
Utrecht University

Department of Information and Computing Sciences

Master Thesis Computing Science

Incorporating Domain Knowledge in Permutation Gene-pool

Optimal Mixing Evolutionary Algorithms

Author:
Gerben Aalvanger, BSc (3987051)

Supervisor:
dr. ir. D. Thierens

July 14, 2017

Abstract

The Gene-pool Optimal Mixing Evolutionary Algorithm for permutation problems (pGOMEA),
is a model based evolutionary algorithm (MBEA) capable of learning problem structure by itself.
pGOMEA does so by creating a linkage tree from dependencies found in the population. This
problem structure is subsequently used to steer the recombination in pGOMEA. Though pGOMEA
models the problem structure, problem speci�c knowledge can still be added to pGOMEA in order
to improve its quality. In this thesis report, di�erent forms of incorporating domain knowledge
are applied for the permutation �owshop scheduling problem (PFSP), in order to get insight
in their ability to improve pGOMEA. In the �rst part of this thesis, a literature study discusses
pGOMEA, the PFSP and its heuristics and the various ways of incorporating domain knowledge in
evolutionary algorithms in general. The second part describes the experiments that are performed
to test the e�ectiveness of using domain knowledge in pGOMEA. The experiments show how
pGOMEA cannot be improved using simple improvement heuristics like the swap and insertion
heuristic. More informed strategies using domain-speci�c improvement heuristics however are
able to boost pGOMEAs performance signi�cantly. Unfortunately, the improvement heuristics do
not further bene�t from knowledge in the linkage tree. Neither does substructural search on its
own achieve a signi�cant improvement over standard improvement heuristics. Other experiments
show how pGOMEA can be seeded in two ways. Firstly, good solutions can be added to the
initial population, leading to a boost in performance. Secondly, the linkage tree can be build
using seeded dependency values from domain knowledge, which can improve the quality of the
linkage tree in early generations. As a �nal experiment, we have tested pGOMEA with domain
knowledge (hybridized and using population seeding) against state-of-the-art algorithms solving
the PFSP. The experiments show that pGOMEA is able to give good results and that pGOMEA
can outperform a state-of-the-art algorithm for the PFSP with the total �owtime criterion. The
e�ect of structure in problems does not give pGOMEA a bigger advantage over other algorithms,
though we empirically show that pGOMEAs dependency functions perform better than random
dependency functions.
Within the scope of this thesis, we propose a better way of generating structured PFSP instances.

2

Contents

1 Introduction 6
1.1 Research goal . 6
1.2 Research approach . 7

2 Gene-pool Optimal Mixing Evolutionary Algorithm 8
2.1 Background . 8
2.2 GOMEA . 9

2.2.1 Forced Improvement . 10
2.2.2 Population sizing . 10

2.3 FOS-Models . 10
2.3.1 Univariate model . 10
2.3.2 Marginal product model . 10
2.3.3 Linkage tree model . 10

2.4 GOMEA from a Black-Box perspective . 11
2.5 GOMEA for permutation problems: pGOMEA . 11

2.5.1 Solution ecoding . 12
2.5.2 Building the Linkage Tree . 12
2.5.3 Operators . 12

2.6 pGOMEA con�gurations . 13
2.6.1 Population sizing . 13
2.6.2 Forced Improvement . 13

2.7 Results . 13

3 Permutation Flowshop Scheduling Problem 15
3.1 Problem description . 15

3.1.1 Objective functions . 16
3.2 Comparing solutions . 16
3.3 Constructive Heuristics . 17

3.3.1 CDS: Campbell, Dudek and Smith . 17
3.3.2 Palmer's Slope-Index . 18
3.3.3 Rapid Access: Dannenbring . 18
3.3.4 NEH: Nawaz, Enscore and Ham . 18
3.3.5 LR(x): Liu and Reeves . 19
3.3.6 RZ: Rajendran and Ziegler . 19
3.3.7 Summary . 20

3.4 Local Search methods . 20
3.4.1 Swap heuristics . 20
3.4.2 Insertion heuristics . 21
3.4.3 Summary . 22

3.5 Metaheuristic solvers . 22

4 Domain knowledge in Evolutionary Algorithms 24
4.1 Domain foreknowledge in Evolutionary Algorithms 25

4.1.1 Encoding solutions . 25
4.1.2 Operators in the Evolutionary Phases . 25
4.1.3 Issues of incorporating Local search in an EA 26

4.2 Model Based Evolutionary Algorithms . 27

3

4 CONTENTS

4.3 Domain foreknowledge in Model Based Evolutionary Algorithms 27
4.4 Exploiting model-knowledge using domain-knowledge 28

5 Improvement heuristics on pGOMEA solutions: Experimental Study 29
5.1 Experimental setup . 29

5.1.1 Benchmark and computational budget . 29
5.1.2 pGOMEA Con�guration . 30
5.1.3 Neighborhood searchers . 30
5.1.4 Comparing results . 30

5.2 Results . 30
5.2.1 Probability of improvement . 30
5.2.2 Probability of improvement: Machine in�uence 31
5.2.3 Improvement heuristics for TFT: Quality and resources 31
5.2.4 Improvement heuristics for Cmax: Quality and resources 33
5.2.5 Variable Neighborhood Searching . 34

5.3 Conclusions . 34

6 Solution seeding pGOMEA: Experimental Study 36
6.1 Forms of seeding . 36
6.2 Experimental setup . 37
6.3 Results . 37

6.3.1 Single-solution seeding: solution quality . 37
6.3.2 Single-solution population seeding: Quality and �tness evaluations 38
6.3.3 Multi-solution population seeding: Fixed amount of seeds 39
6.3.4 Multi-solution population seeding: Proportionate seeding and improvement

heuristics . 42
6.4 Conclusions . 43

7 Hybridizing pGOMEA: Experimental Study 45
7.1 Experimental setup . 46
7.2 Results . 47

7.2.1 E�ects of hybridization . 47
7.2.2 Depth limited local search using a BBO perspective 49
7.2.3 Probability of local search using a BBO perspective 50
7.2.4 Hybridizing pGOMEA using advanced local search 51

7.3 Conclusions . 52

8 Informed model learning: Experimental Study 54
8.1 Seeding: e�ect on model building . 54
8.2 dependency seeding . 56

8.2.1 Indexing dependency . 56
8.2.2 Dependency over constructive population 56
8.2.3 Determining the weight . 57

8.3 Experimental results . 57
8.3.1 Fixed weight dependency seeding . 57
8.3.2 Exponential weight cooling scheme . 57
8.3.3 Heuristic dependencies . 59

8.4 Conclusions . 60

9 Substructural neighborhoods: Experimental study 61
9.1 Substructural neighborhoods for pGOMEA . 61

9.1.1 Di�culties for substructural neighborhoods in pGOMEA 61
9.1.2 Insertion-based substructural neighborhood searcher: Description 62
9.1.3 Model-based swapping in pGOMEA: Description 62

9.2 Experimental results . 63
9.2.1 Insertion-based substructural neighborhood searcher: Experiments 63
9.2.2 Model-based swapping in pGOMEA: Experiments 64

9.3 Conclusions . 64

CONTENTS 5

10 Comparative results 66
10.1 Algorithms . 66

10.1.1 VNS4 . 66
10.1.2 pGOMEA for PFSP with the TFT criterion 66
10.1.3 Iterative Greedy . 67
10.1.4 pGOMEA for PFSP with the Cmax criterion 69

10.2 Benchmarking: Taillard instances . 69
10.2.1 Solving PFSP with the TFT criterion . 69
10.2.2 Solving PFSP with the Cmax criterion . 69

10.3 Benchmarking: Existing structured instances . 71
10.3.1 Structured instances . 71
10.3.2 Solving PFSP with the TFT criterion . 71
10.3.3 Solving PFSP with the Cmax criterion . 72
10.3.4 Watson instances: why so easy? . 72

10.4 Benchmarking: New structured instances . 73
10.4.1 Experimental Setup . 74
10.4.2 TFT . 74
10.4.3 CMAX . 74

10.5 Conclusions . 74

11 Conclusions 77
11.1 Summary . 77
11.2 Recommendation . 78
11.3 Future work . 79

Appendices 81

A New Structured PFSP benchmark 82
A.1 Requirements . 82
A.2 Details . 82
A.3 Properties of the generated instances: theory . 83

A.3.1 Job- and machine-correlated instances . 83
A.3.2 Mixed correlated instances . 83
A.3.3 Processing time distribution . 84

A.4 Properties of the generated instances: practice . 84
A.4.1 Lower bounds and Upper bounds . 84

B Paper draft 86

C List of abbreviations 94

Chapter 1

Introduction

1.1 Research goal

In order to �nd near-optimal solutions to complex problems, Evolutionary Algorithms (EAs) com-
bine individuals, representing problem solutions, in such a way that their o�spring will have a
combination of the good features of its parent solutions. Due to competition between individuals,
only the best individuals reproduce and over time the individuals in the population get �tter. In
the end, the population is supposed to converge to a good (near-optimal) solution.

Combining solutions using a random approach, can result in the problem that the algorithm
won't �nd a good solution in reasonable time. Therefore, exploiting structure is an important
area of research in EAs. Structure can be exploited by creating combination or mutation op-
erators that �t the problem well. However, one can also use a Black-Box Optimization (BBO)
approach, where little is know and assumed about the domain. This optimization approach is able
to create problem-independent algorithms that are more general applicable. A BBO approach is
used in so called Model Based Evolutionary Algorithms (MBEAs). MBEAs build a model for each
generation, which is then used to steer the process of combining solutions into new, better solutions.

A lot of important real-world, hard optimization problems are permutation-based (e.g. vehicle
routing and scheduling). However, little MBEAs are designed to solve these problems. Recently,
the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) MBEA has been adapted to
work on permutation spaces [39]. Without much knowledge of the problem, permutation GOMEA
(pGOMEA) already performs surprisingly well on PFSP instances as given in the well known
Taillard-benchmark. GOMEA has found numerous best known solutions for these extensively
used benchmark instances. Also, pGOMEA does not often perform signi�cantly worse than GM-
EDA, a recently proposed permutation-based Estimation of Distribution Algorithm (EDA) learning
problem structure.

As pGOMEA is able to perform well without having any explicit domain knowledge in it, the
question arises whether pGOMEA can be further improved by adding domain knowledge to it. For
instance, EAs are known to be good at searching globally through a complex search space, but
they perform worse with respect to local optima. Therefore EAs have been hybridized using local
searchers. Also, pGOMEA uses its linkage tree in order to model domain knowledge, which allows
one to add domain knowledge in the process of building this tree.

In order to investigate the e�ectiveness of the various ways to incorporate domain knowledge in
pGOMEA, we apply di�erent experiments. Most of these experiments investigate a combination of
heuristics for the PFSP with pGOMEA. Therefore, this research focuses on the following question:

How can domain-knowledge of permutation problems be exploited (using heuristics) in the
permutation-based Gene-pool Optimal Mixing Evolutionary Algorithm?

6

1.2. RESEARCH APPROACH 7

1.2 Research approach

In order to answer the research question, a literature study has �rst been performed. This study
�rst discusses GOMEA and its permutation variant pGOMEA in detail in Chapter 2. Then,
the Permutation Flowshop Scheduling Problem (PFSP) is introduced in Chapter 3. This chapter
also discusses domain knowledge of the PFSP by explaining constructive heuristics, improvement
heuristics and meta-heuristic solvers. Finally, Chapter 4 identi�es the use of domain knowledge in
EAs. Here, special attention is given to local search and MBEAs. The information from literature
will be used in the second part of this thesis, where pGOMEA is tried to improve using domain
knowledge.

In the second part of this thesis, various experiments are conducted to identify the behavior
of pGOMEA when domain knowledge is incorporated. Here, we try to answer our questions as
much as possible in the context of black-box optimization. Using this approach, we can make
more general statements about the e�ectivity of incorporating domain knowledge in pGOMEA.
Most of our experiments will compare algorithms based on �tness evaluations, allowing us to make
statements that do not depend too much on the domain we are working in (grey-box optimization).
Where this is not possible, we experiment using computation time thus going to a white-box
optimization area. First, Chapter 5 discusses the local optimality of pGOMEA solutions with
respect to improvement heuristics. Experiments are conducted to get insight in the improvability of
pGOMEA with local search strategies. Chapter 6 evaluates various ways of seeding pGOMEA with
solutions generated by constructive heuristics. Chapter 7 experiments with hybridizing pGOMEA
with LS. Both domain-independent and domain-speci�c local search are tried to use in pGOMEA.
After these rather well-known forms of adding domain knowledge, dependency-seeding is introduced
in Chapter 8. Dependency seeding is a new concept, where the model of pGOMEA is build using
domain knowledge as well as population knowledge. As a �nal experiment, we shortly investigate
the applicability of pGOMEA models to substructural neighborhood searchers in Chapter 9. The
best form of pGOMEA with domain knowledge, is then compared with state-of-the-art algorithms
solving the PFSP in Chapter 10. In this chapter we will compare pGOMEA both on random as
well as on structured instances. A technical description of a new structured benchmark set is given
in Appendix A. We will conclude this thesis with a summary of the results and some practical
recommendations in 11.

Chapter 2

Gene-pool Optimal Mixing

Evolutionary Algorithm

This chapter introduces (p)GOMEA, as we will examine di�erent possibilities of exploiting domain-
knowledge in pGOMEA in Chapters 5 to 9. (p)GOMEA is an MBEA that uses sets of dependent
variables as crossover masks. GOMEA has its origins in the Linkage Tree Genetic Algorithm
(LTGA) as proposed by Thierens [38]. In later research the notion of Optimal Mixing (OM) is
introduced by Thierens and Bosman [39]. This leads to the introduction of GOMEA and the closely
related Recombinative Optimal Mixing Evolutionary Algorithm (ROMEA). In this chapter, the
need for MBEAs like GOMEA is �rst explained in Section 2.1. Then GOMEA and its Family-
Of-Subsets (FOS) models are discussed in Sections 2.2 and 2.3. Thereafter a review of GOMEA
with respect to BBO is given in Section 2.4. Since GOMEA traditionally works on problems with
a Cartesian search space, a permutation-based GOMEA (pGOMEA) is recently introduced by
Bosman and Thierens [2]. The main di�erences between pGOMEA and GOMEA are explained
in Sections 2.5 and 2.6. Finally Section 2.7 treats the e�ectiveness of pGOMEA on the PFSP as
introduced in Chapter 3.

2.1 Background

EAs contain a wide range of population-based optimization algorithms inspired by nature. A well
known type of population-based optimization algorithms is the Genetic Algorithm (GA). GAs aim
to �nd a good or even optimal solution with respect to a given (black box) �tness function. The
program �ow of a GA is based on a repetition of selection, crossover and optionally mutation.
In the selection phase, the best individuals of the population are selected according to a given
selection protocol (e.g. tournament or proportionate selection). In the crossover or recombination
phase, the selected individuals are (pairwise) combined using a crossover operator forming a child
population. These new solutions possibly undergo a mutation, which introduces diversity in the
o�spring. After each iteration, the population is (partially) replaced by its o�spring.

The idea behind a GA is that the recombination of good solutions forms other good solutions.
Due to the selection pressure in the selection phase, the population will converge to a population
with high-�tness individuals. A big challenge in designing GAs is the choice of a good recombina-
tion operator and the determination of the optimal population size. The recombination operator
should combine the building-blocks of two solutions and merge them together. With a good recom-
bination operator, the good properties are preserved for the next generation. A bad recombination
operator can lead to the creation of `random' children, since it can break important building blocks.
In that case the GA will randomly search the problem space and it will not exploit problem struc-
ture. When the population size in a GA is chosen too small, the population will converge before
exploring the search space enough. This leads to a �nal population with mediocre �tness and little
diversity. When a population is too large, too much computing resources are spend for �nding a
good solution.

Unfortunately, the population size and the optimal choice of a recombination operator di�ers

8

2.2. GOMEA 9

per problem and even per instance of a problem. Theoretical analysis shows that in worst-case,
exponential population sizes are needed to solve polynomial-time solvable problems [37]. There-
fore, exploiting problem structure in GAs is very important. Problem structure can be exploited
by using foreknowledge of the domain (in the form of LS or speci�c operators) or by using model-
learning. Especially in BBO, where no domain knowledge is given, model-learning can be hugely
bene�cial. For this purpose MBEAs have been designed. The goal of MBEAs is to exploit self-
learned dependencies between variables. One of the main categories in MBEAs consist of the
EDAs. EDAs di�er from GAs in that they do not use crossover and mutation. Instead, EDAs
learn a (probabilistic) model of the population and sample the o�spring from this model.

GOMEA is like EDAs an MBEA; instead of using a probabilistic model, GOMEA uses linkage
learning in order to learn and exploit domain knowledge. Linkage learning learns which variables
form important building-blocks of the solution and should therefore not be disrupted by a crossover
(or mutation) operator. In GOMEA, linkage learning identi�es subsets of variables that together
form building-blocks. These sets are then used as crossover masks in GOMEAs optimal mixing
phase.

2.2 GOMEA

GOMEA originates from the LTGA as introduced by Thierens [38]. Currently, the linkage tree is
only one of the possible FOS models that can be used in GOMEA, these models will be further
explained in Section 2.3. In short, the FOS contains sets of variables which can be used during
crossover. GOMEA is closely related to ROMEA, but since GOMEA outperforms ROMEA (with
a factor ≥ 1.7), we will only discuss GOMEA here.

GOMEA can be seen as a combination of an EDA and a GA. On the one hand it uses a model
that is learned, but on the other hand it uses crossover in a similar way as GAs do. Like GAs,
GOMEA starts with a (random) initial population of size n. Then, the iterative process is started,
which has two successive steps: model-building and Gene-pool Optimal Mixing (GOM). In the
�rst step, a FOS-model is build (Section 2.3). The FOS contains sets of variables (e.g. {x1, x4})
that are somehow linked, they share information. After building this FOS-model, each solution in
the population is greedily improved using the sets in the FOS-model. For each solution (receiver),
every FOS-set is tried as a crossover mask in a random order. For every mask/FOS-set, a random
solution (donor) is then selected from the population. The masked variables in the receiver will
be substituted with the masked variables of the donor. An example of such a donation would
be Donate(11111, {x1, x4}, 00000) = 01101. If a donation leads to a decrease in �tness of the
receiver, the donation is rejected. The process of donating using a FOS-set is called Optimal
Mixing (OM). Since for each FOS-set a random donor is chosen, this is called Gene-pool optimal
mixing. Model-building and Optimal mixing are repeated until a given termination criterion is met
(e.g. running time or population convergence). A pseudocode overview of GOMEA for maximizing
�tness function f is given in Algorithm 1.

Result: A good/optimal solution with respect to �tness function f
Pop← rand_Pop(n) ;
while ¬termination_criterion do

FOS ← build_FOS(Pop);
foreach receiver ∈ Pop do

receiver∗ ← receiver;
foreach set ∈ FOS do

donor ← Random(Pop);
child← Donate(receiver∗, set, donor);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child
return best solution from Pop

Algorithm 1: GOMEA outline

The GOMEA algorithm as outlined above is only a basic implementation of GOMEA. In reality
it is worthwhile to consider two extensions called Forced Improvement (FI) and Population sizing.

10 CHAPTER 2. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM

2.2.1 Forced Improvement

FI is a second phase in the GOM step of GOMEA, which is only entered when the population
does not improve fast enough. FI is designed in order to force improvements on the solutions in
the population, and thereby forcing convergence. The FI phase does exactly what the �rst phase
does, except it does not use a random donor, but the overall best solution as a donor. It also only
accepts strict improvements after which the phase is stopped, this ensures that diversity is not
lost in the population. (Note the di�erence between a change and an improvement of a solution).
The FI phase can be entered based on two criteria: Firstly, solutions that have not changed in the
�rst GOM phase will enter the FI phase. Secondly, if the overall best solution has not improved
for a number of generations (called the no-improvement-stretch (NIS)), the FI phase is entered.
Experiments show that NIS = b1 + log10(n)c is a good value for the NIS. Experiments show that
FI establishes good convergence without reducing diversity too much [5].

