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Abstract

The behaviour of surfacewaves on shallow water is described by nonlinear dif-
ferential equations. Putting a constraint on these equation, such that they only
describe waves moving in a certain direction, one obtains the KdV-equation. This
nonlinear partial differential equation has the surprising property that it admits
stable solutions. In these solutions dispersive and nonlinear effects balance out, cre-
ating what is known as a soliton. For certain initial conditions the KdV-equation
can be solved analytically by using the inverse scattering transform. This method
shows that, for a certain initial condition, there is a one-to-one correspondence
between the solitons that emerge from this condition, and the eigenvalues of the
time-independent Schrodinger equation, where the potential is given by this initial
condition. Furthermore, it shows that when co-propagating solitons overtake each
other they maintain their shape and velocity, but obtain a phase difference. A solu-
tion for the system where waves are not constraint to a single direction has not been
found yet. However using both numerical and analytic methods it has been shown
that for both reflection at a vertical wall and head on collision between solitons, a
phaselag occurs. Here experiments on reflection and head-on collisions of solitons
are compared to these analytic and numerical results to show that indeed a phaselag
occurs at reflection.
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1 Introduction

In 1834 the Scottish engineer John Scott Russel, spotted an interesting phenomenon in
a canal. Of which he gave the following account:

”I was observing the motion of a boat which was rapidly drawn along a narrow chan-
nel by a pair of horses, when the boat suddenly stopped—not so the mass of water in
the channel which it had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the channel apparently without
change of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original figure
some thirty feet long and a foot to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that singular
and beautiful phenomenon which I have called the Wave of Translation.”

What Russel observed is now known as a soliton; a stable solitary wave, with a few
interesting properties. They can travel over long distances without changing much in
shape, bigger waves travel faster than smaller waves and when a soliton overtakes another
one they emerge unchanged. In 1895 Korteweg and De Vries derived an equation for
waves in shallow water, known as the KdV-Equation:

ut − 6uux + uxxx = 0. (1)

Even though this equation is nonlinear, it can be solved. From this many of the things
John Scott Russel discovered about them can be shown analytically. One of the things
that follows from this analysis is that when a soliton overtakes a smaller soliton, they
indeed retain their shape and speed. However, a small phase-shift occurs; the bigger
soliton ends up a bit further than if it hadn’t met the smaller soliton, while the smaller
soliton lags a bit behind. We could now ask what happens when two solitons interact by a
head-on collision. This however is much harder to do analytically. The KdV-equation is
designed to describe waves moving from left to right or vice-versa, and can therefore not
describe waves moving in opposite directions in the same system. In this thesis I will look
at the derivation of the KDV-equation (1), to show why it is unidirectional, and which
equation can describe a system with solitons moving in opposite directions. Furthermore,
I will describe the analytic solution of the KdV-equation, and do experiments on soliton
collisions and reflections at a vertical wall, to see if a phaselag occurs here as well.
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2 Derivation KdV-equation

This section is mostly based on Whitham Linear and Nonlinear Waves chapter 13 [1]
Firstly we assume to have an incompressible fluid in a constant gravitational field.

Furthermore, we assume that the mass density ρ is constant. Under these conditions
our system is described by the following equations:

~∇ · ~u = 0 (2)

D~u

Dt
=
∂~u

∂t
+ (~u · ~∇)~u = −1

ρ
~∇p− gĵ. (3)

If we assume the flow to be irrotational, then we can define a potential ϕ such that
~u = ~∇ϕ. We can write equation (3) in terms of ϕ:

~∇ϕ̇+
1

2
~∇(~∇ϕ)2 = −1

ρ
~∇p− ~∇(gy). (4)

This can be integrated to obtain Bernoulli’s Law

p− p0
ρ

= −ϕt −
1

2
(~∇ϕ)2 − gy. (5)

Now we define our water surface as a function of time by:

f(x1, x2, y, t) = 0. (6)

Since the fluid cannot cross this surface line by definition, the velocity of the fluid, normal
to the surface, must be equal to the velocity of the surface, normal to itself. The normal
velocity of the surface is given by:

−ft√
(f2x1 + f2x2 + f2y )

, (7)

while the velocity of the fluid, normal to the surface, is equal to:

u1fx1 + u2fx2 + vfy√
(f2x1 + f2x2 + f2y )

. (8)

Here we use u1 and u2 for the horizontal velocities, and v for the vertical velocity. The
condition that equations (7) and (8) are equal implies:

Df

Dt
= 0. (9)

Now we will introduce the function η to describe the surface as a function of x1 and
x2 such that:

f(x1.x2, y, t) ≡ η(x1, x2, t)− y. (10)
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Together with equation (9) we obtain the following condition:

Dη

Dt
= ηt + u1ηx1 + u2ηx2 = v. (11)

This gives a condition on the movement of the boundary, directly deduced from the
definition of the boundary. A second boundary condition can be deduced from equation
(4), i.e. from the fluid mechanics of the system.

At the boundary the pressure can be assumed to be equal to the air pressure p0, for
differences in the air pressure due to the motion of our surface are negligible, assuming
that there are no external factors influencing the air pressure. So assuming p = p0 we
get the following equations on the boundary(surface):

ηt + ϕx1ηx1 + ϕx2ηx2 = ϕy

ϕt +
1

2
(ϕ2

x1 + ϕ2
x2 + ϕ2

y) + gη = 0.
(12)

These two equations give a single boundary condition on the surface. The reason we
need two equations for the boundary condition, instead of one, is because the boundary
itself is not fixed. Another boundary in our system is the bottom, here the same formula
can be used, with y = −h0(x1, x2). Assuming the bottom is fixed in time, the boundary
condition is given by:

ϕx1hx1 + ϕx2hx2 + ϕy = 0. (13)

When the bottom is flat h0(x1, x2) is a constant, and the boundary condition sim-
plifies to:

ϕy = 0. (14)

2.1 Linearisation

If we assume the water to be at rest, and add small perturbations, we can investigate
how the equations behave up to first-order. The boundary conditions derived in the
preceding section then become:

ηt = ϕy, ϕt + gη = 0. (15)

Decoupling y and η by applying the boundary conditions to y = 0 instead of y = η
gives the following system of equations:

ϕx1x1 + ϕx2x2 + ϕyy = 0, −h0 < y < 0

ϕtt + gϕy = 0, y = 0

ϕy + h0x1ϕx1 + h0x2ϕx2 = 0, y = −h0.
(16)
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This system can be solved when initial conditions are added. The surface is then
given by:

η(x1, x2, t) = −1

g
ϕt(x1, x2, 0, t). (17)

We can determine the dispersion relation of the linearised system. Waves will prop-
agate horizontally with amplitude dependent on the depth. The elementary sinusoidal
solutions take the form:

η = Aei~κ·~x−iωt, ϕ = Y (y)ei~κ·~x−iωt. (18)

When we put this expression for ϕ into the Laplace equation, it gives the following
condition on Y :

Yyy − κ2Y = 0, (19)

therefore Y = Cei|κ|y +De−i|κ|y. Combining this with the condition on the bottom, i.e.
Yy = 0 on y = −h0, gives:

Y = C cosh(|κ|(h0 + y)).

From equation (17) it follows that:

A =
iω

g
Y (0).

So we can write Y in terms of the amplitude A of η as:

Y = − igA
ω

cosh |κ|(h0 + y)

cosh |κ|h0
. (20)

Combining this with the condition on y = 0, (16) gives the dispersion relation:

ω2 = g|κ| tanh |κ|h0. (21)

Thus when a
h0

is small, with a the typical amplitude of the wave, we have the dispersion

relation found above. When |κ|h0 is very small, this relation is approximated by ω2 =
gh0κ

2, which is the dispersion relation of the normal wave equation: ηtt − c20ηxx = 0.
We can reach this equation in two ways. The first way is linearising the equations

first, then finding the dispersion relation, and then taking the first order term in this

relation. The other way starts with stating that
h20
l2

is small and then linearising the
result by stating: a

h0
is small.

