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1 Introduction

Imagine that you are in a big city and some streets are closed off because reparations are carried out there.
Only the streets that are not closed off are accesable to you. This impairs your movement; if you want to
move from some point A to some point B in the city, maybe you will have to travel a long way around. If a
lot of streets are closed off, maybe it will be impossible to ever reach point B if you start at some point A.

If you are a mathematician and you let your imagination go free for some time, then maybe some inter-
esting questions about this city will pop up. A question you could be thinking about might be something
like:

”If we suppose that the city we are in has some regular street patterns and the probability that any street is
closed off is equal and independent of the probability that any other street is closed off - say, the probability
is equal to some p ∈ [0, 1] for all streets - then there is some probability P that point B can be reached from
point A. If we make this probability P a function of the distance between points A and B, what happens at
the limit at infinity?”

Questions like these are dealt with in percolation theory. Percolation theory is about the effects that ran-
domly opening or closing parts of a lattice have on long-range phenomena on this lattice. Most answers to
problems in percolation theory are far from trivial. The question in the above paragraph, for example, will
not even be fully anwered in this thesis, though we will answer some related questions.

The probability P as discussed before either converges to 0 or converges to a number greater than 0 at
the limit at infinity, dependent on the value of p. There appears to exist a critical probability pc for which
P converges to 0 at infinity if p < pc, and P does not do so if p > pc. The value of this number pc depends
on what kind of street pattern the city we are in has. If the street has a triangular-like pattern, the value of
pc is different than in the situation where the treet would have a hexagonal, or honeycomb-like, pattern. In
this thesis, we will try to show that the sum of these different critical probabilities is equal to 1! This is our
main theorem.

In chapter 2 we introduce some different lattice spaces: the square, triangular and hexagonal lattice. You
could compare these to street patterns in infinitely large cities. We will also discuss a concept called duality.
In chapter 3 we introduce the concepts of percolation theory in a mathematical way. It is here that we state
our main theorem that we want to proof, too.
In chapter 4 we show that the critical probabilities, as discussed before, are not trivial; we show that they
are unequal to 0 and how our main theorem implies that they are unequal to 1, too.
In chapter 5 we prove some important theories in probability theory that are useful in percolation theory.
In chapter 6 we solely work in the triangular lattice. We discuss a formula that, in the city discussed before,
can be interpreted as the average number of places that are connected by streets that are not closed off.
In chapter 7 we return to the concept of the dual space. We prove a theorem that relates the formula discussed
in the previous chapter to the same formula for the hexagonal lattice. With help of an unproven conjecture,
this would be sufficient to prove our main theorem.
In chapter 8 we prove a weaker version of our main theorem without using this unproven conjecture.
In chapter 9 we prove our main theorem with help of the theorem proven in the previous chapter.
In chapter 10 we look back and make some more remarks.

In this thesis, we were inspired a lot by the book Percolation of Geoffrey Grimmett (printed in the year
1989). All chapters are in some part based on this book. Grimmett focused on the square lattice, not the
triangular or hexagonal lattice, and we have often modified his arguments to prove theorems about these
other lattices. In each chapter we will explain what part is based on the book of Grimmett.
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Figure 1: S2, the square lattice

2 Some definitions of lattice spaces

In this section, we define the square, triangular and hexagonal lattices. The definition of the square lattice is
borrowed from Grimmetts book, altough we invented our own notation. We have defined the other lattices
ourselves. The notion of duality is also borrowed from Grimmett.

2.1 Definition of the square lattice

In Figure (1) part of the infinite square lattice is drawn. As can be seen in the figure, every vertex x can be
represented by an x1-coordinate and an x2-coordinate, both of which are integers. We write Z2 for the set
of all vertices of this lattice. If q ∈ Z2, then q ≡ (q1, q2), q1 and q2 being the coordinates of q.

For all x, y ∈ Z2, we define the square distance δt(x, y) between them in the following way:

Definition 2.1.1. δs(x, y) =| (x1)− y1 | + | (x2)− y2 |

For every x, y ∈ Z2 for which δt(x, y) = 1, we define an edge < x, y >. The set of all these edges is denoted by
E2
t and is drawn in the picture. Together, Z2 and E2

s form the square lattice S2, and we write S2 ≡ (Z2, E2
s ).

2.2 Definition of the triangular lattice

In Figure (2) part of the infinite triangular lattice is drawn. As can be seen in the figure, every vertex x can
again be represented by an x1-coordinate and an x2-coordinate, both of which are integers. We write Z2

for the set of all vertices of this lattice. Again, if q ∈ Z2), then q ≡ (q1, q2), q1 and q2 being the coordinates of q.

For all x, y ∈ Z2, we define the triangular distance δt(x, y) between them in the following way:

Definition 2.2.1. δt(x, y) =| x1 − y1 | + | x2 − y2 | if (x1 − x2)(y1 − y2) ≤ 0 and
δt(x, y) = max| x1 − y1 |, | x2 − y2 | if (x1 − x2)(y1 − y2) > 0.
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Figure 2: T 2, the triangular lattice

For every x, y ∈ Z2 for which δt(x, y) = 1, we define again an edge < x, y >. The set of all these edges is
denoted by E2

t . As can be verified, these are exactly the edges drawn in the picture. Together, Z2 and E2
t

form the triangular lattice T 2, and we write T 2 ≡ (Z2, E2
t ).

2.3 Definition of the hexagonal lattice

In Figure (3) part of the infinite hexagonal lattice is drawn. Again, as can be seen in the figure, every vertex
x can be represented by an x1-coordinate and an x2-coordinate, both of which are integers. We therefore
again write Z2 for the set of all vertices of this lattice.

For all x, y ∈ Z2, we can define the hexagonal distance δh(x, y) between them such that:

Definition 2.3.1. δh(x, y) = 1 if and only if | (x1)− y1 | + | (x2)− y2 |= 1 and it is not the case that x1 is
even and x1 = y1 + 1 or y1 is even and y1 = x1 + 1.

For every x, yεZ2 for which δh(x, y) = 1, we define again an edge < x, y >. The set of all these edges is
denoted by E2

h and as can be verified, these are exactly the edges drawn in the picture. Together, Z2 and E2
h

form the hexagonal lattice H2, and we write H2 ≡ (Z2, E2
h). The precise definition of δh(x, y) is not relevant,

since we will make no further use of it.

2.4 The dual space

When drawing a lattice, the edges of that lattice will make faces. A face is what you intuitively expect it to
be: two points in a face can always be connected by a line that does not cross an edge, and two points in two
different faces can only be connected by lines that do cross one or more edges. This only works if the edges
are drawn such that edges only cross at points where there is a vertex. Faces are important for defining the
so-called dual space:

Definition 2.4.1. The dual space of a lattice L is a lattice obtained by placing a vertex in each face of L
and by joining two such vertices by an edge whenever the corresponding faces of L share a boundary edge of
L.

As a result, every edge of L crosses a unique edge of its dual and vice versa.
The following propositions are important:

Proposition 2.4.2. The square lattice is its own dual space.
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Figure 3: H2, the hexagonal lattice

Proposition (2.4.2) is a claim that Grimmett makes at page 16 of his book.

Proposition 2.4.3. The triangular lattice and hexagonal lattice are each others dual space.