2.2.2 Population sizing

The ability of a GA to solve a problem is very dependent on the population size n. A small
population size converges too fast to a non-optimal solution, while a big population size gives a
lot of computational overhead. Therefore, GOMEA uses a population sizing scheme which does
not use a �xed population size, instead it �nds the right population size during the optimization
process without much overhead. In the population sizing scheme, GOMEA starts with a small
population size nbase. Every 4 evaluations of this population a population with twice the size
is evaluated once. This procedure recurses, meaning that a population of size 4 · nbase is once
evaluated when the population of size nbase is evaluated 16 times. When a population has a higher
average �tness than a smaller population, the smaller population is thrown away. It is assumed to
improve too slow; for the same reason, populations without any diversity are terminated.

2.3 FOS-Models

For now, we have not mentioned how the FOS-Model is build in GOMEA. The way the FOS is
constructed is of big importance for GOMEA. The sets in the FOS should resemble the building-
blocks of the solutions, the FOS then helps the crossover operator to perform good recombination.
Unfortunately, the optimal FOS-model can only be approximated from the knowledge in the current
population. The optimal FOS-model will always be a trade-o� between size and information. A
FOS-model containing all subsets of variables leads to exponential time in the GOM step. A
FOS-model without any dependencies makes a big assumption about the problem domain. In this
section, we discuss three possible FOS-models, which are used in or are related to known MBEAs.

2.3.1 Univariate model

The most simple FOS-model is the Univariate model, which assumes that each variable is inde-
pendent from the other variables. This assumption leads to a FOS with only singleton sets whose
union forms the set of all variables i.e. if there are l variables then FOS = {{x1}, {x2}, · · · , {xl}}.

2.3.2 Marginal product model

The Marginal Product Model (MPM) assumes that variables can be grouped together according to
dependencies. The groups of variables are mutually independent. This results in a FOS with non-
overlapping sets whose union forms the set of all variables. The MPM can be seen as a univariate
model where multiple sets are merged together. (e.g. FOS = {{x1, x3}, {x2, x4, x5} · · · })

2.3.3 Linkage tree model

The linkage tree model is often incorporated in GOMEA, forming LT-GOMEA or LTGA. A linkage
tree is a binary tree with the set of all problem variables as root and all singleton sets of the problem
variables as leaves. The children of a set are non-overlapping sets whose union forms the set in
their parent. While the univariate structure has l sets and the MPM structure has less than l
sets, a linkage tree has 2l − 1 sets. A linkage tree is learned/built bottom up, starting from the
univariate structure. Nodes/sets are merged into their parents by selecting the two sets with the

2.4. GOMEA FROM A BLACK-BOX PERSPECTIVE 11

highest Mutual Information (MI). For sets with more than one item, this is approximated using
the Unweighted Pairwise Group Method with Arithmetic mean (UPGMA), given by:

MIUPGMA(Si, Sj) =
1

|Si| · |Sj |
∑

x∈Si

∑

y∈Sj

MI(x, y). (2.1)

This notion of UPGMA is an approximation that theoretically reduces the quality of the linkage
tree, but improves the time in which it can be generated. The computational complexity of
generating a linkage tree is with O(l2n) relatively low, while in practice the quality of the tree does
not signi�cantly decrease. As the linkage tree is the most powerful FOS of the three, we will use
the linkage tree in our experiments.

2.4 GOMEA from a Black-Box perspective

Since GOMEA builds its own model, based on domain knowledge in the population, it is a good
candidate to be used in BBO. GOMEA does not need a problem-speci�c crossover operator, instead
it uses crossover masks that are based on the FOS structure. Bosman and Thierens [4] review
the quality of GOMEA with respect to a BBO perspective. GOMEA is compared with EDAs
and combinations of them with a simple (bit-�ip) LS in a model-based neighborhood. First, the
algorithms are tested on a GA-hard deceptive trap function de�ned by

fTrap5 =

(l/5)−1∑

i=0

fsubTrap5(

5(i+1)−1∑

j=5i

xj), (2.2)

where

fsubTrap5(u) =

{
1, if u = 5
4−u
5 , otherwise

}
. (2.3)

This function is well suited for the MPM structure as also used in EDAs. Secondly, the algorithms
are tested on the NK-landscape which is a hard problem for GAs. The formal de�nition of an NK
�tness function is given by

fNK(x) =

l−5∑

0

fsubNK(x(i,i+1···i+4)). (2.4)

Here, the sub-function is a random predetermined value in [0, 1]. Experiments show that LT-
GOMEA performs very well on these problems. In terms of function evaluations, LT-GOMEA
outperforms the other model-based approaches. However, LT-GOMEA could not be improved
using a substructural neighborhood (as further explained in Chapter 4), which might indicate that
LT-GOMEA already uses a LS strategy. The authors conclude that GOMEA is a very e�ective mix
between an EA and LS in a BBO context. From a non-BBO perspective, LS operators might still
be very useful for GOMEA, since �tness functions might be partially evaluated. We will further
examine the combination of LS and GOMEA in Chapter 7. There we use the notions in Chapter
4, where we use literature to study the combination of LS and GAs.

2.5 GOMEA for permutation problems: pGOMEA

GOMEA is like most MBEAs designed to solve problems in Cartesian space, meaning that every
variable can always take any value from a given domain. A lot of hard, real-world problems however
are in permutation space, meaning that each variable gets its unique value assigned. Examples of
permutation problems are the Traveling Salesman Problem (TSP) where the optimal city order
should be found, and the PFSP where the optimal processing order of jobs has to be found. Normal
crossover operators cannot be used in permutation space, since this can lead to infeasible solutions.
To overcome this problem, advanced operators or di�erent solution encodings have to be used. In
order to extend (LT-)GOMEA for permutation problems, the latter approach has been deployed
to construct pGOMEA [2].

12 CHAPTER 2. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM

2.5.1 Solution ecoding

For encoding a permutation of the variables (x1, x2 · · ·xl), pGOMEA uses a random keys encoding.
A random keys encoding assigns a real value rxi within a certain interval (here: [0, 1]) to each
variable xi (e.g. (0.2, 0.5, 0.3, 0.9, 0.1) for a 5-variable problem). The position of variable xi in the
permutation is equal to the position of rxi

when sorting all random keys in ascending order. In the
example above, x0 = 1, since it is the second lowest random key. Switching between the random
keys encoding and the permutation encoding takes O(l log l) time using a sort operation. A simple
crossover between two random keys encodings always results in a valid random keys encoding, so
the GOM operator can easily be used. Note that di�erent random keys encodings can encode the
same permutation e.g. (0.1, 0.2, 0.3) = (0.2, 0.3, 0.4).

2.5.2 Building the Linkage Tree

Though the GOM operator can work easily with the random keys encoding, the notion of depen-
dency between (sets of) variables should be rede�ned. In permutation problems, two factors play
a role in the notion of dependency.
The �rst factor contributing to the dependency of variables is relative-ordering information. The
reason for incorporating relative-ordering is intuitive: if one variable is always before (or after)
another variable in the permutation, this indicates a strong dependency between them. If two
variables are randomly before or after each other, this indicates a weak dependency. There-
fore, the probability pij that variable xi is before variable xj in a permutation is used (i.e.
pij = Pr(rxi

< rxj
)). This probability can be incorporated in the notion of entropy:

Hij = −[pij · log2(pij) + (1− pij) · log2(1− pij)]. (2.5)

Since the entropy is 1 when each outcome is as probable as the others, we have to subtract the
entropy from 1, resulting in the measure for relative ordering: δrel−ord(i, j) = 1−Hij .

The second factor of dependency between two variables in a permutation is proximity. In-
tuitively this can be explained using a TSP example. When two cities are close to each other,
they will often occur together in good solutions. They form a building block in the solutions. In
order to capture this dependency, we have to look at the distance between two variables in the
permutation or to the distance in random-key value between two variables. Thierens and Bosman
use the average squared distance between two random keys to de�ne a notion of distance:

d2ij =
1

n

n∑

k=0

(rkxi
− rkxj

)2. (2.6)

A bigger distance corresponds to a lower dependency between the two variables, so we subtract
the value from one to invert its meaning: δprox(i, j) = 1− d2ij . Both dependency measures can be
combined into a symmetric dependency measure in the interval [0, 1] by multiplying them:

δ(j, i) = δ(i, j) = δrel−ord(i, j) · δprox(i, j). (2.7)

Like GOMEA, pGOMEA uses the UPGMA measure calculation to calculate the dependency be-
tween two sets of variables.

2.5.3 Operators

When the linkage tree is incorporated in pGOMEA, LT-pGOMEA or pLTGA is formed. In this pa-
per we will only examine pGOMEA with a linkage tree, therefore pGOMEA will refer to pGOMEA
with a linkage tree. At the start of pGOMEA, a random population is generated with random
values for the random keys. During the crossovers, diversity in the values of random keys decreases
quickly. Therefore, mixing a set of variables in another solution will not always go well. Suppose
variables x1 · · ·x3 and x4 · · ·x6 are dependent. The probability that mixing is performed resulting
in donor (don.) and receiver (rec.) random keys rdon.x1

, rdon.x2
, rdon.x3

< rrec.x4
, rrec.x5

, rrec.x6
is very low

and might decrease over time. However, x1 · · ·x6 can be a worthwhile building block when this
property holds. In order to overcome this, the random rescaling operator is introduced. This
operator scales the random keys of a variable subset from the donor to another interval before

2.6. PGOMEA CONFIGURATIONS 13

inserting the random keys in the receiver.

For example, when the random keys (rx1
, rx2

, rx3
) = (0.2, 0.3, 0.4) are scaled to the interval

[0.1, 0.2], the random keys will become (0.1, 0.15, 0.2) and will be substituted in the receiver. Note
that when the size of the interval is equal to the size of the random keys interval, this rescaling
operator does not actually rescale, it only shifts the random keys.

In pGOMEA, random rescaling is applied with a probability of 0.1. The scaling interval is ran-
domly selected from a predetermined set of l equidistant sized sub-intervals of [0, 1]. These settings
are obtained in experiments that are conducted on the random rescaling using ICE algorithm [3].

Since random rescaling is applied less than 10% of the time, random keys diversity can still drop
in the population. A second operator is introduced in order to introduce random keys diversity:
re-encoding. Re-encoding is applied to every individual at the end of a generation. The re-
encoding changes the random keys encoding of each individual without changing the corresponding
permutation. Re-encoding can be easily implemented by generating a sorted vector v of random
values in [0, 1]; the ith value in the random keys order gets the ith value from v. Note that the
re-encoding operator changes distances between random keys, which has in�uence on the proximity
dependency.

2.6 pGOMEA con�gurations

When pGOMEA is run with the same parameter settings as GOMEA (population sizing and
FI), population sizes of up to 219 were created, indicating that smaller con�gurations are easily
overtaken by larger populations. In order to solve this problem, the population sizing scheme and
the FI phases are slightly changed.

2.6.1 Population sizing

In GOMEA, when a smaller population is overtaken, it is assumed to improve too slow. In
pGOMEA, �nding improvements takes more time, since permutation space is generally larger
than Cartesian space (factorial vs. exponential). An overtaken population can still give good
solutions, therefore populations are not prematurely stopped when overtaken. Populations are
only stopped when they don't have any diversity.

2.6.2 Forced Improvement

We have seen that permutation space is bigger than Carthesian space and thus improvements need
more time. This does not only a�ect population stopping; FI can also be executed too often. This
leads to a drop in diversity, because the best solution in the population will hugely determine the
contents of the population. This results in a fast convergence towards the best solution in the
population. In other words, pGOMEA looses its ability to explore the search space, instead it
exploits the best solution in the population too much. In order to overcome this problem, the NIS
is multiplied by 10, resulting in NIS = 10 + 10 · blog10(n)c, which gives better performance.

2.7 Results

pGOMEA has been tested on the PFSP with the total �owtime (TFT) criterion using the Taillard
Benchmark [35]. More information about this problem and its benchmark instances is given in the
next chapter.
First, the di�erent con�gurations of pGOMEA have been compared, it turns out that the changed
population termination criterion and the new FI threshold signi�cantly improve the quality of the
found solutions.
Then, pGOMEA with its four variants (with and without rescaling and re-encoding) is compared
with a recently proposed permutation EDA: GM-EDA [7]. Both algorithms get the same compu-
tational budget in terms of �tness evaluations. In most cases, pGOMEA outperforms GM-EDA,
except when considering instances with 200 jobs. For most other instances, pGOMEA has at least

14 CHAPTER 2. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM

one signi�cantly better performing variant (with and without rescaling and re-encoding). When
no rescaling and re-encoding is used, pGOMEA is able to give good solutions in instances with up
to 50 jobs. After that, the use of either of these operators is necessary. Though both operators
improve the performance of pGOMEA, rescaling seems to work better on bigger instances. Us-
ing both rescaling and re-encoding does not make pGOMEA signi�cantly better than using only
rescaling. In short, pGOMEA is a promising algorithm for solving permutation problems; even
without explicit domain knowledge, pGOMEA is able to �nd good or even best solutions for the
PFSP.

Chapter 3

Permutation Flowshop Scheduling

Problem

The PFSP has been used in order to test the performance of pGOMEA. Since this research tries
to improve on pGOMEA by incorporating domain knowledge, it is self-evident that we should �rst
take a look at the domain of PFSP. The PFSP is a problem in the �eld of machine scheduling. In
machine scheduling, a batch of J jobs should be scheduled in such a way that the processing plan
is optimal with respect to a given criterion. Many machine scheduling problems exist and while
some are solvable in polynomial time, others are known to be NP-hard. Since the PFSP is also
known to be NP-hard [14], this is an ideal optimization problem for pGOMEA. In this chapter, the
PFSP is �rst formally de�ned in Section 3.1. Then benchmark problems and statistical tests for
comparing PFSP algorithms are introduced in Section 3.2. The main constructive and improvement
heuristics for the PFSP are discussed in Sections 3.3 and 3.4, as they are a great source of domain
knowledge. This chapter concludes with an overview of state-of-the-art algorithms/metaheuristics
that are used to �nd near-optimal solutions for the PFSP. The main goal of this chapter is to
give insight in PFSP and approaches that use PFSP domain knowledge in order to `solve' this
problem. The results of this chapter will be used in di�erent experiments on combining pGOMEA
with heuristics.

3.1 Problem description

The PFSP is concerned with �nding the optimal solution for scheduling J jobs on M machines.
Each job requires M operations, which should be performed sequentially, starting on machine 1
and �nishing on machineM (the Flowshop property). Operations cannot be interrupted, but a job
can be delayed when its operations are not performed immediately after each other. Any solution
can be seen as a permutation of jobs, since each machine has to process the jobs in the same order
(the Permutation property). In three �eld notation, the PFSP is denoted by F |prmu|γ, where γ
refers to the objective function that is used for optimizing the schedule.

For each operation (i, j) of job i that should be operated on machine j, we de�ne the processing
time p(i, j). We can de�ne any schedule π as a permutation of the jobs: π = {π1, π2, · · · , πJ}. For
the �rst machine we can simply compute the completion time c(πi, 1) for each job πi by

c(πi, 1) =

i∑

k=0

p(πk, 1). (3.1)

We can also easily compute the completion times of all operations of the �rst scheduled job (π) by

c(π1, j) =

j∑

k=0

p(π1, k). (3.2)

All other completion times depend on the completion times of the previous operation of the same
job and the previous operation on the same machine:

c(πi, j) = max{c(πi−1, j), c(πi, j − 1)}+ p(πi, j). (3.3)

15

16 CHAPTER 3. PERMUTATION FLOWSHOP SCHEDULING PROBLEM

For each operation πi we can also de�ne the starting time s(πi, j); computed by s(πi, j) = c(πi, j)−
p(πi, j).

3.1.1 Objective functions

The PFSP has multiple criteria which can be optimized for a schedule. These criteria are an
important factor when solving the problem. For some criteria, the problem can be easier solved
than for others. Since we will limit ourselves to the relevant PFSP information for pGOMEA, we
only discuss the two main optimization criteria for the PFSP.

Cmax: The Cmax criterion is an intuitive measure for the quality of a solution. In industry, producers
want to process the batch of jobs as soon as possible. The time that the last job is �nished
should therefore be minimized. This is called the Cmax criterion, also known as the �owtime
or makespan criterion. When all completion times are known, Cmax can be extracted by
Cmax = c(πJ ,M). The Cmax criterion makes PFSP NP-hard when M > 2. [14]

TFT: The TFT criterion is based on the minimization of the sum of all completion times of the

jobs i.e. TFT =
J∑
i=0

c(i,M). The idea behind this criterion is that each job needs space in

the inventory, but each job can be removed from the inventory once it is completed. TFT
can also be used when multiple clients are waiting on their jobs, the TFT then minimizes
the total dissatisfaction. The Average Flow Time criterion also exists and is almost equal to
the TFT criterion, since it can be computed as TFT

J . When using the TFT criterion, PFSP
is NP-hard when M > 1 [15].

Both the Cmax and the TFT value can be calculated in O(J ·M) time, by calculating all completion
times using dynamic programming.

3.2 Comparing solutions

Since the introduction of the PFSP, a lot of heuristics, metaheuristics and other algorithms have
been proposed in order to �nd good schedules. These algorithms have to be compared using test
instances. The most used set of test instances is created by Taillard [35], he published a set of
120 test instances. The test instances are grouped in sets of 10 instances having the same size.
The instance sizes are shown in Table 3.1 an correspond to sizes of real industrial problems. The
processing times of the jobs are uniformly sampled from the interval [1, 99]. For each instance size,
Taillard has chosen 10 tests that are considered to be the hardest from a larger set of generated
instances1.

Whereas the Taillard-instances are hard randomly generated problems, Watson et al. [42] re-
mark that most real-world problems contain structure. Therefore, they propose a new benchmark
that contains correlation between jobs and/or machines. Since algorithms that are superior on
random instances do not necessarily perform well on structured instances, this is a useful bench-
mark for comparing the performance of MBEAs. For the Watson-benchmark, a lot of instances
with di�erent correlation coe�cients (α) have been created. The underlined sizes in Table 3.1
correspond to sizes for which both Taillard and Watson instances are available.

J = 20 J = 50 J = 100 J = 200 J = 500
M = 5 20× 5 50× 5 100× 5
M = 10 20× 10 50× 10 100× 10 200× 10
M = 20 20× 20 50× 20 100× 20 200× 20 500× 20

Table 3.1: Sizes of the Taillard PFSP instances, underlined sizes are also used in the Watson-
instances

When algorithms are compared using these benchmark sets, two performance measures are often
used: the Average Relative Percentage Deviation (ARPD) and the Median Relative Percentage

1A problem was considered interesting if the best found makespan was far from a lower bound of the makespans

and if many attempts to solve the problem did not provide the same solution.

3.3. CONSTRUCTIVE HEURISTICS 17

Deviation (MRPD). Both measures use the distance of N algorithm results (RESi: i ∈ {1 · · ·N})
to the best known upperbound (UB) of that instance as the main ingredient. Since the result is
always higher or equal to the best known upper bound, this distance is de�ned by RESi − UB.
The relative percentage deviation of result i is the distance divided by the upper bound and scaled
by a factor 100:

RPDi =
100 · (RESi − UB)

UB
. (3.4)

Using this de�nition, we can take the average over N runs of an algorithm as

ARPD =
1

N

N∑

i=1

RPDi =
1

N

N∑

i=1

100 · (RESi − UB)

UB
(3.5)

and similarly, the median over N runs can be de�ned as

MRPD = median

N⋃

i=1

RPDi = median

N⋃

i=1

100 · (RESi − UB)

UB
. (3.6)

Since the outcomes of the algorithm are generally not normally distributed, the Mann-Whitney-
Wilcoxin test can be used in order to decide whether one algorithm performs signi�cantly better
than another. This test only assumes that the underlying distributions of the algorithm results
have the same shape.

