
Utrecht University

Faculty of Science

Department of Mathematics

Bitcoin mining as cooperative network
A pool of money

Bachelor Thesis

Wicorel van der Pol

Student number 4174801

Supervisor:

Dr. M. Ruijgrok

June 15, 2017

Abstract

Nowadays, cryptocurrencies are thriving. Due to the enormous growth of the Bitcoin Network, it was
getting harder for miners to obtain Bitcoins and maintain a steady income. Therefore, mining pools were
founded. Multiple miners combined their computational power and divided the rewards proportionally
or by pay-per-share.

In this thesis we will focus on the proportional distribution according to the computational power of
each miner and analyse if there exists a way to optimally divide the profits among the miners. We will
mold the Bitcoin network to a model of cooperative games with coalitional structures.

The examination of the distribution within the pools led to a surprising conclusion: under certain con-
ditions the DMS-CS-core will always be empty. When the partition function is constant-sum, monotonic
and nonlinear with respect to the computational power, there exists no imputation which will satisfy
each miner. In other words: there will always be an incentive for at least one miner to switch pools. It
turns out that the delay of communication within a pool is crucial in this case. When the delay is below
certain boundaries, the three beforementioned conditions will always apply, meaning the DMS-CS-core
will always be empty. Thus, under certain conditions the network will never stabilize.

i

CONTENTS ii

Contents

1 The Bitcoin Network 1
1.1 Public ledger . 2
1.2 Block Chain . 2
1.3 Conflicting histories . 2
1.4 Attacks . 3
1.5 Pools . 3
1.6 (Dis)advantages . 5

2 Miner Coalitional Game 7
2.1 Notation . 7
2.2 The rate of block addition . 8
2.3 Pools share . 8
2.4 CS-core . 11
2.5 DMS-CS-core . 12

3 Delay: the key parameter 14
3.1 Boundary d1 . 14
3.2 Boundary d2 . 15

A Proof-of-work 18

B Notation overview 19

References I

Credits for the illustration on the front page go to Manouk Locher.

1 THE BITCOIN NETWORK 1

Introduction

Cryptocurrencies are on the march: since the appearance of Blackcoin, Dogecoin, Litecoin and many others
an interesting new digital market has arisen. In 2009, the first cryptocurrency was brought to life: the Bitcoin
Network. This innovative network uses bitcoins, which only consists of one’s and zero’s. The virtual money
is transferred in a similar way information across the internet is transferred: from one individual to the other
(also referred to as peer-to-peer) and hence has no or small transaction fees. The second innovative part
about Bitcoin is that the network is decentralized; no central authority controls the flow of bitcoins. The
Bitcoin Network has miners who use their computational power to protect the system agains malicious users.
They are rewarded with freshly produced bitcoins. This way, no central authority is needed to decide when
to release more bitcoins into the market.

However, an unexpected growth of this network brought many miners to despair. It was getting harder,
even impossible, to get a steady income of bitcoins by mining. This was fixed by working together in pools
and splitting the profits. The rewards became lower, but more frequent. The manner in which the profits are
divided, differ greatly between pools, which means that some miners might feel the need to switch strategy.
Due to the establishment of pools, the structure of the network has become more complex. This raised ques-
tions as whether an ideal strategy to divide the profits within a pool exists and which factors do influence the
decision of the miners to switch between pools or even work solo. Therefore, this thesis will focus on certain
tools from cooperative game theory to study the behaviour of the miners.

Assuming that every miner wants a maximal payoff, we will examine when a miner is inclined to switch
pools. During this process, multiple factors of the network will be considered. Eventually, it all comes down
to the question whether there exists a cooperative miner game, with coalition structures, that doesn’t have
an empty core. As it will turn out, when the communication between miners is efficient enough, there exists
no distribution of the shares that will keep every miner satisfied. Therefore, the network of pools will always
be in motion.

1 The Bitcoin Network

Before we head on to the game theory of the Bitcoin Network, it will be quite useful to go through the basics
first. Bitcoin is a digital cryptocurrency created by Satoshi Nakamoto. Creating a Bitcoin address (equivalent
to a banking account) is free. Bitcoins can be bought with euros, dollars or other currency. Among other
options can this be done at currency exchanges online, after which one can use it like any other currency;
purchase anything you like in the form of transactions. The only difference is that bitcoins consist solely out
of one’s and zero’s.

Another unique aspect of the currency is the absence of a global authority that regulates the distribution of
the money; the Bitcoin Network is completely decentralized. There is no central authority that subordinates
a monetary policy. The total number of bitcoins that eventually will circulate in the market has already been
set by Nakamoto: never will there be more than 21 million bitcoins. [[7] p.105]

Considering the fact that the virtual, decentralized currency was a first and that is was not supported
by the government, one might not be surprised that many people in Wall Street were sceptical about its
endurance. In the beginning there were not many places where bitcoins were accepted as legal payment and
many bitcoin exchanges failed. [[7] p.105] All in all, it had a rough start. However, what seemed to start as
a quirky experiment suddenly flourished into something big:

”In the late spring of 2011, the price of [a] bitcoin had reached parity with the U.S. dollar, and by July,
one bitcoin was worth $31.” [[3] p.2]

This process has not deteriorated: on april the fifth 2017 one bitcoin was approximately worth $1118,-
and on july the eleventh 2017 about $2902,- dollar. More and more people became aware of the profitable
currency and started investing in it. Meanwhile, well-known companies like Subway, Steam, Wikipedia and
Tesla started accepting bitcoins, which aided the network’s growth even more. [1]

1 THE BITCOIN NETWORK 2

1.1 Public ledger

Digital money is faster to transmit than regular money. Still, every digital currency has one huge disadvan-
tage: the double spending problem. Due to the absence of physical tokens (e.g. watermarks on papermoney),
virtual money is quite easy to replicate. One can keep a copy of the string of bits, that represents your
payment, and use this copy to pay for something else. This is referred to as the double spending problem.

A solution to this problem is to list all holdings of each Bitcoin address in a public ledger. A transaction
simply changes the records on this ledger. However, this inevitably leads to the neccessity of a record keeper.
This third party has much influence: it can demand high fees and block or run transactions without consent.
As stated before, the Bitcoin Network strives to keep it decentralized. Therefore, the third party has been
replaced by miners. The network thus consists of two kinds of agents: the clients (bitcoin owners who make
bitcoin transactions) and the miners. Together, all the miners authorize the bitcoin transfers. They check for
double spending and other inconsistencies in the transactions using the information of the ledger. Meanwhile
they compete to authorize a share of the transactions, so they are rewarded with a small amount of ’new’
bitcoins. Usually, a central authority decides when to print more money, but since the Bitcoin Network is
decentralized, more bitcoins are added to the network by rewarding miners. Because all miners work together
without a central authority, no unreasonably high fees can be demanded by one miner, nor can one of them
decide to block transactions. Thus, all miners form a peer-to-peer network that keeps the Bitcoin Network
secure.

1.2 Block Chain

Each miner keeps a copy of the ledger and is continuously updated with all transactions that take place.
Consequently, these transactions are public and therefore the ledger is transparent. The workload is not
distributed. Every miner has to do the same verification. Now, what if two miners obtain a different ledger,
because of double spending? Their information somehow has to be synchronized. In order to show how this
is done in the Bitcoin Network, we first have to obtain more information about the details of Bitcoin’s main
data structure: the block chain.