The second approach goes as follows. We have the equations:

~∇ · ~u = 0 (22)

D~u

Dt
=
∂~u

∂t
+ (~u · ~∇)~u = −1

ρ
~∇p− gĵ. (23)
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If we assume Dv
Dt = vt + uvx + vvy = 0, which means that we assume the vertical speed

to be constant, the following relation for the pressure is obtained:

−1

ρ

∂p

∂y
− g = 0. (24)

Integration w.r.t. y gives:
p− p0 = ρg(η − y). (25)

Then equation (23) becomes:

ut + uux + vuy = −gηx. (26)

Now the only term that depends on y is vuy therefore if uy = 0 it stays this way. So
assuming this we get:

ut + uux + gηx = 0. (27)

When we integrate ~∇u = 0 from −h0 to y = η(x) we get:

0 =

η(x)∫
−h0

ux + vydy =
d

dx

η(x)∫
−h0

udy + [v]
η(x)
−h0 − [u]η(x)ηx. (28)

Using v = 0 on the bottom and equation (11) this becomes:

∂

∂x
(h0 + η) + ηt = 0. (29)

Writing h = h0 + η we then get two equations:

ut + uux + gηx = 0

ht + (hu)x = 0.
(30)

Linearising these equations gives us:

utt + gηxt = 0 (31)

ηtx + h0uxt = 0. (32)

If we multiply the second equation by g and subtract it from the first one, we find the
wave equation for η.

ηtt = gh0ηxx. (33)

To get these equations we estimated Dv
Dt = 0. The error this gives in the pressure

can be estimated by vtρh0. Furthermore ~∇u = 0 implies that v is approximately: h0ux,
so the error in equation (27) is of order:

−px
ρut
≈ h20uxxt

ut
≈ h20
l2
.
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Earlier we found the dispersion relation

ω2 = gκ tanhκh0

by assuming small amplitudes. Assuming
h20
l2
<< 1 then gives the dispersion relation

ω2 = gh0κ
2, which agrees with equation (33). Schematically this looks like this:

~∇ · ~u, D~u
Dt = ∂~u

∂t + (~u · ~∇)~u = −1
ρ
~∇p− gĵ ω2 = gκ tanhκh0

ut + uux + gηx = 0, ht + (hu)x = 0 ηtt = gh0ηxx

a
h0
<<1

h20
l2
<<1

h20
l2
<<1

a
h0
<<1

2.2 Higher order expressions

Now we can use a more formal approach to find equation corresponding to higher order

terms in
h20
l2

and a
h0

. We start out by normalizing the variables to be:

x′ = lx, Y ′ = h0Y, t′ =
lt

c0

η′ = aη, ϕ′ =
glaϕ

c0
,

here the originial variables are primed. The Laplace equation in our new variables is:

h20
l2
ϕxx + ϕY Y = 0 (34)

If we assume ϕx to be approximately independent of Y , then we can introduce a
series expansion for ϕ of the form:

ϕ =
∞∑
0

Y nfn(x, t).

The Laplace equation then implies:
h20
l2
∂2mϕ
∂x2m

= (−1)m ∂2mϕ
∂Y 2m , thus for even powers in

the expansion we get:
h20
l2
∂2mf0
∂x2m

= (−1)mf2m2m!,

and for odd powers:
h20
l2
∂2mf1
∂x2m

= (−1)mf2m+12m!.

If we use the boundary condition on the bottom, i.e. ϕY = 0 on Y = 0, we see that

f1 = 0, and thus all the odd terms are zero. Writing β =
h20
l2

, and using the relations
found above we get the following expression for the expansion of ϕ:

ϕ =
∞∑
0

(−1)m
Y 2m

(2m)!

∂2mf0
∂x2m

βm. (35)
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If we write α = a
h0

, the boundary conditions at the surface (12), under the normalised
variables, become:

ηt + αϕxηx −
1

β
ϕY = 0

η + ηt +
1

2
αϕ2

x +
1

2

α

β
ϕ2
Y = 0

Y = 1 + αη. (36)

If we substitute the expression for ϕ in these boundary conditions (36) we get:

ηt + ((1 + αη)fx)x − (
1

6
(1 + αη)3fxxxx +

1

2
α(1 + αη)2ηxfxxx)β +O(β2) = 0

η + ft +
1

2
αf2x −

1

2
(1 + αη)2(fxxt + αfxfxxx − αf2xx)β +O(β2) = 0.

We can drop all terms in β and differentiate the second equation with respect to x,
to obtain the shallow water equations derived earlier:

ηt + ((1 + αη)w)x = 0

wt + αwwx + ηx = 0, w = fx.

A higher order approximation can be obtained by keeping powers of β but dropping
terms of order αβ. This gives:

ηt + (1 + αη)w)x −
1

6
βwxxx+O(αβ, β2)

wt + αwwx + ηx −
1

2
βwxxt+O(αβ, β2), w = fx.

To get an expression in terms of η and u, instead of η and w, we expand ϕx to first
order in β to get:

ϕx = w − βY
2

2
wxx +O(β2).

Taking u = 1
1+αη

∫ 1+αη
0 ϕx, we obtain:

u = w − 1

6
βwxx +O(αβ, β2),

thus we can write:

w = u+
1

6
βuxx +O(αβ, β2).

Plugging this into the equations found above gives:

ηt + ((1 + αη)u)x +O(αβ, β2)

ut + αuux + ηx −
1

3
βuxxt +O(αβ, β2).

(37)
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The first equations in lowest order says: ux = −ηt +O(α, β). We can plug this into the
1
3βuxxt term, since any term of O(α, β) becomes a term of order β2 or αβ. Using this,
equation (37) is equal to:

ηt + ((1 + αη)u)x +O(αβ, β2) = 0

ut + αuux + ηx +
1

3
βηxtt +O(αβ, β2) = 0,

(38)

which are the Bousinesq equations. Note that, due to ux = −ηt + O(α, β), this is also
equivalent to:

ηt + ((1 + αη)u)x +O(αβ, β2) = 0

ut + αuux + ηx +
1

3
βηxxx +O(αβ, β2) = 0.

(39)

Using the approximation: α << 1 and eliminating u this becomes:

ηtt − ηxx −
1

3
βηxxxx = 0.

In terms of the non-normalised variables, this gives us the following dispersion relation:

ω2 = c20κ
2 − 1

3
c20h

2
0κ

4

Which agrees with the dispersion relation ω2 = gκ tanhκh0 found earlier, up to terms

of order
h20
l2

Now we can derive the KdV-equation in the same way, by limiting the equation to
waves moving from left to right. If we look at the shallow water equation defined above,
and neglect the terms of order α we have:

ηt + wx = 0

wt + ηx = 0, w = fx,
(40)

which gives, just as earlier, the wave equation: ηtt = ηxx. Restricted to a single direction
this becomes: ηt = −ηx, which implies η = w.

If we look for a correction to first order in α and β we can write:

w = η + αA+ βB +O(α2, β2).

Plugging this into equation 40 gives:

ηt + ηx + α(Ax + 2ηηx) + β(Bx −
1

6
ηxxx) +O(α2, β2) = 0

ηt + ηx + α(At + ηηx) + β(Bt −
1

2
ηxxt) +O(α2, β2) = 0.
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Now for terms of order α or β we can use: ηt = −ηx +O(α, β). Subtracting the second
from the first equation and using the identity given above we obtain:

α(2Ax + ηηx) + β(2Bx −
2

3
ηxxx).