3.3 Constructive Heuristics

Heuristics can be divided into two main categories: constructive heuristics and improvement heuris-
tics. Improvement heuristics for the PFSP will be further discussed in the next section, where they
will be treated as a part of LSs. Constructive heuristics can be further divided into simple and
composite heuristics. Constructive heuristics consist of one or more of the following three phases:
Index development, Solution construction and Solution improvement. A heuristic is considered to
be composite if it uses a simple heuristic in one or more of the three phases.
Since improvement heuristics are often used in the last phase of a construction heuristic, there will
be some overlap between this and the next section. In this section, we limit ourselves to a few
heuristics. These heuristics are selected based on speed, schedule quality, ability to be used in GAs
and variety in use of domain knowledge. This section is primarily based on papers by Ruiz and
Maroto [30] and Pan and Ruiz [26], where we refer to for more details and comparisons with other
heuristics. For each heuristic, we give a brief explanation and we report its (time) performance for
both the Cmax and TFT criterion.

3.3.1 CDS: Campbell, Dudek and Smith

The two-machine PFSP with the Cmax criterion can be solved in polynomial time. The algo-
rithm solving this PFSP is known as Johnson's rule. Johnson's rule makes one set of jobs having
p(i, 1) < p(i, 2) and one set of jobs having p(i, 1) > p(i, 2). The �rst set is sorted on shortest
processing time of p(i, 1); the second set is sorted on longest processing time of p(i, 2). The sets
and their jobs are then scheduled in sequence. As sorting is the most expensive operation, this
algorithm uses O(J log J) time.

Campbell et al. [6] use Johnson's rule as the basis of their simple CDS heuristic. CDS considers
the m − 1 ways in which the machines can be split and grouped into two machines. When the
machines up to machine k are merged into the �rst new machine, the processing times for both
new machines are given by

p1(i) =

k∑

j=0

p(i, j) and p2(i) =

m∑

j=M−k
p(i, j). (3.7)

This new 2-machine problem can be solved using Johnson's rule. The m − 1 resulting schedules
can be used for population-seeding, as we will show in Chapter 6. The CDS heuristic uses M − 1
evaluations of Johnson's rule andM−1 objective function calculations. This gives a computational

18 CHAPTER 3. PERMUTATION FLOWSHOP SCHEDULING PROBLEM

complexity of O(M2J+MJ log J). The CDS heuristic does not give very good results, with respect
to the best heuristics, it is however able to generate more than one good solution. Though Johnson's
rule and thus CDS is designed for the Cmax criterion, CDS has also been used as benchmark for
comparisons of TFT algorithms, performing better than random creation of solutions.

3.3.2 Palmer's Slope-Index

Palmer [25] is the �rst to use indexing in a constructive PFSP heuristic. For every job a slope
index value is calculated as

Si = −M − 1

2
p(i, 1)− M − 3

2
p(i, 2)− · · ·+ M − 3

2
p(i,M − 1) +

M − 1

2
p(i,M). (3.8)

The slope index is high, when a job uses little time on the �rst machines and much time on the last
machines. A low slope index is assigned when a job uses little time on the last machines and much
time on the �rst machines. The jobs are scheduled based on the decreasing slope index. Note that
Johnson's rule also uses a notion of `slope': it creates sets with a positive and negative slope. The
performance of Palmer's heuristic is slightly worse than that of CDS, though its computational
complexity is only O(JM + J log J). Palmer's heuristic is designed for the PFSP with the Cmax
criterion and no data is known about its performance on the TFT criterion. In Chapter 8 we
will introduce dependency seeding for pGOMEA, which can use Palmer's heuristic for �nding
dependency values.

3.3.3 Rapid Access: Dannenbring

The Rapid Access (RA) heuristic is a combination of the CDS heuristic and Palmer's slope index
[10]. The RA heuristics reduces an m-machine problem to a 2-machine problem which can be
solved using Johnson's rule. In contrast to the CDS heuristic, machine merging is not performed.
Instead, one schedule is generated from a new problem with processing times based on a form of
slope index. The processing times used in the new problem are computed by

p1(i) =

M∑

j=0

(M − j + 1) · p(i, j) and p2(i) =

M∑

j=0

j · p(i, j). (3.9)

The processing times on the new �rst machine is high for jobs with much processing time on the
�rst machines. For the new second machine, jobs with a high processing time on the last machines
get a high processing time. RA �nds good solutions very quickly: its computational complexity is
O(JM +J log J). Dannenbring observed that the RA heuristic often results in schedules that were
next to optimal, i.e. only two neighboring jobs should be swapped. In order to further increase the
e�ciency, RA has been combined with an improvement phase with Closed order Search (RACS)
and Extensive Search (RAES). RA is designed to solve the PFSP problem with the Cmax criterion
and no data is known about its performance on the TFT criterion.

3.3.4 NEH: Nawaz, Enscore and Ham

The NEH heuristic is considered to be the best currently known heuristic for optimizing the PFSP
schedules for the Cmax criterion. However, because of its speed it has also been used as inspiration
optimize PFSP schedules with the TFT criterion [26].
NEH calculates its schedule in two steps. First, the jobs are sorted based on decreasing total
processing time: ptot(i) =

∑M
j=0 p(i, j). Then, the best schedule consisting of only the two longest

jobs is selected. In the second phase, the other jobs (3 · · · J) are sequentially inserted in the
schedule-position where it minimizes the objective. Since job k can be inserted in k positions, a
naive implementation needs O(J2) function evaluations, resulting in a computational complexity
of O(J3M).

The best position to insert job k, when using the Cmax criterion, can be found in O(k · m)
time [36] instead of O(k2 ·m) time. This is done using the completion times c(i, j) and the tails
t(i, j) (time between the start of an operation and the end of the schedule) of each operation. An
overview of this algorithm is given in Algorithm 2

3.3. CONSTRUCTIVE HEURISTICS 19

Result: The optimal position to insert job k
Compute all c(πi, j)
Compute all t(πi, j) = c(πk−1,M)− s(πi, j)
Compute all f(πi, j) = max{f(πi, j − 1), c(πi−1, j)}+ p(πk, j)
return arg mini{maxj [f(i, j) + t(i, j)]}.

Algorithm 2: NEH outline

Each of the steps in the algorithm can be computed in O(kM) time. Since NEH uses n insertions,
NEH runs in O(J2M) time. Note again that this is only true when considering the Cmax objective.
The NEH heuristic is one of the best heuristics for the Cmax criterion though it has a (relatively)
high time complexity. For the TFT problem, it performs worse and also needs more time.

3.3.5 LR(x): Liu and Reeves

Liu and Reeves [24] propose a constructive heuristic that creates a variable amount of schedules
(x ≤ J). The LR heuristic is designed for the TFT problem and uses less time than the NEH
heuristic, while giving better results for this criterion.
LR(x) consists of the following three steps:

1. Sort all jobs according to the index function.

2. Create x partial schedules with the top-x jobs scheduled �rst. Extend the partial schedules
by iteratively adding the best job according to the re-evaluated index function.

3. Select the best schedule generated in step 2).

The index function for adding job i after the last job k in the partial schedule consists of two
components:

1. A weighted total machine idle time, punishing the time the machines wait between job k and
job i. Idle time on the �rst machines is punished more than idle time on the last machines.

2. The arti�cial total �ow time, is the sum of the completion time of job i plus the completion
time of an arti�cial job representing the unscheduled jobs.

As LR(x) gives multiple good solutions in a short time (O(x ·J2M)) we will use the LR(x) heuristic
in Chapter 6 when seeding pGOMEA with good solutions.

3.3.6 RZ: Rajendran and Ziegler

The constructive heuristic proposed by Rajendran and Ziegler (RZ) [29] consists of two phases.
The �rst phase generates a seed sequence, whereas the second phase tries to improve on that using
an improvement heuristic. Since improvement heuristics are explained in the next section, we limit
the discussion of RZ to the �rst phase.
In the �rst phase, M schedules are generated. Schedule k is generated by sorting the jobs on the
sum of their weighted processing times on machines k to M :

Ti,k =

M∑

j=k

(M − j + 1) · p(i, j). (3.10)

The best of the m schedules is determined and used in the improvement phase. The complexity in
the �rst phase is based on m created schedules in O(M +J log J) time and m schedule evaluations
in O(JM) time. This results in a complexity of O(Jm2 + MJ log J). When incorporating the
RZ-local search (RZ-LS) in the second phase, the complexity becomes O(J3M) but results become
better than the results of LR. As the RZ heuristic only gives a few solutions, we will not use RZ
in population seeding. We will however use the RZ heuristic in dependency seeding in Chapter 8

20 CHAPTER 3. PERMUTATION FLOWSHOP SCHEDULING PROBLEM

3.3.7 Summary

In this section, the most fundamental constructive heuristics for the PFSP have been discussed.
A summary of the discussed heuristics is given in Table 3.2. Most constructive heuristics that
are not described here are either composite heuristics using the discussed heuristics or simple
heuristics using similar ideas for indexing and solution construction; and improvement heuristics
as described in the next section. Though other constructive heuristics are often able to give better
results (especially with respect to the TFT criterion), these heuristics also need much more time.
This makes these constructive heuristics less suitable for incorporation in an EA.

Algorithm Solves Criterion Complexity Performance #Solutions
CDS Cmax O(M2J +MJ log J) OK M − 1
Palmer Cmax O(JM + J log J) OK 1
RA Cmax O(JM + J log J) OK 1
NEH Cmax/TFT O(J2M)/O(J3M) Good/Bad 1
LR(x) TFT O(x · J2M) OK x ≤ J
RZ TFT O(J3M) OK 1 (M seeds)

Table 3.2: Summary of constructive heuristics for the PFSP.

3.4 Local Search methods

In many NP-hard problem solvers, LS methods have been incorporated. LSs use a de�ned neigh-
borhood in order to walk through the search space from one solution towards better solutions.
In this section, we will not discuss the concrete implementations of LS methods like Simulated
Annealing and Tabu Search; some of them will be discussed in the next section. We limit the dis-
cussion to simple neighborhood searchers like the simple �rst-improvement and best-improvement
neighborhood searchers. Other LS methods can be easily derived from these basic neighborhood
searchers.

In worst case, one iteration in a neighborhood searcher evaluates the objective function for
all neighbors. The complexity of one iteration in an neighborhood search for the PFSP is thus
bounded by O(|N | · J ·M), where |N | is the neighborhood size and J ·M is the time needed to
calculate the objective value of a neighbor. Especially close to local optima, a large part of the
neighborhood has to be evaluated before an improvement is found. However, when not optimizing
from a BBO perspective, neighborhood searchers can often re-use information about the problem
in order to compute the objective value faster. In our experiments we will limit optimizations in
�tness evaluations to the level of Big-O notations.

In this section, we discuss neighborhood searchers for the PFSP. For each of the discussed
neighborhood searchers we discuss three properties: the neighborhood space complexity, the worst
case time complexity and the algorithms/heuristics where they are used in, or derived from. Most
improvement heuristics for the PFSP are based on the two most fundamental heuristics for permu-
tation problems: the swap and insertion heuristic. Since other heuristics are often based on these
two heuristics, they will be included in the discussion of the basic heuristics.

3.4.1 Swap heuristics

The �rst basic heuristic for permutation problems is the swap heuristic. This heuristic takes the
permutation sequence and swaps two items in the sequence. Since each value of the permutation
still remains in the new solution, the new solution is a valid permutation. The neighborhood space

of the swap heuristic consists of J·(J−1)2 possible swaps, resulting in an O(J2) neighborhood space
complexity. In the PFSP problem, a swap simply translates to swapping the positions of two
jobs in the schedule. A complete search in the space of all swap-neighbors is quite expensive, so
heuristics used in literature often use a reduced neighborhood.

Ho and Chang [18] use the gap between pairs of jobs in order to optimize a schedule for both
criteria. First, a range of considered jobs is de�ned starting with the full schedule (i.e. range =

3.4. LOCAL SEARCH METHODS 21

[1, J]). The two jobs with the largest di�erence in gap are iteratively tried to swap with the jobs at
the ends of the range; after which the range is reduced. When the range is too small, the heuristic
is �nished. This swapping heuristic does not consider all possible swaps, but uses an intuition for
which swaps will be useful. This results in quite a fast heuristic, that can be used in GAs and LSs.

The Forward Pairwise Exchange (FPE) and Backward Pairwise Exchange (BPE) heuristics
are introduced by Liu and Reeves [24] in order to increase the performance of their LR-heuristic.
FPE(α) considers swaps starting from �rst job in the schedule sequence. For the job in position
k, only swaps are considered with jobs in the positions [k + 1 · · · k + α]. One iteration of FPE(α)
considers O(J · α) swaps. FPE(1) denotes adjacent pairwise exchange and FPE(J) results in the
standard swap heuristic.
In contrast to FPE(α), BPE(α) starts from the back of the schedule and only considers swaps with
jobs preceding the current job. For the LR heuristic, the choice of BPE was better, since it uses a
reverse direction of the LR-constructive phase. For schedules that do not contain such a structure,
one can use both BPE and FPE.

Closed order search, as used in RA to create RACS, uses adjacent pairwise exchange [10]. Every
possible pairwise exchange is considered and the best of the resulting J − 1 neighboring schedules
is selected. Rapid Access with Exhaustive Search (RAES) applies RACS multiple times. RAES is
able to �nd good solutions to the Cmax PFSP, though it takes considerably more time than RACS.

A last neighborhood search heuristic worth mentioning is the swap heuristic of Suliman [34].
Suliman reduces the neighborhood space by assuming that once a job is moved forward it is never
pro�table to move it backward.

In general, we can state that the basic swap heuristic is not used very often in literature. Instead,
similar heuristics are derived from the swap heuristic. Most discussed reduced-neighborhood swap
heuristics have been designed for either the Cmax or the TFT criterion. This does not imply that
they cannot be used or adapted to improve schedules for the other criterion. One should also
keep in mind that some improvement heuristics are designed to optimize solutions generated with
a speci�c constructive heuristic (e.g. FPE(α)). In this case, the design of such an improvement
heuristics can be based on assumptions about the schedule to be optimized.

3.4.2 Insertion heuristics

The second basic heuristic for permutation problems is the insertion heuristic. This heuristic takes
a permutation sequence and puts one item in the sequence at another place. For each item, J − 1
new places can be considered. Therefore the neighborhood space of the insertion is also quadratic
(i.e. O(J2)). This is often considered too big, so more specialized heuristics have been designed.

The RZ-LS, as proposed by Rajendran and Ziegler [29] relies on the insertion heuristic. The
RZ-LS calculates the best insertion for a job and applies that insertion. The jobs are tried to
move, starting from the �rst job in the sequence. One iteration of this heuristic applies at most J
insertions while computing J2 insertions. Tseng et al. [40] limit the insertion positions of the job
at position k to the positions in [k − α, k + α], resulting in a O(J · α) neighbor space complexity.

The result of insertions can sometimes be calculated in a faster way. The NEH-insertion oper-
ator is able to select the best insert-position for a job in O(JM) time when the Cmax criterion is
used. Normally, this would take O(J2M) time. The NEH-insertion heuristic uses the same speedup
as the NEH constructive heuristic uses. A job is simply removed from the schedule, whereafter
the optimal insertion position is calculated in the same way as NEH does. NEH-insertion can also
remove multiple jobs and add them using the NEH heuristic method. Unfortunately, the NEH-
heuristic cannot be sped up for the TFT criterion, which reduces it to a simple insertion heuristic.

Tseng et al. [40] incorporate a Cut-and-Repair approach in their GLS for solving PFSP with
the TFT criterion. Instead of randomly taking jobs that will be inserted in a random position, the
two best positions for insertion are identi�ed. The two pairs of jobs which have the largest idle
time between them are selected. The schedule is cut between these pairs; for each job, the e�ect

22 CHAPTER 3. PERMUTATION FLOWSHOP SCHEDULING PROBLEM

of inserting it in the cut is estimated using the maximum idle time. For the best eight insertions,
the unapproximated TFT-value is computed. The best insertion of this eight is selected. The
amount of time needed can be written as 2 ·n ·A+ 2 · 8 ·B, where A is the time for computing the
maximum idle time and B is the evaluation of the objective function. Therefore, one iteration of
this algorithm takes O(JM) time, while a neighbor space of O(J) is taken into account. Besides
using simple improvement heuristics, we will also experiment with hybridizing pGOMEA with the
`smart' NEH and Cut-and-Repair heuristic in Chapter 7.

3.4.3 Summary

In this section, neighborhood searchers for the PFSP have been discussed that can be incorporated
in a LS. A summary of the described heuristics is given in Table 3.3. Most improvement heuristics
use a swap or insertion heuristic as basis. Though the insertion and swap heuristic cannot speed
up the objective function evaluation, domain knowledge can be exploited in the improvement
heuristics. Either swaps or insertions are smartly selected or multiple insertions or swaps can be
evaluated at once. For the improvement heuristics, few results are known from literature, since
they are only evaluated in relation to their meta-heuristic or constructive heuristic. Therefore, the
complexities of the neighborhood and the running times are important guidelines for choosing the
right improvement heuristic for a GA.

Name Based on Complexity Neigbor Space Operations Details
Ho-Chang Swap O(J3M) O(J) O(J) Uses gap between jobs
FPE(k), BPE(k) Swap O(k · J2M) O(J2) O(J) One pass heuristic
RACS Swap O(J3M) O(J2) O(J) One pass heuristic
RAES Swap O(x · J3M) O(k · J2) O(x · J) Multipass RACS
Suliman Swap/Insert Ω(J3M) O(J2) Ω(J) One-directional
RZ-LS Insert O(J3M) O(J2) O(J) One pass heuristic
NEH-insertion Insert O(JM) O(J) 1 Fast insertion for Cmax

Cut-and-Repair Insert O(JM) O(J) O(1)
Small neighborhood
Uses approximation

Table 3.3: Summary of improvement heuristics for the PFSP.

3.5 Metaheuristic solvers

Since the PFSP is NP-hard, bigger instances cannot be solved exactly within reasonable time.
Though there exist branch-and-bound algorithms that try to do so, they typically are not able
to solve instances with more than 50 jobs within reasonable time [21]. Since constructive and
improvement heuristics get stuck in local optima, a lot of meta-heuristic algorithms have been
proposed that try to �nd a schedule that is as good as possible. It is not easy to determine
which algorithms are state-of-the-art, since few overview papers have been written and results on
important benchmarks are not collectively stored. Algorithms solving PFSP (Cmax) that can be
considered state-of-the-art are:

• HGA (2006): This Hybrid Genetic Algorithm starts from an initial population with one
solution created with the NEH heuristic and Bi% of the initial schedules are generated with
a modi�ed NEH heuristic. In the GA, the fast NEH-insertion heuristic has been used as a
�rst improvement hill-climber. [31]

• IG (2007): This Iterated Greedy algorithm uses the NEH constructive heuristic to build an
initial solution. After that, ILS is started, which perturbs the solution by removing jobs. The
jobs are then re-inserted using the NEH-insertion heuristic. ILS/IG accepts solutions based
on a problem-size dependent simulated-annealing acceptance criterion. Only two parameters
are needed: destruction size and a base temperature. [32]

• DDEA (2008): This algorithm uses Discrete Di�erential Evolution with an NEH-insertion
approach in order to solve the PFSP problem with the Cmax criterion [27].

3.5. METAHEURISTIC SOLVERS 23

State-of-the-art algorithms solving the PFSP with the TFT criterion are:

• HGLS (2009): This is a Hybrid Genetic Local Search algorithm, using a Cut-and-Repair
operator, or the insertion heuristic with an α−range This algorithm gives good results for
problems up to 100 jobs, larger instances have not been tested or reported. [40]

• PHEDA (2011): Zhang and Li propose a hybrid EDA which incorporates the longest com-
mon sub-sequence into the probability distribution. LS is added in the form of a Virtual
Neighborhood Searcher (VNS) including a perturbation using random insertion. The VNS
uses both the swap and the insertion neighborhood. [43]

• VNS4 (2012): Costa et al. test six types of VNS combining the classical insertion and swap
heuristic. Their VNS4 outperforms all other VNSs and an Asynchronous Genetic Algorithm.
[9]

• MRSILS (2013): Dong et al. propose a Multi-restart Iterated Local Search. The LR(2)
heuristic is used to �nd the �rst solution. Then, a job-insertion heuristic is used to get to a
local optimum. When a local optimum is found, the solution is added to a solution pool and
a new LS is started from the perturbed best know solution in the pool. Once the pool is full,
new LSs are started from a random pool-member. This meta-heuristic outperforms various
other algorithms, and is easy to implement. [11]

As one can see, most meta-heuristics use a LS for searching the space locally, while another
mechanism is used for the global search. For both the Cmax and the TFT criterion GLSs are
competitive algorithms, indicating that pGOMEA with LS can also be a good algorithm for solving
the PFSP. For the Cmax criterion, the NEH heuristic is present in every state-of-the-art algorithm.
As the VNS4 and IG algorithm are easy to implement and since they give good results, we will
compare pGOMEA with these algorithms in Chapter 10.

