,ϕn(t))

As this is a system of second-order differential equations, existence and uniqueness is guaranteed for

initial values of ϕi(0) and ϕ̇i(0), but because the system is not linear the solutions do not have to exist

for all t.

The uniqueness of geodesics ensures that there always exists a maximal geodesic for each combination

of a point p ∈ M and starting velocity V ∈ TpM . This geodesic is usually denoted by γV , where

the information of the starting point p is already embedded in V and can be recovered by the natural

projection from TM →M which sends V → p.

6.2 Distance on Riemannian manifolds

The metric g comes naturally with a notion of vector length. Similar to Rn we can integrate the length

of the tangent vector of a curve to define the length of this curve. Because contrary to Euclidean space,

there is no immediate distance function between points, so now we will construct this distance function.

Suppose γ is a piecewise smooth curve on (M, g), e.g. γ : [a, b]→M and there exists a finite subdivision

of [a, b] on which γ is smooth. Then define the length l(γ) as follows

l(γ) =

∫ b

a

|γ̇(t)|dt =

∫ b

a

(g(γ̇(t), γ̇(t))1/2dt

From the definition of piecewise smooth it is clear that the function t → |γ̇(t)| is integrable, there-
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fore l(γ) is well-defined and nonnegative. It can also be shown that this definition is invariant under

reparametrization of the curve. For let γ̃ be a reparametrization of γ, γ̃ = γ ◦ ϕ for a smooth map

ϕ : [c, d]→ [a, b] with smooth inverse.

l(γ̃) =

∫ d

c

| ˙̃γ(s)|ds =

∫ d

c

∣∣∣∣γ̇(ϕ(s))
dϕ(s)

ds

∣∣∣∣ds =

∫ b

a

|γ̇(t)|dt = l(γ)

Where the integral was reparametrized by ϕ(s) = t. A piecewise smooth curve γ : [a, b]→ M is said to

be parametrized by arc length if l(γ|[a,λ]) = λ− a for all λ ∈ [a, b] or equivalently if |γ̇| = 1 at all smooth

points t ∈ [a, b]. A piecewise smooth curve can always be reparametrized by arc length if at smooth

points of the curve |γ̇(t)| > 0. By defining the function ϕ(s).

ϕ(s) =

∫ s

a

|γ̇(t)|dt

one gets the reparametrization by arc length of γ to be γ ◦ϕ−1 : [0, l(γ)]→M . This shows that one can

consider only piecewise smooth curves parametrized by arc length, without any loss of generality.

For any pair p, q ∈ M we can define the space of curves between these points , which we call the path

space Ω.

Ω(p, q) = {γ : [0.1]→M : γ is piecewise smooth and γ(0) = p, γ(1) = q}

Then we define the distance function d between points p, q ∈M as

d(p, q) = inf{l(γ) : γ ∈ Ω(p, q)}

It is obvious from the definition that d(p, q) = d(q, p) ≥ 0, d(p, p) = 0 and d(p, q) ≤ d(p, r) + d(r, q)

(curves from p to r and r to q can always be combined and reparametrized to form a curve from p to q).

We still need to check that d(p, q) = 0 only if p = q. Suppose we have p 6= q with d(p, q) = 0. Choose

a chart ϕ : U → V around p such that q is not in U . Then we can choose δ > 0 and C > 0 such that

on Bδ(ϕ(p)) ⊂ V , g(W,W ) ≥ C|Dϕ(W )|2, for W ∈ TpM . Therefore for points r in ϕ−1(Bδ(ϕ(p)), we

have d(p, r) ≥ C|ϕ(p) − ϕ(r)| But for q outside this set, any curve from p to q must first pass through

ϕ−1(∂B(ϕ(p)) with ∂B the boundary of the sphere. So therefore this curve must have at least length

Cδ.

Via the metric we can define various balls, the definitions are the same as for Euclidean balls

B(p, r) = {x ∈M : d(p, x) < r}

B̄(p, r) = D(p, r) = {x ∈M : d(p, x) ≤ r}

A curve γ ∈ Ω(p, q) is called a segment if l(γ) = d(p, q) and γ is parametrized by arc length.



