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Abstract

The single core performance of hardware processors have seen only mod-
est increase over the past decade. Yet simulation needs are growing in
both simulation size, and complexity. The Parallel Discrete Event Simu-
lation (PDES) field, is concerned with executing a single simulation run us-
ing multiple threads. Executing such a simulation in parallel is non-trivial
and requires synchronization algorithms to ensure correctness. To compare
performance between synchronization algorithm, the PHOLD benchmark is
commonly used. In the PDES field, threads (or ’Logical Processes’) can only
communicate via messages. The allowed sending pattern can be formulated
as a directed graph, where tail nodes are allowed to send messages to the
head node. We will present the EPHOLD benchmark algorithm, a more
generalized version of the PHOLD benchmark, and a mathematical model to
predict the amount of parallelism that a given EPHOLD benchmark will at-
tain when a specific PDES synchronization algorithm (i.e. YAWNS) is used.
We will experimentally evaluate the predictive capabilities of this mathe-
matical model, and show bottlenecks that emerge when using EPHOLD yet
remain hidden with PHOLD. The EPHOLD and PHOLD benchmarks will
be experimentally examined for Scale Free and Complete graphs using three
synchronization algorithms commonly used in the PDES field.
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Chapter 1

Introduction

In this chapter we will introduce the main concepts associated with (Par-
allel) Discrete Event Simulations (PDES). After introducing the concept of
simulation in Section 1.1, Section 1.2 will give a brief introduction into the
jargon typically used in the Discrete Event Simulation (DES) field. It also
discusses several key elements of a Discrete Event Simulation. Section 1.3
touches on some of the difficulties that come into play when trying to par-
allelize Discrete Event Simulations, and introduces the three main types of
parallelization that are typically considered.

1.1 Simulation

We define a system as a collection of entities that (inter)act together to ac-
complish some logical end. (This definition was coined originally in [52]). ”a
system” can mean very different things and is highly reliant of the objectives
of the study you wish to perform. E.g. suppose we intend to study the
throughput (items per hour) of a car-manufacturing factory. In this case we
are interested in modeling only a subset of the actual system, because not
all entities in the actual system are relevant to the study of throughput (e.g.
the configuration of the canteen, etc.).

The state of a system is defined to be the collection of all variables that are
relevant to the simulation objective and describe the system at a particular
(simulation) time. Simulations are typically divided into two types. A Con-
tinuous simulation changes the state of a system continuously throughout
time. Discrete Event Simulations (DES) change the state instantaneously at
a separate(discrete) points in time. Because the main focus of this thesis is
on Parallelizing discrete event simulations, we will not consider continuous
simulations.
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1.2 Discrete Event Simulation

In discrete event simulations we consider, a simulation’s state, ordered con-
tainer of so called events (e.g. in a list, binary tree, splay tree [54], etc.) and
a simulation clock. An event ’occurs’ at a discrete instant in simulation-time
(a timestamp) and is the only way the simultion’s state is altered. Since no
other mechanism is assumed to alter the simulation’s state, the simulation
can ’jump’ in simulation-time from one event to the next (provided the next
event has a higher or equal timestamp than the previous). The simulation
clock attains the value of the timestamp of the last executed event, and is
thus non-decreasing. The termination time of a simulation is the simulation
time at which the simulation model ends, and thus the simulation terminates.
Any events scheduled after the termination time will thus not be executed.
Readers who are interested in entering the Discrete Event Simulation field are
recommended to read [34]. In the context of Parallel Discrete Event Simula-
tions, Discrete Event Simulation is sometimes also referred to as Sequential
Discrete Event Simulation.

1.3 Parallel Discrete Event Simulation

The type of Parallel Discrete Event Simulation we will be discussing in this
thesis is named ’Model Parallelism’ (Section 1.3.3). For completeness we
will briefly introduce the two other types of Parallel Discrete Event Simula-
tion, Application Parallelism (Section 1.3.1) and Backend Parallelism (Sec-
tion 1.3.2). Throughout this thesis, when we mention Parallel Discrete Event
Simulation, we refer to ’Model Parallelism’. Thus for clarity, a ’PDES algo-
rithm’ is an algorithm in the Model Parallelism area.

1.3.1 Application Parallelism

Application parallelism is the type of parallelism concerned with the parallel
execution of multiple instances of (the same) sequential discrete event sim-
ulations. Because we are executing sequential discrete event simulations in
parallel, we can only execute one simulation per core (more are possible, but
not recommended, because it would slow down performance). For example,
suppose we have a quad-core processor at our disposal. We can run four
instances of the same sequential discrete event simulation (usually with dif-
ferent seed values). This type of parallelism is usually used to quickly get
enough simulation results for statistical soundness and, due to its simplic-
ity, is also referred to as ”embarrassing parallelism”. As mentioned earlier,
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we will not address more of this topic in this thesis. One of the downsides
of this approach is its memory consumption. Executing four instances si-
multaneously, requires four times the amount of memory needed for a single
simulation. This puts constraints on the size of the simulated model.

1.3.2 Backend Parallelism

Backend parallelism is concerned with parallelizing the backend of Sequen-
tial Discrete Event Simulations and thus increase the performance of the
simulation. In this case the term ’backend’ is used to address all components
with which the simulation interfaces. Such systems are (parallel) access to
databases, I/O, User Interface, etc. This approach only provides limited
speedups.

1.3.3 Model Parallelism

In this thesis (and most of the literature on this subject), the term ’PDES’
is used when referring to Model Parallelism. A Parallel Discrete Event Sim-
ulation (PDES) distributes a single discrete event simulation over multiple
processors (e.g. message-based cluster computers) [20]. This allows us to
create large models while still exploiting parallelism.
A PDES simulation consists of a set of Logical Processes (Section 1.3.3), usu-
ally one per processor, that communicate via ’messages’, and work together
to correctly simulate the model. One needs to ensure that causality (’cause
and effect’) constraints (Section 1.3.5) are not violated while exploiting as
much parallelism as possible.

Logical Processes

A parallel discrete event simulation consists of a set of Logical Processes
(LPs) that are usually a model of an abstracted Physical Process (PP) in the
simulation. LPs do not share any state variables, thus we have a distributed
state.

LPs operate independent from each other where each LP has its own state
and simulation clock. Each LP also maintains a collection of unprocessed
events, referred to as its Future Event List (FEL). Each LP is responsible for
processing the events in its FEL in timestamped order, as not to violate the
Local causality constraint [22]. This constraint ensures that the entire simu-
lation follows a valid processing order of events, and thus that the simulation
model as a whole is executed correctly.
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Each LP can be viewed as a separate ’thread’ and only communicate via mes-
sages. Typically there are two kind of messages. A Simulation event message
is a timestamped event message. An event message with timestamp tt sent
from LPi to LPj indicates that LPi schedules a new event at timestamp tt in
LPj. Usually the message also contains a the timestamp at which the mes-
sage is sent from LPi, this has no effect in the simulation model but is usually
used by PDES synchronization algorithms (Sections 2.1 and 2.2). An event
message can only be sent form LPi to LPj if, and only if, there is a ’relation’
between Physical Process i (PPi) and Physical Process j (PPj) in the real
world and thus, the simulation model. The other type of messages are used
in order for the PDES synchronization algorithms to correctly function. The
amount and content of such messages are dictated by the algorithm used.
An Logical Process can thus be viewed as a ’local’ Sequential Discrete Event
Simulation, it has its own state, simulation clock and set of unprocessed
events (or Futer Event List). This FEL can contain events received from
other LPs and local events. Both of which can generate new events that are
either scheduled locally, or scheduled on a neighboring LP.

1.3.4 Parallel Discrete Event Simulation Graph

LPs can send messages to each other if and only if their respective Physical
Processes (PPs) can interact with each other. These kind of inter-LP rela-
tions can be modeled into a graph, named the PDES Graph throughout this
thesis. Constructing the PDES Graph is relatively straightforward. Consider
a directed graph G(V,E) constructed in the following manner. Each LPi is
represented by a vertex vi ∈ V and we include directed edge ei,j = (vi, vj) ∈ E
if and only if LPi is allowed to schedule events on LPj (equivalently: iff LPi is
allowed to send event messages to LPj). The resulting graph G thus models
the inter LP dependencies, where each LPi can only receive event messages
from its ’incoming neighbors’ in G (i.e. The LP at the tail of a directed
edge). Edges are sometimes undirected and can be interpreted as two di-
rected edges, indicating that both LPi and LPj can send event messages to
each other. The degree distribution of a (PDES) graph is the (probability)
distribution of the degrees of the graph. The degree distribution of a graph
with n vertices is given by P (k) = nk

n
, with nk the amount of vertices with

degree k.

1.3.5 Causality

Each LP (and Discrete Event Simulator) needs to process all of its events in
timestamped order. Suppose we consider an LP that has a number of events
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scheduled to be processed. Then it must always execute Emin, the scheduled
event with smallest timestamp. Suppose it executes event Ex 6= Emin first,
then it is possible that Ex alters a state variable that is used by Emin. Thus
creating a situation where the future influences the past. Such an error
is referred to as a causality error , Ex is then called an out-of-order event .
Demanding that no causality errors occur is referred to as the Local causality
constraint , in the context of PDES. It guarantees the valid execution of the
simulation model in Parallel Discrete Event Simulation. Formally[22]:

"Local Causality constraint: A discrete event simulation, consisting

of logical processes(LPs) that interact exclusively by exchanging

timestamped messages, obeys the local causality constraint

if and only if each LP processes events in

nondecreasing timestamp order."

To illustrate the constraint more clearly we proceed with an example.
Suppose LP1 has processed all events up to event E1, and suppose LP2 sim-
ilarly up to E2. LP1 executes E1. As a result it sends an event-message to
LP2 scheduling E3 < E2 in LP2.

(a) LPs 1 and 2 have processed all events
up to E1 and E2 respectively

(b) E1 schedules an event before E2

Figure 1.1: A causality error

But, since LP2 has already moved past the planned execution time of E3,
E3 is scheduled to be executed ’in the past’ at LP2.

PDES synchronization algorithms ensure that this constraint is not vio-
lated. Some of these algorithms are evaluated in Chapter 2.

1.4 The need for Parallel Discrete Event Sim-

ulation

PDES simulations are used in a variety of fields, examples are: traffic [62, 47],
aviation [59], networking [50] (where the authors use Distributed DES in
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combination with PDES) and the global epidemiology of avian influenza (or:
”bird flu”) [49].

To illustrate the need for PDES research, we consider PDES performance
studies conducted over the last 15 years or so. Summarized in [24], studies
over the past 15 years have achieved a performance of 138K [25](2003) 32K
[45](2007) 187K [10](2009) and 256K [9](2013) events per second per core.
These number are to be taken with a bit of a grain of salt, as the authors did
not execute the same algorithm, implementation or used the same hardware.
However, these results do indicate a trend, namely that over a period of 10
years, an increase of ’only’ a factor two in events per second per core was
achieved. Processor clock rates of single cores in processors are known to be
limited by problems with heat dissipation since around the year 2005. Thus
more effort is put into increasing the number of cores in (super)computer
architectures [61]. Yet, modern problems create larger and larger simulation
demands. Since clock rates per core is only seeing mild increase, increases
in simulation execution speed will largely have to come from increased par-
allelism.

1.5 Thesis organization

This thesis is organized as follows, we will first present a literary study (Chap-
ter 2) to introduce the reader to concepts generally used in the PDES field.
It aims to place the research we will conduct in this thesis (Chapter 3) in the
context of its field. In this thesis we contribute to the PDES field by intro-
ducing a new PDES-synchronization benchmarking algorithm (Chapter 4),
and a fast new parallelism prediction algorithm (Chapter 6). Next, we will
discuss some of the implementation details of the experiment setup (Chap-
ter 7) that we will use to evaluate both contributions (Chapter 8), before
concluding this thesis with our findings (Chapter 9).
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Chapter 2

A literary survey

Several surveys have been published earlier (e.g. [3], [21], [44] and [30]). Here
we present a modest literary survey to give the reader an introduction into
the field of Parallel Discrete Event Simulations (PDES).

In general, there are two types of PDES synchronization algorithms that
enforce the Local Causality constraint. Conservative algorithms (Section 2.1)
avoid causality errors from occurring, whereas Optimistic algorithms (Sec-
tion 2.2) detect such errors and recover from them. In Sections 2.1.1 through
2.1.3 we present several variants of conservative algorithms. Whereas Sec-
tions 2.2.2 and 2.2.3 do this similarly for optimistic algorithms. We describe
the Parallel HOLD benchmarking algorithm PHOLD in Section 2.3.1. The
PHOLD algorithm is frequently used to evaluate the performance of PDES
synchronization algorithms and will play an central role in the rest of the
thesis.

2.1 Conservative Algorithms

In conservative algorithms, an event is blocked from execution until it is
certain that executing the event will not violate the local causality constraint.
The performance of conservative algorithms are usually largely determined by
the the size of the so-called lookahead value. An LP is said to have lookahead
value L, if this LP is able to predict that it will produce no messages in
the simulation time interval [Clock, Clock + L], where Clock is the current
simulation time (See Figure 2.1 for an example). Thus (roughly speaking) for
every LPi it is safe to process events up to the minimum over the simulation
time of all incoming neighbors summed with their respective lookahead value.
Thus: min

neighbor k
(Clockk + Lk), with Clockk and Lk the simulation clock and
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lookahead value of neighbor LPk of LPi.

Figure 2.1: Indicating the importance of lookahead a value, here, blue events
can be processed safely in parallel, assuming all LPs have lookahead L

Suppose we don’t explicitly consider lookahead, then each event, can pos-
sibly schedule an event on an other LP with timestamp Clock+ ε, with ε > 0
the smallest timestamp increase (we assume non-zero timestamp increases
per event). This implies we have a constant lookahead of the smallest times-
tamp increase allowed. Having such a small lookahead value L forces LPs to
execute a very small amount of events in parallel. The result is that the entire
simulation is executed (largely) sequentially. The execution time of such a
simulation might actually be greater than the execution time of the sequen-
tial DES simulation because we still have the overhead of sending messages
between LPs.

In the following sections we consider several types of conservative algo-
rithms. Deadlock-avoidance algorithms (Section 2.1.1), prevent deadlocks
from happening, whereas Deadlock detection and recovery algorithms (Sec-
tion 2.1.2) allow deadlocks to occur. Finally we discuss the Conservative
time window type of algorithms in Section 2.1.3, where a set of ’safe’ events
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is determined and allowed to execute using a global control mechanism. asyn-
chronous synchronization algorithms do not have such a global control mech-
anism.

2.1.1 Deadlock-avoidance

In the late 1970’s Chandy & Misra [14], and Bryant[11] independently pub-
lished the first asynchronous Conservative synchronization algorithm. This
algorithm is referred to as the CMB (Chandy-Misra-Bryant) algorithm. The
algorithm follows the following main idea. Every time an LPi sends an event
message to a neighboring LPk, it also sends a Null-message to all its other
neighboring LPs. This Null message informs the neighboring LPs of a lower
bound on the timestamp (i.e. its Simulation time plus its lookahead value)
of any event message LPi might send in the future. Neighboring LPs can
thus determine a lower bound on the timestamp (LBTS) of all messages it
might receive in the future (from all its neighbors). Using the LBTS, an LP
can determine which events from its FEL are safe to process without risking
causality errors in the future. In short, the propagation of Null messages
prevent deadlocks. For a formal proof we refer the reader to e.g. [14]

9



The following example demonstrates a deadlock situation. Suppose our
PDES graph is as depicted in Figure 2.2. We assume that ’Source’ has no
incoming neighbors. All messages in the CMB algorithm are represented as
a tuple (t + L, m). Here t is the timestamp of when the message is sent
(Thus the originators simulation clock) plus a lookahead value L, and m is
the message’s content. Here m can take the value of a simulation specific
event, or NULL.

Figure 2.2: An example PDES topology.

Suppose we consider a job shop simulation with termination time Z. LP1,
LP2, and LP3 are all machines that can process a job in exactly 5 seconds.
The Source generates jobs J1, J2 to be scheduled on LP1 at simulation times
50 and 110 before the simulation time ends at Z ≥ 110.

In the tuple representation mentioned earlier, the tuple (t + L, (T , Ji))
represents that the event-message is sent, from the originating LP at times-
tamp t, has a lookahead value of L and contains a job (event) Ji to be
scheduled, at the receiving LP , at timestamp T . The following sequence of
steps will eventually result in a deadlock if no NULL messages are used.

1. Source outputs (50 + 60, (50, J1) to LP1. Here Lookahead L is 60,
because the Source does not have any incoming neighbors, and is thus
able to ensure that the next event message to be sent to LP1 is one of
its own, and must thus be J2, which has a scheduled timestamp of 110.

2. LP1 executes J1, as its event timestamp is less than the received LBTS
from the Source.

3. LP1 outputs (110 + 5, (55, J1)) to LP2.
LP1 can determine such a high lookahead because it has no events of its
own to process, so any events to be executed on LP1 must come from

10



the Source. The Source already guaranteed that it will not schedule
any events earlier then 110. Since LP1 also knows that processing a job
takes 5 seconds, it can add it to the lookahead that it outputs to LP2.

4. LP2 outputs (115 + 5, (60, J1)) to LP3 with a similar rationale as
mentioned in step 3.

5. LP3 is unable to determine whether it can safely execute (60, J1) be-
cause it might receive an event-message from LP1 scheduling an event
at a lower timestamp. Thus LP3 does not execute (60, J1).

6. Source outputs (Z, (110, J2)) to LP1 and terminates, as there are no
more events to process.

7. LP1 outputs (Z, (115, J2)) to LP2 and terminates.

8. LP2 outputs (Z, (120, J2)) to LP3 and terminates.

LP3 has now two pending events, being: (60, J1) and (120, J2) which it can
not execute as it has no way of knowing if LP1 will schedule any events on
LP3 and thus the system deadlocks. The CMB algorithm prevents this from
happening by sending messages (115, NULL) and (Z, NULL) from LP1 to
LP3 at steps 3 and 7.

Under the assumption that each event progresses the simulation clock,
Null messages also guarantee that the simulation will always progress. When
this assumption is relaxed, the system can end up in a Live lock caused e.g.
by a cycle in the PDES graph where all LPs have a lookahead value of 0.
Although there are algorithms that tackle this issue ( e.g. [57] ), we will
assume that all events progress the simulation clock throughout this thesis.
In [56] a couple of variants of the CMB algorithms are considered. Among
these is the Demand driven Null message approach[39]. In contrast to the
original CMB algorithm where Null messages are broad-casted, in the de-
mand driven approach, an LP requests a null message from its neighbors
when it must wait. This significantly reduces the amount of Null messages
sent thus reducing the overhead. One of the downsides of this algorithm is
that the request messages grow in size, depending on the amount of nodes in
the PDES graph. The Bain and Scott algorithm alleviates this problem by
keeping track of pending requests at every LP. Note: The original algorithm
is presented in [7], but we were unable to obtain the paper, it is however
discussed and explained in [37] and [36].

11



2.1.2 Deadlock detection and recovery

Chandy and Misra also introduced a conservative algorithm that does not use
Null-messages [15]. This deadlock detection and recovery algorithm allows
the simulation to end up in a deadlock and has a way of detecting it and
recover from it. These algorithms proved to be limited in success, most
notably because the simulation is largely processed sequentially leading up
to a deadlock.

2.1.3 Conservative time window

Lubachevsky was the first to introduce the idea of using a Moving Time
Window in [35]. The idea of a Time Window is to determine the set of safe
events that can be executed in parallel at a global level. A window is defined
by a lower bound timestamp, and the ’size’ of the window. The lower bound
Bl is defined as the minimum timestamp of all unprocessed events (over all
LPs). The size s of the window is defined such that any event with its
timestamp in this window (i.e. [Bl, Bl+s]), is safe to be executed in parallel.
An iteration (i.e. determining the window and execution of all events in it)
is referred to as an epoch.

The YAWNS (Yet Another Wireless Network Simulator) algorithm, in-
troduced in [41], is an example of an algorithm that uses a time window.
This algorithm is relatively simple, and analyzed in [46] to study the poten-
tial parallelism of this algorithm on scale-free PDES graphs. Determines a
window as mentioned above, by stalling all LPs, determine the lower bound
Bl globally, and execute all events in the window [Bl, Bl + L) in parallel.
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2.2 Optimistic Algorithms

In contrast to conservative algorithms, optimistic algorithms don’t avoid
causality errors. Instead, the LP that receives an out-of-order event (i.e.
an event to be scheduled in the past), performs a ’rollback ’ of its state and
simulation clock, processes the received event, and carries on. An event that
causes such a rollback is called a straggler event . A straggler event may cause
other LPs to also perform a rollback due to the undoing of sent messages.
This is referred to as a cascaded rollback .

Optimistic algorithms typically consists of a local and a global control
mechanism. In short, the local control mechanism governs execution at the
LP level (including its local simulation clock), whereas the global control
mechanism facilitates in the deletion of redundant memory and progression of
the Global Virtual Time (GVT), (intuitively) defined as the minimum times-
tamp over all simulation clocks. In the context of optimistic algorithms, an
LP’s simulation clock is usually referred to as its Local Virtual Time (LVT).
The most popular optimistic algorithm is without a doubt, Jeffersons Time
Warp algorithm (Section 2.2.1 ). Since its introduction in 1985, several vari-
ants were published, most of which are strictly local control mechanism al-
ternatives (Section 2.2.2) or global control mechanism alternatives (Section
2.2.3).

2.2.1 Time Warp

Jefferson’s Time Warp algorithm [31], although published in 1985, is still
very relevant today. It is the first optimistic algorithm published and most
state-of-the art optimistic algorithms are based on this.

In 2013, the PHOLD benchmarking algorithm (Section 2.3.1) was evalu-
ated on a super computer containing approximately 1.97 million cores. This
benchmark ran the Time Warp algorithm with ’reverse computation’ (section
2.2.2), producing a record-breaking 504 billion events per second [9].

Below we will introduce the Local and Global control mechanisms for the
Time Warp algorithm.

Local control mechanism

In the Time Warp algorithms, LPs are allowed to process events regardless
of their neighboring LPs. This puts them at risk for receiving out-of-order
events. If such an event is received, a rollback is performed. This rollback
has two tasks: restoring the state and undoing the execution of all events
that were ’wrongfully processed’.
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For example, suppose we consider an LP that is at simulation time 100, and
receives a message with a timestamp of (right before) 50. Then the rollback
mechanism ensures that the state’s values are reverted to timestamp 50, and
all events that have been processed that have a timestamp greater or equal
to 50 are undone. In order to be able perform the rollback, events must thus
only perform at most two undoable actions. i.e.
1) Modify state variables
2) Send messages to other LPs
Note that we can consider a strictly local event (i.e. events that remain inside
the LP and does not send a message to other LPs) as a modification of state
variables in the context of a rollback.
In order to be able to revert the state to an earlier point in simulation time,
each LP makes and stores a snapshot (i.e. timestamped copy) of its state,
prior to executing each event. This method is called copy state saving. This
method is expensive in both time and memory. Several variations have been
proposed to alleviate these costs (Section 2.2.2). When a rollback is per-
formed, an LP restore its state from one of its stored snapshots, and deletes
all snapshots that have a timestamp greater than the new simulation time.

A state rollback only affects the current LP locally, whereas a message
sent to an other LP might have caused the other LP to also send messages to
other LPs and so on. Thus one message sent might affect all LPs in the entire
system (!). To undo a sent message, the LP only has to send its anti-message
to the same destination as the original message. An anti-message is identical
to the original (positive) message, but with an extra flag to mark it as an
anti-message.
When an anti-message is received by an LP we have two cases.

1. The positive message is not processed yet.
In this case the anti-message ’annihilates’ the positive message from the
future event list of the LP and both messages are erased from memory.

2. The positive message has already been processed.
In this case the receiving LP is rolled back to the point just before the
positive message was processed, and the anti-message annihilates the
positive message.

The second case may cause the additional sending of anti-messages to other
LPs, which may result in additional rollbacks. The case where a rollback
causes rollbacks for other LPs is called a Cascaded Rollback .
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Global control mechanism

Two major problems arise when trying to perform a rollback

1. I/O operations can not be rolled back.
E.g. writing intermediate output to a database or sending data over a
network as a result of the execution of an event.

2. The system can quickly run out of memory if every state snapshot is
kept in memory throughout the duration of the simulation.

Both problems can be tackled by calculating a lower bound on the timestamp
of any rollback that might occur. This lower bound is referred to as the
Global Virtual Time (GVT). State snapshots that are older then the GVT
can be discarded safely. Similarly, any pending timestamped I/O operations
older then the GVT can safely be committed. (except for the one state
snapshot and pending I/O operation right before the GVT, in case of a
rollback to GVT). The deletion of obsolete state snapshots is referred to
as Fossil Collection. Because a rollback is caused by an out-of-order event
message, we can define the GVT as the smallest timestamp of the LVT and all
messages and anti-messages that have not been processed yet. This includes
messages in transit (i.e. a message that has been sent, but not yet received).
The original algorithm Computes this value by having a separate process,
broadcasting a ’lower bound’ request to all LPs at set intervals in wall-clock
time(real, as in not simulation relation, time). Each LP then calculates its
own lower bound by taking the minimum of

1. Local Virtual Time

2. Send times of event/anti-messages that have been sent but not yet
acknowledged. I.e. The Local Virtual Times at which the event/anti-
message was sent

3. All send times of event-messages that have been received but not yet
scheduled. I.e. The Local Virtual Times at which the event/anti-
message was sent by the originating LP.

