
Feedback control: theoretical and experimental research using a keysight DAQ

Tom Niessen

Supervisor: Sanli Faez

Natuur- en Sterrenkunde
Universiteit Utrecht

NanoLINX

Abstract

Feedback is a concept that is of great influence in our lives. From the regulation of our bodies’ temperature
to the ice-albedo effect on glaciers, feedback is everywhere. Feedback control is used in modern engineering to
control dynamical systems, where it is mainly used to stabilize otherwise instable quantities and states. I have
done theoretical research on feedback control with the aim of creating my own feedback control system. The
system consists of a pendulum, of which we want to control the amplitude. The amplitude of the pendulum
is measured using a LED that, depending on the position of the pendulum, shines a certain amount of light
on a photodiode. The signal from the photodiode is used to calculate a feedback force, that will be applied
by a fan blowing against the pendulum. These calculations happen inside a controller, consisting of a PC
and digitizer, for which I have succesfully written a python wrapper. We have experimentally found that
the controller can run at 45Hz, causing a delay of 30ms.

Contents

1 Introduction 2

2 Theory 3
2.1 General feedback and control theory . 3

2.1.1 Feedback . 3
2.1.2 Feedback control: early use . 5
2.1.3 Modern feedback control . 6

2.2 PID control . 8
2.2.1 PID tuning and The Ziechler-Nichols method . 10

3 Setup 12
3.1 The dynamic elements of the loop . 13

3.1.1 The system: a Pendulum . 13
3.1.2 Measurement: LED and PD . 13
3.1.3 Actuator: Fan . 15

3.2 The controller . 16
3.2.1 DAQ-card . 16
3.2.2 Oscilloscope . 17
3.2.3 Software . 18

4 Measurements and results 20
4.1 Voltage input measurement . 20

4.1.1 Results . 20
4.2 Voltage output measurement . 21

4.2.1 Results . 22
4.3 Measurement of the controller delay . 22

4.3.1 Results . 23

5 Conclusion 27

Appendices 28

A Mathematica code for creating gradient 29

B Mathematica code for processing data from the oscilloscope 30

C Python code to do time-research on DAQ-PQ communication 33

D Python code of the PID-control loop 39

1

Chapter 1

Introduction

The concept of feedback is of great influence in our lives. We can find examples of feedback mechanisms
everywhere in nature, from the regulation of our bodies’ temperature to the ice-albedo effect on glaciers.
Also in physics and engineering, feedback has been of great influence. From the start of modern science,
and even before that, physicists have been interested in controlling systems, and the concept of feedback has
greatly helped us do that. An early example of a feedback loop is the centrifugal governor [1]; ’cruise-control
for steam locomotives’.
As science developed, a mathematical foundation of feedback and it’s big brother control theory started to
form. From this point, feedback really started to evolve and we now see feedback control everywhere in
engineering. From cruise control in cars to learning a robot how to walk, feedback is everywhere!
The goal of my project is to learn about feedback control by doing theoretical research and by trying to
create my own feedback control system. An essential part of the feedback control system will be the digitizer,
a device that can convert between analog and digital signals. My aim is to write a wrapper to control this
device, using the programming language python. Finally, I will do experimental research on my system
to study time-scales of the controller. My system consists of a pendulum of which I want to control the
amplitude. I measure the amplitude of the pendulum using a LED that, depending on the position of the
pendulum, shines a certain amount of light on a photodiode. This way the signal coming from the photodiode
will be related to the position of the pendulum. Using a digitizer and a control algorithm the controller
calculates a control action that will be executed by a fan blowing against the pendulum.

2

Chapter 2

Theory

Besides explaining the outcome of my project, one of the main goals of my thesis is introducing the reader
to the subject of feedback. In this chapter I will explain some essential theory about feedback and control.
Starting with some general fundamentals and examples, while discussing the question ’What is the role of
feedback in our daily lives?’. Thereafter, I will talk about how we can create a feedback loop ourselves,
increasingly focusing on subjects relevant to my project, such as PID control.

2.1 General feedback and control theory

2.1.1 Feedback

Figure 2.1: A systematic presentation of a simple two-system feedback loop.

We can speak of Feedback when we have a sequence of dynamical systems that influence each other.[2]
A dynamical system is a system in which one or more physical quantities are time-dependent, as well as
receptive to external factors. When a change in a dynamical quantity within a system triggers a mechanism
that results in an additional change in that quantity, either positive or negative, we are dealing with a
feedback loop.

In Fig. 2.1 we see that the output of System 1, which can by any physical quantity, serves as input for
System 2, and thus changes the dynamic state of System 2. System 2 on its turn influences the dynamic
state of System 1 in the same way, where a certain physical quantity of System 2 serves as input for System

3

1. This means that, a change in System 1 eventually leads to an additional change in System 11. Both
systems are now said to be in a closed feedback loop, and they are dynamically coupled.

While it might seem trivial, feedback is everywhere around us. Dozens of examples of feedback can be
found in various fields of physics. But also outside (especially outside!) of the bounds of physics feedback
is a very common phenomenon. For instance, many examples of feedback find their origin in biology, and
more specifically in ourselves, the human body, where many of the most essential processes greatly rely on
feedback.

(a) Negative feedback. A positive change (of some
dynamic variable) in System 1 results in a change in
System 2. The change in System 2 then results in a
negative change in System 1, putting it closer to it’s
initial state.

(b) Positive feedback. A change (of some dynamic
variable) in System 1 will result in a change in System
2, which will result in an increase of the change of
System 1. A positive/negative spiral.

Figure 2.2

A relatively straightforward example is how our body regulates body temperature, as seen in Fig. 2.3.
If the hypothalamus senses that temperature rises below normal body temperature level, it will start a
mechanism to warm our body. Several parts of our body will be instructed to act, trying to maintain (or
reacquire) normal temperature: Blood vessels will constrict (vasoconstriction) so less blood will go to the
skin, we will start shivering and hairs on our skin will stand up (piloerection). As a result our body’s (core)
temperature will stay normal. This loop also runs the other way: if temperature rises, the mechanism will
work the other way, trying to cool down our body.[3]

Temperature regulation of the human body is an example of negative feedback. In the situation of negative
feedback, a change in the system, or some dynamical quantity in the system, will cause a feedback mechanism
that reverts the change and recovers the preferred state of the system. ”Negative feedback generally tries to
make the system resilient against external disturbances.”[4] Fig. 2.2a shows a simple visual representation
of both positive and negative feedback.

Positive feedback, while of less importance to us, appears in nature as well. A great example of positive
feedback is the ice-albedo feedback effect of glaciers. When temperature falls and ice or snow is formed on
a surface, the albedo2 of the surface increases. Increased albedo results in more incoming sunlight to be
reflected. Because of this temperature on the surface will decrease even further, giving the possibility of
more ice to be formed. This feedback can, again, also run the other way: if large areas of ice melt because
of increased temperatures, temperature will rise even further.

This example illustrates the great effect feedback can have on our world and there are many more exam-
ples of both negative and positive feedback in climate physics, such as the disturbance of the carbon cycle
and the greenhouse effect. In the past decades this has become an ever-increasing field of research, helping
us not only understand recent climate changes and our role in them, but also in estimating what lies ahead.

Last section has showed some examples of the importance of feedback and it’s role in our daily lives. An
answer to the earlier stated question (”What is the role of feedback in our daily life?”) could be:

1This can also be said of System 2: A change a System 2 eventually leads to an additional change in System 2
2Albedo is the reflection coefficient of a surface. It is a measure for the rate of (sun)light which is reflected by the surface

4

Figure 2.3: Two-way feedback loop of how our budy regulates temperature.

”Feedback does not have one particular role, it is everywhere around us. From the scale of temperature regula-
tion in our body all the way up to the carbon cycle, feedback influences our lives to the point where imagining
life without feedback is unthinkable. Examples of feedback can be found in various fields of research. We have
just seen examples in biology and climate physics, but also in chemistry, astronomy, even in economics and
psychology examples can be found. Feedback is everywhere!”

2.1.2 Feedback control: early use

We have talked about the importance of feedback in nature and looked at some examples of natural feedback.
We came to the conclusion feedback can be a very powerful phenomenon which can help change or maintain
the state of a system, such as temperature in our own body. Now I ask, what would be the consequence
if we could make a feedback loop ourselves? We would be able to take a system and choose a quantity to
maintain at a level we desire. We could even stabilize an otherwise very unstable quantity. Heck, we could
even destabilize a stable quantity! This is how we define feedback control : to take a system and control its
dynamics (or a certain physical quantity) using the concept of feedback.

