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Abstract

We start by studying properties of several kinds of algebras, taking a look at the spectrum,
ideals and abelian algebras. Then we prove the Gelfand–Naimark Theorem for commuta-
tive Banach star algebras (also known as abelian C∗-algebras). After that, we prove some
basic theorems about Riemann integration of Banach valued functions. We then study some
applications of the Gelfand–Naimark Theorem where we start by studying the functional
calculus, in particular the Riesz functional calculus and its extension to C∗-algebras. We
then take a look at positive elements, representations of C∗-algebras and in particular the
Gelfand–Naimark–Segal construction. Lastly, we study spectral measures and, using repre-
sentations, we prove the spectral theorem for bounded normal operators on a Hilbert space.
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1 INTRODUCTION 1

1 Introduction

A theorem that is often discussed in an introductory topology course is the Gelfand–Naimark theorem.
It states that any compact Hausdorff space X is homeomorphic to the topological spectrum of its algebra
C(X) of continuous functions. In the proof we start with a topological space X . We then construct
the algebra C(X). Then we look at the topological spectrum of C(X) which is the space of nonzero
characters on C(X). Using the theory of maximal ideals we can then show that the structure of these
characters is equivalent to the space X and with that we prove the theorem.

This raises a question if we could go though the same procedure, but start with the algebra rather
than the topology. In particular for which algebras this procedure will give back an algebra which is
equivalent to the original one. Our goal, the Gelfand–Naimark theorem, will answer that question.

The Gelfand–Naimark theorem is actually quite strong and has many applications. One in particular
is in spectral analysis, where we try to find the connection between the structure of the spectrum of ele-
ments, and the structure of the element itself.

In the process we will assume the reader has a Bachelor level understanding of topology, linear alge-
bra, real analysis, complex analysis, measure theory and in particular linear functional analysis. Though
one can read up on particular subjects whilst we use them.

We will begin by studying what objects we are dealing with and what properties they have. Then
we will think about how we can link the object that we have, and finally prove the Gelfand–Naimark
theorem. Then we look at some applications of the Gelfand–Naimark theorem to get an understanding
how important it is and what it really means.

The results and methods in this thesis are mostly based on the book by John B. Conway, A Course
in Functional Analysis [1]. The book has been written to teach about the whole subject area of func-
tional analysis. For this thesis we have organized the material necessary for a detailed treatment of the
Gelfand–Naimark theorem and some of its applications. In addition we have written a brief treatment on
Riemann integration of Banach valued continuous functions. This in turn has been applied to a discus-
sion of Banach valued holomorphic functions.

I want to thank my supervisor Prof. Dr. E.P. van den Ban for guiding me in this learning journey.
Even though he is so busy he really took the time for me where it was necessary. It was a great experience!

I would also like to thank my family and friends, but most of all, I want to thank my mother for all
the support throughout my school and study years. Without her I would probably not have made it to
university and would not have been able to write this thesis.
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2 Banach Algebras

To get to our main goal we will need to know what the objects are that we will be studying. So the aim
of this section is to get a good understanding of what Banach algebras are and what properties they have.
A small reminder: we use F to denote either R or C.

Definition 2.0.1. An algebra over F is a vector space A over F that has a multiplication that makes A
into a ring and such that if α ∈ F and a, b ∈ A then α(ab) = (αa)b = a(αb) ∈ A .

Recall that a Banach space is a complete normed vector space, where completeness means that for
every Cauchy sequence (xn)n∈N ⊂ X there is an x ∈ X such that limn→∞ xn = x.

Definition 2.0.2. A Banach algebra is an algebra A over F with a norm ‖ · ‖ that makes A a Banach
space and such that for all a, b ∈ A ,

‖ab‖ ≤ ‖a‖ ‖b‖.

If A has an identity element we denote it by 1 and assume that ‖1‖ = 1.

Example 2.0.3. Some easy examples of Banach algebras are R and C. If X is a compact space, then
C(X), the space of all continuous functions f : X → F, with pointwise multiplication and supremum
norm also is a Banach algebra. 4

Definition 2.0.4. Let X and Y be normed linear vector spaces and let T ∈ L(X,Y ). If ‖T (x)‖ = ‖x‖
for all x ∈ X , then T is called an isometry.

Let X,Y be Banach algebras, then a homomorphism from X to Y is a map h : X → Y such that
h(xy) = h(x)h(y) and h(x+ λy) + h(x) + λh(y). In essence, h a map that preserves all structure.

An isomorphism is a homomorphism that is bijective.

Observe that if a function h is an isometry and a homomorphism, then ‖h(x)−h(y)‖ = ‖h(x−y)‖ =
‖x−y‖, so h is automatically injective. Hence to prove that h is an isometric isomorphism we only need
to prove that it is a surjective isometric homomorphism.

Proposition 2.0.5. [1, p.188 Proposition 1.3] Let A be a Banach algebra without identity. Then define
A1 := A × F with algebraic operations

i) (a, α) + (b, β) = (a+ b, α+ β)

ii) β(a, α) = (βa, βα)

iii) (a, α)(b, β) = (ab+ αb+ βa, αβ)

and norm ‖(a, α)‖ = ‖a‖ + |α|. Then A1 is a Banach algebra with identity (0, 1). The map φ : A →
A1, a 7→ (a, 0) is an isometric isomorphism of A onto its image.

Proof. It is easy to see that A1 is an algebra and that it is still a Banach space, to check if it is a
Banach algebra we have to check that ‖ab‖ ≤ ‖a‖ ‖b‖. So ‖(a, α)(b, β)‖ = ‖(ab + αb + βa, αβ)‖ =
‖ab+αb+βa‖+|αβ| ≤ ‖a‖ ‖b‖+|α| ‖b‖+|β| ‖a‖+|αβ| = (‖a‖+|α|)(‖b‖+|β|) = ‖(a, α)‖ ‖(b, β)‖.
Furthermore we can easily check that φ is a linear isometry and it is surjective to its image.

This proposition can be useful, since we can add the identity to any Banach algebra by only adding
one dimension to it. This also means that a lot of results that need the identity element to work can still
be made valid for Banach algebras without an identity.
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2.1 Ideals

Definition 2.1.1. A subalgebra M is a subset of an algebra A such that for any a, b ∈M , α ∈ F, we
have a+ b ∈M , ab ∈M and αa ∈M .

Definition 2.1.2. Let A be an algebra:
A left ideal of A is a subalgebra M of A such that ax ∈M for any a ∈ A , x ∈M .
A right ideal of A is a subalgebra M of A such that xa ∈M for any a ∈ A , x ∈M .
An ideal of A is a subalgebra that is both a left and a right ideal.
A proper ideal is an ideal that is strictly smaller than A .
A maximal ideal is a proper ideal that is not contained in any other proper ideal.
If a ∈ A and A has an identity 1, then a is left invertible if there is an x ∈ A such that xa = 1, and

a is right invertible if there is an x ∈ A such that ax = 1.

Notice that if a is invertible and x, y ∈ A are such that xa = 1 = ay, then

y = 1y = (xa)y = x(ay) = x1 = x.

So there is a unique element a−1 ∈ A such that aa−1 = a−1a = 1. If M is an ideal and a ∈ M is
an invertible element, then 1 = aa−1 ∈ M , so we get that M = A . This gives us a very important
relation between ideals and invertibility, because no elements in an ideal that is not the whole space
can be invertible. Since we can not talk of invertibility without an identity, we will come across many
statements that require an identity in the algebra.

The following proof is based on the fact that if x ∈ R and |x| < 1 then 1
1−x =

∑∞
i=0 x

i and roughly
says that any element close to the identity element is invertible.

Lemma 2.1.3. If A is a Banach algebra with identity and x ∈ A such that ‖x − 1‖ < 1, then x is
invertible with inverse x−1 =

∑∞
n=0(1− x)n.

Proof. Define y = 1− x such that ‖y‖ = r < 1. Since

‖yn‖ ≤ ‖yn−1‖ ‖y‖ ≤ ‖yn−2‖ ‖y‖2 ≤ · · · ≤ ‖y‖n = rn

we know that

‖
∞∑
n=0

yn‖ ≤
∞∑
n=0

‖y‖n =
1

1− r
<∞.

Since A is complete, we know that z =
∑∞

n=0 y
n is convergent in A . Now define zk =

∑k
n=0 y

n then
zk(1− y) = 1− yk+1. But since ‖yn+1‖ goes to 0, we see that yn+1 → 0 and thus

z(1− y) = lim
n→∞

zn(1− y) = lim
n→∞

1− yn+1 = 1.

So 1 = z(1−y) = z(1− (1−x)) = zx. Since we can do the same for the right inverse we can conclude
that x is invertible with inverse x−1 = z =

∑∞
n=0 y

n =
∑∞

n=0(1− x)n.

Theorem 2.1.4. [1, p.192] If A is a Banach algebra with identity, Gl = {a ∈ A |a is left invertible},
Gr = {a ∈ A |a is right invertible} and G = {a ∈ A |a is invertible}, then Gl, Gr and G are open in
A .

Proof. Let a0 ∈ Gl and let b0 ∈ A such that a0b0 = 1. if ‖a − a0‖ < ‖b0‖−1 then ‖b0a − 1‖ =
‖b0(a− a0)‖ ≤ ‖b0‖ ‖a− a0‖ < 1. So by Lemma 2.1.3 we get that b0a is invertible. If b = (b0a)−1b0
then ba = 1, so Gl ⊇ {a ∈ A | ‖a − a0‖ < ‖b0‖−1}. Since this is valid for any a0 ∈ Gl and b0 ∈ A ,
the set Gl must be open. Likewise we find that Gr must be open. Since G = Gl ∩Gr, G is open.
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In this proof we also used a trick that is useful to remark: If b0a0 = 1 and ‖a− a0‖ < ‖b0‖−1, then
a is left invertible.

Corollary 2.1.5. If A is a Banach algebra with identity, then the closure of a proper ideal is a proper
ideal, also all maximal ideals are closed.

Proof. Let M be a proper ideal and let G as in the preceding lemma. Since there are no invertible
elements in M it follows that M ∩ G = ∅ and M ⊆ A \G. Since G is open, it follows that A \G is
closed and thus also that clM ⊆ A \G. So the closure of M is not equal to the whole algebra. Since
clM is still an ideal, it follows that it is a proper ideal.

If M is a maximal ideal, then by the first part the closure of M is a closed proper ideal, but since
M is maximal, it follows that clM = M , hence M is closed.

2.2 The Spectrum

Definition 2.2.1. If A is a Banach algebra over F with identity and a ∈ A , then the spectrum of a is
defined by

σ(a) := {λ ∈ F| (a− λ) is not invertible}.

The resolvent set of a is defined to be ρ(a) := F\σ(a).

Notice that formally speaking we should write (a− λ1), but since its usually clear that there should
be a 1 there, it is often ignored in the notation.

Example 2.2.2. IfX is a compact space, and f ∈ C(X), then σ(f) = f(X). This because if α = f(x0),
then f−α has a zero and thus cannot be invertible, hence f(X) ⊆ σ(f). On the other hand, if α /∈ F (X)
then f − α has no zeros, so it is invertible (with the pointwise inversion). 4

As a reminder to complex analysis. We call a function f analytic if for every point x0 in the domain
of f there is an open neighborhood U of x0 such that f is given by a locally convergent power series.
In other words, for all x0 ∈ U there is an open neighborhood V ⊂ U such that f(z) =

∑∞
n=0 an(z −

x0)n for all z ∈ V . In particular, in complex analysis a big theorem is that all analytic functions are
holomorphic and all holomorphic functions are analytic on C. We will take a closer look at this later on
for A valued functions. But for now, we will assume f : U → A is analytic on U ⊂ C if the derivative
f ′(z) := limh→0 h

−1[f(z + h)− f(z)] exists for every z ∈ U and is continuous on U .

Theorem 2.2.3. [1, p.196] If A is a Banach algebra over C with identity, then for each a ∈ A , σ(a) is
a nonempty subset of C. Moreover, f : ρ(a)→ A defined by f(z) = (z− a)−1 is an A valued analytic
function on ρ(a) and if |α| > ‖a‖, then α /∈ σ(a).

Proof. If |α| > ‖a‖, then α − a = α(1 − α−1a) with ‖α−1a‖ < 1. So using Lemma 2.1.3 we see that
‖(1 − α−1a) − 1‖ = ‖α−1a‖ < 1, hence 1 − α−1a is invertible. Since α − a = α(1 − α−1a), we see
that α− a is invertible, so α /∈ σ(a). This implies that σ(a) ⊂ {α ∈ C| |α| ≤ ‖a‖}, so we see that σ(a)
is bounded.

Let G be the set of invertible elements of A . The map f : C → A ; α 7→ (α − a) is continuous.
Since G is open and ρ(a) = f−1(G) we find that ρ(a) must be open. So σ(a) = C\ρ(a) is closed. Since
σ(a) is closed and bounded in C, it is compact.

Now define g : ρ(a)→ A by g(z) = (z − a)−1. Now we use the identity

x−1 − y−1 = x−1yy−1 − x−1xy−1 = x−1(y − x)y−1.

Letting x = α+ h− a and y = α− a then we get that

g(α+ h)− g(α)

h
=

(α+ h− a)−1(−h)(α− a)−1

h
= −(α+ h− a)−1(α− a)−1.
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So g′(α) = −(α− a)−2 and since g is also continuous we see that g is analytic on ρ(a).
Now to show that σ(a) is non-empty we look at g(z) when |z| > ‖a‖. Then g(z) = z−1(1−a/z)−1.

As z →∞ we see that (1− a/z)→ 1 so also (1− a/z)−1 → 1, hence g(z)→ 0. If we assume g is an
entire function, then Liouville’s theorem implies that g′ ≡ 0, since g 6= 0 we have a contradiction. Since
g is defined on all of ρ(a), this means that ρ(a) 6= C, so σ(a) = C\ρ(a) is non-empty.

Remark 2.2.4. Since all following results will be about Banach algebras over C, we will from now on
assume all Banach algebras are over C.

Definition 2.2.5. If A is a Banach algebra with identity and a ∈ A , then the spectral radius of a is
defined by

r(a) = sup
α∈σ(a)

|α|.

Observe that this definition only makes sense because of the previous theorem.

Proposition 2.2.6. [1, p197 Proposition 3.8] If A is a Banach algebra with identity and a ∈ A , then
limn→∞ ‖an‖1/n exists and

r(a) = lim
n→∞

‖an‖1/n.

Proof. Let G = {z ∈ C| z = 0 or z−1 ∈ ρ(a)} and define f : G → A by f(0) = 0 and f(z) =
(z−1 − a)−1 for z 6= 0. Remark that f is analytic on G, so f has a power series expansion. From
complex analysis this power series converges for R = d(0, σ(a)−1) where σ(a)−1 = {z−1|z ∈ σ(a)}.
So R = infα−1∈σ(a) |α| = r(a)−1. We also know from complex analysis that R−1 = lim sup ‖an‖1/n,
so we find that

r(a) = lim sup ‖an‖1/n.