When all LPs have reported their lower bound, the slightly-out-of-date lower
bound GVT is computed by taking the minimum over all reported values. A
number of alternatives have been proposed since then (Section 2.2.3).
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2.2.2 Alternative local control mechanisms

Having to save the current state prior to the execution of each event can
quickly put a strain on the available memory if the GVT computation is not
accurate enough, or if some LPs are far ahead enough of the GVT.
One approach is called Incremental state saving. This method does not save
the entire state every time, but only saves the changed variables. Since less
information is stored, incremental state saving can reduce the memory foot-
print of state saves.
A far more complex approach named reverse computation [13] ideally does
not require any state saves at all. In the case of a rollback, the state is re-
stored by computing the inverse operations of each event that needs to be
rolled back. This approach puts additional strain on the simulation program-
mer as for each operation executed during an event, code has to be inserted to
define its inverse. This is undesirable especially for scientists outside the field
of Computer Science that typically have less of a programming background.
Although this problem can be alleviated (somewhat) by automatically gen-
erating the necessary code, not all operations can be inverted (e.g. some
bit-wise operations). In these cases incremental state saving is usually used.

2.2.3 Alternative global control mechanisms

Samedi defined two problems that need to be overcome when computing the
GVT [51]. A transient message is a message that has been sent, but has
not yet been received. LPs can be scheduled of different physical CPU cores,
even across multiple machines and networks. Thus we can not assume all
messages are sent-and-received instantaneously.

The ’transient message’ problem is to calculate the GVT while taking
transient messages into account. Samedi proposed to use message acknowl-
edgments to address this problem. The other problem arises because different
LPs will report their minimum timestamp at different points in wall-clock
time and is referred to as the ’simultaneous reporting’ problem.

Mattern proposed an alternative algorithm that does not use message
acknowledgments [38]. Instead it uses the concept of cut points. A cut point
is placed on every LP asynchronously, dividing it in a ’past’ part, and a
’future’ part. The set of all cut points on all LPs thus form a ’cut’ of the
entire simulation, also dividing it in a past and future part. A cut message
is a message that is sent from the past part of the cut, and received in the
future part, thus crossing the cut. A valid GVT value can then be computed
by determining the minimum timestamp of any unprocessed message or anti-
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message in the snapshot of the LP at its cut point and of any cut messages.
To address the transient message problem, each LP maintains a count of the
amount of messages it has sent, and the amount of messages it has received.
when both sums over all LPs are equal, there are no transient messages in
the system.
A more blunt synchronized ’flushing method ’ works as follows:

1. Stop the execution of events.

2. Flush the network of all messages
i.e. Receive all messages

3. Handle all messages
i.e. Schedule or annihilate events or perform rollbacks

4. Goto: 2 if there are still messages to be processed.

5. Determine new GVT, which is the minimum over all unprocessed sim-
ulation events.

Because this method is executed synchronously for each LP, and no simula-
tion events are executed, this process will eventually terminate. The result is
that no more messages are in transit, and thus the transient message problem
is no longer applicable. [42]

2.3 Benchmarking

After having introduced two main types of synchronization algorithms and
several specific algorithms, a natural question one asks is ”What is the fastest
algorithm?”. The answer to this question is ”It depends”. There are several
ways to compare such algorithms. We could perform an actual simulation,
and experiment with different kinds of algorithms. This has the disadvantage
that results don’t necessarily hold for simulation models in other fields.

Having a speedup in execution speed due to parallelism is obviously nice,
but it generally is not the case that the speedup scales linearly with the
amount of threads. E.g. having 4 threads might speed up the execution of
the simulation by a factor of (only) 2. To analyze these kinds of speedups
(or slow-downs...) obtained by a synchronization algorithm, it is common to
use the PHOLD benchmark (Section 2.3.1). Alternatively, one can attempt
to predict the potential amount of parallelism that can be obtain by looking
at the PDES topology from a mathematical point of view (Section 2.5). This
can be useful in cases where one attempts to map LPs onto the simulation
model such that it utilizes parallelism as efficient as possible (Section 3.1.2)
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2.3.1 PHOLD

The PHOLD benchmark [23] abstracts away any domain specific modeling
aspects, and benchmarks the PDES synchronization algorithms themselves.
The PHOLD benchmark is the parallel version of HOLD [58], a benchmark-
ing algorithm for sequential discrete event simulation algorithms (primarily
focused on the performance of the Event Queue). In the HOLD algorithm, a
set of events is scheduled, each scheduling a new event with an inter-event-
timestamp (i.e. the simulation-time between two events) drawn from an
exponential distribution. The PHOLD algorithm takes the PDES-graph and
schedules events uniformly random across all LPs. Executing an event results
in a new event being generated and scheduled, or sent to an other LP. This
’other’ LP is chosen also uniformly random from the LP’s neighbors. Fi-
nally, each event is scheduled at the LP’s current simulation time, increased
by a value drawn from an exponential distribution, usually summed with a
constant ’lookahead’ (especially when evaluating conservative algorithms).
Although the original PHOLD paper evaluated the PHOLD performance of
multiple distributions, it is common to only use the exponential distribution
(see e.g. [28], [9], [46], [29] ) This process ensures that the same amount of
messages remain present in the system and all LPs are treated equally.
Figure 2.3 shows an example of a possible event scheduling progression for
both the HOLD benchmark and the PHOLD benchmark.

(a) A possible HOLD execution (b) A possible PHOLD execution

Figure 2.3: Event scheduling of a possible HOLD and PHOLD execution

Defining more LPs than there are processors is called saturated , whereas
having more processors than LPs is called unsaturated .
PHOLD has several important deficiencies that can lead to misleading per-
formance results. As summarized in [61], these are.

1. Most uses of PHOLD use highly regular topologies such as e.g. a fully
connected network.
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2. PHOLD does not consider events with different computational require-
ments.

3. Each event schedules a single new event on a neighboring LP where
each LP is equally likely to be selected.

One of the goals of this thesis is to extend the PHOLD benchmark (Chap-
ter 4) in such a way that its results represent the performance of PDES
simulations more accurately.
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2.4 Scale Free networks

The degree distribution of a graphG(V,E) can be obtained by taking degree(v)
∀v ∈ V . A scale free network [8] is a network, for which the node degree
distribution follows a power law distribution.

Pr(k) ∼ k−λ[16] (2.1)

With node degree k, and parameter λ ( sometimes referred to as its degree
exponent) that usually lies between 1 and 3. Thus Pr(k) approximately ex-
presses the probability of selecting a node with exactly degree k. Intuitively
this means that there are few nodes with high degree (so called hubs) and
many with low degree (or leafs). Figure 2.4 depicts an example graph. A
more mathematically thorough analysis of the Scale Free topology with re-
gards to PDES graphs can be found in Chapter 10 in the Appendix.

Figure 2.4: An example of a scale-free network, the hubs are highlighted in
gray

Many real-life problems exhibit scale-free properties. Some examples are
protein-protein interaction networks [32], some financial networks, such as the
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interbank payment network [55]. The autonomous system (or ’inter domain’)
level of the Internet is also believed to be scale-free [53]. Constructing a
PDES-graph from such models naturally also results in a Scale-free topology.

The performance increase for scale-free PDES topologies is highly de-
pendent on the value of λ [46]. It turns out that PDES algorithms provide
only a modest speed increases for cases where the PDES graph is a scale-free
network with small values of λ.

Pareto distribution

A power law is a reformulation of the Pareto distribution [6]. Its probability
distribution function(PDF) and Cumulative distribution function (CDF) are
given by:

f(x) =

{
αxαm
xα+1 x ≥ xm

0 x < xm
(2.2) F (x) =

{
1− (xm

x
)α x ≥ xm

0 x < xm
(2.3)

Where xm is the positive minimum value of x, and parameter α.

2.5 Analytical modeling of potential paral-

lelism

Mathematically modeling the execution of PDES simulations is a relatively
new direction that the PDES field is taking. Of special interest is the PDES
topology, and its effect on the potential amount of parallelism (i.e. ’how
many events can be executed in parallel’).
Due to its simplicity, the YAWNS algorithm is commonly analyzed, arguing
that the results transfer to other synchronization (conservative) algorithms.

Andelfinger and Hartenstein performed ’white-box’ analyses on three dif-
ferent network models in [4]. They propose an analytical model that es-
timates potential parallelism based on specific simulation model knowledge
and statistics obtained from sequential simulation runs. This limits its appli-
cation for (very) large scale models as it might not be possible to run these
on sequential simulations due to memory and/or time constraints.
Pienta and Fujimoto introduced an iterative analytical model in [46] to ap-
proximate the potential parallelism in cases where the PDES topology forms
a scale-free network. They explicitly make a distinction between hub nodes
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and leaf nodes and consider them differently. The authors derive the model by
mathematically approximating a PHOLD execution for scale-free networks
with 2 < λ < 3 (This limit is imposed by some of the integrals they use).
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Chapter 3

Research

In Section 3.1 we present our research questions and discuss their relevance
in Section 3.2. Given these questions we plan to employ the methodologies
presented in section 3.3 to answer them.

3.1 Questions

We distinguish two main topics in this thesis, all having to do with bench-
marking PDES synchronization algorithms. These topics are PHOLD (Sec-
tion 3.1.1) and analytical modeling (Section 3.1.2)
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3.1.1 PHOLD

PHOLD [23] is widely used to measure the performance of PDES synchro-
nization algorithms. While useful to the PDES field in its early years, it
fails to capture important aspects of real PDES simulations. Most uses of
PHOLD use regular topologies such as a toroid or a fully connected network
with the message sent to a neighboring LP with any neighbor equally likely
to be selected. The problem with this is that a toroid, or fully connected
graph leads to a highly symmetric network with a well balanced computation
workload per LP. Most performance studies (such as most of the ones men-
tioned in Section 1.4) use highly regular networks. Such topologies are very
different from real-world networks that are typically irregular, with skewed
degree distributions. There are cases where a simulation modeler can rea-
sonably predict if and where (at what LP) a larger bulk of the events will
be processed. (e.g. Near exits in case of an evacuation of a building (crowd
simulation). On, near or toward highway exits at start/end of business day
(road traffic simulations), etc. Currently, the PHOLD benchmark does not
facilitate in using this information.
PDES simulations are also run on (expensive) super computers, in this case,
having to ’guess’ which synchronization algorithm will perform best is less
than ideal. Specifically for Time Warp, an interesting performance measure,
is to consider the amount of rollbacks. This is an interesting measure as
rollbacks are the main cause of performance degradation in the Time Warp
algorithms. We plan to extend the PHOLD algorithm in such a way that we
can answer the following research questions.

1. What happens to the amount of parallelism of a PHOLD execution if
events are (unevenly) distributed during the benchmark.

2. What is the relation (if there is one) between rollbacks and the value
of λ in scale-free PDES topologies?
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3.1.2 Analytical modeling for a given PDES graph

An analytical model, in this context, expresses the potential amount paral-
lelism that can be obtained for a given PDES graph. Of special interest are
Scale Free networks. Many problems exhibit scale-free like structures and
parallelizing these proves challenging. An analytical model, that is able to
predict the amount of parallelism in a PDES graph might provide insights
that lead to the development of new, better PDES synchronization algo-
rithms.

Why do we bother with such analytical modeling? Well, it concerns a topic
we will not touch in this thesis. This is the problem of constructing a PDES
graph from the original simulation graph (where each node is e.g. a source,
sink, server, etc. and each edge represents a possible ’communication’ be-
tween such entities) by grouping nodes into LPs. Two LPs have an edge
between them if, and only if one or more of their internal simulation nodes
also have an edge between them. Constructing an PDES graph of k LPs
(vertices in the PDES graph) from a simulation graph, while minimizing
the amount of edges between LPs is NP-Complete. This k-way graph parti-
tioning problem is formally defined as follows. Given a graph G(V,E) and
integer k > 0, find k disjoint subsets of V of (almost) equal size, such that the
amount of edges between the subsets is minimized. This problem is shown
NP-Complete in [5].

Often, some form of Local search algorithm is used with a fitness function to
tackle such a problem. In this case we would use a function of the amount
of edges as a fitness function. We hypothesize that an (general) analytical
model that expresses the potential parallelism, taking into account the result-
ing topology, will be a better fitness function compared to only minimizing
the amount of edges.
Most synchronization PDES algorithms are developed for general PDES
topologies (one exception is: [33] which was developed for feed-forward net-
works). Knowing more about the relation between the scale free topology
and parallelism, might aid in the development for synchronization algorithms
that work well for scale free networks.

In Section 3.1.1, we proposed to extend the PHOLD benchmark. Here we
propose to develop an analytical model (or algorithm) that makes predic-
tions for this extended version of the PHOLD benchmark. A good prediction
model of the extended PHOLD benchmark, should be able to answer most
of the same questions asked for the extended PHOLD benchmark. Natural
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questions are thus:

1. How well can our analytical model approximate the amount of paral-
lelism for a given PDES graph?

2. What happens to the amount of parallelism of a PHOLD execution if
events are (unevenly) distributed during the benchmark. I.e. Some
LPs have to process significantly more events than others.

Note: When we started working on this thesis we first wanted to extend
the analytical model presented in [46]. This model was specifically designed
to predict the amount of parallelism present in the topology of general case
scale free networks. The authors mathematically derived their model using
primarily the mathematical properties of scale free networks. Resulting in a
model that attempts to predict the amount of parallelism for different values
of λ.
When we started working on the implementation of this model in Mathe-
matica [60] we realized that we could use some of its aspects do develop a
prediction algorithm for any given PDES graphs. Using this new prediction
algorithm, we can predict the amount of parallelism for complete graphs and
instances of scale free networks. We decided that this was a more interesting
undertaking than the original, because of its wider applicability.

3.2 Relevance for science, technology and so-

ciety

Many interesting fields of research exhibit scale free properties (See Section
2.4 for some examples). Yet simulating very large model that exhibit such
properties proves troublesome using the PDES synchronization algorithms
known to date. PHOLD attempts to benchmark PDES synchronization al-
gorithms but lack several important aspects, limiting its applicability. En-
hancing PHOLD in such a way that it better approximates a PDES simu-
lation, increases the validity of comparing different PDES synchronization
algorithms. Having this, hopefully encourages the development of PDES
synchronization algorithms that are (also) able to utilize large amounts of
parallelism in settings where the PDES graph exhibits scale free properties.
Hopefully, both the extension of the PHOLD benchmark and the approx-
imation model, provide more insights into the relation between the PDES
graph topology and parallelism. Ultimately we hope this aids in the devel-
opment of synchronization algorithms that (also) work well for e.g. scale free
networks. Having good synchronization algorithms for such networks might
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enable researches to develop complex global-scale models. E.g. To research
the global effects of new packet level protocols for the Internet.

3.3 Methodology

In this Section we describe the methodologies we plan to employ to answer
our research questions. In Section 3.3.1 we will discuss the approach for an-
swering the questions relating PHOLD and Section 3.3.2 will do this similarly
for analytical modeling questions.

3.3.1 PHOLD

We will implement the standard PHOLD benchmark and run an implemen-
tation of the CMB algorithm, the YAWNS algorithm, and the Time Warp
algorithm (with incremental state saving, and the network flushing method
of calculating the GVT).
These three algorithms are chosen because they are (still) commonly used in
the PDES field.

The PHOLD benchmark will run on a number of complete, and scale free
PDES graphs with varying values of λ. These graphs will be generated using
the statistical software application R [48] using the igraph package [17] that
uses a generalized version of the Barabasi-Albert algorithm [8]. This method
allows us to generate scale free networks where we can define the values of λ
and amount of nodes.

We will give a definition of the average parallelism. For YAWNS this is
the fraction of the amount of events the ’bottleneck LP’ has to process, over
the total amount of events that are processed in the whole window. For the
CMB algorithm this is the number of Null messages vs. number of event
messages. For the Time Warp algorithm, we will use the amount of rollback
events.

We will setup experiments where we schedule events un-evenly across LPs
during the simulation. This will answer all questions from Section 3.1.1.
Most PDES simulators available either implement some form of the Time
Warp algorithm (e.g. [12], [2] ), or an conservative algorithm (e.g. [1] that
implements an algorithm as described in [43], and the NS-3 simulator [29]).
To our knowledge there is no simulator available that is able to switch be-
tween these two types of algorithms. We could use separate simulators, but
we would have to assume that the simulators are equally well written, and
one simulator does not introduce more overhead than the other. This as-
sumption does not hold in general for different simulators. Ideally we’d have
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a simulator that is able to utilize both types of algorithms while sharing as
much code as possible to increase the ’fairness’ of the comparison.

3.3.2 Analytical modeling for given PDES graphs

Developing the prediction algorithm primarily requires a pen-and-paper ap-
proach and will be based on the YAWNS algorithm. Answering the questions
proposed in Sections 3.1.2, requires running experiments and comparing the
algorithm’s predictions to experimental results.
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Chapter 4

Extending PHOLD

The original PHOLD benchmarking algorithm lacks several aspects that limit
its applicability. In this chapter we will define the PHOLD algorithm (Section
4.1). This allows us to accentuate the extensions we propose (Section 4.2) to
form a more generalized version of the PHOLD algorithm i.e. The ’Extended
PHOLD’ (EPHOLD) benchmarking algorithm. This algorithm will allow us
to differentiate between LPs within the algorithm. Finally, we will see that
we can simulate PHOLD using this new algorithm, and more (Section 4.3).

4.1 A more formal definition of PHOLD

In PHOLD, each event executed schedules 1 new event and roughly consists
of 2 phases, the initialization phase, and operational phase. The initializa-
tion phase constructs the LPs and schedules the initial set of events across
LPs. The operational phase executes events per LP.

The initial PHOLD algorithm [23] defined 6 parameters:

1. Number of LPs

2. Message population: A positive integer, indicating the amount of events
in the entire system.

3. Timestamp increment function: A function that determines the times-
tamp increments between events. I.e. the difference between the times-
tamp of the event currently being executed, and its newly generated
event.

4. Movement function: Determining where a message is sent to
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5. Computation grain: The computational intensity required for event
execution. Note that this affects wall-clock time, not simulation time.

6. Initial configuration: Defining the initial distribution of events across
the LPs.

We will discuss these parameters one by one:
The Number of LPs N is an positive integer value, indicating the amount of
LPs used in the PHOLD benchmark.

The Message population M is the summed amount of events present in the
entire system. I.e. At not point during the benchmark will there be any
more, or less events present in the system than M . Throughout the PHOLD
benchmark, no LPs will be deleted, and no new LPs will be introduced.

The Timestamp increment function fT is a function that generates a times-
tamp increment value (usually taken from some kind of distribution e.g.
Exp(1)). This value, summed with a (fixed) lookahead value L, and the
current simulation time, defines the timestamp of the newly generated event.
As such, we demand that fT ≥ 0 holds.

The Movement function fM , in PHOLD determines where new events are
sent to. In PHOLD, when LPi generates a new event to be scheduled, in
general, two components need to be computed i.e. The timestamp of the
new event, and the neighboring LPj the event will be scheduled on.
The timestamp of this new event is generated using fT as mentioned above.
The event will be scheduled at neighbor LPj. This destination LPj is com-
puted by fM which, in PHOLD, selects a neighboring LP j from LPi’s neigh-
bors, discrete uniformly random.

The computation grain fC determines the amount of ’work’ that needs to
be done to execute an event in this instance of PHOLD. With this, the
computational intensity of all events can be configured. Note that the com-
putation grain affects wall-clock time, not simulation time. In almost all
PHOLD implementations this function is not used.

Finally the Initial distribution fI determines how many events are sched-
uled at which LPs.

The initialization phase uses parameters 1, 2, 3 and 6. The operational
phase uses parameters 3, 4 and 5. At first glance, these parameters seem to
be all that we need to approximate the performance of PDES simulations.
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Note however, that these parameters are defined over the entire system, and
are thus not customizable per LP. As far as we know, there are no PHOLD
implementations, or PHOLD experimental results conducted with LP spe-
cific characteristics.

Before extending the PHOLD benchmark, we will first introduce the notion
of a Space-time diagram. A Space time diagram can be seen as a 2 dimen-
sional grid. The vertical axis represents the progression in simulation time,
whereas the horizontal access indicates the N LPs of the whole PDES sim-
ulation (i.e. the ’space’). Figure 4.1 is an example of a space-time diagram.
Note that we already showed this Space-time diagram without mentioning
its concept in Figure 2.3b in Section 2.3.1. Also note that Figure 2.3a depicts
a 1 Dimensional space-time diagram.

Figure 4.1: A possible PHOLD execution, depicted in a 2D space-time dia-
gram

We assume (throughout this thesis) that the amount of LPs is finite and
fixed (as a parameter in PHOLD), thus no LPs are dynamically created or
deleted during the PHOLD execution. Assuming there are N LPs, LP1, ...
, LPN , LPi is mapped to spatial coordinate i (Assuming we start at 1). An
arc extending from space-time coordinate (s, Ts) to (r, Tr) represents that the
execution of an event at simulation-time Ts on LPs sends an event-message to
(i.e. ’schedules an event on’) LPr at time Tr, where Tr > Ts. In the paper in
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which PHOLD is introduced[23], Fujimoto divided up the spatial coordinates
into an x and y value. The point (x, y, T ) essentially gives an LP a coordinate
in a 2D plane. The Movement function then consisted of selecting a point in
the neighborhood (i.e. the LPs within a certain (euclidean) distance) of the
LP in the 2D plane. This made sense in the early days of the PDES field,
nowadays we have the concept of a PDES-graph, for which finding appro-
priate movement functions in this manner can get ’messy’ relatively quick.
Instead we will define PHOLD in terms of its PDES-graph G(V,E).
Vertex vi ∈ V represents LPi and we have that (vi, vj) ∈ E ⇐⇒ LPi can
send event messages to LPj (thus Physical Proces i (PPi) can ’interact’ with
PPj). First we define the set of all outgoing neighbors for a given vertex vi
as Ni = {vj ∈ V \ {vi} : (vi, vj) ∈ E}.

The Number of LPs N is given by the cardinality of V , |V |. The message
population M remains the same. The Movement function fM called for
LPi, now returns some vertex vj ∈ V where (vi, vj) ∈ E, or equivalently,
we demand that: fM(vi, Ni) ∈ Ni holds. The computation grain function fC
remains the same. Finally, the initial configuration fI , indicating the amount
of events to be scheduled per LP, is usually defined by N

|V | rounded to some
integer, for the total amount of events to be initially scheduled N . Note that
e.g. the Timestamp increment, movement, and computation grain functions
function usually use an initialized Pseudo Random Number Generator and
thus returns different results (with high probability) every time they are
called.

Overview 4.1 summarizes all previously mentioned parameters of PHOLD.

Number of LPs
Message population

Timestamp increment
Movement

Computation grain
Initial configuration


N
M

fT ≥ 0
fM(vi, Ni) ∈ Ni

fC ≥ 0
fI(M)

 (4.1)

PHOLD does not allow us to adjust e.g. the timestamp increments de-
pending on what LP is executing an event. (e.g. in Scale-free networks, if
the function is called from a hub node, or a leaf node).

4.2 Adding more details

In this section we will give a more generalized definition of the PHOLD
algorithm, by adapting some of its functions. This will provide us with more
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fine-grained control over the output of these functions. In Chapter 8 we
will use this more generalized model and evaluate it empirically. Instead
of distributing all events evenly across all LPs, we argue that a simulation
designer can sometimes already predict, to some extend, which LPs will
process relatively more events, and which will not. (e.g. end of business
day at 17:00 vs. 13:00 in road simulations). To incorporate this kind of
information, we re-evaluate the PHOLD movement function (Section 4.2.1),
Initial Configuration (Section 4.2.2), Timestamp increment function (Section
4.2.3) and computation grain function (Section 4.2.4). Finally, in Section
4.2.5 we present the Extended PHOLD model.

4.2.1 The movement function

The movement function governs the movement of events through the LPs,
following the PDES graph. In PHOLD, when an event is executed at LPi,
it schedules a new event on a neighboring LPj, where j is chosen uniformly
random from LPi’s outgoing neighborhood in the PDES-graph. We argue
that this is not always realistic to do, because it causes an even and symmetric
workload. (e.g. especially in complete PDES-graphs). To alleviate this issue,
we propose to assign weights to edges, and incorporate these weights in the
movement function fM .
We define wi,j as the weight of directed edge (vi, vj) ∈ E. We assume 0 <
wi,j : ∀(vi, vj) ∈ E, i.e. all edges have non-negative weights. Furthermore,
we define the set relating these weights to neighbors, per LPi as: Wi =
{(wi,j, vj) : ∀vj ∈ Ni}. Thus an element of Wi is a tuple containing an
outgoing neighbor vj of vi, and the weight wi,j of the edge between them. In
other words, its the set of ’weighted outgoing neighbors’ for vi. Now we pass
Wi as argument to our movement function fM . I.e. we have fM(vi,Wi) ∈ Ni.
This way, if LPi executes an event, it can select a neighboring LP to send
a message to with a probability that is proportional to the weights of its
neighbors.