When talking about the situation where a dynamic state or certain quantity needs to be maintained at
a certain level, we are usually dealing with negative feedback. Most of the time this is the case in feedback
control, at least in modern physics, where we mostly want to stabilize systems and/or correct for external
disturbances. This is also the case in my project. It is for this reason that from here, most of my examples
and explanations will regard negative feedback.

Around 1760, with the emergence of the industrial revolution[5], we started developing our industries. We
began creating machinery for large-scale use and aimed to increase efficiency of our industries, which includes
automation of many (production) processes. When I talk about the automation of a production proces, you
can probably see the link with feedback control. Indeed, you are right! Industrialisation in the 19th century
went hand in hand with feedback control; it was during this period we started creating our own feedback
control systems.
One of the earliest examples of feedback control is the Centrifugal Governor [1]. This device was used in
steam engines to control the motor power by regulating the amount of steam going into the engine. Note that

5

this early example of a feedback loop was fully without the use of computers and relied solely on mechanical
action. We can see the device in Fig. 2.4. The device consists of a rotating central axis, powered by the
steam engine. When the power of the engine increases the beam will start rotating faster. Attached to the
beam are two round masses that will rotate with the beam. The increased rotation will increase the energy
of the balls, moving them out- and upwards. The upward movement of the ball will cause the attached lever
arm to pull down a thrust bearing. This results in the movement of a beam that changes the angle of a valve,
decreasing the size of the steam hole. The engine will now get less steam and the power decreases. Through
this feedback loop, the power of the steam engine it is connected to will remain constant; an increase in
motor power will result in a decrease in motor power, and vice versa.

Figure 2.4: Picture of an early feedback control device: the Centrifugal Governor.[1]

The example of the centrifugal governor illustrates how we started using (mechanical) feedback control
to automate processes. For instance, the central governor was used in steam locomotives to keep the speed of
the train constant, it can be seen as a precursor of what we now call cruise control. Another great example
of early feedback control was the thermostat.

2.1.3 Modern feedback control

With the rise of the computer during the second half of the 20th century, we started using computers to
perform feedback control. This had many advantages and our feedback control systems really started to
develop from here. A feedback control system no longer had to rely on mechanical components to react to a

6

change in the system. In a modern feedback control system we can accurately measure the quantity we want
to control, called the process variable, and let computer algorithms calculate what corrective actions should
be taken to react to a change in the system, we call the actions control actions. We can choose a setpoint
and minimize the deviation of the process variable from the setpoint.
A schematic example of a modern feedback control loop can be found in Fig. 2.5. We see that the system
we want to control is affected by external disturbances for which we want to correct; we want a certain
physical quantity to stay on the setpoint by controlling the dynamics of the system. The state of the system
is measured by sensors, which will send the measured signal (more than often a voltage) to the controller. In
modern control systems, control algorithms on the sensor values will generally be done on a digital computer.
Before the computer can interpret the measured values the analog signal has to be digitized, this can be
done by an analog-to-digital (A/D) converter. After conversion, the computer uses a control algorithm to
compute the action that has to be performed by the actuator. The actuator is a device that can influence
the system we want to control, for instance by applying a force on it. We can control this so-called feedback
force by sending a command or voltage to the actuator. The signal or command first has to go through the
D/A converter before it can be sent to the actuator. When the signal arrives at the actuator, it will perform
the action calculated by the computer.

Figure 2.5: Schematic example of a modern feedback control loop

Feedback control is of great importance in modern engineering. Almost every modern device relies in
some way on feedback control. Whenever a system needs to be held constant under the influence of external
disturbance, you can assume feedback control is present. We have seen the centrifugal governor, ’cruise
control in steam trains’, but cruise control in modern vehicles relies no less on feedback control, only this
time it is computer driven feedback control. And what to think of aircrafts: constantly varying flows of air,

7

pressure differences and turbulence, these are all things that need to be corrected for, even when the pilot
is turning the plane. Perhaps the ultimate feedback control device would be a robot. In a robot a system
needs to be implemented that is capable of exhibiting highly flexible or ’intelligent’ responses to changing
circumstances[4, p. 211].

The final goal of feedback control will always be to control a system as good as possible. We generally
want the loop to run as fast as possible; the higher the frequency of the loop, the faster the system can react
to disturbances. But of course, there are many things that have to be taken into account when designing
such a system. Some important factors are:

• Noise. When transferring and processing an analog signal, noise will most definitely enter the system

• Measurement errors and bandwidth. The accuracy of the measurement have large influence on the
control system; bad measurements can introduce big errors. Something that is closely related to this is
the bandwidth of devices used in the system. To measure accurately we want to measure as many data
points as possible, but larger packets of data will probably have a consequence on the data transfer.
The transfer can become slower and more noise could enter the system. On the other hand, if we
measure too few points we could introduce additional measurement errors.

• Conversion error. When converting data from analog to digital, the output will not be exactly the
same. It will be the digital representation of analog data, this results in small errors in the digital data.

• Algorithm roundup. When the computer does computations with the data to calculate the actuator’s
response, the software will most definitely perform roundup to make the program more efficient.

• Dynamic properties of the process: response time and linearity. What can also play a big role is how
fast the actuator will response to a new command/signal, what is the time between sending a command
to the actuator and the actuator actually performing the command? Also, will the actuator respond
linearly to a change in a signal it gets?
What matters next is how our system will respond to a change of the actuator. How fast will our
system respond and will it respond linearly? These are all characteristics that are determined by the
dynamic properties of our system.

The next question that might come to mind is, how does the computer calculate the signal that needs to be
sent to the actuator? Which algorithm is the basis for these computations? Indeed, there are multiple forms
of control systems or feedback laws possible. We can have Automata with Programmable Logic Controllers,
on-off control, sequential control but perhaps the most well-known and commonly used controller is PID
control. This is the controller I have studied and used in my project, where I have tried to implement both
a continuous and a digital PID controller. In the next section I will treat PID control; I will explain it’s
principles and derive the mathematics.

2.2 PID control

If we want to control a system using a PID control algorithm, we need to choose a setpoint s, the value we
want our process variable to have. We can now calculate the error e(t) by taking the difference between our
setpoint s and the (measured) process variable MV (t):

e(t) = s−MV (t). (2.1)

From the error we eventually want to calculate the controller output or control variable u(t), which will
be sent as a voltage. The controller output can not have every value, as the actuator can only put out a
specific domain of voltages (in our case Vout ∈ [4, 5]). If the voltage is too low the actuator will not work

8

and above a certain value the actuator power will no longer increase. We call these boundaries Umin and
Umax. This results in the following formula:

u =


Umax, e(t) ≥ emin

f(e(t)), emin < e(t) < emax

Umin, e(t) ≤ emax

, (2.2)

with f(e(t)) a function that gives the controller output as a function of the error, emin = f−1(Umax) and
emax = f−1(Umin).

In PID control f(e(t)) is defined so that:

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
. (2.3)

We see that the controller output u(t) depends on three terms: respectively the Proportional term, the
Integral term and the Derivative term, hence the name PID control. [4]

The Proportional term

The proportional term kpe(t), depends on the current control error e(t) and the proportional gain kp. The
proportional gain is used as a tuning parameter; the control loop will optimally function at a certain value of
kp. The proportional term will generate a control action proportional to the error. As you may suspect this
doesn’t always lead to the wanted behavior of the loop. A control action proportional to the error means that
if the error is zero, there will be no control action; the controller will not act if there is no error. A common
consequence of this property is that the process variable will constantly overshoot, causing it to oscillate
around the setpoint. The P-term also tends to amplify noise; when it tries to correct for a disturbance it will
overshoot and cause the process variable to start oscillating. There are control loops that work fine with only
the Proportional term, mainly first order processes with single energy storage, we call these P-controllers.[6]

The Integral term

To correct for the drawback of the P-term (the overshooting) we introduce the Integral term. The integral

term ki
∫ t

0
e(τ)dτ , depends on the integral gain ki and the integral of the error from the starting point t0

untill the current time t. This means the integral term is mainly influenced by the past error, so where
the P-term mainly focusses on the current error, the I-term is mainly defined by how long there has been an
error. The integral gives the accumulated error of the system, this is multiplied by the integral gain to set
the contribution of the I-term to the control action.
In many cases, the I-term can eliminate the drawback of the P-controller. Now when there is no error,
there can still be a control action, defined by the past errors. Controllers that only depend on the P- and
I-terms are called PI-controllers. While the I-term helps the controller against overshooting, it is not an
improvement in terms of the speed of the loop. PI-controllers eventually reach the setpoint, but take a lot
of time doing so.[6, 7]

The Derivative term

Lastly we have the Derivative term kd
de(t)
dt . This term is calculated by taking the derivative of the current

error and multiplying this by the Derivative gain kd. The D-term gives an estimate for the future error of
the process variable.
Controllers that only depend on the P- and D-term are called PD-controllers. The major setback of these
controllers is their sensitivity to noise. The derivative of noise is more noise, so the D-term will create
incorrect terms.