CHAPTER 6. COMPARISON THEOREMS

6.3 Exponential Map

This allows to define a map known as the exponential map, a map from the tangent bundle to M , by

following γV for t = 1. More explicitly define the domain of the exponential map, known as E .

E = {V ∈ TM : γV is defined on an interval containing [0, 1]}

And the exponential map, exp : E →M

exp(V ) = γV (1)

Notice that γαV (t) = γV (αt), for α > 0 whenever the geodesic is defined γV is defined for αt. For each

p ∈ M the domain can be restricted to Ep = E ∩ TpM to define the map expp : Ep → M . The theory of

ordinary differential equations tells us that the exponential map is smooth and that E is open in TM ,

therefore each Ep is open and expp is smooth.

The next result is an important property of the exponential map.

Lemma 6.3. If p ∈ M and 0 denotes the zero vector in TpM , then expp : T0(TpM) → TpM is

nonsingular. Consequently, there is an open neighborhood U of 0 in TpM such that expp : Up →M is a

local diffeomorphism of Up onto expp(Up) ⊂M . Or in other words, expp is a local diffeomorphism.

Proof. There is a canonical isomorphism, between TpM and T0(TpM). We will call the isomorphism

I0 : TpM → T0TpM , e.g. I0(V ) = d
dt (tV )|t=0. Recall if V ∈ Ep then γV (t) = γtV (1) for all t ∈ [0, 1].

Therefore

(expp)∗(I0(V )) =
d

dt
expp(tV )|t=0

=
d

dt
γtV (1)|t=0

=
d

dt
γV (t)|t=0

= γ̇V (0)|t=0

= V

So (expp)∗ ◦ I0 = Id as a map from TpM to TpM , so in particular (expp)∗ is nonsingular. Therefore the

Lemma follows by the inverse function theorem.

This yields coordinates around p, by identifying TpM and Rn via an isomorphism. For a neighborhood

p ∈ U

exp−1
p : expp(U)→ TpM ' Rn

This coordinate system is called normal coordinates at p, and they are unique up to the isomorphism. By

requiring the identification to be a linear isometry the uniqueness is up to orthogonal transformations of

Rn. Furthermore if ε > 0 is small enough such that expp is a diffeomorphism on the ball B(0, ε) ⊂ TpM ,

then the image of this ball under the exponential map expp(Bε(0)) is called a geodesic ball in M and its
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boundary is called a geodesic sphere. On the geodesic sphere we have the function f(x) = |exp−1
p (x)|

is the distance from the origin in B(0, ε) ⊂ TpM , this Euclidean distance is usually denoted by r(V ) =

|V | = (
∑
i(V

i)2)1/2, and in a Cartesian coordinate chart on TpM , ∂r = xi

r
∂
∂xi .

A straightforward result of lemma (6.3) is that in normal coordinates γV (t) = (tV 1, ..., tV n).

Next I want to mention completeness of Riemannian manifolds, a manifold on which all geodesics are de-

fined for all time is equivalent to that manifold being a complete metric space. This result is fundamental

in Riemannian geometry and is called the Hopf-Rinow theorem.

Theorem 6.4 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold then the following state-

ments are equivalent:

1. M is geodesically complete

2. M is complete as a metric space.

I do not want to proof this theorem here as it is quite a long proof, so for that I refer to [Lee97]. Because

of the Hopf-Rinow theorem we can simply refer to a Riemannian manifold that satisfies either property

as a complete manifold, and we will need the notion of a complete manifold in the chapter on comparison

theorems.

6.4 Jacobi Fields

In this section we will look at families of geodesics, and vector fields along them. And we will focus on

special vector fields that satisfy the Jacobi equation, as the theory of Jacobi fields allows us to proof the

Cartan-Hadamard theorem.

We start off by defining an admissible family of curves as a continuous map Γ : (−ε, ε) × [a, b] → M

that is smooth on each set of the form (−ε, ε) × [ai−1, ai] for a finite subdivision of [a, b] and such that

the main curves Γs(t) defined as Γs(t) := Γ(s, t), by setting s constant, is an admissible curve. An

admissible curve is a piecewise smooth curve with nonzero first derivative at all t. The transverse curves

Γt(s) := Γ(s, t) can be defined in the same way by setting t constant. Then the partial derivatives

∂tΓ(s, t) :=
d

dt
Γs(t) ∂sΓ(s, t) :=

d

ds
Γt(s)

are vector fields along the main and transverse curves of the admissible family, defined whenever Γ is

smooth.