Proposition (2.4.3) does not appear in Grimmetts book. The proposition is true according to an article that
the following link leads to (or lead to at June 1st, 2017):
http://www.cambridge.org/core/journals/advances-in-applied-probability-article/
bond-percolation-on-honeycomb-and-triangular-lattices/D2F18A5392DEFC352B9C89CACG21FDAO

Propositions 2.4.2 and 2.4.3 are illustrated in Figure (4) and Figure (5), respectively. The way the two
square lattices are drawn in Figure (4) demonstrates that they are each others dual space. Similarly, the way
the triangular and hexagonal lattices are drawn in Figure (5) demonstrates that they are each others dual
space. Propositions 2.4.2 and 2.4.3 can be proven topologically, but since that is beyond the scope of this
thesis, we do not provide proofs here.
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Figure 4: Two square lattices, one colored black and the other colored red, as each others dual.

Figure 5: The triangular lattice (in red) and hexagonal lattice (in black), as each others dual.
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3 Introduction to percolation theory

The disussion in this chapter is based on Chapter 1 of the book of Grimmett. We however sometimes use
our own notation. We also skip quite large sections of the chapter, but we add the triangular and hexagonal
lattices to the discussion. Grimmett does not talk about these lattices.

Imagine an infinitely large lattice L that consists of edges and vertices that connect edges to other edges.
Examples of such lattices are S2, T 2 and H2. Suppose that we declare each edge open with probability p and
closed with probability 1− p, with p ∈ [0, 1]. An equivalent way of saying this is that for all e that are edges
in L, we define a random variable X(e) that is uniformly distributed on [0, 1]. Then we define ηp(e) = 1 if
X(e) < p and ηp(e) = 0 if X(e) ≥ p, p ∈ [0, 1], and call each e open if ηp(e) = 1, and closed if ηp(e) = 0.

We define an open path as follows:

Definition 3.0.4. A path of a lattice L is a sequence x0, e0, x1, e1, x2, ...en−1, xn for which all en ≡<
xj , xj+1 > are edges in L and all xn are vertices in L. If all the edges in a path are open, then we speak of an
open path. Paths can be infinite, too, and on both sides. For example, ..., x−2, e−2, x−1, e−1, x0, e0, x1, e1, x2, ...
is a path that is infinite on both sides.
An (open) path can also bedefined on a subset S of a lattice L by replacing L with S ⊂ L in the above
definition.

We define an open cluster as a set of vertices such that you can get from any vertex in the set to each other
vertex in the set by moving over open edges only. Open clusters can be of any size greater than 0. They
could contain just 1 element, but infinitely many, too. There are two possible formal definitions (we will not
show the equality):

Definition 3.0.5. An open cluster U of (a subset of) a lattice L is a set of vertices such that x, y ∈ U if and
only if there exists an open path V on (a subset of) L such that x, y ∈ V .
This is equivalent to saying that U is a set of vertices for which the following conditions hold:
1. If x ∈ U and < x, y > is an open edge, then y ∈ U as well.
2. U is not empty and does not contain any nonempty proper subset for which property (1) holds.
An open cluster is also referred to as a connected component.

Property (2) of the second definition may be the only propery that doesn’t come off as intuitive. It is needed
to ensure that U is connected and not merely a collection of open clusters.

Percolation theory is concerned with the behaviour of open clusters, and specifically how this behaviour
relates to the value of p.

Because we declared edges to be open with probability p, p is called the edge probability and we are con-
cerned with bond percolation. One could also declare each vertex open with probability p and study open
clusters this way. In this case, p is referred to as the site probability and we would be concerned with site
percolation. In this thesis, we focus sololy on bond percolation and we will only use the letter p to refer to
edge probability. For other probabilities that depend on the edge probability (and the type of lattice we are
looking at), we use the following notation:

Definition 3.0.6. Pp,s(X) ≡ P (X | we work on the square lattice with edge probability p);
Pp,t(X) ≡ P (X | we work on the triangular lattice with edge probability p);
Pp,h(X) ≡ P (X | we work on the hexagonal lattice with edge probability p).
Expected values are noted using the same kind of notation. So for example:
Ep,t(X) ≡ E(X | we work on the triangular lattice with edge probability p).

Notice that every vertex is an element of only one open cluster. Thus, every element can be associated with
an open cluster in the following definitions:

Definition 3.0.7. Let L be a lattice and x an edge in L. Then C(x) is the open cluster of L containing x.
Also, C ≡ C(0) is the open cluster containing the origin.
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The cardinality | U | of an open cluster U is just the number of vertices in U . The cardinality of U could
be infinite. For example, if p = 1 then the only open cluster that exists consists of all the edges and has
therefore infinite cardinality. However, if p = 0 then we know for sure that no open cluster has cardinality
greater than 1. An important question is whether there could be an infinite open cluster if p ∈ (0, 1). Another
important question is what would be the probability that any arbitrary vertex is an element of an infinite
open cluster. In the spaces we have encountered, any arbitrary vertex can be translated onto the origin
because of symmetry, which means that the probability that any arbitrary vertex is an element of an infinite
open cluster is just the probability that | C |=∞.
We define the following functions:

Definition 3.0.8. θs(p) = Pp,s(| C |=∞);
θt(p) = Pp,t(| C |=∞);
θh(p) = Pp,h(| C |=∞).

The different functions θs(p), θt(p) and θh(p) are of great importance and very challenging to find. We do
know that they are monotonely increasing; after all, increasing the probability that an edge is open can only
increase the probability that | C =∞. The following numbers are of interest:

Definition 3.0.9. pc,s ≡ sup
p
{θs(p) = 0};

pc,t ≡ sup
p
{θt(p) = 0};

pc,h ≡ sup
p
{θh(p) = 0}.

These numbers are the so-called critical probabilities of their respective lattices. They are of interest because
their values are not trivial:

Theorem 3.0.10. 0 < pc,s, pc,t, pc,h < 1

Part of the proof of this Theorem is written in the next chapter. Finding the exact values of the critical
probabilities of specific lattices is the focus of much research in percolation theory.

For any lattice, the situation where p < pc is referred to as the subcritical phase, the case where p = pc
is referred to as the critical phase, and the case where p > pc is referred to as the supercritical phase. The
different phases all show distinct interesting properties. In this thesis, we will not focus that much on these
properties; rather, we will try to find out for which values of p we are in which phase. We are thus concerned
in finding out what the value for pc is for different lattices.
Specifically, in this thesis, we will try to proof the following Theorem:

Theorem 3.0.11. pc,t + pc,h = 1

There are a few important properties that we will use, but not take the time to prove. Before we introduce
these properties, first we will clarify a term that we will, now and then, use in this thesis:

Definition 3.0.12. ’Almost surely’ means ’with probability 1’. If something is almost surely true, there
could exist cases that it is not true, but the probability to be in one of these cases is 0. For example, if X
is uniformly distributed on [0, 1], then a realisation x from this distribution is almost surely an irrational
number.

In the following proposition, important consequences in the case θ(p) > 0 are shown. The proposition is valid
for the square, triangular and hexagonal lattice, and so θ(p) can be interpreted as any one of θs(p), θt(p) and
θh(p), dependent on the lattice we are in.

Proposition 3.0.13. If θ(p) > 0, then
* If S is a set of infinitely many vertices, then almost surely there exists an x ∈ S such that x is in an infinite
open cluster;
* If Sn are sets of vertices and for n 7−→ ∞, | S |7−→ ∞ as well, then the probability that there exists an
x ∈ Sn such that x is in an infinite open cluster converges to 1;
* If x and y are in an infinite open cluster, then x and y are in the same cluster almost surely.

This proposition means that whenever θ(p) > 0, then there exists one unique infinite open cluster almost
surely. The proposition was, for the square lattice, proven by Grimmett.
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4 The critical probabilities are nontrivial

The proof of the lemma in this section is essentially the same proof that Grimmett gave at pages 15 and 16
of his book. However, we show more intermediate steps and go into somewhat more detail. Also, Grimmett
only shows that 0 < pc,s; we slightly modify his proof in order to show that 0 < pc,t, pc,h, too.