9

By far the most used controller is the PID-controller, which depends on all three terms. We have seen
it’s control action formula in Eq. (2.3). Another common form of this equation is

u(t) = kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
, (2.4)

with again Proportional gain kp and the time constants Ti and Td, respectively the integral time and derivative
time. The constants from Eq. (2.3) and (2.4) are related like:

ki =
kp
Ti

kd = kp ∗ Td.

In these equations the proportional term P = kpe(t) can be changed to P = kpe(t) +u0 so the control action
will be u0 when there is no error. It can be chosen so that we get the desired steady-state value.[4]

2.2.1 PID tuning and The Ziechler-Nichols method

Perhaps the most important part of PID-control is estimating the three gain terms: kp, ki and kd (or kp, Ti
and Td). There are several ways to get these terms, both experimentally and mathematically. Mathematical
methods are often based on the dynamic details of the system, such as the z-transform and the transfer
function. The method I have chosen to tune my loop with is the Ziechler-Nichols’ closed loop method. This
method is very common and accessible method to experimentally determine the optimal gain terms without
having to know a lot about the (mathematical) dynamics of the system. Before turning to explaining the
method, let’s define what we are trying to achieve and what influence each gain term has. The major
charachteristics of our feedback control loop are[8]:

• Rise Time. This is the time it takes for the process variable within the system to rise above 90% of
the desired level after applying a control action.

• Overshoot. How much the process variable overshoot the desired level. This will be the first peak of
the signal.

• Settling Time. After putting out a control action, like a constant voltage, how long does the system
take to reach a steady state?

• Steady state error. The difference between the control action (a voltage) and the measured output of
the system (also a voltage).

In Table 2.1 we can see the influence of an increase of each gain term on the major charachteristics of the
control loop. We can use this table to manually tune our loop.

Table 2.1: Influence of an increase of each gain term on the major charachteristics of the control loop.[8]

Increase of Rise Time Overshoot Settling Time Steady State Error
kp Decreases Increases No reaction Decreases
ki Decreases Increases Increases Eliminate
kd No reaction Decreases Decreases No reaction

The Ziegler-Nichols’ closed loop method was created and published by Ziegler and Nichols in 1942. Like
I said before, it is a way to experimentally tune the gain terms so the controller functions optimally. The
method can be applied to P-, PD- ,PI- and PID-controllers. It consists of a set of steps that have to be
taken after eachother[8, 9, 10]:

10

1. Determine the starting point of your tuning procedure. We can do this by adjusting u0. Also determine
if kp should be positive or negative, by looking at what happens to the process variable when manually
changing the control variable u.

2. Make the controller a P-controller by setting Ti = ∞ and Td = 0. For the moment, also set kp = 0.
Also, choose a setpoint

3. Slowly increase kp (or decrease if kpwasdeterminedtobenegative), while keeping an eye on the controller
output. Stop when the controller output starts periodically oscillating and note the value of kp. This
value is called the ultimate gain ku.

4. We can now calculate the ultimate period Tu by measuring the period of the oscillations.

5. Set the gain terms of the loop according to Table 2.2.

Table 2.2: Values of the gain terms according to the Ziegler-Nichols’ method[9, 10]:

Controller type kp Ti Td

P-controller ku/2 - -
PI-controller ku/2.2 Tu/1.2 -
PID-controller ku/1.7 Tu/2 Tu/8

11

Chapter 3

Setup

Figure 3.1: Schematic image of the feedback control loop.

In Fig. 3.1 we see a schematic representation of the feedback loop I have created. I will shortly guide
you through the parts of the loop.

The Mechanical system.

The system I want to control in my feedback control loop is a simple pendulum. The quantity I want to
control is the position, or rather the amplitude, of the pendulum. To measure the position of the pendulum
I have attached a transparent paper with a gradient on top of the pendulum. On both sides of the gradient
and opposite to eachother I have placed a photodiode and a led. The amount of light that arrives at
the photodiode is dependent on the angle of the pendulum, which means that the voltage the photodiode
generates is dependent on the position of the pendulum, the denoted by Vin in Fig. 3.1.
The actuator is the device that applies the control action on the system in the form of a feedback force.
In our case the actuator is a DC-powered fan that blows against a surface attached to the pendulum. The
more air the fan blows, the greater the amplitude of the pendulum will be. The intensity of the fan and the
amplitude of the pendulum are, however, not linearly related.

12

DAQ (Data Acquisition)

My DAQ-card is the device I use to measure and digitize the voltage coming from the photodiode, it is a
Keysight u2331a.Besides that, the card also puts out a voltage to the actuator, so it is both the D/A- and
the A/D-convertor of my loop.

PC

The PC manages the controller part of the loop. It sends commands to the DAQ; commands to set the
configuration of the DAQ, to measure and digitize data and to put out a control action (voltage). Besides
managing the DAQ, the PC also calculates the controller output (u(t)) from the (digitized) measurement
data. This is done in a PID-control program, like explained before. Lastly the PC keeps track of time; the
actions in the loop can be clocked by the PC.
The PC does all this work based on a program written in python. The program contains:

• A wrapper for the DAQ-card. This is software that enables us to control the actions of the DAQ-card
by sending commands to the device.

• The PID-algorithm to calculate the control output.

• Built in clocking, to manage and measure the timing of the loop.

In the next sections I will discuss every part of the feedback loop in more detail.

3.1 The dynamic elements of the loop

3.1.1 The system: a Pendulum

The pendulum is the centre of my control loop, this is the system of which I want to control the dynamics,
or at least some part of it. The pendulum can be seen in Fig. 3.2a. It is made from 4mm thick plywood
and was laser-cut from a self-made design. The important characteristics of the pendulum are

• The V-shape upper part, made so that a transparent-to-black gradient can be attached on top of
the pendulum. As you see in Fig. 3.2a, the gradient only starts at half of the V-shape. This is
because we can only control the position of the pendulum in one direction, since the fan can only blow
the pendulum to one direction. The mathematica code used to create the gradient can be found in
Appendix A.

• In the middle of the pendulum we see a hole in which a ball bearing is places. This way we can attach
the pendulum to a pole while it can swing with a low amount of resistance. In Fig. 3.2b we can see
the pendulum attached to a pole with a specially designed block.

• On the bottom side we can see a small slit. Through this slit we can place a piece of paper, to create
a surface the fan can blow on.

3.1.2 Measurement: LED and PD

To measure the amplitude of the pendulum I use a photodiode and a LED. The amount of light from the
LED that reaches the photodiode is dependent on the amplitude of the pendulum. The current generated by
the photodiode is thus related to the position of the pendulum. To make it possible to place a photodiode
and LED on each side of the pendulum’s gradient, I designed1 a block that could be placed around the
pendulum, with two holes to place the photodiode and LED in, this way they are held in the right position.
Fig. 3.3 shows the designed block.

1Of course, this couldn’t have been done without the help of Paul and Dante

13

(a) The plywood pendulum, including gradient
and ball bearing.

(b) The pendulum attached to a pole.

Figure 3.2

I use a simple LED that can produce high-intensity white light to limit the influence of light from the
outside. The Photodiode generates a current dependent of how much light falls on it. It can produce a
current up to 100mA and a very small voltage. Unfortunately, I cannot directly use this signal as the voltage
is too small to measure very precisely: the signal needs to be amplified. To do this we could put in a resistor,
the circuit would look something like Fig. 3.4a, where we have:

V = I ∗R (3.1)

I = 100mA. (3.2)

If we would now put a resistor of, 1MΩ, we would end up with only 0.1V , so using a resistor wouldn’t
solve our problem. Something that does solve our problem is a transimpedance amplifier, this is an amplifier
that converts our current into a voltage. It has transimpedace Rf . We can see that the photodiode is now
inverted, so that Vout = −(Ip ∗ Rf), this solves the trick! We now have a voltage we can use. The circuit

14

Figure 3.3: Designed holder for the LED and photodiode

with the amplifier can be seen in Fig. 3.4b.

(a) Circuit with photodiode amplified by a tran-
simpedance amplifier.

(b) Circuit of photodiode with amplifier.

Figure 3.4

3.1.3 Actuator: Fan

The device that is used to apply the control output to the system is a fan. The fan is made by attaching
a set of blades to a ’3-to-6 V’ DC motor; this means the motor will need at least 3V to start and reaches
maximum power at 6V. The fan is shown in Fig. 3.5a. The fan will exert a force on the pendulum by blowing
against the paper that is placed throught the slit of the pendulum.