All verified transactions of the Bitcoin Network are stored in the block chain. As the name suggests it
consists of blocks linked together. It starts with the first block that was created at the beginning of the
Bitcoin network and it is therefore called the genesis block. Every other block has a parent block, which is a
predecessor of either one or two other blocks. A block in the chain contains the following:

• batches of approved transactions,

• a (unique) cryptographic hash to indicate the preceding block (the cryptographic hash can be seen as
an identifier for the Bitcoin addresses which requested the transfer),

• and a coinbase transaction (the reward for the lucky miner).

Each miner verifies the signatures of the Bitcoin addresses which requested the transfer of bitcoins. The
miner then forwards it to peers in the network. A block is called valid when the included transactions are
not in conflict with the current balances which are given by the preceding blocks. Together, all these blocks
keep a record of all the transactions since the creation of Bitcoin. Therefore, we can see the chain as the
virtual representation of the transparent ledger. More information about how miners exactly verify a block,
is available in Appendix A.

1.3 Conflicting histories

Since blocks are created quite randomly, it often occurs that two miners extend the same parent block. When
different miners extend this block at approximately the same time a fork is created in the block chain. The
result is different ledgers spread throughout the network. However, the Bitcoin Network has two main rules
that solve the problem of conflicting histories.

1. The use of proof-of-work
To mine a block miners need to solve a computationally hard problem. The solution of this problem is

1 THE BITCOIN NETWORK 3

called the proof-of-work and is easy verifiable by every miner. Still, finding this solution is far from easy.
A miner will simply have to let his computer try out many guesses until he finds the right one. When
a proof-of-work is found, the miner adds it to the block and sends it to the other miners (by adding it
to the block chain), so they can verify his solution. The miner who mined this block is rewarded with
bitcoins.

Because there is no simpler way of finding the proof-of-work, it is hard to create a block. The difficulty
of the computational problem is set such that every ten minutes a block will be created by the entire
network. This means that the time interval to update the other miners is hopefully long enough to
notify each miner, before one of them creates a second block for the same parent. The proof-of-work
therefore prevents forks in the block chain.

2. The longest chain concept
When miners notice that different versions of the ledger exist, it means the chain has split and according
to Bitcoin policy every miner must adopt the longest chain. This chain has the longest transaction
history. The other version of the chain will be abandoned. Transactions that were included within this
branch become invalid and are taken out of the ledger, by which the fork dissappears. The concept of
the longest chain therefore resolves fork-situations.

1.4 Attacks

Unfortunately, like any other system, there are people who try to find it’s weaknesses and exploit them. The
fork-problem has been used by some to their advantage. Let’s consider such a person (an attacker) who
just bought something, but suddenly wants to reverse his transaction, which has already been approved. He
creates a fork in the block chain by adding a block to some part in the chain before the block that contains
his approved transaction. (Remember that the ledger is transparent, so an attacker can easily figure out
where this block is.) If this branch becomes long enough, the longest chain concept ensures that the blocks
of the other branch will be removed from the block chain, thereby erasing all the transactions in these blocks
from the public ledger. This includes the transaction the attacker wanted to reverse and so he had his way.
This is called a double spending attack.

However, we already learned that creating a block is very difficult. Being a succesful miner requires a
lot of computational power. This means that if an attacker wants to create a fork, he needs to mine at a
higher rate than the rest of the network. In other words, he must be incredibly well technologically equiped.
Since the peer-to-peer network is far from a small community an attacker must posses at least 50% of the
computational power of the entire network. Otherwise, his chances are nil. [[7] p.108] When a miner does
obtain at least 50% of the network’s computational power, he can launch a 50% attack. Because he creates
blocks at a faster pace than the rest of the network, he can adjust the block chain anyway he likes by double
spending attacks. The attacker can even stop all transactions by generating a chain full of empty blocks. The
only thing he can’t do is move funds he doesn’t control, because transactions always have a cryptographical
signature of the sender. Still, it is a worrying concept.

These attacks stress the need for a well-connected peer-to-peer network. If enough honest miners join the
network, it will get less likely that an attacker has enough computational power to force a fork in the chain.
In other words: the more honest miners, the more resilient the network is to double spending attacks. Miners
keep the network safe.

1.5 Pools

Due to the vast growth of the network it was getting harder and harder for miners to mine bitcoins. In the
beginning people could mine using the processors of their computers. Then more and more people discovered
that graphics cards (which are used for gaming) were more efficient. The downside is that they use a lot of
electricity and therefore generate a lot of heat. Eventually, special chips were developed for mining bitcoins:
ASIC (Application-Specific Integrated Circuit chips). Figure 1 shows the best Bitcoin mining hardware
options based on the current (02/05/17) price per hash and electrical efficiency.

1 THE BITCOIN NETWORK 4

Figure 1: The best Bitcoin mining devices. Source: www.bitcoinmining.com

Still, it could take years for slower miners to mine a block. Those who wanted a steady income, needed
a new approach. Therefore, the idea arose to form groups of miners who can combine their computational
power and share the profit, hence mining pools were set up. When a member mines a block the profit is
divided among the entire pool, such that all the miners have a lower but more steady income. The reward
for mining a block is included in the block as the coinbase transaction and consists of a small fee that is
paid for adding transactions to the block and new bitcoins which are added to the market. Remember that
there will never be more than 21 million bitcoins, so the number of bitcoins rewarded to the miners decreases
with every mined block. The first blocks added to the Genesis Block were rewarded with 50 bitcoins. Every
210,000 blocks this number is halved. This means that the currency is deflationary: bitcoins may be lost and
never replaced because of the fixed number that is available. [[7] p.110]

The structure of each pool is as follows. Each pool has a pool manager and miners. The miners only
communicate via their pool manager (also called a pool operator). The pool manager is able to send block
headers (a hash to indicate the previous block) to his miners.

First, the pool manager will run a Bitcoin node on behalf of the other miners in his pool, collecting
transactions and assembling them into a block. He then adds his own address to this block and sends it to
the miners in his pool.

In return the miners send back nonce fields which are suitable according to the information in the received
block headers. These nonce fields are basically attempts to find the beforementioned proof-of-work and they
are used to show that every miner is working on this block. Each nonce that is sent, is called a share. When
the right nonce is found the pool manager will receive the rewards and divide them among the miners in his
pools. [[5] p.125,126]

Their are multiple ways to divide the profits in a pool. The two most basic models are the proportional
and pay-per-share model (see table 1). In the first model the payoff is distributed according to one’s relative
computational power in the pool. This proportional model is low risk for the pool managers, because they
only have to pay out when a valid block is found and they have received bitcoins. In a pay-per-share model
the pool manager has to pay the miners for the shares they send, even when they are still working on a block.
Of course the pool manager will also keep a part of the profit, but in this thesis we will focus on the share
of the miners.

Pool managers can communicate with one another, but instead of a header, they have to send an entire
block to each other. Miners within their pool only need the block headers. These forms of communication
cause delays in the network, which will later on turn out to be extremely important for our main question.

1 THE BITCOIN NETWORK 5

Method Approach

PPS:

The Pay-per-Share (PPS) approach offers an instant, guaranteed payout for each share that
is solved by a miner. Miners are paid out from the pools existing balance and can withdraw
their payout immediately. This model allows for the least possible variance in payment for
miners while also transferring much of the risk to the pool’s operator.

PROP:
The Proportional approach offers a proportional distribution of the reward when a block is
found amongst all workers, based off of the number of shares they have each found.