Chapter 4

Domain knowledge in Evolutionary

Algorithms

GAs and other EAs search the problem space using selection and recombination of the �ttest in-
dividuals. EAs are able to search the problem-space globally, by exploiting the building blocks of
good solutions. For this, one should provide the EA with the right operators and solution represen-
tation. Though these factors matter a lot, a good choice does not guarantee fast discovery optimal
solutions. If certain problems are tried to solve with a classical EA from a BBO perspective,
exponential-time scale-up can be obtained for polynomial-time solvable problems [37] before the
optimal solution is found. This is the main reason why exploitation of domain knowledge has been
an important part of EA research over the years. And even if incorporating domain knowledge in
EAs is not an exigency, it can still be bene�cial in terms of population size or convergence speed.
Domain knowledge can be incorporated in EAs in multiple ways; in this chapter we consider two
categories: one can either incorporate foreknowledge in the EA or one can derive and exploit a
model of the problem structure while running the EA.

Foreknowledge of the problem domain is used in almost every EA. The main form of incorpo-
rating domain knowledge in EAs is in choosing a solution encoding and designing operators. These
adaptations of EAs come in various forms, from a simple binary encoding to the random keys
encoding, from one-point crossovers to cycle crossovers and from bit-�ip mutation to LS. Most of
these adaptations are designed for e�ective and correct mixing of building blocks. In Section 4.1,
we discuss the standard ways of inserting domain knowledge in EAs and how they may apply to
pGOMEA

Model learning in EAs has been a more recent approach to guide e�ective mixing of good
solutions. MBEAs learn a model per generation and use this model to guide the creation of a
child population. MBEAs are especially useful for optimization in a BBO environment, only the
search domain has to be speci�ed, after which the MBEA learns an e�ective way of generating
o�spring solutions. A second advantage of MBEAs is the capability of adapting operators to the
local structure of the search space, allowing both a local and global search strategy in the EA.
As pGOMEA is an MBEA we will explain MBEAs in Section 4.2, where we will compare the
exploitation of model knowledge in pGOMEA with some other MBEAs.

Since both incorporating foreknowledge and model-learning are e�ective strategies to improve
the quality of EAs, the combination of these two methods can improve EAs even more. One im-
portant pitfall should be avoided when doing this: the more domain knowledge is incorporated,
the more the search is steered, resulting in less exploration in the EA. Section 4.3 discusses this
topic and describes the posibilities that this combination o�ers for pGOMEA.

The �nal topic of this chapter is the use of model-knowledge given domain knowledge. In
Section 4.4 we discuss how learned structure can be exploited using a substructural neighborhood
in local search.

24

4.1. DOMAIN FOREKNOWLEDGE IN EVOLUTIONARY ALGORITHMS 25

4.1 Domain foreknowledge in Evolutionary Algorithms

EAs incorporate domain knowledge in di�erent ways. First of all, the way solutions are encoded
have a lot of in�uence on the way mixing is performed. Secondly each of the EA-phases can
incorporate domain knowledge in the form of adapted operators or added LS. Since LS is not a
necessity for most EAs, but an important performance enhancer, the use and pitfalls of LS in EAs
gets special attention in this section.

4.1.1 Encoding solutions

The right encoding of solutions can help EAs to overcome the creation of invalid child solutions.
The choice of a genetic representation is directly linked to the choice of genetic operators. The
most common forms of genetic representations are the binary representation, the tree representation
and the vector representation. These and other representations have as a main purpose to allow
recombination and mutation operators to mix genes properly and e�ectively. For pGOMEA, we
need the random keys vector encoding, further changes in solution encoding are therefore not
discussed in this thesis.

4.1.2 Operators in the Evolutionary Phases

The operators of an EA can be tuned to �t a given problem and solution representation. Often this
is an exigency: without the right operators, the right building blocks are not correctly juxtaposed
or infeasible solutions are generated. Multiple phases can be de�ned in an EA: Population initial-
ization, Selection, O�spring generation and Mutation. For each of these phases, the ways domain
knowledge can be incorporated to steer the optimization process are (brie�y) discussed below. As
pGOMEA does not use selection, we skip this.

• Population initialization: Normally, the initial population of an EA is generated at random.
A good choice for the initial population can hugely increase the convergence speed of an EA.
The argument for this is simple: if we are able to approximate the population in generation
k in the initial population, we save k population evaluations.

With domain knowledge, we can seed the initial population with such good solutions. One or
more good solutions are added to the initial population. Adding only one good individual can
already improve the convergence speed of an EA, the good building blocks of this one solution
will slowly be introduced in the other individuals (faster when using FI in pGOMEA). This
improves the other solutions, while the random solutions will contribute to the exploration
capability of the EA. Good solutions can be either the result of a constructive heuristic or a
random solution improved by a LS.

For instance, for the PFSP with Cmax criterion, one good individual can be generated using
the NEH-heuristic or any other good heuristic. More than one good individual can be created
by selecting all m− 1 solutions of the CDS heuristic. When multiple improved solutions are
added to the initial population, the diversity can drop, blocking exploration behavior of a GA.
Especially when the improved solutions are correlated in some way, diversity is lost. Therefore
it can be worthwhile to generate solutions based on more than one heuristic. When this also
reduces diversity too much, random solutions have to be added to the initial population. In
Chapter 6 we will experiment with population seeding in pGOMEA.

• O�spring generation (recombination): EAs can generate o�spring in multiple ways. Due to
selection, the o�spring that is generated should be biased towards the better individuals. For
this, a good recombination operator should be de�ned. Recombination operators always use
more than one individual to generate new solutions.

A classical GA uses crossover to generate o�spring; 1-point, 2-point and uniform crossover
are the most well known and simple crossover operators in a GA. For ordered or permutation
chromosomes, a GA can use a cycle crossover, partially mapped crossover or another sophisti-
cated crossover operator [41]. For partitioning problems the Greedy Partitioning Crossover is
a good choice [13]. Other EAs use recombination in di�erent ways. For instance, Evolution-
ary Strategies perform recombination by calculating the average of two real-valued vectors

26 CHAPTER 4. DOMAIN KNOWLEDGE IN EVOLUTIONARY ALGORITHMS

[1]; The standard deviation vector is inherited from one of the parents.

In pGOMEA recombination is greedily performed. Since no selection is used in pGOMEA and
only improvements are allowed, pGOMEA uses elitism. pGOMEA also uses a more advanced
recombination operator (rescaling) using the fact that it solves permutation problems.

• Mutation: The goal of a mutation operator is to introduce diversity in populations and to
explore the search space locally. Mutation is a unary operator, since it is applied to a one
individual. Mutation operators vary from simple bit-�ips in binary encodings to Gaussian-
mutations in evolutionary strategies. In permutation problems, the mutation operator can
be a simple insertion or swap, as introduced in Section 3.4. When LS is applied instead of
a mutation, a GLS is created. The goal of this hybridization is to speed up the convergence
of the GA. However, diversity can drop since the mutation is not performed anymore and
solutions can converge to the same local optimum. This form of hybridizing a GA with LS
is denoted Lamarckian learning instead of Baldwinian learning.

In Lamarckian learning, LS is again seen as acquiring skills during lifetime. These skills
are directly inherited by the o�spring [22]. An �ctional example of Lamarckism would be a
blacksmith; through his work, a blacksmith strengthens the muscles in his arms, and thus
his sons will have similar muscular development when they mature. Though in nature this
is not observed, EAs can hugely bene�t from this approach. Lamarckian learning often
allows an EA to reach better solutions with less memory and time, while it introduces or
removes diversity. When incorporating a LS, one can have one or more of the mentioned
e�ects in mind, but one should note that the other e�ects can have (negative) impact on the
performance of the EA. In Chapter 7 we will experiment with hybridizing pGOMEA with
some improvement heuristic given in Section 3.4, but �rst we look at some practical issues
when hybridizing an EA.

4.1.3 Issues of incorporating Local search in an EA

Hybridization of an EA has some issues that should be considered before implementation. First
of all, LS takes time in the EA. More time is needed per generation when a LS is used in a EA.
Though the amount of �tness evaluations increases, these evaluation are often less expensive than
regular �tness evaluations. LSs can then exploit domain knowledge in order to compute the same
amount of evaluations in less time (like the NEH-insertion heuristic).
If the LS and the EA work together very well (the LS gives the GA information about good areas
in the search space), everything is �ne. However, a LS can disrupt the building blocks that an EA
needs. Therefore LS is only helpful when locally optimized solutions still contain the important
global building blocks that an EA needs.
Since using LS every iteration can take too much time and because it can drop population diversity,
a balance between local and global search (and exploration and exploitation) should be found.
Therefore di�erent parameters have been introduced that allow the user to specify this balance:

• Frequency of local search (f): LS is performed every 1
f iterations. This allows a GA to

improve globally before improving locally.

• Depth of local search (k): The better a solution is, the less neighbors have a better �tness.
The last steps of a LS take the most time, therefore stopping a LS after k �tness evaluations
or k improvements can be bene�cial. A second advantage of this limit is that diversity is not
lost when two solutions tend to move to the same local optimum.

• Probability of local search (Prls): LS is here applied to every individual with a probability
of Prls. This parameter can be seen as a combination of the other two parameters. LS is
not performed every iteration for every solution, while the probability that two individuals
converge to the same solution in one generation is decreased.

Note that the choice of the parameter values is important. The optimal value can vary per problem
and even per generation. For the estimation of the optimal parameter values an initial experiment is
often performed to determine the optimal values of the parameters. When we hybridize pGOMEA
with some improvement heuristics, we will test limiting the LS by a probability and a depth. We
will also research the behavior of pGOMEA with respect to di�erent values for these parameters.
Using these results, we determine the best way of hybridizing pGOMEA with LS.

4.2. MODEL BASED EVOLUTIONARY ALGORITHMS 27

4.2 Model Based Evolutionary Algorithms

MBEAs are designed to exploit learned problem structure in the recombination phase of an EA.
An MBEA learns a model per generation, which is then used for creating a new populations.
Therefore, MBEAs can be seen as a combination of EAs and machine learning. As in machine
learning, MBEAs do not exhaustively search for the best model representing the domain structure,
rather they �nd a good model in a shorter time. The right model is always a trade-o� between
complexity, building time and information.

The main category of MBEAs is that of the EDAs. EDAs generate o�spring using sampling
from a learned distribution over the selected parent population. The model learned by an EDA is
often probabilistic. For instance, the extended Compact Genetic Algorithm (eCGA) learns a sim-
ple MPM [16]. Bayesian Optimization Algorithm (BOA) learns a more complex Bayesian network
from which the solutions are sampled [28]. In permutation problems, sampling can be performed
using the random keys encoding [3] or using a more advanced probabilistic model [7].

Unlike EDAs, GOMEA does not use a probabilistic model to create o�spring. Instead, GOMEAs
crossover operator uses an optimal mixing approach, GOMEA uses the dependencies captured in
the FOS as crossover masks. In this way pGOMEA samples neighbors using genes from other
individuals in the generation. Like pGOMEA, DSMGA-II adopts two mixing operators: restricted
mixing and back mixing [19].

Though most MBEAs focus on the recombination phase, the mutation phase in EAs can also
use a model. For instance, Evolutionary Strategies use self-adaptation by maintaining a vector of
standard deviations for each solution. In general, MBEAs tend to perform well on BBO problems,
since they exploit the (unknown) structure the best. From a white-box perspective, MBEAs can
still perform very well, especially when combined with some form of LS.

4.3 Domain foreknowledge in Model Based Evolutionary Al-

gorithms

MBEAs are a relatively new �eld of study, but in an early comparative study of Zochlin and Dorigo
it was already mentioned that Although using local search is not a common practice in the EDA
research �eld, the results ... indicate that it certainly should be considered in the future. and ...
the use of the local search leads to a drastic improvement of performance ... [44]. Like in nor-
mal EAs, LS can be incorporated in di�erent ways in an MBEA. However, the functionality of
an LS gets broader. Once a population is locally optimized, the model learns dependencies be-
tween variables in local optima. Therefore, the model will contain more structure and less diversity.

For EDAs, di�erent LS approaches have been used in practice. Hauschild and Pelikan use
seeding in order to enhance the performance of their EDA [17]. Duque et al. [12] show that the
population size of eCGA can be signi�cantly reduced by using LS. They also show that the amount
of required �tness evaluations drops, even when a simple bit-�ip operation is assumed to be ex-
pensive. Chen et al. [8] perform a study that compares the behavior of eCGA and DSMGA with a
�rst improvement hill-climber and a best improvement hill-climber. Their experiments show that
a hybrid MBEA with a greedy hillclimber is able to give better solutions with less �tness evalua-
tions. The best improvement hill-climber has too much overhead in determining which neighboring
solution is best. A lot of other algorithms show the value of adding a LS in EDAs. Overall, the
results suggest that EDAs are able to improve in quality when they are combined with LS.

In contrast to EDAs, GOMEA has not been studied thoroughly with LS. A �rst study with
GOMEA and LS shows that from a BBO-perspective (i.e. no partial �tness evaluations are possi-
ble), GOMEA does not improve when a LS is incorporated [4]. This is an indication that OM is
already an e�ective mix of an EA and LS. However the performance of GOMEA was already very
good and the performance of LS was already bad on the used problems. Therefore, the question is
still open whether LS is still super�uous when considering real-world problems (e.g. permutation
problems) outside a BBO setting.

28 CHAPTER 4. DOMAIN KNOWLEDGE IN EVOLUTIONARY ALGORITHMS

In literature we have not found any algorithms exploiting domain knowledge in building the
model, instead the algorithms all use knowledge derived from the population. In this thesis we
will however introduce a new form of seeding for MBEAs in Chapter 8. Model seeding or informed
model learning (for pGOMEA: dependency seeding) allows an MBEA to learn structure from the
�rst generations on, by learning a model that is (partially) based on domain knowledge.

4.4 Exploiting model-knowledge using domain-knowledge

We have seen how (MB)EAs can be enhanced using domain knowledge. In literature, there also
exist various ways of combining domain knowledge with model knowledge. In pGOMEA one
such combination is already present. pGOMEA has an crossover operator that uses information
from the FOS-model. The standard mixing operator takes a FOS subset as a crossover mask for
recombination. Therefore, the learned domain knowledge steers the optimization process. Since
the rescaling operator is incorporated in the GOM phase it can be seen as an model-dependent
insertion heuristic. The rescaling operator inserts one or more variable-values from one solution
into another while preserving the variable order. Though the rescaling operator is very similar to
the insertion heuristic for PFSP, it is not exactly the same. Di�erences are:

• Rescaling works on more than one variable

• Rescaling not only moves variables, but also scales them

• Rescaling is performed during donation and not during a separate LS phase.

The re-encoding operator in pGOMEA also has some relation with the learned model. Since ran-
dom keys are reassigned, the proximity dependency between two variables will mainly dependent
on distance between the values in the permutation. The random keys only add randomness to this
squared distance.

Like the random rescaling in pGOMEA, EDAs can also incorporate operators that use the
model-knowledge. Lima et al. incorporate the model knowledge of EDAs in a LS, by de�ning
a substructural neighborhood [23]. A substructural neighborhood is de�ned by linkage groups
learned by the BOA EDA. A substructural neighborhood consists of sets of variables that are
dependent in the learned Bayesian Network model. The authors de�ne three neighborhoods:

• Parental neighborhood (a node plus its parents in the Bayesian Network)

• Children neighborhood (a node plus its children in the Bayesian Network)

• Parental + Children neighborhood (a node plus its parents and children in the Bayesian
Network)

These neighborhoods can be incorporated in a LS, by considering (all) other assignments for the
variables in a substructure. BOA hugely bene�ts from this approach and eCGA can also be greatly
sped up using substructural neighborhoods.

A form of substructural neighborhood has also been used by Iclazan and Dimitrescu [20]. Their
Building-Block hill climbing algorithm learns building blocks based on the results of a hill-climbing
algorithm. The building blocks are then used in the same hill-climbing algorithm. In this way, the
experience of the hill-climber is used to improve itself.

For GOMEA, a substructural neighborhood can be de�ned as a set in the FOS. This approach
has already been researched, and it did not give very promising results. [4]. However, this does
not give an indication whether substructural neighborhoods will be helpful for pGOMEA or not.
In the given research, only problems are considered that are e�ciently solved by GOMEA and
are unsolvable using LS. In more real-world problems, LS is more e�ective and a discrete (binary)
search space is way smaller than permutation space. Therefore, using a substructural neighborhood
in LS is still a possible worthwhile extension for pGOMEA, which we will examine in Chapter 9.

Chapter 5

Improvement heuristics on pGOMEA

solutions: Experimental Study

In order to get a �rst intuition about the local optimality of schedules in pGOMEA we investigate
the improvability of pGOMEA solutions with respect to basic improvement heuristics. This part of
the research is conducted to see if there are any quick wins, by using simple improvement heuristics
on the resulting schedule of pGOMEA. We experimentally compare the quality of the basic swap
and insertion neighborhood as described in Section 3.4.

Since pGOMEA works with an population sizing scheme, multiple populations are evaluated
contemporaneously. Some populations are evaluated once, while others have already converged.
Therefore it is expected that recently added populations will contain a lot of `random' solutions
that can be easily optimized using improvement heuristics. On the other hand, converged popu-
lations have used a lot of donations with rescaling. As rescaling on a donation with a singleton
linkage-set is equivalent to an insertion operator, the converged populations are expected to have
locally optimized solutions (with respect to the insertion heuristic).

Because of this we do not focus on the optimizability of solutions in general. Instead we target
the optimizability of the elitist solution over all populations. The elitist solution is supposed to
be the least optimizable solution after termination of pGOMEA. Since the elitist solution has the
highest �tness of all solutions, it can be optimized less compared to all other solutions. All results
of this experiment are conservative about the performance of the improvement heuristics. If the
elitist solutions cannot be optimized, this does not necessarily imply that improvement heuristics
are unable to improve pGOMEA. On the other hand: if elitist solutions can be easily optimized,
this is an indication that improvement heuristics can be very worthwhile for pGOMEA. We will
use the results of this �rst experiment as guide for hybridizing pGOMEA in Chapter 7.

The contents of this chapter are organized as follows: Section 5.1 gives the setup of the ex-
periments. Section 5.2 discusses the results of the di�erent sub-experiments. An overview of the
conclusions is given in 5.3. The main question that the experiments try to answer is:

How do di�erent improvement heuristics perform on the solutions of pGOMEA?

5.1 Experimental setup

5.1.1 Benchmark and computational budget

For this and most other experiments, we use instances from the Taillard benchmark (see Section
3.2) to test the performance of algorithms. The used instances have a larger size than those
optimally solved by pGOMEA in [2], therefore, we use instances with sizes given in 5.1. Since the
computational budget of this research is limited, we use a lower amount of �tness evaluations than
in [2]. Instead, we use amounts of �tness evaluations that are one to three orders of magnitude
lower, details are given in 5.2. The given computational budgets result in reasonable computation
times starting from a few seconds to a few minutes.

29

30CHAPTER 5. IMPROVEMENTHEURISTICS ON PGOMEA SOLUTIONS: EXPERIMENTAL STUDY

Jobs/Machines 5 10 20
50 (50× 5) (50× 10) (50× 20)
100 (100× 5) (100× 10) (100× 20)

Table 5.1: Used Taillard-instances for experiments.

Denotation Low Standard High
Evaluations 220,712 2,207,121 22,071,125

Table 5.2: Used �tness evaluations and their denotation in text.