The motor is powered by a voltage coming from the DAQ-card, we can increase the power of the motor

15

by increasing the voltage going to the fan. However, the DAQ-card can only supply a current of 5mA,
this isn’t remotely enough to power the motor. To solve this problem I add a MOSFET to the system. A
MOSFET is a transistor with three pins: the source, gate and drain. To the source we send a current from a
power supply and to the gate we connect the output from the DAQ-card. Now, dependent on the voltage on
the gate, the MOSFET puts out part of the voltage on the drain, plus the current on the source. This way
we can add a current to the voltage coming from the DAQ-card, before sending it to the motor. If we set
the voltage coming from the power supply to about 6-7V, the result is that the motor will run at minimum
and maximum power at respectively 4V and 5V coming from the DAQ-card. Fig. 3.5b shows a picture of a
MOSFET, with its electric circuit.

(a) The fan (attached to a pole). (b) Picture and circuit of a MOSFET. G, D and S are
respectively the Gain, Drain and Source pins.

Figure 3.5

3.2 The controller

The controller part of the loop is the part that on one end receives an analog signal, then does some control
algorithms and puts out a control action. It consists of the DAQ-card, PC and Oscilloscope.

3.2.1 DAQ-card

DAQ-card stands for Data Acquisition card. The device serves as both the A/D- and the D/A-converter of
my control loop. This means the card can receive an analog voltage, convert it to a digital signal and then
send it to the PC, so the PC has measurement values it can use in its control algorithm. After the PC has
done its calculations and computed the control ouput it commands the DAQ to output a certain voltage.

The device that I use is the Keysight u2331a, it is a ”USB Modular Multifunction Data Acquisition
Device”[11], it can be seen in Fig. 3.6a. Although in the end I use only a very limited amount of functions of
the device in my control program, I have spent quite some time learning about the card. As the name might
reveil, it has dozens of functionalities and configurations, learning about all of these functions and how to
command them in python code can be quite the challenge. A few of the most important functionalities of
the card are[11, 12, 13]:

• Analog input. The device has 64 analog input channels on which it can receive a voltage. It can take up
to 3 · 106 samples per second when using one channel. When using multiple channels to receive signals
at the same time it can take 1 ·106 samples per second. The domain of voltages that can be measured is
from -10V until 10V. There are three functions that the card can use to measure and digitize a voltage

16

(a) The Keysight DAQ card (b) The two connectors from the keysight DAQ card

Figure 3.6

(Measure:Voltage, Run and Digitize). In Chapter 4 I will compare these three methods and determin
the one that is most efficient for me.

• Analog output. The device can also output a voltage, again varying from -10V to 10V with a current
of 5mA. There are multiple ways to generate a voltage: it can generate a constant voltage, use one of
it’s predefined functions (sine, sawtooth, square and noise) or output a user-defined voltage from its
buffer.

• Data storing. The device can store data from the analog input to its buffer, this is what the functions
Run and Dignitize use. It is also possible to put a data into the buffer yourself, the device could then
output that data as a voltage. The buffer can hold up to 8 · 106 samples. If we read data from the
buffer we will get it in a 16-bit Data format, to convert this to an actual float number, we need the
following formula:

V alue = (
2 ∗ Int16value

2resolution
) ∗Range, (3.3)

where the resolution of our device is 16 bits and the range is any domain we choose between -10V and
10V. The converted value will then be of type float.

• Configuration. The card has many different configurations, based on the function that is used. There
are basis configurations like the polarity, range and choosing a channel. But when we use analog input
or output we can also configure things like sample rate [Sa/s], the number of samples and the size of
a datablock in the buffer.

These were the functions I mainly use in my program, to give an idea of what the device can do. Of course
there are many other functions, like adding triggers, clocking, digital in- and output and measuring things
like frequency and amplitude.

3.2.2 Oscilloscope

While the oscilloscope is not directly used in my control loop, it has been essential in the development of the
system. I used a Keysight DSOX2024 Oscilloscope. The two most important functionalities of the device
were that I can show up to 4 input signals and that it has a built-in wave generator. This ables me to monitor
the loop while it is running and helps me do time-research on different parts of the loop. For example, I
could generate a wave on the oscilloscope, then split the signal into two: I would lead one signal directly to

17

the Oscilloscope’s input and one signal via the PC and DAQ to the Oscilloscope. This way I could see the
delay and noise caused by the controller of my system.

3.2.3 Software

Large part of my project consisted of learning how the DAQ-card works and what functionalities is has.
Perhaps the most time consuming was writing a wrapper for the device using the language Python. A
wrapper is program, or piece of code, that makes it possible to connect to a device and control its actions.
So, not only did I need to figure out what functions the DAQ has, I also needed to find a way to connect
to the device and controlling it by sending commands in python. The python-package that enabled me
to connect to the device was PyVisa, a python wrapper for the Virtual Instrument Software Architechture
library. This way I could easily connect to the from my PC and send commands to it using the programming
language SCPI.

SCPI

SCPI stands for Standard Commands for Programmable Instruments. As the name might reveal, we can
use this language to control our DAQ-card. SCPI provides a very clear, ordened and hierarchical set of
commands. The commands are ordened in a tree-like structure; a data-structure we see a lot in programming.
On the toplevel there are some subsystems we can choose from. Lets choose the subsystem ’OUTPut’, this
subsystem contains all kinds of functions that allow us to configure things that have to do with the analog
output of the device. ’OUTPut’, in its turn, also has some subsystem, we now choose ’WAVeform’ and then
’FREQuency’. We now have the command ’OUTPut:WAVeform:FREQuency value’, which is used to set
the frequency of the analog output signal. In python it would look like this:

−−−
|#Open an in s t anc e o f ResourceManager
| rm = v i s a . ResourceManager ()
|#Connect to dev i ce :
| dev i c e = rm . open re source (’USB0 : : 0 x0957 : : 0 x1518 : : TW56100007 : : 0 : : INSTR ’)
|#Set the output f requency to 1kHz
| dev i c e . wr i t e (”OUTPut :WAVeform : FREQuency 1000”)
−−−

Of course, we only have to connect to the device once, at the start of the program. As we can see in the
example the keywords have some capitals and some lower case, this is because the each keywoard has a
short and a long form. In short form the lowercase can be left out. Our command would then look like
’OUTP:WAV:FREQ value’. The most important SCPI functions that I use in my wrapper are:

• Measuring and digitizing a voltage. The device has three functions available that do this:
MEASure:Voltage, RUN, and DIGitize. The first one only reads one voltage at a time and can send it
directly to the PC. The latter two can measure continuously. This should be lot faster, but the data
gets stored in the buffer which,unfortunately, requires an additional command to be send to the DAQ.
That brings us to the next command:

• The command to retrieve data stored in the buffer:

dev i c e . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype =’h ’ , i s b i g e n d i a n=False) .

This command gives us the data from the buffer in an 16bit Int format, which we then have to convert
to float.

• Output a voltage, this is done with the command: SOURce:VOLTage. We can specify the voltage and
channel to which it should be sent. Sending 5V to channel 202 would then look like this:

dev i c e . wr i t e (’SOUR:VOLT 5 , @202 ’) .

18

The python code for doing experiments to do time-research in my loop can be found in Appendix C. The
python code with the PID-algorithm can be found in Appendix D.[13]

19

Chapter 4

Measurements and results

I have done several measurements to determine the charasteristics of my feedback loop, focussing mainly on
the frequencies and delay within the controller part of the loop (the DAQ and PC).

4.1 Voltage input measurement

We measured the time between the PC sending a command to the DAQ and receiving data from the DAQ.
In Fig. 3.1 this would match with t3 to t6. To do this we used the oscilloscope to generate a voltage and
sent it to the DAQ. We then used python code to send the right commands to the DAQ and receive the
data from the DAQ’s buffer. However, as mentioned before, there are three commands that can be used to
achieve this: MEAS:VOLT, RUN and DIG. Which one of these is the fastest and most consistent?

The python code can be found in Appendix C. For each of the three functions the code contains a loop
that measures a voltage 1000 times.

4.1.1 Results

Table 4.1 shows the measured average frequency of digitizing and sending the voltage. While the DAQ can
run at speeds up to 3MHz, we only reach 96.64Hz, the result are kind of dissapointing. This delay is probably
caused by communication between the PC and the DAQ; the PC has to send a command which the DAQ
has to convert to an action. What we can also conclude is that the function ’DIGitize’ is the fastest way of
getting

Table 4.1: Average frequency of the DAQ digitizing and sending a signal to the PC.
Each value is the mean of 1000 measurements.

Frequency Standarddevation
Measure:Voltage 87.22 Hz 0.28Hz
Run 95.74 Hz 0.22Hz
Dig 96.64 Hz 0.23Hz

Figures 4.1a, 4.1b and 4.1c shows for 50 measurements how long it took to complete it. We see that for
each method the times lie in a range of about 0.002s, we can conclude that in terms of consistency not one
jumps out positively.