Lemma 6.5 (Symmetry Lemma). Let Γ : (−ε, ε) × [a, b] → M be an admissible family of curves in a

Riemannian manifold. On any rectangle (−ε, ε)× [ai−1, ai] where Γ is smooth,

Ds∂tΓ = Dt∂sΓ

Proof. We proof this lemma by computing the derivatives of Γ at a point (s0, t0). Denote the components
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of Γ in coordinates (xi) as Γ(s, t) = (x1(s, t), ..., xn(s, t))

∂tΓ =
∂xk

∂t
∂k ∂sΓ =

∂xk

∂s
∂k

And the covariant derivatives of these terms is

Ds∂tΓ =

(
∂2xk

∂s∂t
+
∂xi

∂t

∂xj

∂s
Γkji

)
∂k

Dt∂sΓ =

(
∂2xk

∂t∂s
+
∂xi

∂s

∂xj

∂t
Γkji

)
∂k

To see that these expressions are equal we can reverse the role of i, j, by symmetry Γkij = Γkji and

therefore the desired result follows.

Theorem 6.6 (The Gauss Lemma). Let U , be a geodesic ball centered at p. The unit radial vector field

∂/∂r is orthogonal to the geodesic spheres in U .

Proof. Let q ∈ U and pick a vector X ∈ TqM which is tangent to the geodesic sphere through q.

As the exponential map is a diffeomorphism, there are vectors V ∈ TpM such that q = exppV and

W ∈ TV (TpM) = TpM such that X = (expp)∗W . By how V and W are chosen it follows immediately

that V ∈ ∂BR(0) and W ∈ TV ∂BR(0) for R = |V |. Because of this diffeomorphism the image of the

geodesic from p to q is the exponential map of V , therefore the geodesic γ from p to q γ(t) = expp(tV ),

with tangent vector γ̇(t) = R ∂
∂r . We call this geodesic the radial geodesic from p to q. So proving Gauss

lemma is equivalent to showing that X is orthogonal to γ̇.

This will be done by choosing a curve δ : (−ε, ε) → TpM in ∂BR(0) satisfying δ(0) = V and δ̇(0) = W .

Then consider the following variation Γ of γ

Γ(s, t) = expp(tδ(s))

As |δ(s)| = R for each s ∈ (−ε, ε), this implies Γs is a geodesic with constant speed R. Recall that

S = ∂sΓ and T = ∂tΓ, then the following equations hold

S(0, 0) =
d

ds

∣∣∣
s=0

expp(0) = 0

T (0, 0) =
d

dt

∣∣∣
t=0

expp(tδ(0)) =
d

dt

∣∣∣
t=0

expp(tV ) = V

S(0, 1) =
d

ds

∣∣∣
s=0

expp(δ(s)) = (expp)∗δ̇(0) = X

T (0, 1) =
d

dt

∣∣∣
t=1

expp(tδ(0)) =
d

dt

∣∣∣
t=1

expp(tV ) = γ̇(1)

Now we can look at the inner product 〈S, T 〉 = 0 at the point (s, t) = (0, 0) and 〈S, T 〉 = 〈X, γ̇(1)〉 at

(s, t) = (0, 1). Furthermore, the following computation shows that this inner product is independent of t

∂

∂t
〈S, T 〉 = 〈DtS, T 〉+ 〈S,DtT 〉

= 〈DsT, T 〉+ 0

=
1

2

∂

∂s
|T |2 = 0
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The steps that were used in this equation are: the symmetry lemma, Γs is a geodesic which implies

DtT ≡ 0 and |T | = |Γ̇s| ≡ R. So because 〈S, T 〉 = 0 as it is independent of t, 0 = 〈S, T 〉 = 〈X, γ̇(1)〉.