Recall Theorem (3.0.10) that 0 < pc,s, pc,t, pc,h < 1. We will prove a weaker version, namely:

Lemma 4.0.14. 0 < pc,s, pc,t, pc,h

To do this, we will make use of the following extra definitions. A non-selfintersecting path is a path in which
no vertex or edge appears twice, and a path with length n is a path that contains n edges. We define σ(n)
as the number of non-selfintersecting paths with length n starting at the origin. Similarly, we define N(n) as
the number of non-selfintersecting open paths with length n starting at the origin.

We are now equipped to prove Lemma (4.0.14).

Proof. If the origin lies in an infinite open cluster, then an infinite non-selfintersecting open path exists, too,
and hence for any n, there exists at least one non-selfintersecting open path starting at the origin with length
n. Thus, if | C |=∞, then N(n) > 1 for all n ∈ N. Because of this implication, we have, for all n ∈ N, that

θ(p) ≤ Pp(N(n) ≥ 1) (1)

where we could be in any of the lattices S2, T 2 and H2, and θ(p) could be any of θs(p), θt(p) and θh(p).
Since

Ep(N(n)) = Pp(N(n) = 1) + 2Pp(N(n) = 2) + 3Pp(N(n) = 3) + ... ≥ Pp(N(n) ≥ 1) (2)

we can conclude that

θ(p) ≤ Ep(N(n)) (3)

for all n ∈ N. Now, realise that the average number of non-intersection open paths starting at the origin
is the sum of all those paths times the probability that those paths are open. Since every non-intersecting
path with length n starting at the origin contains n edges and every edge is open with probability p, the
probability that any non-intersecting path with length n is open, is pn. It is for this reason that

Ep(N(n)) = pnσ(n) (4)

and thus

θ(p) ≤ pnσ(n)

= (pσ(n)
1
n )n

(5)

for all n ∈ N. Now we will try to find an upper bound for σ(n)
1
n on all lattices. Let k be the number of

edges connecting the origin. Then k = 4 on S2, k = 6 on T 2 and k = 3 on H2. Then by definition, on these
lattices

σ(1) = k (6)

Let n ∈ N. Any nonintersecting path with length n+ 1 that starts at the origin is a path with length n that
starts at the origin, with an extra edge and corresponding vertex added to it. In the lattices S2, T 2 and H2,
there are k choises for the extension of a path starting at the origin. Since a non-intersecting path can never
go back, one such choise is eliminated for sure, and thus there are only k− 1 choises left for the extension of
a non-intersecting open path starting at the origin. Thus, on S2, T 2 and H2,

σ(n+ 1)

σ(n)
≤ k − 1 (7)
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for all n ∈ N. We combine equations (6) and (7) to conclude that

σ(n) = σ(1)

n∏
j=2

σ(j)

σ(j − 1)

≤ k(k − 1)n−1

(8)

Hence,

σ(n)
1
n ≤ k 1

n (k − 1)
n−1
n (9)

Because

lim
n→∞

k
1
n (k − 1)

n−1
n = k0(k − 1)1

= k − 1
(10)

we can conclude

lim sup
n→∞

σ(n)
1
n ≤ k − 1 (11)

Thus, there exists an Nk ∈ N such that for all n ∈ N, n > N , we have σ(n)
1
n < k − 1

2 . Let pε ≡ 1
k . Then for

all n > N ,

pεσ(n)
1
n ≤

k − 1
2

k

= 1− 1

2k
< 1

(12)

This means that

lim
n→∞

(pεσ(n)
1
n )n = 0 (13)

Now we combine this result with equation (5) to conclude that

σ(pε) = 0 (14)

on the lattices S2, T 2 and H2. Because of equation (14), the critical probabilities have to be greater than pε
on these lattices. Since pε ≡ 1

k is strictly positive on all of these lattices, the critical probabilities have to be
so as well.

To prove Theorem (3.0.10), we would need to show that pc,s, pc,t, pc,h < 1, too. Grimmett uses duality to
show that pc,s < 1; for the exact proof I recommend reading Chapter 1.4 of Grimmetts book. The fact that
pc,t, pc,h < 1 is a direct consequence from Theorem (3.0.11), that says that pc,t + pc,h = 1, and from Lemma
(4.0.14), that says that 0 < pc,t, pc,h. The reason for this is that if either pc,t or pc,h would be equal to 1,
then according to Theorem (3.0.11), the other would be equal to 0, which is impossible according to Lemma
(4.0.14). This is a contradication, which proves that neither of them can be equal to 1. Hence, when we
prove Theorem (3.0.11), we will automatucally prove Theorem (3.0.10), too.
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5 Some probability theory

In percolation theory, several results from probability theory are used. In this section we will introduce a
few useful theorems. Basically, these are Chapters 2.1 and 2.1 of Grimmetts book, but then with somewhat
more detail added to it. Also, this section contains a proof that is based on the proof of the ’square root
trick’ by Grimmet on page 194. We think that proof is wrong, though, so we modified it.

5.1 Increasing random variables and events

Recall that the percolation process is equivalent to defining a random variable X(e) for all e that are edges,
that are uniformly distributed on [0, 1]. Then we define ηp(e) = 1 if X(e) < p and ηp(e) = 0 if X(e) ≥ p,
p ∈ [0, 1], and call each e open if ηp(e) = 1, and closed if ηp(e) = 0. We will continue this section with some
more definitions.

Definition 5.1.1. When declaring an edge (or vertex, in the case of site percolation) of a lattice to be open
with some probability, one ends up with a particular arrangement of open edges (or vertices). One calls
each one of such particular arrangements configurations. The set of all configurations is called Ω. For ω a
configuration and e an edge, we define ω(e) = 1 if e is open in ω, and ω(e) = 0 if e is closed in ω. This means
that ηp can be interpreted as a configuration as well.

Definition 5.1.2. An event on a lattice is a set of different configurations, typically a set for which some
statement holds true for all elements. We say that F occurs if an element of F occurs and so Pp(F ) ≡ Pp(ω ∈
F ) is the probability that you will end up with an element of F after you declare each edge (or vertex) open
with probability p.

Definition 5.1.3. Let ω and ω′ be configurations on some lattice. We say ω ≤ ω′ if every open edge (or
vertex, in the case of site percolation) in ω is open in ω′ as well, or equivalently, if ω(e) ≤ ω′(e) for all edges
e. We say ω < ω′ if ω ≤ ω′ and ω 6= ω′.

Definition 5.1.4. Let F be an event on some lattice. F is an increasing event if, for ω ≤ ω′, ω ∈ F ⇒ ω′ ∈ F .

Definition 5.1.5. Let N be a random variable. N is an increasing random variable if, for ω ≤ ω′, N(ω) ≤
N(ω′).

For example, the event Ψ ≡ ’there exists an infinite open cluster’ is an event for which all the elements are
configurations in which there is an infinite open cluster. Ψ is even an increasing event, for if one takes a
configuration which is in Ψ and makes more edges open, there will still be an infinite open cluster and hence
that new configuration will be in Ψ as well.

Theorem 5.1.6. Let N be an increasing random variable on the set of configurations, Ω, and let p1 ≤ p2.
Then Ep1(N) ≤ Ep2(N).

Proof. Let p1 ≤ p2 and e an edge. If ηp1 = 1 then X(e) < p1 and since p1 ≤ p2 it then follows that X(e) < p2

so then ηp2 = 1 as well. If, on the other hand, ηp1 = 0 then ηp1 ≤ ηp2 trivially. This means that always
ηp1 ≤ ηp2 . Let N be an increasing random variable, then N(ηp1) ≤ N(ηp2). Because E(N(ηp)) = Ep(N), it
follows that Ep1(N) ≤ Ep2(N).