We conclude that the function DIG is most useful to us.

20

(a) DIG (b) MEAS:VOLT

(c) RUN (d) SOUR:VOLT

Figure 4.1: Figures showing the time it takes to measure a voltage and send it to the PC using: a) DIG,
b) MEAS:VOLT and c) RUN, for 100 measurements. D) shows the time it takes to output a set voltage,
commanded by the PC. The python code for this measurement can be found in Appendix C, under ”Create
graphs with time of each action”

4.2 Voltage output measurement

Besides measuring the timing of voltage input we also measured the timing of voltage output, this matches
the time from t7 to t9 in 3.1. As in the last measurement we send a command to the DAQ 1000 times
and measure the frequency of the loop. However, we also want to see if the frequency of the voltage-output
loop is dependent on the value of the output voltage. We do this by commanding the DAQ to put out two
different voltages (V1 and V2) right after eachother, is the frequency dependent on the difference between
V1 and V2? We will also measure the avarage frequency of a voltage-output loop for different values of the
output voltage, is the frequency dependent on the output voltage?

The python code of the measurements can be found in Appendix C, under ”Time-research on voltage
output using the command ’SOURce:VOLTage’”

21

4.2.1 Results

In Table 4.2 we see that the frequency of the output of a voltage is about 89.18 Hz. We also see that the
frequency of measuring a voltage and then outputting that voltage is highest for the DIG function. This
again confirms DIG will be the function most suitable for is.

Table 4.2: Average frequency of the loop in which the PC sends command(s) to the DAQ and the DAQ
performs these actions. Each value is the mean of 1000 measurements.

Command(s) sent Frequency
SOUR:VOL 89.18 Hz
Measure:Voltage and SOUR:VOLT 44.43 Hz
Run and SOUR:VOL 45.68 Hz
Dig and SOUR:VOL 45.93 Hz

Table 4.3 shows the average frequence of commanding the DAQ to output 2 voltages right after each
other. We can see that there does not seem to be a relation between the frequency of the loop and dV (the
difference between the two voltages). On the other hand, it looks like there could be a relation between
the the frequency and the signs of the voltages. When both voltages are positive the frequency is around
44.90Hz, when one of the voltages is negative the frequency drops to around 44.50Hz and when both voltages
are negative, the frequency drops furter, to about 44.10Hz.

Table 4.3: Average frequence of commanding the DAQ to output 2 voltages right after each other. V1 is the
low voltage value, V2 is the high voltage value, dV is the difference between V1 and V2. Each value is the
mean of 1000 measurements.

V1 (V) V2 (V) dV (V) f (Hz)
1 1 0 44.90
1 9 8 44.91

-1 -1 0 44.10
-1 -9 8 44.11

-1 1 2 44.50
-3 3 6 44.51
-5 5 10 44.69
-9 9 18 44.52
-10 10 20 43.99

Fig. 4.2 confirms the presumption we just made. The figure shows the average frequency of commanding
the DAQ to output a voltage versus the voltage of the output signal. We can clearly see there is a relation
between the frequency and the output voltage. The frequency of outputting a negative voltage lay about
1.7Hz lower than when outputting positive voltages. We also see that the frequency drops near the edge of
the domain, at -10V and 10V. But also at the edge of the domain the positive voltage has a significantly
higher frequency than the negative one.

4.3 Measurement of the controller delay

After measurements about the communication between the PC and DAQ, we would like to look at the delay
the controller as a whole introduces in our loop. That is, the delay between t2 and t10 in Fig. 3.1. We do this
by generating a wave on the oscilloscope, we then split the signal into two: one signal is lead directly to the
oscilloscope’s input, so the delay is minimal. The other signal is sent to the DAQ, which reads the voltage

22

Figure 4.2: Average frequency of commanding the DAQ to output a voltage versus the voltage of the output
signal. Each value is the mean of 1000 measurements.

and sends it to the PC, the PC then commands the DAQ to output that same voltage to the oscilloscope.
We now have two signals on the Oscilloscope, one signal coming directly from the generator, the Source
signal and the other coming via the controller of our feedback loop. We can now compare these two signals,
at what frequency of the source wave does the noise and delay coming from the controller become too high?
We can also quantify the delay of the controller, does it depend on the source wave’s amplitude?

The mathematica code for these measurements can be found in Appendix B.

4.3.1 Results

Fig. 4.3 shows the result of sending a source wave directly to the oscilloscope and via the controller. We
can clearly see the delay in the signal coming from the controller (dashed blue). At low frequency (1Hz)
the delay is relatively small, bet when we increase the frequency of the source wave we see the delay get
(relatively) bigger.

In Fig. 4.4 we can see the effects we saw in Fig. 4.3 even clearer. At 1Hz the controller’s wave is a
nice signal with relatively low delay, but when we increase the frequency of the source signal the differences
between the controller output and the source signal become very noticable. Not only does the control output
have a delay, at higher frequencies the sine vastly loses shape.

Fig. 4.5 shows the delay between the Source signal and the Controller output of 50 waves of the start
and end of each peak. We can see the delay flunctuates a lot, for both the start and end of the peaks. This
can probably be solved by changing the frequency of the source wave so that the frequencies of the Source
wave and controller output align better. We can quantify the delay by taking the mean of every value in
Fig. 4.5. If we do this for different amplitudes of the source wave we end up with Fig. 4.6.

From Fig. 4.6 we can conclude the delay of the controller is indepentent of the amplitude of the incoming
wave, and that the delay can be quantified at 29± 6ms.4

23

(a) Source wave of 1Hz (b) Source wave of 10Hz

(c) Source wave of 20Hz

Figure 4.3: Figures showing a Square wave of amplitude 1V , for 3 different frequencies of the source wave.
One signal comes directly from the Function Generator (black) to minimize delay, the other is led through
the controller(Dashed blue).

24

(a) Source wave of 1Hz (b) Source wave of 10Hz

(c) Source wave of 20Hz

Figure 4.4: Figures showing a Sine wave of amplitude 1V , for 3 different frequencies of the source wave. One
signal comes directly from the Function Generator (black) to minimize delay, the other is led through the
controller(Dashed blue).

Figure 4.5: A figure showing the delay between the Source signal and the Controller output of 50 waves of:
1) The start of each peak (Black), 2) The end of each peak (Dashed Yellow)

25

Figure 4.6: The average delay of the controller output with respect to the source signal, as a function of the
amplitude of the source signal. The low voltage of the source wave is always 0V, so the high voltage equals
the amplitude.

26

Chapter 5

Conclusion

The goal was to learn about feedback control by doing theoretical research and by trying to create my own
feedback system. While I have not (yet) created a fully functional feedback control system, I am very, very
close, a picture of the loop can be seen in Fig. 5.1. I succeeded in writing a wrapper for the digitizer and
every other part of the system is ready, I just need to find the proper gain terms using the Ziegler-Nichols
method.
I have been able to do experimental time research on the controller and found some important properties
of the loop. I found that the ’DIG’ function of the DAQ is the most efficient function to use and that the
output frequency of the DAQ depends on the sign of the voltage. Lastly I found that my controller can run
at around 45Hz, causing a delay of aproximately 30ms.

Figure 5.1: A photo of the mechanical part of the system.

27

Appendices

28

Appendix A

Mathematica code for creating
gradient

(∗The g r a d i e n t w i l l go from ang le1 to ang le2 ∗)
angle1 = 40 ;
ang le2 = 140 ;

(∗A f u n c t i o n t h a t i s r i s e s l i n e a r l y wi th the ang le ∗)
f [x , y] := Tanh [x/y]∗180/Pi + 90

(∗ A l t e r the f u n c t i o n so i t runs from \ [Theta]1 to \ [Theta]2 ∗)
f 2 [x , y] := Which [ang le1 < f [x , y] < angle2 , f [x , y] , True , 140]

(∗ Plo t the funct ion , wi th a chosen c o l o r f u n c t i o n ∗)
DensityPlot [f 2 [x , y] , {x , −3, 3} , {y , 0 , 2} ,
ColorFunction −> ”PigeonTones” , AspectRatio −> 2/6]

Figure A.1: Example of a gradient created by the code shown above
angle1 = 40, angle2 = 140

29

Appendix B

Mathematica code for processing data
from the oscilloscope

(∗ Import the csv− f i l e t h a t cont a in s the O s c i l l o s c o p e ’ s data . In t h i s \
case we import two square waves wi th ampl i tude 1∗)
l i j s t = Import [

”C:\\ Users \\Tom\\Google Drive \\ Studie \\ S c r i p t i e \\Metingen \
14−1−17\\TimeDelay\\Delay (0 1) . csv ” , ”Table” , ”NumberPoint” −> ” , ” ,