From this follows:

A = −1

4
η2, B =

1

3
ηxx.

Plugging this into either of the two equations above gives:

ηt + (1 +
3

2
αη)ηx +

1

6
βηxxx = 0. (41)

This is the normalised version of the KdV-equation. A big difference between the KdV-
equation and the Boussinesq equation, is that the Boussinesq equation has to be solved
for both η and u, whereas the KdV-equation only has to be solved for η. This is the
case, since the horizontal velocity, u, has been chosen to be in a fixed direction and to be
in agreement with η. By doing so we made the KdV-equation unidirectional. However,
this also means that the KdV-equation only describes systems where the initial condition
on both the velocity, u, and the surface, η, are in agreement. This largely limits the
number of situations the KdV-equation can be applied to. However, due to the fact that
analytic solutions are possible, it is still a very useful equation, which is able to predict
behaviour observed in solitons, as shown in the following section:
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3 Solution of the KdV-equation

This section is mostly based on M. Tabor’s Chaos and integrability in nonlinear dynamics,
Chapter 7 [2] and Whithams’s Linear and Nonlinear Waves [1]

In the last section we derived the normalised version of the KdV-equation to be:

ηt + (1 +
3

2
αη)ηx +

1

6
βηxxx = 0.

We can define a new variable: u = 1 + 3
2αη (Here u does not stand for velocity!) and

replace t by t
6 . Under these changes the KdV-equation becomes:

ut − 6uux + uxxx = 0. (42)

For relatively nice waves, uxxx will be small. The equation above then simplifies to:
ut − 6uux. Using the characteristics method we can study this nonlinear equation. Say:
u(s) = u(x(s), t(s)), then us = uxxs + tsut, now take ts = 1 and xs = −6u, then us = 0.
From this it follows that:

u(s) = u0(x) (43)

t(s) = s (44)

x(s) = −6su0(x), (45)

where u0(x) = u(x, 0) is the initial condition. Now the characteristics s are straight
lines in the x, y-plane, with slopes proportional to u0. Therefore, if there is some kind
of height difference, the characteristics cross. This leads to a steepening of the wave
at the front. Which means that the term uxxx comes into play. For small amplitudes,
the equation linearises to: ut + uxxx. This is a wave equation with dispersion relation:
ω(κ) = κ3 which means that waves with a higher wavelength go faster. As a result waves
spread out. If for certain initial conditions these two effects balance out, a stable wave
appears, which travels faster than the surrounding waves. This wave is a soliton. We
can try to solve it by assuming a right-traveling wave solution: u(x, t) = f(x−ct) = f(z)
then:

fzzz − 6ffz − cfz = 0.

Integration with respect to z gives us:

fzz − 3f2 − cf + d = 0.

Multiplying by fz and integrating gives:

f2z = 2f3 + cf2 + 2df + e.

Using the following boundary conditions: f, fz, fzz → 0 for z →∞ we find d, e = 0 and
hence:

fz = f
√

2f + c.
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Dividing by the right side and integrating then gives:

z − z0 =

∫
df

f
√

2f + c
.

We can solve this integral using the following steps:
Firstly, split up the integral:

∫
df

f
√

2f + c
=

1

c

∫ √
2f + c

f
df − 1

c

∫
2√

2f + c

=
1

c

∫ √
2f + c

f
df − 2

c

√
2f + c.

Using the substitution: u =
√

2f + c we can solve the other integral:

1

c

∫ √
2f + c

f
df =

1

c

∫
2u2

u2 − c
du

=
2u

c
+

∫
2

u2 − c
=

2u

c
−

2 tanh−1( u√
c
)

√
c

.

Henceforth:

z − z0 = −
2 tanh−1(

√
2f+c√
c

)
√
c

,

and thus:

tanh2(

√
c

2
(z − z0)) = 1 +

2f

c

=⇒ f = − c
2

sech2(

√
c

2
(z − z0)).

So a solution for the KdV-equation is a sech2, which has a lump like shape. This is only
one family of solutions however, and since the KdV-equation is nonlinear we cannot use
linear combinations to find more solutions. There is however an elegant way to find more
complete solutions to this equation using the inverse scattering transform.

3.1 Inverse Scatterring Transform

The inverse scattering transform is a method to solve the KdV-equation for certain initial
values. The inverse scattering transform uses quantum mechanical principles to solve
an equation. It does this in the following way: Firstly, the initial wave shape u(x, 0) is
seen as a potential in the time-independent Schrödinger equation, then the scattering
data of that potential is calculated. This scattering data can be tranformed in a way
corresponding to the KdV-equation, and the new scattering data can be used to calculate
the corresponding potential u(x, t) in certain situations.
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A certain potential can support both bound and free states. Since u(x, 0) will be a
wave, we can assume that it is zero at its limits, and hence the bound states will refer to
’negative’ energy. The bound states will admit a discrete set of eigenvalues: λn = −k2n
corresponding to eigenfunctions: ψn(x). so:

ψn,xx − (u0(x) + k2n)ψn = 0. (46)

Since u0 goes to zero as x goes to ±∞, we need:

lim
x→±∞

ψn(x) ∼ e∓knx. (47)

When we multiply a eigenfunction ψn(x) by a constant, it is still an eigenfunction.
Therefore we can choose ψn(x) to be the eigenfunction, corresponding to the eigenvalue
−k2n, such that:

lim
x→∞

ψn(x) = e−knx.

We then define define the quantity cn as:

cn =

[ ∫ ∞
−∞

ψ2
ndx

]−1
(48)

For positive energies, the eigenvalues are a continuous spectrum with eigenvalues:
λ = k2, in the limit x→∞ we get the following solutions:

lim
x→∞

Ψ(x) = e−ikx + b(k)eikx, (49)

where e−ikx represents an incoming wave and b(k)eikx represents a reflected wave, with
b(k) the reflection coefficients as a function of k. In the other limit (x→ −∞) we get:

lim
x→−∞

Ψ(x) = a(k)e−ikx, (50)

the transmitted wave travelling to the left, with transmission coefficient: a(k)
Now we can define the following quantity:

B(ξ) =
N∑
n=1

cne
−knξ +

1

2π

∞∫
−∞

b(k)eikξdk, (51)

which combines the data for the bound states and the data for the scattering states.
Note that a(k)2 + b(k)2 = 1, therefore b(k) determines a(k) up to a phase-factor.

It is possible to determine an unknown potential u(x) when you have the corre-
sponding scattering data. This can be done by solving the Gelfand-Levitan-Marchenko1

equation for K:

1See appendix for a derivation
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K(x, y) +B(x+ y) +

∞∫
x

B(y + z)K(x, z)dz = 0. (52)

From this K, we can determine the corresponding potential u in the following way:

u(x) = −2
d

dx
K(x, x). (53)

In order to solve the KdV-equation we need to do two different things. Firstly, we need
to determine how the scattering data evolves under the KdV-equation. Secondly, we
need to solve equation (52).

We will start by figuring out what happens with the scattering data when we trans-
form it. The KdV-equation is given by:

ut − 6uux + uxxx = 0. (54)

Note that although the parameter t represents time in the KdV-equation, we shoud not
see this t as time in the Schrödinger equation, but more as a deformation parameter.
This means that we can apply a t dependence to the time independent eigenvalue λ and
wave function Ψ. So the time-independent Schrödinger equation then becomes:

Ψxx − (u(x, t)− λ(t))Ψ = 0 (55)

Now we can express u in terms of Ψ in the following way:

u =
Ψxx

Ψ
+ λ, (56)

(If Ψ = 0 then Ψxx = 0 as well) substituting this into the KdV-equation gives us(after
some manipulations):

Ψ2dλ

dt
+

∂

∂x
(ΨQx −ΨxQ) = 0, (57)

where Q is given by:
Q = Ψt + Ψxxx − 3(u+ λ)Ψx

.
Since we are looking at waves, we can assume: u → 0 when |x| → ∞, as we did

earlier. For the bound states ψn we then have:

∞∫
−∞

ψ2
ndx = c−1n > 0.