Table 1: Distribution methods

As you can see in figure 2 many different pools of varying sizes exist. Each pool has his own model to
divide the rewards. Returning to the problem of the attackers, it is recommended to join the smaller pools.
When a pool approaches 50% of the network’s block creation rate, it is a threat to the system. Even when
the members of the pool are good-natured, it is still possible that a hacker manages to compromise the pool’s
servers, risking a 50% attack. Therefore, many miners chose to join the smaller pools.

Nevertheless, large mining pools are not completely undesirable. In March of 2013 a bug occured in the
code, which resulted in a long-lasting fork in the block chain. The large mining pools were askes to downgrade
to an older version of the protocol and due to this the fork dissolved. [[7] p.112]

(a) Pie chart of current recommended pools

(b) Origin of mentioned pools

Figure 2: Source: https://www.bitcoinmining.com/bitcoin-mining-pools/

1.6 (Dis)advantages

All in all, the Bitcoin Network is a system that keeps evolving. Improvements certainly are desirable. One
huge disadvantage is that every miner keeps a copy of the ledger, which means a lot of useless data is being
stored. Some have suggested that this wasteful replication can be reduced to some extent. For example,
everyday users of the currency don’t need the entire history of transactions, because some are too old to be of
use. When a part of the chain is removed, they have to store less data and thus have lower storage costs. The
economic influences are also getting stronger: large miners are profiting from their increasing bank accounts
(e.g. they can produce their own hardware) and thereby eliminating smaller miners from the market.

Another disadvantage is the loss of privacy. All transactions are made public in the ledger, so anyone can
verify them. This transparancy is useful for organizations who want to show their clients how they are using

1 THE BITCOIN NETWORK 6

their money. Still, the privacy of individuals is at risk. Bitcoin users can create new pseudonyms for each
transaction, but full anonymity will never be reached.

Nevertheless, there are many advantages: spreading money like information across the internet is relatively
fast, anyone can join the network (as a miner and as a client) and every transaction is verifiable because of
the ledger. More importantly, there is no third party or central government which can demand high fees.
Decentralization is the essence of the Bitcoin Network. Its ongoing goals are to maintain this decentralization
while protocol changes and other developments take place. We have seen how the miners make the network
more resilient against double spending attacks and therefore keep it secure. When the network began to
grow and profits were obtained less often and more randomly, the miners chose to evolve with the system by
creating pools. Maybe this one of the reasons why the Wall Street critics were shown wrong about Bitcoin:
it is not a perfect system, but every member (miners, developers, regulators and adopters) can reveal its
shortcomings and is involved in its innovation. Step-by-step Bitcoin is proving its worth.

2 MINER COALITIONAL GAME 7

2 Miner Coalitional Game

We will now analyse the structure of the bitcoin miner network as a cooperative game. The pools will be
called coalitions. Our miners can join a pool or work solo. They can only be part of one pool, so there is no
overlap between the coalitions. A few other assumptions are made:

• the reward for a mined block is fixed,

• the miners follow the protocol as described in Chapter 1,

• the delay in communication between miners is fixed,

• and every miner i mines blocks according to a Poisson proces with parameter λpi.

2.1 Notation

We start off with a general introduction to the notations1 commonly used in Game Theory. For now, we

leave out the coalitional structures. There always is a grand coalition, I = {1, 2, . . . , n}, containing all
agents. Every subset C ⊆ I, |C| > 1 is a coalition. We define the characteristic function v : 2I → R.
For every coalition this function determines the payment that can be achieved because of the collaboration.
Furthermore, an imputation is a vector x ∈ R|I| that divides all the gains of the grand coalition among the
miners. It has the following properties:

1. the payoff of a player i is xi ≥ 0;

2. the payoff of a coalition x(C) =
∑
i∈C xi;

3. x(I) =
∑
i∈I xi = v(I).

Furthermore, we define a weight vector w ∈ R|I|, with ∀i ∈ I : wi ≥ 0 and
∑
i∈I wi = 1. Again, the

definition for the coalitions is similar: w(C) =
∑
i∈C wi.

Now, we will consider a game with coalitional structures. The grand coalition will be divided by some
partition S = {C1, C2, . . . , Cm}, with m coalitions and ∪mi=1Ci = I. Since no overlap is assumed, we know
that Ci ∩ Cj = ∅ for i 6= j. The utility of a coalition under the partition S of other agents is given by the
partition function v(S,Ci) = vs(Ci). The set of all possible partitions of I is denoted by CS(I). This set
contains all the possible coalitional structures over I.

The delay between two coalitions Ci, Cj (i 6= j) is denoted by D and the delay within a coalition Ci is
denoted by d. So in case a miner wants to announce that he or she has succesfully mined a block, it will take
d seconds for the poolmanager to be notified and an extra D seconds before the other poolmanagers receive
the information. After 2d+D seconds all the other miners will be aware of this progress.

We define P = {p1, p2, . . . , pn} as the distribution of the relative computational power among the miners.
This will be used to determine the share of a miner in the pool. The computational power of agent i is
denoted by pi ∈ [0, 1] and

∑
i∈I pi = 1.

Finally, we will use λ to indicate the number of blocks which is expected to be mined by the network per
second. We can now define a Miner Network as

Γ = 〈M,S, P,D, d, λ〉,

where M is the set of miners instead of I.

1All the notations are collected in appendix B.

2 MINER COALITIONAL GAME 8

2.2 The rate of block addition

We define β as the desired rate of block addition to the longest chain per second. The actual rate of
block addition is defined by β(Γ), where Γ is a Miner Network. When β(Γ) increases, the network becomes
more efficient, because more transactions are verified per second. A Miner Coalitional Game with Coalition
Structures is defined as

C = 〈M,P,D, d, β〉.

In the network a threshold (t) is often adjusted such that every 10 minutes a block is mined. This concept
is called retargeting and makes sure that β(Γ) stays close to β.

For example, a lower t means a miner needs more attempts to obtain the nonce that produces the right
hash (pt decreases). Therefore, more computational power is needed and thus the rate of longest chain
growth (β(Γ)) decreases and the network can process less transactions in the same time. The adjustment of
the threshold t results in a β(Γ) ≈ β. Therefore, we have set β(Γ) = β in our Miner Coalitional Game. Now
let’s explore the boundaries of β(Γ).

Proposition 2.2.1. Let Γ = 〈M,S, P,D, d, λ〉 be a Miner Network with |M | > 1 miners and D, d > 0. For
every solo miner i, it holds that λ ≥ β(Γ) ≥ piλ.

Proof. We will split the proof in two cases:

• λ ≥ β(Γ)

We know that β(Γ) is the rate of block addition to the longest chain. In the best case scenario each
block that is mined per second (λ) will have a hash below the threshold. So each mined block will be
added to the longest chain. This means β(Γ) = λ in the best case. In reality, not every mined block
will be added to the longest chain, so therefore λ ≥ β(Γ).

• β(Γ) ≥ piλ
Remember that every miner i mines blocks according to a Poisson process with parameter piλ. Hence,
the rate of block addition cannot be smaller than the speed at which an arbitrarily miner i is mining.
If every miner mines blocks just as fast as the others, then β(Γ) = piλ for every i ∈M .

2.3 Pools share

Joining a pool makes it easier to mine, but the payoff must be divided in a suitable way. In this model each
miner strives to obtain as many bitcoins as possible. Therefore, we define γ(Γ)i as the chance that a miner i
has succesfully mined a block in a Miner Network Γ. We will sometimes just write γi instead of γ(Γ)i.