” F i e ldSepa ra to r s ” −> ” ; ”] ; (∗” F i e l d S e p a r a t o r s ”\ [Rule] ” ; ” ∗)

(∗Drop the f i r s t 22 rows o f data , t h e s e conta in u n r e l e v a n t data about \
the d e v i c e . ∗)
va lue s = Drop [l i j s t , 2 2] ;

(∗Dele te the rows where one o f the v a l u e s i s a s t r i n g , t h e s e are \
rows t h a t conta in f a l s e data . ∗)
va lue s = DeleteCases [va lues , { , , , S t r i n g }] ;
va lue s = DeleteCases [va lues , { , , S t r ing , }] ;
(∗From the data , e x t r a c t the times , source s i g n a l (d i r e c t l y from the \
Function genera tor) and the new s i g n a l (v i a the DAQ and PC) ∗)
time = va lues [[All , 2]] ;
time = time −

time [[1]] ; (∗This i s done to make sure time s t a r t s a t 0∗)
source = va lue s [[All , 3]] ;
new = va lue s [[All , 4]] ;

(∗ Plo t the 2 s i g n a l s in one p l o t , so they can be compared ∗)
L i s tL ineP lo t [{Transpose [{ time , source }] , Transpose [{ time , new }]} ,

PlotLegends −> {” Source S i gna l ” , ”Output from DAQ” } ,
PlotRange −> {{0 , 6} , {−0.1 , 1 . 2}} ,
AxesLabel −> {”Time (s) ” , ” Voltage (V) ” } ,
AxesStyle −> D i r e c t i v e [Black , 1 2]]

(∗These are two l o o p s t h a t c o n s t r u c t a l i s t wi th the i n c r e a s e o f \
v o l t a g e at each d a t a p o i n t . Done f o r the source and new s i g n a l . ∗)
d i f f S o u r c e = ConstantArray [0 , Length [source]] ;
n = 1 ;
While [n < Length [source] − 1 ,

30

d i f f S o u r c e [[n + 1]] = source [[n + 1]] − source [[n]] ; n++];

di f fNew = ConstantArray [0 , Length [source]] ;
n = 1 ;
While [n < Length [source] − 1 ,

di f fNew [[n + 1]] = new [[n + 1]] − new [[n]] ; n++];

(∗For both s i g n a l s c o n s t r u c t a l i s t t h a t cont a in s the index o f each \
element t h a t i s g r e a t e r than 0 . 5 . A v o l t a g e i n c r e a s e o f more than \
0.5V means we are d e a l i n g wi th the s t a r t o f a peak in the s i g n a l . ∗)
p o s i t i o n s S o u r c e = Flatten [Position [d i f f S o u r c e , ?(# > 0 .5 &)]] ;
pos it ionsNew = Flatten [Position [diffNew , ?(# > 0 .5 &)]] ;

(∗ Sometimes measurements dont s t a r t a t the s t a r t o f a wave . So i t can \
happen t h a t the f i r s t peak o f the source s i g n a l does not be lon g to \
the f i r s t peak o f the new s i g n a l . Same f o r the l a s t peak
Here , t h i s i s not the case , so I commented out the s e c t i o n
∗)
(∗ p o s i t i o n s S o u r c e=Drop [p o s i t i o n s S o u r c e ,−1] ;
Length [p o s i t i o n s S o u r c e]
pos i t ionsNew=Drop [posit ionsNew , 1] ;
Length [pos i t ionsNew]
posit ionsNew−p o s i t i o n s S o u r c e ∗)

(∗Now t h a t we have the index o f the s t a r t o f each peak f o r each \
s i g n a l , we can g e t the time o f each peak .
I f we then s u b s t r a c t the t imes we g e t a l i s t o f the d e l a y between the \
two s i g n a l s f o r every peak .
∗)
d e l a y l i s t = ConstantArray [0 , Length [pos it ionsNew]] ;
n = 0 ;
While [n < Length [p o s i t i o n s S o u r c e] ,

d e l a y l i s t [[n + 1]] =
time [[pos it ionsNew [[n + 1]]]] − time [[p o s i t i o n s S o u r c e [[n + 1]]]] ; n++]

(∗ Plo t the d e l a y data ∗)
ListPlot [d e l a y l i s t , Joined −> True ,

PlotMarkers −> Graphics@{Disk [{0 , 0} , Scaled@0 . 0 1 5] } ,
AxesLabel −> {”Wave no . ” , ”Delay (s) ” } , Labe lSty l e −> {18 , Black }]

(∗This s e c t i o n i s the same as the above s e c t i o n , but now f o r the end \
o f each peak (or : the s t a r t o f each dip ∗)
d i f f S o u r c e 1 = ConstantArray [0 , Length [source]] ;
n = 1 ;
While [n < Length [source] − 1 ,

d i f f S o u r c e 1 [[n + 1]] = source [[n + 1]] − source [[n]] ; n++];

di f fNew1 = ConstantArray [0 , Length [source]] ;
n = 1 ;
While [n < Length [source] − 1 ,

di f fNew1 [[n + 1]] = new [[n + 1]] − new [[n]] ; n++];

31

p o s i t i o n s S o u r c e 1 = Flatten [Position [d i f f Sour c e1 , ?(# < −0.5 &)]] ;
pos it ionsNew1 = Flatten [Position [diffNew1 , ?(# < −0.5 &)]] ;

(∗ In t h i s case the f i r s t source dip does not b e lo ng to the f i r s t d ip \
in the new s i g n a l , so we d e l e t e the f i r s t v a l u e o f the source ∗)
p o s i t i o n s S o u r c e 1 = Drop [po s i t i onsSource1 , −1];
(∗ Length [p o s i t i o n s S o u r c e 1]
posi t ionsNew1=Drop [posit ionsNew1 , 1] ;
Length [posi t ionsNew1] ∗)

d e l a y l i s t 1 = ConstantArray [0 , Length [pos it ionsNew1]] ;
n = 0 ;
While [n < Length [p o s i t i o n s S o u r c e 1] ,

d e l a y l i s t 1 [[n + 1]] =
time [[pos it ionsNew1 [[n + 1]]]] − time [[p o s i t i o n s S o u r c e 1 [[n + 1]]]] ;

n++]
(∗Again , p l o t the d e l a y data , now f o r the d e l a y in the end o f each \
peak ∗)
ListPlot [Join [d e l a y l i s t , d e l a y l i s t 1] , Joined −> True ,

PlotMarkers −> Graphics@{Disk [{0 , 0} , Scaled@0 . 0 1 5] } ,
AxesLabel −> {”Wave no . ” , ”Delay (s) ” } , Labe lSty l e −> {18 , Black }]

(∗ Plo t the two graphs t o g e t h e r ∗)
ListPlot [{ d e l a y l i s t , d e l a y l i s t 1 } , Joined −> True ,

PlotMarkers −> Graphics@{Disk [{0 , 0} , Scaled@0 . 0 1 5] } ,
AxesLabel −> {”Wave no . ” , ”Delay (s) ” } , Labe lSty l e −> {18 , Black} ,
PlotLegends −> {” \ [Cap i ta lDe l ta]V P o s i t i v e (wave going upwards) ” ,

” \ [Cap i ta lDe l ta]V Negative (wave going down) ” } ,
PlotStyle −> {Black , Dashed }]

(∗Sum the peak− and dip−d e l a y f o r each wave and p l o t i t ∗)
min = Min[{Length [d e l a y l i s t] , Length [d e l a y l i s t 1] }]
d e l a y l i s t B = Take [d e l a y l i s t , min]
d e l a y l i s t 1 B = Take [d e l a y l i s t 1 , min]
ListPlot [d e l a y l i s t B + de lay l i s t 1B , Joined −> True ,

PlotMarkers −> Graphics@{Disk [{0 , 0} , Scaled@0 . 0 1 5] } ,
AxesLabel −> {”Wave no . ” , ”Delay (s) ” } , Labe lSty l e −> {18 , Black} ,
PlotStyle −> {Black }]

(∗ C a l c u l a t e the mean delay , s t a n d a r d d e v i a t i o n i n c l u d e d . ∗)
Mean[Join [d e l a y l i s t , d e l a y l i s t 1]]
StandardDeviation [Join [d e l a y l i s t , d e l a y l i s t 1]]

32

Appendix C

Python code to do time-research on
DAQ-PQ communication

#==
Import l i b r a r i e s
#==
import v i s a
import t i m e i t #This method does s e v e r a l runs and avarages to g e t time o f par t
import time #This i s more s imple (j u s t does one run) , but a l s o l e s s e x a c t
import numpy as np #For doing mathematical work
import matp lo t l i b . pyplot as p l t #For p l o t t i n g data
from s c ipy . opt imize import l e a s t s q #
import pylab as p l t 2 #Another package f o r p l o t t i n g data