Now let α ∈ C and n ≥ 1, then αn − an = (α− a)(αn−1 +αn−2a+ · · ·+ an−1) = (αn−1 +αn−2a+
· · ·+an−1)(α−a). So if αn−an is invertible then so is (α−a) and (α−a)−1 = (αn−an)−1(αn−1 +
αn−2a + · · · + an−1). So for α ∈ σ(a) we find that αn − an is not invertible for every n ≥ 1. So by
Theorem 2.2.3 we find that |α|n ≤ ‖an‖. Hence |α| ≤ ‖an‖1/n for all n ≥ 1 and α ∈ σ(a). So if
α ∈ σ(a) then |α| ≤ lim inf ‖an‖1/n. Hence

r(a) = sup
α∈σ(a)

|α| ≤ lim inf ‖an‖1/n ≤ lim sup ‖an‖1/n = r(a).

So the limit exists and r(a) = limn→∞ ‖an‖1/n.

3 Abelian Banach Algebras

In light of our main goal, the Gelfand–Naimark theorem, we will need to make sure we use all the
information we can get. An important part of this information is that we know that algebras that are
made of continuous functions on a compact space are abelian. In this section we will take a look at what
kind of properties we can find. Once we know some details about these properties we will look at the
Gelfand transform, a function from an abelian Banach algebra to the space of continuous functions on
its maximal ideal space. This function will be the key in understanding the Gelfand–Naimark theorem.

3.1 Maximal Ideal Space

Definition 3.1.1. A division algebra is an algebra with identity such that every nonzero element has a
multiplicative inverse.
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These might seem like abstract spaces, but the following theorem proven by Gelfand and Mazur
makes these spaces a bit more clear.

Theorem 3.1.2 (Gelfand–Mazur). [1, p.218] If A is a Banach division algebra with identity element 1,
then A = {λ1| λ ∈ C}.

Proof. If a ∈ A then σ(a) 6= ∅. If λ ∈ σ(a), then (a − λ1) has no inverse. Since A is a division
algebra, a− λ1 = 0, so a = λ1.

By contraposition we see that if a Banach algebra A is not isomorphic to the complex numbers, then
there is a nonzero element in A that is not invertible.

Another remarkable consequence of this theorem is that there is no norm that makes the quaternions
H into a Banach space. This because the quaternions form a division algebra but are not isomorphic to C.

Another very strong and important consequence of the Gelfand–Mazur theorem is the following
proposition. This is an important step towards the Gelfand–Naimark theorem since it links ideals to
homomorphisms.

Proposition 3.1.3. [1, p.218] If A is an abelian Banach algebra and M is a maximal ideal, then there
is a homomorphism h : A → C such that M = kerh. Conversely, if h : A → C is a nonzero
homomorphism, then kerh is a maximal ideal. Moreover, the map h 7→ kerh is a bijection.

Proof. If M is a maximal ideal, then by Corollary 2.1.5, M is closed. Hence A /M is a Banach algebra
with identity. Let π : A → A /M be the quotient map. If a ∈ A and π(a) is not invertible in A /M ,
then π(A a) = π(a)[A /M ] is a proper ideal in A /M . Now let

I = {b ∈ A | π(b) ∈ π(A a)} = π−1(π(A a)).

Then I is a proper ideal of A and M ⊆ I . Since M is maximal, M = I . So π(aA ) ⊆ π(I) =
π(M ) = {0}, so π(a) = 0. So we find that if π(a) is not invertible, then π(a) = 0. In other words,
A /M is a Banach division algebra. So by the previous theorem A /M = C = {λ + M | λ ∈ C}.
Define h̃ : A /M → C by h̃(λ + M ) = λ and define h : A → C by h = h̃ ◦ π. Then h is a
homomorphism and kerh = M .

Now consider h : A → C a nonzero homomorphism, then kerh = M is a non trivial ideal and
A /M has the structure of C. So M is a maximal ideal.

Lastly, if h, h′ are two nonzero homomorphisms and kerh = kerh′. Then, since homomorphisms
are linear, there is an α ∈ C such that h = αh′. So 1 = h(1) = αh′(1) = α, so α = 1 and h = h′.

Corollary 3.1.4. If A is an abelian Banach algebra and h : A → C is a homomorphism, then h is
continuous.

Proof. h is linear and kerh is a maximal ideal by the theorem. By Corollary 2.1.5, maximal ideals are
closed, so kerh is closed, so h is continuous.

Observe that if h : A → C is a homomorphism, then h ∈ A ∗. We can use this property in the
following proposition.

Proposition 3.1.5. [1, p.219] If A is an abelian Banach algebra and h : A → C is a nonzero homo-
morphism, then ‖h‖ = 1.
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Proof. Let a ∈ A and define λ = h(a). If |λ| > ‖a‖ then ‖a/λ‖ < 1, so 1 − a/λ is invertible. Let
b = (a− a/λ)−1 then 1 = b(a− a/λ) = b− ba/λ. Since h(1) = 1 we find that

1 = h(1) = h(b− ba/λ) = h(b)− h(b)h(a)/λ = h(b)− h(b) = 0

by the definition of λ. So we have a contradiction. Hence ‖a‖ > |λ| = |h(a)| and ‖h‖ < 1. Since
h(1) = 1 we find that ‖h‖ = 1.

Definition 3.1.6. Let X be a normed space and X∗ its dual space, then the weak∗ topology on X∗ is the
topology defined by the family of seminorms {px| x ∈ X} where px(x∗) = |x∗(x)|.

Definition 3.1.7. A directed set is a partially ordered set (I,≤) such that if i1, i2 ∈ I then there exists
an i3 such that i1 ≤ i3 and i2 ≤ i3.

A net in X is a pair ((I,≤), x) where (I,≤) is a directed set and x is a function from I onto X . We
usually write xi instead of x(i) and say “let {xi} be a net in X”.

Observe that a normal sequence (xi)i ∈ N is also a net if we use the ordering of N. We will use
nets instead of sequences because we can only prove the statements with sequences if they are second
countable. But as we can see in the following definition, Σ is not second countable. Fortunately the
statements can be proven using these nets.

Definition 3.1.8. If A is an abelian Banach algebra, let Σ = {h : A → C| h is a nonzero homomorphism}.
Give Σ the relative weak∗ topology that it has as a subset of A ∗. Then Σ with this topology is called the
maximal ideal space of A .

Remark 3.1.9. When the Gelfand–Naimark theorem is proved from the perspective of topology, these
nonzero homomorphisms are called the characters of A and Σ is called the topological spectrum of A .

We will need one more big Theorem from functional analysis.

Theorem 3.1.10 (Alaoglu‘s Theorem). [1, p.130] Let X be a normed space, then the closed unit ball in
X∗ is compact in the weak∗ topology.

Theorem 3.1.11. [1, p219] If A is an abelian Banach algebra, then its maximal ideal space Σ is a
compact Hausdorff space. Moreover, if a ∈ A , then σ(a) = Σ(a) := {h(a)| h ∈ Σ}.

Proof. Since A ∗ is a Hausdorff space and Σ ⊆ BA ∗
1 (0), the unit ball in A ∗, we only need to show that Σ

is weak∗ closed due to Alaoglu‘s Theorem. For this, let {hi} be a net in Σ and let h ∈ BA ∗
1 (0) such that

hi → h for the weak∗ topology. If a, b ∈ A , then h(ab) = limhi(ab) = limhi(a)hi(b) = h(a)h(b). So
h is a homomorphism. Since h(1) = limhi(1) = 1, we conclude that h ∈ Σ. Thus Σ is compact.

If h ∈ Σ and λ = h(a) then a − λ ∈ kerh. So a − λ is not invertible, hence λ ∈ σ(a) and
Σ(a) ⊆ σ(a). Now let λ ∈ σ(a) then a − λ is not invertible so we find that I = (a − λ)A is a proper
ideal. Now let M be a maximal ideal that contains I . By Proposition 3.1.3 we know there is an h ∈ Σ
such that M = kerh. thus 0 = h(a− λ) = h(a)− λ so that h(a) = λ ∈ σ(a). So σ(a) ⊆ Σ(a) and we
find that Σ(a) = σ(a).

3.2 The Gelfand Transform

Definition 3.2.1. Let A be an abelian algebra with maximal ideal space Σ. If a ∈ A , then the Gelfand
transform of a is the function â : Σ → C defined by â(h) = h(a). The Gelfand transform of A is the
function γ : A → C(Σ) defined by

γ(a) = â.

It is not yet clear that â ∈ C(Σ) since we do not know if â is continuous, however, the following
theorem ensures this.
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Theorem 3.2.2. [1, p220] If A is an abelian algebra with maximal ideal space Σ and a ∈ A , then the
Gelfand transform â of a, belongs to C(Σ). Furthermore, the Gelfand transform of A is a continuous
homomorphism of norm 1 and its kernel is given by⋂

{M |M is a maximal ideal of A }.

Moreover, for all a ∈ A we have

‖â‖∞ = lim
n→∞

‖an‖1/n = r(a).

Proof. If hi → h in Σ, then hi → h weak∗ in A ∗. So if a ∈ A , then â(hi) = hi(a) → h(a) = â(h).
So â ∈ C(Σ).

Now let γ be the Gelfand transform of A . If a, b ∈ A then γ(ab)(h) = âb(h) = h(ab) =
h(a)h(b) = â(h)b̂(h) = γ(a)(h)γ(b)(h). So γ(ab) = γ(a)γ(b). Since all h ∈ Σ are linear it is easy to
see that γ must be linear, so γ is a homomorphism.

By Proposition 3.1.5 we see that if a ∈ A then |â(h)| = |h(a)| ≤ ‖a‖, so ‖γ(a)‖∞ = ‖â‖∞ ≤ ‖a‖.
So γ is continuous and ‖γ‖ ≤ 1. Since γ(1)(h) = 1̂(h) = h(1) = 1 for all h ∈ Σ we find that γ(1) = 1
and so ‖γ‖ = 1.

Since a ∈ ker γ if and only if â ≡ 0 (that is, h(a) = 0 for all h ∈ Σ), we can see that a ∈ ker γ if
and only if a belongs to every maximal ideal in A .

Finally, by Theorem 3.1.11 we get that if a ∈ A then ‖â‖∞ = sup{|λ| | λ ∈ σ(a)} = r(a) =
limn→∞ ‖an‖1/n by Proposition 2.2.6.

The Gelfand transform is a function that links algebras and the space of continuous functions on
their maximal ideal space. So one might expect the Gelfand transform to be bijective. As it will turn out
this is indeed the case for a certain type of algebra.

Definition 3.2.3. If A is an abelian Banach algebra and a ∈ A , then we call a a generator of A if the
set {p(a) | p is a polynomial} is dense in A .

Recall from topology that if τ : X → Y is a homeomorphism, then A : C(Y ) → C(X) defined by
Af = f ◦ τ is an isometric isomorphism. We denote this relation between A and τ by A = τ#.

Proposition 3.2.4. [1, p221] Let A be an abelian Banach algebra with identity and maximal ideal
space Σ and let a ∈ A be a generator of A . Then there is a homeomorphism τ : Σ→ σ(a) such that if
γ : A → C(Σ) is the Gelfand transform and p is a polynomial, then γ(p(a)) = τ#(p).

Proof. Define τ : Σ → σ(a) by τ(h) = h(a). Then by Theorem 3.1.11 we see that τ is surjective.
We can also see that τ is continuous. Now suppose τ(h1) = τ(h2), then h1(a) = h2(a) and hence
h1(an) = h2(an) for all n ∈ N. Since h1, h2 are linear we see that h1(p(a)) = h2(p(a)) for all
polynomials p. Since a is a generator of A and h1, h2 are continuous, we see that h1(x) = h2(x) for all
x ∈ A . Hence h1 = h2 and τ is injective. Since Σ is compact we conclude that τ is a homeomorphism.
Now, since γ and τ are both homomorphisms, we see that

γ(p(a))(h) = p(γ(a))(h) = p(â)(h) = p(â(h)) = p(h(a)) = p(τ(h)) = τ#(p)(h).

Corollary 3.2.5. If A has two elements a1 and a2 that are both a generator of A , then σ(a1) and σ(a2)
are homeomorphic

Proof. From the last proposition we see that σ(a1) and σ(a2) are both homeomorphic to Σ.
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4 C∗-Algebras

The algebras that we have studied so far have a lot of good properties. However, there are some properties
that we are still missing if we want to make a link between an algebra and a topological space. This is
because the link between the topological space and an algebra is the space of continuous functions on
the topological space. Since we want to make a bijection between the two, we cannot leave out any
information that is given by the functions. Hence we need to add a condition to our algebras which says
something about the complex part of the functions on the topological space. In particular we will add an
involution to the algebra. The involution looks a lot like the conjugation on C, but is slightly different
since a general algebra is not commutative.

4.1 Properties of C∗-Algebras

Definition 4.1.1. Let A be a Banach algebra, an involution is a map a 7→ a∗ from A to A such that the
following properties hold for all a, b ∈ A and α ∈ C:

1. (a∗)∗ = a

2. (ab)∗ = b∗a∗

3. (αa+ b)∗ = ᾱa∗ + b∗.

Observe that if A has an involution and an identity then 1∗a = (1∗a)∗∗ = (a∗1)∗ = (a∗)∗ = a and
similarly a1∗ = a, so 1∗ is an identity. Since the identity is unique we see that 1∗ = 1. Furthermore,
observe that if α ∈ C then α∗ = ᾱ.

Definition 4.1.2. A C∗-algebra is a Banach algebra A with an involution such that ‖a∗a‖ = ‖a‖2 for
all a ∈ A .

Example 4.1.3. C is aC∗-algebra where we let the involution be complex conjugation. Another example
are the complex n× n matrices where the involution is the complex transpose of a matrix. 4

Example 4.1.4. Let H be a Hilbert space and let A = B(H ) be the algebra of all bounded linear
operators from H to H together with the operator norm. Then A is a C∗-algebra where if A ∈ B(H )
we let A∗ be the adjoint of A, where the adjoint of A is the operator A∗ such that 〈Ax, y〉 = 〈x,A∗y〉 for
all x, y ∈H . 4

Proposition 4.1.5. If A is a C∗-algebra and a ∈ A then ‖a∗‖ = ‖a‖.

Proof. ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖ ‖a‖ so ‖a‖ ≤ ‖a∗‖ and since a∗∗ = a we also find that

‖a∗‖2 = ‖a∗∗a∗‖ ≤ ‖a∗∗‖ ‖a∗‖ = ‖a‖ ‖a∗‖

so that ‖a∗‖ ≤ ‖a‖. So we find that ‖a∗‖ = ‖a‖.

Proposition 4.1.6. If A is a C∗-algebra and a ∈ A , then

‖a‖ = sup{‖ax‖ | x ∈ A , ‖x‖ ≤ 1} = sup{‖xa‖ | x ∈ A , ‖x‖ ≤ 1}.

Proof. Let α = sup{‖ax‖ | x ∈ A , ‖x‖ ≤ 1}. Then, since ‖ax‖ ≤ ‖a‖ ‖x‖, we see that α ≤ ‖a‖.
Now let x = a∗/‖a‖, then ‖x‖ = 1 because of Proposition 4.1.5. So

‖ax‖ = ‖aa∗/‖a‖ ‖ = ‖a‖2/‖a‖ = ‖a‖.