Theorem 5.1.7. Let F be an increasing event and p1 ≤ p2. Then Pp1(F ) ≤ Pp2(F ).

Proof. An indicator funtion IF (ω), ω being a configuration and F being an event, is defined as IF (ω) = 0 if
ω /∈ F and IF (ω) = 1 if ω ∈ F .
Let F be an increasing event. Since in the case that ω ≤ ω′, we have IF (ω) = 1⇔ ω ∈ F ⇒ ω′ ∈ F ⇔ IF (ω′),
so IF (ω) = 1 implies that IF (ω) ≤ IF (ω′), and from IF (ω) = 0 follows IF (ω) ≤ IF (ω′) trivially. So IF is an
example of an increasing random variable.
Let p1 ≤ p2. According to theorem 5.1.6, then, Ep1(IF ) ≤ Ep2(IF ). Because Ep(IF ) = Pp(IF = 1) = Pp(F ),
it follows that Pp1(F ) ≤ Pp2(F ).
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5.2 The FKG inequalities

Theorem 5.2.1. Let X and Y be increasing random variables on Ω such that Ep(X
2) and Ep(Y

2) are finite,
then Ep(XY ) ≥ Ep(X)Ep(Y ).

Proof. We will use induction. Suppose that X and Y are increasing random variables on Ω which depend
only on the state of the edges ei, i ∈ 1, 2, ...n. Our induction hypothesis is that Ep(XY ) ≥ Ep(X)Ep(Y ).

Suppose that n = 1. Then X(ω) and Y (ω) depend only on the state of ω(e1) ∈ {0, 1}.Let ω0, ω1 ∈ Ω such
that ω0(e1) = 0 and ω1(e1) = 1. Let k ∈ {0, 1}. Then we define X(k) ≡ X(ωk) and Y (k) ≡ Y (ωk). Since X
and Y are increasing random variables, X(1) ≥ X(0) and Y (1) ≥ Y (0). Thus for i, j ∈ {0, 1}, X(i) −X(j)
and Y (i)−X(j) have the same sign (if they are not zero), so then (X(i)−X(j))(Y (i)−Y (j)) ≥ 0. Since prob-
abilities are nonnegative as well, each elements in the following sum is nonnegative, so the sum is nonnegative
as well:

0 ≤
∑
i∈0,1

∑
j∈0,1

(X(i)−X(j)(Y (i)− Y (j)Pp(ω(e1) = i)Pp(ω(e1) = j)

=
∑
i∈0,1

∑
j∈0,1

X(i)Y (i)Pp(ω(e1) = i)Pp(ω(e1) = j) +
∑
i∈0,1

∑
j∈0,1

X(j)Y (j)Pp(ω(e1) = i)Pp(ω(e1) = j)

+
∑
i∈0,1

∑
j∈0,1

−X(i)Y (j)Pp(ω(e1) = i)Pp(ω(e1) = j) +
∑
i∈0,1

∑
j∈0,1

−X(j)Y (i)Pp(ω(e1) = i)Pp(ω(e1) = j)

=
∑
i∈0,1

X(i)(Y (i)Pp(ω(e1) = i) +
∑
i∈0,1

X(j)(Y (j)Pp(ω(e1) = j)

+ 2
∑
i∈0,1

∑
j∈0,1

−X(i)Y (j)Pp(ω(e1) = i)Pp(ω(e1) = j)

= 2Ep(XY )− 2Ep(X)Ep(Y )

(15)

so Ep(XY ) − Ep(X)Ep(Y ) ≥ 0 so Ep(XY ) ≥ Ep(X)Ep(Y ). We have proven the induction hypothesis for
n = 1.

Suppose that the induction hypothesis is true for all n ≤ k, k being a natural number. Let X and Y
be increasing functions that depend only on the states ei, i ∈ 1, 2, ...k, k + 1. Then Ep(X | ω(1), ω(2), ...ω(k))
and Ep(Y | ω(1), ω(2), ...ω(k)) are increasing functions that depend on the states ei, i ∈ 1, 2, ...k and for
which the induction hypothesis is therefore true. Thus we can write

Ep(XY ) = Ep(Ep(XY | ω(1), ω(2), ...ω(k)))

≥ Ep(Ep(X | ω(1), ω(2), ...ω(k))Ep(Y | ω(1), ω(2), ...ω(k)))

= Ep(Ep(X | ω(1), ω(2), ...ω(k)))Ep(Ep(Y | ω(1), ω(2), ...ω(k)))

= Ep(X)Ep(Y )

(16)

We have proven the induction hypothesis for all natural numbers n.

Suppose again that X and Y are increasing random variables, but this time they can depend on an infi-
nite number of edges. Also suppose that Ep(X

2) and Ep(Y
2) are finite. Since we are working on a lattice

with countably many elements, there exists a list {ei}{i ∈ N} that contains all edges of the lattice. Define
Xn ≡ Ep(X | ω(e1), ω(e2), ...ω(en)) and Yn ≡ Ep(X | ω(e1), ω(e2), ...ω(en)). Since Xn and Yn are increasing
functions of n states, we have, according to what was shown before:

Ep(XnYn) ≥ Ep(Xn)Ep(Yn) (17)

Now we will use the Martingale Convergence Theorem, which we will not proof in this thesis. The Martingale
Convergence Theorem tells us that limn→∞Xn = X and limn→∞ Yn = Y almost surely, so
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E(X)E(Y ) = lim
n→∞

Ep(Xn)Ep(Yn) (18)

By the triangle inequality and Cauchy-Schwarz inequality,

lim
n→∞

Ep(| XnYn −XY |) ≤ lim
n→∞

Ep(| Xn −X)Yn | + | X(Yn − y) |

≤ lim
n→∞

√
Ep((Xn −X)2)Ep(Yn)2 +

√
Ep((Yn − Y )2)Ep(Xn)2

= 0 + 0 = 0

(19)

Combining 17, 18 and 19 gives

Ep(XY ) = lim
n→∞

Ep(XnYn) ≥ lim
n→∞

Ep(Xn)Ep(Yn) = Ep(X)Ep(Y ) (20)

which is what we wanted to proof.

Theorem 5.2.2. Let A and B be increasing events. Then Pp(A ∩B) ≥ Pp(A)Pp(B)

Proof. Like we saw before, the indicator function of an increasing event is an increasing random variable. So
IA and IB are increasing random variables, and we have, according to 5.2.1, that Ep(IAIB) ≥ Ep(IA)Ep(IB).
Since IA and IB are only nonzero if A respectively B ocurs, and they are in this case equal to 1, we have
Ep(IAIB) = Pp(A)Pp(B) and Ep(IA) = Pp(A) and Ep(IB) = Pp(B), so Pp(A ∩B) ≥ Pp(A)Pp(B).

5.3 The square root trick

Theorem 5.3.1. Let all Ai, i ∈ 1, 2, ...n be increasing random events with equal probability. Then

Pp(A1)c ≥ 1− (1− Pp(
⋃n
i=1A

c
i ))

1
n .

Proof. We have

1− Pp(
n⋃
i=1

Aci ) = Pp(

n⋂
i=1

Ai)

≥
n∏
i=1

Pp(Ai)

= (1− Pp(Ac1))n

(21)

where we repeatedly applied the FKG inequality (5.2.2) for increasing events in the second step.