#==
I n i t i a l i z e d e v i c e connect ion
#==

#Open connect ion
rm = v i s a . ResourceManager ()

#Connect to d e v i c e
dev i c e = rm . open re source (’USB0 : : 0 x0957 : : 0 x1518 : : TW56100007 : : 0 : : INSTR ’)

#==
S e t t i n g s
#==

#These are the s e t t i n g which we wish to use :
dev i c e . t imeout = 500000 #Set Timeout dura t ion (maximum durat ion o f an a c t i o n)
nPoints = 1 #Number o f p o i n t s to be measured
channe l In = 116 #The channel used f o r the measurement
range In = 10 #The expec ted v o l t a g e range o f the s i g n a l
p o l a r i t y I n = ” BIPolar ” #The p o l a r i t y o f the s i g n a l

channel Out = 202 #Channel used to put out the v o l t a g e
#The range o f the v o l t a g e out , we s e t t h i s to match the input range :

33

range Out=range In
#We a l s o s e t the output p o l a r i t y to match the input p o l a r i t y :
po la r i ty Out=p o l a r i t y I n

#Warm−up measurements , the f i r s t measurement i s a lways very s low .
dev i c e . query (”MEASure : VOLTage? (@%d) ” % (channe l In))
dev i c e . query (”MEASure : VOLTage? (@%d) ” % (channe l In))
#Send command to s t a r t measurement :
dev i c e . wr i t e (”DIG”)
#Send command to read data from b u f f e r :
dev i c e . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ , i s b i g e n d i a n=False)

#Some a d d i t i o n a l s e t t i n g s , a f t e r the warmup measurements
nPoints = 1 #Number o f p o i n t s to be measured

#Sampling r a t e o f measurement (hz) (d e f a u l t 1000 hz , us ing max) :
r a t e = 3000000

#Apply the s e t t i n g s by sending the r i g h t SCPI commands
dev i c e . wr i t e (”SENSe : VOLTage :RANGe %d , (@%d) ” % (range In , channe l In))
dev i c e . wr i t e (”SENSe : VOLTage : POLarity %s , (@%d) ” % (p o l a r i t y I n , channe l In))
dev i c e . wr i t e (”ROUT:SCAN (@%d) ” % (channe l In))
dev i c e . wr i t e (”ROUT:CHAN:RANG %d , (@%d) ” % (range In , channe l In))
dev i c e . wr i t e (”ROUT:CHAN:POL %s , (@%d) ” % (p o l a r i t y I n , channe l In))
dev i c e . wr i t e (”ACQ:SRAT %d” % (ra t e))
dev i c e . wr i t e (”ACQ:POIN %d”% (nPoints))

#==
C a l c u l a t e f requency o f measuring input and/ or output v o l t a g e
#==
#The t h r e e f u n c t i o n s t h a t can be used to measure the f requency are :
#RUN, DIGit i ze and MEASure : VOLTage
#The f o l l o w i n g l o o p s send one o f t h e s e commands to the card , as f a s t as p o s s i b l e
w h i l e we measure the time o f each a c t i o n .
#Each loop a l s o c ont a in s a commented SOUR:VOLT command , t h i s can be enab led to
g e t the f requency o f measureing a v o l t a g e and then output t h a t Vol tage

#Measure us ing the MEAS:VOLT command
def g (i t) :

n=0
while n< i t :

#Read with measure : v o l t a g e :
va l=f loat (dev i c e . query (”MEASure : VOLTage? (@%d) ” % (channe l In)))
#Output the measured v a l u e
#d e v i c e . w r i t e (’SOUR:VOLT %f , (@%d) ’ % (va l , channel Out))
n=n+1

a=time . time ()
g (1000)
b=time . time ()
print (”MEAS:VOLT f (Hz) = ” , 1000/(b−a))

34

#Measure us ing the DIG−command
def g (i t) :

n=0
while n< i t :

#Send command to s t a r t measurement
dev i c e . wr i t e (”DIG”)
#Send command to read data from b u f f e r :
meas = dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
#Convert v a l u e from 16 b i t I n t to f l o a t :
va l = (2∗meas [0] / (2∗∗1 6))∗ range In
#Write the measured v a l u e :
#d e v i c e . w r i t e (’SOUR:VOLT %f , (@%d) ’ % (va l , channel Out))
n=n+1

a=time . time ()
g (1000)
b=time . time ()
print (”DIG f (Hz) = ” , 1000/(b−a))

#Measure us ing the RUN−command
def g (i t) :

n=0
while n< i t :

#Send command to s t a r t measurement :
dev i c e . wr i t e (”RUN”)
#Send command to read data from b u f f e r :
meas = dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
#Convert v a l u e from 16 b i t I n t to f l o a t
va l = (2∗meas [0] / (2∗∗1 6))∗ range In
#Output the measured v a l u e :
#d e v i c e . w r i t e (’SOUR:VOLT %f , (@%d) ’ % (va l , channel Out))
n=n+1

#==
Time−re sear ch on v o l t a g e output us ing the command ’SOURce : VOLTage ’
#==
#Put t ing out a s i n g l e v o l t a g e
def g (i t , va l) :

n=0
while n< i t :

#Output the measured v a l u e
dev i c e . wr i t e (’SOUR:VOLT %f , (@%d) ’ % (val , channel Out))
n=n+1

a=time . time ()
g (1000 ,1)
b=time . time ()
print (”Output vo l tage f (Hz) = ” , 1000/(b−a))

#Output o f two v o l t a g e s r i g h t a f t e r each o t her :

35

def g (i t , val1 , va l2) :
n=0
while n< i t :

#Output v a l 1 :
dev i c e . wr i t e (’SOUR:VOLT %f , (@%d) ’ % (val1 , channel Out))
#Output v a l 2 :
dev i c e . wr i t e (’SOUR:VOLT %f , (@%d) ’ % (val2 , channel Out))
n=n+1

a=time . time ()
g (1000 ,1 ,2)
b=time . time ()
print (”Output two v o l t a g e s f (Hz) = ” % (va l) , 1000/(b−a))
#==
Create graphs wi th time o f each a c t i o n
#==
#This s e c t i o n co nta ins I make a graph o f the time each measurement t a k e s .
#I do t h i s f o r Run , Dig , MEAS:VOLT and SOUR:VOLT

#−−−−−−−−−−−−−−−−−−−−−
#RUN:

#Set the amount o f measurements to be in the graph :
nPoints =1000
n=0 #The i n i t i a l n
H = np . z e ro s ((nPoints , 2)) #Generate empty l i s t we are going to f i l l

#A loop t h a t performs the a c t i o n (RUN, in t h i s case) nPoints t imes .
#For each i t e r a t i o n the loop f i l l a l i s t wi th
#A) The number o f the measurement
#B) The time on which the measurement to p l a c e
for n in range (nPoints) :

H[n ,0]= time . time ()
dev i c e . wr i t e (”RUN”)
#Send command to read data from b u f f e r :
meas = dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
#C a l c u l a t e average and conver t to f l o a t :
average = sum(meas) / f loat (len (meas))
va l = (2∗ average /(2∗∗16))∗ range In
H[n ,1]=n+1

#s u b s t r a c t each time with the time o f i t s predecessor ,
#to g e t the time each a c t i o n took

H[: , 0] =H[: , 0] −H[0 , 0]
#Generate the p l o t and
#s u b s t r a c t the time o f each measurement wi th the time o f i t s predecessor ,

#to g e t the time each a c t i o n took
p l t . f i g u r e (1)
p l t . s c a t t e r (H[2 : nPoints , 1] ,H[2 : nPoints ,0]−H[1 : nPoints −1 ,0])
p l t . a u t o s c a l e (enable=True , a x i s=’ both ’ , t i g h t=True)
p l t . t i t l e (”Time per s i n g l e I /O operat ion ”)

36

p l t . x l a b e l (”Measurement no . ”)
p l t . y l a b e l (”Time (s) ”)

#−−−−−−−−−−−−−−−−−−−−−
#MEAS:VOLT
nPoints =1000
n=0
J = np . z e ro s ((nPoints , 2))
s t a r t=time . time ()
for n in range (nPoints) :

J [n ,0]= time . time ()
va l=f loat (dev i c e . query (”MEASure : VOLTage? (@%d) ” % (channe l In)))
J [n ,1]=n+1

end=time . time ()
J [: , 0] = J [: , 0] − J [0 , 0]
p l t . f i g u r e (2)
p l t . s c a t t e r (J [2 : nPoints , 1] , J [2 : nPoints ,0]−J [1 : nPoints −1 ,0])
p l t . a u t o s c a l e (enable=True , a x i s=’ both ’ , t i g h t=True)
p l t . t i t l e (”Time per s i n g l e I /O operat ion ”)
p l t . x l a b e l (”Measurement no . ”)
p l t . y l a b e l (”Time (s) ”)