Hence α ≥ ‖a‖ and thus α = ‖a‖. The proof for the second equality is similar.
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Corollary 4.1.7. If A is a C∗-algebra, then A is isometrically isomorphic to a subalgebra of B(A ).

Proof. For a ∈ A define the function la : A → A by La(x) = ax, then by Proposition 4.1.6 we see
that ‖La‖ = ‖a‖ and since La is clearly linear we find that La ∈ B(A ). Now define ρ : A → B(A ) by
ρ(a) = La, then ρ is a homomorphism and an isometry. Since the inverse is also clearly a homomorphism
we find that ρ is an isometric isomorphism from A to ρ(A ) ⊂ B(A ).

Definition 4.1.8. If A and B are two C∗-algebras, then a ∗-homomorphism is a homomorphism ρ :
A → B such that ρ(a∗) = ρ(a)∗ for all a ∈ A .

Proposition 4.1.9. [1, p.233 Proposition 1.9] If A is a C∗-algebra, then there is a C∗-algebra A1 with
identity such that A1 contains A as an ideal.

If A does not have an identity, then we can require A to be a maximal ideal such that A /A1 is one
dimensional and, if we require A to be a maximal ideal, then A1 is unique up to ∗-isomorphism.

If B is aC∗-algebra with identity and ν : A → B is a ∗-homomorphism, then ν1 : A1 → B defined
by ν1(a+ α) = ν(a) + α for α ∈ C and a ∈ A , is a ∗-homomorphism.

Proof. If A has an identity then the proposition is trivial, so assume A does not have an identity. Define
A1 := {a+ α| a ∈ A , α ∈ C} where a+ α is just a formal sum. Define multiplication and addition in
the obvious way, define (a+ α)∗ = a∗ + ᾱ, and define the norm on A1 to be

‖a+ α‖ = sup{‖ax+ αx‖ | x ∈ A , ‖x‖ ≤ 1}.

This is a complete norm on A1 so we only have to show that ‖y∗y‖ = ‖y‖2 for all y ∈ A1. So let
y = a+ α and ε > 0 then there is an x ∈ A such that

‖a+ α‖2 − ε < ‖ax+ αx‖2 = ‖(x∗a∗ + ᾱx∗)(ax+ αx)‖ = ‖x∗(a+ α)∗(a+ α)x‖
≤ ‖(a+ α)∗(a+ α)‖.

So ‖a+ α‖2 ≤ ‖(a+ α)∗(a+ α)‖.
For the other inequality, observe that ‖(a + α)∗(a + α)‖ ≤ ‖(a + α)∗‖ ‖a + α‖. Hence we only

need to show that ‖(a+ α)∗‖ ≤ ‖a+ α‖.
Now let x, z ∈ A and ‖x‖, ‖z‖ ≤ 1, then

‖z(a+ α)∗x‖ = ‖za∗x+ ᾱzx‖ = ‖x∗az∗ + αx∗z∗‖ = ‖x∗(a+ α)z∗‖ ≤ ‖a+ α‖.

Thus taking the supremum over all x and z with norm less than one gives ‖(a + α)∗‖ ≤ ‖(a + α)‖.
Hence ‖y∗y‖ = ‖y‖2.

Furthermore, by the construction of A1 it is easy to see that A is an ideal in A1 and that A1/A has
dimension one.

It is also clear that ν1 is still a homomorphism. It is also a ∗-homomorphism since ν1((a + α)∗) =
ν1(a∗ + ᾱ) = ν(α∗) + ᾱ = ν(α)∗ + ᾱ = ν1(a+ α)∗.

To prove the uniqueness up to ∗-isomorphism, let A1 and A2 be two C∗-algebras that hold to the
requirements the proposition. Then both A1/A and A2/A are one dimensional, hence A1 = A ×C×
{01}× · · ·× {0n} and A2 = A ×C×{01}× · · ·× {0k}. Hence the projections that leave A ×C fixed
and change the number of zeros to the correct amount form a ∗-isomorphism.

Remark 4.1.10. If A is a C∗-algebra with identity and a ∈ A , then the spectrum of a is well defined.
If A does not have an identity, then σ(a) is defined as the spectrum of a as an element of A1 as defined
in the last proposition.
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4.2 Hermitian, Normal and Unitary elements

Definition 4.2.1. If A is a C∗-algebra and a ∈ A , then:

• a is called hermitian if a = a∗.

• a is called normal if a∗a = aa∗.

• If A has an identity then a is called unitary if a∗a = aa∗ = 1.

Proposition 4.2.2. [1, p.234] Let A be a C∗-algebra and a ∈ A .

1. If a is invertible, then a∗ is invertible and (a∗)−1 = (a−1)∗.

2. a = x+ iy where x, y are hermitian elements of A .

3. If u is a unitary element of A , then ‖u‖ = 1.

4. If a is hermitian, then ‖a‖ = r(a).

5. If B is a C∗-algebra and ρ : A → B is a ∗-homomorphism, then ‖ρ(a)‖ ≤ ‖a‖.

Proof. 1. If a is invertible then a−1a = 1, hence 1 = 1∗ = (a−1a)∗ = a∗(a−1)∗. So we see that a∗

is invertible with inverse (a∗)−1 = (a−1)∗.

2. Define x = a+a∗

2 and y = a−a∗
2i , then a = x+ iy. Furthermore, we see that

x∗ =
(a+ a∗)∗

2
=
a∗ + a∗∗

2
=
a+ a∗

2
= x

and

y∗ =
(a− a∗)∗

(2i)∗
=
a∗ − a∗∗

−2i
=
a∗ − a
−2i

= y.

So x and y are indeed hermitian elements on A .

3. ‖u‖2 = ‖u∗u‖ = ‖1‖ = 1. Hence ‖u‖ = 1.

4. Since a is hermitian, a∗ = a. Hence ‖a‖2 = ‖a∗a‖ = ‖a2‖. By induction we see that ‖a2n‖ =
‖a‖2n. so by Proposition 2.2.6 we have

r(a) = lim
n→∞

‖an‖1/n = lim
n→∞

‖a2n‖1/2n = lim
n→∞

‖a‖ = ‖a‖.

5. Let ρ : A → B be a ∗-homomorphism. If A does not have an identity then using Proposition 4.1.9
we may assume that A and B have identities and that ρ(1) = 1. If x ∈ A , then σ(ρ(x)) ⊆ σ(x)
and hence r(ρ(x)) ≤ r(x). Now using part 4. and the fact that a∗a is hermitian, we get

‖ρ(a)‖2 = ‖ρ(a∗a)‖ = r(ρ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2.

Proposition 4.2.3. [1, p.235] If A is an abelian C∗-algebra with identity, a ∈ A and h : A → C is a
nonzero homomorphism, then:

1. If a is hermitian, then h(a) ∈ R.

2. h(a∗) = h(a).
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3. h(a∗a) ≥ 0.

4. If u ∈ A is unitary, then |h(u)| = 1.

Proof. Since A is abelian, by Proposition 3.1.5 we have ‖h‖ = 1 and hence h(1) = 1.

1. If a = a∗ and t ∈ R, then

|h(a+ it)|2 ≤ ‖a+ it‖2 = ‖(a+ it)(a− it)‖ = ‖a2 + t2‖ ≤ ‖a‖2 + |t|2.

So if h(a) = α+ iβ with α, β ∈ R, then

‖a‖2 + t2 ≥ |h(a+ it)|2 = |α+ i(β + t)|2 = α2 + β2 + 2βt+ t2.

Hence ‖a‖2 ≥ α2 + β2 + 2βt for all t ∈ R. Letting t go to ±∞, we get a contradiction if β 6= 0.
So we see that β = 0 and h(a) ∈ R.

2. Let a = x + iy where x and y are hermitian as in Proposition 4.2.2 point 2. Then by 1. we find
that h(x), h(y) ∈ R. So

h(a∗) = h(x− iy) = h(x)− ih(y) = h(x) + ih(y) = h(x+ iy) = h(a).

3. By 2. we find that
h(a∗a) = h(a∗)h(a) = h(a)h(a) = |h(a)|2 ≥ 0.

4. By 2. we find that if u is unitary, then

|h(u)|2 = h(u∗)h(u) = h(u∗u) = h(1) = 1.

Observe that point 2. implies that any homomorphism h : A → C is a ∗-homomorphism.

Corollary 4.2.4. If A is an abelian C∗-algebra with identity and a ∈ A is a hermitian element, then
σ(a) ∈ R.

Proof. From Theorem 3.1.11 we know that σ(a) = {h(a)| h ∈ Σ}. Since h(a) ∈ R for all h ∈ Σ by
the last proposition, we find that σ(a) ⊂ R.

We now miss one ingredient to get to our main theorem. Since this theorem is proven in most basic
topology courses we will only state it here without a proof.

Theorem 4.2.5 (Stone–Weierstrass theorem). [1, p.145] Suppose X is compact and A is a closed sub-
algebra of C(X) such that the following conditions hold.

1. 1 ∈ A

2. If x, y ∈ X and x 6= y, then there is an f ∈ A such that f(x) 6= f(y)

3. If f ∈ A , then f̄ ∈ A (the pointwise complex conjugation)

Then A = C(X).

Theorem 4.2.6 (The Gelfand–Naimark theorem for commutative Banach star algebras.). [1, p. 236
Theorem 2.1] If A is an abelian C∗-algebra with identity and Σ is its maximal ideal space, then the
Gelfand transform γ : A → C(Σ) is an isometric ∗-isomorphism.
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Proof. By Theorem 3.2.2, we see that ‖x̂‖∞ ≤ ‖x‖ for all x ∈ A . But we also know that

‖x̂‖∞ = lim
n→∞

‖an‖1/n = r(x)

by Proposition 2.2.6. Now by Proposition 4.2.2 point 4 we find that if x is hermitian, then ‖x‖ = r(x) =
‖x̂‖∞. So in particular we find that

‖x∗x‖ = ‖x̂∗x‖∞ ∀x ∈ A .

Now if a ∈ A and h ∈ Σ then by Proposition 4.2.3 point 2 we find that

â∗(h) = h(a∗) = h(a) = â(h).

So we see that â∗ = â. Since the involution in C is just complex conjugation, we find that

γ(a∗) = â∗ = â = â∗ = γ(a)∗.

Since we know from Theorem 3.2.2 that γ is a continuous homomorphism, we find that γ is a ∗-
homomorphism. Also observe that

‖a‖2 = ‖a∗a‖ = ‖â∗a‖∞ = ‖ |â|2 ‖∞ = ‖â‖2∞.

Therefore we find that ‖a‖ = ‖â‖∞ and hence γ is an isometry.
Since A is a Banach space, we find that the range of γ is closed. So to show that γ is surjective,

we only need to show it has a dense range. For this we use the Stone–Weierstrass theorem. Observe
that 1̂ = 1, so γ(A ) is a subalgebra of C(Σ) containing 1. Because γ preserves involution, it is clear
that γ(A ) is closed under complex conjugation. Now let h1, h2 ∈ Σ such that h1 6= h2 then there is an
a ∈ A such that ha(a) 6= h2(a). Hence â(h1) 6= â(h2).

So the Stone–Weierstrass theorem applies and γ is surjective, hence γ is an isometric ∗-isomorphism.

Example 4.2.7. Lets take a look at the easiest example: Let A = C, then Σ is the space of all nonzero
homomorphisms from C to C. The reader may check that this is only the identity function. Hence we
have that (Σ, T ) = ({Id}, {∅, {Id}}). So C(Σ) are the continuous functions from a point to C. We can
clearly see that these are just the functions which map to a point in C. Hence C ' C(Σ). 4

5 Riemann integration of functions with values in a Banach space

In this section consider in the Riemann integration of functions with values in a Banach space. The
integration of these functions is very useful in many applications. In particular the integration of elements
of B(X), the space of bounded operators on a Banach space X , will be very useful. However, since
B(X) is automatically a Banach space when X is a Banach space, these results are immediate and we
will only look at functions from C to X .

5.1 The Real Case

Although the results in this section may not be new, no literature other than common knowledge about
one dimensional Riemann integration was used in the making. In this part we will take a look at the
integration of functions of the form f : [a, b]→ X where f is continuous and X is a Banach space. For-
tunately many of the steps in the Riemann integration for real functions can be done for these functions
too. Let us start by defining some things that will be useful.



5 RIEMANN INTEGRATION OF FUNCTIONS WITH VALUES IN A BANACH SPACE 14

Definition 5.1.1. A partition of [a, b] is a finite subset V ⊂ [a, b] such that a, b ∈ V . Let V be a partition,
then we write V = {a = a0 < a1 < · · · < an = b} to indicate its elements in increasing order. The
refinement of two partitions is defined to be the union of the two partitions and is denoted by V ∪W .

The mesh of V is defined to be ‖V ‖ := max{|ai − ai−1| |i = 1, 2, ..., n}.
A tag of V is an n-tuple Ξ = (ξ1, ..., ξn) ∈ [a, b]n such that ξj ∈ [aj−1, aj ] for all j = 1, ..., n. The

set of all tags of a partition V is denoted by X(V ).
We define the Riemann sum of f associated with V and Ξ to be

S(f, V,Ξ) :=
n∑
j=1

f(ξj)(aj − aj−1).

Definition 5.1.2. The variation of f over V is defined to be

varV (f) := max
1≤i≤n

var[ai−1−ai] f where var[ai−1−ai] f = sup
x,y∈[ai−1,ai]

‖f(x)− f(y)‖.

Observe that for V,W two partitions, varV ∩W (f) ≤ min(varV (f), varW (f)). Furthermore we can
also show that

‖S(f, V,Ξ1)− S(f, V,Ξ2)‖ = ‖
n∑
j=1

(f(ξ1
j )− f(ξ2

j )(aj − aj−1)‖

≤
n∑
j=1

‖(f(ξ1
j )− f(ξ2

j )‖(aj − aj−1) ≤
n∑
j=1

varV (f)(aj − aj−1) = varV (f)
n∑
j=1

(aj − aj−1)

= varV (f)(b− a).

So we see that ‖S(f, V,Ξ1)− S(f, V,Ξ2)‖ ≤ varV (f)(b− a).

Definition 5.1.3. The ∆ of a function f over V is defined to be

∆(f, V ) := sup
Ξ1,Ξ2∈X(V )

‖S(f, V,Ξ1)− S(f, V,Ξ2)‖.

Definition 5.1.4. A function f : [a, b]→ X is called Riemann integrable if f is bounded and there exists
an element I ∈ X such that for every ε > 0 there exists a partition V of [a, b] such that for all Ξ ∈ X(V )
we have

‖S(f, V,Ξ)− I‖ < ε.

If f is Riemann integrable then we denote the element I in the definition as the integral of f over
[a, b] and write

I =

∫ b

a
f(x)dx.

We will now need some results from functional analysis.

Definition 5.1.5. Let X be a Banach space, then the the dual of X: X∗ is defined as the space of all
bounded linear functionals from X to F with the operator norm ‖x∗‖ = supx∈X;‖x‖=1 ‖x∗(x)‖.