Therefore integrating (57) gives:

cn
dλ

dt
=

∞∫
−∞

∂

∂x
(ΨQx −ΨxQ)dx = 0. (58)
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From which we can conclude that λ is independent of t.
For the scattering states we can look at a certain eigenvalue λ and let it be indepen-

dent of t. So in both the bound and scattering states we find:

∂

∂x
(ΨQx − ψxQ) = 0, (59)

and thus:
Q ≡ Ψt + Ψxxx − 3(u+ λ)Ψx = CΨ, (60)

with C independent of x (but not of t).
We can write λ = µ2, (with µ = ikn for bound states). Our boundary conditions

state that for all t we have u = 0 and thus Ψ = Aeiµx when x → ∞. Furthermore, we
know that λ is independent of the parameter t. Using this and equation (60) we get:
C = −4iµ3. Plugging this value for C into (60) we obtain:

Ψxx + (µ2 − u)Ψ = 0 (61)

Ψt + Ψxxx − 3(u+ λ)Ψx + 4iµ3Ψ = 0. (62)

We want to use these equations to find out how the scattering data changes. We
already know that λt = 0, so that stays the same. For the bound states we have:

c−1n =
∞∫
−∞

ψ2
ndx and thus, using equation 62:

d

dt

∞∫
−∞

ψ2dx =

∞∫
−∞

2ψψtdx =

∞∫
−∞

(−2ψψxxx + 6(u+ µ2)ψxψ − 8iµ3ψ2)dx =

∞∫
−∞

(−2ψψxxx + 6µ2ψxψ + 6uψxψ)dx− 8iµ3
∞∫
−∞

ψ2dx

If we then use equation 61 to write uψ = ψxx + µ2ψ we get:

d

dt

∞∫
−∞

ψ2dx =

∞∫
−∞

(−2ψψxxx + 12µ2ψxψ + 6ψxxψx)dx− 8iµ3
∞∫
−∞

ψ2dx

=
[
− 2ψψxx + 4ψ2

x + 6µ2ψ2
]∞
−∞ − 8iu3

∞∫
−∞

ψ2dx = −8iµ3
∞∫
−∞

ψ2dx (63)

Since µ = ikn it follows that:

cn(t) = cn(0)e8k
3
nt (64)
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The reflection coefficient can be calculated in a similar way. We are looking for a
scattering state wave function at a time t: Ψ = f(k, t)e−ikx + g(k, t)eikx, x → ∞. If
we plug this into equation (62), with u = 0, for we are working in the limit: x → ∞,
then we get:

fte
−ikx + 8k3ife−ikx + gte

ikx = 0.

So:
f(k, t) = e−8ik

3t, g(k, t) = β(k),

which tells us that the reflection coefficient b(k, 0) changes as:

b(k, t) = b(k, 0)e8ik
3t. (65)

So now we know how kn, cn and b(k) change in time. To find the potential corre-
sponding to this data, we need to solve equation (52).

First we note that when a potential is reflectionless, equation 52 simplifies to:

K(x, y) = −
N∑
n=1

cn(0)e8k
3
nt−kn(x+y) −

N∑
n=1

cn(0)e8k
3
nt−kn(x)

∞∫
−∞

eknzK(z, y)dz. (66)

Now we may assume that the solution is of the form:

K(x, y) =
∑

pn(x, t)e−kny, (67)

i.e, the y-dependence in K(x, y) is the same as in B(x+ y). Writing gn = cn(0)e8k
3
nt−knx

we get the equation:

N∑
n=1

(
pn(x, t) + gn(x, t) +

N∑
m=1

∞∫
x

gn(z)pm(x)e−kmzdz
)
e−kny = 0. (68)

Since this holds for all values of y, we need:

pn(x, t) + gn(x, t) +
N∑
m=1

∞∫
x

gn(z)pm(x)e−kmzdz = 0, ∀n. (69)

We can see pn and gn as components of column vectors, by doing so we can write the
equation above as:

P (x)p(x) + g(x) = 0, (70)

where P (x) is the matrix given by

Pmn(x) = δmn +

∞∫
x

gm(z)e−knzdz.

Saying h is the row vector given by: hn = e−knx, we get
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K(x,x) = h(x)·p(x) = −h(x) · P−1(x)g(x).Since

d

dx
Pmn(x) = −gm(x)e−knx = −gm(x)hn(x), (71)

which is the matrix where the nth row is given by: gnh. From this it follows that P−1 dPdx
is the matrix where every element is given by:

(P−1
dP

dx
)mn = (P−1g)mhn, (72)

and therefore:

K(x, x) = Tr(P−1
dP

dx
) =

1

|P |
d

dx
|P |, (73)

with |P | the determinant of the matrix P .
So now we have:

u = −2
d

dx
K(x, x) = −2

d2

dx2
log(|P |). (74)

If we do this for n = 2 for example, we get the following matrix P.1 + c1(0)e
8k31t−2k1x

2k1

c1(0)e
8k31t−(k1+k2)x

k1+k2
c2(0)e

8k32t−(k1+k2)x

k1+k2
1 + c2(0)e

8k32t−2k2x

2k2


We can use this to determine what happens for reflectionless initial conditions, with two
bound states. Such an initial condition is: u(x, 0) = −6 sech2(x). The bound states are
then given by:

ψ1 =
1

4
sech2(x), k1 = 2 and c1(0) = 12 (75)

ψ2 =
1

2
tanh(x) sech(x), k2 = 1 and c2(0) = 6. (76)

By using equation 73 we get:

K(x, x; t) =
−12e64t−4x − 6e8t−2x − 6e72t−6x

1 + 3e64t−4x + 3e8t−2x + e72t−6x

=
−3(2e28t−x + e36t−3x + e−24t+x)

3 cosh(x− 28t) + cosh(3x− 36t)
,

and from (74):

u(x, t) = −12(3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

(3 cosh(x− 28t) + cosh(3x− 36t))2
. (77)
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Introducing the variables: x1 = x − 4k21t = x − 16t and x2 = x − 4k22t = x − 4t
transforms this into:

u(x, t) = − 12(3 + 4 cosh(2x1 + 24t) + cosh(4x1)

(3 cosh(x1 − 12t) + cosh(3x1 + 12t))2
. (78)

Taking the limit t→∞ then gives:

lim
t→∞

u(x, t) ≈ −32

((1/
√

3)e2x1 +
√

3e−2x1)2

=
−32

(e2x1−ln
√
3 + e−2x1+ln

√
3)2

= −8 sech2(2x1 + ln
√

3).

Doing the same for x2 gives:

lim
t→∞

u(x, t) = −2 sech2(x2 − ln
√

3).

Similarly, it can be shown that in the limit t→ ±∞ for either fixed x1 or x2, u(x, t)
behaves as:

lim
t→±∞

u(x, t) = −2 sech2(x2 ± ln
√

3)− 8 sech2(2x1 ∓ ln
√

3). (79)

This shows two waves that overtake each other at t = 0, and then continue on without
their shapes being changed. The only result of the interaction is the small phase shift
ln
√

3.
More generally, for any potential of the form u(x, 0) = V sech2 x, with N bound

states, with eigenvalues λn = −k2n, the solutions behave in the limits as:

lim
t→±∞

u(x, t) =

N∑
n=1

−2λ2n sech2(kn(x− 4k2nt− δn)), (80)

with the phase shift δn given by:

δn =
1

2kn
ln
{cn(0)

2kn

N−1∏
m=1

(kn − km
kn + km

)2}
.