Every miner wants to increase his or her γi, because you only receive bitcoins for mining a block which be-
comes part of the longest chain. Thus, γi is the total share of a miner i in the network. The shares are divided
proportionally, so ∀i : γi ∈ [0, 1]. Furthermore, the total share of a coalition is defined by γC =

∑
i∈C γi. An

increase of one’s share in the longest chain means an increase in one’s payoff in bitcoins. We can therefore
set γi as our payoff function: ∀C ∈ S : vs(C) = γC .

Now, let’s explore two extreme examples of a Miner Network and observe what this will do to β(Γ). We
start off with a network that consists of one large pool, containing all the miners in the network:

Proposition 2.3.1. Let Γ = 〈M, {M}, P,D, d, λ〉 be a Miner Network, then β(Γ) = λ
1+2dλ .

Proof. Since S = {M}, we have a Miner Network with one pool and no solo miners. With one pool there
only exists a delay between the pool manager and the miners (d). Let’s assume that a block X was mined
and added to the longest chain. We want to know how long it takes to mine a second block which will be
added to the longest chain in order to calculate β(Γ).

When the pool manager becomes aware of block X, he will need d seconds to update the miners with a
new target. Since λ is the expected number of blocks mined by the network per second, a new block Y will
be created after approximately 1

λ seconds. It takes another d second for the miner i to notify the manager.

2 MINER COALITIONAL GAME 9

In the meantime (2d + λ−1) seconds have passed since the creation of block X. Therefore, the rate of block
addition to the longest chain (β(Γ)) is equal to (2d+ λ−1)−1 = 1

2d+ 1
λ

= λ
2dλ+1 .

The other extreme example is a network with only two solo miners. From Sompolinsky and Zohar [6] we
obtain

Theorem 2.3.2. Let Γ be a Miner Network with two solo miners. Then

β = β(Γ) =
(λp1)2e2Dp1λ − (λp2)2e2Dp2λ

λp1e2Dp1λ − λp2e2Dp2λ
(1)

and when p1 = p2 = 1
2 then it holds that β(Γ) = λ 2+Dλ

2+2Dλ .

Proof. For the extensive complete proof of equation (1) we refer to [6] Appendix E. The special case of
p1 = p2 = 1

2 is easier to explain. Note that by substituting p1 = p2 = 1
2 in equation (1), we would divide by

zero. We need another approach.
First, we write p2 = 1− p1. We substitute this into equation (1):

β(p1) =
(λp1)2e2Dp1λ − (λ(1− p1))2e2D(1−p1)λ

λp1e2Dp1λ − λ(1− p1)e2D(1−p1)λ

=
λ2p21e

2Dp1λ − λ2(1− p1)2e2Dλ−2Dp1λ

λp1e2Dp1λ − λ(1− p1)e2Dλ−2Dp1λ

=
λp21e

2Dp1λ − λ(1− p1)2e2Dλ−2Dp1λ

p1e2Dp1λ − (1− p1)e2Dλe−2Dp1λ
(λ > 0)

=
λp21 − λ(1− p1)2e2Dλ(1−2p1)

p1 − (1− p1)e2Dλ(1−2p1)
(Divide everything by e2Dp1λ 6= 0)

=
λ
(
p21 − (1− p1)2e2Dλ(1−2p1)

)
p1 − (1− p1)e2Dλ(1−2p1)

.

Then we use l’Hôpital’s rule by taking the derivatives of p1 and calculating the limit of p1 → 1
2 .

[Numerator] β′1(p1) = λ
(
2p1 + 2(1− p1)e2Dλ(1−2p1) + (1− p1)24Dλe2Dλ(1−2p1)

)
[Denominator] β′2(p1) = 1 + e2Dλ(1−2p1) + (1− p1)4Dλe2Dλ(1−2p1)

β(p1) = lim
p1→ 1

2

β′1(p1)

β′1(p1)
= λ

(1 + 1 + 1
4 · 4Dλ

1 + 1 + 1
2 · 4Dλ

)
= λ

(2 +Dλ

2 + 2Dλ

)
.

In this Two Miner Network we can also provide a formula for the share of each player.

Theorem 2.3.3. Let Γ be a Miner Network with two solo miners. Then

γ(Γ)1 =
p21e

µp1 − p1p2(2eµ−2
eµp1+eµp2−2 − 1)

p21e
µp1 − p22eµp2

(2)

where µ = 2Dλ and γ(Γ)2 = 1− γ(Γ)1.

Proof. Again we refer to [6] Appendix E for the involved proof.

In the case of p1 = p2 = 1
2 we can again use L’Hôpital’s rule to obtain γ1 = γ2 = 1

2 . This means that
when the computational power of both solo miners is equal, they payoff will also be split equally. When for
example p1 > p2 we know that µp1 > µp2. Therefore, eµp1 > eµp2 and also p21e

µp1 > p22e
µp2 . Considering this

2 MINER COALITIONAL GAME 10

we can see that γ1 of equation (2) will increase and therefore γ2 = 1− γ1 will decrease. This is in agreement
with our proportional payoff system.

More importantly, we will see a remarkable result when the difference between p1 and p2 is relatively small.
To obtain figure 3a we fixed λ = 1. Furthermore we set p1 = 0.55, p2 = 0.45 and then plotted γ1 as a function
of Dλ. Despite the small difference in computational power the first solo miner has a significant higher payoff
when the delay increases.

Note that the threshold of the bitcoin network is set such that every ten minutes a block will be mined, so
in this case the expected number of blocks mined by the network per second would be 1

600 . In figure 3b we
can see for the same values of p1, p2 the function of the share has stabilized to the computational power of
miner 1. However, we couldn’t plot D = 0, because this would involve dividing by zero. To calculate γi for
µ = 2Dλ = 0 we use l’Hôpital again and obtain:

lim
µ→0

γ(Γ)1 = lim
µ→0

p21e
µp1 − p1p2(2eµ−2

eµp1+eµp2−2 − 1)

p21e
µp1 − p22eµp2

=
p21 − p1p2(limµ→0(2eµ−2

eµp1+eµp2−2 − 1))

p21 − p22

=
p21 − p1p2(limµ→0(2eµ−2

eµp1+eµp2−2 − 1))

p21 − p22
,

L’Hôpital: lim
µ→0

(
2eµ − 2

eµp1 + eµp2 − 2
− 1) = lim

µ→0
(

2eµ

p1eµp1 + p2eµp2 − 2
− 1)

=
2

p1 + p2
− 1 (p1 + p2 = 1)

= 1.

Substituting this back into the first equation gives us:

lim
µ→0

γ(Γ)1 =
p21 − 2p1p2
p21 − p22

=
p1(p1 − p2)

(p1 − p2)(p1 + p2)

=
p1(p1 − p2)

(p1 − p2)
= p1.

Thus, when Dλ = 0, the share of each miner becomes the proportion of computational power held by him
or her (γi = pi).

Corollary 2.3.4. Let Γ be a Miner Network with two solo miners as defined in theorems 2.3.2 and 2.3.3. If
pi >

1
2 , then γi ≥ pi and if Dλ > 0 then γi > pi.

(a) λ = 1 (b) λ = 1
600

Figure 3: The share γ1 as a function of D ∈ [1, 20] for p1 = 0.55, p2 = 0.45.

2 MINER COALITIONAL GAME 11

2.4 CS-core

We will now focus on Miner Networks with Coalitional Structures and investigate if there are imputations
that divide the gains in a satisfying way for all the miners. Otherwise, the CS-core will be empty. In this
section we won’t consider γi as our payoff function yet. We first want to study the general case.