We will also need a result from Hahn-Banach ([2, Cor 5.22, p.136 ]) that we will not prove here.

Proposition 5.1.6 ( Corollary of the Hahn-Banach theorem ). If X is a Banach space and x ∈ X then

‖x‖ = sup
x∗∈X∗;‖x∗‖=1

|x∗(x)|.
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Since x∗ is linear we can get the following lemma:

Lemma 5.1.7. If X is a Banach space and x∗ ∈ X∗ and f : [a, b]→ X is a Riemann integrable function,
then

x∗[S(f, V,Ξ)] = S(x∗(f), V,Ξ)

,
varV (x∗(f)) ≤ ‖x∗‖ varV (f)

and
∆(x∗(f), V ) ≤ ‖x∗‖∆(f, V ).

Proof.

x∗[S(f, V,Ξ)] = x∗

 n∑
j=1

f(ξj)(aj − aj−1)

 =

n∑
j=1

x∗[f(ξj)](aj − aj−1) = S(x∗(f), V,Ξ)

secondly,

varV (x∗(f) = max
1≤j≤n

sup
x,y∈[aj−1,aj ]

|x∗(f(x))− x∗(f(y))|

= max
1≤j≤n

sup
x,y∈[aj−1,aj ]

|x∗(f(x)− f(y))|

≤ max
1≤j≤n

sup
x,y∈[aj−1,aj ]

‖x∗‖ ‖f(x)− f(y)‖

= ‖x∗‖ varV (f)

and lastly

∆(x∗(f), V ) = sup
Ξ1,Ξ2∈X(V )

|S(x∗(f), V,Ξ1)− S(x∗(f), V,Ξ2)|

(by the first equality) = sup
Ξ1,Ξ2∈X(V )

|x∗[S(f, V,Ξ1)]− x∗[S(f, V,Ξ2)]|

= sup
Ξ1,Ξ2∈X(V )

|x∗[S(f, V,Ξ1)− S(f, V,Ξ2)]|

≤ sup
Ξ1,Ξ2∈X(V )

‖x∗‖ ‖S(f, V,Ξ1)− S(f, V,Ξ2)‖

= ‖x∗‖∆(f, V ).

This lemma is very useful since we can now look at the sums and variations of the function x∗(f) :
[a, b] → F which we know a lot about. In particular we know the following theorem for real valued
functions.

Lemma 5.1.8. Let f : [a, b] → X be a bounded function, V,W be two partitions of [a, b] and ΞV ∈
X(V ) and ΞW ∈ X(W ). Then

‖S(f, V,ΞV )− S(f,W,ΞW )‖ ≤ 2(∆(f, V ) + ∆(f,W )).
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Proof. First let X = R, then we can use the traditional upper and lower Riemann sums to see that

|S(f, V,ΞV )− S(f,W,ΞW )|
≤ |S(f, V,ΞV )− S(f, V )|+ |S(f, V )− S(f,W )|+ |S(f,W )− S(f,W,ΞW )

≤ ∆(f, V ) + |S(f, V )− S(f,W )|+ ∆(f,W )

≤ ∆(f, V ) + ∆(f,W ) + |S(f, V )− S(f, V ∪W )|+ |S(f, V ∪W )− S(f,W )|
≤ ∆(f, V ) + ∆(f,W ) + |S(f, V )− S(f, V )|+ |S(f,W )− S(f,W )|
≤ 2(∆(f, V ) + ∆(f,W )).

Now more generally we use Proposition 5.1.6 and Lemma 5.1.7 to see that

‖S(f, V,ΞV )− S(f,W,ΞW )‖
= sup

x∗∈X∗,‖x∗‖=1
|x∗(S(f, V,ΞV )− S(f,W,ΞW ))|

= sup
x∗∈X∗,‖x∗‖=1

|S(x∗(f), V,ΞV )− S(x∗(f),W,ΞW )|

≤ sup
x∗∈X∗,‖x∗‖=1

2(∆(x∗(f), V ) + ∆(x∗(f),W ))

≤ sup
x∗∈X∗,‖x∗‖=1

2‖x∗‖(∆(f, V ) + ∆(f,W ))

= 2(∆(f, V ) + ∆(f,W )).

We now recall the following theorem from one dimensional analysis.

Theorem 5.1.9 (Criterion for one dimensional Riemann integrability). Let f : [a, b]→ R be a bounded
function, then the following are equivalent:

1. f is Riemann integrable.

2. For all ε > 0 there exists a V such that for all Ξ1,Ξ2 ∈ X(V ) we have

|S(f, V,Ξ1)− S(f, V,Ξ2)| < ε.

Knowing this theorem, one can ask the question if this is still true for Banach valued functions. The
following theorem answers that question.

Theorem 5.1.10 (Criterion for Riemann integrability). Let f : [a, b] → X be a bounded function, then
the following are equivalent:

1. f is Riemann integrable.

2. For all ε > 0 there exists a partition V such that ∆(f, V ) < ε.

Proof. 1)⇒ 2):
Let ε > 0, since f is Riemann integrable there exists a partition V such that for all Ξ ∈ X(V ) we have
‖S(f, V,Ξ)− I‖ < ε

2 . So

∆(f, V ) = sup
Ξ1,Ξ2∈X(V )

‖S(f, V,Ξ1)− S(f, V,Ξ2)‖

≤ sup
Ξ1,Ξ2∈X(V )

‖S(f, V,Ξ1)− I‖+ ‖S(f, V,Ξ2)− I‖

<
ε

2
+
ε

2
= ε.
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2)⇒ 1):
Choose Vn such that ∆(f, Vn) < 1

n and let Ξn ∈ X(Vn). Then by Lemma 5.1.8 we have

‖S(f, Vn,Ξn)− S(f, Vm,Ξm)‖ ≤ 2(∆(f, V ) + ∆(f,W ))

< 2(
1

n
+

1

m
).

So S(f, Vn,Ξn) is a Cauchy sequence in X . Since X is complete we know this sequence converges in
X . Let I be its limit, then we find that ‖S(f, Vn,Ξn)−I‖ = limm→∞ ‖S(f, Vn,Ξn)−S(f, Vm,Ξm)‖ <
2( 1
n + 1

m) = 2
n So f is Riemann integrable with integral I .

Proposition 5.1.11. Let f : [a, b]→ X be a bounded continuous function, then f is Riemann integrable.

Proof. Since f is continuous on [a, b] and [a, b] is compact, we know that f is uniformly continuous.
Now letting ε > 0 and letting ε′ = ε

b−a we find that there exists a δ > 0 such that if x, y ∈ [a, b] and
|x − y| < δ then ‖f(x) − f(y)‖ < ε′. Now choose V a partition of [a, b] with mesh(V ) < δ. Observe
that such a partition always exists since we can choose a uniform distribution of n points with n > |b−a|

δ

so that mesh(V ) = |b−a|
n < δ.

Now we find that

∆(f, V ) = sup
Ξ1,Ξ2∈X(V )

‖S(f, V,Ξ1)− S(f, V,Ξ2)‖

= sup
Ξ1,Ξ2∈X(V )

‖
n∑
j=1

(f(ξ1
j )− f(ξ2

j ))(aj − aj−1)‖

≤ sup
Ξ1,Ξ2∈X(V )

n∑
j=1

‖f(ξ1
j )− f(ξ2

j )‖(aj − aj−1)

≤ sup
Ξ1,Ξ2∈X(V )

n∑
j=1

ε(aj − aj−1)

= ε′(b− a)

= ε.

So for all ε > 0 there exists a partition V such that ∆(f, V ) < ε. Now using Theorem 5.1.10 we find
that f is Riemann integrable.

5.2 The Complex Case

So now that we have defined what the integral of a Banach valued function is, we can look at some func-
tions that go from C toX that we want to integrate over a path γ : [a, b]→ C. From complex analysis we
know that the integral of a function along a curve can be expressed by

∫
γ f(z)dz =

∫ b
a f(γ(t))γ′(t)dt.

Since γ′(t) is just a scalar we can still do all the things that we did in the real case.
Let’s give ourselves a reminder of some of the main theorems from complex analysis.[3, Chapter III]

Definition 5.2.1. A curve in C is a function γ : [a, b] → C that is C1. We call γ(a) the begin point and
γ(b) the end point of γ and we call γ a curve from γ(a) to γ(b).

A path is a sequence of curves γ = {γ1, γ2, . . . , γn} such that the end point of γj is equal to the
begin point of γj+1. If γj : [aj , bj ] → C then this means that γj(bj) = γj+1(aj+1). We call γ1(a1) the
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begin point and γn(bn) the end point of γ and we call γ a path from γ(a) to γ(b). We define the integral
of f over a path γ = {γ1, . . . , γn} to be∫

γ
f(z)dz =

n∑
j=1

∫
γj

f(z)dz.

We call a path or curve γ : [a, b]→ C closed if its begin point is equal to its end point.
Let γ, η be two paths in an open U ⊂ C that are defined over the same interval [a, b] and have the

same begin and end points, then γ is homotopic to η in U if there exists a continuous function

ψ : [a, b]× [0, 1]→ U

such that ψ(t, 0) = γ(t), ψ(t, 1) = η(t) and ψ keeps the begin and end points fixed. We often write
ψs(t) = ψ(t, s) and we may view it as a continuous curve for every s ∈ [0, 1].

We define the winding number of a closed curve or path γ at a point z0 ∈ C\ im(γ) to be

W (γ, z0) =
1

2πi

∫
γ

1

z − z0
dz.

We call two closed curves γ, η : [a, b] → U homologous in U if W (γ, z0) = W (η, z0) for all
z0 ∈ C\U .

We call a closed curve γ : [a, b]→ U homologous to 0 in U if W (γ, z0) = 0 for all z0 ∈ C\U .

Theorem 5.2.2. [3, p.116 theorem 5.1] Let γ, η be two paths on U ⊂ C that have the same begin and
end points. Assume that γ and η are homotopic in U and let f be holomorphic on U , then∫

γ
f(z)dz =

∫
η
f(z)dz.

This theorem is the important step in many proofs of big theorems. For instance Cauchy’s theorem.
If one is interested in reading more about this I suggest to read chapters three and four in the book of
Lang [3].

Theorem 5.2.3. [3, p.143 theorem 2.2] Let γ : [a, b] → U be closed path that is homologous to 0 and
let f be a holomorphic function on U , then ∫

γ
f(z)dz = 0.

In particular we also have the Cauchy formula:

Theorem 5.2.4. [3, p. 145 theorem 2.5] Let γ : [a, b] → U be a closed path that is homologous to 0 in
U . Let f be a holomorphic function on U and let z0 ∈ U\ im(γ), then

1

2πi

∫
γ

f(z)

z − z0
dz = W (γ, z0)f(z0).

Now we will consider these theorems with respect to Banach valued complex functions. For this we
will use complex linear functionals from X to C where X is a Banach space. Let us first look at what
being holomorphic means for Banach valued functions. For this we will use a theorem that states the
equivalence of holomorphic and analytic functions. With this we can just consider analytic functions and
don’t have to worry about derivatives in Banach spaces. A small remark for the interested reader is that
derivatives can be well defined in Banach spaces, although we will not discuss that here.
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Theorem 5.2.5. Let γ : [a, b] → U be closed path that is homologous to 0 in U . Let f : U → X be an
analytic function on U , then ∫

γ
f(z)dz = 0.

Proof. Let ξ : X → C be a complex continuous linear functional, Then

ξ(

∫
γ
f(z)dz) = ξ(

∫ b

a
f(γ(t))γ′(t)dt)

=

∫ b

a
ξ(f(γ(t))γ′(t))dt

=

∫ b

a
ξ(f(γ(t)))γ′(t)dt

=

∫
γ
ξ(f(z))dz.

Since ξ is continuous and linear and f is analytic, we find that ξ(f) is analytic. Since ξ(f) : U → C we
can use the theorem that states that ξ(f) is holomorphic on U. So using Cauchy’s theorem we find that∫

γ
ξ(f(z))dz = 0.

In particular we can see now that for all complex continuous linear functionals ξ on X we have

ξ(

∫
γ
f(z)dz) = 0.

Thus by the Hahn-Banach Theorem (5.1.6) we have∫
γ
f(z)dz = 0.

6 Functional Calculus

In this section we are going to look at the Riesz functional calculus. This calculus gives a link between an
algebra and the spectrum of elements in the algebra. In particular we will define how we can put Banach
values in regular holomorphic functions in C. After that we can make an algebra homomorphism from
an algebra A and the algebra of holomorphic functions on the spectrum of elements of A . From these
results we will get the spectral mapping theorem which will be very useful in our study. After that we
will look at the functional calculus for C∗-algebras.

We will also make the assumption from now on that all Banach algebras have an identity.

6.1 The Riesz Functional Calculus

We first start with some reminders from complex analysis.

Definition 6.1.1. Let γ be a closed path and let U ⊂ C be open.

• γ is positively oriented in U if for every a ∈ C\ im(γ) we have that W (γ, a) is either 0 or 1.
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• If γ is positively oriented then the inside of γ is defined by

ins γ := {a ∈ C |W (γ, a) = 1}.

• If γ is positively oriented then the outside of γ is defined by

out γ := {a ∈ C |W (γ, a) = 0}.

If Γ = {γ1, . . . , γn} where γi are paths in an open U ⊂ C, then we call Γ a chain in U . We
define the integral of f over Γ to be

∫
Γ f(z)dz =

∑n
j=1

∫
γj
f(z)dz. We define the image of Γ to be

im Γ = ∪nj=1 im γj .
If Γ = {γ1, . . . , γn} where γi are closed paths in an open U ⊂ C, then we call Γ a closed chain in

U . We define the winding number of a closed chain Γ in U at a point z0 ∈ C\ im Γ to be

W (Γ, z0) =

n∑
j=1

W (γj , z0).

Let Γ = {γ1, . . . , γn} be a closed chain in an open set U ⊂ C.

• Γ is positively oriented if im γi ∩ im γj = ∅ for i 6= j and for every a ∈ C\ im(Γ) we have that
W (Γ, a) is either 0 or 1.

• If Γ is positively oriented then the inside of Γ is defined by

ins Γ := {a ∈ C |W (Γ, a) = 1}.

• If Γ is positively oriented then the outside of Γ is defined by

out Γ := {a ∈ C |W (Γ, a) = 0}.

Observe that with these definitions, we can still apply the Theorems from complex Riemann integra-
tion like Cauchy’s formula.

We will use the following proposition without a proof since it is necessary, but not the focus of what
we want to do.

Proposition 6.1.2. [1, p.200 Proposition 4.4] If G is an open subset of C and K is a compact subset
of G, then there exists a positively oriented closed chain Γ = {γ1, . . . , γn} such that K ⊂ ins Γ and
C\G ⊂ out Γ. The paths {γ1, . . . , γn} can be found such that they are smooth.

The basic idea of the proof is that inf{d(x, y) | x ∈ K, y ∈ C\G } > 0, so we can use this “ring”
between K and C\G to place a path that meets the conditions. It is however possible that there are holes
in G and K, so that is why we need to use a chain rather than a path.