4.2.2 Initial configuration

We define the initial configuration’s type as a function fI(G,M) that pro-
duces an array of |V | tuples (vi,mi), indicating the amount of events mi to
be scheduled, on vi (i.e. LPi) during the initialization phase. It still takes
the total amount of events to be scheduled as a natural number, but now also
takes the PDES graph as an argument. This allows us to e.g. differentiate
between nodes with large neighborhood, and those with small neighborhood.
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4.2.3 Timestamp increment

We would like that the timestamp increment function fT is able to differen-
tiate based on what LP is doing the computation. To this end we now pass
the LP i that is calling the function: fT (vi). We assume that the function is
first initialized with |V | (different) increment functions, one per LP . Thus
by passing vi to the function, it is able to select the appropriate increment
function. This way, we can e.g. have fT (v1) ∼ Exp(1), and fT (v2) = Exp(2),
if we wanted to.

4.2.4 Computation grain

Like we did with the other functions, we want to have the ability to differ-
entiate between LPs. To this end we also pass the calling LP as a parameter
i.e. fC(vi). Again, we assume that the function is first initialized with |V |
(different) computation grain functions. The parameter vi can then be used
to select the appropriate function.

4.2.5 Extended PHOLD

In earlier sections we proposed several changes to several PHOLD parameter
functions. Overview 4.2 gives this in one clear overview and is a reformulation
of expression 4.1.

Number of LPs
Message population

Timestamp increment
Movement

Computation grain
Initial configuration


N
M

fT (vi) ≥ 0
fM(vi,Wi) ∈ Ni

fC(vi) ≥ 0
fI(G,M)

 (4.2)

4.3 Examples

In this section we will provide two different examples. The first example
(Section 4.3.1) will go through all parameters of the EPHOLD algorithm.
This example will later on be analyzed for its parallelism and experimen-
tally verified (Sections 6.7.2 and 8.2.1 resp.) The second example (Section
4.3.2) will illustrate that we can also use EPHOLD to simulate the PHOLD
algorithm. Similar to the first example, this one will also be analyzed and
experimented with (Sections 6.7.1 and 8.2.1 resp.)
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4.3.1 Complete graph, different weights

For this example, let our PDES graph G(V,E) be a complete graph of 4
nodes, we construct 4 LPs and our message population is 40 events. For our
Timestamp increment function, we use an Exp(1) distribution for all events
executed at even-numbered LPs, and Exp(2), for all events executed at odd-
numbered LPs. Our movement is governed by the following function: Let
x be drawn from a U(0, 1) distribution. Let the weights be j for any edge
going to LPj, normalized proportional to the rest of the outgoing neighbors,
s.t. all outgoing weights sum to 1. Send the event, from LPi, over outgoing
edge wi,k, when the following holds:

wi,k−1 < x ≤ wi,k (4.3)

For all normalized weights of outgoing edges. Our computation grain is a
constant function, and our Initial configuration is 5, 15, 7, 13 events scheduled
at LP1, LP2, LP3, LP4 respectively. This example is shown in figure 4.2.

Figure 4.2: Snapshot of the execution of the EPHOLD algorithm at times-
tamp 0, right after the simulation is initialized. The green numbers indicate
the amount of events scheduled per LP. The probability of sending an event
over a particular edge (i.e. weight) is drawn at the tail of the edges

35



We define timestamp increment vector R as:

R =


Exp(1)
Exp(2)
Exp(3)
Exp(4)


Where the i-th element ri, of R is the timestamp increment function for LPi.
Given a fixed lookahead L, a possible execution can be as follows:

1. LP1 executes an event

2. LP1 draws x ∈ U(0, 1), which results e.g. in selecting outgoing edge
(LP1, LP4) (which has probability 4

9
of being selected)

3. LP1 schedules an event at LP4, with timestamp increment of L + X,
with X drawn from e.g. Exp(1)

4. LP2 executes an event

5. LP2 draws x ∈ U(0, 1), which results e.g. in selecting outgoing edge
(LP2, LP3) (which has probability 3

8
of being selected)

6. LP2 schedules an event at LP3, with timestamp increment of L + X,
with X drawn from e.g. Exp(2)

Notable differences with the PHOLD algorithm are the fact that we draw
timestamp increments from both Exp(1) and Exp(2) distributions, and the
way we select edges to send events over. The next example (Section 4.3.2)
shows us how we can simulate PHOLD using the same algorithm.

4.3.2 Simulating PHOLD

In this section, we will show that PHOLD executions form a subset of
EPHOLD executions. Consider the example we gave in the previous Section.
To simulate PHOLD, all we need to do is set all weights to 1

3
, distribute the

initial amount of events uniformly across all LPs(e.g. 10, 10, 10, 10). And
draw our timestamp increments (in practice usually) from and Exp(1) dis-
tribution at each LP. Figure 4.3 shows this instance.
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Figure 4.3: An initialized example of the EPHOLD algorithm where the
green numbers indicate the amount of events scheduled per LP

An example execution follows the same logic as the EPHOLD algorithm.
Given a fixed lookahead L:

1. LP2 executes an event

2. LP2 draws x ∈ U(0, 1), which results e.g. in selecting outgoing edge
(LP2, LP4) (which has probability 4

9
of being selected)

3. LP2 schedules an event at LP4, with a timestamp increment of L+X,
with X drawn from Exp(2)

4. LP1 executes an event

5. LP1 draws x ∈ U(0, 1), which results e.g. in selecting outgoing edge
(LP2, LP3) (which has probability 3

8
of being selected)

6. LP1 schedules an event at LP3, with a timestamp increment of L+X,
with X drawn from Exp(1)
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Chapter 5

Definitions of parallelism

Earlier (Section 3.1.1) we posed questions regarding the amount of paral-
lelism, and the influence of topology, and message flow on it. A straight for-
ward way of measuring parallelism is to consider the amount of (committed,
in the case of Time Warp) events per time unit (e.g. per second). The obvi-
ous advantage of this approach is being able to compare the performance of
all different synchronization algorithm. We argue that this approach is highly
influenced by the hardware used to perform the experiments on. E.g. since
the Time Warp algorithm typically accesses the computer’s memory more
often than e.g. YAWNS or CMB, one can ’increase’ Time Warp’s parallelism
by using quicker memory. Thus this makes comparing experimentation re-
sults from different researchers less straight forward.

Instead we intend to define parallelism in terms of the ’overhead’ introduced
by each synchronization algorithm. This does not allow us to compare the
amount parallelism between e.g. Time Warp and YAWNS, as they are too
different. But this does allow us to reliable compare e.g. different variations
of Time Warp

In this chapter we will give definitions of parallelism for the YAWNS (Sec-
tion 5.1), CMB (Section 5.2) and Time Warp (Section 5.3) synchronization
algorithms.

5.1 YAWNS

In conservative window based PDES synchronization algorithms, the LP with
the longest running time will become the bottleneck. (This can be because it
has the most events to process, or the most computationally demanding, or
both). Other LPs will thus have more idle time than the bottleneck LP. The
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more the amount of events, per window varies between LPs, the more idle
time we thus have. Throughout this section, we will assume that the execu-
tion of an event at LPk takes pk ∈ R units of wall-clock time. The value of
pk is determined by the Computation grain function in EPHOLD. Although
we can have different types of events, having different computational needs,
we argue that we can still approximate an average case computational need
per LP. Let the number of events, per window, for LPk, be nk ∈ N, the
bottleneck LP per window is the LP that has to do most of the work during
the window. We can compute the bottleneck LP of any window as follows:

arg max{nk · pk} (5.1)

I.e. the expression iterates over all LPs and returns the index k of the
bottleneck LP. Let emax be the amount of wall-clock time it takes to process
all the events in a window for the bottleneck LP. A logical definition is thus:

emax = max{nk · pk} (5.2)

The total amount of work W per window (i.e. all events in the window) is
then defined by:

W =
∑
k

nk · pk (5.3)

The amount of parallelism P obtained in a window is given by dividing the
amount of work that needs to be done, by the amount of time it actually
takes. Thus 0 < P ≤ |V |, P also expresses the speedup that can be obtained
versus a sequential discrete event simulation. A logical definition is thus:

P =
W

emax
(5.4)

We will illustrate the use of these variables by a small example. Suppose we
consider a complete PDES graph of four nodes, thus V = {LP1, LP2, LP3, LP4}
and E = V × V \ {(vj, vj) | vj ∈ V } the Cartesian product of V with itself,
excluding self loops. Furthermore, suppose we have 2, 3, 4 and 3 events
scheduled to be executed with running time pk = 1, in the current window,
at LP1, LP2, LP3, LP4 respectively.

The bottleneck LP is LP3, with emax = 4, W = 2+3+4+3 = 12, resulting
in parallelism P = 12

4
= 3. Thus, a speedup of factor 3 can theoretically be

obtained when compared to a sequential DES (for this set of events), where
4 is the maximum in this case. Figures 5.1 and 5.2 show the interpretation
of these values.

40



Figure 5.1: An example usage of some of the variables, a window of size L,
containing

∑
k nk = 12 events in total.
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Figure 5.2: In wall-clock time all LPs can process their events in parallel,
the processing time in wall-clock time in this figure is equal for all events (p4
units of wall-clock time)
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5.2 CMB

In the previous section we’ve defined parallelism for the YAWNS synchroniza-
tion algorithm. In this section we will similarly do this for the Chandy-Misra-
Bryant (CMB) algorithm. Since CMB is not a windows based algorithm,
like YAWNS, we can not use the same definition of parallelism. Instead, we
should consider the amount of event messages sent, and the amount of Null
messages sent. These Null messages are non-simulation messages and are
thus overhead introduced by the synchronization algorithm. Thus it makes
sense to define a definition of parallelism that punishes the amount of Null
messages. The amount of parallelism can then be defined as[46]:

P =
eEvent

eEvent + eNull
(5.5)

For the total amount of event messages sent eEvent and Null messages sent
eNull. Note that we can not compare the value of P for CMB with the value
of P for YAWNS.
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5.3 Time Warp

We have not been able to find a definition of parallelism for Optimistic al-
gorithms. Most authors report amounts of MPI messages sent per second,
or something similar (e.g. committed events per second). We argue that
these kind of metrics don’t capture the essence of parallelism in Time Warp
and are highly influenced by the hardware used. These statistics do not
account for the effect that anti-messages, and consequently, rollbacks have.
We argue that a rollback can be considered as ’overhead’ introduced by the
TimeWarp algorithm. An increase in the amount of rollbacks, thus increases
the amount of non-simulation work that needs to be done. Any definition
of parallelism for Optimistic algorithms, thus has to ’punish’ the amount,
and/or the ’severity’ of the rollback (i.e. the amount of work required to
recover from an out-of-order event).

We choose to distinguish two types of rollbacks i.e.

1. Idle rollbacks, i.e. When an LP was done processing events (and thus
was idling), and has to roll back from simulation time ∞.

2. Busy rollbacks, i.e. When an LP was still processing events, and has
to roll back.

A high amount of Idle rollbacks indicates that many LPs are idling often,
whereas relatively little other LPs are processing more events. This thus in-
dicates a non-uniform workload. Conversely, a high amount of busy rollbacks
indicates a more evenly distribute workload.

Thus we introduce our definition of parallelism as:

P =
Busy

Idle
(5.6)

For the total amount of Busy and Idle rollbacks. Note that, again, we can
not compare the value of P for Time Warp to the values of P for YAWNS
and CMB as these are defined differently.
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Chapter 6

A parallelism approximation
algorithm for EPHOLD using
YAWNS

In this chapter we will develop an algorithm to estimate the amount of par-
allelism for a given PDES graph and weight configuration for the EPHOLD
algorithm (Chapter 4) for the YAWNS synchronization algorithm (Section
2.1.3). To this end we will analyze the steady-state amount of events sched-
uled to be executed per window, per LP.
In the work of Dickens [18], a YAWNS window is also referred to as a gener-
ation of messages across a known period of simulation time. A generation i
constitutes a time-window [ti, ti +L) (For some lookahead value L, and sim-
ulation time t). All events with timestamp et ∈ [ti, ti +L) are said to belong
to generation i. Any events scheduled in higher generations due to the execu-
tion of messages in generation i are not a part of generation i. For clarity, we
will use the term ’window’ for the remainder of this chapter, instead of ’gen-
eration’ as they are (almost) identical. A definition of parallelism in YAWNS
has already been given in Section 5.1. In Section 6.1 we introduce several
variables that we will be using throughout the rest of the algorithm. After
analyzing the way newly generated events move between LPs (Section 6.3),
we will use several aspects of probability theory (Section 6.2) to estimate in
what future window, newly generated events will be scheduled (Section 6.5
and 6.4). These computations are performed iteratively until a steady state
of the amount of events scheduled per window, per LP, is reached. In section
6.6 we construct the final algorithm, and evaluate several examples (Section
6.7). This is an iterative algorithm. We argue that the EPHOLD bench-
mark will always result in a steady state with regard to the amount of events
scheduled per YAWNS window. This is because the timestamp increment

45



function does not change over time, and will thus cause a constant portion
of events to be scheduled in consecutive windows on average. The Movement
function also stays the same over the duration of the benchmark, and thus
will schedule a constant portion of its events on separate neighboring LPs.
We do not have to account of queue sizes, or waiting times, as the EPHOLD
benchmark does not use these elements. Finally, the total amount of events
in the EPHOLD benchmark remains the same throughout the benchmark.
These four arguments do not form a formal proof, but we argue that they
are strong enough to assume that the average amount of events scheduled
per window, will eventually reach a steady state, in (E)PHOLD.

6.1 The variables

Let A be the weighted adjacency matrix of PDES graph G(V,E). I.e. we
have: aij > 0 ⇐⇒ (vi, vj) ∈ E, and the sum of every row equals 1. (i.e.
∀i :

∑
j aij = 1).

Our next variable is our ’simulation state’ C. As mentioned earlier, the
algorithm iteratively simulates the execution and scheduling of events per
window. We define C as a Mc × |V | + 1 matrix. Here Mc is a user defined
constant that serves as an upper bound to the maximum amount of windows
our algorithm will process at. Element Ci,k represents the amount of events
(that were) scheduled at LPk at window i. Ci,(|V |+1) on the other hand equals
i if window i has been processed by the algorithm, and equals 0 otherwise.
Furthermore, let ~R be a vector of Probability Density Functions (PDFs).
Where the element at index k, (rk) is the PDF of the probability distribu-
tion used to compute the timestamp increment at LPk. E.g. in the standard
PHOLD algorithm, all elements of ~R hold the PDF of the Exponential dis-
tribution (Exp(λ)). The elements of ~R are initialized such that all constants
of the PDFs are known, and there is only one variable left free (typically

denoted as x). Thus every element rk of ~R is a function rk(x), taking a value
0 ≤ x ≤ 1 and returning the probability density at x.

6.2 Some probability theory

By the properties of a PDF, we have∫ ∞
0

rk(x) dx = 1 (6.1)
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For each PDF rk ∈ ~R. The probability that a variable Xk, drawn from a
distribution with PDF rk, lies between values a and b is given by. For all
elements rk of ~R.

Pr(a ≤ Xk ≤ b) =

∫ b

a

rk(x) dx (6.2)

The final probability expression we introduce is the Expected value E[Xk]
(also referred to as the probability’s mean).

E[Xk] =

∫ ∞
0

xrk(x) dx (6.3)

These expressions will come into play later in this chapter.

6.3 Movement of events

Every event schedules one new event on a neighboring LP. Suppose we have
a complete graph of 4 nodes as PDES graph and suppose 10 events are
scheduled in window i at LP1, LP2, LP3 and LP4. I.e. 40 events in total,
scheduled to be executed in window i. Let all weights be 1

3
(i.e. standard

PHOLD), then we can estimate the amount of events each LP will receive.
E.g. On average LP4 will receive 10 · 1

3
events from each of its neighboring

LPs, totaling 3 · 10
3

= 10 on average (for 3 neighbors). In the general case,
let Ci,k be the amount of events scheduled to be executed at LPk for window
i. The amount of events, produced by window i, that LPk will receive from
its incoming neighbors j, equals

Ii,k =
n∑
j=1

Ci,j · aj,k

With Ii,k, the amount of events produced by window i, that arrive at LPk.
Note, for now, we disregard in which subsequent window these events are
scheduled, we are only concerned with the amount of events that LPk receives
from its incoming neighbors as a result of executing the events in window i

6.4 Defining Sq,j

Let Sq,j indicate the probability that LPj will schedule an event in the q-th
subsequent window. E.g. Suppose LP1 executes an event during the current
window. Then the probability S0,1 expresses the probability that the newly
generated event will be scheduled in the next window, S1,1 the probability of
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scheduling it in the following window, etc.

There are two important observations:

1. A window’s lower bound is defined by the unprocessed event with small-
est timestamp.

2. The distribution of event timestamps in the current window influences
the way that newly generated events will be distributed across subse-
quent windows.

First we will introduce some variables. Let tc be the timestamp of the lower
bound of the current window, let t be the offset between an event’s scheduled
timestamp and tc. I.e. the timestamp of an event e in the current window is
of the form tc + t for some defined t. As dictated by (E)PHOLD, let L be a
fixed lookahead. Next we define tmin0 as the smallest timestamp of any events
scheduled outside of the current window. Thus, we have tmin0 ≥ tc + L, or
tmin0 = tc + L+ ∆0 for some unknown value ∆0 ≥ 0. Note, that no event is
scheduled in We know that the size of any window is going to be exactly L.
The relation between these variables are shown pictorially in figure 6.1.

Figure 6.1: A pictorial representation of the idea behind Sq,j for a given
LPj that is about to execute an event at timestamp tc + t, note the window
bounds. The ’current’ window has bounds tc and tc + L, the second tmin0
and tmin + L, etc. Note that the width of ∆0, and ∆1 are exaggerated.

The bounds of the windows, are not fixed in advance. We thus have to
somehow predict at what timestamp the next window will start. All we know
is that the timestamp of the upper bound of the window will be L higher
than the timestamp of the lower bound of the window. I.e. the current win-
dow has bounds tc and tc + L, the next has bounds tmin0 and tmin0 + L etc.
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Also note that the timestamp intervals [tc+L, tc+L+∆0), [tmink+L, tmin(k+1)+
∆k+1) ∀k = 0, 1, 2, ..., contain no events. To illustrate this, suppose that
all events in the current window are executed and all schedule new events
outside the current window (this has to be the case by definition of the win-
dow). Then, the next window starts at the event with smallest timestamp
(i.e. tmin0) outside of the current window. Here we have tc + L ≤ tmin0, and
∆0 = tmin0 − (tc + L) ≥ 0. Thus the ’space’ occupied by ∆0 contains no
events to be executed.
We can not give strict bounds on the sizes of ∆q, as they will rely on the
definition of the timestamp increment function(s). We do know however
that there will never be any events scheduled in the portions occupied by
∆k∀k = 0, 1, 2, ... in the average case, because it lies outside of any window.
Suppose event e, scheduled at timestamp tc ≤ tc+ t ≤ tc+L is executed, and
generates a new event to be scheduled at timestamp tNew. We now attempt
to derive the probability that tNew will be scheduled as such that it will be
executed during the next window (i.e. q = 0), or subsequent windows (i.e. q
= 1, 2, 3, ...). First we will derive the probability that any event scheduled in
the current window will schedule its new window falls into the next window
(i.e. q = 0). When this event is executed at LPj, we know that tNew is of the
following form: tNew = tc + t + L + Xj, for random variable Xj drawn from
rj (i.e. Xj ∼ rj). For brevity, we will write X instead of Xj, as this anal-
ysis is LP independent. Since we already know that the portion indicated
by ∆0 in figure 6.1 is void of any scheduled events, we can equally write:
Pr(tc +L+ ∆0 ≤ tNew ≤ tc +L+ ∆0 +L) = Pr(tc +L ≤ tNew ≤ tc +L+L).
In fact, the probability that event e will schedule a new event in the portions
occupied by ∆k will always be 0. Thus, for the purpose of determining a
probability, we can redraw Figure 6.1 as Figure 6.2.

Figure 6.2
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For completeness we will include the definitions of ∆k in the derivations
below. Finally, we note that X will always produce positive values i.e. 0 ≤
X < ∞, thus Pr(−a ≤ X ≤ b) = Pr(0 ≤ X ≤ b) for any positive values a
and b.

For q = 0, we derive:

Pr(tmin0 ≤ tNew ≤ tmin0 + L) = Pr(tc + L+��∆0 ≤ tNew ≤ tc + L+��∆0 + L)

= Pr(��tc + ��L ≤ ��tc + t+ ��L+X ≤ ��tc + �2 · L)

= Pr(0 ≤ t+X ≤ L)

= Pr(−t ≤ X ≤ L− t)
= Pr(0 ≤ X ≤ L− t)

(6.4)
Note that we can only perform the first step in derivation 6.4 in this context
by the definition of ∆0, we can not perform such simplifications in general
probability theory. Our earlier observation for ∆0, holds equally for ∆1. We
also observe that we can define tmin1 = tmin0 +L+ ∆1. The probability that
tNew will fall in the following window (i.e. q = 1) is then derived as follows:

Pr(tmin1 ≤ tNew ≤ tmin1 + L) = Pr(tmin0 + L+��∆1 ≤ tNew ≤ tmin0 + 2 · L+��∆1)

= Pr(tmin0 + L ≤ tNew ≤ tmin0 + 2 · L)

= Pr(tc + L+��∆0 + L ≤ tNew ≤ tc + L+��∆0 + 2 · L)

= Pr(��tc + ��L+ L ≤ ��tc + t+ ��L+X ≤ ��tc + ��L+ 2 · L)

= Pr(L ≤ t+X ≤ 2 · L)

= Pr(L− t ≤ X ≤ 2 · L− t)

In fact, we can define ∀q = 0, 1, 2, ... : tminq = tmin(q−1) + L + ∆q with
tmin(−1) = tc. This recurrence solves to:

tminq = tc + (q + 1) · L+

q∑
k=0

∆k (6.5)

With these observations we can derive the probability of whether tNew falls
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in the q-th subsequent window as follows:

Pr(tminq ≤ tNew ≤ tminq + L)

= Pr(tc + (q + 1) · L+

�
�
�
�q∑

k=0

∆k ≤ tNew ≤ tc + (q + 1) · L+ (

�
�
�
�q∑

k=0

∆k) + L)

= Pr(tc + (q + 1) · L ≤ tNew ≤ tc + (q + 2) · L)

= Pr(��tc + q · L+ ��L ≤ ��tc + t+ ��L+X ≤ ��tc + (q + 1) · L+ ��L)

= Pr(q · L ≤ t+X ≤ (q + 1) · L)

= Pr(q · L− t ≤ X ≤ (q + 1) · L− t)

Note, that we still need to estimate the value of t, we will do this later.
For now it is sufficient to bound t. We know that 0 ≤ t ≤ L. With this
assumption on t, we will show that Sq,j forms a valid probability distribution.
For this, we need to show that all possible values sum to 1, and all values are
in the interval [0, 1] for all values of q. Since all we’ve done is impose bounds
on the value of tNew for all values of q, we must show that the fractions over
all intervals sums to 1. Thus we need to show:

∀j : (
∞∑
q=0

Sq,j = 1) (6.6)

Observing that for all the mentioned intervals earlier, we have:

∞⋃
q=0

[
max[0, q · L− t], (q + 1)L− t

)
= [0, L− t)

⋃ ( ∞⋃
q=1

[q · L− t, q · L+ L− t))

= [0,∞)
(6.7)

Which shows that all intervals are continuous. The intersection for all men-
tioned intervals is the empty set i.e.

∞⋂
q=0

[
max[0, q · L− t], (q + 1)L− t

)
= [0, L− t)

⋂ ( ∞⋂
q=1

[q · L− t, q · L+ L− t))

= ∅
(6.8)

showing that the intervals don’t overlap for 0 ≤ t ≤ L. For Sq,j we have:

Sq,j =

∫ (q+1)·L−t

max[0,q·L−t]
rj(x) dx (6.9)
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We can rewrite equation 6.6, using equations 6.7, 6.8 and 6.9, resulting in
that we need to show that the following proposition holds:

∀j : (

∫ ∞
0

rj(x) dx = 1) (6.10)

By the properties of PDF rj, this is the case, and Sq,j is a valid probability
distribution over q for any given LPj.
What remains is to estimate the value of t. Any PDF that has a converging
mean E[X] will attain this mean when we consider the stabilized ’average
case’. I.e. The mean of the observed timestamp increment values will con-
verge to E[X]. Thus, in the average case we can assume, that event times-
tamps are evenly spread apart in any given window (with spacing E[X]). I.e.
in the average case, we can assume that event timestamps are Uniformly dis-
tributed between bounds 0 and L (denoted U(0, L)) within a window. Thus,
to approximate t, we can set t = E[U(0, L)] = L

2
.