This shows a train of solitons, with the biggest at the front and the smallest in the rear,
with the only effect of the interaction a small phase difference.

More generally, it can be shown that, for any initial condition, the number and
size of solitons that appear can be found by looking at the bound state eigenvalues of
the Schrödinger equation with the potential given by this initial condition. For initial
conditions with b(k) 6= 0 the solution will also contain a dispersive part that is not
a soliton, a solution for this has not been found yet. However, due to the dispersive
character of this part of the solution and the fact that solitons travel faster than the
small dispersive waves, for limt→∞ the solution is a train of solitary waves, corresponding
to the bound states only.
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4 Experiments

Earlier experiments on counter propagating solitary waves by W. Craig, P. Guyenne, J.
Hammack, D. Henderson and C. Sulem [3] and T. Maxworthy [4], showed that head-on
collisions between solitons are not fully elastic. The amplitude of the soliton is slightly
smaller after collision than before, furthermore a phase-lag occurs for both solitons. This
is in agreement with numerical results by Cooker, Weidman and Bale [5], W. Craig, P.
Guyenne, J. Hammack, D. Henderson and C. Sulem [3]. Due to the loss of amplitude and
thus speed of the solitons after collision, the definition of the phase-lag in this situation
is not immediately clear. The definition can be given in the following way. Let the path
of a soliton before the collision be given by: ct+ a and after by: c+t+ a+. Furthermore,
let τ be the time for which the variation of the following quantity is minimal:

V (t) =

∫
(x− C

M
)2ηdx (81)

Here C
M is the center of gravity of our system. Heuristically, this is the point where the

combined soliton is at its most peaked. Then the phase-lag is given by: (a− a+ + τ(c−
c+)).[3] Maxworthy [4] also did an experiment on soliton reflection at a vertical wall.
The value found here was in exact agreement with the analytical result found by H.
Power and A. T. Chwang [6]. I did similar experiments on both collisions and reflections
of solitons, to compare them to these results.

4.1 Experimental set-up

A watertank of 2.4 meters in length was used for the experiments. On the side of the
tank there was a container, with a slide-door, which could be used to release water into
the tank. Opening the slide door creates a train of solitary waves and some small extra
waves. Depending on the amount of water added to the system and the speed with
which the slide-door was opened, it is possible to create a single solitary wave with very
little noise. A camera was used to film the container, and MATLAB was used to analyse
the video; to get data on the shape and movement of the waves. This was done by
converting frames from the video to grayscale, and then selecting pixels above a certain
threshold value. After this all pixels that where not part of the wave were manually
deleted. The resulting image was the watersurface with some holes, these holes where
filled up by fitting a straightline between nearest known points of the watersurface.
Firstly, the experiment was carried out on a single solitary wave. Of many attempts, the
two with least noise where used to gather the data. From this data I firstly determined
whether the observed solitary wave behaved like a soliton, as predicted by the theory.
I then measured what happened at the reflection. This was done by determining the
trajectory of the soliton both before and after reflection, from this I determined point
of intersection. When there is no delay at reflection, this point should be at the exact
boundary of the tank. Finally, the experiment was carried out with two solitary waves,
this was done by refilling the container after the first wave was created and then releasing
the water again creating a second solitary wave, which then collided head-on with the
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Figure 1: Experimental set-up

reflected first soliton. The trajectory of these solitons was determined before and after
collision, similar to what has been done by W. Craig, P. Guyenne, J. Hammack, D.
Henderson and C. Sulem [3].

4.2 Verification

Firstly, I analysed the wave shape created by releasing water into the tank, to see if this
behaved similar to solitons as predicted by the theory. A soliton as predicted by the
KdV-equation has the property that the amplitude, width, and speed all depend on the
same variable. For the wave observed in the experiment to be a KdV-soliton we need it
to be similar to the following function:[1]

η = η0 sech2((
3η0
4h30

)
1
2 (x− Ut)) U =

√
(g(h+ η)) (82)

Fitting this through the data obtained from the video analysis I got the following
results: figure 2 when the width and amplitude are both determined independently,
and figure 3 when the width was taken to be dependent on the amplitude. When
time-dependence was taken into account: figures 4, 5. In both fits the amplitude and
width are dependent on each other but the speed is determined independently. The
parameter d states the difference between the measured speed, and the speed predicted
by:

√
g(h+ η) figure 4 shows the soliton before the first collision and figure 5 after the

first collision. In these figures it seems that the observed waves match the theory well.
The only structural difference that seems to occur, is that the measured solitons seem
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Figure 2: h+ η sech2(
√
c(x− x0)) with h = 0.0516, η = 0.0251 and c = 211.4

Figure 3: h+ η sech2(
√

3η
4h3

(x− x0) with h = 0.0507, η = 0.0246

slightly higher with respect to to their width, compared with the theoretical predictions.
However the match seems good enough to assume the waves created by this set-up are
indeed KdV-solitons.

4.3 Head-on Collisions

The trajectories (ct + a) of two solitons were as follows: (with c in m
s and a in meters,

and with t = 0 for the collision point defined earlier.)
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Figure 4: h+ η sech2(
√

3η
4h3

(x− x0− (
√
g(h+ η) + d)t) with h = 0.0512, η = 0.0227, d =

0.0045

Figure 5: h+ η sech2(
√

3η
4h3

(x− x0 + (
√
g(h+ η) + d)t) with h = 0.0514, η = 0.0193, d =

−0.024
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Collision 1:

Soliton 1 Before : 0.6394t+ 1.526(±0.02,±0.017)

After : 0.735t+ 1.508(±0.008,±0.007)

Soliton 2 Before : −0.707t+ 1.391(±0.007,±0.006)

After : −0.7575t+ 1.409(±0.01,±0.009)

Collision 2:

Soliton 2 Before : 0.7637t+ 1.068(±0.03,±0.024)

After : 0.7373t+ 1.037(±0.016,±0.014)

Collision 3:

Soliton 1 Before : 0.6523t+ 1.34(±0.025,±0.022)

After : 0.7501t+ 1.373(±0.055,±0.05)

Soliton 2 Before : −0.6419t+ 1.475(±0.02,±0.017)

After : −0.7135t+ 1.448(±0.013,±0.017)

In these measurements, the speed of the solitons does not seem to be very stable.
The solitons seem to go either faster or slower after both reflection and collision. In the
numerical simulations done by W. Craig, P. Guyenne, J. Hammack, D. Henderson and
C. Sulem [3] they found that when two solitons of relative amplitudes: η1/h = 0.4 and
η2/h = 0.3 collided head on, the amplitudes after collision were respectively: η1/h =
0.3987 and η2/h = 0.2983. This difference is very small, and should not change the
velocity of the soliton in any measurable way. The phase-lag that was determined by
these numerical simulations was equal to: 0.3021h and 0.3223h, which for a depth of 5
centimeters comes down to approximately 1.5 centimeters. For relatively smaller waves,
a smaller phase-lag is expected. If we look at the difference between the trajectories
before and after collision at t = 0 we get the following values:

Collision 1: (figure 6)

Soliton 1 0.018

Soliton 2 − 0.018

Collision 2: (figure 7)

Soliton 2 0.031

Collision 3: (figure 8)

Soliton 1 − 0.029

Soliton 2 0.027

With standard deviations of respectively: 0.018, 0.11, 0.28, 0.055, 0.024. From this all we
can only conclude, that with the methods used, the phase-lag does not differ measurably
from zero.
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Figure 6: Collision 1

Figure 7: Collision 2
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Figure 8: Collision 3