An imputation x is blocked when there exists a coalition B ⊆M such that v(B) >
∑
i∈B xi = x(B). This

means that the miners are better off working as a group B, than when they stick to the situation of the grand
coalition with the given imputation x. From here it follows that an imputation x belongs to the core if it is
not blocked by any coalition:

∀C ⊂ I we have x(C) ≥ v(C).

We don’t just want to look at the core of one coalition. The CS-core is defined for the entire partition
S ∈ CS(M), so we have to consider every possible deviation from this partition. Only then can we make
general conclusions about the Miner Network. The CS-core is defined by:

{x ∈ R|I| | xi ≥ 0,∀C ⊂ I : x(C) ≥ vSC (C)}, (3)

where SC = {C} ∪ {{D \ C} | D ∈ S, D \ C 6= ∅}. Note that: x(C) = vS(C), but not neccessarily:
x(C) = vSC (C). An imputation only defines the payoff for the current coalition structure. The partition SC
consists of a new coalition C and the same coalitions as S, but without the miners collected in C.

Example 2.4.1. Let S = {{a, b}, {c, d}, {e}}. Now let’s say that miners a and e decide that they are better
off working together. By creating their new coalition we get SC = {{a, e}, {b}, {c, d}}. An imputation is in
the CS-core of the partition S if the for every SC we create, the payoff will be lower for the coalition C. 4

Now we will see that under certain conditions this core will always be empty. We use the conditions as
defined by Lewenberg et al. [4]. Assume that the payoff function v satisfies:

1. Constant-sum
For every S ∈ CS(I) we have

∑
C∈S vs(C) = c.

This means that the total payoff to be distributed among the grand coalition is always equal to a
constant positive number c.

2. Nonlinearity with respect to a weight vector w ∈ R+

A partition function v is nonlinear (with respect to a weight vector w) if:
for every partition S with maxC∈S w(C) > minC∈S w(C), we have vs(Ci) > w(Ci) ·

∑
C∈S vs(C)

for the maximum coalition Ci ∈ arg(maxC∈S w(C)).

In other words: for every partition with different weights for the coalitions, the coalition with the
biggest share (highest weight) has a payoff bigger than all the payoffs of the coalitions times its weight.
This means its profit is higher than its share in the network.

Let’s consider a partition S = {C1, . . . , Cm} of the Miner Network Γ = 〈M,S, P,D, d, λ〉 and apply these
conditions to it. The proportional distribution of the computational power will be our weight vector. We are
now ready to prove the emptiness of the CS-core of S.

Theorem 2.4.2 (Emptiness of CS-core). Let v be the partition function of a coalitional game with coalition
structures (CS) of M . Let p be a weight vector satisfying ∀i ∈ I : pi <

1
2 . If v is constant-sum (1) and

nonlinear (2) for p, then the CS-core is empty for every coalition structure of M .

Proof. Let v be a partition function as described in the theorem. Recall that the CS-core of S is:

{x ∈ R|M | | xi ≥ 0,∀C ⊂ I : x(C) ≥ vSC (C)},

with SC = {C} ∪ {{D \C} | D ∈ S, {D \C} 6= {∅}}. The proof consists of taking a partition S of a coalition
structure and then proving for every imputation x that there exists a C ⊂ I such that vSC (C) > x(C).

Take S ∈ CS(M) and let x be an imputation associated with S. Without loss of generality we can assume
that M = {1, . . . , n} and

∑
A∈S vS(A) = 1,∀S ∈ CS(M). The exact number of miners is not essential and

for every partition the payoff function must be constant for c > 0, so we choose c = 1.

2 MINER COALITIONAL GAME 12

Now, let εi = xi − pi for every i and assume without loss of generality that ε1 ≤ ε2 ≤ · · · ≤ εn. Note that∑
i∈M

εi = (x1 − p1) + · · ·+ (xn − pn)

= x1 + x2 + · · ·+ xn − (p1 + p2 + · · ·+ pn)

=
∑
i∈M

xi −
∑
i∈M

pi

= 1− 1 = 0.

Let’s now set D = M \ {n}. This coalition will disrupt the core. Since εn is the greatest ε we know that
εn ≥ 0. This means

∑
i∈D εi =

∑
i∈M εi − εn ≤ 0 and so x(D) ≤ p(D). Likewise, pn < 1

2 and therefore∑
i∈D pi >

1
2 . Thus, our coalition D has the highest weight vector (D ∈ arg(maxC∈S w(C)) and because v is

non-linear with respect to p:

vSC (D) > p(D) ·
∑
C∈S

vs(C)

> p(D) · 1
= p(D) ≥ x(D).

This means that for every imputation x we can always construct a coalition D such that vSC (D) > x(D).
Therefore, the CS-core is empty.

The condition of constant-sum is crucial, because this means we can assume
∑
C∈S vSC (C) is constant.

The condition of nonlinearity is necessary in order to prove vSC (C) > p(C), which will lead to the desired
result: vSC (C) > x(C).

What does the emptiness of this core mean? We considered a grand coalition of miners M , who were divided
into multiple coalitions {C1, . . . , Cm}. The total amount of bitcoins which are to be distributed is constant
(condition 1). Furthermore, the partition function v is nonlinear with respect to a weight vector (condition 2),
namely the computational power of each miner (and no miner has an overbalance in computational power).
The result is an empty CS-core of S, so there will always be a coalition which benefits from deviating from
the current situation S. In short, there exist no distribution of the payoffs that will keep the miners in every
coalition satisfied.

2.5 DMS-CS-core

The emptiness of the CS-core is a strong notion. An imputation mustn’t be blocked by any possible coalition.
Yet, there might be situations where certain subsets of agents can’t form a new coalition. We will constrain
the number of possible partitions by only allowing the coalitions to split or merge. Therefore, we will introduce
the concept of D-stability. We define D : CS(M) → 2M as the defection function. This function maps each
partition to a set of possible coalitions. This means that a coalition C can only deviate from the current
partition of S if C ∈ D(S). With this additional demand we might find an imputation that isn’t blocked by
any coalition.

There are two options for a coalition C:

• a subset of C canmerge with a subset of another coalition {C ′ ∪D′ | C ′ ⊂ C,D′ ⊂ D};

• C can split into two subsets C = C1 ∪ C2.

An imputation x is DMS-stable if for every C ∈ D(S)MS we have x(C) ≥ vSC (C). The DMS-CS-core exists
of all the DMS-stable imputations that are associated with S.

Example 2.5.1. To illustrate that there are less constraints on an imputation x for the DMS-CS-core,
consider a partition S = {{a}, {b}, {c}, {d, e}}. While checking if an imputation x is in a core of S, we must
consider each possible alternative partition (SC) of S. The partition S2 = {{a}, {b}, {c, d}, {e}} is the result

2 MINER COALITIONAL GAME 13

of a split and a merge of the coalitions in S. Therefore, it will be considered as a possible deviation from the
current situation S for both the CS-core and the DMS-CS-core.

However, the partition S3 = {{a, b, c}, {d, e}} needs to be considered for the CS-core of S, but not for the
DMS-CS-core, because {a, b, c} is the result of two merges. Thus, due to D-stability, there are less possibilities
that can block the imputation x. 4

In order to prove the emptiness of this core, we will give a proof similar to the one of theorem 2.4.2. Only
besides finding a coalition D such that vSC (D) > x(D), we must also show that D is a result of either a split
or a merge: D ∈ D(S)MS . Therefore, we first have to define another condition [4]:

3. Monotonic
If for every S ∈ CS(I) with S = {C1, C2, . . . , Cm}(m > 2) and vs(C1) ≤ vs(C2) ≤ · · · ≤ vs(Cm), then
for C = C1 ∪ C2 we have vs(C1) + vs(C2) < vSC (C).
The two lowest pools will always have a larger payoff when they collaborate by merging.