Note that we are considering the average case here, where, in the long run,
the average of the observed values will attain these possibly after a relatively
long time.

Finally, tying everything together, we derived:

Sq,j =

∫ (q+1)·L−L
2

max[0,q·L−L
2
]

rj(x) dx (6.11)

6.5 Scheduling of events

An important part of the YAWNS algorithm is the concept of a time window.
To accurately approximate the execution of this algorithm, we thus must
approximate the amount of events that are to be scheduled and executed
per window. Suppose the algorithm has just executed all events in window
i, then LPk receives aj,k · Ci,j events, on average, from incoming neighbor j.
We also know that the timestamp increments of these events are drawn from
rj.

Let Sq,j (Section 6.4) express the probability that an event, originating
from incoming neighbor LPj, will be scheduled in the q − th next window.

Thus we expect that S0,j · aj,k · Ci,j events will be scheduled in the next
window (i.e. i+ 1), S1,j · aj,k · Ci,j, in window i+ 2, etc.
In the general case, we can thus state:

Ci+q+1,k =
n∑
j=1

Sq,j · aj,k · Ci,j (6.12)
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Note, that by the properties of probability distributions, we have that ∀j :∑
q Sq,j = 1, and thus, we are not losing, or introducing events in our calcu-

lations above.

6.6 The algorithm

In this Section, we will utilize all concepts introduced in the previous Sections
of this chapter, to construct the final approximation algorithm. The algo-
rithm has two main parts of interest, i.e. the initialization (Section 6.6.1),
the main loop and its guards (Section 6.6.2) We will present pseudo code for
the algorithm, and derive its worst-case run time complexity (Section 6.6.3)
before mentioning some design decisions (Section 6.6.4).

6.6.1 Initialization

Now that we have all our building blocks in place, we will construct the final
algorithm. We initialize state matrix C such that all elements are 0, except
the first row. The |V | elements in the first row of C hold the amount of events
initially scheduled at their respective LPs (i.e. C1,k = iek for initial amount of

events iek for LPk). ~R is initialized with PDF functions, and A is initialized
as the Graph’s weighted adjacency matrix. Once these initializations have
taken place we start the main loop of the algorithm (Section 6.6.2).

6.6.2 Iteration

The main loop simulates the execution and scheduling of events per window,
per LP. This is simulated by the following expression:

Ci+q+1,k ← Ci+q+1,k +

|V |∑
j=1

aj,kSq,kCi,j

For Current window i, and LPk. This computation is done for increasing
values of q up to a certain constant Mq. After these computations, we also
include the remainder:

Ci+Mq+1,k ← Ci+Mq+1,k +
n∑
j=1

aj,kCi,j(1−
Mq∑
q=0

Sq,k)

Such that we don’t lose any events. We repeat this for all LPs k and finally
mark window i as completed, in C:

Ci,|V |+1 ← i
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Now we increment i and repeat until ∀k : Ci,k = Ci−1,k. I.e. The amount
of events scheduled in window i and i − 1 are equal for all LPs, and thus
the solution is stable. In pseudo code the algorithm can be expressed as
follows: First, we define the convenience function IsStableGeneration. Its
task is to determine if the algorithm has reached a stable state. I.e. that two
consecutive iterations resulted in the same state.

Algorithm IsStableGeneration

Input: State matrix C and current window index i
Output: A boolean indication if window i is stable

1: return

|V |∧
k=1

(Ci,k = Ci−1,k)

Note that, especially when dealing with floating point numbers, we can
define equality here as ’close enough’. In our implementation, two numbers
a and b are considered equal iff |a − b| ≤ 1

100000
. More implementation

details are discussed in Section 7.1. The ’work’ of the algorithm is done in
the CalcGenerationForLP function. It computes the amount of events a
specified LP will receive, in which window they are scheduled and updates
the state matrix accordingly.

Algorithm CalcGenerationForLP

Input: State matrix C, current window index i and LP index k.
Output: All events to be scheduled at LPk are updated in C.
1: p← i+ 1
2: for all q ∈ {0, 1, ...,Mq − 1} do

3: Cp+q,k ← Cp+q,k +

|V |∑
j=1

aj,k · Sq,j · Ci,j

4: Cp+Mq ,k ← Cp+Mq ,k +

|V |∑
j=1

aj,k · Ci,j · (1−
Mq∑
q=0

Sq,j)

5: return C

The main algorithm then becomes:
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Algorithm ApproximationAlgorithm

Input: Adjacency matrix A, PDF vector ~R, list ` that hold the initial
amount of events scheduled per LP.

Output: A list of steady state amount of events per LP.
1: Initialize C as an Mc × (|V |+ 1) matrix of 0s, where row 1 is initialized

with the values of `
2: g ← 1
3: while g ≤Mc ∧ (g ≤ 1 ∨ ¬IsStableGeneration(C, g)) do
4: for all LPk do
5: C ← CalcGenerationForLP(C, g, k) // Let all LPs execute their

events.
6: Cg,|V |+1 ← g // Mark this window as ’executed’
7: g ← g + 1
8: return The first |V | elements of C of row g

Note: for all algorithms, we assume that Mc and Mq are known constants.
Secondly, we note that the value of |V | can be deduced from the adjacency
matrix A, and is thus not a required parameter.

6.6.3 Runtime Analysis

The runtime analysis of the algorithm derived early is relatively straightfor-
ward. We will first analyze the IsStableGeneration function.
Comparing two element of a matrix takes O(1) time, assuming the matrix is
represented as an array. The comparison is executed at most n times, with
n = |V |. Thus the entire function takes O(n) ·O(1) = O(n) time.

Next, we analyze the CalcGenerationForLP function. The assignment
statement takes a constant amount of time O(1). The for loop is executed
Mq times, the body of which, can be bounded above by O(n). The running
time of the loop thus becomes O(Mq · n). Step 4 also takes take O(Mq · n)
time and all other steps take O(1). Finally, the entire function thus takes:
O(1) +O(Mq · n) +O(Mq · n) +O(1), with Mq being a constant, this results
in a running time of O(n)

Finally, we analyze the ApproximationAlgorithm algorithm. The ini-
tialization step takes O(Mc · (n + 1)) + O(1) time, for C and g. The while
loop is iterated at most a constant Mc times, each time, the body of the
for loop is executed exactly n times. The call to the CalcGenerationForLP
function is the only operation performed in its body, which takes O(n)
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time, as analyzed earlier. The increment of g takes O(1) time, as does
the assignment of Cg,|V |+1. The total cost of the while loop thus becomes
O(Mc · (n · n+ 1)) = O(Mc · n2 +Mc).
Thus, the running time of the entire algorithm: O(Mc · (n + 1)) + O(1) +
O(Mc · n2) = O(Mc · n) +O(Mc · n2 +Mc) = O(n2) for constant Mc.
The algorithm will always terminate, due to the constraint Mc on the amount
of windows to process. Whether the algorithm terminates with a stable solu-
tion is found is less obvious. Similar to EPHOLD, the timestamp increment,
and movement functions do not change during the algorithm, and no events
are introduced, or lost during the execution of the algorithm. This is not
a formal proof, but we believe it is a strong argument to assume that the
algorithm will terminate with a stable solution, given a high enough value of
Mc.

6.6.4 Design considerations

By design, the algorithm does not calculate the amount of parallelism di-
rectly. This can easily be done using its output. As we saw, it outputs the
steady state amount of events scheduled to be executed per window, per LP.
If we have an estimation for all values of pk (usually this is assumed to equal
1, for all LPs), we can compute emax(Eq. 5.2), W (Eq. 5.3), and consequently
the amount of parallelism P (Eq. 5.4). We explicitly designed the algorithm
not to directly compute P , because the algorithm output offers more insight
into the bottlenecks in the PDES graph, as we will see when we work out
some numerical examples in Section 6.7.

6.7 Numerical Examples

In this section we will show two walk-through examples for given PDES
configurations an weights. We will show that we can approximate a normal
PHOLD execution (Section 6.7.1), and what happens if we change its weights
(Section 6.7.2). We will compare these examples with actual experiments in
Section 8.1.1

6.7.1 PHOLD execution

As an example, we will analyze the EPHOLD algorithm that simulates the
PHOLD algorithm for the PDES graph depicted in figure 6.3. Note that we
will analyze the exact same example presented earlier in Section 4.3.2.
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Figure 6.3: The PDES graph for our example, the probability of sending an
event over a particular edge is drawn at the tail of the edge

I.e. Our PDES graph is a complete graph of 4 nodes, where for all LPs,
each LP has and equal probability of receiving an event. The weighted ad-
jacency matrix is:

A =


v1 v2 v3 v4

v1 0 1
3

1
3

1
3

v2
1
3

0 1
3

1
3

v3
1
3

1
3

0 1
3

v4
1
3

1
3

1
3

0


The PHOLD algorithm schedules new events with timestamp increments
drawn from an exponential (Exp(1)) distribution, Thus we have:

~R =


e−x

e−x

e−x

e−x


For this example, we chose constants: Mq = 3 and Mc = 100. I.e. We
limit the amount of windows that can be scheduled ahead Mq to 3, and
the maximum amount of windows to compute to 100 (or if a stable solution
is found earlier). Now that we have all parameters, we can initialize state
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matrix C:

C =



10 10 10 10 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

...
0 0 0 0 0


We initialize g ← 1 and start the while loop. Because we have 4 LPs,

the for loop’s body is executed 4 times, updating C one LP per itera-
tion. The main part of the algorithm is the CalcGenerationFolLP func-
tion. We will provide explicit calculations for LP1, (I.e. k = 1) We have
p← 1 + 1 =⇒ p = 2, thus, in the first iteration of the for loop we have:

C2,1 ← C2,1 + a1,1 · S0,1 · C1,1

+ a2,1 · S0,2 · C1,2

+ a3,1 · S0,3 · C1,3

+ a4,1 · S0,4 · C1,4

Resulting in:

C2,1 ← 0 + 0 · 0.393 · 10

+
1

3
· 0.393 · 10

+
1

3
· 0.393 · 10

+
1

3
· 0.393 · 10

Similarly, for q = 1 and q = 2

C3,1 ← C3,1 + a1,1 · S1,1 · C1,1

+ a2,1 · S1,2 · C1,2

+ a3,1 · S1,3 · C1,3

+ a4,1 · S1,4 · C1,4

C4,1 ← C4,1 + a1,1 · S2,1 · C1,1

+ a2,1 · S2,2 · C1,2

+ a3,1 · S2,3 · C1,3

+ a4,1 · S2,4 · C1,4
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Equaling:

C3,1 ← 0 + 0 · 0.383 · 10

+
1

3
· 0.383 · 10

+
1

3
· 0.383 · 10

+
1

3
· 0.383 · 10

C4,1 ← 0 + 0 · 0.141 · 10

+
1

3
· 0.141 · 10

+
1

3
· 0.141 · 10

+
1

3
· 0.141 · 10

After the end of the for loop, with: 1 − (0.393 + 0.383 + 0.141) = 0.082 we
compute:

C5,1 ← 0 + 0 · 0.082 · 10

+
1

3
· 0.082 · 10

+
1

3
· 0.082 · 10

+
1

3
· 0.082 · 10

The process is similar for the other LPs, in fact, in this case, all numerical
values are equal. After this, we mark the window as executed by setting:
C1,5 ← 1. After processing one window in the algorithm, the state matrix
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looks as follows:



10 10 10 10 1.
3.935 3.935 3.935 3.935 0
3.834 3.834 3.834 3.834 0
1.410 1.410 1.410 1.410 0
0.821 0.821 0.821 0.821 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

...
0 0 0 0 0



One more iteration results in:



10 10 10 10 1
3.935 3.935 3.935 3.935 2
5.382 5.382 5.382 5.382 0
2.919 2.919 2.919 2.919 0
1.376 1.376 1.376 1.376 0
0.323 0.323 0.323 0.323 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

...
0 0 0 0 0
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Until finally, after 25 iterations, we reach a stable solution:

10 10 10 10 1
3.935 3.935 3.935 3.935 2
5.382 5.382 5.382 5.382 3
5.037 5.037 5.037 5.037 4
5.421 5.421 5.421 5.421 5

...
5.231 5.231 5.231 5.231 24
5.231 5.231 5.231 5.231 25
5.231 5.231 5.231 5.231 0
3.173 3.173 3.173 3.173 0
1.167 1.167 1.167 1.167 0
0.429 0.429 0.429 0.429 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

...
0 0 0 0 0


Figure 6.4 shows the progression of the solution in a graph.

Figure 6.4: Solution progression of the analysis of PHOLD for a complete
4-node PDES graph

We can clearly see that the solution oscillates first, and then becomes
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relatively stable after having processed about 8 windows. The long, seem-
ingly ’steady’ tail of the graph is explained by the ’close enough’ equality
enforced in the implementation of the IsStableGeneration function. All LPs
are predicted to process an equal amount of approximately 5.231 events per
window on average. This even distribution of workload is precisely one of
the critiques of the PHOLD algorithm. It only studies a most optimal per-
formance of a PDES simulation. In fact, if we redistribute the initial set of
events over all LPs, e.g. as 5, 15, 7, 13, for LP1, ...LP4, the average amount
of events per window still stabilizes at approximately 5.231 as we can see in
figure 6.5.

Figure 6.5: Solution progression of the analysis of PHOLD for a com-
plete 4-node PDES graph, with 13, 15, 5 and 7 events initially scheduled
at LP1, ..., LP4 respectively

6.7.2 Different weights

Like in our previous example, let our PDES-graph G(V,E) be a complete
graph of four nodes indexed 1 through 4. We leave everything the same
as in the previous example, except for the weights. Let weight w be de-
fined as the index of the LP at the head of the associated edge, normal-
ized s.t. all weights per LP sum to one. E.g. for LP1, we have outgoing
neighbors N1 = {LP2, LP3, LP4} we thus have weights: 2

9
, 3
9
, 4
9

for edges
(LP1, LP2), (LP1, LP3) and (LP1, LP4) respectively. Figure 4.3 shows this
pictorially.
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Figure 6.6: A complete 4-node PDES graph, with 5, 15, 7, 13 events initially
scheduled at LP1, ..., LP4 respectively, notice the weights are based on the
index number of the head of their associated edges

The associated Adjacency matrix for this graph is:


0 2

9
3
9

4
9

1
8

0 3
8

4
8

1
7

2
7

0 4
7

1
6

2
6

3
6

0



We again run the approximation two times. Once with 10 events scheduled
at each LP and once where we schedule 5, 15, 7, 13 events on LP1, ..., LP4

respectively (as in figure 6.6). When we run the approximation algorithm
for both initial configurations we immediately see that the average amount
of events per LP per window vary between LPs (Figures 6.7 and 6.8).
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Figure 6.7: Solution progression of the approximation algorithm for our
example with 10 events scheduled on each LP as initial configuration

Figure 6.8: Solution progression of the approximation algorithm for our
example with 5, 15, 7, 13 events scheduled on LP1, ..., LP4 respectively as
initial configuration

A clearly unbalanced workload distribution between LPs, the initial con-
figuration does not seem to matter in the average case. Both initial config-
urations attain a stable state at window 26, where we have C for our first
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initial configuration:

10 10 10 10 1.
1.70972 3.31014 4.75442 5.9645 2.
2.48716 4.6917 6.51883 7.83105 3.
2.52378 4.59273 6.10122 6.92924 4.
2.75659 4.95836 6.53347 7.4362 5.

...
2.69014 4.78246 6.27698 7.1737 24.
2.69014 4.78246 6.27699 7.1737 25.
2.69014 4.78246 6.27699 7.1737 0
1.63165 2.90071 3.80718 4.35107 0
0.600251 1.06711 1.40058 1.60067 0
0.22082 0.392569 0.515246 0.588853 0

0 0 0 0 0
0 0 0 0 0

...
0 0 0 0 0


The state matrix for our second initial configuration arrives at the same
solution: 

5 15 7 13 1.
1.98374 2.92916 5.4266 5.39927 2.
2.73615 4.34586 7.04234 7.4044 3.
2.58888 4.50557 6.11175 6.94076 4.
2.78919 4.9204 6.52482 7.4502 5.

...
2.69014 4.78246 6.27698 7.1737 24.
2.69014 4.78246 6.27699 7.1737 25.
2.69014 4.78246 6.27699 7.1737 0
1.63165 2.90071 3.80718 4.35107 0
0.600251 1.06711 1.40058 1.60067 0
0.22082 0.392569 0.515246 0.588853 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

...
0 0 0 0 0


For both cases, the algorithm predicts that LP4 will approximately execute
about 2.667 times more events per window than LP1. We will experimentally
test one of these configurations in Section 8.1.1
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Chapter 7

Implementation

To answer our research questions, we’ve implemented two software tools. We
will discuss some of the high-level aspects of our Mathematica implemen-
tation of the Approximation algorithm from Chapter 6 (Section 7.1). The
’experimentation framework’ (Section 7.2), implemented in C++, is capa-
ble of executing EPHOLD using several PDES synchronization algorithms.
The approximation algorithm outputs a prediction of the amount of paral-
lelism present in a given PDES configuration (PDES graph, PDFs etc.) for
EPHOLD when the YAWNS synchronization algorithm is used.

7.1 Approximation algorithm

The approximation algorithm presented in Chapter 6 is implemented as a
Mathematica package. Mathematica evaluates equation symbolically by de-
fault, allowing to see that fractions are equal without having to specify a
precision. This precision is normal when dealing with floating point(i.e. nu-
merical) equality. For performance reasons we decided to force Mathematica
to evaluate most of the algorithm numerically. Because of this, we need to
define a precision margin for two floating point numbers to be ’equal enough’.
For the algorithm, we accept two numbers a and b as equal iff |a−b| ≤ 1

100000
.

All experiment graphs are generated using R. For each experiment, the Ad-
jacency matrix is constructed in Mathematica from output generated by our
experiments that use the YAWNS algorithm.

To execute the algorithm, we need to provide a couple of input parame-
ters to the algorithm.
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1. Adjacency matrix A, I.e. A list of lists, where each list represents a
row.

2. PDF vector ~R. The algorithm expects that all elements of ~R use the
same free variable symbol (i.e. the variable to integrate over). Because

we need to integrate over ~R’s elements, we also need to supply the free
variable symbol to the algorithm. Thus, the algorithm expects a list of
two elements:

A list of PDF functions with one free variable.

The free variable symbol.

3. Initial configuration Cinit. I.e. A list of integers, indicating the amount
of events to be scheduled at the LPs in the first (’initial’) window.

4. Fixed lookahead value L.

5. Fixed value for estimated timestamp 0 ≤ t ≤ L.

6. An upper bound Mq to the amount of YAWNS windows the algorithm
’schedules ahead’ for.

7. An upper bound Mc to the amount of iterations allowed, in case no
stable solution is found.

The algorithm outputs a list of two variables:

1. The index g that marks the solution row in state matrix C.

2. The state matrix C.

The example in Section 6.7.1 was computed with the following call:

In[47]:= R =

μ ⅇ
-x μ

/. {μ → 1}

μ ⅇ
-x μ

/. {μ → 1}

μ ⅇ
-x μ

/. {μ → 1}

μ ⅇ
-x μ

/. {μ → 1}

// Flatten // N;

L = 1;

n = 4;

Mq = 3;

Mc = 100;

t =
L

2
;

A = 0,
1

3
,
1

3
,
1

3
, 

1

3
, 0,

1

3
,
1

3
, 

1

3
,
1

3
, 0,

1

3
, 

1

3
,
1

3
,
1

3
, 0;

{g, c} = ApproximatePDESParallelism[A, {R, x}, {10, 10, 10, 10}, L, t, Mq, Mc]
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Out[46]= {26, {{10, 10, 10, 10, 1.}, {3.93469, 3.93469, 3.93469, 3.93469, 2.}, {5.38219, 5.38219, 5.38219, 5.38219, 3.},

{5.03674, 5.03674, 5.03674, 5.03674, 4.}, {5.42116, 5.42116, 5.42116, 5.42116, 5.},

{5.14626, 5.14626, 5.14626, 5.14626, 6.}, {5.25557, 5.25557, 5.25557, 5.25557, 7.},

{5.21905, 5.21905, 5.21905, 5.21905, 8.}, {5.23938, 5.23938, 5.23938, 5.23938, 9.},

{5.22623, 5.22623, 5.22623, 5.22623, 10.}, {5.23267, 5.23267, 5.23267, 5.23267, 11.},

{5.23003, 5.23003, 5.23003, 5.23003, 12.}, {5.23127, 5.23127, 5.23127, 5.23127, 13.},

{5.23058, 5.23058, 5.23058, 5.23058, 14.}, {5.23094, 5.23094, 5.23094, 5.23094, 15.},

{5.23077, 5.23077, 5.23077, 5.23077, 16.}, {5.23085, 5.23085, 5.23085, 5.23085, 17.},

{5.23081, 5.23081, 5.23081, 5.23081, 18.}, {5.23083, 5.23083, 5.23083, 5.23083, 19.},

{5.23082, 5.23082, 5.23082, 5.23082, 20.}, {5.23082, 5.23082, 5.23082, 5.23082, 21.},

{5.23082, 5.23082, 5.23082, 5.23082, 22.}, {5.23082, 5.23082, 5.23082, 5.23082, 23.},

{5.23082, 5.23082, 5.23082, 5.23082, 24.}, {5.23082, 5.23082, 5.23082, 5.23082, 25.},

{5.23082, 5.23082, 5.23082, 5.23082, 0}, {3.17265, 3.17265, 3.17265, 3.17265, 0},

{1.16715, 1.16715, 1.16715, 1.16715, 0}, {0.429372, 0.429372, 0.429372, 0.429372, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}}

Figure 7.1: The result of the approximation algorithm. Here the stable
solution can be found in row 26 (indicated by the first element), in the
outputted state matrix c (second element, where each element indicates a
row)

7.2 The experimentation framework

The experimentation framework has the ability to run the EPHOLD bench-
mark using a user-defined PDES synchronization algorithm. In this section
we will show how we can use our framework to conduct experiments (Section
7.2.1), the dependencies it has. (Section 7.2.2) and the input it requires (Sec-
tion 7.2.3). Next, we will discuss the output it generates (7.2.4) and some of
the implementation details (Section 7.2.5).

7.2.1 Running experiments

Once compiled, the experimentation framework is operated via the command
line. And takes three arguments, being the scenario id, the PDES synchro-
nization algorithm to use, and wether to enable debug logging. Available
scenario Ids are listed in Sections 8.1.1 and 8.1.2.

Scenarios differ by the PDES graph, and distributions used. The graphs
are loaded from text files formatted in the edge list format (indicated by the
”.edg” extension). For the distributions we use the distributions available
in the C++11 libraries. The framework works with a concept of so called
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Scenarios and Experiments . A scenario dictates the EPHOLD configuration
(PDF functions, PDES graph, etc.) and an experiment actually runs the
EPHOLD benchmark. each scenario executes 100 experiments using different
seeds.

7.2.2 Code dependencies

The experimentation framework is written in the C++ programming lan-
guage with C++11 features enabled. Messages between LPs are sent using
the OpenMPI library [26]. Unfortunately, the current implementation of the
Message Passing Interface (MPI) lacks support for Windows Operating Sys-
tems. Thus the code was written on an Ubuntu 16.04 Operating System
(OS) using the Eclipse Parallel Tools Platform IDE (Ecplipse PTP) [19].
The other dependency is used to generate figures of the used PDES graphs.
For this, a system call to invoke the GraphViz library[27] is used.

7.2.3 Input

The framework uses several files and parameters as input.

1. Command line arguments i.e. The name of the PDES synchronization
algorithm, the scenario id, and ’1’, or ’0’ to enable, or disable debug
logging respectively.

2. The PDES graph files (in .edg format)

3. (Optional) Seed file

Available scenario Ids are listed in Sections 8.1.1 and 8.1.2.
The available synchronization algorithms and their corresponding parameter
codes are:

Synchronization algorithm Parameter

YAWNS YAWNS

Chandy Misra & Bryant CMB

Time Warp with incremental state saving TW

To actually run the framework, we have to invoke a program called mpirun.
This program, provided by the OpenMPI framework, sets up the MPI capable
threads (or ’nodes’) and distributes these across the available processor cores.
The only arguments it needs from us are the amount of threads (LPs) we
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wish to use, a path to our executable, followed by our own parameters. E.g.
To execute Scenario 5, with 4 LPs, using the YAWNS algorithm, with debug
logging disabled, one would execute:

mpirun -n 4 YAWNS 5 0

The PDES graph files are located in the Graphs folder, and are automatically
loaded based on the provided scenario Id. If there is no seed file available
one will be created with automatically generated seeds. These seeds are
generating using a Pseudo Random Number Generator(PRNG) initialized
with seed: 3539733 · (ScenarioId + 1). The number in the k · e-th row will
be used as seed to initialize the pseudo random number generator at LPk in
experiment 1 ≤ e ≤ 100. E.g. for a complete PDES graph of four nodes, we
have 4 · 100 = 400 different seeds.