Remark 6.1.3. If f is an analytic function to C on an open U ⊂ C and z0 ∈ U , then there is a radius
of convergence (roc) r > 0 such that f(z) =

∑∞
i=0 ai(z − z0)i for all z ∈ Br(z0), the ball of radius

r around z0. With this power series it is actually well defined when we plug in a value straight from a
Banach algebra. However, this method is less convenient since it depends on the input where you have
to take the power series.

Proposition 6.1.4. [1, p.201 Proposition 4.6] Let A be a Banach algebra, a ∈ A , andG an open subset
of C such that σ(a) ⊂ G. If Γ and Λ are two positively oriented paths that satisfy the requirements of
Proposition 6.1.2 with K = σ(a) and f : G→ C is analytic, then∫

Γ
f(z)(z − a)−1dz =

∫
Λ
f(z)(z − a)−1dz.
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Proof. Let ζ be a path in G\σ(a) from the begin point of Γ to the begin point of Λ Define the path Ω by

• Ω(t) = Γ(4t) for 0 ≤ t ≤ 1/4,

• Ω(t) = ζ(−1 + 4t) for 1/4 ≤ t ≤ 1/2,

• Ω(t) = Λ(3− 4t) for 1/2 ≤ t ≤ 3/4 and

• Ω(t) = ζ(4− 4t) for 3/4 ≤ t ≤ 1.

Then for z ∈ σ(a) we have that

W (z,Ω) = W (z,Γ)−W (z,Λ) = 1− 1 = 0.

For z ∈ C\G we have that W (z,Ω) = W (z,Γ) −W (z,Λ) = 0 − 0 = 0. Hence Ω is a closed path in
U := G\σ(a). Now, since z 7→ f(z)(z − a)−1 is analytic on U , we find that

0 =

∫
Ω
f(z)(z − a)−1dz =

∫
Γ
f(z)(z − a)−1dz −

∫
Λ
f(z)(z − a)−1dz.

As we can see, the idea of the proof is to make one closed integral out of the two closed integrals,
we did this by first going over Γ, then integrating over a path ζ towards Λ, going over Λ and then going
back over ζ to Γ. This way the integral goes back and forth over ζ and hence ζ doesn’t contribute to the
integral over Ω.

Definition 6.1.5. If A is a Banach algebra, a ∈ A , G ⊂ C open such that σ(a) ⊂ G, and f : G→ C is
an analytic function, then we define

f(a) =
1

2πi

∫
Γ
f(z)(z − a)−1dz

where Γ is as in Proposition 6.1.2.

Observe this if well-defined because of the previous proposition. We call this method of obtaining
the value f(a) the Riesz functional calculus.

Definition 6.1.6. Let A be a Banach algebra and a ∈ A , then we define h̃ol(a) as the set of all pairs
(f, U) where U is an open neighborhood of σ(a) and f is an analytic function on U . If (f, U), (g, V ) ∈
h̃ol(a) then we define (f, U) + (g, V ) = (f + g, U ∩ V ) and (f, U)(g, V ) = (fg, U ∩ V ).

Observe that h̃ol(a) is not a vector space, since (f,Br(0)) + (−f,C) = (0, Br(0)) 6= (0,C). We
can however look at the equivalence class ∼ where we say that (f, U), (g, V ) ∈ h̃ol(a) are equivalent if
there is an open neighborhood W ⊆ U ∩ V of σ(a) such that f = g on W .

Now we can see that Hol(a) := h̃ol(a)/ ∼ actually forms an algebra. However, this is not a Banach
algebra since the space is not complete. Since the domain doesn’t really matter anymore in this quotient
algebra, we often only say “let f ∈ Hol(a)”.

Theorem 6.1.7 (The Riesz Functional Calculus). [1, p.201] Let A be a Banach algebra and let a ∈ A .

1. The map f 7→ f(a), Hol(a)→ A is an algebra homomorphism.

2. If f(z) = 1 for all z ∈ C, then f(a) = 1.

3. If f(z) = z for all z ∈ C, then f(a) = a.
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4. If f, f1, f2, . . . are all analytic on an open G, σ(a) ⊂ G and fn(z)→ f(z) uniformly on compact
subsets of G, then limn→∞ ‖fn(a)− f(a)‖ = 0.

5. If f(z) =
∑∞

k=0 αkz
k has radius of convergence greater than r(a), then f ∈ Hol(a) and f(a) =∑∞

k=0 αka
k.

Proof. 1. Let f, g ∈ Hol(a) and letG be an open neighborhood of σ(a) such that f and g are analytic
on G. Let Γ be a positively oriented closed chain such that σ(a) ⊂ ins Γ, and let Λ be a positively
oriented closed chain in G such that (ins Γ) ∪ im(Γ) = cl(ins Γ) ⊆ ins Λ. Then

f(a)g(a) =
−1

4π2

[∫
Γ
f(z)(z − a)−1dz

] [∫
Λ
g(ζ)(ζ − a)−1dζ

]
=
−1

4π2

∫
Γ

∫
Λ
f(z)g(ζ)(z − a)−1(ζ − a)−1dζdz

(using
1

x
− 1

y
=
y − x
xy

) =
−1

4π2

∫
Γ

∫
Λ
f(z)g(ζ)

[
(z − a)−1 − (ζ − a)−1

ζ − z

]
dζdz

=
−1

4π2

∫
Γ

∫
Λ
f(z)g(ζ)

[
(z − a)−1 − (ζ − a)−1

ζ − z

]
dζdz

=
−1

4π2

∫
Γ
f(z)

[∫
Λ

g(ζ)

ζ − z
dζ

]
(z − a)−1dz

+
1

4π2

∫
Λ
g(ζ)

[∫
Γ

f(z)

ζ − z
dζ

]
(ζ − a)−1dζ.

Since ζ ∈ Λ we find that ζ ∈ out Γ, hence
∫

Γ
f(z)
ζ−z dζ = 0 by Cauchy’s theorem. Since z ∈ Γ we

find that z ∈ ins Λ, so
∫

Λ
g(ζ)
ζ−zdζ = 2πig(z). Thus we find that

f(a)g(a) =
1

2πi

∫
Γ
f(z)g(z)(z − a)−1dz = (fg)(a).

The functional is also linear since integrals are linear. Hence f 7→ f(a) is an algebra homomor-
phism.

2. If f(z) ≡ 1 then

f(a) =
1

2πi

∫
Γ
f(z)(z − a)−1dz

=
1

2πi

∫
Γ
(z − a)−1dz

= W (a,Γ)

= 1.

3. If f(z) = z, then

f(a) =
1

2πi

∫
Γ
f(z)(z − a)−1dz

=
1

2πi

∫
Γ
z(z − a)−1dz

= W (a,Γ)a

= a.
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4. If Γ is a positively oriented closed chain in G such that σ(a) ⊆ ins Γ and Γ is homologous to 0 in
G, then

‖fn(a)− f(a)‖ = ‖
∫

Γ
fn(z)(z − a)−1dz −

∫
Γ
f(z)(z − a)−1dz‖

= ‖
∫

Γ
(fn(z)− f(z))(z − a)−1dz‖

≤
∫

Γ
|fn(z)− f(z)| ‖(z − a)−1‖dz.

Since ‖(z−a)−1‖ is a continuous function on the compact chain Γ, it is bounded by some constant
M > 0. So

‖fn(a)− f(a)‖ ≤
∫

Γ
|fn(z)− f(z)| ‖(z − a)−1‖dz

≤M‖Γ‖ sup{fn(z)− f(z)|z ∈ Γ}

where ‖Γ‖ is the length of the chain Γ. Since fn → f uniformly on compact subsets, and im(Γ)
is a compact subset, we find that ‖fn(a)− f(a)‖ → 0 as n→∞.

5. let f(z) =
∑∞

k=0 αkz
k have radius of convergence greater than r(a), and let G be an open such

that σ(a) ⊂ G and f is convergent on G (for instance, G = BR(0) where r(a) < R <roc). Now
define pn(z) =

∑n
k=0 αkz

k, then combining 1, 2 and 3 we find that pn(a) =
∑n

k=0 αka
k. We

also see that pn(z) → f(z) on compact subsets of G. So by 4 we find that ‖pn(a) − f(a)‖ → 0,
hence f(a) = limn→∞ pn(a) =

∑∞
k=0 αka

k

The most important part of this theorem is that it tells us that we can link the space of holomorphic
functions on the spectrum with the algebra. This makes it quite useful for multiple applications, but
especially for linear operators on spaces. We want to make sure that we have a unique homomorphism
between our spaces, for this we will need another result from complex analysis that we won’t prove here:

Theorem 6.1.8 (Runge’s Theorem). [1, p.83] Let K ⊂ C be a compact subset and let E ⊂ C\K be
a subset that meets each component of C\K. If f is analytic in a neighborhood of K, then there are
rational functions fn whose poles all lie in E such that fn → f uniformly on K.

Here rational functions means functions that are of the form p(z)
q(z) where p and q are polynomials.

Now we can prove the uniqueness of the Riesz Functional Calculus.

Proposition 6.1.9. [1, p.203] Let A be a Banach algebra and let a ∈ A . Let τ : Hol(a) → A be a
homomorphism such that τ(1) = 1, τ(z) = a and if {fn} is a sequence of analytic functions on an open
G such that σ(a) ⊂ G and fn(z)→ f(z) uniformly on compact subsets of G, then τ(fn)→ τ(f). Then
τ(f) = f(a) for all f ∈ Hol(a).

Proof. First let pn(z) =
∑n

k=1 αnz
n, then pn is a polynomial function and hence analytic. In particular

we see that

τ(pn(z)) = τ

(
n∑
k=1

αnz
n

)
=

n∑
k=1

αnτ(z)n =
n∑
k=1

αna
n = pn(a).

Now let q be a polynomial such that q(z) 6= 0 whenever z ∈ σ(a), then q−1 ∈ Hol(a) and

a = τ(qq−1) = τ(q)τ(q−1) = q(a)τ(q−1)
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so q(a) is invertible and its inverse is q(a)−1 = τ(q−1). However, using the Riesz Functional Calculus
we can show that q(a)−1 = q−1(a), so τ(q−1) = q−1(a). Hence if f = p

q is a rational function, then

τ(f) = τ(pq−1) = τ(p)τ(q−1) = p(a)q−1(a) = f(a).

Now let f ∈ Hol(a) and suppose that f is analytic on an open set G such that σ(a) ⊂ G. Then by
Runge’s theorem there are rational functions {fn} in Hol(a) such that fn → f uniformly on compact
subsets of G. So

τ(f) = lim
n→∞

τ(fn) = lim
n→∞

fn(a) = f(a).

If we define the Riesz Functional Calculus by τ(f) = f(a) then

f(a)g(a) = τ(fg) = τ(gf) = g(a)f(a).

So these always commute. We can also take this a step further.

Proposition 6.1.10. If a, b ∈ A , ab = ba and f ∈ Hol(a), then f(a)b = bf(a)

Proof. Let f ∈ Hol(a) then by Runge’s theorem there are rational functions {fn} that converge uni-
formly to f on compact subsets. Since these rational functions are only finite powers of a, we see that b
commutes with them. So we get that f(a)b = limn→∞ fnb = limn→∞ bfn = bf(a).

Theorem 6.1.11 (The Spectral Mapping Theorem). [1, p.204] If a ∈ A and f ∈ Hol(a), then

σ(f(a)) = f(σ(a)).

Proof. If α ∈ σ(a), let g ∈ Hol(a) such that f(z)−f(α) = (z−α)g(z). If we assume by contradiction
that f(α) /∈ σ(f(a)), then (a−α) would be invertible with inverse g(a)(f(a)− f(α))−1. But α ∈ σ(a)
so (α− a) is not invertible. Hence f(α) ∈ σ(f(a)) and

f(σ(a)) ⊆ σ(f(a)).

In the other direction, if β /∈ f(σ(a)), then g(z) = (f(z)−β)−1 ∈ Hol(a). So g(a)(f(a)−β) = 1.
Hence β /∈ σ(f(a)) and

σ(f(a)) ⊆ f(σ(a)).

6.2 The Functional Calculus for C∗-Algebras

If B is a C∗-algebra and a ∈ B is a normal element, then define A = C∗(a), the C∗-algebra generated
by a and 1, then A is abelian. Let A have maximal ideal space Σ, then we know from the Gelfand–
Naimark theorem that A ∼= C(Σ). So if f ∈ C(Σ) then there is a unique element x ∈ A such that
x̂ = f . We would like to think that x = f(a) using a functional calculus. For this to be useful, we would
like a clear way of identifying Σ. The idea of Proposition 3.2.4 is the key here.

Proposition 6.2.1. [1, p.237] If A is an abelian C∗-algebra with maximal ideal space Σ and a ∈ A
such that A = C∗(a), then the map τ : Σ → σ(a) defined by τ(h) = h(a) is a homeomorphism. If
p(z, z̄) =

∑n
k=1

∑m
l=1Ck,lz

k z̄l is a polynomial and γ : A → C(Σ) is the Gelfand transform, then
γ(p(a, a∗)) = p ◦ τ .
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Proof. The proof is along the lines of Proposition 3.2.4.
We can still use all the same steps to see that τ is a homeomorphism. Now if p(z, z̄) =

∑n
k=1

∑m
l=1Ck,lz

k z̄l

is a polynomial, define

p(a, a∗) =

n∑
k=1

m∑
l=1

Ck,la
k (a∗)l.

Then for all h ∈ Σ

γ(p(a, a∗))(h) = p(γ(a), γ(a∗))(h) = p(â, â∗)(h) = p(â, â)(h) = p(τ(h), τ(h)) = p ◦ τ(h).

Now we can do something interesting. If we define τ : Σ → σ(a) by τ(h) = h(a), and τ# :
C(σ(a)) → C(Σ) by τ#(f) = f ◦ τ . By the previous proposition we see that τ# is an isometric ∗-
isomorphism since τ is a homeomorphism. Now the last part of the proposition says that γ(p(a, a∗)) =
τ#(p). Since these polynomials are just functions in C(σ(a)), we can define a map ρ : C(σ(a)) →
C∗(a) by ρ = γ−1 ◦ τ# such that the following diagram commutes.

C(σ(a)) C(Σ)

C∗(a)

τ#

ρ
γ

By what we just observed, we see that if p(z, z̄) ∈ C(σ(a)), then ρ(p) = p(a, a∗).

Definition 6.2.2. If B is a C∗-algebra and a ∈ B is a normal element, then let ρ : C(σ(a))→ C∗(a) ⊂
B as in the previous diagram. If f ∈ C(σ(a)) then define

f(a) := ρ(f).

We call the map ρ the functional calculus for a.

Theorem 6.2.3. [1, p.238] If B is a C∗-algebra and a ∈ B is a normal element, then the functional
calculus ρ has the following properties.

1. ρ is an injective ∗-homomorphism fromC(σ(a)) toC∗(a) (otherwise known as a ∗-monomorphism).

2. ‖ρ(f)‖ = ‖f‖∞.

3. ρ is an extension of the Riesz Functional Calculus.