From this follows that

(1− Pp(
n⋃
i=1

Aci ))
1
n ≥ 1− Pp(Ac1) so Pp(A

c
1) ≥ 1− (1− Pp(

n⋃
i=1

Aci ))
1
n (22)

from which the theorem follows.
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6 Number of open clusters per vertex

In this section, we only work in the triangular lattice. Like the name suggests, the section is dedicated to a
theorem about the number of open clusters per vertex. Our theorem, and the proof of it, is a modified and
somewhat more detailed version of the theorem and proof as discussed in Chapter 4.1 of Grimmetts book.
In his book, Grimmett shows the same as we will show, but then for the square lattice, not for the triangular
lattice.
We start with a lemma.

Lemma 6.0.2. Let U ⊂ T 2. Let CU (x) be the open cluster in U containing x. Then∑
x∈U
| CU (x) |−1 is the number of open clusters in U .

Proof. Let Qi, i ∈ S ⊂ N be the open clusters in U . Then the number of open clusters in U is given by | S |.
Since Qii ∈ S form a partition of U , we have∑

x∈U
| CU (x) |−1=

∑
i∈S

∑
x∈Qi

| CU (x) |−1 (23)

When x ∈ Qi, then Qi = CU (x) by definition. So∑
x∈Qi

| CU (x) |−1=
∑
x∈Qi

| Qi |−1= 1 (24)

When we combine equations (23) and (24), we obtain∑
x∈U
| CU (x) |−1=

∑
i∈S

1 =| S | (25)

which proves the lemma.

Definition 6.0.3. On the triangular lattice, κ(p) ≡ Ep(| C |−1) =
∞∑
n=1

1
nPp(| C |= n).

Definition 6.0.4. We define Bn ⊂ Z2 in the following way: If x ∈ Z2, then x ∈ Bn if and only if δt(0, x) ≤ n.
We define Gn ⊂ T 2 as the collection of all x ∈ Bn and all < x, y >∈ E2

t for which x, y ∈ Bn.
For x ∈ Bn, we define Cn(x) to be the open cluster of Bn containing x.

Theorem 6.0.5. Let Kn be the number of open clusters in Bn, or equivalently, the number of connected
components in Bn when all closed edges are deleted. We consider bond percolation on T 2. Let p ∈ [0, 1].
Then limn→∞

Kn
|Bn| = κ(p) almost surely.

The above theorem implies that κ(p) can be interpreted as the number of open clusters per vertex in the
triangular lattice.

Proof. Let x ∈ Bn and y ∈ Cn(x). Then y ∈ T 2 and y is connected to x; so y ∈ C(x). Thus, Cn(x) ⊆ C(x),
so | Cn(x) |≤| C(x) |. Using the convention that if C(x) has infinite cardinality, we write | C(x) |−1≡ 0, it
follows that

| C(x) |−1≤| Cn(x) |−1 . (26)

Let C be some open cluster inside Bn. Then∑
x∈C
| Cn(x) |−1=

∑
x∈C
| C(x) |−1=

| C(x) |
| C(x) |

= 1 (27)

Now let C1, C2, ..., Cj be all the open clusters inside Bn. Then

∑
x∈Bn

| Cn(x) |−1=

j∑
i=1

∑
x∈Ci

| Ci |−1= j (28)
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Since j is exactly the number of open clusters inside Bn,∑
x∈Bn

| Cn(x) |−1= Kn. (29)

Combining (26) and (29) results in the following equation:

Kn

| Bn |
≥

∑
x∈Bn

| C(x) |−1

| Bn |
(30)

According to the symmetry of the lattice, we have

Ep(C(x)) = Ep(C(0)) ≡ Ep(C) (31)

and since

lim
n→ ∞

Bn = Z2 (32)

we know that

lim
n→∞

∑
x∈Bn

| C(x) |−1

| Bn |
= Ep(| C |−1) ≡ κ(p)) (33)

almost surely, according to the strong law of large numbers. Using (30) and (33), we can conclude that as n
goes to infinity, Kn

|Bn| ≥ κ(p), so

lim inf
n→∞

Kn

| Bn |
≥ κ(p) (34)

In order to obtain an equality, we have to find an upper bound for the left side of equation (34).
We’ll define Un ≡ {x ∈ Bn|x is in the same cluster as some y ∈ Bn for which dt(0, y) = n}. In other words,
Un is the collection of all edges in Bn that are connected to the surface of Bn by some open cluster. We’ll define
V (n) ≡ B(n)−U(n) = {x ∈ Bn| there is no y ∈ Bnfor which dt(0, y) = n and y is on the same cluster as x}.
Obviously, Un and Vn form a disjoint union of Bn. We also notice that if x ∈ Vn and z ∈ C(x), then it must
be that z ∈ Bn and thus z ∈ Cn(x); for else, x would be connected to some edge outside of Bn, hence be
connected to the surface of Bn, and hence x would not lie in Vn. So if x ∈ Vn, then C(x) ⊆ Cn(x). Since
always C(x) ⊇ Cn(x), we have that C(x) = Cn(x) if x ∈ Vn.
Now we will rewrite equation (29) to obtain an upper bound of Kn:

Kn =
∑
x∈Bn

| Cn(x) |−1

=
∑
x∈Bn

| C(x) |−1 +
∑
x∈Bn

| Cn(x) |−1 − | C(x) |−1

=
∑
x∈Bn

| C(x) |−1 +
∑
x∈Un

| Cn(x) |−1 − | C(x) |−1 +
∑
xεVn

| Cn(x) |−1 − | C(x) |−1

=
∑
x∈Bn

| C(x) |−1 +
∑
x∈Un

| Cn(x) |−1 − | C(x) |−1 +
∑
x∈Vn

| C(x) |−1 − | C(x) |−1

=
∑
x∈Bn

| C(x) |−1 +
∑
x∈Un

| Cn(x) |−1 − | C(x) |−1

≤
∑
x∈Bn

| C(x) |−1 +
∑
x∈Un

| Cn(x) |−1

(35)

We now use lemma 6.0.2 to notice that
∑
x∈Un

| Cn(x) |−1 is simply the number of open clusters in Un. Since

each element of Un can be in only one cluster, we have
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∑
x∈Un

| Cn(x) |−1≤| Un | (36)

Combining (35) and (36), we obtain

Kn

| Bn |
≤

∑
x∈Bn

| C(x) |−1 +
∑
xεUn

| Cn(x) |−1

| Bn |
≤

∑
x∈Bn

| C(x) |−1

| Bn |
+
| Un |
| Bn |

(37)

Since Bn grows at a faster rate than its surface Un, we have

lim
n→ ∞

| Un |
| Bn |

= 0 (38)

If we combine this with equation (33), then, we can see that the right hand side of equation (37) converges
to κ(p) by just adding the limits. Therefore we have

lim sup
n→∞

Kn

| Bn |
≤ κ(p) (39)

When we combine equation (34) and equation (35), we can see that

lim
n→∞

Kn

| Bn |
= κ(p) (40)

From now on, we call κ(p) ≡ κt(p) to specify that we are working on the triangular lattice. When we are
working on the square, respectively hexagonal lattice, we will call the corresponding functions κs(p) and
κh(p), respectively.
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7 The dual space

7.1 Dual percolation process

This section is based on Chapter 9.1 of Grimmetts book. In the second half of this chapter, Grimmett (who
uses slightly different notation) shows that κs(p) = κs(1 − p) + 1 − 2p. We modify his proof to show the
relationship between κt(p) and κh(p).

We recall that if L is a lattice, then Ld, the dual space of L, is a lattice such that every edge of Ld crosses
one unique edge of L and vice versa.

Definition 7.1.1. Let L be a lattice and Ld be its dual. Let every edge in L be open with probability p.
Then in the dual percolation process, an edge e ∈ Ld is declared open if and only if e crosses a closed edge
in L.