7.2.4 Output

In this section we will discuss the content of the output files produced by
the experiments. The Output folder holds three other folders, being: Log,
Messages and Parallelism. The Log folder holds the debug log files that
each LP produces during the execution of each Experiment (if enabled).
These files are only relevant when debugging issues.
The Messages folder holds, for each experiment, two files per LP.
The LP1 PHOLD ESP.txt file contains a record of every event message sent
from LP1 to any other LP. It contains, the LP that the event message is sent
from, the timestamp of the event that was executed, the destination LP of
the newly generated event, and the scheduled timestamp of the sent event.
This file is used to test the validity the synchronization algorithms. Finally,
the LP1 WeightChange.txt file contains the weights of all its neighbors. This
file is later used to determine adjacency matrix A in our approximation al-
gorithm.
The Parallelism folder contains, per LP, a log of all parallelism statistics
that we are interested in. For YAWNS, these are all windows that occurred
per Experiment. For each window, it includes its lower bound, upper bound
and amount of events that particular LP had scheduled in the window. For
the CMB algorithm, we log the amount of Null messages, and the amount
of event messages. Finally, the Time Warp algorithm logs statistics of all
Rollbacks that occur.

Finally, Every scenario outputs a Graph.dot file, an export of the PDES
graph in ”.dot” format, and a Graph.jpg file, a visual representation of the
PDES graph.
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7.2.5 Details

In this section we will highlight some of the implementation details. The
foremost advantage of this implementation is that all PDES synchronization
algorithms are implemented using the same code base. All algorithms share
the same implementation for the base LP, Event Scheduling and Output
mechanisms.

YAWNS

Although YAWNS algorithm is relatively simple to explain, and is simple to
implement, there is on issue that needs to be addressed. Let our PDES graph
consist of 2 connected nodes. Consider the following sequence of events:

1. Both LPs start processing events in window [0, 1)

2. LP1 sends an event message e to LP2, attempting to schedule an event
at 1.15.

3. Both LPs have executed their events and move on to e.g. window [1, 2),
and start executing the events they have scheduled in the window.

4. LP2 receives e during the window.

This is a clear violation of the algorithm’s design. However, the MPI specifi-
cation does not guarantee that a message has been received after the ’send’
function call has been completed. Even placing a so called ’Barrier’ (a con-
struct that forces all MPI threads/LPs to only continue execution when all
LPs have reached that barrier) does not resolve this. Without elaborating
too much on the details, the MPI standard only ensures that the order of
messages sent is only preserved between two LPs. E.g. LP1 emits e1, e2, e3
and e4 to LP2, LP3, LP2 and LP2 respectively. Then the standard ensures
that LP2 receives e1, e3 and e4 in order, but places no restrictions on the
delivery time of e2 to LP3 in this context. Using this to our advantage, we
resolved this issue as follows. When an LP is finished executing its last event
in the window, it sends an additional message to all its outgoing neighbors,
indicating to the receiving LPs, that the originator is done sending event mes-
sages. When all such a message are received from all incoming neighbors,
the receiving LP derives it will not receive any more messages and can thus
proceed to a barrier. When all LPs arrive at the barrier, the new window
bounds are computed and the algorithm proceeds as intended.
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7.3 Analysis

To analyse the output generated by our experiments, we mainly used Mathe-
matica. All charts in Chapter 8 are generated using Mathematica notebooks.
We noticed that the Time Warp algorithms produce a lot of data. We devel-
oped a C# console application to preprocess this raw data. The preprocessed
data is then read into Mathematica to be further processed and generate
the charts. Here we present the list of notebooks and applications used to
analyze generated data:

1. TimeWarpRawOutputAnalyzer, a C# Console application to prerpocess
raw rollback statistics outputted by TimeWarp experiments.

2. TimeWarpAnalysis.nb is used to generate charts based on the prepro-
cessed data

3. NullvsEventMessagesAnalysis.nb is used to generate charts for CMB
experiments.

4. MeanParallelismWithModel.nb generates parallelism statistics (Sec-
tion 5.1) for the analysis of YAWNS experimental data, and compares
it with the approximation model’s solution.

5. MeanDifferenceWithModel.nb is used to analyze the amount of events
scheduled per window from experimentation, and compare it with the
approximation model’s prediction.
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Chapter 8

Experiments

In this chapter we will evaluate the experiments we performed. We set up
our way of working (Section 8.1), such that each set of experiments is at-
tached to a single scenario (Sections 8.1.1 and 8.1.2). More specifically, a
scenario fixes the PDES graph, and the movement function, for a set of 100,
or 30 experiments depending on the scenario. We test all scenarios using the
YAWNS, CMB and Time Warp algorthm and make the distinction between
experiments performed on complete graphs (Sections 8.2.1, 8.3.1 and 8.4.1,
for YAWNS, CMB and TimeWarp resp.) and scale free graphs (Section8.2.3,
8.3.2 and 8.4.2). Finally we will discuss the overall results, and conclusions
we can draw from them (Section 8.5).

8.1 Setup

As mentioned earlier, each scenario varies the PDES graph, and movement
function. First, we run our approximation algorithm (Chapter 6) for each
scenario. Next we run the YAWNS, CMB and Time Warp algorithm on the
same graph, and EPHOLD weight configuration. Each algorithm is run 100,
or 30 times per scenario. Each run (i.e. experiment) has a termination time
of 3000. (i.e. in simulation time) and schedules 10 events at the start at
every LP. Their timestamps are increments of values drawn from the Exp(1)
distribution. i.e. the timestamp of an event is the sum of the timestamp of
the previous event (or 0, in case of the first event to be scheduled), and a value
x, drawn from an Exp(1) distribution. The EPHOLD movement function
selects a neighboring LP using a discrete probability distribution, based on
the EPHOLD weights of outgoing edges in the PDES graph. Finally, The
timestamp increment function is defined as L + x, with L = 1, and value x
drawn from an Exp(1) distribution (i.e. the standard PHOLD definition).
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Per experiment, we measure the following:

1. In the YAWNS experiments: The amount of events executed per win-
dow, per LP.

2. In the CMB experiments: The total amount of simulation message and
total amount of NULL messages sent.

3. In the TimeWarp experiments: The total amount of Idle rollbacks, and
Busy rollbacks.

From these statistics, we can calculate the amount of parallelism (Chapter 5).
Using these experimental results, together with the scenario’s configuration
(i.e. PDES graph topology, and weights ( Sections 8.1.1 and 8.1.2), we intend
to answer all questions relating to PHOLD (Section 3.1.1). We intend to
compare the results obtained from the YAWNS experiments to the values
generated by the approximation algorithm. This will answer all questions
posed in Section 3.1.2. The experiments are run on a MSI Intel i7 quad-
core laptop, so most experiments are saturated. Each scenario generates
n · 100 seeds, one for each LP per experiment. A Pseudo Random Number
Generator seeded with (Scenario Id + 1) ·3539733 is initialized per scenario.
The Pseudo Random Number Generator then draws the n · 100 seeds that
are used to initialize the Pseudo Random Number Generators for each LP
per experiment. For our scenarios, we’ve generated sets of complete (Section
8.1.1) and scale free graphs (Section 8.1.2) using the R code presented in
Section 8.1.3. We note that all graphs used here are undirected. Which we
model by using two opposing directed edges in the PDES synchronization
algorithms, and approximation algorithm.
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8.1.1 Scenarios for complete graphs

Table 8.1 associates Scenario Ids with Graph file names. Each file name is
formatted as "<n>x<n>.edg", where n is the amount of nodes in the complete
graph. In total, we have 46 scenarios using complete graphs.

Scenario Id Graph File Name
0, 1 3x3.edg
2, 3 4x4.edg
4, 5 5x5.edg
6, 7 6x6.edg
8, 9 7x7.edg

10, 11 8x8.edg
12, 13 9x9.edg
14, 15 10x10.edg
16, 17 11x11.edg
18, 19 12x12.edg
20, 21 13x13.edg
22, 23 14x14.edg
24, 25 15x15.edg
26, 27 16x16.edg
28, 29 17x17.edg
30, 31 18x18.edg
32, 33 19x19.edg
34, 35 20x20.edg
36, 37 21x21.edg
38, 39 22x22.edg
40, 41 23x23.edg
42, 43 24x24.edg
44, 45 25x25.edg

Table 8.1: A list of scenario Ids and the graph files they load. E.g. 9x9.edg
loads a complete graph of 9 nodes

Note that for every two scenarios in table 8.1 The difference in even and
odd scenario ids is the choice of the weight function per LP. Let wk,j be the
weight for edge (vk, vj) in the PDES graph. Then we have:

wk,j =

{
1

|V |−1 Scenario Id is even
j+1
Qk

Scenario Id is odd

With Qk a normalization constant specific to LPk. In our implementation,
j can be 0, thus we add 1 to j so that we will also send messages to LP0.
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Note that the even numbered scenarios thus simulate PHOLD. In complete
graphs, all nodes have equal in-, and out-degree. Thus the only way to differ-
entiate between nodes is by node index. We hypothesize that even scenarios
will result in a similar workload for all LPs, and an uneven workload for odd
numbered scenarios.

Finally, we define scenarios 126 through 217 as our ’randomized sce-
narios’. These are scenarios where we randomize the EPHOLD weights per
LP. We’ve organized the scenario ids in groups of 4 similarly. E.g. scenarios
126, 127, 128 and 129 are run on the 3 node complete graph, 130 - 133 on
the 4 node graph, etc.
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8.1.2 Scenarios for scale free graphs

In this section we introduce the scenarios that use Scale Free PDES graphs.
The format of the filename indicates several parameters of the scale free net-
work. As we know, the degree distribution of a scale free distribution is
determined by the power of its power law distribution (i.e. λ). Each Scale
free PDES graph file name has the following format.

ScaleFree_p<λ>_n10_<i>.edg

Where:

1. p<λ> indicates the exponent λ of the power law exponent.
2. n10 indicates the amount of nodes in the graph (i.e. 10, in this case).
3. i indicates that the graph is a result of a i-th graph generated with the

same values of λ and n.

Similar to the complete graph, table 8.2 associates scenario Ids to Scale-
Free PDES graphs.

The even numbered scenarios again simulate PHOLD using the EPHOLD
algorithm. Odd numbered scenarios again have a different weight function.
Differentiating between the LP ids, like we did for the complete graphs, does
not make a lot of sense here. Instead we differentiate by degree.

We have for weight wk,j for edge (vk, vj) in the PDES graph:

wk,j =

{
1

|V |−1 Scenario Id is even
1+Sk−degree(vj)

Qk
Scenario Id is odd

With Qk a normalization constant for LPk, such that all weights for LPk sum
to 1, and Sk the sum of all degrees of all outgoing neighbors of LPk. Note that
the even numbered scenarios again simulate PHOLD. We hypothesize that
the nodes with high degree will become bottlenecks in the even numbered
scenarios. We try to alleviate this in the odd numbered scenarios, by sending
more event messages to nodes with low degree. We hypothesize that the odd
numbered scenarios will have a more even workload across LPs, and thus
result in an increase in parallelism.
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Scenario Id Graph File Name
46, 47 ScaleFree p0.5 n10 1.edg
48, 49 ScaleFree p0.5 n10 2.edg
50, 51 ScaleFree p0.5 n10 3.edg
52, 53 ScaleFree p0.5 n10 4.edg
54, 55 ScaleFree p0.5 n10 5.edg
56, 57 ScaleFree p0.5 n10 6.edg
58, 59 ScaleFree p0.5 n10 7.edg
60, 61 ScaleFree p0.5 n10 8.edg
62, 63 ScaleFree p0.5 n10 9.edg
64, 65 ScaleFree p0.5 n10 10.edg
66, 67 ScaleFree p1 n10 1.edg
68, 69 ScaleFree p1 n10 2.edg
70, 71 ScaleFree p1 n10 3.edg
72, 73 ScaleFree p1 n10 4.edg
74, 75 ScaleFree p1 n10 5.edg
76, 77 ScaleFree p1 n10 6.edg
78, 79 ScaleFree p1 n10 7.edg
80, 81 ScaleFree p1 n10 8.edg
82, 83 ScaleFree p1 n10 9.edg
84, 85 ScaleFree p1 n10 10.edg
86, 87 ScaleFree p1.5 n10 1.edg
88, 89 ScaleFree p1.5 n10 2.edg
90, 91 ScaleFree p1.5 n10 3.edg
92, 93 ScaleFree p1.5 n10 4.edg
94, 95 ScaleFree p1.5 n10 5.edg
96, 97 ScaleFree p1.5 n10 6.edg
98, 99 ScaleFree p1.5 n10 7.edg

100, 101 ScaleFree p1.5 n10 8.edg
102, 103 ScaleFree p1.5 n10 9.edg
104, 105 ScaleFree p1.5 n10 10.edg
106, 107 ScaleFree p2 n10 1.edg
108, 109 ScaleFree p2 n10 2.edg
110, 111 ScaleFree p2 n10 3.edg
112, 113 ScaleFree p2 n10 4.edg
114, 115 ScaleFree p2 n10 5.edg
116, 117 ScaleFree p2 n10 6.edg
118, 119 ScaleFree p2 n10 7.edg
120, 121 ScaleFree p2 n10 8.edg
122, 123 ScaleFree p2 n10 9.edg
124, 125 ScaleFree p2 n10 10.edg

Table 8.2: A list of scenario Ids and the graph files they load.
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Finally, we define scenarios 218 through 377 as our ’randomized sce-
narios’. These are scenarios where we randomize the EPHOLD weights.
We’ve organized the scenario ids in groups of 4, i.e., scenarios 218, 219, 220
and 221 are run on the ScaleFree p0.5 n10 1.edg graph, 222 - 225 on the
ScaleFree p0.5 n10 2.edg graph, etc.

8.1.3 Generating the graphs

All graphs are generated with R using the igraph library. The R code to
generate all graphs is showcased in figure 8.1

Figure 8.1: The interactive R session used to generate the graphs
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8.2 YAWNS

In this Section we analyze the average amount of events scheduled per win-
dow per LP, and compare this with the solution from the approximation
algorithm presented in Chapter 6. For each run, we record the transmitted
event messages and compute the amount of parallelism, which is then com-
pared to the output of the approximation algorithm. We ran all scenarios
and measured the average amount of events per window, and computed the
difference between the results of the approximation algorithm and the mea-
sured data. The results are numerically summarized per LP, in Tables 9.1,
9.2, 9.3 and 9.4 in the Appendix.

Even numbered Scenarios
For the even numbered scenarios we present the progression of the measured
mean amount of messages per window for scenarios 0, 10, 20, 30 and 40
in Figures 8.2, 8.3, 8.4, 8.5 and 8.6 respectively. The predicted amount of
events per window is plotted as a horizontal dashed line. These figures plot
the ’running average’ of the amount of messages executed per window, per
LP (Equation 8.1) based on experimental data.

fi(Mg) =
1

Mg

·
Mg∑
k=0

mi,k (8.1)

For the first windows Mg, with amount of messages in the k-th window at
LPi, mi,k. fi(Mg) thus expresses the ’running average’ of the amount events
executed in the first Mg windows for LPi. We can also plot the amount of
parallelism (Section 5.1), which we will do in Section 8.2.1. The advantage of
plotting it this way, is that we can evaluate the precision of the predictions
with a bit more accuracy, because we can see the expected vs. actual amount
of events per window, per LP.
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Figure 8.2: Progression of the average amount of events per window, and the
approximated solution (in black) for Scenario 0

Figure 8.3: Progression of the average amount of events per window, and the
approximated solution (in black) for Scenario 10
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Figure 8.4: Progression of the average amount of events per window, and the
approximated solution (in black) for Scenario 20

Figure 8.5: Progression of the average amount of events per window, and the
approximated solution (in black) for Scenario 30
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Figure 8.6: Progression of the average amount of events per window, and the
approximated solution (in black) for Scenario 40

Interestingly enough, we can clearly see that for small complete graphs,
the approximation algorithm performs relatively well for PHOLD. Though
when the amount of nodes in the graph increase, so does the deviation from
the predicted values. It seems that, for larger PDES graphs, either our as-
sumption: t = L

2
was too presumptuous, or we did not reach a sufficiently

steady enough state in our experiments. We will further investigate this in
section 8.2.1.

Odd numbered Scenarios
For the odd numbered LPs we inspect the differences visually in Figures 8.7,
8.8, 8.9, 8.10 and 8.11 for scenarios 1, 11, 21, 31 and 41 respectively. Again,
the predicted amount of events per window is plotted as horizontal dashed
lines. This time the are color coded per LP, matching the LP color of the
experimental data.
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Figure 8.7: Progression of the average amount of events per window, and the
approximated solution (dashed) for Scenario 1

Figure 8.8: Progression of the average amount of events per window, and the
approximated solution (dashed) for Scenario 11
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Figure 8.9: Progression of the average amount of events per window, and the
approximated solution (dashed) for Scenario 21

Figure 8.10: Progression of the average amount of events per window, and
the approximated solution (dashed) for Scenario 31
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Figure 8.11: Progression of the average amount of events per window, and
the approximated solution (dashed) for Scenario 41

We can clearly see that both the approximation algoirthm and the exper-
imental results point to a highly non-parallelizable configuration. We see the
biggest difference between LPs for scenario 41. The bottleneck LP processes
around 9 events per window, whereas the LP with the most idle time only
handles 0.5 messages per window on average. Similar to the even numbered
scenarios, the approximation seems to lose its predictive capabilities as the
PDES graph size increases. We will further investigate this in section 8.2.1.

8.2.1 Parallelism in complete graphs

In this section, we analyze the amount of predicted vs. the amount of ob-
served parallelism. In short, parallelism is defined by the sum of the average
amount of events per window, divided by the average amount of events that
the bottleneck LP has to process per window. In this analysis we will in-
vestigate the approximation error , which we define as 100 · (1 − Po

Pp
), with

predicted amount of parallelism Pp, and observed amount Po.

Even numbered scenarios

When we plot the average predicted and observed amount of parallelism for
all even numbered scenarios (Figure 8.12) we observe that:

1. The amount of Parallelism grows linearly proportional to the size of
the PDES graph
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2. The predicted amount of parallelism seems to be higher, or equal to
the observed amount of parallelism

3. The approximation error seems to increase when the PDES graph size
increases.

Figure 8.12: Predicted and observed parallelism for even numbered scenarios
(i.e. PHOLD scenarios) for complete graphs

The fact that the approximation algorithm overestimates the amount of
parallelism for the even numbered scenarios is not that surprising (observa-
tion 2). The approximation algorithm consistently predicts the maximum
amount of parallelism possible (i.e. n for a PDES graph of n nodes), thus
observing a higher amount of parallelism would indicate an error in our ex-
periments. Because these are complete graphs, we have that every node is
a neighbor to every other node. When an LP selects a neighboring LP to
schedule a new event on, the edge, to send the event message over, is chosen
uniformly random (for even scenarios) from the LPs outgoing edges. This
creates a highly uniform workload over all LPs, where all LP have to process
about the same amount of events per window, maximizing the amount of
parallelism.

Observation 3 is similar to what we observed in the previous section, and
warrants further investigation. If we look at the numerical approximation
errors (8.3), we see that a ’large’ error occurs for scenario 38.
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Scenario Id Predicted Observed Error %
0 3. 2.995 0.167%
10 8. 7.939 0.762%
20 13. 12.678 2.477%
24 15. 14.63 2.467%
32 19. 18.683 1.668%
34 20. 19.635 1.825%
36 21. 20.415 2.786%
38 22. 21.384 2.8%
40 23. 22.399 2.613%
42 24. 23.204 3.317%
44 25. 24.235 3.06%

Table 8.3: The predicted and observed amount of parallelism, for an even
numbered subset of scenarios. The results for all complete even scenarios are
shown in table 9.5 in the Appendix

We can also discern that the error increases with the scenario id. This is
perhaps better highlighted by Figure 8.13

Figure 8.13: Approximation error for the even scenarios

We hypothesize that this is because we increase the amount of LPs per
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scenario, but we keep the termination time of a single simulation run constant
(i.e. 3.000). This probably causes the simulation to end up in a less ’stable’
state, with regards to parallelism, for larger graphs. To test this hypothesis,
we re-run a scenario with high error (e.g. Scenario 38), where we increase
the termination time by a factor 10, resulting in a termination time of 30.000
per experiment run.
When we re-run Scenario 38 with increased termination time, the Predicted
amount of parallelism remains 22, but now we observe a parallelism of 21.804.
The approximation error thus becomes 0.891%. A reduction of a factor
≈ 3. We conclude that the approximation error goes down, the longer the
simulation is run. This indicates that the approximation algorithm works
reasonably well.

Odd numbered scenarios

When we inspect the odd numbered scenarios, a different pattern emerges.
We plot the predicted, and observed amount of parallelism per scenario (Fig-
ure: 8.14) again. Observing that Figure 8.14 is plotted to the same scale as
8.12, we can clearly see, when comparing these values to their even counter-
parts that:

1. The amount of parallelism grows less for odd numbered scenarios.

2. The amount of parallelism present in the odd scenarios is substantially
less.

3. The Approximation either over, or under estimates the observed amount
of parallelism.

4. The approximation error seems to increase with the size of the PDES
graph
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Figure 8.14: Predicted and observed parallelism for odd numbered scenarios
(i.e. non-PHOLD scenarios) for complete graphs.

Observations 1 and 2 clearly highlight that general PHOLD executions do
not tell the whole story, nor does the topology of the PDES graph. By
only varying the weights in the EPHOLD algorithm we see that we can get
less parallelism as a result. Just as in the previous section, we see that the
approximation error seems to increase with the scenario id (and thus graph
size). Figure 8.15 clearly highlights this observation.
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Figure 8.15: Approximation error for the odd scenarios with complete graphs

Table 8.4 shows the predicted, observed amount of parallelism, and the
approximation error numerically for a subset of the odd scenarios. The nu-
merical results for all complete odd scenarios are shown in table 9.5 in the
Appendix

Scenario Id Predicted Observed Error %
1 2.444 2.444 0%
11 4.875 4.849 0.533%
21 7.359 7.298 0.829%
25 8.356 8.227 1.544%
27 8.854 8.94 -0.971%
29 9.353 9.448 -1.016%
31 9.852 10.011 -1.614%
37 11.349 11.203 1.286%
41 12.348 12.648 -2.43%
43 12.847 12.654 1.502%

Table 8.4: The predicted and observed amount of parallelism, for an odd
numbered subset of scenarios.

Scenario 41 has the highest error. Similar to the previous section, we
hypothesize that this error is due to an instable state, of the simulation.
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Thus we re-run this scenario, where we increase the termination time by a
factor of 10 (resulting in a termination time of 30.000). After re-running this
scenario the observed amount of parallelism became: 12.351, resulting in an
approximation error of −0.024%. A very clear improvement.

Randomized weights

We’ve repeated the experiments on complete graphs using randomized weights.
4 additional scenarios were run per complete graph. This time we random-
ized the EPHOLD weights. Again the approximation algorithm was run for
each scenario. Each scenario consists of 30 experiments. The results are
summarized by figure 8.16, and table 9.7 in the appendix.

Figure 8.16: Amount of predicted and observed parallelism for complete
PDES graphs with randomized weights.

The ’jagged’ nature of the amount of parallelism vs. the maximum attain-
able amount of parallelism observed per scenario is highly indicative of the
influence of the randomized weights. It seems that the amount of parallelism
is reduced due to the amount of non-uniformity of the weights distribution.

The measured and predicted parallelism, and resulting approximation
error can be found in table 9.7 in the appendix . We observe that the largest
approximation error is ≈ −3.011%, which is observed for scenario 212 (i.e. a
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PDES graph of 24 nodes ). This is an outlier as all the other measurements
are within a 2% range. This is better indicated by figures 8.17 and 8.18

Figure 8.17: Approximation errors for complete scenarios with randomized
weights
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Figure 8.18: A histogram of the observed approximation errors for complete
scenarios with randomized weights
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8.2.2 Conclusion

Our experiments clearly indicate that the amount of parallelism is highly af-
fected by the weights in the EPHOLD algorithm, causing load imbalances in
the entire PDES graph. We’ve tested the standard PHOLD workload config-
urations, and compared these to randomized weights, and highly imbalanced
weights (odd scenarios). These results are summarized in Figure 8.19.

Figure 8.19: Amount of observed parallelism for all types of evaluated sce-
narios

PHOLD clearly paints the best picture possible for PDES simulations,
our weight definitions of the odd scenarios clearly influenced the amount of
parallelism more that the randomized scenarios do. Finally, we saw that
the approximation algorithm presented in Chapter 6 is able to predict the
amount of parallelism within reasonably close margins.
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8.2.3 Parallelism in scale free graphs

We proceed to analyze the parallelism in Scale Free graphs similar to how we
did for complete graphs. Figure 8.20 shows the average parallelism for even
numbered scenarios. We can already observe:

1. The predicted and observed amount of parallelism is relatively low com-
pared to the complete graphs

2. The approximation errors seem to be small.

3. Parallelism varies between different graphs with the same λ value.

Figure 8.20: Predicted vs. Observed amount of parallelism for even numbered
Scale Free scenarios.