5.1.2 pGOMEA Con�guration

As con�guration of pGOMEA, we used the settings that give the best results for pGOMEA on
the TFT criterion. These settings are described by Bosman Et Al. [2]. The settings include both
rescaling (with probability 0.1) and re-encoding of solutions. The proximity and relative ordering
information are used to build a linkage tree model of the variables. Population sizing is used with
each population being evaluated four times as often as the population of twice its size. Populations
are only stopped on convergence, not when they are overtaken by another population. Experiments
are initially performed on both the TFT and Cmax criterion.

5.1.3 Neighborhood searchers

The elitist solution obtained by pGOMEA will be optimized using both an exhaustive swap and
insertion heuristic as well as a VNS combining both heuristics. For information about these
heuristics, we refer to Section 3.4.

5.1.4 Comparing results

We report whether the elitist solutions can be improved using the heuristics and what di�erence
it makes on the resulting solution. For this, we use two measures:

• Probability of improvement: Each of the ten instances in a J ×M benchmark-set is run
�ve times. The probability of improvement gives the proportion of these 50 runs that can be
improved using a heuristic.

• Average MRPD: In order to measure the quality of a solution, we should use a resistant
statistic measuring RPD values. Since each set J ×M contains 10 instances, we cannot take
the median value over 50 runs. The median does not take the hard and easy instances into
account, median �tness or median RPD is therefore not a representative measure. Instead
we use an average-of-medians approach. Each of the ten instances in a J×M benchmark-set
is run �ve times. For each of the instances we take Median RPD (see 3.2). The average over
the 10 MRPD values is reported as the average MRPD (AMRPD) value. In a similar way,
we report the average median �tness.

5.2 Results

5.2.1 Probability of improvement

First we determine the probability that a pGOMEA elitist solution can be improved using a swap
or insertion heuristic. Table 5.3 shows for each instance-set the probability that the elitist solution
of pGOMEA can be improved using the simple improvement heuristics.

The major observation is the di�erence in probability of improvement for the swap and the
insertion heuristic. The swap heuristic gives a higher probability of improvement than the insertion
heuristic, especially for the TFT criterion. Secondly we observe that M has a lot of in�uence on
the probability of swap-improvement for the TFT values. As M gets higher, the probability of
improvement drops very fast. However, when J gets higher, the probability of improvement also
gets higher. Lastly, we see a big di�erence in probability of improvement between the TFT and
Cmax criterion.

5.2. RESULTS 31

TFT Cmax
Instances Swap Insert Swap Insert
50× 5 0.66 0.22 0.02 0.00
50× 10 0.28 0.20 0.04 0.04
50× 20 0.16 0.12 0.06 0.08
100× 5 0.98 0.46 0.02 0.04
100× 10 0.72 0.46 0.00 0.04
100× 20 0.42 0.36 0.16 0.18

Table 5.3: Probability of improving the elitist solution using improvement heuristics. Solution
found after 2,207,121 pGOMEA �tness evaluations.

5.2.2 Probability of improvement: Machine in�uence

In order to get more insight in the behavior of improvement heuristics with respect to M , we look
in more detail to the probability of improvement with respect to the value ofM in this experiment.
We now limit the experiment to the TFT criterion as this is most in�uenced by the amount of
machines. In this experiment we vary the amount of �tness evaluations and machines. We report
the probability of optimization for each combination of J and M with respect to a low, standard
and high amount of �tness evaluations by pGOMEA. The results of this experiment are shown in
Figures 5.1 and 5.2 for J = 50 and J = 100 respectively.

22 220 2207
0

0.2

0.4

0.6

0.8

1

Fitness evaluations N · 104

P
ro
b
a
b
il
it
y
o
f
im

p
ro
v
e
m
e
n
t

M = 5 M = 10 M = 20

(a) Swap heuristic

22 220 2207
0

0.2

0.4

0.6

0.8

1

Fitness evaluations N · 104

P
ro
b
a
b
il
it
y
o
f
im

p
ro
v
e
m
e
n
t

M = 5 M = 10 M = 20

(b) Insertion heuristic

Figure 5.1: Optimizability of elitist solutions with respect to the swap and insert heuristic using a
di�erent amount of machines and a �xed amount of jobs (J = 50).

These �gures con�rm that the larger values of M give a lower probability of improvement for
the swap heuristic. Also, a higher amount of jobs results in a higher probability of improvement
for the swap heuristic. The insertion heuristic on the other hand seems not to be in�uenced by the
amount of machines. When considering 100 jobs and 22,071,215 �tness evaluations for pGOMEA,
we can even see the opposite: more machines results in a higher probability of improvement.

The results in Figures 5.1 and 5.2 make that we cannot conclude that the swap heuristic always
performs equally well or better than the insertion heuristic. Most of the time, the swap heuristic
has a higher probability of optimization, but the insertion heuristic can perform better when a lot
of �tness evaluations are used by pGOMEA and the problem instances have a lot of machines.

5.2.3 Improvement heuristics for TFT: Quality and resources

Since the probability of improvement is not necessarily strongly correlated with the quality improve-
ment, we perform a second experiment. Here, we also look at the amount of swaps or insertions
that are performed and the average MRPD and average median �tness values after improvement
by the heuristics. As we expect that the amount of swaps and insertions is not very dependent

32CHAPTER 5. IMPROVEMENTHEURISTICS ON PGOMEA SOLUTIONS: EXPERIMENTAL STUDY

22 220 2207
0

0.2

0.4

0.6

0.8

1

Fitness evaluations N · 104

P
ro
b
a
b
il
it
y
o
f
im

p
ro
v
e
m
e
n
t

M = 5 M = 10 M = 20

(a) Swap heuristic

22 220 2207
0

0.2

0.4

0.6

0.8

1

Fitness evaluations N · 104

P
ro
b
a
b
il
it
y
o
f
im

p
ro
v
e
m
e
n
t

M = 5 M = 10 M = 20

(b) Insertion heuristic

Figure 5.2: Optimizability of elitist solutions with respect to the swap and insert heuristic using a
di�erent amount of machines and a �xed amount of jobs (J = 100).

on the instance, we do not use a average-of-medians approach for the amount of improvements.
Instead, we report the average amount of swaps and insertions that are performed.
Besides the quality of improvement, we also discuss the resources used in the improvement. We
measure this in terms of the amount of �tness evaluations used in the heuristics. We report the
average amount of �tness evaluations.

The results of this experiment, using a small amount of �tness evaluations are shown in Table
5.4 for the J × 10 instances with the TFT criterion.

(M = 10) J = 50 J = 100
Swap Insert Swap Insert

Avg. heuristic �tness evaluations 3261 4004 30095 41128
Avg. heuristic improvements 0.98 1.68 12.98 19.92
Avg. of Median amount of �tness improvements 32.0 42.2 811.6 901.4
Avg. of MRPDs after heuristic 2.396 2.385 3.686 3.653

Table 5.4: Improvement results using improvement heuristics. For 220,712 pGOMEA evaluations
using the TFT criterion.

The results show that, though the swap heuristic has a higher probability of improvement, the
insertion heuristic improves the solutions more. On average the insertion heuristic performs more
changes than the swap heuristic. This also results in more �tness evaluations used by the insertion
heuristic than the swap heuristic, since after each improvement, the complete neighborhood should
be revisited before the heuristic terminates.

Since more insertions than swaps are performed, the �tness is improved more by the insertion
heuristic than by the swap heuristic, resulting in better RPD scores. We can therefore conclude
that the probability of improvement has no strong relation with the expected quality of improve-
ment. Though initially swaps are often possible, they can be applied only a few times. Insertions
on the other hand are less often possible, but if one insertion is possible, it creates new possibilities
for insertions.

These observations are further tested, the average MRPD values are also calculated with more
�tness evaluations used by pGOMEA. The results of these experiments are shown in Figure 5.3
for the TFT criterion.

The results of this experiment con�rm that pGOMEA generates solutions for the TFT crite-
rion that can be easily improved using the swap heuristic, but that the insertion heuristics creates
slightly better solutions. The results also show the impact of an improvement heuristic with respect

5.2. RESULTS 33

22 220 2207
0.5

1

1.5

2

2.5

Fitness evaluations N · 104

A
v
e
ra
g
e
M
R
P
D

pGOMEA Insertion Swap

(a) J = 50

22 220 2207
1

2

3

4

Fitness evaluations N · 104

A
v
e
ra
g
e
M
R
P
D

pGOMEA Insertion Swap

(b) J = 100

Figure 5.3: Optimization quality of the insertion and swap heuristics on elitist solutions of
pGOMEA. Optimization measured using di�erent amounts of �tness evaluations and a �xed
amount of jobs an Machines (M = 10)

to the amount of pGOMEA �tness evaluations. Whereas a few pGOMEA �tness evaluations give
a lot of room for improvement, more evaluations only decrease the MRPD slightly.

5.2.4 Improvement heuristics for Cmax: Quality and resources

The results in Table 5.3 show that the solutions of pGOMEA generated by the Cmax criterion can-
not often be improved using the swap and insertion heuristic. Therefore, we conduct an experiment
in order to get more insight in the improvability of pGOMEA solutions for the Cmax criterion. The
experiment focuses more on quality of improvement and used resources; we use Taillard instances
with sizes (50 × 10) and (100 × 10). Since improvements are hard on the Cmax criterion, we let
pGOMEA use a small amount of �tness evalutations. The results of the experiment can be seen
in Table 5.5.

(M = 10) J = 50 J = 100
Swap Insert Swap Insert

Avg. heuristic �tness evaluations 2671.4 2793.2 10639 13181
Avg. heuristic improvements 0.16 0.22 0.22 1.14
Avg. improvement per swap/insert 3.0 2.55 1.91 2.63
Avg. of MRPDs after heuristic 1.811 1.828 0.886 0.866

Table 5.5: Improvement results using improvement heuristics. For 220,712 pGOMEA evaluations
using the Cmax criterion.

These results show that the small probability of improvement is not due to the Cmax solutions
being optimal. The MRPD values are far from optimal, even after further improvement. When
a solution can be improved using either the swap or insertion heuristic, this does not introduce a
lot of new improvement possibilities. In the best case, an average of only 1.14 improvements are
performed, with an improvement of �tness of 2.63 per insertion. Consequently, the MRPD only
decreases very slightly and a near-optimal solution is not found. Experiments using more �tness
evaluations for pGOMEA resulted in even lower optimization rates for the heuristic. When using
more evaluations, pGOMEA was able to �nd much better solutions.

34CHAPTER 5. IMPROVEMENTHEURISTICS ON PGOMEA SOLUTIONS: EXPERIMENTAL STUDY

5.2.5 Variable Neighborhood Searching

As the swap and insertion heuristics have their own strengths, combining them into a VNS can
possibly create a much stronger improvement heuristic. Since we are only interested in the im-
provability of the elitist solution, this VNS does not contain any shake procedure, thus terminating
when a local optimum is found for both the insertion and swap heuristic. Ideally, this combination
of the swap and insertion heuristic should inherit the high probability of improvement from the
swap heuristic and the solution quality from the insertion heuristic. Since the VNS searches two
neighborhoods, this will evidently cost more �tness evaluations and time. The used VNS heuristic
is based on the VNS4 heuristic by Costa [9]. The VNS �rst searches the swap neighborhood until
a local optimum is found. Then, the insertion neighborhood is used.

Improvement prob. Average MRPD
Instance Evaluations Insert Swap VNS Insert Swap VNS

(50x10)
220712 0.46 0.38 0.62 2.396 2.385 2.319
2207121 0.28 0.20 0.32 1.370 1.351 1.344
22071215 0.14 0.14 0.22 0.863 0.858 0.850

(100x10)
220712 0.98 0.82 0.98 3.687 3.654 3.496
2207121 0.72 0.46 0.82 2.361 2.348 2.292
22071215 0.58 0.20 0.58 1.494 1.502 1.470

Table 5.6: Comparing Insertion, Swap and VNS heuristic on the TFT criterion

Table 5.6 shows how VNS combines the bene�ts of the swap and insertion heuristic. Using
the VNS gives the highest probability of improvement and the lowest MRPD values. This does
however come at some cost. The amount of �tness evaluations used is more than three times as
big as for the insertion or swap improvement. Also, though the MRPD values get better, the
improvement is still very small when pGOMEA has used a high amount of �tness evaluations.

5.3 Conclusions

In this section, we explain the observations made in the analysis of the experimental results. We
then motivate the expected reason for these results. Finally, we draw some conclusions about
pGOMEA and its interaction with simple improvement heuristics.

• Results for the Cmax criterion by pGOMEA can hardly be improved.
Even when a small amount of �tness evaluations is considered, the elitist solution for the
Cmax criterion can improved less than 20% of the time. This is a big di�erence with the
TFT criterion, which can be optimized more than 40% of the time when considering the
same amount of �tness evaluations. Multiple factors can be the cause of this behavior.

First of all, it can be due to the nature of the Cmax criterion. This criterion only considers
the completion time of the last scheduled job. Therefore, an insertion or a swap that does not
change this completion time, will not be considered an improvement. For the TFT criterion,
the same insertion or swap can still change the completion times of other jobs, leading to an
improvement of the objective value. Solutions have therefore less neighbors with a di�erent
(and better) �tness for the Cmax criterion, than neighbors with a di�erent �tness for the
TFT criterion.

A second reason for the optimizability of Cmax and TFT solutions can be the problem dif-
�culty. If the instances are easier solved for the Cmax criterion than for the TFT criterion,
the probability of improvement is much lower for Cmax results. The experiments however
have shown that solutions can hardly be optimized, even when the MRPD values are quite
large > 1.5. TFT solutions however can still be optimized when MRPD values are below 1.5.
The main reason for the di�erence between TFT and Cmax lies therefore in the amount of
improving neighbor solutions due to the way the �tness function is de�ned.

5.3. CONCLUSIONS 35

Since the Cmax solutions are hardly optimized using simple improvement heuristics, there is
an extra need for non-BBO improvement heuristics, like the NEH improvement heuristic. If
one works in the BBO context, the use of an improvement heuristics has little e�ect on the
results, while a lot of �tness evaluations are needed when working in a BBO context.

• Improvement strength decreases when more �tness evaluations are considered
As shown in Figures 5.1 and 5.2, a larger amount of �tness evaluations used by pGOMEA
results in a lower probability of optimization using an improvement heuristic. This trend
can be observed for both the swap and insertion heuristic on the TFT criterion. For this
behavior, there is an easy explanation. More �tness evaluations in pGOMEA results in
better solutions. Better solutions have less neighbors that are better than them. Therefore,
the results of these pGOMEA runs are less likely to be optimized by the swap and insertion
heuristic.

• The more machines an instance contains, the less often the swap heuristic can
improve the elitist solutions
For the TFT criterion, extensive experiments indicate that (for both J = 50 and J = 100),
the probability of improvement using the swap heuristic is related with the amount of ma-
chines. The insertion heuristic on the other hand is hardly in�uenced by the amount of
machines. A possible explanation lies in the probability that jobs look alike.

When only two machines are used, jobs can have di�erent processing times in at most two
variables. Swapping two jobs having one variable in common has little destructive e�ects,
since the other value either gives a better or worse schedule between the two jobs that are
swapped. When more machines are used, jobs are less likely to look alike. Therefore there
is a higher probability that one of the variables that di�er a lot has a destructive e�ect on
the schedule between the two swapped jobs. Consequently, the more machines are used, the
higher the probability of a destructive swap operation and the lower the probability that a
swap will improve the solution quality.

• The insertion heuristic has a lower probability of improving a solution, but its
e�ect when improving a solution is larger
In our experiments we observed that, though the swap heuristic can improve more solutions
of pGOMEA, the insertion heuristic improves the pGOMEA results more in terms of �tness.
Table 5.4 shows how the insertion heuristic improves the �tness more than the swap heuristic
does, even though the swap heuristic improves with a higher probability. This result can
possibly be explained by the local e�ect of an insertion. Though the job is moved towards
a good position, it connects its original predecessor and successor. This connection might
contain a gap, where any other job can �t in.

• A Variable Neighborhood Searcher is able to combine the bene�ts of insertion
and swap improvement, though this does come at a big cost.
The insertion and swap heuristic can be combined in a VNS. Though this does indeed give
better results for both the probability of improvement and the MRPD value, this does take
more �tness evaluations. The VNS uses about three times as much �tness evaluations as the
insertion heuristic and swap heuristic. On instances that are the result of a lot of pGOMEA
�tness evaluations, the change in MRPD value is still not very high.

In general, we can conclude that for now, the Cmax criterion shows little room for improve-
ment using simple improvement heuristics, while solutions for the TFT criterion are more easily
optimized using simple improvement heuristics. For the TFT criterion the insertion heuristic is
the best choice for �nding a good solution, while the swap heuristic has the highest probability
of improving a solution. Though we saw that more �tness evaluations led to a lower probability
of optimization, this does not mean that improvement heuristics are less useful when considering
a high amount of �tness evaluations. When using a high amount of �tness evaluations, the �rst
solutions in a generation still bene�t from improvement heuristics. Since we have only seen that
the elitist solution does not bene�t very much from improvement heuristics, other solutions in an
almost converged population can still be optimizable, which improves pGOMEA. In the Chapter
6 we use this observation by optimizing the initial members of each population. In Chapter 7 we
will also experiment with hybridizing pGOMEA using improvement heuristics.

Chapter 6

Solution seeding pGOMEA:

Experimental Study

As we have seen in Chapter 5, pGOMEA solutions can be improved using improvement heuris-
tics. The less pGOMEA has optimized solutions, the more e�ect local search has. In this chapter
we therefore use heuristics at the start of pGOMEA i.e. we use solution seeding as introduced
in Section 4.1.2. We call this well-known form of seeding solution seeding to distinguish it from
dependency seeding as introduced in Chapter 8. We will research the e�ects of combining con-
structive heuristics for the PFSP problem with TFT and Cmax criterion with pGOMEA. Using
constructive heuristics, we seed pGOMEA with good solutions, which pGOMEA can possibly learn
and exploit. The main question that this experimental study will answer is:

What is the e�ect of solution seeding on the performance of pGOMEA?

The examined forms of solution seeding are introduced in 6.1. The setup of the experiment is given
in Section 6.2, after which we experimentally test seeding in Section 6.3. In Section 6.4 we draw
conclusions based on these experiments.

6.1 Forms of seeding

Seeding in pGOMEA should take into account that pGOMEA uses a population sizing scheme.
Adding one good solution in the �rst population has little to no e�ect on later populations. The
only way that populations interact is via the forced improvement (FI) phase, where the overall-best
solution is used as a donor. It is therefore expected that each population should be seeded in order
to improve on the quality of pGOMEA. Combining pGOMEA with heuristics will be done in three
di�erent ways:

• Elitist seeding: The initial elitist solution will be generated using a constructive heuristic.
The contents of a population remain unchanged. Using this form of seeding, we can prevent
the seed from becoming too dominant, since it will only be used in the FI phase of pGOMEA.

• Single-solution population seeding: Each new population will contain one solution that
is generated using a constructive heuristic. This form of seeding leaves room for diversity,
provided that it does not dominate the random solutions too much.

• Multi-solution population seeding: Each new population will contain multiple solutions
that are generated by a constructive heuristic. With this form of seeding we can further
analyze the aspects of diversity and convergence, with respect to the amount of domain
knowledge given.

The �rst two forms of seeding are a form of single solution seeding, which allows one to use
any heuristic algorithm that return a valid solution. The last two forms of seeding are a form of
population seeding, where the seed is entered in every population.

36

6.2. EXPERIMENTAL SETUP 37

6.2 Experimental setup

For this experiment, the Taillard instances are used as a benchmark. The used sets of instances
have 50 or 100 jobs and 5, 10 or 20 machines, making a total of 60 instances. Each result is obtained
by running pGOMEA �ve times on the instances, with the given amount of �tness evaluations.
Quality measures as introduced in Section 5.1 are used.