#−−−−−−−−−−−−−−−−−−−−−
#DIG
nPoints =1000
n=0
K = np . z e ro s ((nPoints , 2))
s t a r t=time . time ()
for n in range (nPoints) :

K[n ,0]= time . time ()
dev i c e . wr i t e (”DIG”)
meas = dev i c e . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
#Send command to read data from b u f f e r
average = sum(meas) / f loat (len (meas))
va l = (2∗ average /(2∗∗16))∗ range In
K[n ,1]=n+1

end=time . time ()
K[: , 0] =K[: , 0] −K[0 , 0]

p l t . f i g u r e (3)
p l t . s c a t t e r (K[2 : nPoints , 1] ,K[2 : nPoints ,0]−K[1 : nPoints −1 ,0])
p l t . a u t o s c a l e (enable=True , a x i s=’ both ’ , t i g h t=True)
p l t . t i t l e (”Time per s i n g l e I /O operat ion ”)
p l t . x l a b e l (”Measurement no . ”)
p l t . y l a b e l (”Time (s) ”)
p l t . show ()

#==
Measure the f requency o f DIG as a f u n c t i o n o f the packe t s i z e
#==

37

def g (i t) :
n=0
while n< i t :

#Send command to s t a r t measurement
dev i c e . wr i t e (”DIG”)
#Read data from the b u f f e r
#M u l t i p l e t imes when the amount o f p o i n t s g e t b ig ,
#because the data then g e t s s t o r e d in b l o c k s o f 10.000 samples
a=dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
b=dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
c=dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,

i s b i g e n d i a n=False)
n=n+1

a=time . time ()
g (10000)
b=time . time ()
print (”DIG f (Hz) = ” , 10000/(b−a))

#==
Errors+Reset+Close connect ion
#==
print (dev i c e . query (”SYST:ERR?”))
dev i c e . wr i t e (”∗RST”)
dev i c e . c l o s e ()
print (” instrument connect ion c l o s e d ”)

38

Appendix D

Python code of the PID-control loop

−∗− coding : u t f−8 −∗−

#==
Import l i b r a r i e s
#==
import v i s a
import t i m e i t #This method does s e v e r a l runs and avarages to g e t time o f par t
import time #This i s more s imple (j u s t does one run) ,

#but a l s o l e s s e x a c t
import numpy as np #For doing mathematical work
import matp lo t l i b . pyplot as p l t #For p l o t t i n g data
from s c ipy . opt imize import l e a s t s q
import pylab as p l t 2 #Another package f o r p l o t t i n g data

#==
I n i t i a l i z e d e v i c e connect ion
#==

#Open connect ion
rm = v i s a . ResourceManager ()

#Connect to d e v i c e
dev i c e = rm . open re source (’USB0 : : 0 x0957 : : 0 x1518 : : TW56100007 : : 0 : : INSTR ’)

#==
Conf i gura t ion o f channel and measurement
#==

dev i c e . t imeout = 5000 #Set Timeout dura t ion (maximum durat ion o f an a c t i o n)
channe l In = 116 #The channel used f o r the measurement000
range In = 10 #The expec ted v o l t a g e range o f the s i g n a l
p o l a r i t y I n = ” BIPolar ” #The p o l a r i t y o f the s i g n a l

nPoints = 1 #Number o f p o i n t s to be measured
#Sampling r a t e o f measurement (hz) (d e f a u l t 1000 hz) :
r a t e = 3000000

39

dev i c e . wr i t e (”ROUT:SCAN (@%d) ” % (channe l In))
dev i c e . wr i t e (”ROUT:CHAN:RANG %d , (@%d) ” % (range In , channe l In))
dev i c e . wr i t e (”ROUT:CHAN:POL %s , (@%d) ” % (p o l a r i t y I n , channe l In))
dev i c e . wr i t e (”ACQ:SRAT %d” % (ra t e))
dev i c e . wr i t e (”ACQ:POIN %d”% (nPoints))

#=========Warm−up measurement==
#Somehow the f i r s t i n s t a n c e o f DIG/Measure : Vol tage i s very s low than the
#subsequent i n s t a n c e s .

dev i c e . wr i t e (”DIG”)
completed = ’NO’
while (completed == ’NO’) :

completed = (dev i c e . query (”WAV:COMP?”)) . s t r i p ()

#==
The PID−l oop
#==

#Choose the s e t p o i n t : the v a l u e we want our pr oce s s v a r i a b l e to have
s e t p o i n t =0.117
#choose the gain terms P, I and D
P=0
I=0
D=0

#k1 , k2 and k3 are c o n s t a n t s t h a t come up when d i s c r e t i z i n g the PID−a l gor i thm
k1=P+I+D
k2=−P−2∗D
k3=D

#Choose the i n i t i a l v a l u e s o f the c o n t r o l loop , because our PID a lgo r i t hm
#l o o k s to the p as t two v a l u e s o f the error , we need to s t a r t a t n=2,
#we a l s o need to choose the v a l u e s the er ror had at the s t a r t o f the loop .
n=2
va lue s =[0 ,0]
e r r o r s =[s e tpo in t , s e t p o i n t]
u=0
Umin=4
Umax=5

#The motor needs at l e a s t 4V to run , but to s t a r t i t , i t needs a l i t t l e more
#Thats why we s t a r t the motor wi th a 5V p u l s e b e f o r e i n i t i a t i n g the c o n t r o l loop
dev i c e . wr i t e (’SOUR:VOLT 5 , (@201) ’)
print (4 . 4)
time . s l e e p (2)

while True :
#Measure a v o l t a g e
dev i c e . wr i t e (”DIG”)
#Get the data from the b u f f e r

40

meas = dev i ce . que ry b ina ry va lue s (’WAV:DATA? ’ , datatype=’h ’ ,
i s b i g e n d i a n=False)

#conver t the 16 b i t I n t to f l o a t
average = sum(meas) / f loat (len (meas))
va lue = (2∗ average /(2∗∗16))∗ range In
#c a l c u l a t e the er ror
e r r o r=se tpo in t−value

#add the er ror and system v a r i a b l e to t h e i r l i s t s
va lue s . append (value)
e r r o r s . append (e r r o r)

#The a c t u a l d i s c r e t e PID−f u n c t i o n t h a t c a l c u l a t e s the c o n t r o l a c t i o n
d e l t a u=k1 ∗(e r r o r s [n])+ k2 ∗(e r r o r s [n−1])+k3 ∗(e r r o r s [n−2])
u=u+d e l t a u

#Set the boundary v a l u e s o f the c o n t r o l output
i f u>Umax:

u=Umax
i f u<Umin :

u=Umin

#command the DAQ to app ly the c o n t r o l output
dev i c e . wr i t e (’SOUR:VOLT %d , (@201) ’ % (u))

n=n+1

#==
Errors+Reset+Close connect ion
#==
print (dev i c e . query (”SYST:ERR?”))
dev i c e . wr i t e (”∗RST”)
dev i c e . c l o s e ()
print (” instrument connect ion c l o s e d ”)

41

Bibliography

[1] R. Routledge, Discoveries and inventions of the nineteenth century. Routledge, 2.10b ed., 1881.

[2] J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” REVIEWS OF MODERN
PHYSICS, vol. 77, 2005.

[3] T. H. Benzinger, “Heat regulation: homeostasis of central temperature in man.,” Physiol. Rev., 49,
1969.

[4] K. J. Astrm and R. M. Murray, Feedback Systems. Princeton University Press, 2.10b ed., 2009.

[5] C. More, Understanding the Industrial Revolution. London ; New York : G. Routledge, 1 ed., 2000.

[6] P. Albertos and I. Mareels, Feedback and Control for Everyone. Springer, 1 ed., 2010.

[7] S. Y. S. Temel and S. Gren, “Discrete time control systems,” Recitation report 4, 2013.

[8] J. Zhong, “Pid controller tuning: A short tutorial.” Lecture notes, 2006.

[9] F. Haugen, PID Control. Tapir Academic Press, 2004. Chapter 4: Experimental tuning of PID con-
trollers.

[10] T. Co, “Ziegler nichols tuning method.” Lecture notes, 2000.

[11] U2300A Series USB Modular Multifunction Data Acquisition Devices - Data Sheet, 2014.

[12] U2300A Series USB Modular Multifunction Data Acquisition Devices - Users Guide, 4 ed., 2009.

[13] U2300A Series USB Modular Multifunction Data Acquisition Devices - Programmer’s Reference, 7 ed.,
2014.

42