Similar observations can be made for the odd scenarios (Figure 8.21). A
relatively low amount of parallelism and a seemingly good approximation.
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Figure 8.21: Predicted vs. Observed amount of parallelism for odd numbered
Scale Free scenarios.

Figure 8.22 plots these parallelism statistics for even and odd numbered
scenarios in one single plot. Here we can clearly see that the odd numbered
scenarios increase parallelism for the majority of the scenarios compared to
their even numbered counterparts. We also clearly se a decline in the amount
of parallelism as the value of λ grows.
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Figure 8.22: Predicted and Observed parallelism, for both Even and Odd
scenarios. Note: Any odd scenario id i is plotted at horizontal coordinate
i − 1. The dotted averages are the average parallelism of all scenarios that
share the same value of λ

For completeness, figures 8.23, and 8.15 Showcase the approximation er-
rors for respectively even, and odd scenarios. Tables 9.9 and 9.10, in the
Appendix, contains all mentioned statistics in numerical form.
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Figure 8.23: Parallelism approximation error for even numbered Scale Free
scenarios

101



Figure 8.24: Parallelism approximation error for odd numbered Scale Free
scenarios

The highest absolute error is obtained for scenario 47, with a value of
-1.793%, we feel this is within reasonable bounds, and as such warrants no
extra investigation. It is highly likely (due to what we found during our
experiments for complete graphs), that increasing the termination time of
the simulation will reduce the approximation error even more.

Randomized weights

To further investigate the effects of message flow on the amount of paral-
lelism, we now run 4 scenarios per scale free graph, where all weights are
randomized. Each scenario consists of 30 experiments. The results are sum-
marized in table 9.8 in the appendix, and Figure 8.25
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Figure 8.25: Predicted and observed amount of parallelism for Scale Free
graphs, where all weights are randomized

Here we see several large approximation errors, the highest of which equals
≈ 49%.

Scenario Id Predicted Observed Error %
228 4.826 4.209 12.785%
245 4.717 2.404 49.035%
265 4.611 3.735 18.998%
275 2.979 2.319 22.155%
329 2.716 2.205 18.814%

Table 8.5: Scenarios that have a larger absolute approximation error than
10%

We hypothesize that this is because we haven’t run the simulation for a
long enough time. We thus increase the termination time tenfold and rerun
these particular scenarios (table 8.5). The results are summarized in table
8.6
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Scenario Id Predicted Observed Error %
228 4.826 4.186 13.262%
245 4.717 2.063 56.265%
265 4.611 3.633 21.21%
275 2.979 2.24 24.807%
329 2.716 2.151 20.803%

Table 8.6: Predicted vs. Observed amount of parallelism for the scenarios
that ran for a longer time (ten times longer)

These results are even worse, and thus don’t share the same root cause as
in the previous section. It turns out that our approximation algorithm did
not exit with a stable solution, but reached the maximum allowed amount of
iterations Mc, set at 100. We increased the value of Mc to 100 000, and reran
approximation algorithm for the above mentioned scenarios. The results are
summarized in table 8.7.

Scenario Id Predicted Observed Error %
228 4.151 4.186 -0.843%
245 2.031 2.063 -1.576%
265 3.659 3.633 0.711%
275 2.228 2.24 -0.539%
329 2.152 2.151 0.046%

Table 8.7: Predicted vs. Observed amount of parallelism for the scenarios
that ran for a longer time (ten times longer), and where Mc = 100000

We can clearly see a greatly reduced approximation error. The largest
deviation now equals 1.576%, instead of ≈ 56%. We observe a similar effect
for scenario 241, i.e. the only unmentioned scenario with an approximation
error of more than 5%, going from an approximation error of ≈ 7%, down
to −0.268%. We did not rerun the other scenarios because we believe the
approximation error to be small enough. (i.e. ≤ 5%, where the majority is
less than 2%)
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8.2.4 Conclusion

For Scale Free graphs, we summarize the average amount of parallelism per
value of λ in Figure 8.26.

Figure 8.26: Average amount of parallelism for all scenarios per value of λ

We observe a clear decreasing trend in the amount of parallelism as the
value of λ increases. This effect seems to be caused solely by the topology.
However, the amount of parallelism can be increased by redirecting event
messages toward the leaves of the graphs. The randomized scenarios seem
to have a negative impact on scale free graphs. Finally, the approximation
algorithm presented in Chapter 6 succeeds in predicting the amount of par-
allelism in complete graphs, and 10 node scale free graphs, within reasonable
margins.
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8.3 Chandy-Misra-Bryant

We’ve altered the CMB algorithm such that, Instead of sending a NULL
message every time an event is executed, an LP first executes all events it
can. It only sends a NULL message once it has processed all events that
are safe to process, and has hit its Lower Bound on the Timestamp (LBTS).
This alteration reduces the total amount of NULL messages sent.
Similar to the YAWNS experiments, we perform experiments on Complete
graphs (Section 8.3.1), and Scale Free Graphs (Section 8.3.2).

8.3.1 Complete graphs

Again, we separate the even from the odd numbered scenarios. We plot the
amount of parallelism for the even scenarios together with the odd scenarios
in Figure 8.27. Note that the odd scenario is plotted in the same horizontal
coordinate as its even numbered counterpart. This way we can easily see the
differences in parallelism between the two configurations.

Figure 8.27: Parallelism for complete PDES graphs for the CMB algorithm.
The numerical values of this graph can be found in table 9.11 in the Appendix.

We observe that:

1. Parallelism decreases when the size of the PDES graph grows (accord-
ing to definition 5.5).
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2. In general, the trend seems to be that the odd numbered scenarios
perform worse for larger graphs.

Observation 1 can be explained as follows: Let us first assume that we are
dealing with the normal CMB algorithm (The same argument can be made
for our version). Once an LP executes an event, it has to inform all its
neighboring LPs. For complete graphs, these are all other nodes in the
graph. Thus, for a complete PDES graph of n nodes, every event execu-
tion causes n − 1 NULL messages to be sent. Increasing the size of the
graph, thus cause more NULL messages to be sent per event execution. The
(slightly) different amount of parallelism for the odd numbered scenarios can
be explained by the alteration we made to the standard CMB algorithm, the
Lookahead value L, the timestamp increment function, and the definition of
the EPHOLD weights in the odd numbered scenarios. Each scenario has a
fixed Lookahead value of L = 1, and timestamp increments drawn from an
Exp(1) distribution. Our alteration exploits the fact that all events before
the LBTS are safe to executes, and reduces the amount of NULL messages
sent, especially when the amount of ’safe’ events to be processed is large per
LP. However, we have a relatively small lookahead value (compared to the
timestamp increment function used for all LPs). Thus the amount of safe
events to process is relatively small, reducing the efficacy of our altered al-
gorithm. Note, that Null messages are emitted when the LBTS is increased.
This can also happen when an LP has no events to process, thus explaining
the increased amount of NULL messages for larger PDES graphs.
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Randomized weights

We’ve repeated the experiments on complete graphs using randomized weights.
4 additional scenarios were run per complete graph. This time we random-
ized the weights. The results are summarized by figure 8.28, and table 9.12
in the appendix.

Figure 8.28: Amount of parallelism in CMB for complete graphs and ran-
domized weights

We observe a similar trend as before. The amount of parallelism decreases
as the size of the PDES graph grows.
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8.3.2 Scale free graphs

We repeat the experiments for scale free graphs using the CMB synchroniza-
tion algorithm. The results are charted in figure 8.29.

Figure 8.29: The amount of parallelism measured for the CMB algorithm on
Scale Free graphs

We do not observe much change in parallelism when the value of λ varies.
We can clearly see that the odd numbered scenarios perform at least as well
as their even numbered counterparts (i.e. with the same graph). The small
change that we measured seems to indicate an increasing levels of parallelism
for higher values of λ. We also observe that the amount of parallelism seems
to behave more stable for scale free graphs with λ = 0.5 when compared
with e.g. λ = 1.5. For completeness we’ve included the numerical results in
tables 9.14 and 9.15 in the Appendix. Although we test only a small subset
of all possible Scale Free graphs, for the even scenarios, we can see that the
increase of parallelism (i.e. the slope of the parallelism) increases from ≈ 3%
(from λ = 0.5 to λ = 1.0) to ≈ 6% (from λ = 1.5 to λ = 2.0), hinting at an
(exponential) increase in parallelism as λ grows. However, more research is
needed to establish this relation.

Randomized weights

To further investigate the effects of message flow on the amount of parallelism
in CMB, we now run 4 new scenarios per scale free graph, where all weights
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are randomized. Each scenario consists of 30 experiments. The results are
summarized in table 9.13 in the appendix, and Figure 8.30

Figure 8.30: The amount of parallelism measured for the CMB algorithm on
Scale Free graphs with randomized weights

We can distinguish an increasing trend in the amount of parallelism, as
the value of λ increases. These increases are table 8.8

λ Parallelism Increase
0.5 0.4680 -
1. 0.4973 6.26 %
1.5 0.5266 5.89 %
2. 0.5630 6.91 %

Table 8.8: CMB Mean parallelism statistics for scenarios with Scale Free
graphs and randomized weights, aggregated by values of λ. The increase in
parallelism shown is with regard to the previous value of λ

If we compare the results of table 8.8 to the results of table 9.15, we can
clearly see that the randomized weights have a negative effect on the amount
of parallelism. However, the increase per λ does seem to be higher in the
randomized case. These observations are summarized in figure 8.31

110



Figure 8.31: The average parallelism of all scenarios, aggregated by λ

8.3.3 Conclusion

We’ve used a definition of parallelism that has been used in other CMB
parallelism research and measured the parallelism of complete graphs and
several Scale Free graphs. The parallelism for complete graphs decreases as
the size of the PDES graph grows, with a seemingly negative exponential
trend. Altering the message flow such that the LPs receive a non-uniform
workload in these scenarios, seems to have a negative impact on the over-
all parallelism. For Scale Free Graphs we see that the average amount of
parallelism increases by a modest amount if we send more messages to leaf
nodes, as opposed to hub nodes. Finally, we observed hints of a (exponential)
growth in parallelism as the value of λ increases. However, more research is
needed to establish this relation.
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8.4 Time Warp

We re-run all scenarios for Time Warp, so that we can investigate the effect
of topology, and message flow, on the amount of parallelism in the Time
Warp synchronization algorithm. In Section 5.3 we argued that a rollback
can be considered overhead introduced by the Time Warp algorithm. Our
implementation tracks rollbacks by assigning an Id to a rollback, that is
(among other statistics) included in the output data. This Rollback Id is
built up from the LP Id that started the rollback, and a rollback counter.
The last to digits of the id reveals the originator of the rollback. E.g. the
3rd rollback originating from LP12 would have Id: 312. This way, we can see
if there are LPs that cause abnormal amount of rollbacks.

As mentioned in Section 5.3 we make a distinction between two types of
rollbacks.

1. Idle rollbacks, i.e. When an LP was done processing events (and thus
was idling), and has to roll back from simulation time ∞.

2. Busy rollbacks, i.e. When an LP was still processing events, and has
to roll back.
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8.4.1 Complete graphs

Again we re-run the complete scenarios. The execution time per simulation
run increased substantially compared to the other algorithms. Because of
this, we reduced the amount of experiments performed per scenario from 100
to 30. Although this increases the variance around the presented averages,
we argue that this is enough to be able to distinguish trends. Figures 8.32,
8.33 and 8.34 show the average amount of all, busy, and Idle rollbacks per
scenario respectively. The numerical results are shown in table 9.16, 9.17 and
9.18 in the appendix.

Figure 8.32: The average amount of rollbacks per scenario for complete
graphs

After an initial rapid increase, the total amount of rollbacks seem to sta-
bilize somewhat around ≈ 150000 rollbacks for the odd scenarios. Similarly
for the even scenarios, after an irregular period, the amount of rollbacks sta-
bilize around ≈ 65000. Here we can already see that odd scenarios exhibit
more rollbacks compared to their even numbered counterparts.
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Figure 8.33: Average amount of busy rollbacks per scenario for complete
graphs

Figure 8.33 shows an increase in the amount of busy rollbacks for odd
scenarios when compared to their even numbered counterparts. We can also
see that both amounts seem to stabilize around scenario 18.

Figure 8.34: Average amount of idle rollbacks per scenario for complete
graphs
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Clearly, the amount of idle rollbacks is less than the amount of busy
rollbacks, indicating that LPs are still processing events when they receive
an out-of-order (anti-) message. This is also clearly highlighted by figure
8.35, which shows a proportional increase in busy rollbacks as the graph size
increases. We hypothesize that this is mainly caused by the fact that our
experimentation pc ’only’ contains 4 hardware processing cores. We hypoth-
esize that, as the amount of LPs increase, so does the amount of context
switching, and amount of ’fighting’ for resources between LPs assigned to
the same hardware processing core. This is probably causing them to pro-
cess events less quick than e.g. in the case of a complete 4-node PDES graph,
thus resulting in an increased amount of busy rollbacks.

Figure 8.35: Ratio of busy and idle rollbacks for complete graphs

Randomized weights

Again, we’ve ran additional experiments on the complete graphs. 4 additional
scenarios were run per complete graph where we randomized the weights.
The results are summarized by tables 9.19 (total amount of rollbacks), 9.21
(total amount of busy rollbacks), 9.20 (total amount of idle rollbacks) and
9.22 (fraction of busy and idle rollbacks) in the appendix.

In the following charts (i.e. figures 8.36, 8.37, 8.38 and 8.39) every sec-
tion delimited by vertical dashed grid lines indicate results from scenarios
executed on the same graph but with different weights. The amount of
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nodes per graph is denoted in the result tables mentioned earlier.
As an example, scenarios 126 through 130, are run on the same 3 node com-
plete graph, 131 through 134, on the 4 node graph, etc.

First we will investigate the total amount of rollbacks (Figure 8.36 / table
9.19).

Figure 8.36: Total amount of rollbacks for complete graphs where the weights
are randomized

The amount of rollbacks increase from scenario 126 until scenario 138. As
of then, the amount of rollbacks behaves highly irregular, with a seemingly
stabilizing, or downward trend. It seems that the way weights are distributed
across LPs has a very high impact on the amount of rollbacks in Time Warp.
These fluctuations seem to become more extreme as the size of the PDES
graph increases. This is probably due to the more saturated nature (i.e.
there are more LPs than physical processing cores) of the experiments. We
hypothesize the downward, or stabilizing amount of rollbacks is due to the
following. As the amount of LPs increases, on a saturated system, LPs have
a harder time executing events. Event messages that get scheduled on an
LP thus have a higher probability of not causing a rollback. Following this
hypothesis, we would expect a decreasing amount of Idle rollbacks as the
the amount of LPs increases, since LPs will be less likely to have finished
executing all their events at any point.

The next aspects of interest are the amount of busy, and idle rollbacks
(Figures 8.37 and 8.38 respectively)
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Figure 8.37: Total amount of busy rollbacks for complete graphs where the
weights are randomized.

Figure 8.38: Total amount of idle rollbacks for complete graphs where the
weights are randomized

Judging by the amount of busy and idle rollbacks, the total amount of
rollbacks seem to be largely comprised of busy rollbacks as the size of the
PDES graph grows. As we hypothesized, we can see a decreasing amount
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of idle rollbacks as the amount of LPs increases, especially compared to the
amount of busy rollbacks.

This observation is better illustrated by Figure 8.39.

Figure 8.39: Fraction of the total amount of busy and idle rollbacks for
complete graphs where the weights are randomized

Figure 8.39 clearly indicates an increasing pattern in the amount of busy
rollbacks compared to the amount of idle rollbacks as the size of the PDES
graph increases. This indicates that LPs are more often still busy processing
events when a rollback occurs. The different weights clearly have an effect
on the busy / idle rollback fraction. Finally, in Figure 8.40, we relate these
results to the amount of LPs, and compare them to the results from the
previous section.
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Figure 8.40: Fraction of the total amount of busy and idle rollbacks for
complete graphs, by amount of LPs

Here we can summarize that the PHOLD (even) scenarios give the highest
amount of busy / idle rollbacks ratio. The odd scenarios perform the worst
(with two exceptions), and the randomized weight scenarios are in between.
We can also see that whenever the amount of LPs is a multiple of 4, the
fraction increases (most of the time) in the even scenarios. This could be
caused by the fact that our experimentation laptop has 4 hardware cores.
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8.4.2 Scale free graphs

Similar to the scenarios for the complete graphs, the scale free scenarios
experiments also increased in execution time. Instead of doing 100 runs per
scenario, we decided to do 30 per scenario. This will increase the variance of
our results, and this the representativity of the measured means. However,
as a means to indicate a trend (which is what we are interested in), we argue
that this is enough. Tables 9.27, 9.28 and 9.29, in the Appendix, show the
numerical results for the average amount of all, busy, and idle rollbacks for
the scale free scenarios. These numbers are charted in figures 8.41, 8.42 and
8.43.

Figure 8.41: Total amount of rollbacks per scenario for scale free PDES
graphs

We can clearly see that the amount of overhead (i.e. amount of rollbacks)
are reduced by the weight definitions in the odd numbered scenarios, in
almost all cases. The increases in amount, between different graphs, also
seem to be less extreme for odd numbered scenarios. Finally, we observe
that there seems to be a slightly decreasing trend in the amount of rollbacks,
for both types of scenarios, for increasing values of λ. This hints at a slightly
increased amount of parallelism as the amount of overhead, introduced by
Time Warp, decreases.
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Figure 8.42: Average amount of busy rollbacks per scenario, for scale free
PDES graphs

Figure 8.43: Average amount of idle rollbacks per scenario for, scale free
PDES graphs

Figure 8.43 shows a relatively low, and steady amount of Idle rollbacks
across all scenarios. If we combine this observation with the slightly decreas-
ing amount of busy rollbacks, we expect to see a decreasing trend in the ratio
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between the busy vs. idle rollback ratio, which is confirmed by figure 8.44.

Figure 8.44: Ratio between the average amount of busy and idle rollbacks
per scenario, for scale free PDES graphs

This hints at a decline in the busy vs. idle rollback ratio as the value of λ
increases. The effect of this ratio on the amount of parallelism, or execution
time of a simulation remains to be investigated in future research.
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Randomized weights

Again, we’ve ran additional experiments on the complete graphs. 4 additional
scenarios were run per complete graph where we randomized the weights.
The results are summarized by tables 9.23 (total amount of rollbacks), 9.24
(total amount of busy rollbacks), 9.25 (total amount of idle rollbacks) and
9.26 (fraction of busy and idle rollbacks) in the appendix. These results are
visualized by figures 8.45, 8.46, 8.47 and 8.48 respectively

Figure 8.45: Total amount of rollbacks for Scale Free PDES graphs, of 10
nodes, where the weights are randomized

The total amount of rollbacks highly fluctuates between instances of the
same graph. Sometimes this causes a difference of more than 100.000 roll-
backs between the same graph, but with different weights. The average total
amount of rollbacks seems to decrease as the value of λ increases. We also
observe that the variance becomes less, as the value of λ increases. Again,
we investigate the total amount of busy, and idle rollbacks (Figures 8.46 and
8.47).
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Figure 8.46: Total amount of busy rollbacks for Scale Free PDES graphs, of
10 nodes, where the weights are randomized

Figure 8.47: Total amount of idle rollbacks for Scale Free PDES graphs, of
10 nodes, where the weights are randomized

Figures 8.46 and 8.47 show a similar pattern concerning the variance as
the value of λ increases. No clear other pattern seems to emerge based on
these figures. thus we chart the Busy / Idle rollback ratio in Figure 8.48.
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Figure 8.48: Fraction of the total amount of busy and idle rollbacks for Scale
Free PDES graphs, of 10 nodes, where the weights are randomized
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A slight decreasing trend can be observed in the Busy / Idle rollback
fraction, as the value of λ increases. This seems to hint that more idle
rollbacks seem to occur, indicating that LPs tend to have idle time more
frequently as the value of λ increases. Finally, we summarize all averages per
value of λ in figure 8.49.

Figure 8.49: Fraction of the total amount of busy and idle rollbacks for Scale
Free PDES graphs, of 10 nodes

The average fraction of the randomized scenarios seem to always ly below
the odd, and even numbered scenarios from the previous section. However,
the variance of these averages is relatively large, thus the averages might
not be very reliable. We are able to distinguish a downward trend, for all
scenarios, hinting at more frequent idle time, as the value of λ increases.
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8.4.3 Conclusion

We’ve analyzed PHOLD scenarios (Even numbered scenario), scenarios where
the event message flow distribution was non-uniform (Odd numbered scenar-
ios), and scenarios where the EPHOLD weights are randomized. We did this
for complete graphs, and Scale Free graphs. In complete graphs we observed
that the amount of busy rollbacks grew compared to the amount of idle roll-
backs when the graph size was increased. This phenomenon was observed
for all three cases. The even scenarios relatively produced the most amount
of busy rollbacks of all three, indicating a more evenly distributed workload
across all LPs. The odd scenarios produced the opposite, those delivered
the least amount of busy rollbacks relatively. This indicates that LPs are
idling more frequently when the workload distribution is not uniform. The
randomized scenarios sit in between, and largely follow the same trend as
the even scenarios (with few exceptions).

We’ve similarly analyzed the execution of Time Warp on various scale free
PDES graphs. Here we observed that both the total amount of rollbacks,
and the fraction of busy and idle rollbacks, decrease with increasing values
of λ. This holds for all three types of scenarios. The decrease in the busy /
idle rollback fraction indicates a higher amount of idle rollbacks, indicating
that LPs seem to have idle time more frequently as the value of λ increases.
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8.5 Conclusions

We experimentally highlighted how the EPHOLD algorithm output differs,
and how it is similar to the commonly used PHOLD benchmark. Evaluating
EPHOLD revealed bottlenecks that did not show up in PHOLD. We have
evaluated the parallelism approximation algorithm for complete and several
scale free graphs, for which it worked very well. We have investigated the
effects of varying event flows throughout the PDES graphs, for complete and
scale free graphs for YAWNS, CMB, and Time Warp. We note that the
results obtained for the Scale Free PDES graphs, should not be interpreted
as the effect of λ on the amount of parallelism. We have ”only” evaluated
Scale Free graphs of size 10 due to hardware limitations. Our result hint at a
certain trend, but more research is needed to conclusively test this relation.
Finally we can firmly conclude that the amount of parallelism in YAWNS,
CMB and TimeWarp are not only affected by the PDES topology, but also
the flow of the event messages through the PDES graph. Our results suggest
that this is not something specific for a single synchronization algorithm, but
inherent to the PDES simulation.
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Chapter 9

In conclusion

The contributions of this thesis to the PDES field consist of the Extended
PHOLD (EPHOLD) benchmark and a Parallelism prediction algorithm for it,
for the YAWNS synchronization algorithm. Experiments (Chapter 8) showed
the increased relevance of EPHOLD over the PHOLD benchmark that is
commonly used. The Parallelism prediction algorithm for YAWNS was shown
to be highly accurate for (E)PHOLD executions on complete, and scale free
graphs. The accuracy of the prediction algorithm for other types of graphs,
and mixed timestamp increment functions remains for future research. We
were able to predict, and achieve different amounts of parallelism by altering
the event message flow using EPHOLD. This indicates that not only the
PDES graph’s topology has an effect on the amount of parallelism, but that
the message flow is a (highly) influential factor as well.
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Scenario Id Predicted Observed Error %
0 3. 2.995 0.167%
2 4. 3.981 0.475%
4 5. 4.988 0.24%
6 6. 5.936 1.067%
8 7. 6.899 1.443%
10 8. 7.939 0.762%
12 9. 8.892 1.2%
14 10. 9.876 1.24%
16 11. 10.871 1.173%
18 12. 11.715 2.375%
20 13. 12.678 2.477%
22 14. 13.798 1.443%
24 15. 14.63 2.467%
26 16. 15.799 1.256%
28 17. 16.648 2.071%
30 18. 17.772 1.267%
32 19. 18.683 1.668%
34 20. 19.635 1.825%
36 21. 20.415 2.786%
38 22. 21.384 2.8%
38* 22. 21.804 0.891%
40 23. 22.399 2.613%
42 24. 23.204 3.317%
44 25. 24.235 3.06%

Table 9.5: The predicted and observed amount of parallelism, for even num-
bered scenarios.

* Scenario has a termination time of 30.000 (i.e. 10 times higher than the
other scenarios)
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Scenario Id Predicted Observed Error %
1 2.444 2.444 0.%
3 2.917 2.911 0.206%
5 3.4 3.404 -0.118%
7 3.889 3.9 -0.283%
9 4.381 4.382 -0.023%
11 4.875 4.849 0.533%
13 5.37 5.388 -0.335%
15 5.867 5.858 0.153%
17 6.364 6.376 -0.189%
19 6.861 6.816 0.656%
21 7.359 7.298 0.829%
23 7.857 7.789 0.865%
25 8.356 8.227 1.544%
27 8.854 8.94 -0.971%
29 9.353 9.448 -1.016%
31 9.852 10.011 -1.614%
33 10.351 10.184 1.613%
35 10.85 10.872 -0.203%
37 11.349 11.203 1.286%
39 11.848 11.851 -0.025%
41 12.348 12.648 -2.43%
41* 12.348 12.351 -0.024 %
43 12.847 12.654 1.502%
45 13.347 13.24 0.802%

Table 9.6: YAWNS Parallelism statistics and approximation errors of Com-
plete graphs for the odd numbered scenarios.