We can immediately see that if an edge in L is open with probaility p, then an edge in Ld, if we use the
dual percolation process, is open with probability 1 − p. Also we can see that whether different edges in
Ld are declared open are completely independent of each other, because this is the case in L as well. Thus,
the dual percolation process described a different way of having a normal percolation process in Ld, with
edge-probability 1− p.

This is very useful. In our big theorem, what we need to show is equivalent with showing that if p < pc,t
then 1 − p > pc,h and if p > pc,t then 1 − p < pc,h. Since T 2 and H2 are each others dual space, the dual
percolation process can be very useful in showing this.

The theorems proven in the rest of this chapter will not be needed for the understanding of the proof of
our main theorem that pc,t + pc,h = 1.

7.2 A theorem about the number of open clusters in the dual

Theorem 7.2.1. The numbers κt(p) and κh(p) of open clusters per vertex in T 2 and H2, respectively, satisfy
κt(p) = 2κh(1− p) + 1− 3p.

For the proof of this theorem, we will, surprisingly, need the well-known Euler’s Theorem. We won’t proof
Euler’s Theorem here, but leave it as a proposition:

Proposition 7.2.2. Let G be a finite planar graph, drawn in the plane with v(G) vertices, e(G) edges, f(g)
finite faces, and c(G) connected components. Then

c(G) = v(G)− e(G) + f(G) (41)

Now we can start with the proof of Theorem (7.2.1).

Proof. We will consider percolation on T 2 with edge-probability p, p ∈ [0, 1] and we will study Gn (see
Definition (6.0.4)).

When we apply Euler’s Theorem (7.2.2) to the open part of Gn and we take expectation values, we ob-
tain

Ep(c(Gn)) = Ep(v(Gn))− Ep(e(Gn)) + Ep(f(Gn)) (42)

We notice that Ep(v(Gn)) = |Bn| and divide by |Bn| to obtain

Ep(c(Gn))

|Bn|
= 1− Ep(e(Gn))

|Bn|
+
Ep(f(Gn))

|Bn|
(43)

Also we notice that Ep(c(Gn)) = Kn by definition. Then by theorem 6.0.5, we have
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lim
n→∞

Ep(c(Gn))

| Bn |
= κt(p) (44)

Next, we will make use of the following proposition.

Proposition 7.2.3.
lim
n→∞

Ep(e(Gn)) = 3p|Bn| (45)

Although we will not proof this proposition, we will give an intuitive reasoning. Notice that in T 2, every edge
is connected to 2 vertices, and every vertex is connected to 6 edges; so for every edge there will be three 6

2 = 3

vertices. The same is true for Bn, except on the boundary ∆Bn. But since for large n, |∆Bn||Bn| 7→ 0, we can

ignore this boundary effect for large n. Then the proposition follows from the fact that Ep(e(Gn)) = pe(Bn).

When we rewrite proposition 7.2.3, we get

lim
n→∞

Ep(e(Gn))

| Bn |
= 3p (46)

Now consider the following lemma.

Proposition 7.2.4. Define Gn,d as the part of the dual of T 2 that only contains the edges that cross an
(open or closed) edge of Gn, and that only contains the vertices that lie inside a finite face of Gn. Then
define every edge in Gn,d to be open according to the dual percolation process: so an edge in Gn,d is open if
and only if it crosses a closed edge of Gn. Define an open face to be a face when all closed edges are removed.
Then every open face of Gn contains a unique connected component of Gn,d.

The proposition requires a quite rigorous proof; we will give intuitive reasoning for it here.
Because of the way the dual space is defined, every face of Gn contains one vertex of Gn,d. Since an open
face contains one or more faces, any open face of Gn must contain at least one vertex of Gn.
Let q ∈ Gn,d be a vertex inside some face of Gn and let r ∈ Gn,d be some vertex outside of it, then there is
no open path from q to r, since any path from q to r must contain an edge that crosses the boundary of the
face, and in the dual percolation process, such an edge is closed. Thus, every face of Gn contains a connected
component of Gn,d.
Now let q, s ∈ Gn,d both be vertices inside some open face of Gn. Then there is an open path from q to
s. Thus, every face of Gn contains no more than one connected component of Gn,d. This shows that the
proposition is true, but not rigorously since the existence of an open path from q to s was not properly shown.

Now we have to find out how many connected components of Gn,d do not lie inside the finite face of Gn.
There can be no more than | ∆Bn | of these, ∆Bn being the set of boundary vertices of Bn. This is the case
because every vertex in Gn,d is connected to an (open or closed) edge that crosses an edge in Gn, so vertices

in the outside have to be connected to an edge that crosses a unique edge in Gn. We know that |∆Bn||Bn| 7→ 0,

and by (2.4.3), we know that H2 is the dual of T 2. Any edge in Gn,d has a probability of 1 − p to be open
(because every open edge of Gn,d corresponds to a closed edge in Gn, which is closed with probability 1− p).
Thus, given that κh(q) is the number of open clusters per vertex in H2 with edge-probability q, the number
of open clusters in Gn,d per vertex should, excluding possibly boundary effects, converge to κh(1 − p) for
large enough n. In conclusion, we have

| lim
n→∞

Ep(f(Gn))

| e(Gn,d) |
− κh(1− p) |=| lim

n→∞

Ep(c(Gn,d))

| e(Gn,d) |
− κh(1− p) |≤ lim

n→∞

| δBn |
| Bn |

7→ 0 = 0 (47)

so

lim
n→∞

Ep(f(Gn))

| e(Gn,d) |
= κh(1− p) (48)

Next, consider the following proposition:

Proposition 7.2.5. limn→∞
|e(Gn,d)|
|Bn| = 2
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This is again a proposition we will not proof, but can be made intuitive. In H2, every vertex has 3 edges and
in T 2, every vertex has 6 edges, which is twice as much. Since Gn,d ⊂ H2 and Gn ⊂ T 2 have the same number
of edges, you expect Gn,d to have twice the amount of vertices as Gn, apart from boundary conditions. But

because boundary conditions become neglectible when n 7→ ∞, you expect
|e(Gn,d)|
|Bn| 7→ 2 when n 7→ ∞.

When we combine equation (48) and Proposition (7.2.5), we obtain

lim
n→∞

Ep(f(Gn))

| Bn |
= 2κh(1− p) (49)

Filling equations (44), (46) and (49) in in equation (42) results in

κt(p) = 1− 3p+ 2κh(1− p) = 2κh(1− p) + 1− 3p (50)

which is what we wanted to proof.

7.3 Remark

In the proof of Theorem 7.2.1, we looked primarily at the triangular lattice and used the hexagonal lattice
as dual space. We could have reversed this by primarily looking at the hexagonal lattice and by using the
triangular lattice as its dual space. Doing the same kind of steps as above, we would then have been able to
prove

κh(p) =
1

2
κt(1− p) + 1− 3

2
p (51)

As it turns out, Theorem (7.2.1) could be rewritten as (51) and vice versa. One could, as a ’sanity check’,
calculate equation 51 by doing the same kind of steps as were used in the proof of Theorem (7.2.1), and then
verify that the found expression can indeed be rewritten as the first one.

7.4 Applications

For most lattices, an as yet unproven conjecture is that κ(p) is infinitely many times differentiable everywhere
except at p = pc. We can use this to derive that pc,t + pc,h = 1 easily.