4.4 Experiments Reflection

4.4.1 Video 1

For the first video, the reflection at the left side was measured three times. The video
that was used had 30 frames per second and a resolution of 506x659. Using MATLAB
to determine the trajectories (t = 1

cx + a) of the center of gravity of the soliton,the
following results were obtained before and after three different reflections:

1)− 0.1062x+ 56.44(±0.0013,±0.85)

0.1056x+ 54.84(±0.0023,±0.75)

2)− 0.1070x+ 195.9(±0.0016,±0.6)

0.1096x+ 193.9(±0.0019,±0.6)

3)− 0.1102 + 338.5(±0.0016,±0.5)

0.1043 + 337.4(±0.0028,±0.9)

Estimating the standard deviation in the inverse velocity of the soliton (1c ), and
assuming it stays the same gives: σ = 0.0023 with a mean inverse velocity of: 0.1072.
The average difference between the constants (i.e. a1 − a2) is 1.56 with a standard
deviation of 0.45. So the average point of reflection, i.e. the intersection of the trajectory
before reflection, and the trajectory after reflection, based on this data is: 7.2795 with
a standard deviation of 2.1. The real reflection point is at 20 which is approximately
seven standard deviations from our measured value.
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Figure 9: Reflection Soliton

4.4.2 Video 2

The second video used had a frame rate of 50 frames per second and a resolution of
1080x1920. In this video only two reflection could be effectively measured, with the
following results:

1)0.07107x+ 60.73(±0.0012,±1.20)

−0.08089x+ 355.8(±0.00021,±0.2)

2)− 0.08089x+ 355.8(±0.00021,±0.2)

0.07519x+ 367.1(±0.0025,±2.4)

These give intersections at: 1944 pixels (figure 9) and −70.27 pixels, while the actual
edges are at: 1880 pixels and 0 pixels. So the distance between the actual reflection
point and the virtual reflection point is respectively: 64 pixels and 70.27 pixels. An
estimation for the standard deviation with which these two values are determined gives:
σ = 9.8995. So again the difference between the measured virtual point of reflection and
the real point of reflection is more than six standard deviations.

We can compare this to results found on head-on collisions between solitons of equal
amplitude, and the analytical and numerical results on reflection by H. Power and A.T.
Chang. The results given above are all in pixel and frame. One pixel corresponds to
2.4/1880 metres. Therefore, the points of reflection, as measured here are: 8.2cm and
9.0cm from the real boundary. The inverse velocity of the soliton at the three intervals in
meter per second is: 1.11,−1.27, 1.18. So the time in seconds that the soliton stays at the
boundary is given by: 1.11∗0.082+1.27∗0.082 = 0.195 and 1.27∗0.09+1.18∗0.09 = 0.22.
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The analytical result for this phase lag as found by H. Power and A.T. Chang [6] is:

∆t(
g

h
)
1
2 =

1.52√
ε[1 +O(ε)]

With ε = η
h the relative amplitude of the soliton. The depth h in this experiment is

0.051 meters. So ∆t( gh)
1
2 = 2.73 at the first reflection and ∆t( gh)

1
2 = 3.08 at the second

reflection. The amplitude of the soliton is: 0.025 meter and declines to approximately
0.018 meters after the second reflection. So ε ranges between: 0.5 and 0.36, thus 1.52√

ε

ranges from 2.14 to 2.53, which is a bit lower than the theoretical result, but of the same
order of magnitude.

4.5 Discussion

The measurements of the location using video gave a well defined speed in all the at-
tempts. However, the spread in results show a far greater uncertainty. The lack of noise
in the measurements suggests that these errors are not caused by random effects, and
are therefore probably more structural errors, coming from either the water itself, the
video recording, or the video-analysis.

By releasing the water in the tank we created both a solitary wave and a number of
small waves. It might be the case that a wave corresponding to the eigenfrequency of
our tank was created. This could possibly explain the apparent acceleration observed in
the solitons at times. In the reflection experiment the solitons were created by adding
0.4 liters of water to our system. The solitons created this way have a height of 1.9
centimeter at a depth of 5.1 centimeters. The tank is 8.5 centimeters wide. Integrating

η sech2(
√

3η
4h3
∗ x) with η = 0.019 and h = 0.05, from −1.2 to 1.2 (i.e. the length of the

tank), and multiplying the result by the width of the tank gives: 0.311 liters, which is
the volume of the soliton. This means 0.089 liters are making up extra waves. Now if all
this water is part of a single wave, whose wavelength is twice the wavelength of the tank,
then this wave has an amplitude of 0.24 millimeters. This is very small and unlikely to
explain the effects observed.

Before the wave is created the water is at rest. At this point the depth measured by
the camera is about 1.25 times more shallow on the right side of the tank than at the
left side. This is probably due to this point being further away from the camera. If this
has a big effect on the measured speed of the soliton, we should be able to measure it.
If we fit a polynomial of degree two through the trajectory of the center of mass, and
thus include an acceleration term, we should be able to pick up structural differences in
speed between the left and right side of the tank. The following results were obtained
for the trajectory before and after reflection:

Before reflection: x = −0.01117t2 − 0.843 ∗ t.

Here we have chosen our trajectory, such that x = 0 at t = 0. The 95% confidence
intervals of the quadratic term and linear term are given by respectively: 0.0153 and
0.0383.
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After reflection: x = −0.01004t2 − 0.797 ∗ t.

The 95% confidence intervals of the quadratic term and linear term are given by respec-
tively: 0.0027 and 0.0073.

In the first case there is no significant acceleration measured. In the second case there
is a small acceleration term. The wave takes approximately three seconds to go from the
right to the left side of the tank. So the difference in speed measured here between the
right and left side is approximately 0.03 metres per second. This is slightly bigger than
the uncertainty in the velocities found in the collision experiments. It does not explain
the variation seen there though. For example: In the first and third collision, soliton 1
increases in velocity, even though it goes from left to right, and should therefore slow
down according to the quadratic term found above.

If we look at the collisions themselves, we might see other reasons for the variation
in velocity. Figures B.1, B.2 and B.3 show the three collisions. Here it is quite clear that
there is actually quite a lot of noise. Soliton 1 which travels from left to right in the third
collision speeds up significantly, however in the figure the soliton is hardly distinguishable
from the noise. If we compare this to figure B.4, which shows the soliton which was
analysed in the experiments on reflection, we see that the amount of noise is relatively
less. Furthermore in figure B.4 the sech2-shape of the KdV-soliton is more recognizable.
On top of this the speeds measured do not seem to agree with the observed height of the
solitons. Soliton two, for example, has a height of 6.5 centimetres(depth plus amplitude)
before and after the first collision, which should, according to

√
g ∗ (η + h), correspond to

a velocity of 0.8 metres per second. Which is significantly faster than the measured speed
of 0.71 and 0.76. Figure B.5 shows the single soliton used for the reflection experiment,
where every plot shows the soliton after another reflection. Compared to the plots of
the three consecutive collisions, there is much less noise visible. Furthermore, the shape
and amplitude of the soliton appear to be maintained longer and better. This seems
to imply that a different way of creating solitons is necessary to measure the effect of
the collision, without too much uncertainty. To get better results a longer tank could
be used. The high velocity relative to the smaller waves, would mean the soliton will
escape them given enough time, with the result that the actual measurement happens
with less background noise.

Another thing that is clear from these figures, that doesn’t agree with the numer-
ical results of for example H. Power and C.W. Chwang [6], is the observed amplitude
loss. Their results showed that reflection was elastic, but after the first reflection, the
amplitude of the soliton in the experiment has gone from 2.3 to 1.9 centimeters. In the
analytic estimate of the phaselag, obtained by a soliton reflecting at a vertical wall, it
has been assumed the amplitude of the soliton stays the same. This might explain the
difference between the observed and the theoretically predicted phaselag.