* Scenario has a termination time of 30.000 (i.e. 10 times higher than the
other scenarios)
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Graph size (n) Scenario Id Predicted Observed Error %
3 126 2.459 2.46 -0.041%
3 127 2.052 2.053 -0.049%
3 128 2.153 2.152 0.046%
3 129 2.682 2.678 0.149%
4 130 2.954 2.97 -0.542%
4 131 3.16 3.156 0.127%
4 132 3.373 3.378 -0.148%
4 133 3.486 3.467 0.545%
5 134 3.596 3.601 -0.139%
5 135 3.859 3.875 -0.415%
5 136 3.721 3.719 0.054%
5 137 3.062 3.054 0.261%
6 138 5.045 5.072 -0.535%
6 139 4.699 4.72 -0.447%
6 140 4.36 4.355 0.115%
6 141 4.454 4.477 -0.516%
7 142 6.326 6.365 -0.617%
7 143 5.368 5.359 0.168%
7 144 4.928 4.905 0.467%
7 145 5.532 5.552 -0.362%
8 146 6.722 6.73 -0.119%
8 147 6.368 6.379 -0.173%
8 148 5.048 5.097 -0.971%
8 149 6.604 6.624 -0.303%
9 150 7.159 7.107 0.726%
9 151 5.708 5.712 -0.07%
9 152 7.492 7.495 -0.04%
9 153 6.178 6.194 -0.259%
10 154 7.512 7.517 -0.067%
10 155 7.893 7.92 -0.342%
10 156 8.148 8.145 0.037%
10 157 7.764 7.822 -0.747%
11 158 7.554 7.59 -0.477%
11 159 8.815 8.748 0.76%
11 160 9.101 9.149 -0.527%
11 161 6.598 6.62 -0.333%
12 162 8.631 8.687 -0.649%
12 163 9.346 9.322 0.257%
12 164 8.94 8.876 0.716%
12 165 8.763 8.826 -0.719%
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13 166 10.375 10.46 -0.819%
13 167 10.068 10.112 -0.437%
13 168 8.359 8.424 -0.778%
13 169 11.031 11.046 -0.136%
14 170 11.19 11.096 0.84%
14 171 8.051 8.035 0.199%
14 172 10.949 10.829 1.096%
14 173 11.319 11.306 0.115%
15 174 10.163 10.164 -0.01%
15 175 9.77 9.657 1.157%
15 176 12.85 12.753 0.755%
15 177 12.096 12.07 0.215%
16 178 9.845 9.932 -0.884%
16 179 14.155 14.274 -0.841%
16 180 12.803 12.827 -0.187%
16 181 9.379 9.543 -1.749%
17 182 12.561 12.583 -0.175%
17 183 12.598 12.457 1.119%
17 184 10.973 10.913 0.547%
17 185 11.216 11.164 0.464%
18 186 13.107 12.988 0.908%
18 187 13.407 13.347 0.448%
18 188 10.253 10.38 -1.239%
18 189 14.849 14.973 -0.835%
19 190 14.879 14.901 -0.148%
19 191 14.101 14.129 -0.199%
19 192 13.467 13.672 -1.522%
19 193 13.847 13.679 1.213%
20 194 15.676 15.664 0.077%
20 195 12.938 13.096 -1.221%
20 196 15.473 15.661 -1.215%
20 197 13.031 13.168 -1.051%
21 198 11.696 11.708 -0.103%
21 199 14.774 14.574 1.354%
21 200 17.292 17.471 -1.035%
21 201 12.905 12.971 -0.511%
22 202 14.703 14.637 0.449%
22 203 13.878 13.841 0.267%
22 204 18.301 18.144 0.858%
22 205 12.684 12.608 0.599%
23 206 19.562 19.689 -0.649%
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23 207 20.002 19.834 0.84%
23 208 12.742 12.887 -1.138%
23 209 16.121 16.196 -0.465%
24 210 17.166 17.244 -0.454%
24 211 17.223 16.955 1.556%
24 212 15.808 16.284 -3.011%
24 213 20.248 20.349 -0.499%
25 214 20.139 20.17 -0.154%
25 215 14.589 14.623 -0.233%
25 216 19.592 19.677 -0.434%
25 217 20.755 20.634 0.583%

Table 9.7: YAWNS Parallelism statistics and approximation errors of Com-
plete graphs where the EPHOLD weights are randomized.

Scenario Id Predicted Observed Error %
218 2.987 3.028 -1.373%
219 2.964 2.975 -0.371%
220 4.038 4.04 -0.05%
221 4.483 4.336 3.279%
222 2.733 2.732 0.037%
223 4.32 4.325 -0.116%
224 5.202 5.153 0.942%
225 2.657 2.652 0.188%
226 3.813 3.784 0.761%
227 3.076 3.049 0.878%
228 4.826 4.209 12.785%
229 3.997 4.003 -0.15%
230 3.268 3.261 0.214%
231 3.8 3.677 3.237%
232 3.042 3.036 0.197%
233 3.507 3.52 -0.371%
234 3.734 3.656 2.089%
235 3.494 3.491 0.086%
236 2.542 2.548 -0.236%
237 4.262 4.248 0.328%
238 3.96 4.116 -3.939%
239 4.269 4.29 -0.492%
240 4.369 4.368 0.023%
241 3.24 2.996 7.531%
242 2.609 2.619 -0.383%
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243 4.359 4.385 -0.596%
244 3.989 4.05 -1.529%
245 4.717 2.404 49.035%
246 2.787 2.813 -0.933%
247 2.775 2.773 0.072%
248 4.512 4.438 1.64%
249 2.64 2.639 0.038%
250 3.517 3.566 -1.393%
251 4.734 4.729 0.106%
252 3.671 3.639 0.872%
253 3.962 3.944 0.454%
254 3.114 3.126 -0.385%
255 2.118 2.131 -0.614%
256 2.265 2.268 -0.132%
257 4.389 4.426 -0.843%
258 3.724 3.734 -0.269%
259 3.805 3.838 -0.867%
260 3.753 3.761 -0.213%
261 3.241 3.257 -0.494%
262 3.328 3.337 -0.27%
263 3.811 3.794 0.446%
264 5.215 5.257 -0.805%
265 4.611 3.735 18.998%
266 2.596 2.603 -0.27%
267 3.897 3.897 0.%
268 4.72 4.694 0.551%
269 2.508 2.516 -0.319%
270 2.618 2.617 0.038%
271 4.371 4.406 -0.801%
272 2.989 2.995 -0.201%
273 3.871 3.869 0.052%
274 2.894 2.863 1.071%
275 2.979 2.319 22.155%
276 2.451 2.46 -0.367%
277 3.576 3.568 0.224%
278 2.83 2.79 1.413%
279 2.582 2.589 -0.271%
280 3.954 3.959 -0.126%
281 2.674 2.684 -0.374%
282 3.198 2.892 9.568%
283 3.353 3.354 -0.03%
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284 4.486 4.482 0.089%
285 2.646 2.627 0.718%
286 2.572 2.567 0.194%
287 2.691 2.707 -0.595%
288 2.861 2.862 -0.035%
289 2.613 2.615 -0.077%
290 2.638 2.653 -0.569%
291 3.279 3.284 -0.152%
292 3.718 3.488 6.186%
293 2.734 2.729 0.183%
294 2.279 2.276 0.132%
295 2.057 2.062 -0.243%
296 2.274 2.28 -0.264%
297 3.514 3.526 -0.341%
298 2.089 2.09 -0.048%
299 2.14 2.144 -0.187%
300 2.133 2.134 -0.047%
301 2.043 2.044 -0.049%
302 3.223 3.231 -0.248%
303 2.795 2.81 -0.537%
304 2.639 2.644 -0.189%
305 4.011 4.017 -0.15%
306 2.011 2.013 -0.099%
307 2.4 2.409 -0.375%
308 2.29 2.291 -0.044%
309 2.099 2.104 -0.238%
310 2.894 2.904 -0.346%
311 4.299 4.263 0.837%
312 2.361 2.265 4.066%
313 2.408 2.415 -0.291%
314 3.79 3.801 -0.29%
315 6.265 6.236 0.463%
316 2.401 2.399 0.083%
317 3.179 3.165 0.44%
318 2.819 2.829 -0.355%
319 2.053 2.055 -0.097%
320 3.477 3.467 0.288%
321 2.038 2.033 0.245%
322 2.026 2.024 0.099%
323 2.013 2.014 -0.05%
324 2.126 2.129 -0.141%
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325 2.287 2.284 0.131%
326 3.814 3.833 -0.498%
327 3.291 3.281 0.304%
328 3.356 3.358 -0.06%
329 2.716 2.205 18.814%
330 3.196 3.199 -0.094%
331 3.034 3.034 0.%
332 2.7 2.709 -0.333%
333 2.686 2.689 -0.112%
334 2.063 2.064 -0.048%
335 2.094 2.095 -0.048%
336 2.038 2.04 -0.098%
337 2.006 2.007 -0.05%
338 2.314 2.311 0.13%
339 3.505 3.498 0.2%
340 2.307 2.305 0.087%
341 2.203 2.207 -0.182%
342 2.404 2.411 -0.291%
343 2.671 2.677 -0.225%
344 3.174 3.155 0.599%
345 2.707 2.711 -0.148%
346 2. 2.001 -0.05%
347 2. 2.001 -0.05%
348 2. 2.001 -0.05%
349 2. 2.001 -0.05%
350 2.019 2.021 -0.099%
351 2.606 2.602 0.153%
352 2.516 2.516 0.%
353 2.007 2.008 -0.05%
354 3.185 3.183 0.063%
355 3.022 3.006 0.529%
356 2.39 2.396 -0.251%
357 2.798 2.803 -0.179%
358 3.784 3.769 0.396%
359 3.05 3.059 -0.295%
360 2.909 2.918 -0.309%
361 2.616 2.619 -0.115%
362 2.632 2.558 2.812%
363 3.46 3.461 -0.029%
364 3.824 3.823 0.026%
365 2.202 2.203 -0.045%
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366 3.813 3.821 -0.21%
367 2.827 2.832 -0.177%
368 3.026 3.031 -0.165%
369 3.123 3.123 0.%
370 2. 2.001 -0.05%
371 2. 2.001 -0.05%
372 2. 2.001 -0.05%
373 2. 2.001 -0.05%
374 2.663 2.664 -0.038%
375 2.667 2.667 0.%
376 2.664 2.671 -0.263%
377 2.68 2.698 -0.672%

Table 9.8: YAWNS Parallelism statistics and approximation errors of Scale
Free graphs where the EPHOLD weights are randomized.
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Scenario Id Predicted Observed Error %
46 4.5 4.492 0.178%
48 6. 5.967 0.55%
50 3.6 3.596 0.111%
52 6. 5.972 0.467%
54 6. 6.006 -0.1%
56 4.5 4.529 -0.644%
58 3. 3.005 -0.167%
60 4.5 4.492 0.178%
62 4.5 4.546 -1.022%
64 4.5 4.451 1.089%
66 4.5 4.531 -0.689%
68 3. 3.002 -0.067%
70 3.6 3.599 0.028%
72 6.001 6.004 -0.05%
74 4.5 4.514 -0.311%
76 4.5 4.489 0.244%
78 3. 3.007 -0.233%
80 4.5 4.507 -0.156%
82 3. 2.998 0.067%
84 2.25 2.251 -0.044%
86 3. 2.98 0.667%
88 2.25 2.252 -0.089%
90 4.5 4.474 0.578%
92 3.6 3.593 0.194%
94 3. 3.021 -0.7%
96 2.25 2.249 0.044%
98 4.5 4.461 0.867%
100 3. 2.993 0.233%
102 2.25 2.251 -0.044%
104 2.571 2.579 -0.311%
106 2.571 2.572 -0.039%
108 2. 2.001 -0.05%
110 2.25 2.249 0.044%
112 2.571 2.577 -0.233%
114 3.6 3.6 0.%
116 3. 2.998 0.067%
118 3.6 3.575 0.694%
120 2. 2.001 -0.05%
122 2.571 2.566 0.194%

Table 9.9: YAWNS Parallelism statistics and approximation errors of Scale
Free graphs for the even numbered scenarios.
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Scenario Id Predicted Observed Error %
47 5.689 5.791 -1.793%
49 6.496 6.509 -0.2%
51 5.483 5.452 0.565%
53 5.916 5.883 0.558%
55 7.12 7.143 -0.323%
57 7.2 7.094 1.472%
59 4.837 4.853 -0.331%
61 5.29 5.257 0.624%
63 5.29 5.241 0.926%
65 5.29 5.233 1.078%
67 7.178 7.084 1.31%
69 5.294 5.341 -0.888%
71 4.806 4.782 0.499%
73 6.688 6.711 -0.344%
75 5.689 5.672 0.299%
77 4.823 4.802 0.435%
79 4.562 4.536 0.57%
81 4.823 4.889 -1.368%
83 3.873 3.87 0.077%
85 3.014 3.022 -0.265%
87 5.294 5.288 0.113%
89 3.014 3.009 0.166%
91 7.195 7.196 -0.014%
93 6.161 6.158 0.049%
95 3.873 3.846 0.697%
97 3.014 3.013 0.033%
99 6.501 6.504 -0.046%
101 4.562 4.609 -1.03%
103 3.014 3.006 0.265%
105 3.376 3.362 0.415%
107 3.376 3.376 0.%
109 2. 2.001 -0.05%
111 3.014 3.011 0.1%
113 3.376 3.377 -0.03%
115 4.806 4.855 -1.02%
117 4.837 4.832 0.103%
119 4.806 4.843 -0.77%
121 2. 2.001 -0.05%
123 4.098 4.105 -0.171%

Table 9.10: YAWNS Parallelism statistics and approximation errors of Scale
Free graphs for the odd numbered scenarios.
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Scenario Id Parallelism Scenario Id Parallelism
0 0.663 1 0.634
2 0.531 3 0.530
4 0.435 5 0.442
6 0.377 7 0.385
8 0.333 9 0.342
10 0.301 11 0.305
12 0.279 13 0.278
14 0.258 15 0.255
16 0.241 17 0.235
18 0.227 19 0.218
20 0.216 21 0.205
22 0.206 23 0.193
24 0.197 25 0.182
26 0.189 27 0.176
28 0.180 29 0.169
30 0.171 31 0.161
32 0.164 33 0.153
34 0.157 35 0.148
36 0.152 37 0.142
38 0.147 39 0.137
40 0.144 41 0.132
42 0.139 43 0.127
44 0.136 45 0.126

Table 9.11: CMB parallelism measurements for scenarios with complete
graphs.
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Nodes Scen. Id P Scen. Id P Scen. Id P Scen. Id P
3 126 0.641 127 0.690 128 0.556 129 0.652
4 130 0.542 131 0.530 132 0.536 133 0.534
5 134 0.437 135 0.440 136 0.437 137 0.457
6 138 0.382 139 0.382 140 0.388 141 0.384
7 142 0.345 143 0.342 144 0.341 145 0.343
8 146 0.319 147 0.314 148 0.311 149 0.313
9 150 0.287 151 0.289 152 0.289 153 0.288
10 154 0.266 155 0.264 156 0.268 157 0.265
11 158 0.246 159 0.248 160 0.247 161 0.245
12 162 0.231 163 0.234 164 0.234 165 0.231
13 166 0.221 167 0.221 168 0.218 169 0.221
14 170 0.209 171 0.206 172 0.210 173 0.210
15 174 0.196 175 0.198 176 0.201 177 0.200
16 178 0.187 179 0.193 180 0.190 181 0.188
17 182 0.182 183 0.181 184 0.181 185 0.180
18 186 0.173 187 0.174 188 0.172 189 0.174
19 190 0.165 191 0.165 192 0.165 193 0.166
20 194 0.159 195 0.158 196 0.160 197 0.160
21 198 0.153 199 0.154 200 0.154 201 0.153
22 202 0.149 203 0.148 204 0.150 205 0.148
23 206 0.145 207 0.145 208 0.142 209 0.144
24 210 0.140 211 0.140 212 0.139 213 0.141
25 214 0.137 215 0.136 216 0.137 217 0.138

Table 9.12: CMB parallelism (P) measurements for scenarios with complete
graphs and randomized weights.
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Scen. Id P Scen. Id P Scen. Id P Scen. Id P
218 0.620 219 0.430 220 0.464 221 0.527
222 0.396 223 0.485 224 0.567 225 0.410
226 0.471 227 0.353 228 0.511 229 0.460
230 0.511 231 0.480 232 0.472 233 0.496
234 0.485 235 0.415 236 0.372 237 0.516
238 0.456 239 0.431 240 0.459 241 0.284
242 0.428 243 0.501 244 0.473 245 0.296
246 0.504 247 0.536 248 0.525 249 0.501
250 0.476 251 0.547 252 0.464 253 0.504
254 0.441 255 0.427 256 0.529 257 0.497
258 0.548 259 0.477 260 0.482 261 0.505
262 0.468 263 0.508 264 0.544 265 0.500
266 0.491 267 0.566 268 0.565 269 0.511
270 0.470 271 0.560 272 0.484 273 0.513
274 0.346 275 0.537 276 0.279 277 0.378
278 0.503 279 0.534 280 0.478 281 0.405
282 0.605 283 0.501 284 0.518 285 0.544
286 0.505 287 0.547 288 0.457 289 0.492
290 0.554 291 0.474 292 0.595 293 0.513
294 0.469 295 0.553 296 0.480 297 0.433
298 0.581 299 0.571 300 0.573 301 0.577
302 0.596 303 0.520 304 0.542 305 0.513
306 0.601 307 0.574 308 0.600 309 0.302
310 0.383 311 0.503 312 0.314 313 0.448
314 0.543 315 0.582 316 0.409 317 0.527
318 0.474 319 0.565 320 0.536 321 0.597
322 0.598 323 0.598 324 0.597 325 0.604
326 0.454 327 0.452 328 0.462 329 0.311
330 0.540 331 0.525 332 0.582 333 0.540
334 0.542 335 0.609 336 0.595 337 0.622
338 0.557 339 0.580 340 0.592 341 0.593
342 0.574 343 0.534 344 0.542 345 0.569
346 0.604 347 0.621 348 0.605 349 0.616
350 0.599 351 0.578 352 0.594 353 0.595
354 0.556 355 0.588 356 0.541 357 0.569
358 0.532 359 0.594 360 0.505 361 0.513
362 0.364 363 0.497 364 0.537 365 0.557
366 0.547 367 0.446 368 0.562 369 0.575
370 0.624 371 0.609 372 0.601 373 0.600
374 0.577 375 0.546 376 0.598 377 0.528

Table 9.13: CMB parallelism (P) measurements for scenarios with Scale Free
graphs of 10 nodes and randomized weights.
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Scenario Id Parallelism Scenario Id Parallelism
46 0.524 47 0.556
48 0.536 49 0.564
50 0.523 51 0.554
52 0.536 53 0.575
54 0.524 55 0.540
56 0.510 57 0.532
58 0.512 59 0.547
60 0.538 61 0.579
62 0.534 63 0.567
64 0.532 65 0.567
66 0.531 67 0.569
68 0.527 69 0.565
70 0.553 71 0.591
72 0.562 73 0.587
74 0.502 75 0.518
76 0.537 77 0.566
78 0.557 79 0.575
80 0.564 81 0.590
82 0.555 83 0.576
84 0.549 85 0.580
86 0.614 87 0.623
88 0.552 89 0.590
90 0.614 91 0.625
92 0.505 93 0.544
94 0.523 95 0.567
96 0.546 97 0.583
98 0.613 99 0.624
100 0.517 101 0.552
102 0.565 103 0.591
104 0.615 105 0.626
106 0.591 107 0.603
108 0.590 109 0.604
110 0.652 111 0.652
112 0.614 113 0.625
114 0.589 115 0.603
116 0.563 117 0.587
118 0.537 119 0.580
120 0.564 121 0.587
122 0.652 123 0.652
124 0.581 125 0.611

Table 9.14: CMB Parallelism statistics for scenarios with Scale Free graphs.
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λ Parallelism (Even) Increase (Even) Parallelism (Odd) Increase (Odd)
0.5 0.5263 - 0.5571 -
1.0 0.5421 3.01 % 0.5703 2.37 %
1.5 0.5594 3.18 % 0.5876 3.04 %
2.0 0.5928 5.97 % 0.6099 3.80 %

Table 9.15: CMB Mean parallelism statistics for scenarios with Scale Free
graphs, aggregated by values of λ. The increase in parallelism shown is with
regard to the previous value of λ

Scenario Id Busy rollbacks Scenario Id Busy rollbacks
0 16346.52 1 19877.03
4 82309.11 5 93454.39
8 36798.29 9 153354.08
12 116016.94 13 137699.47
16 98876.80 17 178991.57
20 86642.69 21 187742.42
24 55548.50 25 172180.38
28 68156.60 29 163962.65
32 61020.70 33 169177.35
36 59967.55 37 159744.67
40 48396.61 41 137706.63
44 47888.73 45 139914.41

Table 9.16: TimeWarp Average amount of rollbacks per scenario for complete
PDES graphs.
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Scenario Id Busy rollbacks Scenario Id Busy rollbacks
0 10157.83 1 8731.85
4 55821.81 5 48686.87
8 26614.96 9 89864.37
12 93752.05 13 85194.17
16 76714.96 17 113071.85
20 67949.57 21 120074.24
24 46871.45 25 115637.83
28 58290.20 29 112173.99
32 53621.30 33 118354.83
36 53173.79 37 113926.42
40 43856.03 41 100449.69
44 43646.16 45 103314.84

Table 9.17: TimeWarp Average amount of busy rollbacks per scenario for
complete PDES graphs.