Moreover, the functional calculus is unique in the sense that if τ : C(σ(a))→ C∗(a) is a ∗-homomorphism
that extends the Riesz Functional Calculus, then τ(f) = ρ(f) for all f ∈ C(σ(a)).

Proof. Since γ ◦ ρ = τ# and γ and τ# are both ∗-isomorphisms, we see that ρ is a ∗-monomorphism.
We also know that both γ and τ# are isometries, hence ρ must be too.

Now let π : Hol(a) → C∗(a) denote map defined by the Riesz Functional Calculus. Then ρ(z) =
π(z) = a, hence doing some algebra gives us that ρ(f) = π(f) for all rational functions with poles off
σ(a). Now let f ∈ Hol(a), then by Runge’s theorem there is a sequence of rational functions {fn} that
converge uniformly to f in a neighborhood of σ(a). Thus π(fn) → π(f) and ρ(fn) → ρ(f). Since
π(fn) = ρ(fn) for all n ∈ N we see that π(f) = ρ(f).

Now let τ : C(σ(a))→ C∗(a) be a ∗-homomorphism that extends the Riesz functional Calculus. If
f ∈ C(σ(a)), then by the Stone–Weierstrass Theorem there is a sequence {pn} of polynomials in z and
z̄ such that pn(z, z̄)→ f(z) uniformly on σ(a). But we know that τ(pn) = pn(a, a∗) and τ(pn)→ τ(f)
and since pn(a, a∗)→ f(a) we find that τ(f) = f(a).
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Due to the uniqueness in this theorem we come to the conclusion that the functional calculus is
uniquely defined by the property that f 7→ f(a) is an isometric ∗-monomorphism such that if f(z) ≡ 1
then f(a) = 1, and if f(z) = z then f(a) = a.

Theorem 6.2.4 (Spectral Mapping Theorem). [1, p.239] If A is a C∗-algebra and a ∈ A is a normal
element, then

σ(f(a)) = f(σ(a))

for all f ∈ C(σ(a)).

Proof. Let ρ : C(σ(a)) → C∗(a) be defined by ρ(f) = f(a), then ρ is a ∗-isomorphism. Hence
σ(f(a)) = σ(ρ(f)) = σ(f). But σ(f) = f(σ(a)), hence σ(f(a)) = f(σ(a)). Here we used that if
A and B are two C∗-algebras with common identity and norm such that A ⊆ B and a ∈ A , then the
spectrum of a relative to A is equal to the spectrum of a relative to B. [1, p.235, Proposition 1.14]

7 Positive Elements and Representations of a C∗-Algebra

As it will turn out, there is a nice link between algebras and bounded operators on a Hilbert space using
representations. In order to do so we will first look at positive elements. These elements give some extra
structure that will be necessary for the Gelfand–Naimark–Segal construction that will give us the link we
are looking for.

7.1 Positive Elements in a C∗-Algebra

In this part we are taking a look at some properties of hermitian elements that are very useful in the
study of operators on a Hilbert space. We will use many results from the functional calculus to prove
statements here.

Definition 7.1.1. If A is a C∗-algebra, then we write Re (A ) for the set of hermitian elements in A .

Notice that this notation might seem odd at first glance, but we use this notation because the spectrum
of a hermitian element is always real. In light of the C∗-algebra C, these are the real elements.

Definition 7.1.2. If A is a C∗-algebra and a ∈ A , then a is positive if a ∈ Re (A ) and σ(a) ⊂ [0,∞).
We denote a ≥ 0 to say that a is a positive element and we denote A+ for the set of all positive elements
in A .

Example 7.1.3. If A = C(X) for a compact space X then f is positive in A if and only if f(x) ≥ 0 for
all x ∈ X . 4

Proposition 7.1.4. If A is a C∗-algebra and a ∈ Re (A ), then there are unique positive elements
u, v ∈ A such that a = u− v and uv = vu = 0.

Proof. Let f(t) = max(t, 0) and g(t) = min(t, 0), then f, g ∈ C(R) and f(t)−g(t) = t and f(t)g(t) =
0. Using the functional calculus, let u = f(a) and v = g(a). Then u andv are hermitian and by the
spectral mapping Theorem (6.2.4) we find that u, v ≥ 0. We also see that

u− v = f(a)− g(a) = a and uv = vu = f(a)g(a) = 0.

For uniqueness, let u1, v1 ∈ A+ such that a = u1 − v1 and u1v1 = v1u1 = 0. Let {pn} be a
sequence of polynomials such that pn(0) = 0 for all n ∈ N and pn(t) → f(t) uniformly on σ(a).
Then pn(a) → u in A . Since u1a = au1, we find that u1pn(a) = pn(a)u1 for all n ∈ N. Hence
u1u = uu1. Similarly we find that a, u, v, u1 and v1 are pairwise commuting hermitian elements of A .
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Now let B be the C∗-algebra generated by a, u, v, u1 and v1, then B is abelian. Hence B ∼= C(Σ) by
the Gelfand–Naimark Theorem (4.2.6).

So we find that â = û − v̂ and ûv̂ = 0. Since û, v̂ are positive functions to C, we find that for any
h ∈ Σ either v̂(h) = 0 or û(h) = 0. Assume that v̂(h) = 0, then â(h) = û(h)− 0 ≥ 0. Hence û(h) =
max(â(h), 0). Now assume that û(h) = 0, then â(h) = −v̂(h) ≤ 0. Hence û(h) = 0 = max(â(h), 0).
Thus û(h) = max(â(h), 0) and v̂(h) = û(h)− â(h) = min(â(h), 0). Since we can do the same for û1

and v̂1 we can conclude that û = û1 and v̂ = v̂1. So u = u1 and v = v1, hence they are unique.

Proposition 7.1.5. If a ∈ A+ and n ≥ 1, then there is a unique element b ∈ A+ such that a = bn.

Proof. Let f(t) = |t|1/n, then f ∈ C(R). Now define b = f(a) using the functional calculus. By the
spectral mapping Theorem (6.2.4) we find that b ≥ 0. We also see that bn = f(a)n = a.

For the uniqueness we only need to remark that f is strictly monotone on the spectrum of a, hence it
is injective.

We call the decomposition a = u − v of a hermitian element a the orthogonal decomposition of a
and we call u the positive part of a and v the negative part of a and denote them by u = a+ and v = a−.
We call the unique b such that bn = a the nth root of a and denote it with b = a1/n. Also observe that b
is only unique because we assume b to be positive, otherwise we have the trivial counterexample on the
real number line that (±2)2 = 4.

Definition 7.1.6. If A is a C∗-algebra and a, b ∈ Re (A ), then a ≤ b if b− a ≥ 0.

For the next theorem we will need one proposition that we will not prove here.

Proposition 7.1.7. [1, p.241 Proposition 3.7] If A is a C∗-algebra, then A+ is a closed cone.

Theorem 7.1.8. [1, p.241] If A is a C∗-algebra and a ∈ A , then the following statements are equiva-
lent.

1. a ≥ 0.

2. a = b2 for some b ∈ Re (A ).

3. a = x∗x for some x ∈ A .

4. a = a∗ and ‖t− a‖ ≤ t for all t ≥ ‖a‖.

5. a = a∗ and ‖t− a‖ ≤ t for some t ≥ ‖a‖.

Proof. By the last proposition it is clear that 1 ⇒ 2. We also see that 2 ⇒ 1 by the spectral theorem.
Since an element b ∈ A is hermitian if b∗ = b, we see that 2⇒ 3. And 4⇒ 5 is trivial.

5 ⇒ 1: Since a = a∗, we see that C∗(a) is abelian. Let X = σ(a) then X ⊂ R and f 7→ f(a) is
a ∗-isomorphism from C(X) to C∗(a). Since ‖t − a‖ ≤ t for some t ≥ ‖a‖, we find that, using this
∗-isomorphism, |t− x| ≤ t for some t ≥ ‖a‖ = r(a) = sups∈X |s| and all x ∈ X . Since t ≥ 0, we find
that x ≥ 0 for all x ∈ X or in other words that X ⊂ [0,∞). Hence σ(a) = X ⊂ [0,∞) and a ≥ 0.

1 ⇒ 4: If a ≥ 0 then a = a∗ and σ(a) ⊂ [0,∞). Now let f : σ(a) → [0,∞) be defined by
f(x) = x, then ‖f‖ = sups∈σ(a) |f(s)| = sups∈σ(a) |s| = r(a) = ‖a‖. So for t ≥ ‖a‖ we see that
|f(x) − t| ≤ t for all x ∈ σ(a). Now using the functional calculus on f we see that f(a) = a, hence
‖a− t‖ = ‖f(a)− t‖ ≤ t for all t ≥ ‖a‖.

3 ⇒ 1: If a = x∗x for some x ∈ A then a∗ = (x∗x)∗ = x∗x = a. Hence by Proposition 7.1.4 we
let a = u− v where u, v ≥ 0 and uv = vu = 0. We want to show now that v = 0. Let b + ic = xv1/2

with b, c ∈ Re (A ), then

(xv1/2)∗(xv1/2) = (b− ic)(b+ ic) = b2 + c2 + i(bc− cb)
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and
(xv1/2)∗(xv1/2) = v1/2x∗xv1/2 = v1/2av1/2 = v1/2(u− v)v1/2 = −v2.

Hence i(bc− cb) = −(v2 + b2 + c2) ≤ 0 by Proposition 7.1.7. And because (xv1/2)∗(xv1/2) = −v2 we
also see that (xv1/2)∗(xv1/2) ≤ 0 due to the fact that 1 and 2 are equivalent. Let y = −(xv1/2)(xv1/2)∗,
then y ∈ A+. So −y = (b+ ic)(b− ic) = b2 + c2 − i(bc− cb) and thus i(bc− cb) = b2 + c2 + y ≥ 0.
So

0 ≤ i(bc− cb) ≤ 0.

Hence i(bc − cb) = 0 and −v2 = b2 + c2 ≥ 0. But by 2 we see that −v2 ≤ 0. Hence v = 0 and
a = u ≥ 0.

7.2 Representations of C∗-Algebras

Definition 7.2.1. A representation of a C∗-algebra A is a pair (π,H ), where H is a Hilbert space
and π : A → B(H ) is a ∗-homomorphism. If A has an identity then we assume that π(1) = 1. It is
common not to mention H and just say that π is a representation.

Example 7.2.2. If H is a Hilbert space and A is a C∗-subalgebra of B(H ), then the identity map from
A to B(H ) is a representation. 4

Definition 7.2.3. A representation π of a C∗-algebra A is called cyclic if there is a vector e ∈ H such
that cl(π(A )e) = H . If such a vector e exists then we call e a cyclic vector for the representation π.

Definition 7.2.4. If {(πi,Hi) |i ∈ I} is a family of representations of A , then the direct sum of this
family is the representation (π,H ), where H = ⊕iHi is the direct sum and π(a) = ⊕iπi(a) for all
a ∈ A .

Observe that ‖πi(a)‖ ≤ ‖a‖ for all i ∈ I due to Proposition 4.2.2 point 5, so π(a) is a bounded
operator on H . It is easy to see that π(a) is a ∗-homomorphism, hence π is a representation.

Definition 7.2.5. If A is a C∗-algebra and (π1,H1) and (π2,H2) are two representations of A , then
we call π1 and π2 equivalent if there is an isomorphism U : H1 → H2 such that Uπ1(a)U−1 = π2(a)
for all a ∈ A .

Observe that

π2(a∗) = π2(a)∗ = (Uπ1(a)U−1)∗ = U−1∗π1(a∗)U∗ = Uπ1(a∗)U−1.

Hence UU∗ = U∗U = 1 and U is naturally unitary.

Theorem 7.2.6. [1, p.249] If π is a representation of the C∗-algebra A , then there is a family of cyclic
representations {πi} of A such that π and ⊕iπi are equivalent.

Proof. Let S be the collection of all subsets E ⊂H of nonzero vectors such that π(A )e ⊥ π(A )f for
e, f ∈ E with e 6= f . Order S by inclusion, then an application of Zorn’s Lemma implies that S has a
maximal element E0. Now let H0 = ⊕e∈E0cl(π(A )e) ⊆ H . If h ∈ H 	H0(≡ H ∩H ⊥

0 ), then
0 = 〈π(a)e, h〉 for all a ∈ A and e ∈ E0. So if a, b ∈ A and e ∈ E0, then

0 = 〈π(b∗a)e, h〉 = 〈π(b)∗π(a)e, h〉 = 〈π(a)e, π(b)h〉.

Hence π(a)e ⊥ π(b)h for all e ∈ E0 and E0 ∪ {h} ∈ S. Since E0 is maximal this implies that h = 0
and thus H = H0.

For e ∈ E0, define He = cl(π(A )e). If a ∈ A , then π(a)He ⊆ He. Since a∗ ∈ A and
π(a∗) = π(a)∗ , He reduces π(a). If πe : A → B(He) is defined by πe(a) = π(a)|He , then πe is a
cyclic representation of A and π = ⊕e∈E0πe. Hence they are equivalent.
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This theorem tels us that we only have to know about cyclic representations, since we can make
a decomposition of a non-cyclic representation into cyclic representations. We can also look at the
function f : A → C defined by f(a) = 〈π(a)e, e〉 where π : A → B(H ) is a cyclic representation
with cyclic vector e. Then f is a bounded linear functional on A with the property that ‖f‖ ≤ ‖e‖2.
Since ‖f(1)‖ = 〈1e, e〉 = ‖e‖2, we find that ‖f‖ = ‖e‖2. Moreover, f(a∗a) = 〈π(a∗a)e, e〉 =
〈π(a)e, π(a)e〉 = ‖π(a)e‖2.

Definition 7.2.7. If A is a C∗-algebra, then a linear functional f : A → C is called positive if f(a) ≥ 0
whenever a ∈ A+. A state on A is a positive linear functional of norm 1.

Observe that, by Theorem 7.1.8, the function f(a) = 〈π(a)e, e〉 is positive.
We will now need a result that we will not prove here since it requires some steps that are not further

relevant for what we want to look at.

Proposition 7.2.8. [1, p. 250 Proposition 5.11] If f is a positive linear functional on a C∗-algebra A ,
then for all x, y ∈ A we have

|f(y∗x)|2 ≤ f(y∗y)f(x∗x).

The idea of the proof is that one can show that [x, y] = f(y∗x) is a semi-inner product on A . Then
there is a theorem by Cauchy-Bunyakowsky-Schwarz [1, p.3] that precisely gives this inequality.

A result that follows from this proposition is that any positive linear functional f on A is bounded
and has norm ‖f‖ = f(1).

As we just saw, any cyclic representation gives rise to a positive linear functional. The following
theorem shows that we can also get a cyclic representation from any positive functional and that there is
a clear correspondence between them.

Theorem 7.2.9 (Gelfand–Naimark–Segal Construction). [1, p.250] Let A be aC∗-algebra with identity.

1. If f is a positive linear functional on A , then there is a cyclic representation (πf ,Hf ) of A with
cyclic vector e such that f(a) = 〈πf (a)e, e〉.

2. If (π,H ) is a cyclic representation of A with cyclic vector e and f(a) ≡ 〈π(a)e, e〉 and (πf ,Hf )
is constructed as in 1, then π and πf are equivalent.