Given a variation Γ of γ, such that Γ0(t) = γ(t), a proper variation is one such that Γs(a) = γ(a) and

Γs(b) = γ(b) for all s. The variation field of Γ is the vector field V (t) = ∂sΓ(0, 1) along γ, a vector field

along γ is proper if it vanishes at the endpoints of γ.

Suppose now that γ : [a, b] → M is a geodesic, and Γ : (−ε, ε) × [a, b] → M is a variation of γ. We say

that Γ is a variation through geodesics if each of the main curves Γs(t) is also a geodesic. Then by the

definition of geodesics we know that Dt∂tΓ(s, t) ≡ 0. And taking the covariant derivative with respect

to s yields DsDt∂tΓ(s, t) ≡ 0.

For simplicity we adapt the notation T (s, t) = ∂tΓ(s, t) and S(s, t) = ∂sΓ(s, t) in this notation the last

equation becomes DsDtT ≡ 0. To relate that equation to the variation field we need to commute the

covariant derivatives.

Lemma 6.7. If Γ is any smooth admissible family of curves, and V is a smooth vector field along Γ,

then

DsDtV −DtDsV = R(S, T )V

Proof. In suitable coordinates we can write V (s, t) = V i(s, t)∂i, calculating its second covariant derivative

gives

DtV =
∂V i

∂t
∂i + V iDt∂i

DsDtV =
∂2V i

∂s∂t
∂i +

∂V i

∂t
Ds∂i +

∂V i

∂s
Dt∂i + V iDsDt∂i

DtDsV =
∂2V i

∂t∂s
∂i +

∂V i

∂s
Dt∂i +

∂V i

∂t
Ds∂i + V iDtDs∂i

Because V is smooth, substracting these terms gives

DsDtV −DtDsV = V i(DsDt∂i −DtDs∂i) (6.1)

If we denote the coordinate functions of Γ(s, t) by xj(s, t), then we can write S and T as

S =
∂xj

∂s
∂j T =

∂xk

∂t
∂k

Because Dt is the covariant derivative along the curve Γt and the fact that ∂i is extendible we can write

Dt∂i according to the definition of covariant derivatives along curves as

Dt∂i = ∇T∂i =
∂xk

∂t
∇∂i∂j
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Because ∇∂i∂j is also extendible

DsDt∂i = Ds

(
∂xk

∂t
∇∂k∂i

)
=
∂2xk

∂s∂t
∇∂k∂i +

xk

∂t
∇S (∇∂k∂i)

=
∂2xk

∂s∂t
∇∂k∂i +

xk

∂t

xj

∂s
∇∂j∇∂k∂i

The other term in the commutator has the j, k interchanged, so the commutator becomes

DsDt∂i −DtDs∂i =
xk

∂t

xj

∂s

(
∇∂j∇∂k∂i −∇∂j∇∂k∂i

)
=
xk

∂t

xj

∂s
R(∂k, ∂j)∂i

= R(S, T )∂i

Where the last equality is true by linearity of the curvature. Combining this with (6.1) proofs the

lemma.

Theorem 6.8 (The Jacobi Equation). Let γ be a geodesic and V a vector field along γ. If V is the

variation field of a variation through geodesics, then V satisfies

D2
tV +R(V, γ̇)γ̇ = 0 (6.2)

Proof. By the symmetry lemma

0 = DsDtT = DtDsT +R(S, T )T

= DtDtS +R(S, T )T

This expression yields the theorem when evaluated at s = 0, because there S(0, t) = V (t), T (0, t) =

γ̇(t).

As the name suggests, equation (6.2) defines what is known as a Jacobi field, which is any vector field

for which the Jacobi equation holds.

Lemma 6.9 (Existence and Uniqueness of Jacobi Fields). Let γ : I → M be a geodesic, a ∈ I, and

p − γ(a). For any pair of vectors X,Y ∈ TpM , there is a unique Jacobi field J along γ satisfying the

intial conditions

J(a) = X DtJ(a) = Y

Proof. Begin by choosing an orthonormal basis {Ei} for TpM and extend it to a parallel orthonormal

frame along γ. Substituting J = J iEi into the Jacobi equation gives

J̈ i +RijklJ
j γ̇kγ̇l = 0

This is just a system of linear second order ordinary differential equations and can be turned into a system

of first order ODEs by substituting V i = J i. Therefore the theory of differential equations guarantees
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uniqueness and existance of Jacobi fields.