Suppose that the only point where κt(p) fails to be infinitely many times differentiable is at p = pc,t.
According to Theorem (7.2.1), κt(pc,t) = 2κh(1 − pc,t) + 1 − 3p, and the only part at the right hand side
that could be responsible for κt(pc,t) being not infinitely many times differentiable, is κh(1 − pc,t). Thus
κh(1 − pc,t) is not infinitely times differentiable. If we further assume that κh(p) only fails to be infinitely
many times differentiable if p = pc,h, then it follows that 1− pc,t = pc,h, so then pc,t + pc,h = 1.
The only problem with this is that our assumptions about the differentiability of κt(p) and κh(p) are not
proven. We will later prove that pc,t + pc,h = 1 without making these assumptions.

Another possible application of Theorem 7.2.1 is in finding direct estimates of the critical points. If we
were to estimate κt(p) and κh(p) around the critical points, then this also leads to estimates of the critical
points themselves.
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8 pc,t + pc,h ≥ 1

In this section, we will show that pc,t + pc,h ≥ 1. We base ourselves largely on part of Chapter 9.3 of
Grimmetts book, where he shows that pc,s + pc,s ≥ 1 so that pc,s ≥ 1

2 .
Intuitively, pc,t + pc,h ≥ 1 because otherwise, there would be values of p for which both T 2 with edge-
probability p and H2 with edge-probability 1−p, in which every edge is declared open if and only if the edge
in T 2 that it crosses, is closed, would contain an infinite open cluster. But because every edge of T 2 that
crosses an open edge in its dual H2, must by definition be closed, no open path in T 2 can cross an open path
in its dual. That makes the coexistance of these two infinite open clusters unlikely. We will now get more
formal.

Theorem 8.0.1. pc,t + pc,h ≥ 1

Proof. Suppose, to the contrary, that pc,t + pc,h < 1. Then there exists an ε > 0 such that pc,t = 1− pc,h− ε.
Let’s now define pε ≡ 1− pc,h − ε

2 . Then pε > pc,t. Recall that pc,s ≡ sup
p
{θs(p) = 0}. So then by definition,

θt(pε) > 0. Also, 1− pε = pc,h + ε
2 > pc,h, so by definition, θh(1− pε) > 0.

We will consider percolation on T 2 with edge-probability pε and we will study Bn as given in Definition
(6.0.4); specifically, the boundary ∆Bn. We will define four subsets of ∆Bn with corresponding events:

Ban ≡ {q ≡ (q1, q2) ∈ ∆Bn | q1 > 0, q2 ≥ 0} (52)

Bbn ≡ {q ≡ (q1, q2) ∈ ∆Bn | q1 ≤ 0, q2 > 0} (53)

Bcn ≡ {q ≡ (q1, q2) ∈ ∆Bn | q1 < 0, q2 ≤ 0} (54)

Bdn ≡ {q ≡ (q1, q2) ∈ ∆Bn | q1 ≥ 0, q2 < 0} (55)

Let Aun, u ∈ {a, b, c, d}, be the event that some q ∈ Bun is in an infinite open path in T 2 that uses no other element of Bn.
(56)

Since Ban ∪ Bbn ∪ Bcn ∪ Bdn = ∆Bn, we know that Aan ∪ Abn ∪ Acn ∪ Adn implies that some q ∈ ∆Bn is in an
infinite open path in T 2 that uses no other element of Bn, which in turn implies the weaker statement that
some q ∈ ∆Bn is in an infinite open cluster.
If some q ∈ Bn is in an infinite open cluster, this cluster will contain elements that will still be in an infinite
open cluster when all elements of Bn are declared closed. Let r /∈ Bn be such an element, then r must be
in an infinite open path that does not use elements of Bn. Since q and r lie in the same open cluster, there
must be an open path from q to r. This open path has to cross ∆Bn at least once. Let s be the element in
∆Bn that will be visited last by moving from q to r, then there is an open path from s to r that does not use
other elements of Bn (namely the remainder of the open path from q to r); and because r is in an infinite
open path that does not use elements of Bn, s is in this same path with itself added to it. Since s is in an
infinite open path in T 2 that uses no other element of Bn and s ∈ ∆Bn = Bn,a ∪Bn,b ∪Bn,c ∪Bn,d, we have
met the condition for Aan ∪Abn ∪Acn ∪Adn.
In conclusion, Aan ∪Abn ∪Acn ∪Adn if and only if some q ∈ Bn is in an infinite open cluster.
Since θt(pε) > 0 and limn→∞ | Bn |=∞,we have

lim
n→∞

Ppε(A
a
n ∪Abn ∪Acn ∪Adn) = 1 (57)

I claim that follows that

Proposition 8.0.2. Ppε(A
u
n) ≥ 1− (1− Pp(Aan ∪Abn ∪Acn ∪Adn))

1
n

Grimmett made an analogous claim about the square lattice and said that the square root trick was sufficient
to show that his claim was correct. Though we think the claim is correct, we think Grimmett made a mistake
stating the square root trick and we think furthermore that using the square root trick is insufficient to prove
the claim. As such, we do not want to borrow Grimmetts arguments this time. Unfortunately, we have not
yet found a neat way to prove the claim, or to find a way around it. Nonetheless, we continue the proof.
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Because of equation (57),

lim
n→∞

Ppε(A
u
n) = 1, u ∈ a, b, c, d (58)

This means that we can choose N in such a way that

Ppε(A
u
N−1) >

7

8
, u ∈ a, b, c, d (59)

and hence also

Ppε(A
u
N ) >

7

8
,∈ a, b, c, d (60)

Now recall Definition (6.0.4) of Gn,d. We will use Gn,d in the following. Let again u ∈ a, b, c, d. Then:

We define Bun,d as the collection of vertices of Gn that connect to an edge that crosses an edge of Bdn.
(61)

We define Aun,d as the event that some q ∈ Bun,d is in an infinite open path in T 2 that uses no other element of Gn.
(62)

Every edge in the dual is open with probability 1 − pε. Since θh(1 − pε) > 0 and limn→∞ | Gn,d |= ∞,
limn→∞ Ppε(A

a
n,d ∪Abn,d ∪Acn,d ∪Adn,d) = 1. This means that we can repeat the same analysis as was applied

before on Aun, u ∈ a, b, c, d, to eventually obtain the result

Ppε(A
u
Nd−1,d), Ppε(A

u
Nd,d

) >
7

8
, u ∈ a, b, c, d (63)

Choose M = max(N,Nd) so that equations (59), (60) and (63) all hold when M is used instead of N or Nd.

We define the event A as follows:

A ≡ AaM ∩AcM ∩AbM,d ∩AdM,d (64)

If A does not occur, then AaM , AcM , AbM,d and AdM,d do all not occur. So we have, by equations (60) and (63),
that

Pp(ε)(A)a = 1− Pp(ε)(Ac)
≥ 1− Pp(ε)(AaM ) + Pp(ε)(A

c
M ) + Pp(ε)(A

b
M,d) + Pp(ε)(A

d
M,d)

≥ 1− 4
1

8
=

1

2

(65)

Suppose that A occurs. Then there would be some a ∈ AaM and some c ∈ AcM that are both in an infinite
open cluster; since there is almost surely one open cluster, a and b would be in the same infinite open cluster
and hence there will be an open path from a to b. We also have some b ∈ AbM,d and some d ∈ AdM,d that are
in an infinite open path that contains no other element of Bn,d. Since an open path cannot cross an open
path in its dual space, the open path from a to c must use vertices that do not cross vertices outside Bn,d
to go through Bn. So there must be an open path through Bn. But since a is in an infinite open path, c is
in another infinite open path and there is an open path from a to c, any open path from b to d in the dual
would cross an open vertex in T 2, which is impassible. So b and d cannot lie in the same cluster, despite both
lying in an infinite cluster. This happens with probability 0 (3.0.13). So we must have that Pp(ε)(A) = 0.