Now we can prove the emptiness of the DMS-CS-core using the three conditions. Again, our weight vector
will be the computational power.

Theorem 2.5.2 (Emptiness of DMS-CS-core). Let v be a partition function of a coalitional game with
coalition structures and let p be a weight vector such that ∀i ∈ I : pi <

1
2 . If v is constant-sum (1), nonlinear

with respect to p (2) and monotonic (3), then for every coalition structure the DMS-CS-core is empty.

Proof. Let v be a partition function as described in the theorem. Again we assume that M = {1, . . . , n}
and for every S ∈ CS(M) :

∑
A∈S vS(A) = 1 without loss of generality. Let S ∈ CS(M) be the coalition

structure. We consider an imputation x associated with S and show that there is a D ∈ DMS(S) such that
vSC (D) > x(D). We will consider two cases for the number of coalitions:

• |S| < 2
We either have one or two coalitions. This is similar to the situation in the proof of theorem 2.4.2, where
we first had the grand coalition M and then considered a situation with two coalitions: D = M \ {n}
and {n}. Since the conditions of constant-sum and nonlinearity still apply, we can use the result of the
proof of 2.4.2:

vSC (D) > x(D).

All we need to verify, is that D ∈ DMS(S). If |S| = 1, then D is a subset of M which has chosen to
split. If |S| = 2, then two subsets have chosen to merge into D. In both cases D ∈ DMS(S). Since
vSC (D) > x(D) and x was chosen arbitrarily, there exist no imputation x which is DMS-stable.

• |S| ≥ 3
Let S be a partition of m ≥ 3 coalitions. We will order these coalitions such that the coalition with
the lowest payoff will become the first coalition and vice versa: vs(C1) ≤ vs(C2) ≤ · · · ≤ vs(Cm) for
S = {C1, . . . , Cm}. One can already suspect that coalitions C1 and C2 will be used for monotonicity.

Let D = C1 ∪ C2. Because D is a merge of two coalitions we know that D ∈ DMS(S). All that is left
to prove is vSC (D) > x(D).

We know that the payoff in the current partition S is the same as the reward for the entire coalition as
defined by the imputation x. In short x(C) = vs(C) and so

x(D) = x(C1) + x(C2)

= vs(C1) + vs(C2)

< vSC (D).

The last inequality follows from the monotonicity of v. We have found our coalition D ∈ DMS(S) such
that vSC (D) > x(D).

In the first case we know that there is either a merge or a split, but both result in a higher payoff. For
|S| ≥ 3, the accumulated payoff of the two lowest coalitions C1 and C2 increases when they merge. In both
cases there exists no imputation which is DMS-stable. The DMS-CS-core is therefore empty.

3 DELAY: THE KEY PARAMETER 14

From this theorem follows that under the given conditions on v there will always be a split or merge that
will result in a higher payoff. This means that it will always be better for some miners to switch pools, never
achieving an equilibrium in this kind of Miner Network.

3 Delay: the key parameter

This isn’t the end of the proof of the emptiness of the core. Up to now we have imposed conditions on our
payoff function v in order to prove the emptiness of the CS- and DMS-CS-core. However, we can’t always be
certain these conditions apply. We need a more general approach.

This is where the delay within a pool (d) comes into play. For certain constrains on d the conditions of
3.2.4 will be satisfied. That is, we will need to find the boundarie(s) for this delay: d < min{d1, d2}. If d
meets this requirement, then we will see that the partition function of a coalitional game C = 〈M,P,D, d, β〉
is constant-sum, monotonic and nonlinear with respect to P (our weight vector). From now on, we consider
the share of a miner in the network as our partition function, γC = vS(C), which we want to satisfy the
beforementioned conditions. As follows from theorem 2.5.2, the DMS-CS-core of every coalition structure
will be empty.

3.1 Boundary d1

Before we head on to the first boundary of d, we first need to define a new denotation. We define αs(C) as the
probability that a block that was mined by one of the miners of C will also end up in the longest chain. This
resembles the definition of γ(Γ)C (the pools share in the longest chain), which becomes even more evident in
the following equivalence:

β · γ(Γ)C = λ · p(C) · αs(C). (4)

On the left hand side we have the number of blocks mined per second (β) times the pools share in the
longest chain (γ(Γ)C). Together this is the expected number of blocks mined by the miners of pool C, which
will be added to the longest chain.

The right hand side is another way to calculate the same thing. The collective computational power of the
coalition (p(C)) is multiplied by the expected number of blocks mined by the entire network (per second)
(λ) and the probability that a block that was mined by C will end up in the longest chain (αs(C)).

We will now consider the case of d = 0. This means there is no delay between the miners and their
poolmanagers, so every pool is in communication similar to a solo miner. They act as one individual.
Intuitively, this means that if the computational power of a coalition Ci greater is than the one of Cj , then
chances are more likely that a block, which is added to the longest chain, is mined by one of the members of
Ci. They have more computational power and can therefore mine faster. For this reason,

p(Ci) > p(Cj) −→ αs(Ci) > αs(Cj). (5)

In consequence we can define d1 as the maximal delay for which (5) applies. This is in accordance with our
results in figure 3a. Even when the difference in computational power in our Two Miner Network is small,
the share of γ1 becomes quickly larger when D > 0. We can use this information together with equation (4)
to prove the following lemma.

Lemma 3.1.1. Let C = 〈M,P,D, d, β〉 be a miner coalitional game with coaliton structures. Assume that
D,β > 0 and ∀i : pi ∈ (0, 1) (so no miners are left out or too dominant). For every S ∈ CS(M) and
∀Ci, Cj ∈ S, set d1 as the maximal delay for which p(Ci) > p(Cj) implies α(Ci) > α(Cj).

If d < d1, then ∀S ∈ CS(M) and ∀Ci, Cj ∈ S:

if p(Ci) > p(Cj), then
vs(Ci)

p(Ci)
>
vs(Cj)

p(Cj)
. (6)

Proof. We fix M,P,D and β. Because of equivalence (4) we know that λ is also fixed. Let the delay
within pools be bounded by 0 < d < d1. Assume that for i, j ∈ M we have p(Ci) > p(Cj). Then also

3 DELAY: THE KEY PARAMETER 15

αs(Ci) > αs(Cj). By rewriting equation (4) we obtain

γC
p(C)

=
λ

β
αs(C).

Remember that vs(Ck) = γ(Γ)Ck . The payoff of a coalition is equal to its share in the network. Consequently,
we get:

vs(Ci)

p(Ci)
=

γCi
p(Ci)

=
λ

β
αs(Ci) >

λ

β
αs(Ci) =

vs(Cj)

p(Cj)
.

If d is larger than d1, then it is possible that a larger computational power of a coalition doesn’t always
result in a higher chance to enlarge the blockchain. In other words: there is no certainty that switching to
another coalition with more computational power will lead to a larger payoff. Therefore, d1 is one of the
boundaries of d.

3.2 Boundary d2

The inequality shown by (6) will be useful for lemma 3.2.1, where we will observe different miner networks.
Both networks have a within-delay of zero. This unusual value for d is chosen, because it is the basic case
which we use to define the conditions for d1 and d2. For example, before we defined d1 in lemma 3.1.1 we
started reasoning starting from the case of d = 0 and from this situation we concluded that in order to prove
(6), it was necessary to first show that p(Ci) > p(Cj) → αs(Ci) > αs(Cj). Hence, we defined d1 to satisfy
this condition. The next boundary is defined likewise, but before we head on to this, let’s first discuss the
meaning of lemma 3.2.1, derived from Lewenberg et al. [4].