Because of the preceding proposition, for some point p on γ, the map from the set of Jacobi fields along

γ to TpM ⊕ TpM by sending J → (J(a), DtJ(a)) is bijective. So the dimension of the set of all Jacobi

fields along a geodesic is 2n, and it also is a linear subspace of T (γ).

Lemma 6.10. Let γ : I → M be a geodesic, and a ∈ I. A Jacobi field J along γ is normal if and only

if J(a) ⊥ γ̇(a) and DtJ(a) ⊥ γ̇(a)

Proof.

d2

dt2
〈J, γ̇〉 = 〈D2

t J, γ̇〉

= −〈R(J, γ̇)γ̇, γ̇〉

= −Rm(J, γ̇, γ̇, γ̇) = 0

This implies that 〈J, γ̇〉 is linear in t. Denote f(t) = 〈J(t), γ̇(t)〉, then J(a) and DtJ(a) are both

orthogonal to γ̇(a) if and only if f and its first derivative vanish at a. f and ḟ vanish at a if and only if

f vanishes at two points and is therefore 0 everywhere.

From this lemma it follows that the dimension of the space of normal Jacobi fields is 2(n− 1).

The converse of (6.2) is also true, therefore each Jacobi field tells us how some family of geodesics locally

behaves.

Lemma 6.11. Any Jacobi field J along a geodesic segment γ(t) is the variation field of some variation

of γ through geodesics.

Proof. Let σ : (−ε, ε)→ M be a curve with σ(0) = γ(0), and σ̇(0) = J(0) , also let W be a vector field

along σ(s) satisfying W (0) = DtJ(0). Then define a variation through geodesics of γ as

Γ(s, t) = expσ(s)tsW (s)

Then the variation field of Γ, ∂sΓ(s, t)|s = 0. Then Γ(s, 0) = expσ(s)0 = σ(s) so its variation field here is

∂sΓ(s, 0)|s = 0 = σ̇(0) = J(0)

Dt∂sΓ(s, t)
∣∣
s=0,t=0

= Ds∂tΓ(s, t)
∣∣
s=0,t=0

Where

∂tΓ(s, t)
∣∣
t=0

= (expσ(s))∗(sW (s)) = sW (s)

Because (expσ(s))∗ is the identity map at the origin of Tσ(s)M . Using these resultsDtJ(0) = Dt∂sΓ(s, t)
∣∣
s=0,t=0

=

W (s)
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But the variation field is also a Jacobi field as it is a variation field through geodesics. Therefore

uniqueness of Jacobi fields proofs the lemma.

The next lemma shows how to calculate Jacobi fields in normal coordinates on U , where γV (t) =

(tV 1, ..., tV n).

Lemma 6.12. Let p ∈M , with normal coordinates (xi) on a neighborhood U of p, and let γ be a radial

geodesic, as in the proof of the Gauss Lemma, starting at p. For any W ∈ TpM the Jacobi field J along

γ such that J(0) = 0 and DtJ(0) = W is given in normal coordinates by the formula

J(t) = tW i∂i

Proof. By defining V = γ̇(0) ∈ TpM , then we know that γ(t) = (tV 1, ..., tV n) and we can consider the

variation of γ given by

Γ(s, t) = (t(V 1 + sW 1), ..., t(V n + sWn))

For each s this is a geodesic, so Γ is a variation through geodesics. Therefore its variation field ∂sΓ is a

Jacobi field. ∂
∂sΓ(s, t) = J(t)

Whenever a metric has constant sectional curvature, another explicit formula can be derived for Jacobi

fields. Which gives Jacobi fields in terms of parallel vector fields.

Lemma 6.13. Suppose (M,g) is a Riemannian manifold with constant sectional curvature C, and γ is

a unit speed geodesic in M . The normal Jacobi fields along γ vanishing at t = 0 are precisely the vector

fields

J(t) = u(t)E(t)

Where E is a parallel normal vector field along γ, and u(t) is

u(t) =


t if C = 0

R sin t
R for C = 1

R2 > 0

R sin t
R for C = − 1

R2 < 0

Proof. First consider a Riemannian manifold with constant sectional curvature. Then it can be shown

that the following equality holds

R(X,Y )Z = C(〈Y, Z〉X − 〈X,Z〉Y )

By considering the
(

4
0

)
- tensor.