Three experiments are performed, related to each of the ways in which pGOMEA can be seeded.
First, single solution population seeding is researched, secondly elitist-seeding is used. For these
experiments, we use the RZ and NEH constructive heuristics for the TFT and Cmax criterion
respectively. The performance of the seeded pGOMEA algorithms is compared to the performance
of pGOMEA without any seeding. Lastly, we experiment with multi-solution seeding. Here we
use the LR and CDS constructive heuristics for the TFT and Cmax criterion respectively. This
implies that for CDS at mostM−1 solutions are seeded and for LR at most J solutions are seeded.
Finding the right amount of seeds will be further elaborated in the results. The pGOMEA settings
are the same as in the previous chapter. For more information about the used heuristics, we refer
to Section 3.2.

6.3 Results

6.3.1 Single-solution seeding: solution quality

In this �rst experiments we look at seeding with a single solution for either elitist-seeding or single-
solution population seeding. The seeds are generated using the RZ or NEH constructive heuristic.
Whereas the population seeding enters the solution in the population, elitist-seeding only enters
the solution as the elitist solution.

Single-solution population seeding can possibly lead to a lack of diversity in the population,
especially in small populations. At the start of a population, the seeded solution is much better
than all random others. Therefore, a donation with the seed will often be accepted, whereas a
donation with a random donor will often be rejected. Thus, the genes of the seeded solution can
possibly take over the whole population, resulting in a loss of exploration behavior. In this case,
the population does converge to a solution that looks a lot like the seeded solution which is not
necessarily a near-optimal solution.

Elitist seeding can possibly overcome this problem. Since the elitist solution is only used as a
donor when the FI phase is entered, it is less likely that it takes over the whole population. Elitist
seeding also has its disadvantage, the elitist solution is shared between all populations. Once the
seeded elitist solution has been overtaken in any population, it is replaced. The seeded elitist solu-
tion only has e�ect to the point that a population of pGOMEA would have found an equal-quality
solution as the seed. Also note that elitist seeding is a part of single-solution population seeding;
if the seed is entered in the �rst population, it will probably be the elitist.

In order to test single-solution population seeding and elitist seeding in practice, pGOMEA with
and without these forms of seeding has been tested on 60 Taillard instances, using the standard
amount of 2,207,121 �tness evaluations. For each of the pGOMEA variants and instance sizes, the
average MRPD values of the solutions are shown in Table 6.1.

These results lead to some interesting observations. First of all, for the Cmax criterion, popu-
lation seeding does improve pGOMEA in only two cases. In these cases, population seeding does
hardly improve on the already good solutions found. For the TFT criterion we see that for J = 50,
population seeding does not (greatly) improve pGOMEA. For J = 100, this observation does not
hold anymore. Instead, pGOMEA is consistently improved by adding a heuristic solution to each
population.

Secondly we see that elitist seeding only results in small changes in the average MRPD values
for both the TFT and the Cmax criterion. This small change often has the same positive or negative
e�ect as population seeding has. Figure 6.1 shows how the results of population seeding compares

38 CHAPTER 6. SOLUTION SEEDING PGOMEA: EXPERIMENTAL STUDY

TFT Cmax

Instances pGOMEA
pGOMEA
Pop.seed

pGOMEA
Elit.seed

pGOMEA
pGOMEA
Pop.seed

pGOMEA
Elit.seed

50× 5 1.105 1.018 1.105 0.041 0.015 0.014
50× 10 1.381 1.489 1.488 0.977 1.074 0.952
50× 20 1.290 1.609 1.338 1.879 2.151 1.873
100× 5 2.027 1.297 1.829 0.021 0.025 0.044
100× 10 2.420 1.884 2.319 0.427 0.392 0.407
100× 20 2.486 2.259 2.426 2.340 2.502 2.389

Table 6.1: Average MRPD values for single-solution seeded pGOMEA instances. Solutions found
after 2,207,121 pGOMEA �tness evaluations.

−0.4 −0.2 0.2 0.4 0.6 0.8

−0.2

0.2

0.4

0.6

pop. seeding

elitist seeding TFT
Cmax

Figure 6.1: Elitist seeding versus population seeding: di�erence in average MRPD value with
respect to pGOMEA for the TFT (blue) and Cmax (red) criterion

to elitist seeding. Every point represents the di�erence between the pGOMEA average MRPD
value and the elitist/population seeded pGOMEA average MRPD value on one set of Taillard
instances. Every plotted point in the grey area is a Taillard set where population seeding has a
stronger positive or negative e�ect than elitist seeding. Around the origin, there are some Cmax
results where elitist seeding has a positive e�ect and population seeding has a negative e�ect or vice
versa. In general, this experiment shows that elitist seeding cannot be seen as better or worse than
population seeding, it only has smaller e�ect than single solution population seeding. Therefore
elitist seeding has no bene�ts over single-solution population seeding.

6.3.2 Single-solution population seeding: Quality and �tness evaluations

As we have seen from the results in Table 6.1, population seeding does sometimes improve solutions
and sometimes it does not. In order to further identify the behavior of pGOMEA when seeded
with a single solution, we look into more detail to the results of pGOMEA on the (J ×10) Taillard
instances. For these instances we look at the average MRPD values with respect to the amount of
�tness evaluations used by pGOMEA, the results of this experiment are shown in Figures 6.2 and
6.3 for the TFT and Cmax criterion respectively.

The results show that the e�ect of single solution population seeding is present both with
a few and a lot of �tness evaluations by pGOMEA. The results clearly show that the e�ect is
highest when pGOMEA uses little �tness evaluations. In Figure 6.2a It can be clearly seen that
seeded pGOMEA performs better when a few evaluations are considered, though it performs
worse when more evaluations are used. More �tness evaluations for pGOMEA result in larger
populations, reducing the positive or negative dominating e�ect of a single seed in that population.
Consequently, these pGOMEA instances might bene�t from multiple seeds in the population, as
diversity is ensured by the large population. Given the results in this experiment, we cannot state

6.3. RESULTS 39

22 220 2207

1

1.5

2

2.5

Fitness evaluations N · 104

A
v
e
ra
g
e
M
R
P
D

pGOMEA
Heur.pGOMEA

(a) J = 50

22 220 2207

2

3

4

Fitness evaluations N · 104

A
v
e
ra
g
e
M
R
P
D

pGOMEA
Heur.pGOMEA

(b) J = 100

Figure 6.2: Solution quality of pGOMEA and single-solution seeding using the TFT criterion.

22 220 2207

1

1.5

2

2.5

Fitness evaluations N · 104

A
v
e
ra
g
e
M
R
P
D

pGOMEA
Heur.pGOMEA

(a) J = 50

22 220 2207
0

0.2

0.4

0.6

0.8

1

Fitness evaluations N · 104

A
v
e
ra
g
e
M
R
P
D

pGOMEA
Heur.pGOMEA

(b) J = 100

Figure 6.3: Solution quality of pGOMEA and single-solution seeding using the Cmax criterion.

that single solution seeding is always or never bene�cial for pGOMEA. We can only conclude
that single-solution seeding has the advantage of guiding the population and the disadvantage of
possibly misguiding the population.

6.3.3 Multi-solution population seeding: Fixed amount of seeds

Since single-solution seeding either shows little e�ect (elitist seeding) or unpredictable results (pop-
ulation seeding), these approaches cannot easily be incorporated to improve pGOMEA. In order
to further analyze the e�ect of seeding, we will look at multi-solution population seeding. Using
multiple seeds in pGOMEA should take the population sizing scheme into account. This can be
done in several ways. The �rst approach treats every new population the same, meaning that
every population containts seeded solutions. The second approach takes the population size into
account and every population starts with x% of seeded solutions. This latter approach does not
easily scale in population size, since constructive heuristics generate a �xed amount of seeds.

Here we consider pGOMEA with a �xed amount of seeds per population. For Cmax we use the
CDS heuristic, to generate solutions, this results in at most M − 1 seeds. For the TFT criterion
we use the LR heuristic, resulting in at most J seeds. We test �xed seeding on the six Taillard
sets as used in the previous experiment. Since we want to take both constructive maximums into
account, we use k ∈ {4, 9, 19, 30, 50, 75, 100} seeds per population where possible.

Using a �xed amount of seeds in every generation, we �nd that multi-solution seeding is very
bene�cial when pGOMEA uses the standard amount of �tness evaluations. Figures 6.4 and 6.5

40 CHAPTER 6. SOLUTION SEEDING PGOMEA: EXPERIMENTAL STUDY

show how the average MRPD values decline for the TFT and Cmax criterion, when more than
one seed is given. On virtually every tested set of Taillard instances, pGOMEA gave much better
results when only four seeds were added. When the results of pGOMEA were already close to
optimal, seeding does not have any e�ect however. We also observe that for the (50×20) instance,
seeding does not improve on pGOMEA.//

Secondly, we observe a di�erence between single-solution seeding and multi-solution seeding.
Whereas single-solution seeding can decrease the solution quality, multi-solution seeding does not
su�er from this problem. This behavior is shown as a peek in Figures 6.4 and 6.5. A possible
explanation for this observation is the use of di�erent constructive heuristics in single-solution and
multi-solution population seeding. For the TFT criterion this is a possible explanation, since the
LR heuristic is considered better than the RZ heuristic. For the Cmax criterion, multi-solution
seeding is done using the CDS heuristic, which generally performs worse than the NEH heuristic
used for single-solution seeding. Therefore, we cannot conclude that the quality of the seeds is
the reason why multi-solution seeding improves pGOMEA while single-solution seeding does not.
Instead the amount of seeds are causing the di�erence in quality, which can also be seen in the
ongoing decline after k = 4.

0 5 10 15 20
0

1

2

Seeds (k)

A
v
e
ra
g
e
M
R
P
D

M = 5 M = 10 M = 20

(a) J = 50

0 5 10 15 20
0

1

2

Seeds (k)

A
v
e
ra
g
e
M
R
P
D

M = 5 M = 10 M = 20

(b) J = 100

Figure 6.4: Multi-solution seeding for Cmax: pGOMEA (k = 0) and single-solution population
seeding (k = 1) versus multi-solution seeding.

0 20 40
0

0.5

1

1.5

2

Seeds (k)

A
v
e
ra
g
e
M
R
P
D

M = 5 M = 10 M = 20

(a) J = 50

0 20 40 60 80 100
0

1

2

Seeds (k)

A
v
e
ra
g
e
M
R
P
D

M = 5 M = 10 M = 20

(b) J = 100

Figure 6.5: Multi-solution seeding for TFT: pGOMEA (k = 0) and single-solution population
seeding (k = 1) versus multi-solution seeding.

6.3. RESULTS 41

Thirdly, one can see that the solution quality does not keep increasing when more seeds are
added. With more than 10 seeds, the solution quality does not improve very much for the Cmax
criterion. For the TFT criterion, 20 seeds are su�cient to improve pGOMEA. Though adding
more seeds does not improve pGOMEA, there is no trend observed which suggests that too much
seeds lead to bad solutions. The reason why more seeds do not improve more possibly lies in the
way seeds are generated. More seeds generated by the same constructive heuristic contain the
same type of structure, thus no new information can be learned by pGOMEA. Another reason for
this behavior could lie in the generation where the elitist solution is found. If this generation only
contains a few members, only few constructive heuristics are su�cient to add structure in that
population.

Now we have seen that seeding is bene�cial when using a standard amount of �tness evalua-
tions, we investigate the e�ect of this parameter on the e�ect of multi-solution seeding. Therefore,
an extra experiment has been conducted, we take the �rst three 100 × 10 Taillard instances and
observe the e�ect of multi-solution seeding with respect to the amount of �tness evaluations. The
results of the experiment are shown in Figures 6.6 and 6.7 for the Cmax and TFT criterion.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Seeds (k)

A
v
e
ra
g
e
M
R
P
D

220,712 2,207,121 22,071,215

(a) (100× 10)

0 0.5 1 1.5

·105

5,700

5,800

5,900

Evaluations

F
it
n
e
ss

Standard Seeded

(b) Scaling behavior over time

Figure 6.6: Scalability of multi-solution seeding for Cmax: Seeds vs. Quality for di�erent times (a)
and Evaluations vs. Quality with maximum seeds (b)

0 20 40 60 80 100
1

2

3

4

Seeds (k)

A
v
e
ra
g
e
M
R
P
D

220,712 2,207,121 22,071,215

(a) (100× 10)

0 0.5 1 1.5

·105

2.8

2.9

3

3.1

3.2
·105

Evaluations

F
it
n
e
ss

Standard Seeded

(b) Scaling behavior over time

Figure 6.7: Scalability of multi-solution seeding for TFT: Seeds vs. Quality for di�erent times (a)
and Evaluations vs. Quality with maximum seeds (b).

42 CHAPTER 6. SOLUTION SEEDING PGOMEA: EXPERIMENTAL STUDY

First of all, the results show that multi-solution seeding is still useful when a lot of �tness eval-
uations are used. Multi-solution seeding is therefore a very promising addition to pGOMEA. We
observe however that more seeds do not always give better results. This can best be seen in Figure
6.7a. When only a few �tness evaluations are used by pGOMEA, adding a lot of seeds is reducing
the solution quality. When a lot of �tness evaluations are used by pGOMEA, adding seeds is ben-
e�cial. This can be explained using two properties of the pGOMEA implementation. First of all,
pGOMEA uses a population sizing scheme, thus the result of pGOMEA with 220,712 evaluations
is from a population with only a few seeds (k′ : k′ < k). In our implementation, this are not neces-
sarily the top-k′ seeds, instead this are k′ random solutions from the top-k seeds. Therefore, when
more seeds are added to pGOMEA, these are worse seeds that replace good seeds instead of being
added to them. When more �tness evaluations are used, the best solution comes from a large popu-
lation where there is no replacement of seeds, adding seeds results in more seeds in that population.
Therefore, pGOMEA gets better when more seeds are generated and a lot of �tness evaluations
are used. This explanation is in accordance with the observation that k′ ∈ {8, 16} for a few eval-
uations, k′ ∈ {32, 64, 128} for a standard amount of evaluations and k′ > 100 for many evaluations.

6.3.4 Multi-solution population seeding: Proportionate seeding and im-
provement heuristics

In order to further identify the behavior of multi-solution seeding in pGOMEA, we do a second
experiment using multi-solution seeding. Here, we construct an amount of seeds proportionate to
the population sizes. This is not possible using constructive heuristics, as they are limited in the
amount of seeds they generate. Therefore we use the seed the population with the results of an
improvement heuristic (insertion) over set a random solutions. This means that the seeds are less
correlated than those generated by a constructive heuristic. However, we should keep in mind that
standard improvement heuristics need a lot of �tness evaluations, therefore we report the result
when �tness evaluations of improvement heuristics are ignored as well as when they are taken into
account in the computation budget.

Figure 6.8 shows that for the Cmax criterion, pGOMEA hardly improves when seeded. The
seeds generated by the improvement heuristic seem to be ine�ective to improve pGOMEA. This can
be caused by the improvement heuristic being stuck on a plateau, since the constructive heuristic
for the Cmax criterion su�ers less from this problem. Taking into account that the improvement
heuristic takes computational budget, we can conclude that this form of seeding does not improve
pGOMEA for the Cmax criterion.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Seed proportion (k)

A
v
e
ra
g
e
M
R
P
D

(a) 50 Jobs

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Seed proportion (k)

A
v
e
ra
g
e
M
R
P
D M = 5 inc.

M = 10 inc.
M = 20 inc.
M = 5 exc.
M = 10 exc.
M = 20 exc.

(b) 100 Jobs

Figure 6.8: Population-proportionate multi-solution seeding for Cmax: 2207121 �tness evaluations,
including and excluding LS �tness evaluations.

Figure 6.9 shows how pGOMEA for the TFT criterion improves when seeded. The more seeds
are used, the better pGOMEA performs. However, when we include the �tness evaluations of

6.4. CONCLUSIONS 43

the heuristic in the computational budget, this is not true anymore. Sometimes seeding does not
improve pGOMEA. When it does, the optimal seed proportion is always between 0.0 and 0.2. A
small amount of seeds will dominate the population, leading to a lack of diversity. Too much seeds
will take too much �tness evaluations. Therefore, seeding using the computational expensive simple
improvement heuristics needs careful tuning for each problem. Though constructive heuristics do
not allow in�nitely many seeds, they are computationally less expensive and do not need such
careful tuning. Therefore, constructive heuristics can be considered to be better for seeding in
pGOMEA.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

Seed proportion (k)

A
v
e
ra
g
e
M
R
P
D

(a) 50 Jobs

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

Seed proportion (k)

A
v
e
ra
g
e
M
R
P
D M = 5 inc.

M = 10 inc.
M = 20 inc.
M = 5 exc.
M = 10 exc.
M = 20 exc.

(b) 100 Jobs

Figure 6.9: Population-proportionate multi-solution seeding for TFT: 2207121 �tness evaluations,
including and excluding LS �tness evaluations.

6.4 Conclusions

After experimenting with di�erent types of solution seeding, we can draw multiple conclusions
about its performance:

• Single-solution population seeding sometimes improves pGOMEA, while at other
times it reduces the quality of pGOMEA solutions.
Since single-solution seeding uses only one seed, this seed can either lead or mislead the
population towards the structure in the seed. If the structure of the seed has a lot in common
with the structure of the optimal solution, the seed will help the population. If the structure
of the seed is not present in the optimal solution, then the recombination process is misled
and the population converges to a non-optimal solution.

• The positive e�ect of single-solution population seeding is less visible when
pGOMEA uses more �tness evaluations.
When pGOMEA uses a more �tness evaluations, the best known solution comes from a larger
population, meaning that the e�ect of a single seeded solution is very small. As the amount
of �tness evaluations by pGOMEA increases, the e�ect of single-solution population seeding
decreases. Both the good and bad structure is used in recombination and the diversity in
the large populations will add exploration behavior in pGOMEA.

• Elitist-seeding behaves as a weak variant of single-solution population seeding
As the elitist solution is less often used for recombination than other solutions, using elitist-
seeding has a smaller e�ect than single-solution population seeding. The results show that the
improvement or decline in solution quality is correlated for both forms of seeding. The height
of this improvement or decline is in general lower for elitist-seeding than for single-solution
seeding.

• Multi-solution seeding improves on pGOMEA, it does not su�er from the prob-
lems single-solution seeding has.

44 CHAPTER 6. SOLUTION SEEDING PGOMEA: EXPERIMENTAL STUDY

When more than one solution is used as a seed, pGOMEA can be improved. This im-
provement is already present when only four to twenty seeds are added to the population.
Single-solution seeding has a big bias towards the single seed. Multi-solution seeding has
multiple biases, resulting in a form of diversity. The di�erent biases are building-blocks in
the seeds, which will now be donated into random solutions. The combination of these dif-
ferent building blocks allows pGOMEA to explore the search space globally. When only one
solution is seeded, this exploration is only determined by the seed and therefore the search
space is limited too much.

• The more seeds pGOMEA has, the better pGOMEA performs.
Every seed gives more information to pGOMEA, leading to better results. One should
however take into account that the generation of the seed needs computational resources.
Therefore, a balance should be found in the amount of seeds. For seed generation using
improvement heuristics, this balance is often hard to �nd and then only gives a small im-
provement in �tness value.

In general, we can conclude that multi-solution seeding works best for pGOMEA. However one
should be careful in choosing the heuristic that generates these solutions. A slow seeder will take
too much time, leading to a decrease in quality of pGOMEA.

Chapter 7

Hybridizing pGOMEA:

Experimental Study

In previous chapters we have seen that seeding pGOMEA with good solutions results in a great
improvement of the quality of solutions and that an improvement heuristic can not always improve
the elitist solution of pGOMEA.Therefore the question arises whether improving solutions during
the iterative phase of pGOMEA is e�ective. Hybridizing genetic algorithms with local search (im-
provement heuristics) is one of the most common forms of incorporating domain knowledge, which
we investigate in this chapter. In order to identify how improvement heuristics can help pGOMEA
in its iterative phase, we research the question

What are the options and e�ects of incorporating an improvement heuristic/local searcher in
the iterative phase of pGOMEA?

Hybrid genetic algorithms usually have small population sizes, since they are less prone to
genetic drift. pGOMEA doesn't have a �xed population size, but uses a population sizing scheme
in order to overcome the problem of �nding a good population size. Therefore, we �rst investigate
the need for such a population sizing scheme when hybridizing pGOMEA. Here we compare three
forms of hybridizing pGOMEA based on their convergence.