This is in contradiction with our earlier result (65) that Pp(ε)(A) = 1
2 .

The conclusion is that our assumption that pc,t + pc,h < 1 is incorrect. This proves the theorem.
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Figure 6: J2 on the triangular lattice in red; G2,d on the triangular lattice in black.

9 pc,t + pc,h ≤ 1

We still base ourselves on part of Chapter 9.3 of Grimmetts book; specifically the second proof he gave that
showed that pc,s + pc,s ≥ 1 so that pc,s ≥ 1

2 .
To prove Theorem (3.0.11), that says that pc,t + pc,h = 1, we only need to show that pc,t + pc,h ≤ 1 since we
already know that pc,t + pc,h ≥ 1 according to Theorem (8.0.1). To do this, we will make use of the following
proposition:

Proposition 9.0.3. We work on the triangular lattice. Let Wn be the event that there is an edge x such that
δt(0, x) = n and there exists an open path from the origin to x. Then:
If p < pc,t then there exists ψ > 0 such that Pp(Wn) < e−nψ for all n.

Grimmett proved this proposition for the square lattice. We are fairly certain that his proof can be extended
to the triangular lattice. To write a full proof of Proposition (9.0.3) would take a lot of time, though, because
we would need to prove a number of lemma’s about probability theory, too. That is why we choose to omit
a proof. With this proposition, we can start the proof of Theorem (3.0.11).

Proof. Recall the definitions of Bn, Gn (Definition (6.0.4)) and Gn,d (Proposition (7.2.4)) on the triangular
lattice. We define Jn in the following way:

Jn is the set of vertices Bn together with the set of edges {e ≡< x, y >∈ E2
t | x, y ∈ Bn, δt(0, x) <

norδt(0, y) < n}.
Figure (6) shows an example of such a Jn and Gn,d for n = 2.

Now consider the following events. An is the event that some vertex on the lower left side of Jn is connected
to a vertex on the upper right side of Jn, and Dn is the event that some vertex on the upper left side of Gn,d
is connected to some vertex on the bottom right side of Gn,d. More formally, An is said to occur if there
exist vertices < −n, y >,< n, b >∈ Z2 between which an open path in Jn exists. Let X ⊂ Gn,d be the set
of vertices that connect to an edge in Gn,d that crosses an edge in Jn that connects to an edge in Jn that is
not of the form < −n, y >∈ Z2 or < n, b >∈ Z2, but does have a distance n to the origin in δt. Dn is said to
occur if there exist vertices v, w ∈ X that have no path between them in X, but that do have an open path
between them in Gn,d.

It is the case that An occurs if and only if Dn does not occur. We are, unfortunately, not able to give
an exact proof, but we will reason why we suppose that this is the case.
It can be seen that any open path for which An occurs must cross any open path for which Dn occurs. Since
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it is not possible for open paths to cross open paths of its dual in the dual percolation process, An and Dn

cannot occur simultaneously and we have An ∩Dn = ∅.
Assume that An does not occur. Define Q as the set of edges and vertices that can occur in open paths in
Jn that contain a vertex of the form < −n, y >∈ Z2, and define R to be the set of edges and vertices that
can occur in open paths in Jn that contain a vertex of the form < n, b >∈ Z2. If there would be an open
path from some vertex q ∈ Q to some vertex r ∈ R through Jn, then there would be an open path from some
< −n, y >∈ Z2 to q to r to some < n, b >∈ Z2, which is impossible because An cannot occur. Therefore,
such connections do not exist. The edges between Q and R are closed and thus correspond to open edges in
Jn,d, that form a path between Q and R. This implies that Dn occurs. Using similar arguments, if Dn does
not occur, then An occurs.

Since An occurs if and only if Dn does not occur, we have:

Pp(An) + Pp(Dn) = 1 (66)

Using equation (refjaja), we will show that pc,t + pc,h ≤ 1 using contradiction.

Suppose, on the other hand, that pc,t + pc,h > 1. Then there exists an ε > 0 such that pc,t = 1 + ε − pc,h.
Let’s now define pε ≡ 1 + ε

2 − pc,h. Then pε < pc,t. Also, pc,h = 1 − pc,t > pε. We can use Theorem (9.0.3)
to estimate Ppε(An). Given a vertex (−n, y), the probability that there is a path to some vertex (n, b) is
no bigger than the probability that there is a path to any vertex with a distance of 2n (since the former
event implies the latter event). Because of symmetry, we can move (−n, y) to the origin and conclude that
this probability is no bigger than Ppε(Wn). There are n different vertices for which An occurs if there is an
open path from this vertex to some vertex in the form of (n, b). All these probabilities are no bigger than
Ppε(Wn) and they cannot negatively affect each other. Thus, Ppε(An) ≤ nPpε(Wn). Since p < pc,t, we can
use Theorem (9.0.3) to see that there is a ψ > 0 such that

Ppε(An) < ne−nψ (67)

for all n. We have

lim
n→∞

Ppε(An) ≤ lim
n→∞

ne−nψ = 0 (68)

According to equation (66), we then have

lim
n→∞

Ppε(Bn) = 1 (69)

But pε < pc,h. This means that there is no infinite open cluster in the dual space. Yet, equation 69 implies
that there is. The conclusion is that our assertion that pc,t+pc,h > 1. Thus, pc,t+pc,h ≤ 1. Since we already
proved that pc,t + pc,h ≥ 1, we have

pc,t + pc,h = 1 (70)

and our main theorem is proven.
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10 Final remarks

10.1 Exact values

We have proven - despite using some unproven corollaries - that pc,h + pc,t = 1. A more interesting question
would be what the exact values of pc,h and pc,t are. This is - again - beyond the scope of the thesis, but I
won’t deny the curious reader the answers. It is proven that

Theorem 10.1.1. pc,t = 2sin( π18 )

This was proven in the article that the following link leads to (or lead to at June 1st, 2017):
http://www.cambridge.org/core/journals/advances-in-applied-probability-article/
bond-percolation-on-honeycomb-and-triangular-lattices/D2F18A5392DEFC352B9C89CACG21FDAO

(This is the same article that mentioned the duality of the triangular and hexagonal lattices.) Thanks
to our theorem, we can use this result to conclude

Theorem 10.1.2. pc,h = 1− 2sin( π18 )

For most percolation processes, no exact values for the critical probabilities are known, though. This is the
case for bond percolation on more complicated lattices, but it is true for site percolation on virtually all
lattices, too.

10.2 The square lattice

As we mentioned many times, we based the proof of our main theorem on part of the book written by
Grimmett that were about the square lattice. One may wonder what Grimmett managed to prove.

We have proved our main theorem that pc,s + pc,s = 1, which combines the critical probabilities of the
hexagonal and triangular lattice. You may have noticed that we did not use many specific properties of these
lattices. You may wonder whether it is true in general that the critical probability is equal to 1 minus the
critical probability of its dual space. The answer is that this is indeed the case for simple lattices.

Take, for instance, the square lattice. Since the square lattice is its own dual space, it would follow that

pc,s + pc,s = 1 (71)

Then it immediately follows that

Theorem 10.2.1. pc,s = 1
2

This theorem is proven by Grimmett in much the same way as our big theorem, theorem 3.0.11. In fact, the
proof is simpler because there is only one space involved instead of two.

As mentioned earlier, there is a variant of Theorem (7.2.1) for the square space, too:

Theorem 10.2.2. The numbers κs(p) of open clusters per vertex in S2 satisfies κs(p) = κs(1− p) + 1− 2p.

This theorem looks a bit nicer than Theorem (7.2.1) and can be proven in much the same way, too.
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