Q(X,Y, Z,W ) = 〈X,W 〉〈Y, Z〉 − 〈Y,W 〉〈X,Z〉

Then for all X,Y ∈ TpM , by definition of the sectional curvature

Rm(X,Y, Y,X) = C(|X|2|Y |2 − 〈X,Y 〉2) = CQ(X,Y, Y,X)
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It can easily be checked that Q has the symmetries of the curvature tensor. Then by using [Lee97, Lemma

8.9] we can conclude that Rm = Q or in other words

Rm(X,Y, Z,W ) = CQ(X,Y, Z,W )

Therefore

R(X,Y )Z = C(〈Y, Z〉X − 〈XZ〉Y )

Substituting this into the Jacobi equation gives for a normal Jacobi field J

0 = D2
t J + C(〈γ̇, γ̇〉J − 〈J, γ̇〉γ̇)

= D2
t J + CJ

Let E be a normal parallel vector field along γ, then J(t) = u(t)E(t) for some function u. Then J is a

Jacobi field provided u satisfies

ü(t) + Cu(t) = 0

With initial condition u(0) = 0, this yields constant multiples of the functions given in the theorem

above. This construction actually gives all normal Jacobi fields vanishing at 0, since the there is a (n−1)

dimensional space of them, and the space of parallel normal vector fields has dimension (n − 1). And

the dimension of the space of normal Jacobi fields in 2(n− 1).

6.5 Comparison Theorems

In this section results will be proven regarding curvature, the most important result will be the Cartan-

Hadamard theorem, which states that for a simply connected manifold with non-positive sectional cur-

vature is diffeomorphic to Euclidean space via the exponential map.

We begin with a result known as the Sturm comparison theorem, a classical comparison theorem for

ordinary differential equations.

Theorem 6.14 (Sturm Comparison Theorem). Suppose u and v are differentiable real-valued functions

on [0, T ], and twice differentiable on (0, T ), and u > 0 on (0, T ). Suppose also that the following equations

are satisfied

ü(t) + a(t)u(t) = 0

v̈(t) + a(t)v(t) = 0

u(0) = v(0) = 0, u̇(0) = v̇(0) > 0

for some a : [0, T ]→ R. Then v(t) ≤ u(t) on [0, T ].

Proof. Consider f(t) = v(t)/u(t) as a function on (0, T ). Using l’Hôpital’s rule on f gives limt→0 f(t) =

v̇(0)/u̇(0) = 1. Also ḟ = d
dt
v
u = v̇u−vu̇

u2 , notice that ḟ > 0. As the numerator at t = 0 is v̇(0)u(0) −
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v(0)u̇(0) = 0, and has nonnegative derivative

d

dt
(v̇u− vu̇) = v̈u+ v̇u̇− v̇u̇− vü = v̈u+ avu ≥ 0

Combining ḟ > 0 and the result from l’Hôpital’s rule yields f ≥ 1, therefore v ≥ u on (0, T ) and the

continuity of both functions proves the theorem.

Theorem 6.15 (Jacobi Field comparison theorem). Suppose (M, g) is a Riemannian manifold with all

sectional curvatures bounded above by a constant C. If γ is a unit speed geodesic in M , and J is any

normal Jacobi field along γ such that J(0) = 0, then

|J(t)| ≥


t|DtJ(0)| for 0 ≤ t if C = 0

R sin t
R |DtJ(0)| for 0 ≤ t ≤ πR if C = 1

R2 > 0

R sin t
R |DtJ(0)| for 0 ≤ t if C = − 1

R2 < 0

Proof. The function |J(t)| is smooth as long as J(t) 6= 0. By the Jacobi equation

d2

dt2
|J | = d

dt

〈DtJ, J〉
〈J, J〉1/2

=
〈D2

t J, J〉
〈J, J〉1/2

+
〈DtJ,DtJ〉
〈J, J〉1/2

− 〈D
2
t J, J〉

〈J, J〉3/2

= −〈R(J, γ̇)γ̇, J〉
|J |

+
|DtJ |2

|J |
− 〈D

2
t J, J〉
|J |3

And using the Schwartz inequality yields 〈DtJ, J〉2 ≤ |DtJ |2|J |2, implying |DtJ|2
|J| −