Proof. Let f be a positive linear functional on A and define L = {x ∈ A |f(x∗x) = 0}. Clearly L is
closed in A . Also observe that if a ∈ A and x ∈ L , then Proposition 7.2.8 implies that

f((ax)∗(ax))2 = f(x∗a∗ax)2 ≤ f(x∗x)f(x∗a∗aa∗ax) = 0.

Hence L is a closed left ideal in A and A /L is a vector space (since L is just a left ideal, it is not an
algebra). For x, y ∈ A , define

〈x+ L , y + L 〉 = f(y∗x),

then 〈·, ·〉 is an inner product on A /L . This is relatively easy to prove using what we know about
positive linear functionals. Now define Hf to be the completion of A /L with respect to this inner
product.

Observe that, since L is a left ideal of A , the map x+ L 7→ ax+ L with a ∈ A is a well defined
linear transformation on A /L . Furthermore we observe that

‖ax+ L ‖2 = 〈ax+ L , ax+ L 〉 = f(x∗a∗ax).

If we now consider ‖a∗a‖ = ‖a∗a‖1 as an element in A , then using the functional calculus we can see
that ‖a∗a‖ − a∗a ≥ 0.
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Now we need one more fact: if a ∈ A+ and x ∈ A , then using Theorem 7.1.8 we see that a = y∗y
for some y ∈ Re (A ). So

x∗ax = x∗y∗yx = (xy)∗(xy)

and by the same theorem we see that x∗ax ≥ 0.
Now, observe that 0 ≤ x∗(‖a∗a‖ − a∗a)x = ‖a‖2x∗x− x∗a∗ax, hence x∗a∗ax ≤ ‖a‖2x∗x. Going

back to what we had earlier, we can now see that

‖ax+ L ‖2 = f(x∗a∗ax) ≤ ‖a‖2f(x∗x) = ‖a‖2‖x+ L ‖2.

Hence the map πf (a) : A /L → A /L defined by πf (a)(x + L ) = ax + L is a bounded linear
operator on A /L with ‖πf (a)‖ ≤ ‖a‖. So πf (a) ∈ B(Hf ) for all a ∈ A . By the definition of πf it is
not difficult to see that πf is a ∗-homomorphism. Hence πf is a representation of A .

Let e = 1 + L ∈ Hf , then πf (A )e = {a + L |a ∈ A } = A /L which, by definition of Hf , is
dense in Hf . So e is a cyclic vector for πf . The last observation to make for part 1 is that

〈πf (a)e, e〉 = 〈a+ L , 1 + L 〉 = f(1∗a) = f(a).

Now let (π,H ), e, f and (πf ,Hf ) be as said in 2. Let ef be the cyclic vector for πf so that f(a) =
〈πf (a)ef , ef 〉 for all a ∈ A , Then 〈π(a)e, e〉 = f(a) = 〈πf (a)ef , ef 〉 for all a ∈ A . Define U :
πf (A )ef →H by Uπf (a)ef = π(a)e, where πf (A )ef is dense in Hf . Then, since

‖π(a)e‖2 = 〈π(a)e, π(a)e〉 = 〈π(a∗a)e, e〉 = 〈πf (a∗a)ef , ef 〉 = ‖π(a)ef‖2,

U is well defined and an isometry. So U extends to an isomorphism from Hf to H . If we let x, a ∈ A ,
then

Uπf (a)πf (x)ef = Uπf (ax)ef = π(ax)e = π(a)π(x)e = π(a)Uπf (x)ef .

Thus π(a)U = Uπf (a) and hence π and πf are equivalent.

We often call this theorem the GNS construction. Lastly, it is not difficult to see that we could scale
the function that we made with a constant such that πf and παf are equivalent. So we often assume that
f is a state.

8 The Spectral Theorem

In this section we are going to take a look at an important result that follows from the Gelfand–Naimark
theorem: the Spectral Theorem. This is about combining spectral measures and normal operators on a
Hilbert space. In the process to proving the spectral theorem we will require the knowledge about mea-
sures and σ-algebras.

Remember that a σ-algebra Ω of a set X is a family of subsets such that X ∈ Ω, if ∆ ∈ Ω then also
the complement ∆c ∈ Ω and if (∆n)n∈N ⊂ Ω, then also ∪n∈N∆n ∈ Ω. If X is a topological space then
we call the σ-algebra generated by the open sets in X the Borel σ-algebra of X .

8.1 Spectral Measures

For our definition of a spectral measure we need to start by introducing some topologies.

Definition 8.1.1. If H is a Hilbert space, then the weak operator topology (WOT) on B(H ) is the
locally convex topology defined by the seminorms {ph,k |h, k ∈H } where ph,k(A) = |〈Ah, k〉|.

The strong operator topology (SOT) is the topology onB(H ) defined by the the seminorms {ph |h ∈
H } where ph(A) = ‖Ah‖.
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Some useful properties to know are the following. But since the proof does not give much insight
towards the spectral theorem, we will not prove these statements here.

Definition 8.1.2. IfX is a Banach space, then we call a subset F ⊂ X a total subset ofX if spanF = X .

Proposition 8.1.3. [1, p.256 Proposition 1.3] Let H be a Hilbert space and let {Ai} be a net inB(H ).

1. Ai → A (WOT) if and only if 〈Aih, k〉 → 〈Ah, k〉 for all h, k ∈H .

2. If supi ‖Ai‖ < ∞ and F is a total subset of H , then Ai → A (WOT) if and only if 〈Aih, k〉 →
〈Ah, k〉 for all h, k ∈ F .

3. Ai → A (SOT) if and only if ‖Aih−Ah‖ → 0 for all h ∈H .

4. If supi ‖Ai‖ <∞ and F is a total subset of H , thenAi → A (SOT) if and only if ‖Aih−Ah‖ → 0
for all h ∈ F .

5. If H is separable, then the WOT and the SOT are metrizable on bounded subsets of B(H ).

Definition 8.1.4. IfX is a set, Ω is a σ-algebra of subsets ofX , and H is a Hilbert space, then a spectral
measure for (X,Ω,H ) is a function E : Ω→ B(H ) such that the following properties hold.

1. E(∆) is a projection for all ∆ ∈ Ω.

2. E(∅) = 0 and E(X) = 1.

3. E(∆1 ∩∆2) = E(∆1)E(∆2) for all ∆1,∆2 ∈ Ω.

4. If {∆n}n∈N are pairwise disjoint sets from Ω, then

E(∪n∈N∆n) =
∑
n∈N

E(∆n).

Remark 8.1.5. If {Pn}n∈N are orthogonal projections with pairwise orthogonal images on a Hilbert
space, then we can define the sum of these projections P as the projection on the space ⊕n∈N im(Pn).
We will show that

∑n
k=0 Pk → P =

∑∞
k=0 Pk for the strong operator topology. Fix v ∈ H , because

‖Pv‖2 + ‖(I − P )v‖2 = ‖v‖2, we find that

∞∑
k=0

‖Pkv‖2 = ‖Pv‖2 ≤ ‖v‖2.

Thus

‖
n∑
k=0

Pkv − Pv‖2 = ‖ −
∞∑

k=n+1

Pkv‖2 =
∞∑

k=n+1

‖Pkv‖2

goes to 0 as n → ∞ because the sum converges. Thus using this definition, the sum of orthogonal
projections always converges with respect to the strong operator topology.

Now if ∆1,∆2 are two disjoint sets, then ∆1 ∩ ∆2 = ∅. So E(∆1)E(∆2) = E(∆2)E(∆1) =
E(∆1 ∩ ∆2) = E(∅) = 0. Hence we see that E(∆1) and E(∆2) are orthogonal if ∆1 and ∆2 are
disjoint. So point 4 of the definition is unambiguous.

Example 8.1.6. Let X be any set, let Ω be the set of all subsets of X , let H be separable Hilbert
space and let {xn} be a sequence in X . Since H is separable we know there is an orthonormal basis
{e1, e2, . . . } of H . For ∆ ∈ Ω, define E(∆) as the projection onto span{en |xn ∈ ∆}. Then E is a
spectral measure for (X,Ω,H ). 4
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Example 8.1.7. Let X be a compact set, Ω the collection of all Borel subsets of X , µ a measure on Ω
and let H = L2(X,µ). Define E(∆) = 1∆, then E is a spectral measure for (X,Ω,H ). 4

Definition 8.1.8. Let µ be a complex measure on (X,Ω), then the variation of µ over ∆ ∈ Ω is defined
as

|µ|(∆) = sup
π

∑
A∈π
|µ(A)|

where the supremum is taken over all partitions π of ∆ into a countable number of disjoint measurable
subsets.

The total variation is defined as ‖µ‖ := |µ|(X).

Lemma 8.1.9. [1, p.257] If E is a spectral measure for (X,Ω,H ) and g, h ∈H , then

Eg,h(∆) := 〈E(∆)g, h〉

defines a measure on Ω with total variation ≤ ‖g‖ ‖h‖.

Proof. Let {∆n} be a countable collection of pairwise disjoint sets in Ω, thenEg,h(∪n∈N∆n) = 〈E(∪n∈N∆n)g, h〉 =
〈
∑

n∈NE(∆n)g, h〉 =
∑

n∈N〈E(∆n)h, g〉 =
∑

n∈NEg,h(∆n). So Eg,h is a measure on Ω.
Now let ∆1, . . . ,∆n be pairwise disjoint sets in Ω and letαj ∈ C such that |αj | = 1 and |〈E(∆j)g, h〉| =

αj〈E(∆j)g, h〉. Then∑
j

|µ(∆j)| =
∑
j

αj〈E(∆j)g, h〉 = 〈
∑
j

E(∆j)αjg, h〉 ≤ ‖
∑
j

E(∆j)αjg‖ ‖h‖.

Now {E(∆j)αjg}1≤j≤n is a finite sequence of pairwise orthogonal vectors so that

‖
∑
j

E(∆j)αjg‖2 =
∑
j

‖E(∆j)g‖2 = ‖E(∪j∆j)g‖2 ≤ ‖g‖2.

Hence
∑

j |µ(∆j)| ≤ ‖g‖ ‖h‖ and thus ‖µ‖ ≤ ‖g‖ ‖h‖.

We know from measure theory how to integrate with respect to a measure. So in particular we know
how to integrate with respect to Eg,h. We can use this to derive what we need to do in order to integrate
with respect to a spectral measure. But first we will need one more result from functional analysis. This
requires one more property of functions.

Definition 8.1.10. if H1,H2 are two Hilbert spaces, then a function u : H1 × H2 → F is called
sesquilinear if for g, h ∈H1, k, f ∈H2 and α, β ∈ F we have

u(αh+ βg, k) = αu(h, k) + βu(g, k)

and
u(h, αk + βf) = ᾱu(h, k) + β̄u(h, f).

We call a sesquilinear function u bounded if sup‖h‖=‖k‖=1 |u(h, k)| < ∞. If u is a bounded
sesquilinear function then we say it has bound M = sup‖h‖=‖k‖=1 |u(h, k)|.

The proof uses the Riesz Representation Theorem, but we will not prove this here:

Theorem 8.1.11 (The Riesz Representation Theorem). [1, p.13] If L : H → F is a bounded linear
functional, then there is a unique vector h0 ∈ H such that L(h) = 〈h, h0〉 for all h ∈ H . Moreover,
h0 has the property that ‖L‖ = ‖h0‖.
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Theorem 8.1.12. [1, p.31 Theorem 2.2] If u : H1 ×H2 → F is a bounded sesquilinear function with
bound M , then there are unique operators A ∈ B(H1,H2) and B ∈ B(H2,H1) such that

u(h, k) = 〈Ah, k〉2 = 〈h,Bk〉1

for all h ∈H1, k ∈H2, Moreover, ‖A‖, ‖B‖ ≤M .

Proof. Fix k ∈H2, then f : H1 → C, f(h) = u(h, k) is a bounded linear functional on H1. So by the
Riesz Representation Theorem there is a unique vector B(k) ∈H1 such that f(h) = 〈h,B(k)〉 with the
property that ‖f‖ = ‖B(k)‖. Due to the uniqueness, we see that B : H2 →H1 is linear. Furthermore,

‖B‖ = sup
‖k‖=1,k∈H2

‖B(k)‖ ≤ sup
‖h‖=1,h∈H1

sup
‖k‖=1,k∈H2

|〈h,B(k)〉| = sup
‖h‖=‖k‖=1

|u(h, k)| = M.

The proof for A is equivalent.

Proposition 8.1.13. [1, p.258] IfE is a spectral measure for (X,Ω,H ) and φ : X → C is a bounded Ω-
measurable function, then there is a unique operator A ∈ B(H ) such that if ε > 0 and {∆1, . . . ,∆n}
is an Ω-partition of X with sup{|φ(x) − φ(x′)| | x, x′ ∈ ∆k} < ε for all 1 ≤ k ≤ n, then for any
xk ∈ ∆k,

‖A−
n∑
k=1

φ(xk)E(∆k)‖ < ε.

Proof. DefineB(g, h) =
∫
φ dEg,h for g, h ∈H . By the last lemma we can see thatB is a sesquilinear

form with |B(g, h)| ≤ ‖φ‖∞‖g‖ ‖h‖. So by the preceding theorem there is a unique operator A ∈
B(H ) such that B(g, h) = 〈Ag, h〉 for all g, h ∈H .

Let {∆1, . . . ,∆n} be an Ω-partition of X with sup{|φ(x) − φ(x′)| | x, x′ ∈ ∆k} < ε for all
1 ≤ k ≤ n. If g, h ∈H and xk ∈ ∆k for 1 ≤ k ≤ n are arbitrary, then

|〈Ag, h〉 −
n∑
k=1

φ(xk)〈E(∆k)g, h〉| = |
n∑
k=1

∫
∆k

(φ(x)− φ(xk)d〈E(x)g, h〉|

≤
n∑
k=1

∫
∆k

|(φ(x)− φ(xk)|d|〈E(x)g, h〉|

≤ ε
∫

d|〈E(x)g, h〉|

≤ ε ‖g‖ ‖h‖.

Hence ‖A−
∑n

k=1 φ(xk)E(∆k)‖ < ε.

We call the operator obtained in this proposition the integral of φ with respect to E and denote it by∫
φ dE. The proof also implies that for g, h ∈H we have

〈
(∫

φ dE

)
g, h〉 =

∫
φ dEg,h.

It is also good to notice the analogy here to Riemann sums.

Definition 8.1.14. Let X be a set and let Ω be a σ-algebra on X , then we define B(X,Ω) as the set
of all bounded Ω-measurable functions φ : X → C and define the norm on B(X,Ω) to be ‖φ‖ =
supx∈X |φ(x)|.

Observe that this norm makesB(X,Ω) into a Banach algebra with identity. If we also define φ∗(x) =
φ(x) then B(X,Ω) becomes an abelian C∗-algebra.
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8.2 Representations of Abelian C∗-Algebras

Proposition 8.2.1. [1, p.258] If E is a spectral measure for (X,Ω,H ) and ρ : B(X,Ω) → B(H ) is
defined by ρ(φ) =

∫
φ dE, then ρ is a representation of B(X,Ω) and ρ(φ) is a normal operator on H

for all φ ∈ B(X,Ω).