Lemma 3.2.1. Let Γk = 〈M,S, P,D, 0, λk〉(k = 1, 2) be two miner networks, with

λ1 > λ2, S = {C1, . . . , Cm} (m > 2), p(C1) ≤ · · · ≤ p(Cm) and p(C1) < p(Cm).

Then, γ(Γ1)C1 + γ(Γ1)C2 < γ(Γ2)C1 + γ(Γ2)C2 .

Proof. For the proof see [4].

Remark 3.2.2. Since p(C1) < p(Cm), we know that there is no uniform distribution. Though, we still don’t
know if p(C1) = p(C2) or p(C1) < p(C2). Furthermore, λ1 > λ2, so the first Miner Network mines more
blocks per second than the other network. The result of the lemma, however, is the complete opposite: the
share of the two lowest coalitions in the first network are less than the share of the same coalitions in the less
achieving second network. One would expect a higher payoff when a network is more efficient. Apparently,
the more succesful a network is, the less the lower coalitions obtain.

Since the proof is omitted, we will explain the result of the lemma by heuristic reasoning. When more
blocks are mined, it is also more likely that more blocks will be added to the longest chain. Being the
coalitions with the lowest computational power, C1 and C2 don’t have much chance that one of their miners
will add a block to the longest chain.

So despite the higher number of blocks being mined, the chances of coalitions C1 and C2 mining a block,
which will added to the longest chain, are increasingly getting lower.

Now we are ready to define d2. Let C1, C2 be the coalitions with the lowest computational power. From
lemma 3.1.1 we know that if p(Ci) > p(Cj), then vs(Ci) > vs(Cj). Since ∀i ∈ M : p(Ci) ≥ p(C1), we can
conclude that vs(C2) ≥ vs(C1). We define d2 as the maximal positive d for which vs(C1) + vs(C1) < vSC (C),
where C = C1 ∪ C2.

The definition for d2 seems like a typo, but remember that vs(C2) ≥ vs(C1). Therefore, vs(C1) acts as a
lower bound. We will use d2 to prove that monotonicity is present in a network bounded by this within-delay.

3 DELAY: THE KEY PARAMETER 16

Lemma 3.2.3. Let C = 〈M,P,D, d, β〉 be as in lemma 3.1.1. We define d2 as the maximal positive d for
which vs(C1) + vs(C1) < vSC (C) for every coalition structure S ∈ CS(M). Assume that d < d2. Then for
every S ∈ CS(M) with S = {C1, . . . , Cm} (m > 2) and p(C1) ≤ · · · ≤ p(Cm) we have vs(C1) + vs(C2) <
vSC (C) for C = C1 ∪ C2.

Proof. We fix M,P,D and β. Let S = {C1, C2, . . . , Cm} be the coalitional structure as defined in the lemma.
We set C = C1 ∪ C2 and use SC = {C,C3, C4, . . . , Cm} to denote the new coalitional structure. We must
now show that after this merge the payoff increases; vs(C1) + vs(C2) < vSC (C).

Let’s consider two events:

• p(C1) = p(Cm)
In this case we use the equality (4). Since p(C1) = p(Cm) and p(C1) ≤ · · · ≤ p(Cm), it is clear that
p(C1) = p(C2). Therefore

β · γc1 = λ · p(C1) · αs(C1)

= λ · p(C2) · αs(C2)

= β · γc2 ,

and so γc1 = γc2 . We know that d2 is the maximal positive d for which vs(C1) + vs(C1) < vSC (C).
Thus, we can conclude

vs(C1) + vs(C2) = γc1 + γc2

= γc1 + γc1

= vs(C1) + vs(C1) < vSC (C).

• p(C1) < p(Cm)
For this case we need the result of lemma 3.2.1. Let Γ1 = 〈M,S, P,D, d, λ1〉, Γ2 = 〈M,S, P,D, d, λ2〉
be the Miner Networks and Γ2,SC = 〈M,SC , P,D, d, λ2〉 the second Miner Network after the merge.
Let λ1 > λ2 > 0 such that it holds that β(Γ1) = β(Γ2,SC) = β. This means the second network was
updated such that the desired rate of block addition to the longest chain was reached.

Still, λ1 > λ2. This follows from the higher efficiency of the network Γ2,SC than Γ1, since Γ2,SC is the
result of a merge. This shift has caused less competition, hence a more concentrated network arose.

Now we know that λ1 > λ2, p(C1) ≤ · · · ≤ p(Cm) and p(C1) < p(Cm) as assumed. All the conditions
for lemma 3.2.1 are satisfied and so we can use the result for Γ1 and Γ2:

vs(C1) + vs(C2) = γ(Γ1)C1 + γ(Γ1)C2

< γ(Γ2)C1 + γ(Γ2)C2

< γ(Γ2,SC)C = vSC (C).

The last inequality is justified by the loss of conflict. When two pools merge, there will be less compe-
tition. In addition, they have more hash power, so the new partition of SC will be beneficial for both
C1 and C2.

This lemma shows that if d is bounded by some d2, then every miner coalitional game with coalition
structures (for which D,β > 0) will be monotonic. We recognize this as one of the conditions leading to an
empty core. That’s why the next theorem doesn’t come as a surprise:

Theorem 3.2.4. Let C = 〈M,P,D, d, β〉 be as in lemma 3.1.1. If d < min{d1, d2}, then the partition
function of C is constant-sum, monotonic and nonlinear with respect to P .

Proof. Let d < min{d1, d2}. We will prove the conditions piece by piece.

• Constant-sum: for the partition function v we have for every S ∈ CS(M) that
∑
C∈S vs(C) =∑

C∈S x(C) = 1.

3 DELAY: THE KEY PARAMETER 17

• Monotonicity: follows from lemma 3.2.3, because d < d2.

• Nonlinear with respect to P : let S ∈ SC(M) be a coalition structure with maxC∈S p(C) > minC∈S p(C).
Furthermore, let Ci ∈ arg maxC∈S p(C) be the coalition with the highest computational power. All
that is left to prove is that vs(Ci) > p(Ci).

Lemma 3.1.1 ensures that ∀C ∈ S : vs(C)
p(C) <

vs(Ci)
p(Ci)

. By using this we obtain:

∑
C∈S

vs(C) =
∑
C∈S

p(C) · vs(C)

p(C)

<
∑
C∈S

p(C) · vs(Ci)
p(Ci)

=
vs(Ci)

p(Ci)

∑
C∈S

p(C)

=
vs(Ci)

p(Ci)
.

Since v is constant-sum with
∑
C∈S vs(C) = 1, we can conclude:

vs(Ci)

p(Ci)
> 1 thus vs(Ci) > p(Ci).

This theorem states that for every miner coalition game it is proven that if the delay between miners within
each pool is low enough, the partition function of C has three characteristics: constant-sum, monotonic and
nonlinear with respect to P . Due to these three conditions we can safely conclude that the D-CS-core is
empty for every coalition structure:

Corollary 3.2.5. Let C = 〈M,P,D, d, β〉 be as in the theorem 3.2.4. If for all i : pi ∈ (0, 12), then
∀S ∈ CS(M) the DMS-CS-core is empty.