Scenario Id Idle rollbacks Scenario Id Idle rollbacks
0 6188.69 1 11145.18
4 26487.30 5 44767.52
8 10183.33 9 63489.71
12 22264.89 13 52505.30
16 22161.85 17 65919.72
20 18693.12 21 67668.19
24 8677.05 25 56542.55
28 9866.39 29 51788.66
32 7399.40 33 50822.52
36 6793.76 37 45818.26
40 4540.58 41 37256.94
44 4242.57 45 36599.57

Table 9.18: TimeWarp Average amount of idle rollbacks per scenario for
complete PDES graphs.
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Nodes Id Amount Id Amount Id Amount Id Amount
3 126 20461.69 127 12074.20 128 16183.39 129 19342.53
4 130 31001.27 131 46407.58 132 29878.31 133 32512.88
5 134 90538.15 135 104250.45 136 81239.18 137 82305.25
6 138 86150.34 139 98366.40 140 119532.16 141 141657.55
7 142 50138.88 143 105863.08 144 181245.55 145 83105.54
8 146 44184.94 147 38843.24 148 182083.70 149 49736.43
9 150 111491.75 151 217969.20 152 114218.22 153 139955.27
10 154 124353.31 155 124909.44 156 127154.39 157 129490.79
11 158 140259.31 159 129643.19 160 135278.91 161 178807.25
12 162 137405.96 163 117049.72 164 105340.50 165 128560.65
13 166 106449.24 167 104422.11 168 163514.61 169 98034.82
14 170 90928.79 171 210014.91 172 102622.49 173 98538.73
15 174 109604.49 175 149836.72 176 63447.19 177 66183.84
16 178 183812.64 179 42736.88 180 56367.30 181 243189.63
17 182 95039.05 183 93912.17 184 125887.91 185 159927.36
18 186 90179.04 187 88569.42 188 212995.05 189 71549.65
19 190 72748.34 191 80810.42 192 83337.72 193 86194.92
20 194 65041.57 195 123496.40 196 73532.84 197 102535.06
21 198 239006.61 199 93858.75 200 66308.24 201 118807.74
22 202 99574.19 203 134021.21 204 57955.18 205 196197.73
23 206 52532.79 207 51218.75 208 224424.90 209 76580.11
24 210 53391.33 211 52110.33 212 74497.85 213 42054.81
25 214 51970.22 215 165662.84 216 52900.11 217 50933.21

Table 9.19: TimeWarp Average amount of rollbacks per scenario for complete
PDES graphs, where all weights are randomized
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Nodes Id Amount Id Amount Id Amount Id Amount
3 126 11476.17 127 6973.92 128 12383.39 129 9088.98
4 130 15226.20 131 21624.12 132 12227.09 133 12579.66
5 134 39108.83 135 41663.15 136 32119.34 137 45847.15
6 138 29187.12 139 34571.05 140 47673.72 141 55523.17
7 142 14907.76 143 35863.55 144 57301.52 145 25344.09
8 146 11710.74 147 10271.60 148 65788.25 149 12882.74
9 150 31591.76 151 64582.79 152 27813.79 153 42631.65
10 154 33911.47 155 30267.97 156 32281.35 157 36110.99
11 158 37847.89 159 33385.60 160 37567.48 161 54862.23
12 162 36924.38 163 29305.12 164 26906.52 165 33008.73
13 166 24445.87 167 27905.33 168 40930.14 169 23249.82
14 170 20681.59 171 51813.22 172 23058.00 173 21962.44
15 174 23445.15 175 29291.69 176 11223.27 177 12962.89
16 178 28856.81 179 5144.23 180 8952.79 181 37786.99
17 182 16690.98 183 15947.10 184 22056.81 185 33220.78
18 186 14754.40 187 15519.65 188 38078.45 189 10618.78
19 190 12318.35 191 11608.33 192 13178.76 193 12608.60
20 194 11017.96 195 19254.77 196 11286.18 197 14636.24
21 198 37128.26 199 12652.16 200 8685.43 201 15715.00
22 202 12107.32 203 17802.71 204 7530.52 205 26839.09
23 206 5695.26 207 5879.75 208 27790.77 209 10440.19
24 210 5142.77 211 6301.52 212 7216.60 213 4049.91
25 214 5592.37 215 17664.50 216 4928.26 217 5475.35

Table 9.20: TimeWarp Average amount of idle rollbacks per scenario id for
complete PDES graphs where all weights are randomized.
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Nodes Id Amount Id Amount Id Amount Id Amount
3 126 8985.52 127 5100.28 128 3800.00 129 10253.55
4 130 15775.06 131 24783.46 132 17651.23 133 19933.22
5 134 51429.32 135 62587.30 136 49119.85 137 36458.10
6 138 56963.22 139 63795.35 140 71858.44 141 86134.38
7 142 35231.12 143 69999.53 144 123944.03 145 57761.45
8 146 32474.20 147 28571.65 148 116295.45 149 36853.69
9 150 79899.99 151 153386.42 152 86404.43 153 97323.62
10 154 90441.84 155 94641.46 156 94873.05 157 93379.79
11 158 102411.42 159 96257.59 160 97711.42 161 123945.02
12 162 100481.58 163 87744.60 164 78433.97 165 95551.92
13 166 82003.37 167 76516.78 168 122584.48 169 74785.00
14 170 70247.20 171 158201.68 172 79564.49 173 76576.29
15 174 86159.34 175 120545.03 176 52223.92 177 53220.94
16 178 154955.83 179 37592.65 180 47414.51 181 205402.64
17 182 78348.07 183 77965.07 184 103831.11 185 126706.58
18 186 75424.64 187 73049.78 188 174916.60 189 60930.88
19 190 60429.99 191 69202.09 192 70158.96 193 73586.32
20 194 54023.61 195 104241.63 196 62246.67 197 87898.82
21 198 201878.35 199 81206.59 200 57622.81 201 103092.74
22 202 87466.87 203 116218.50 204 50424.66 205 169358.63
23 206 46837.53 207 45339.00 208 196634.13 209 66139.91
24 210 48248.56 211 45808.81 212 67281.26 213 38004.90
25 214 46377.85 215 147998.34 216 47971.85 217 45457.86

Table 9.21: TimeWarp Average amount of busy rollbacks per scenario for
complete PDES graphs where all weights are randomized.
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Nodes Scen. Id B/I Scen. Id B/I Scen. Id B/I Scen. Id B/I
3 126 0.78 127 0.73 128 0.31 129 1.13
4 130 1.04 131 1.15 132 1.44 133 1.58
5 134 1.32 135 1.50 136 1.53 137 0.80
6 138 1.95 139 1.85 140 1.51 141 1.55
7 142 2.36 143 1.95 144 2.16 145 2.28
8 146 2.77 147 2.78 148 1.77 149 2.86
9 150 2.53 151 2.38 152 3.11 153 2.28
10 154 2.67 155 3.13 156 2.94 157 2.59
11 158 2.71 159 2.88 160 2.60 161 2.26
12 162 2.72 163 2.99 164 2.92 165 2.89
13 166 3.35 167 2.74 168 2.99 169 3.22
14 170 3.40 171 3.05 172 3.45 173 3.49
15 174 3.67 175 4.12 176 4.65 177 4.11
16 178 5.37 179 7.31 180 5.30 181 5.44
17 182 4.69 183 4.89 184 4.71 185 3.81
18 186 5.11 187 4.71 188 4.59 189 5.74
19 190 4.91 191 5.96 192 5.32 193 5.84
20 194 4.90 195 5.41 196 5.52 197 6.01
21 198 5.44 199 6.42 200 6.63 201 6.56
22 202 7.22 203 6.53 204 6.70 205 6.31
23 206 8.22 207 7.71 208 7.08 209 6.34
24 210 9.38 211 7.27 212 9.32 213 9.38
25 214 8.29 215 8.38 216 9.73 217 8.30

Table 9.22: TimeWarp, the fraction of Busy (B) and Idle (I) rollbacks per
scenario for complete PDES graphs where all weights are randomized.
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Scen. Id Amount Scen. Id Amount Scen. Id Amount Scen. Id Amount
218 26134.93 219 63234.93 220 63156.26 221 66198.20
222 101527.52 223 31693.76 224 38491.70 225 69607.27
226 68893.88 227 177216.39 228 56428.57 229 51294.33
230 78442.82 231 64418.68 232 32384.21 233 53875.85
234 51015.55 235 102032.48 236 128509.26 237 56179.40
238 55727.01 239 54352.23 240 68512.11 241 130217.32
242 99928.22 243 67913.72 244 51447.79 245 42557.85
246 76665.87 247 64154.32 248 53301.39 249 82740.08
250 54112.85 251 31432.88 252 49933.19 253 33352.82
254 57959.98 255 58260.34 256 66615.07 257 44508.55
258 67261.95 259 41167.66 260 35341.45 261 68910.02
262 40301.10 263 41834.77 264 57102.52 265 73642.78
266 69271.59 267 59354.57 268 47838.23 269 59357.91
270 56051.95 271 34680.42 272 46836.94 273 31153.35
274 167851.29 275 61121.68 276 119062.70 277 102932.71
278 117441.15 279 58806.98 280 51823.43 281 84390.90
282 39446.57 283 40805.83 284 25654.12 285 75840.33
286 57519.97 287 70785.32 288 44400.79 289 66931.94
290 70893.18 291 43754.85 292 34249.88 293 56909.61
294 69249.47 295 23880.07 296 86435.70 297 40184.64
298 21597.61 299 27009.68 300 25062.53 301 17005.51
302 52695.12 303 76499.50 304 70297.87 305 52782.95
306 12932.26 307 42453.72 308 40181.72 309 52757.20
310 78616.63 311 70303.63 312 137673.93 313 76756.99
314 33360.43 315 41925.62 316 80042.32 317 47342.29
318 65479.17 319 41565.31 320 26624.27 321 20440.00
322 19382.98 323 16256.47 324 23116.50 325 39196.46
326 52068.16 327 85603.93 328 95763.12 329 71884.75
330 30184.53 331 60390.07 332 53069.52 333 68861.01
334 20122.62 335 18832.72 336 17905.29 337 12716.84
338 45710.18 339 16862.33 340 40164.39 341 32535.25
342 42932.31 343 32583.60 344 17836.25 345 35148.59
346 15940.44 347 13045.22 348 12926.32 349 13177.40
350 15502.32 351 33501.36 352 38288.15 353 18261.68
354 16500.20 355 20448.35 356 64482.18 357 25016.56
358 30661.52 359 36957.50 360 67121.65 361 68300.33
362 101631.57 363 47408.64 364 47735.17 365 35234.28
366 34939.27 367 28583.25 368 31553.45 369 31842.07
370 12919.13 371 12554.15 372 12704.55 373 13102.77
374 64944.31 375 68424.24 376 38656.26 377 73054.52

Table 9.23: TimeWarp Average amount of rollbacks per scenario for Scale
Free PDES graphs with 10 nodes, where all weights are randomized
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Scen. Id Amount Scen. Id Amount Scen. Id Amount Scen. Id Amount
218 7032.17 219 30742.58 220 36867.94 221 35308.53
222 42170.68 223 16520.85 224 23330.65 225 29400.20
226 34655.85 227 115974.89 228 28179.97 229 27646.44
230 45722.12 231 26962.00 232 13197.26 233 31231.74
234 24778.15 235 60463.80 236 48383.99 237 25983.15
238 29318.77 239 29861.22 240 36331.42 241 81472.45
242 41332.66 243 39882.31 244 24993.53 245 11079.50
246 38408.74 247 31987.03 248 26481.93 249 37649.10
250 26919.48 251 15370.44 252 28439.54 253 10828.63
254 29933.44 255 15511.73 256 24495.02 257 24331.75
258 35639.95 259 17224.28 260 13040.47 261 28472.01
262 16712.63 263 21892.32 264 31390.87 265 39069.51
266 28464.30 267 35928.79 268 29383.77 269 24755.63
270 22240.89 271 18865.35 272 19325.76 273 16399.74
274 106179.97 275 21658.98 276 42987.19 277 58011.80
278 65005.63 279 26528.66 280 26220.29 281 42574.87
282 17099.63 283 16870.34 284 11664.64 285 35026.95
286 23416.49 287 32278.76 288 20690.78 289 25453.17
290 24497.03 291 21465.77 292 11509.16 293 24218.37
294 27449.80 295 2110.91 296 31953.75 297 18019.82
298 2155.35 299 5597.01 300 4680.62 301 716.20
302 30696.26 303 37292.09 304 25779.07 305 32872.03
306 307.80 307 21050.02 308 17326.24 309 13034.19
310 34609.38 311 38551.47 312 52578.00 313 22470.74
314 9966.82 315 25604.44 316 21878.94 317 21128.97
318 26890.15 319 4726.59 320 8914.86 321 1187.49
322 994.92 323 575.68 324 5174.30 325 17108.01
326 29688.85 327 47947.89 328 55215.07 329 23882.36
330 11452.95 331 31101.26 332 27150.84 333 29536.41
334 1267.24 335 3070.75 336 939.80 337 320.39
338 16820.22 339 4655.56 340 14861.13 341 8050.50
342 20523.43 343 14908.75 344 6481.52 345 18190.85
346 697.75 347 426.27 348 379.11 349 408.33
350 553.45 351 17911.10 352 20806.54 353 738.79
354 5064.73 355 7920.40 356 19023.02 357 11060.12
358 12808.56 359 16678.95 360 32342.34 361 24801.51
362 52158.08 363 26973.81 364 28445.85 365 6855.74
366 20177.16 367 11164.85 368 13561.78 369 13126.61
370 415.21 371 314.32 372 325.08 373 354.07
374 32105.67 375 32451.82 376 18942.13 377 34557.85

Table 9.24: TimeWarp Average amount of busy rollbacks per scenario for
Scale Free PDES graphs of 10 nodes where all weights are randomized.
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Scen. Id Amount Scen. Id Amount Scen. Id Amount Scen. Id Amount
218 19102.76 219 32492.35 220 26288.33 221 30889.66
222 59356.84 223 15172.91 224 15161.05 225 40207.07
226 34238.02 227 61241.50 228 28248.60 229 23647.90
230 32720.71 231 37456.68 232 19186.95 233 22644.12
234 26237.39 235 41568.68 236 80125.27 237 30196.25
238 26408.24 239 24491.01 240 32180.69 241 48744.87
242 58595.56 243 28031.41 244 26454.26 245 31478.35
246 38257.14 247 32167.30 248 26819.46 249 45090.98
250 27193.37 251 16062.44 252 21493.65 253 22524.18
254 28026.54 255 42748.61 256 42120.05 257 20176.80
258 31622.00 259 23943.38 260 22300.98 261 40438.01
262 23588.47 263 19942.46 264 25711.64 265 34573.27
266 40807.28 267 23425.78 268 18454.46 269 34602.28
270 33811.06 271 15815.08 272 27511.17 273 14753.61
274 61671.32 275 39462.69 276 76075.52 277 44920.91
278 52435.53 279 32278.32 280 25603.14 281 41816.03
282 22346.95 283 23935.49 284 13989.48 285 40813.38
286 34103.48 287 38506.56 288 23710.01 289 41478.78
290 46396.15 291 22289.07 292 22740.72 293 32691.24
294 41799.67 295 21769.15 296 54481.95 297 22164.83
298 19442.25 299 21412.67 300 20381.91 301 16289.31
302 21998.86 303 39207.41 304 44518.80 305 19910.93
306 12624.46 307 21403.70 308 22855.48 309 39723.01
310 44007.25 311 31752.15 312 85095.93 313 54286.25
314 23393.61 315 16321.18 316 58163.38 317 26213.32
318 38589.02 319 36838.72 320 17709.41 321 19252.51
322 18388.06 323 15680.79 324 17942.20 325 22088.45
326 22379.30 327 37656.04 328 40548.05 329 48002.39
330 18731.58 331 29288.81 332 25918.68 333 39324.61
334 18855.38 335 15761.97 336 16965.50 337 12396.45
338 28889.95 339 12206.77 340 25303.25 341 24484.74
342 22408.88 343 17674.85 344 11354.72 345 16957.74
346 15242.69 347 12618.95 348 12547.20 349 12769.07
350 14948.87 351 15590.26 352 17481.62 353 17522.88
354 11435.47 355 12527.95 356 45459.16 357 13956.45
358 17852.96 359 20278.56 360 34779.32 361 43498.82
362 49473.49 363 20434.83 364 19289.32 365 28378.54
366 14762.11 367 17418.40 368 17991.67 369 18715.46
370 12503.92 371 12239.84 372 12379.47 373 12748.70
374 32838.64 375 35972.42 376 19714.14 377 38496.67

Table 9.25: TimeWarp Average amount of idle rollbacks per scenario for
Scale Free PDES graphs of 10 nodes where all weights are randomized.
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Scen. Id B/I Scen. Id B/I Scen. Id B/I Scen. Id B/I
218 0.37 219 0.95 220 1.40 221 1.14
222 0.71 223 1.09 224 1.54 225 0.73
226 1.01 227 1.89 228 1.0 229 1.17
230 1.40 231 0.72 232 0.69 233 1.38
234 0.94 235 1.45 236 0.60 237 0.86
238 1.11 239 1.22 240 1.13 241 1.67
242 0.71 243 1.42 244 0.94 245 0.35
246 1.00 247 0.99 248 0.99 249 0.83
250 0.99 251 0.96 252 1.32 253 0.48
254 1.07 255 0.36 256 0.58 257 1.21
258 1.13 259 0.72 260 0.58 261 0.70
262 0.71 263 1.10 264 1.22 265 1.13
266 0.70 267 1.53 268 1.59 269 0.72
270 0.66 271 1.19 272 0.70 273 1.11
274 1.72 275 0.55 276 0.57 277 1.29
278 1.24 279 0.82 280 1.02 281 1.02
282 0.77 283 0.70 284 0.83 285 0.86
286 0.69 287 0.84 288 0.87 289 0.61
290 0.53 291 0.96 292 0.51 293 0.74
294 0.66 295 0.1 296 0.59 297 0.81
298 0.11 299 0.26 300 0.23 301 0.04
302 1.40 303 0.95 304 0.58 305 1.65
306 0.02 307 0.98 308 0.76 309 0.33
310 0.79 311 1.21 312 0.62 313 0.41
314 0.43 315 1.57 316 0.38 317 0.81
318 0.70 319 0.13 320 0.50 321 0.06
322 0.05 323 0.04 324 0.29 325 0.77
326 1.33 327 1.27 328 1.36 329 0.50
330 0.61 331 1.06 332 1.05 333 0.75
334 0.07 335 0.19 336 0.06 337 0.03
338 0.58 339 0.38 340 0.59 341 0.33
342 0.92 343 0.84 344 0.57 345 1.07
346 0.05 347 0.03 348 0.03 349 0.03
350 0.04 351 1.15 352 1.19 353 0.04
354 0.44 355 0.63 356 0.42 357 0.79
358 0.72 359 0.82 360 0.93 361 0.57
362 1.05 363 1.32 364 1.47 365 0.24
366 1.37 367 0.64 368 0.75 369 0.70
370 0.03 371 0.03 372 0.03 373 0.03
374 0.98 375 0.90 376 0.96 377 0.90

Table 9.26: TimeWarp, the fraction of Busy (B) and Idle (I) rollbacks per
scenario for Scale Free PDES graphs of 10 nodes, where all weights are ran-
domized.
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Scenario Id Rollbacks Scenario Id Rollbacks
46 62961.72 47 38690.22
50 50467.58 51 38283.95
54 41214.65 55 37925.47
58 95113.65 59 45670.12
62 37168.99 63 29308.98
66 38083.90 67 30072.58
70 90918.97 71 40762.92
74 49071.50 75 44537.43
78 21608.82 79 22104.56
82 21373.88 83 21961.33
86 35867.55 87 21326.72
90 36160.72 91 21438.64
94 105338.32 95 43653.54
98 36000.62 99 21220.31
102 55798.96 103 25462.21
106 33587.10 107 15894.77
110 10527.82 111 10605.93
114 33832.10 115 16057.99
118 82332.20 119 33801.24
122 10631.20 123 10456.49
124 63488.74 125 32176.03

Table 9.27: TimeWarp Average amount of rollbacks per scenario for scale
free PDES graphs.
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Scenario Id Idle rollbacks Scenario Id Idle rollbacks
46 36989.56 47 22689.86
50 30474.86 51 22861.74
54 23079.19 55 21477.04
58 57920.17 59 26957.67
62 20330.87 63 13619.75
66 21037.37 67 14017.84
70 43556.67 71 26849.11
74 29903.14 75 27061.63
78 10193.89 79 9761.27
82 10044.99 83 9751.98
86 13912.63 87 9218.00
90 13976.01 91 9290.21
94 59879.28 95 26917.46
98 14187.99 99 9202.54
102 29342.16 103 13221.24
106 16606.11 107 4391.38
110 184.46 111 196.03
114 16537.71 115 4595.56
118 46797.30 119 17474.83
122 194.84 123 187.89
124 34435.64 125 13216.94

Table 9.28: TimeWarp Average amount of busy rollbacks per scenario for
Scale Free PDES graphs.
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Scenario Id Idle rollbacks Scenario Id Idle rollbacks
46 25972.16 47 16000.36
50 19992.73 51 15422.21
54 18135.46 55 16448.43
58 37193.48 59 18712.45
62 16838.12 63 15689.23
66 17046.52 67 16054.74
70 47362.30 71 13913.81
74 19168.37 75 17475.80
78 11414.93 79 12343.29
82 11328.89 83 12209.35
86 21954.92 87 12108.72
90 22184.71 91 12148.42
94 45459.04 95 16736.08
98 21812.63 99 12017.77
102 26456.80 103 12240.96
106 16980.99 107 11503.39
110 10343.36 111 10409.90
114 17294.39 115 11462.43
118 35534.90 119 16326.41
122 10436.37 123 10268.60
124 29053.10 125 18959.09

Table 9.29: TimeWarp Average amount of idle rollbacks per scenario for
Scale Free PDES graphs.
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Chapter 10

Scale free topology analysis

Scale Free networks are graphs for which the the degree distribution follows
a power law. Throughout this analysis, we assume degree(v) ≥ 1 ∀v ∈ V ,
i.e. all nodes have at least one neighbor. This makes sense as an LP that
does not have neighbors in the PDES graph does not depend on other LPs
in its execution, nor do other LPs depend on it. It thus does not influence
the rest of the simulation (and thus its parallelism performance) as it can be
considered as a separate entity.
We will employ the following notation. Let G(V,E) be a PDES-graph, with
V its set of vertices and E the set of undirected edges.

10.1 A Probability Density Function deriva-

tion

For convenience, equation 2.1 is shown again below.

Pr(k) ∼ k−λ (2.1 revisited)

Here Pr(k) expresses the probability of selecting a node of exactly degree
k, with parameter (degree-exponent) λ. To turn equation 2.1 into a valid
probability function we must claim:

∞∑
k=0

Pr(k) = 1 (10.1)

i.e. All probabilities must sum to 1. Thus, we introduce a normalization
constant c into term 2.1, and get:

Pr(k) = c · k−λ (10.2)
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Where we must estimate c. An obvious choice would be:

c =
1∑∞

k=1 k
−λ =

1

ζ(λ)
(10.3)

Where, ζ is the Riemann Zeta function. here we disregard all nodes with
degree 0 as assumed earlier. However, since we will only be considering finite
networks, we can bound the maximum degree any node can attain with a
constant kmax.

1∑kmax
k=1 k−λ

(10.4)

Where kmax is the maximum degree over all nodes in V

10.2 Hubs and leafs

Scale free networks contain a relatively low amount of so called hub nodes,
and a relatively large amount of leaf nodes. Let f be the fraction of hub
nodes, and 1 − f the fraction of leaf nodes. Only considering the average
degree over all nodes is not representative of the network’s skewed degree
distribution. Thus we analyze hub and leaf nodes separately.

10.3 Degree estimation

In this section we will derive an expression to estimate the degrees of the set
of hubs, and degrees of the set of leafs. Earlier we defined hubs as the top f
fraction of nodes (in terms of degree) and leafs as the rest (i.e. the other 1−f
fraction of the network). To calculate this, we are looking for a point xf in
the degree distribution, for which all hub nodes are on one side of xf in the
distribution (the right hand side in the chart) and all leafs on the other. For
scale free networks, the degree distribution follows a power law distribution.
With xmin the minimum degree in the PDES graph, and given normalization
constant c, and degree exponent λ, the Probability Density Function (PDF)
over all degrees of the network is given by:∫ ∞

xmin

c · x−λ dx (10.5)

To find this point xf , we equate, for given f :∫ ∞
xf

c · x−λ dx = f ·
∫ ∞
xmin

c · x−λ dx (10.6)
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The integral
∫
c · x−λ dx evaluates to: c

−λ+1
x−λ+1 thus, the right-hand

side of 10.6 expands to:

f ·
∫ ∞
xmin

c · x−λ dx =
f · c
−λ+ 1

x−λ+1

∣∣∣∣∞
xmin

= lim
x→∞

f · c
−λ+ 1

x−λ+1 − lim
x→xmin

f · c
−λ+ 1

x−λ+1

= −f · c

1− λ
xmin

1−λ

The derivation for the left-hand side is very similar. We can now rewrite
equation 10.6 and solve for xf :∫ ∞

xf

c · x−λ dx = f ·
∫ ∞
xmin

c · x−λ dx =⇒ −
c · x1−λf

1− λ
= −f · c · xmin

1−λ

1− λ
x1−λf = f · xmin1−λ

xf = (f · xmin1−λ)
1

1−λ

= f
1

1−λ · xmin
= f−−

1
1−λ · xmin

=
( 1

f

)− 1
1−λ · xmin

xf =
( 1

f

) 1
λ−1 · xmin

Now that we know xf , we can calculate the expected degree of the leafs
(i.e. all nodes from xmin up to xf ) and the hubs (i.e. all nodes after xf ).
The expected value of any continuous distribution can be computed by the
following expression:

E[X] =

∫ xmax

xmin

x · f(x) dx (10.7)

Let Vh and Vl be the expected degree for hub nodes and leaf nodes respec-
tively. By applying equation 10.7 to our normalized power-law distribution,
we can compute Vh and Vl in the following manner:

Vh =

∫ ∞
xf

x · c · x−λdx =

∫ ∞
xf

c · x−λ+1dx

=
c

−λ+ 2
x−λ+2

∣∣∞
xf

= − c

−λ+ 2
xf
−λ+2

169



Computing Vl produces a bit more terms:

Vl =

∫ xf

xmin

xcx−λdx =

∫ xf

xmin

cx−λ+1dx

=
c

−λ+ 2
x−λ+2

∣∣xf
xmin

=
c

−λ+ 2

(
xf
−λ+2 − xmin−λ+2

)
We can use a similar approach to approximate the fraction E of all edges
going to hubs. I.e. the fraction E of edges that end in a fraction f of all
nodes. Note, that we know have to assume that the degree distribution
follows a power law fo directed edges.

E =
Vh

Vh + Vl

=
−
�
��c−λ+2

xf
−λ+2

−
�
��c−λ+2

xf−λ+2 +
�
��c−λ+2

(
xf−λ+2 − xmin−λ+2

)
=

−xf−λ+2

((((
((((

((
−xf−λ+2 + xf

−λ+2 − xmin−λ+2

=
xf
−λ+2

xmin−λ+2

=

(
1
f

) 1
λ−1 · xmin)−λ+2

xmin−λ+2

=

(
1
f

)−λ+2
λ−1 ·����

�
xmin

−λ+2

���
��xmin
−λ+2

=
( 1

f

)−λ+2
λ−1

= f−
−λ+2
λ−1

E = f
λ−2
λ−1

This expression was derived first in [40], and relates fraction edges to fractions
of nodes. i.e. if we select an edge er at random, this approximation expresses
the probability that it leads to a hub node. From this expression, the overall
characteristics of networks with varying values of λ can be gleaned. For
example, if we have a scale free network with λ = 2.2 and decide that the

top 40 % are hub nodes, then approximately 0.4
2.2−2
2.2−1 = 0.4

0.2
1.2 ≈ 0.858 ≈ 86%

of all edges go to hub nodes, whereas only 14 % go to leaf nodes. Note that
this expression is only valid for λ ≥ 2.
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