Proof. ρ is linear since we know that

ρ(φ) =

∫
φ dE = 〈

(∫
φ dE

)
g, h〉

and measure integrals are linear and inner products are linear in the first argument. Let φ, ψ ∈ B(X,Ω)
and let ε > 0. Now choose a Borel partition {∆1, . . . ,∆n} of X such that for ω = φ, ψ or φψ we have
sup{|ω(x)− ω(x′)| | x, x′ ∈ ∆k} < ε for all 1 ≤ k ≤ n.

Remark that such a sequence always exists, because we know that ω is Ω-measurable and bounded.
So for any ε > 0 we can find Borel subsets {b1, . . . bn} of C such that they form a partition of imω and
that for all 1 ≤ i ≤ n we have |ω(x)−ω(x′)| < ε for all x, x′ ∈ X such that ω(x), ω(x′) ∈ bi. Hence we
can choose {∆ω

1 , . . . ,∆
ω
n} such that ∆ω

i = ω−1(bi) which are elements of Ω since ω is Ω-measurable.
We can do this for all the three functions φ,ψ and φψ, so we can choose the refinement of these three
partitions as our partition.

Hence, if xk ∈ ∆k for all 1 ≤ k ≤ n,∥∥∥∥∥
∫
ω dE −

n∑
k=1

ω(xk)E(∆k)

∥∥∥∥∥ < ε

for ω = φ, ψ or φψ. So using the triangle inequality gives∥∥∥∥∫ φψ dE −
(∫

φ dE

)(∫
ψ dE

)∥∥∥∥
≤ ε+

∥∥∥∥∥∥
n∑
k=1

φ(xk)ψ(xk)E(∆k)−

(
n∑
i=1

φ(xi)E(∆i)

) n∑
j=1

ψ(xj)E(∆j)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
(

n∑
i=1

φ(xi)E(∆i)

) n∑
j=1

ψ(xj)E(∆j)

− (∫ φ dE

)(∫
ψ dE

)∥∥∥∥∥∥ .
Now, since {∆1, . . . ,∆n} is a partition we see that E(∆i)E(∆j) = E(∆i ∩∆j) = 0 if i 6= j. Hence
the second term in the equation above is 0 and we get that∥∥∥∥∫ φψ dE −

(∫
φ dE

)(∫
ψ dE

)∥∥∥∥
≤ ε+

∥∥∥∥∥∥
(

n∑
i=1

φ(xi)E(∆i)

) n∑
j=1

ψ(xj)E(∆j)

− (∫ φ dE

)(∫
ψ dE

)∥∥∥∥∥∥
≤ ε+

∥∥∥∥∥∥
(

n∑
i=1

φ(xi)E(∆i)

) n∑
j=1

ψ(xj)E(∆j)−
∫
ψ dE

∥∥∥∥∥∥
+

∥∥∥∥∥
(

n∑
i=1

φ(xi)E(∆i)−
∫
φ dE

)(∫
ψ dE

)∥∥∥∥∥
≤ ε(1 + ‖φ‖+ ‖ψ‖).
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For the second to last inequality we used that ab−cd = a(b−d)+(a−c)d. Since εwas chosen arbitrary,∫
φψ dE =

(∫
φ dE

)(∫
ψ dE

)
.

Corollary 8.2.2. Let X be a compact Hausdorff space and let E be a spectral measure defined on the
Borel subsets of X . Then ρ : C(X)→ B(H ) defined by ρ(u) =

∫
u dE is a representation of C(X).

It is clear now that we can make a representation that is expressed by a spectral measure. The
following theorem tells us the converse of this, that all representations can be expressed using a spectral
measure. But first we another proposition and an important theorem. Unfortunately the theorem is
also called the Riesz Representation Theorem, even tough it says something totally different from the
Riesz Representation Theorem that we saw earlier. For this reason, we will call it the second Riesz
Representation Theorem.

Proposition 8.2.3. [1, p.131. Proposition 4.1] If X is a normed space, then the unit ball in X is weak∗

dense in the unit ball in X∗∗.

Theorem 8.2.4 (The Second Riesz Representation Theorem). [1, p.383] If X is a locally compact space
and µ ∈M(X), define Fµ : C0(X)→ C by

Fµ(f) =

∫
fdµ.

Then Fµ ∈ C0(X)∗ and the map µ 7→ Fµ is an isometric isomorphism of M(X) onto C0(X)∗.

Here M(X) is the space of all complex valued regular Borel measures on X . Observe that this is
indeed a vector space over C with the total variation as norm. Also, C0(X) is the space of all continuous
functions f : X → C such that the space K = {x ∈ X | |f(x)| > ε} is compact for all ε > 0.

Theorem 8.2.5. [1, p.259] If ρ : C(X) → B(H ) is a representation, then there is a unique spectral
measure E defined on the Borel σ-algebra of X such that for all g, h ∈ H , Eg,h is a regular measure
and

ρ(u) =

∫
u dE

for all u ∈ C(X).

Proof. If g, h ∈ H , then u 7→ 〈ρ(u)g, h〉 is a linear functional on C(X) with norm ≤ ‖g‖‖h‖. So by
the second Riesz Representation Theorem there is a unique measure µg,h in M(X) such that

〈ρ(u)g, h〉 =

∫
udµg,h

for all u ∈ C(X). We can check that the map (g, h) 7→ µg,h is sesquilinear using the uniqueness of
µg,h. and we can also see that ‖µg,h‖ ≤ ‖g‖‖h‖. Let Ω be the Borel σ-algebra of X . Fix φ ∈ B(X,Ω)
and define [g, h] =

∫
φdµg,h. Then we can check that [·, ·] is a sesquilinear map and that |[g, h]| ≤

‖φ‖‖g‖‖h‖. So by Theorem 8.1.12 there is a unique bounded operator A such that [g, h] = 〈Ag, h〉 with
‖a‖ ≤ ‖φ‖. Let us denote this operator by ρ̃(φ). Now ρ̃ : B(X,Ω)→ B(H ) is a well-defined function
with ‖ρ̃(φ)‖ ≤ ‖φ‖ and for all g, h ∈H ,

〈ρ̃(φ)g, h〉 =

∫
φdµg,h.
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Now observe that ρ̃(u)|C(X) = ρ. We would now like to prove that ρ̃ : B(X,Ω) → B(H ) is
a representation. If φ ∈ B(X,Ω), we can consider it as an element in M(X)∗ (= C(X)∗∗) in the
sense that φ corresponds to the linear functional µ 7→

∫
φdµg,h. By Proposition 8.2.3 we find that

{u ∈ C(X) | ‖u‖ ≤ ‖φ‖} is weak∗ dense in {L ∈ M(X)∗ | ‖L‖ ≤ ‖φ‖}. So there is a net
{ui} ⊂ C(X) such that ‖ui‖ ≤ ‖φ‖ for all ui and

∫
uidµ →

∫
φdµ for all µ ∈ M(X). Now

let ψ ∈ B(X,Ω), then ψµ ∈ M(X) whenever µ ∈ M(X). Hence
∫
uiψdµ →

∫
φψdµ for all

ψ ∈ B(X,Ω) and µ ∈ M(X). So we see that ρ̃(uiψ) → ρ̃(φψ) in the weak operator topology for all
ψ ∈ B(X,Ω). Hence if ψ ∈ C(X), then

ρ̃(φψ) = lim
WOT

ρ̃(uiψ) = lim
WOT

ρ(ui)ρ(ψ) = ρ̃(φ)ρ(ψ)

for all φ ∈ B(X,Ω). Hence ρ̃(uiψ) = ρ(ui)ρ̃(ψ) for all ψ ∈ B(X,Ω) and ui ∈ C(X). Because
ρ̃(ui)→ ρ(φ) and ρ̃(uiψ)→ ρ̃(φ)ρ̃(ψ) in the weak operator topology we find that

ρ̃(φψ) = ρ̃(φ)ρ̃(ψ)

for all φ, ψ ∈ B(X,Ω). Linearity is easy to see since we know how to express ρ̃ as an integral.
To see that ρ̃(φ)∗ = ρ̃(φ̄), we let {ui} be the net that we had earlier. If µ ∈ M(X), let µ̄ be the

measure defined by µ̄(∆) = µ(∆). Then ρ(ui)→ ρ̃(φ) (WOT) and thus ρ(ui)
∗ → ρ̃(φ)∗ (WOT). Now,

since ∫
ūidµ =

∫
uidµ̄→

∫
φdµ̄ =

∫
φ̄dµ

for all µ ∈ M(X), we find that ρ(ūi) → ρ̃(φ̄). But ρ(ui)
∗ = ρ(ūi) since ρ is a ∗-homomorphism. So

ρ̃(φ)∗ = ρ̃(φ̄) and ρ̃ is a representation of B(X,Ω).

Now define E(∆) = ρ̃(1∆) for ∆ ∈ Ω. We will prove this is a spectral measure. Since 1∆ is a her-
mitian idempotent (12

∆ = 1∆) in B(X,Ω), we find that E(∆) is a projection since ρ̃ is a representation.
Since 1∅ = 0 and 1X = 1, we find that E(∅) = 0 and E(X) = 1. Furthermore,

E(∆1 ∩∆2) = ρ̃(1∆1∩∆2) = ρ̃(1∆11∆2) = ρ̃(1∆1)ρ̃(1∆2) = E(∆1)E(∆2).

Now let {∆n} be a pairwise disjoint sequence of Borel sets and let Λn =
⋃∞
k=n+1 ∆k. By induction

we can see that E is finitely additive. So if h ∈H , then∥∥∥∥∥E(
∞⋃
k=1

∆k)h−
n∑
k=1

E(∆k)h

∥∥∥∥∥
2

= 〈E(Λn)h,E(Λn)h〉

= 〈E(Λn)h, h〉
= 〈ρ̃(1Λn)h, h〉

=

∫
1Λndµh,h

=
∞∑

k=n+1

µh,h(∆k)

which clearly goes to 0 for n→∞. Hence E(
⋃∞
k=1 ∆k) =

∑∞
k=1E(∆k) for disjoint sets. Thus E is a

spectral measure.
We still need to show that ρ(u) =

∫
u dE for u ∈ C(X). Fix φ ∈ B(X,Ω) and let ε > 0. If

{∆1, . . . ,∆n} is any Borel partition of X such that sup{|φ(x) − φ(x′)| | x, x′ ∈ ∆k} < ε for all
1 ≤ k ≤ n, then ‖φ−

∑n
k=1 φ(xk)1∆k

‖∞ ≤ ε for any choice of xk ∈ ∆k. Since ‖ρ̃‖ = 1, we see that
‖ρ̃(φ)−

∑n
k=1 φ(xk)E(∆k)‖ ≤ ε. So ρ̃(φ) =

∫
φ dE for any φ ∈ B(X,Ω). Thus ρ(u) =

∫
u dE for

all u ∈ C(X).
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By the construction of E it is clear that E must be unique for all the measurable functions since we
can just plug in any Borel subset and show the value is unique. But we want to show it is unique for just
the continuous functions. Let F be another spectral measure that meets the criteria of the theorem, then
we know that

∫
u dE =

∫
u dF for all u ∈ C(X). If we let ∆ be a Borel subset, then by Urysohn’s

Lemma we can approximate 1∆ by a sequence of continuous functions fn. Thus we find that∫
1∆dE = lim

n→∞

∫
fn dE = lim

n→∞

∫
fn dF =

∫
1∆dF

for any Borel subset ∆. So it follows that F (∆) = E(∆) for all Borel subsets ∆.

8.3 The Spectral Theorem

Now we can come to an important theorem in the theory of operators on Hilbert spaces. It shows us what
the structure is of normal bounded operators. This theorem needs the Gelfand–Naimark theorem to be
proven since it heavily depends on representations.

Theorem 8.3.1 (The Spectral Theorem). [1, p. 263] If N is a normal bounded operator on a Hilbert
space H , then there is a unique spectral measure on the Borel σ-algebra of σ(N) such that the following
hold.

1. N =
∫
z dE(z).

2. If G is a nonempty relatively open subset of σ(N), then E(G) 6= 0.

3. If A ∈ B(H ), then AN = NA and AN∗ = N∗A if and only if AE(∆) = E(∆)A for every
Borel subset ∆.

Proof. Let A = C∗(N), then A is the closure of all polynomials in N and N∗. By Theorem 6.2.3,
there is an isometric isomorphism ρ : C(σ(N)) → A ⊂ B(H ) that is given by ρ(u) = u(N) (the
functional calculus). By Theorem 8.2.5 there is a unique spectral measureE defined on the Borel subsets
of σ(N) such that ρ(u) =

∫
u dE for all u ∈ C(σ(N)). Hence, point 1 holds since N = ρ(z).

If G is a nonempty relatively open subset of σ(N), then there is a nonzero continuous function u on
σ(N) such that 0 ≤ u ≤ 1G. Now using a part of the proof from the previous theorem, we see that
E(G) = ρ̃(1G) ≥ ρ(u) 6= 0. Thus point 2 holds.

Now let A ∈ B(H ) such that AN = NA and AN∗ = N∗A. Then we extend this so that
p(N,N∗)A = Ap(N,N∗) for any polynomial p(N,N∗) of two variables. So by the Stone–Weierstrass
Theorem for these polynomials p(N,N∗) we can see that Aρ(u) = ρ(u)A for all u ∈ C(σ(N)). Hence
Au(N) = u(N)A for all u ∈ C(σ(N)). Now let

Ω := {∆ |∆ is a Borel set and AE(∆) = E(∆)A}

then we can show that Ω is a σ-algebra. If G is an open set in σ(N), then there is a sequence {un} of
positive continuous functions on σ(N) such that un(z)→ 1G(z) from below for all z ∈ σ(N). Thus

〈AE(G)g, h〉 = 〈E(G)g,A∗h〉
= Eg,A∗h(G)

= lim

∫
un dEg,A∗h

= lim〈un(N)g,A∗h〉
= lim〈Aun(N)g, h〉
= lim〈un(N)Ag, h〉
= 〈E(G)Ag, h〉.
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So Ω contains any open set and thus it is the whole Borel set of σ(N).
If AE(∆) = E(∆)A for all ∆ in the Borel subsets, then AN = A

∫
z dE =

∫
z dE A = NA and

AN∗ = A
∫
z̄ dE =

∫
z̄ dE A = N∗A. Thus point 3 holds.

Lastly we need to show the uniqueness of E. We saw earlier in the proof that E is unique for the
condition that ρ(u) =

∫
u dE for all u ∈ C(σ(N)). But this is not yet enough. If we assume that F

is another spectral measure such that N =
∫
z dF (z), then we can easily check that

∫
p(z, z̄) dE =∫

p(z, z̄) dF for any polynomial in two variables. So by the Stone–Weierstrass Theorem we find that∫
u dE =

∫
u dF

for all u ∈ C(σ(N)). Since we know that E must be unique for C(σ(N)), it follows that F = E.

We call this spectral measure E the “spectral measure for N”.
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