Using the best form of hybridization, we investigate the hybridization from a BBO perspec-
tive using the simple swap and insertion improvement heuristics. These heuristic do not assume
anything about the problem domain, thus they are also applicable for other permutation prob-
lems. Secondly, we investigate the (additional) bene�ts of hybridization when problem-speci�c
local search is used (e.g. NEH improvement heuristic). Here, the computational budget is given in
milliseconds, as improvement heuristics use partial evaluations. These results do not easily trans-
late to other permutation problems, as they possibly don't have such local searchers.

For all experiments, the general setup is given in Section 7.1. Results of the experiments are
given in Section 7.2. This chapter ends in Section 7.3 with a summary of all conclusions drawn
from the experiments. As this chapter uses knowledge derived from Section 4.1.3 and improvement
heuristics from 3.3 one is advised to take note of the contents of these sections before reading this
chapter.

45

46 CHAPTER 7. HYBRIDIZING PGOMEA: EXPERIMENTAL STUDY

7.1 Experimental setup

The experiments that are performed in this part of the research each have their own setup. The
experiments all fall in one or more of the following categories:

• Black-box optimization using simple improvement heuristics
In order to �nd out how hybrid pGOMEA performs with respect to a BBO approach, we
conduct some experiments, where the two simple improvement heuristics are used. The
computational budget of pGOMEA is counted in terms of the amount of �tness evaluations
that are used in pGOMEA and its improvement heuristic. Since we do not assume any
knowledge of the PFSP, except that it is an permutation problem, we can possibly draw more
general conclusions about hybridizing pGOMEA. Our insertion heuristic is implemented to
try only insertions in a range of M jobs of the current job position. The swap heuristic takes
all possible swaps into account.

• Domain speci�c local search (Non-BBO search)
As the PFSP with the Cmax criterion has the NEH improvement heuristic, which is able
to �nd the best insertion of a job in a relatively short time, we can use this improvement
heuristic to hybridize pGOMEA for the PFSP in a more e�ective way. Likewise, we can
use a form of cut-and-repair heuristic in order to steer the search for the PFSP with the
TFT criterion. Since such heuristics are only applicable for a speci�c permutation problem,
the results of this experiment are not related to pGOMEA on other permutation problems.
For the computational budget in these experiments, we use the computation time in mil-
liseconds. The computation time is of course dependent on the implementation of the local
searchers. Therefore, we decided to limit our run-time optimizations to the level of big-O
notation. Computation times used are given in Table 7.1. When the quality of the algorithm
is measured with respect to the computational budget, the used running times are a factor
10 higher or lower than reported here.

Instance Time Instance Time

50× 5 10.000ms 100× 5 17.500ms
50× 10 12.500ms 100× 10 20.000ms
50× 20 15.000ms 100× 20 22.500ms

Table 7.1: Computational budget for non-BBO experiments

• Depth-limited local search
As mentioned in Chapter 4, the trade-o� between local exploration and global exploration
should be carefully de�ned. A local search algorithm that is continuously exhaustively per-
formed will take a lot of time and �tness evaluations, while it improves good solutions only
slightly. Depth-limited local search only applies a limited amount (k) of insertions or swaps,
before terminating the local search. Since changes in good solutions are found after more
�tness evaluations, this limits the amount of time used in local search, while improvements
are still found. For these experiments, we use local search depths of 1, 3, 6, 10 and 15.

• Limited probability of local search
Another way of balancing local search and global search is by limiting local search to a few
individuals. Each individual has a probability of undergoing local search. In our experiments,
we use very low probabilities 0.001, 0.005, 0.01 and 0.05, and probabilities from 0.1 up to 1.0
with steps of 0.1.

For each type of experiment, we use the pGOMEA settings and quality measures as described in
Section 5.1.

7.2. RESULTS 47

7.2 Results

7.2.1 E�ects of hybridization

Hybridized GAs often use a �xed population size in the range 20-100. Larger population sizes
are often unnecessary as diversity is introduced by the local search operator. When hybridizing
pGOMEA with local search, we therefore consider using a �xed population size instead of a pop-
ulation sizing scheme. In this experiment, we test di�erent population sizes and their e�ect on
pGOMEA using the NEH-insertion heuristic after the GOM phase. We compare three con�gura-
tions. The con�gurations di�er in the moments when local search is performed. Table 7.2 shows
for each con�guration whether local search is performed or not on solutions that are (not) changed
in the GOM phase of pGOMEA. Here we compare the di�erent con�gurations on instances with
sizes (50 × 5), (50 × 10) and (50 × 20). The results of this experiment are shown in Figures 7.1,
7.2 and 7.3. The �rst set of instances is easily solved by pGOMEA, while the others are harder for
pGOMEA. As con�guration 1 is obviously the best when performing an exhaustive local search
with probability 1.0, we limit the probability of local search in this experiment. Local search is
performed with a probability of 0.1, later experiments show that this is an acceptable value.

Local search if:
Changed Not changed

Con�guration 1 ×
Con�guration 2 ×
Con�guration 3 × ×

Table 7.2: Used pGOMEA local search con�gurations

For each of the con�gurations and population sizes we report the time to convergence (in
amount of evaluations, counting one per insertion), the time that the elitist solution was hit and
the resulting �tness of the found solutions. Each result is an average over �ve runs over �ve in-
stances with the given size. We perform experiments using pGOMEA with the Cmax criterion and
the NEH-insertion heuristic. We have limited the amount of generations that pGOMEA runs to
101 generations. Results are compared with the convergence behavior of standard pGOMEA (the
thick black lines).

For the �rst con�guration we see that hybridized pGOMEA results in about the same quality
of solutions as pGOMEA. Only for the small instances, this di�erence is much clearer. In terms
of convergence, this con�guration takes slightly less �tness evaluations until convergence. The
elitist solution is however found much faster than without hybridization. Using a population sizing
scheme can be successful in this case. Due to hybridization, less �tness evaluations are spend per
population. Therefore pGOMEA spends more time in larger populations and these populations
give better results as can be seen in the left graphs.

The second con�guration performs equally well as standard pGOMEA. For the middle-sized
instances, it is even better than standard pGOMEA. In terms of �tness evaluations, the conver-
gence of a population takes much more time, while the elitist solution is hit at approximately the
same time as pGOMEA does.

The third con�guration combines the e�ects of the �rst two con�gurations: the quality of so-
lution still does not change much (though results are more consistent). However, more �tness
evaluations are needed to reach convergence, like in con�guration 2. The elitist hitting time is
similar to the times of con�guration 1, as less evaluations are needed than for standard pGOMEA.

None of the researched population sizes and local search con�gurations show however that a
small, �xed population size is su�cient for pGOMEA. We can therefore conclude that a population
sizing scheme is necessary for (hybridized) pGOMEA when the optimal population size for a given
computational budget has not been experimentally determined. Since con�guration 1 gives the
fastest convergence while retaining the solution quality, we use this con�guration for our next
hybridization experiments.

48 CHAPTER 7. HYBRIDIZING PGOMEA: EXPERIMENTAL STUDY

24 25 26 27 28 29

2,758

2,760

2,762

2,764

Population size

A
v
e
ra
g
e
�
tn
e
ss

pGOMEA
Conf.1
Conf.2
Conf.3

(a) Fitness results

24 25 26 27 28 29
104

105

106

107

Population size

E
v
a
lu
a
ti
o
n
s

Total pGOMEA
Elitist pGOMEA
Total Conf.1
Elitist Conf.1
Total Conf.2
Elitist Conf.2
Total Conf.3
Elitist Conf.3

(b) Convergence results

Figure 7.1: Convergence, elitist hit time and population size results for (50× 5) using Cmax.

24 25 26 27 28 29

2,980

2,990

3,000

3,010

Population size

A
v
e
ra
g
e
�
tn
e
ss

pGOMEA
Conf.1
Conf.2
Conf.3

(a) Fitness results

24 25 26 27 28 29

105

106

107

Population size

E
v
a
lu
a
ti
o
n
s

Total pGOMEA
Elitist pGOMEA
Total Conf.1
Elitist Conf.1
Total Conf.2
Elitist Conf.2
Total Conf.3
Elitist Conf.3

(b) Convergence results

Figure 7.2: Convergence, elitist hit time and population size results for (50× 10) using Cmax.

24 25 26 27 28 29

3,760

3,780

3,800

3,820

Population size

A
v
e
ra
g
e
�
tn
e
ss

pGOMEA
Conf.1
Conf.2
Conf.3

(a) Fitness results

24 25 26 27 28 29

105

106

107

Population size

E
v
a
lu
a
ti
o
n
s

Total pGOMEA
Elitist pGOMEA
Total Conf.1
Elitist Conf.1
Total Conf.2
Elitist Conf.2
Total Conf.3
Elitist Conf.3

(b) Convergence results

Figure 7.3: Convergence, elitist hit time and population size results for (50× 20) using Cmax.

7.2. RESULTS 49

7.2.2 Depth limited local search using a BBO perspective

For �nding a good way of hybridizing pGOMEA with simple improvement heuristics, we �rst
identify the behavior of pGOMEA with di�erent depths of local search. As soon as k improve-
ments have been made by the improvement heuristic, the improvement heuristic stops. Using this
form of limited search, we can balance the computational budget of the GOM phase and the LS
phase in pGOMEA. This creates a balance between global and local search. In Figures 7.4 and 7.5,
the results of depth-limited local search are shown for the insertion and swap heuristic respectively.

0 5 10 15
0

1

2

3

4

Depth of local search (k)

A
v
e
ra
g
e
M
R
P
D

(a) TFT

0 5 10 15
0

1

2

3

4

Depth of local search (k)

A
v
e
ra
g
e
M
R
P
D (50× 5)

(50× 10)

(50× 20)

(100× 5)

(100× 10)

(100× 20)

(b) Cmax

Figure 7.4: Hybrid pGOMEA quality with respect to the depth of an insertion heuristic. A total
of 2,207,121 �tness evaluations is used by hybrid pGOMEA.

0 5 10 15
0

1

2

3

4

Depth of local search (k)

A
v
e
ra
g
e
M
R
P
D

(a) TFT

0 5 10 15
0

1

2

3

4

Depth of local search (k)

A
v
e
ra
g
e
M
R
P
D (50× 5)

(50× 10)

(50× 20)

(100× 5)

(100× 10)

(100× 20)

(b) Cmax

Figure 7.5: Hybrid pGOMEA quality with respect to the depth of a swap heuristic. A total of
2,207,121 �tness evaluations is used by hybrid pGOMEA.

The graphs clearly shows how the average MRPD values rise when local search is added. Even
when a few improvements are made, MRPD values are signi�cantly higher than without using
local search. For every size of problem instances, we see how depth-limited local search is not
improving pGOMEA. Only in one case hybridization is e�ective. For the PFSP with the TFT
criterion, hybridizing pGOMEA with the swap heuristic is e�ective if the instance contains a few
machines. We can also see that for both the TFT and Cmax criterion swapping is most e�ective
(least useless).

50 CHAPTER 7. HYBRIDIZING PGOMEA: EXPERIMENTAL STUDY

7.2.3 Probability of local search using a BBO perspective

As depth-limiting local search does not simply improve pGOMEA, we try hybridizing pGOMEA
with heuristics using a limited probability of local search. The overall in�uence of the probabil-
ity value is researched, by taking 11 equidistant values in [0, 1]. In contrast to depth-limited local
search, probabilities can be in�nitely close to zero, therefore, we take more samples for probabilities
close to zero. Figures 7.6 and 7.7 show the probability of local search in�uences the performance
of pGOMEA for the insertion and swap heuristic respectively.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

(a) TFT

0 0.2 0.4 0.6 0.8
0

1

2

3

4

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D (50× 5)

(50× 10)

(50× 20)

(100× 5)

(100× 10)

(100× 20)

(b) Cmax

Figure 7.6: Hybrid pGOMEA quality with respect to the probability of using an insertion heuristic.
A total of 2,207,121 �tness evaluations is used by hybrid pGOMEA.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

(a) TFT

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D (50× 5)

(50× 10)

(50× 20)

(100× 5)

(100× 10)

(100× 20)

(b) Cmax

Figure 7.7: Hybrid pGOMEA quality with respect to the probability of using a swap heuristic. A
total of 2,207,121 �tness evaluations is used by hybrid pGOMEA.

Adding heuristics to pGOMEA is often decreasing the quality of the solutions. For the insertion
heuristic and for the Cmax criterion, local search is never e�ective. Even with a 0.1% probability of
local search, the average MRPD values are higher than without using local search. Taking a higher
probability of local search results in worse solutions. The average MRPD values at prls = 1.0 are
close to those of depth limited local search with k ≥ 5. This indicates that the depth limiting local
search with values k ≥ 5 often results in a local optimum.

For the TFT criterion we �nd again that for instances with a few machines, hybridization can
be e�ective. Local search is then best performed with probabilities below 10%. When using very
low probabilities, hybridization can also be e�ective when more machines are used, though this
di�erence is not signi�cant.

7.2. RESULTS 51

As these results are seen from a BBO perspective, we can conclude that no problem- or instance-
independent results are found. Therefore, when hybridizing pGOMEA one should view it from a
non-BBO perspective.

7.2.4 Hybridizing pGOMEA using advanced local search

Though using naive heuristics does not easily improve the quality of pGOMEA, hybridization us-
ing advanced local search operators can possibly improve pGOMEA. These advanced local search
methods use domain knowledge in order to be more e�cient. In this experiment, we will research
the pGOMEA quality when hybridized with an advanced local searcher. As improvement heuristics
we use the NEH improvement heuristic (for Cmax) and the Cut-and-Repair improvement heuristic
(for TFT).

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

(a) TFT

0 0.2 0.4 0.6 0.8 1
0

1

2

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D (50× 5)

(50× 10)

(50× 20)

(100× 5)

(100× 10)

(100× 20)

(b) Cmax

Figure 7.8: Hybrid pGOMEA quality using advanced local searchers with respect to the probability
of local search. Computational budget is given in Table 7.1.

First, we examine the quality of pGOMEA with respect to the probability of local search, these
results are shown in Figure 7.8 for six instance sizes. Here, we observe that the Cut-and-Repair
heuristic has insu�cient domain knowledge to improve pGOMEA. For each of the given probabil-
ities, the results become worse when pGOMEA is hybridized. The higher the probability of local
search, the worse the results of pGOMEA. We can therefore conclude that the Cut-and-Repair
heuristic does not su�ciently exploit domain knowledge to improve pGOMEA. The swap heuristic
probably performs better than this Cut-and-Repair heuristic, as it has shown to have some e�ect
in BBO context, while spending less time than used in the GOM-phase of pGOMEA.

For the NEH-heuristic, we see the opposite as for the Cut-and-Repair heuristic. pGOMEA for
the Cmax criterion is improved the most when using a high probability of local search. Figure 7.8b
shows that with a low probability, pGOMEA is already improved. pGOMEA keeps improving up
to a probability of 0.6, after which pGOMEA performs stable or slightly (non-signi�cantly) worse,
depending on the instance.

Given this potential of the NEH-heuristic to improve pGOMEA, we further examine its quality
by experimenting with lower and higher running times for pGOMEA. For the running times, we
use the values a factor 10 higher or lower than those in Table 7.1. We also examine the behavior of
the Cut-and-Repair heuristic for the TFT criterion with lower and higher running times. Results
of these experiments are shown in Figure 7.9 for the TFT criterion and Figure 7.10 for the Cmax
criterion.

These results show that the e�ects of local search are still present when using more �tness
evaluations. Using more local search is better for the Cmax criterion and worse for the TFT
criterion. For the TFT criterion we also observe that with a small computational budget, pGOMEA
performs better with local search. With such a small budget, one pass of local search is probably

52 CHAPTER 7. HYBRIDIZING PGOMEA: EXPERIMENTAL STUDY

0 0.2 0.4 0.6 0.8 1
0

2

4

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

(a) J = 50

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

low
standard
high

(b) J = 100

Figure 7.9: TFT Hybrid pGOMEA quality using advanced local searchers with respect to the
probability of local search. Computational budget is given in Table 7.1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

(a) J = 50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

low
standard
high

(b) J = 100

Figure 7.10: Cmax Hybrid pGOMEA quality using advanced local searchers with respect to the
probability of local search. Computational budget is given in Table 7.1.

better than doing recombination within small populations, for the larger computational budget,
pGOMEA for the TFT criterion is not improved by adding local search.

7.3 Conclusions

• Local search is best performed when pGOMEA has changed a solution.
The experiments using di�erent con�gurations for local search have shown that local search
is best performed if pGOMEA has changed a solution. This has a trivial reason when local
search is exhaustively applied, but our results show that this con�guration is also best for a
low probability of local search. This con�guration improves the time in which a good solution
is found. If local search is (also) performed when pGOMEA has not changed a solution, the
convergence of the populations decreases. Since equal-�tness solutions are often changed by
local search, the population does not easily converge. For the population sizing scheme, this
means that a lot of computational budget is wasted in populations that are not promising.

• Using a small �xed population size is not su�cient for hybrid pGOMEA.
As shown in the population sizing experiment, larger populations produce better results,
while using more �tness evaluations. The smaller populations sizes cannot bene�t from a
local searcher that adds diversity in the population. Therefore, the population sizing scheme
should still be employed in pGOMEA. The local searcher does in�uence this population sizing
scheme in two ways. A fast convergence results in a early termination of populations, leaving

7.3. CONCLUSIONS 53

more computational budget to larger populations. A fast detection of a good solution leads
to better recombination in the forced improvement phase.

• Hybridization of pGOMEA for the PFSP is not applicable in a BBO context.
Hybridization of pGOMEA in a BBO context uses a lot of �tness evaluations in the local
searcher. Therefore, less �tness evaluations are left for the GOM phase of pGOMEA. As also
shown in Chapter 5, the quality of the heuristic is dependent on the problem and instance to
be solved. For the same reason we see that the hybridization of pGOMEA is only successful
in some cases. From a BBO perspective one has no prior knowledge about the problem,
therefore no local searcher can be designed that is guaranteed to improve pGOMEA.

• Hybridization with advanced local searchers can improve pGOMEA.
Though from BBO perspective heuristics cannot improve pGOMEA, advanced heuristics can
improve pGOMEA. The NEH-heuristic, which �nds the best point of insertion for a variable
fast, does not waste too much computational budget as it calculates multiple evaluations at
once. When an NEH-insertion is performed with any probability higher than 0.0, pGOMEA
is improved. This is also the case when considering a higher or lower computational budget
than standard. Though the Cut-and-Repair heuristic also uses domain knowledge to �nd
good solutions, this does not give a speedup fast enough not to waste computational budget
from pGOMEA. This indicates that local searchers need a signi�cant reduction in �tness
evaluations in order to be e�cient for hybridization of pGOMEA.

• The less computational budget is given to hybrid pGOMEA, the more advanta-
geous local search is.
pGOMEA using a low computational budget evaluates only some fast-converging, small pop-
ulations. In these populations, pGOMEA cannot �nd good solutions, as exploration is limited
and no good model can be estimated from the population. The low computational budget is
then better spend by local search in case of a low computational budget.

Chapter 8

Informed model learning:

Experimental Study

In Chapter 6 we have seen how pGOMEA can be improved when good solutions are seeded in the
population. The results showed that adding more seeds result in better performance of pGOMEA.
Single-solution seeding is not improving pGOMEA and seeding using simple improvement heuris-
tics gives only a slight improvement of pGOMEA, when the seed proportion is carefully tuned.
Therefore seeding is not a straightforward option when no constructive heuristics exist that gen-
erate multiple solutions. In this chapter we will introduce a new form of seeding pGOMEA. We
use the hypothesis that one of the reasons for pGOMEAs improvement when seeded is that the
linkage tree has useful information from the start of each population. In this chapter, we inves-
tigate this hypothesis in Section 8.1. After this hypothesis is research, we use this hypothesis to
improve pGOMEA using dependency seeding as introduced in Section 8.2. This form of seeding
is experimentally tested in Section 8.3 where we compare two forms of dependency seeding. The
question that we try to answer in this chapter is:

How can model-building be improved using domain knowledge?