〈D2
tJ,J〉
|J|3 ≥ 0. Therefore

d2

dt2
|J | ≥ −Rm(J, γ̇, γ̇, J)

|J |

Because 〈J, γ̇〉 = 0, J and γ̇ span a plane, of which the sectional curvature is Rm(J, γ̇, γ̇, J/|J |2 ≤ C

since |γ̇| = 1. So |J satisfies
d2

dt2
|J | ≥ −C|J |

We now wish to combine the results of the Sturm comparison theorem and lemma (6.13), for that we

need to multiply J with a positive constant such that |DtJ(0)| = 1 at t = 0.

From lemma (6.12), near t = 0 J(t) = tW (t), for a smooth vector field W . Therefore

d

dt

∣∣
0
|J(t)| = lim

t→0

|J(t)| − |J(0)||
t

= lim
t→0

t|W (t)|
t

= |W (0)| = |DtJ(0)| = 1

We can now compare the function u from lemma (6.13) to |J | with the Sturm comparison theorem, as

they have the same value at t = 0. We only need to establish there is a neighborhood for which |J | is

nonzero, in order for it to be smooth. Which follows from d|J |/dt = 1 at t = 0, which implies there is

an ε such that |J | > 0 on (0, ε). Together with |J | ≥ u implies that J cannot be zero before u. therefore
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|J | ≥ u as long as u ≥ 0. And substituting u(t) yields the theorem.

A corollary of this theorem is the conjugate point comparison theorem. Which uses the notion of a

conjugate point. Two points p, q ∈M are said to be conjugate along a geodesic segment, γ from p to q,

if there is a nontrivial Jacobi field vanishing at both p and q.

Theorem 6.16 (Conjugate Point Comparison Theorem). Suppose all sectional curvatures of (M, g) are

bounded above by a constant C. If C ≤ 0, then no point of M has conjugate points along any geodesic.

If C = 1/R2 > 0, then the first conjugate point along any geodesic occurs at a distance of at least πR.

Proof. If C ≤ 0, the Jacobi field comparison theorem implies that any nonzero normal Jacobi field

vanishing at t = 0 satisfies |J(t)| > 0 for all t > 0. Similarly, for C > 0, then |J(t)| > 0 for 0 < t < πR.

Theorem 6.17 (The Cartan-Hadamard theorem). If M is a complete, connected manifold all of whose

sectional curvatures are nonpositive, then for any point p ∈M , expp : TpM →M is a covering map. In

particular, the universal covering space of M is diffeomorphic to Rn. If M is simply connected, then M

itself is diffeomorphic to Rn.

Proof. By using the conjugate point comparison theorem, the nonpositive sectional curvature implies

that p has no conjugate points along any geodesic. Therefore using [Lee97, p. 182] expp is a local

diffeomorphism on all of TpM .

So exp∗p is nonsingular, and let g̃ be the 2-tensor field exp∗pg, then g̃ is a Riemannian metric. And

expp : (TpM, g̃) → (M, g) is a local isometry. Then by the following lemma it follows that expp is a

covering map and the rest of the theorem follows by the uniqueness of the universal covering space.

Lemma 6.18. Suppose M̃ and M are connected Riemannian manifolds, with M̃ comeplete, and π :

M̃ →M is a local isometry. Then M is complete and π is a covering map

The Cartan-Hadamard theorem is similar to the Gauss-Bonnet theorem in the sense that it provides a

link between a global condition, simple-connectedness, and a local one, non-positive sectional curvature,

which together imply a diffeomorphism to Rn.



7 Notation

(
k

l

)
− tensor The tensor that takes k vectors and l covectors as arguments.

TpM The tangent space at a point p ∈M .

T mn (M) The

(
m

n

)
-tensor field on M .

E(M) The space of smooth sections of E, for a vector bundle E

TM The tangent bundle over M
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