Conclusion

In this thesis we have discussed the basics of the Bitcoin Network and modified it to a cooperative game with
coalitional structures. The payoff was divided proportionally according to the computational contribution of
each miner. We have examined the importance of three conditions on a Miner Network: constant-sum, non-
linearity and monotonicity. The claims of constant-sum and nonlinearity were neccessary in order to prove
the emptiness of the CS-core. Still, not every coalition can deviate from the current coalitional structure.
That’s why monotonicity was required. We showed that the payoff will also increase for a coalition in the
case of a merge or split. Thus, the DMS-CS-core is also empty. This means that under the aforementioned
conditions on our payoff function v, there isn’t an imputation which will keep every miner content with his
or her share.

As it turns out there is one factor which ultimately controls the emptiness of the core: the delay within
pools. Corollary 3.2.5 says if d is low enough, then the three conditions will also be met. Thus the D-CS-
core will again be empty. A split means that the collective computational power of the seperated coalition
apparanlty is strong enough to hold on his own. A merge of two coalitions will result in a more concentrated
network, with less competition and more hash power. With a low delay within coalitions the quick communi-
cation between miners within a pool ensures that it will always be beneficial for at least one miner to switch
pools or create a new one. Therefore, there exist no cooperative miner game with coalition structures that
doesn’t lead to an empty D-CS-core.

A PROOF-OF-WORK 18

A Proof-of-work

Let us consider the network as a block tree. The longest chain in this tree is called the block chain. It is a
shared data structure, so every miner has the possibility to add a block to the chain. The chain contains all
the verified transactions of bitcoins.

At one end is the first block (the genesis block), which was created together with the Bitcoin network.
Every other block is (in)directly linked to the genesis block and contains a set of recent transactions it
approves. Furthermore, each block has a header. This contains a pointer (which indicates the preceding
block), a compressed representation of the set of transactions and a nonce. We will now introduce and clarify
a few concepts, meanwhile explaining the process of mining step-by-step:

Mining is the process of adding a new block to the block chain. If the block becomes part of the longest
chain, then the miner will be rewarded with bitcoins. The header of each block contains a nonce. This is a
byte string. When the nonce is inserted into a cryptographic hashfunction, it will produce a hash (a large
number of a fixed length). The value of the nonce determines with how many zero’s the hash begins. This
is important because the hash of each block has to be lower than a given threshold. When the right nonce
is found, the block becomes part of the block chain and all the transactions included in the block become
valid. The nonce is part of the block, so other miners can verify if the creator really solved the problem. The
resulted hash is called the proof-of-work and will be used as the block’s identity (which is needed to mine
the next block). [[2] p2,3]

Since, cryptographic hashes are one-way functions, a miner can only find a desired nonce by arbitrarily
calculating the hash of a given block for all possible nonces. The same data will always produce the same
hash and a small change in the data will result in a completely different hash. This important quality of the
cryptographic hash functions is called collision resistance. This means that different input values will never
obtain the same hash output. Therefore, two miners will never be able to produce exactly the same hash.

Retargeting means adjusting the threshold to stabilize the rate of block addition to the longest chain.
A lower threshold reduces the number of nonces which meet the requirement of leading-zero bits. Therefore,
the computational burden on the miners will increase, but they must not be disheartened. The goal of the
network is that every ten minutes a single block is mined by the entire network. In order to maintain this
design the threshold t is adjusted everytime 2016 blocks have been mined.

In conclusion, miners continuously try to solve cryptographic puzzles in the form of hash computation.
They use the information provided by the header of the previous mined block to collectively determine the
new threshold t and then try to find a nonce which will result in a hash below this threshold. When such
a nonce is found, the proof-of-work is solved and other miners are able to verify if this nonce indeed does
provide a hash with the given number of leading-zero bits. The new block is added to the chain and miners
will use it’s header to find a new nonce. After 2016 mined blocks a new threshold t will be determined and
the mining continues.

B NOTATION OVERVIEW 19

B Notation overview

Notation Meaning

I = {1, . . . , n} The grand coalition.

v : 2I → R The payoff function.

x ∈ R|I| An imputation.

C ⊂ I A coalition.

S = {C1, . . . , Cm} The partition function of I into pools.

SC = {C}∪{{D \C} | D ∈ S, {D \C} 6= {∅}} The new partition after a creation of a new coalition C.

v(S,C) = vs(C)
The utility of a coalition C under the partition of other agents,
as given by S.

v(SC , C) = vSC (C)
The utility of a coalition C after split(s) and/or merge(s) result-
ing in a new coalitional structure SC .

D : CS(I)→ 2I The defection function.

M = {1, 2, . . . , n} The set of miners (and the grand coalition in this model).

P = {p1, p2, . . . , pn}, with
∑n
i=1 pi = 1.

Distribution of the computational power, where pi is the fraction
of the computational power of agent i compared to the other
agents.

D The delay in communication between pools.

d The delay in communication within a pool.

λ
The expected number of blocks mined by the netwerk (per sec-
ond).

Γ = 〈M,S, P,D, d, λ〉 A miner network.

β
The desired rate of block addition to the longest chain (per sec-
ond).

β(Γ)
The actual rate of block addition to the longest chain (per sec-
ond). Γ is the given miner network.

C = 〈M,P,D, d, β〉 A Miner Coalitional Game with Coalition Structures.

γi(Γ) = γi ∈ [0, 1]
The probability that a block belonging to the longest chain was
mined by miner i in a network Γ.

w ∈ R|I| A weight vector.

CS-core {x ∈ R|M | | xi ≥ 0,∀C ⊂ I : x(C) ≥ vSC (C)}.

DMS-CS-core {x ∈ R|M | | xi ≥ 0,∀C ⊂ I : x(C) ≥ vSC (C), C ∈ DMS}.

αs(C)
The probability that a block that was mined by one of the miners
of C will also end up in the longest chain.

REFERENCES I

References

[1] J. Chokun. Who Accepts Bitcoins As Payment? List of Companies, Stores, Shops, 6 2016. URL:
https://99bitcoins.com/who-accepts-bitcoins-payment-companies-stores-take-bitcoins/.

[2] C. Decker and R. Wattenhofer. Information Propagation in the Bitcoin Network. 13-th IEEE International
Conference on Peer-to-Peer Computing.

[3] B. Kelly. The Bitcoin Big Bang: How alternative currencies are about to change the world. John Wiley
& Sons, 1 edition, 1 2015. ISBN 978-1-118-96366-1.

[4] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. Rosenschein. Bitcoin Mining Pools: a
cooperative game theoretic analysis. In Bordini, Elkind, Weiss, and Yolum, editors, Proceedings of the
14th International Conference on Autonomous Agents and Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 5 2015.

[5] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency Tech-
nologies: A Comprehensive Introduction. Princeton University Press, 41 William St # 1, Princeton, NJ
08540, USA, 2016. ISBN 9780691171692.

[6] Y. Somplinsky and A. Zohar. Secure high-rate transaction processing in Bitcoin. In T. O. Rainer Bhme,
editor, Financial Cryptography and Data Security. 19th International Conference, Springer, 1 2015.

[7] A. Zohar. Bitcoin: Under the hood. Communications of the ACM, 58(9):104–113, 9 2015.

	The Bitcoin Network
	Public ledger
	Block Chain
	Conflicting histories
	Attacks
	Pools
	(Dis)advantages

	Miner Coalitional Game
	Notation
	The rate of block addition
	Pools share
	CS-core
	DMS-CS-core

	Delay: the key parameter
	Boundary d1
	Boundary d2

	Proof-of-work
	Notation overview
	References