In conclusion, a phaselag can be observed when solitons reflect at a vertical wall.
This situation is similar to a head-on collision between two equally sized solitons, for
which the effect had already been measured. Furthermore the measurements are in
agreement with the analytic and numerical results available for soliton reflection. To get
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more precise and reliable results however a different method of creating solitons should
be used. Both to be able to control the size of the solitons, and therefore be able to
recreate the experiment, but mostly to get less distortion of small background waves.
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A The Gelfand-Levitan-Marchenko equation

In this section we will derive the Gelfand-Levitan-Marchenko equation. The derivation
is based on ”Theory of Solitons” by S. Novikov, S. V. Manakov, L.P. Pitaevskii and
V.E. Zakharov [7], and ”Scaling, Mathematical Modelling, and Integrable Systems” by
D.H. Sattinger [8]
In section 3.1 the Gelfand-Levitan-Marchenko equation was used to determine a potential
from the scattering data. This equation is given by:

K(x, y) +B(x+ y) +

∞∫
x

B(y + z)K(x, z)dz = 0. (A.1)

Where B is defined as:

B(ξ) =
N∑
n=1

cne
−κnξ +

1

2π

∞∫
−∞

b(k)eikξdk. (A.2)

And the potential, u(x), can be recovered from K(x, x) in the following way:

u(x) = −2
d

dx
K(x, x). (A.3)

To derive this equation we need to start with stating the Schrödinger equation:

−d
2ψ

dx2
+ u(x)ψ = k2ψ. (A.4)

We will assume that the potential u(x) goes to zero rapidly enough. When that is the
case, there is only a finite amount, N , of bound states. The scattering state correspond
to k on the real line, while the bound state eigenvalues are given by n points on the
imaginary axis, k = iκn for n = 1, .., N κ > 0.

For the bound state eigenvalues iκn, we stated earlier that we get the following
asymptotic behaviour for the eigenfunctions:

ψ(x) ∼ e∓κnx, x→ ±∞. (A.5)

For a bound state, we define two eigenfunctions: ψn and φn. Where just as earlier:

lim
x→∞

ψn(x) = e−κnx, (A.6)

and similarly:
lim

x→−∞
φn(x) = eκnx. (A.7)

Since both functions should fall off exponentially in both limits, they are related through:

φn(x) = c′nψn(x). (A.8)
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The scattering data, cn, was defined as:

cn =

[ ∫ ∞
−∞

ψ2
ndx

]−1
. (A.9)

Note that c′n is related to c used in the scattering data by:

cn =
c′n

2∫∞
−∞ φ

2dx
(A.10)

This will be useful later on.
For real values of k, i.e. the scattering states. The solutions are found in a 2-d

space. With basis elements: ψ1, ψ2. These basis elements have the following asymptotic
behaviour:

ψ1(x, k) = e−ikx

ψ2(x, k) = eikx

}
limx→∞

Another basis we can construct for the same k is given by:

φ1(x, k) = e−ikx

φ2(x, k) = eikx

}
limx→ −∞

We can transform the basis ψ1,2 to the basis φ1,2 by writing it as a linear combination
of the other:

φi =
∑
j=1,2

Tijψj , i = 1, 2

Taking the limit x → ±∞ gives the relations: φ1 = φ2 and ψ1 = ψ2. Now since the
potential is real, this holds for all x. Therefore the transition matrix, T , is given by:

T (k) =

(
a(k) b(k)

a(k) b(k)

)
,

which means we can write: φ1(x, k) = a(k)ψ1(x, k) + b(k)ψ2(x, k). Furthermore, since
φ2 and ψ2 are nothing but the complex conjugates of φ1 and ψ1, we can get rid of the
subscripts by writing: φ = φ1 and ψ = ψ1

For the next step it is usefull to use the Wronskian. The Wronskian of two functions
is defined by: W (f, g) = f dgdx −

df
dxg. Therefore,

d

dx
W (f, g) = f

d2g

dx2
− d2f

dx2
g. (A.11)

From this it is clear that W (f, g) is independent of x if f and g are both solution of
equation (A.4). Therefore we can analyse W (φ, φ),W (ψ,ψ) and W (φ, ψ) in the limit
x→∞ to obtain:

W (φ, φ) = W (ψ,ψ) = 2ik (A.12)
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W (φ, ψ) = 2ika(k). (A.13)

From equation (A.12) together with the relation φ(x, k) = a(k)ψ(x, k) + b(k)ψ(x, k), we
find:

|a(k)|2 − |b(k)|2 = 1.

Earlier, we stated that scattering solutions behaved as:

eikx + r(k)e−ikx x→∞
t(k)eikx x→ −∞.

So it follows that: r(k) = b(k)
a(k) and t(k) = 1

a(k) . The functions ψ(x, k), φ(x, k), b(k) and

a(k) have been defined here for real values of k only. We can expand this definition to
the upper half k plane, i.e. all k such that =(k) > 0, and show that these functions
are analytic on this domain. It will turn out to be the case that a(k) = 0 if and only
if k2 is a bound state eigenvalue of the Schrödinger equation. Therefore a(k) contains
information on both the continuous and the discrete spectrum.

To show that this is true we start out by writing equation (A.4) as an integral
equation.

ψ(x, k) = e−ikx −
∫ ∞
−∞

G(x, s, k)u(s, k)ψ(s, k)ds. (A.14)

Here G(x, s, k) is the Green’s function of the operator L = −d2
dx2

+ k2. Which means
that LG(x, s, k) = δ(s− x).

The corresponding Green’s function is the following:

G(x, s, k) =

{
− sin k(x−s)

k , x > s

0, x < s
. (A.15)

(Notice that when you differentiate G(x, s, k) you get 0 for x < s and − cos k(x− s) for
x > s. so there is a jump from 0 to one at x = s. Therefore, the second derivative of G
is given by: −δ(x− s) + k sin k(x− s))

We can define the functions χ+(x, k) = φ(x, k)eikx and χ−(x, k) = ψ(x, k)eikx. Com-
bining this with equations (A.14) and (A.15) gives:

χ+(x, k) = 1 +

∫ x

−∞

e2ik(x−s) − 1

2ik
u(s, k)χ+(s, k)ds

χ−(x, k) = 1−
∫ ∞
x

e2ik(x−s) − 1

2ik
u(s, k)χ−(s, k)ds.

(A.16)

When x → −∞, χ+ goes to 1, and u goes to zero rapidly enough, by assumption, to
ensure convergence of the integral. So when =(k) > 0 the first integral in (A.16) is
bounded. Therefore χ+(x, k) and thus φ(x, k) is analytic in the upper half plane of k,
and behaves asymptotically as: φ→ e−ikx, when |k| → ∞ such that =(k) > 0. Similarly
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ψ(x, k) is analytic in the lower half plane of k with asymptotic behaviour: ψ → eikx,
when |k| → ∞ such that =(k) < 0.

Earlier we stated that a(k) was given by:

a(k) =
1

2ik
W (φ(x, k), ψ(x, k)). (A.17)

Since, as shown above, ψ(x, k) and φ(x, k) are both analytic in the upper-half k plane,
a(k) is analytic in the upper half k plane as well. Furthermore, a(k0) = 0 implies

W (φ(x, k0), ψ(x, k0)) = 0, and thus φx
φ = ψ(x,k0)x

ψ(x,k0)
. Integrating this gives:

φ(x, k0) = c′ψ(x, k0). (A.18)

This implies that φ(x, k0) decreases exponentially as both x→∞ and x→ −∞. There-
fore φ(x, k0) is a bound state eigenfunction, and thus k0 is an eigenstate.

The zeros of a(k) are all simple. This can be shown in the following way. Firstly,
differentiate equation (A.4) to obtain:

∂xx∂kψ = (u− k2)∂kψ + 2kψ. (A.19)

If we take the derivative of W (∂kφ, φ) with respect to x we get:

∂xW (∂kφ, φ) = ∂kφ∂xxφ− φ∂xx∂kφ. (A.20)

Using equations (A.19) and (A.4), we then find:

∂xW (∂kφ, φ) = ∂kφ(u− k2)φ− φ(u− k2)∂kφ+ 2kφ2 = 2kφ2. (A.21)

Integrating both sides and using φ = 0 for x→ −∞ then gives the following result:

lim
x→∞

W (∂kφ, φ) = 2k

∫ ∞
−∞

φ2dx. (A.22)

We can use this to show that, for a bound state eigenvalue iκn, ∂ka(iκn) 6= 0. To do so,
use: a(k) = 1

2ikW (φ(x, k), ψ(x, k)) and differentiate both sides w.r.t. k.

2ik∂ka(k) = ∂kW (φ(x, k), ψ(x, k))

= W (∂kφ(x, k), ψ(x, k)) +W (φ(x, k), ∂kψ(x, k))

=
1

cj
W ((∂kφ(x, k), φ(x, k)) + cjW (ψ(x, k), ∂kψ(x, k)).

In the limit x→∞ W (ψ(x, k), ∂kψ(x, k)) goes to zero. Therefore, taking this limit, and
using the fact that a(k) is independent of x gives:

icj
da(iκ)

dk
=

∫ ∞
−∞

φ2dx. (A.23)
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Since this integral is not equal to zero, the zeros of a(k) are simple. Moreover, this shows
the correspondence between the scattering data of the continuous spectrum, a(k), and
of the data of the discrete spectrum, cj , through:

1

∂ka(iκn)
= i

cn
c′n
. (A.24)

The Fourier transform of χ−(x, k)− 1 w.r.t. k is given by:

A(x, s) =

∫ ∞
−∞

e−iks(χ− − 1)dk. (A.25)

Since χ−(x, k)−1 is analytic in the upper-half plane and the integrand goes to zero in the
limit |k| → ∞ with =(k) > 0, when s < 0, contour integration tells us that A(x, s) = 0
when y < 0. Therefore we can write χ− as:

χ−(x, k) = 1 +
1

2π

∫ ∞
0

A(x, y)eiksds. (A.26)

If we introduce K(x, s) = 1
2πA(x, s − x), then we can write the wavefunctions ψ+ and

ψ− in the following way:

ψ+(x, k) = eikx +

∫ ∞
x

eiksK(x, s)ds

ψ−(x, k) = e−ikx +

∫ ∞
x

e−iksK(x, s)ds.

(A.27)

Now we are ready to prove that we can recover the potential from the scattering data
by solving the Gelfand-Levitan-Marchenko-equation. We start by stating: t(k)φ+ =
ψ− + r(k)ψ+. Combining this with the expressions for ψ± given by equation (A.27) we
get:

t(k)φ− e−ikx =

∫ ∞
x

e−iksK(x, s)ds+ r(k)eikx + r(k)

∫ ∞
x

eiksK(x, s)ds. (A.28)

Now take the inverse Fourier transform, and write:

f1(y) =
1

2π

∫ ∞
−∞

r(k)eikydk.

Then the inverse Fourier transform of the terms given in A.28 are:

35



1

2π

∫ ∞
∞

eiky
∫ ∞
x

e−iksK(x, s)dsdk = K(x, y)

1

2π

∫ ∞
−∞

eikyeikxr(k)dk = f1(x+ y)

1

2π

∫ ∞
−∞

eikyr(k)

∫ ∞
x

eiksK(x, s)dsdk =

∫ ∞
x

K(x, s)
1

2π

∫ ∞
−∞

eik(y+s)r(k)dkds

=

∫ ∞
x

K(x, s)f1(y + s)ds.

(A.29)

Now we also need to determine the inverse Fourier transform of the left-hand side of
(A.28)

1

2π

∫ ∞
−∞

eiky[t(k)φ(x, k)− e−ikx]dk =
1

2π

∫ ∞
−∞

eik(y−x)[t(k)φ(x, k)eikx − 1]dk.

When s > x this integral goes to zero for |k| → ∞, =(k) > 0. Furthermore, the
transmission coefficient; t(k) = 1/a(k), has simple poles at the bound states iκn, with
residue: res(t(iκj)) = 1

∂ka(iκj)
=

cj
c′j

. So contour integration over the upper half k plane

gives:

i
N∑
j=1

res(t(iκj))e
−κjyφ(x, iκj) (A.30)

= i
N∑
j=1

c′jres(t(iκj))e
−κjyψ(x, iκj) (A.31)

= i

N∑
j=1

cj
[
e−κj(x+y) +

∫ ∞
x

e−κj(s+y)K(x, s)ds
]

(A.32)

= −f2(x+ y)−
∫ ∞
x

f2(s+ y)K(x, s)ds. (A.33)

Where f2(x) = −i
∑N

j=1 cje
−κjx.

Putting all these terms into equation (A.28) we get:

−f2(x+ y)−
∫ ∞
x

f2(s+ y)K(x, s)ds = K(x, y) + f1(x+ y) +

∫ ∞
x

K(x, s)f1(y + s)ds.

(A.34)
Writing B(x) = f1 + f2 we then obtain the Gelfand-Levitan-Marchenko equation(A.1):

K(x, s) +B(x+ s) +

∞∫
x

B(s+ z)K(x, z)dz = 0. (A.35)
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The only thing left to show is u(x) = − d
dxK(x, x). To do this we take d2

dx2
ψ + (k2 −

u)ψ = 0 and use (A.27). We get:

0 = −eikxu(x) +

∫ ∞
x

eiks(k2 − u(x))K(x, s)ds +
d2

dx2

∫ ∞
x

eiksK(x, s)ds (A.36)

We can use the following to express the rightmost term:

d2

dx2

∫ ∞
x

g(x, s)ds =
d2

dx2
(−G(x, x) + lim

y→∞
G(x, y))

= − d

dx
(g(x, x) +Gx(x, x)) + lim

y→∞
Gxx(x, y)

= − d

dx
g(x, x)− gx(x, x)−Gxx(x, x) + lim

y→∞
Gxx(x, y)

= − d

dx
g(x, x)− gx(x, x) +

∫ ∞
x

d2

dx2
g(x, s)ds,

where G(x, s) is the integrand of g(x, s) w.r.t. s, and gx(x, x) means evaluating the
x-derivative of g at (x, x), to write (A.36) as:

0 = −eikxu(x)+

∫ ∞
x

eiks(k2−u(x)+
d2

dx2
)K(x, s)ds−eiks(Kx(x, x)+

d

dx
K(x, x)+ikK(x, x))

(A.37)

If we then use the fact that k2eiks = − d2

ds2
eiks, and partial integration we get:∫ ∞

x
eiksk2K(x, s)ds = −

∫ ∞
x

d2eiks

ds2
K(x, s)ds

= −ikK(x, x)eikx +Ks(x, x)eikx −
∫ ∞
x

Kss(x, s)e
iksds

And thus:∫ ∞
x

(Kxx +Kss + uK)(x, s)eik(s−x)ds− (2
d

dx
K(x, x) + u(x)) = 0 (A.38)

If we let =(k)→ +∞. The integral on the left side of (A.38) goes to zero, because s > x.
Therefore 2 d

dxK(x, x) = −u(x), since this term does not depend on k, it should hold for
all k therefore:

2
d

dx
K(x, x) = −u(x) (A.39)
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B Figures

Figure B.1: Collision 1
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Figure B.2: Collision 2
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Figure B.3: Collision 3
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Figure B.4: Soliton between the first and second reflection.
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Figure B.5: Decrease of amplitude of a single soliton after reflections.
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