8.1 Seeding: e�ect on model building

The �rst generation of a population consist of random solutions. When the linkage tree is build,
it does therefore not contain any domain knowledge. The successful random crossovers that are
performed will create patterns in the population leading to more information in the linkage tree. It
takes some time before the right dependencies are learned and one can see this time as a waste of
computational budget. We assume that by seeding solutions in the population, pGOMEA is able
to learn valid dependencies from the start of a population. With a few seeds, this new information
can hardly be detected through the noise in the other solutions. With some more seeds, the linkage
tree will already �nd good dependencies. This is a possible reason for the the rapid improvement
of pGOMEA when only a few seeds are added. Adding more seeds does not signi�cantly change
the linkage tree.

In order to test these assumptions, we compare the linkage-behavior of pGOMEA with and
without seeding. We track the behavior of pGOMEA on a (100 × 10) Taillard set. Here we use
a �xed population of size 100 which is either fully seeded or not seeded at all. We measure both
dependency values: relative ordering dependency (δrel−ord) and proximity dependency (δprox). For
both dependency measures, we identify the mean (µ) and the standard deviation (σ) over all de-
pendencies between two variables. The results of this experiment for the TFT criterion are shown
in Figure 8.1.

We will discuss the results for each property:

µ(δrel−ord): When pGOMEA starts with a random population, the relative ordering is initially 0. Because
the variables are in random order, Pr(rxi

< rxj
) ≈ 0.5. This means that the entropy is

very close to one and the relative ordering dependency is thus very close to 0. When the

54

8.1. SEEDING: EFFECT ON MODEL BUILDING 55

0 10 20 30 40 50
0

0.5

1

Generation

D
e
p
e
n
d
e
n
c
y

(a) Standard pGOMEA

0 10 20 30 40 50
0

0.5

1

Generation

D
e
p
e
n
d
e
n
c
y µ(δrel−ord)

σ(δrel−ord)
µ(δprox)

σ(δprox)

µ(δrel−ord · δprox)

(b) Seeded pGOMEA

Figure 8.1: (seeded) pGOMEA dependency values: mean (µ) and standard deviation (σ) of both
dependency measures from initialization to convergence.

population is converged, this probability is either one or zero, leading to a dependency of 1.
When pGOMEA is seeded, there are already stronger dependencies in the �rst generations.
At other points curve of pGOMEA remains almost the same, though there seems to be a more
gradient convergence to the dependency of 1, instead of a sudden step to full dependency
after the NIS is reached.

σ(δrel−ord): Initially, no di�erences exist in the relative ordering dependency, it is zero for every individ-
ual. The standard deviation of the relative ordering initially increases very fast, since some
dependencies are obvious and learned very easily. When more dependencies are learned and
the average dependency value hardly changes, the standard deviation stabilizes. At the end,
the dependency is one for every individual, leading to a standard deviation of zero. When
seeded, pGOMEA is again 5-10 generations ahead of the standard pGOMEA. A second ob-
servation is that the gradient convergence of the relative ordering leads to a slow decrease of
the standard deviation instead of a sudden one.

µ(δprox): The average value for the proximity dependency is initially somewhat surprising. At any
time, for both seeded and standard pGOMEA, the proximity dependency is 5

6 . However,
this is a logical result of the way this dependency is computed and how random keys are
assigned. Since re-encoding assigns random values from a uniform distribution [0, 1] to the
random keys, the expected squared distance between two random keys in an individual can
be calculated by

1

1

∫ 1

0

∫ 1

0

(x− y)2 dx dy =
1

6
. (8.1)

Sampling over 100·99
2 pairs in 100 individuals therefore results in an average dependency of

1 − 1
6 = 5

6 . Between pairs, there can however be signi�cant di�erences, which we see in the
standard deviation.

σ(δprox): For a random population, jobs are randomly placed in the individuals, the dependencies
between jobs are all approximately 5

6 . For a seeded population, jobs have a tendency to be
used either at the start or end of a schedule. Therefore, seeded pGOMEA has a high standard
deviation in the initial population. Though this standard deviation increases, it only changes
slightly. Again, seeded pGOMEA is 5-10 generations ahead of standard pGOMEA.

In general, we can see that seeded pGOMEA allows the linkage tree to learn dependencies from
the start of the population. Standard pGOMEA has to �gure these dependencies out using the
random crossovers. Especially when a lot of variables are used, seeding should help pGOMEA to
detect dependencies. With a lot of variables, it takes a lot of time to learn the right dependencies,
giving seeded pGOMEA an advantage. We can therefore safely assume that the ability of pGOMEA
to learn dependencies faster, is one reason why population-seeding is improving pGOMEA.

56 CHAPTER 8. INFORMED MODEL LEARNING: EXPERIMENTAL STUDY

8.2 dependency seeding

We have seen that population-seeding has a positive e�ect on model building, which improves the
exploting behavior of pGOMEA. If multi-solution seeding is not possible, we might still be able to
improve pGOMEA by adding domain knowledge in the tree-learning phase. For this, we propose
the following extension of pGOMEA's dependency measure (Equation 2.7):

δ(i, j) = δ(j, i) = wpop. · δrel−ord(i, j) · δprox(i, j) + wdom. · δ0(i, j). (8.2)

Here, we add a dependency from domain knowledge (δ0(i, j) ∈ [0, 1]) to the dependencies known
from the population. In order to balance domain knowledge and population model building, wpop.
gives a weight for the population knowledge and wdom. speci�es how much domain knowledge is
taken into account.

In practice, the choice of function δ0(i, j) heavily depends on the type of problem that should be
solved. For the PFSP problem, we present two function targeting the Cmax and TFT criterion and
one function that can be generally applied to any problem for which a multi-solution constructive
heuristic exists.

8.2.1 Indexing dependency

For the Cmax criterion, we have seen how Johnson's rule and the CDS and RA heuristic use the
time spend on the �rst and later machines to order the jobs. Using this same concept, the Palmer
heuristic assigns a slope value Si to each job i The jobs are then scheduled ordered by slope value.
We can exploit this value by the observation that jobs with a large di�erence in slope should be
far away in the schedule. These jobs therefore have a low dependency in terms of proximity. We
therefore de�ne the Palmer dependency as

δPalm(j, i) = δPalm(i, j) = 1−
∣∣∣∣
Si − Smin

Smax − Smin −
Sj − Smin
Smax − Smin

∣∣∣∣, (8.3)

where Smax and Smin are the maximum and minimum slope found. This dependency �rst scales
the Palmer values to the range [0, 1] after which the inverted distance between the two scaled
Palmer values is taken as the dependency value between the jobs.

For the TFT criterion, we have a similar indexing approach used in the RZ heuristic. The RZ
heuristic calculates k indices Ti,k per job i. The most straightforward idea is to use Ti,0 as it uses
information from all machines. We can now de�ne the RZ dependency as

δRZ(j, i) = δRZ(i, j) = 1−
∣∣∣∣
Ti,0 − Tmin0

Tmax0 − Tmin0

− Tj,0 − Tmin0

Tmax0 − Tmin0

∣∣∣∣. (8.4)

where Tmax0 and Tmin0 are the maximum and minimum slope found. This dependency is almost
similar to the Palmer dependency, except that it uses the RZ index and that it is thus more suitable
for the TFT criterion.

8.2.2 Dependency over constructive population

A second way of adding dependencies is by using the relative ordering and proximity dependency
over an amount of seeds generated by a constructive heuristic. For instance, the CDS heuristic
can generate at most 19 schedules for the Taillard instances. These are possibly too few solutions
to in�uence the linkage tree, especially in larger populations. One might therefore (additionally)
compute the relative ordering and proximity dependency over the seeds of CDS. These dependency
values can then be used as domain knowledge in the extended dependency measure.

This form of of dependency seeding can possibly be worthwhile when both diversity as well
as a good linkage structure is wanted. Now the random population ensures diversity, while the
dependencies over the seed-population are used in creating a good linkage structure.

8.3. EXPERIMENTAL RESULTS 57

8.2.3 Determining the weight

The optimal value for the weights wpop. and wdom. can experimentally be determined. For perfect
domain knowledge wpop. = 0 and without domain knowledge we have wdom. = 0. In our experi-
ments, we make an initial guess for the value of wdom. given that wpop. = 1, using the knowledge
about the δrel−ord and δprox. The values in Figure 8.1 show how these dependency values change
over time. Initially, population dependencies are close to zero and in �fteen generations, this
converges to approximately 5

6 . Since the initial values are so low, weights starting from 0.05 will
already steer the building of the linkage tree. As the standard deviations are at most 0.2 at the
end of the algorithm, a weight higher than 0.2 will possibly exploit domain knowledge too much.
Values close to 0.05 will however use this domain knowledge much less.

We can also use weights that change over time. This can be done using an exponential cooling
scheme that reduces the weight per generation. The exponential cooling scheme starts with an
initial weight w1

dom. for generation 1. The weight for generation i is computed by:

widom. = α · wi−1dom., (8.5)

where α is the cooling down rate, in the range [0, 1].

8.3 Experimental results

In order to test the e�ect of dependency seeding on pGOMEA, we will compare the di�erent
forms of dependency seeding and two types of weighting the domain knowledge. For these tests
pGOMEA settings and Taillard instances are used as described in Section 5.1. Mostly, the TFT
criterion is used as quality measure for the schedules. First, we investigate the e�ect of di�erent
weights (Section 8.3.1) and cooling schemes (Section 8.3.2) on the quality of generated schedules;
here we use RZ-dependency for δ0. Using weights from these experiments, we compare heuristic-
dependency seeding and index-dependency seeding in Section 8.3.3. When presenting the results,
we will mark the best result using bold text. Results that are signi�cantly worse than the best
result have a grey cell.

8.3.1 Fixed weight dependency seeding

As we don't know whether dependency seeding in�uences pGOMEA signi�cantly, we conduct a
�rst experiment that checks how good RZ-dependency seeding performs when �xed weights are
used. The seeded pGOMEA instances are compared with standard pGOMEA and a dependency
measure giving a random value from [0.1]. In order to do statistical testing, a limited set of in-
stances is used, for which the algorithms are run 20 times. Table 8.1 and 8.2 show the MRPD
values (ARPD in brackets) for each of these instances and weights. We use population knowledge
and domain knowledge with weights wpop-wdom as shown in the table. Bold values represent the
best dependency con�gurations, con�gurations that perform statistical signi�cantly (p = 0.05)
worse than the best solution are shaded in gray. Statistical test are performed using the Mann-
Whitney-Wilcoxin test as described in 3.2.

The results show that a random dependency measure performs signi�cantly worse than most
optimal con�gurations. This con�rms that pGOMEA bene�ts from learning a good model. This
model, should not necessarily only match the population. Especially on smaller instances (J = 50),
it is su�cient or even optimal to learn a �xed model (wa = 0.0, wb = 1.0) using the RZ heuristic.
Finding the right weights is however very dependent on the problem size: not using population
knowledge is best for instances with 50 jobs, but the weights wpop = 2.0, wdom = 1.0 are best for
problems with 100 jobs. In general, we can say that dependency seeding can signi�cantly improve
pGOMEA provided that the right weights are given, good weights are (4.0, 1.0), close to the ratio
(1, 0.2) as theoretically described.

8.3.2 Exponential weight cooling scheme

As we have seen, dependency seeding is promising for pGOMEA. However,it is hard to �nd robust
weights. In this experiment we will therefore test the cooling scheme as alternative for weighting

58 CHAPTER 8. INFORMED MODEL LEARNING: EXPERIMENTAL STUDY

(50× 5) (50× 10) (50× 20)
Best 64803 68062 63162 87207 82820 79987 125831 119259 116459

1.0-0.0 0.87 (0.86) 1.02 (1.03) 1.45 (1.47) 1.67 (1.71) 1.73 (1.66) 1.27 (1.32) 1.32 (1.39) 1.34 (1.35) 1.61 (1.61)
4.0-1.0 0.87 (0.89) 1.09 (1.08) 1.38 (1.38) 1.67 (1.67) 1.63 (1.68) 1.38 (1.31) 1.38 (1.42) 1.29 (1.19) 1.45 (1.45)
2.0-1.0 0.94 (0.93) 1.08 (1.08) 1.48 (1.50) 1.67 (1.65) 1.68 (1.64) 1.40 (1.39) 1.42 (1.43) 1.07 (1.06) 1.32 (1.33)
1.0-1.0 1.02 (1.15) 1.07 (1.08) 1.40 (1.38) 1.66 (1.67) 1.67 (1.64) 1.20 (1.27) 1.43 (1.42) 1.37 (1.31) 1.47 (1.45)
1.0-2.0 1.15 (1.15) 1.10 (1.11) 1.53 (1.44) 1.62 (1.59) 1.74 (1.82) 1.67 (1.69) 1.34 (1.31) 1.28 (1.31) 1.67 (1.64)
1.0-4.0 1.10 (1.06) 1.08 (1.08) 1.48 (1.49) 1.59 (1.60) 1.85 (1.86) 1.69 (1.70) 1.37 (1.34) 1.30 (1.27) 1.61 (1.61)
0.0-1.0 0.91 (1.06) 0.93 (0.93) 1.40 (1.40) 1.65 (1.66) 1.64 (1.67) 1.58 (1.55) 1.28 (1.29) 0.92 (0.93) 1.40 (1.38)
Random 1.08 (1.06) 1.34 (1.26) 1.75 (1.76) 1.72 (1.73) 1.75 (1.80) 1.58 (1.56) 1.56 (1.52) 1.31 (1.30) 1.51 (1.51)

Table 8.1: Quality of RZ-dependency seeding with di�erent weights on multiple (50×M) instances

(100× 5) (100× 10) (100× 20)
Best 253713 242777 238180 229431 274593 288630 367267 374032 371417

1.0-0.0 2.00 (2.00) 2.00 (2.09) 2.10 (2.07) 2.31 (2.26) 2.66 (2.56) 2.52 (2.53) 2.51 (2.51) 2.31 (2.34) 2.40 (2.37)
4.0-1.0 1.97 (1.89) 2.23 (2.20) 1.99 (1.95) 2.31 (2.31) 2.76 (2.72) 2.54 (2.54) 2.44 (2.44) 2.48 (2.42) 2.33 (2.28)
2.0-1.0 1.91 (1.89) 2.23 (2.22) 1.96 (1.95) 2.25 (2.23) 2.57 (2.55) 2.51 (2.42) 2.42 (2.43) 2.20 (2.25) 2.30 (2.28)
1.0-1.0 1.98 (1.96) 2.34 (2.31) 1.88 (1.87) 2.26 (2.18) 2.62 (2.53) 2.24 (2.27) 2.43 (2.43) 2.29 (2.22) 2.23 (2.26)
1.0-2.0 1.91 (1.89) 2.41 (2.37) 1.75 (1.80) 2.37 (2.36) 2.64 (2.64) 2.82 (2.69) 2.46 (2.42) 2.23 (2.30) 2.23 (2.30)
1.0-4.0 1.82 (1.89) 2.24 (2.23) 1.95 (1.87) 2.43 (2.41) 2.62 (2.60) 2.77 (2.69) 2.46 (2.50) 2.34 (2.34) 2.36 (2.42)
0.0-1.0 2.61 (2.62) 2.88 (2.78) 2.62 (2.61) 2.50 (2.41) 2.73 (2.72) 2.74 (2.66) 2.73 (2.70) 2.30 (2.32) 2.25 (2.29)
Random 2.26 (2.31) 2.55 (2.57) 2.29 (2.24) 2.48 (2.53) 2.83 (2.77) 2.52 (2.48) 2.46 (2.50) 2.44 (2.41) 2.34 (2.24)

Table 8.2: Quality of RZ-dependency seeding with di�erent weights on multiple (100×M) instances

(50× 5) (50× 10) (50× 20)
Best 64803 68062 63162 87207 82820 79987 125831 119259 116459

pGOMEA 0.87 (0.86) 1.02 (1.03) 1.45 (1.47) 1.67 (1.71) 1.74 (1.66) 1.27 (1.32) 1.32 (1.39) 1.34 (1.34) 1.61 (1.61)
α = 1.00 0.87 (0.89) 1.09 (1.08) 1.38 (1.38) 1.67 (1.67) 1.63 (1.68) 1.37 (1.30) 1.38 (1.42) 1.29 (1.18) 1.45 (1.45)
α = 0.90 0.74 (0.76) 0.96 (0.96) 1.38 (1.38) 1.55 (1.54) 1.72 (1.73) 1.33 (1.24) 1.38 (1.35) 1.01 (1.07) 1.33 (1.33)
α = 0.80 0.80 (0.82) 0.93 (0.95) 1.53 (1.48 1.49 (1.51) 1.60 (1.57) 1.06 (1.12) 1.21 (1.23) 1.07 (1.05) 1.47 (1.38)
α = 0.67 0.80 (0.82) 1.05 (1.08) 1.36 (1.36) 1.61 (1.58) 1.60 (1.62) 1.40 (1.37) 1.28 (1.28) 1.17 (1.18) 1.45 (1.45)
α = 0.50 0.79 (0.79) 1.03 (0.94) 1.53 (1.53) 1.60 (1.69) 1.45 (1.47) 1.28 (1.30) 1.37 (1.29) 1.17 (1.12) 1.30 (1.30)
α = 0.25 0.90 (0.83) 1.04 (1.05) 1.42 (1.36) 1.84 (1.77) 1.52 (1.52) 1.34 (1.32) 1.33 (1.37) 1.24 (1.20) 1.52 (1.44)
α = 0.00 0.91 (0.90) 1.08 (1.07) 1.46 (1.45) 1.85 (1.78) 1.67 (1.71) 1.22 (1.26) 1.36 (1.36) 1.17 (1.13) 1.29 (1.31)

Table 8.3: Quality of RZ-dependency seeding with di�erent cooling values on multiple (50 ×M)
instances

(100× 5) (100× 10) (100× 20)
Best 253713 242777 238180 229431 274593 288630 367267 374032 371417

pGOMEA 2.01 (2.00) 2.00 (2.09) 2.10 (2.07) 2.31 (2.26) 2.66 (2.56) 2.52 (2.53) 2.51 (2.51) 2.30 (2.34) 2.40 (2.37)
α = 1.00 1.97 (1.98) 2.23 (2.20) 1.99 (1.95) 2.31 (2.31) 2.76 (2.72) 2.54 (2.53) 2.44 (2.44) 2.48 (2.42) 2.33 (2.28)
α = 0.90 1.84 (1.84) 2.08 (2.06) 1.73 (1.70) 2.18 (2.14) 2.43 (2.48) 2.23 (2.15) 2.29 (2.25) 2.30 (2.31) 2.22 (2.19)
α = 0.80 1.75 (1.75) 1.98 (1.99) 1.70 (1.69) 1.99 (2.05) 2.41 (2.42) 2.20 (2.15) 2.41 (2.32) 2.20 (2.19) 2.23 (2.18)
α = 0.67 1.74 (1.74) 2.12 (2.14) 1.72 (1.73) 2.12 (2.08) 2.32 (2.27) 2.23 (2.21) 2.41 (2.39) 2.37 (2.27) 2.20 (2.24)
α = 0.50 1.87 (1.87) 2.09 (2.10) 1.73 (1.73) 2.13 (2.15) 2.44 (2.48) 2.33 (2.36) 2.36 (2.28) 2.26 (2.27) 2.17 (2.18)
α = 0.25 1.90 (1.92) 1.90 (1.91) 1.65 (1.66) 2.26 (2.23) 2.48 (2.50) 2.33 (2.32) 2.26 (2.27) 2.24 (2.24) 2.28 (2.24)
α = 0.00 1.93 (1.90) 2.16 (2.16) 1.85 (1.83) 2.14 (2.15) 2.61 (2.66) 2.56 (2.55) 2.52 (2.49) 2.30 (2.31) 2.32 (2.22)

Table 8.4: Quality of RZ-dependency seeding with di�erent cooling values on multiple (100×M)
instances

8.3. EXPERIMENTAL RESULTS 59

the domain knowledge. The convergence speed of di�erent population sizes can ask for di�erent
cooling schemes. Finding the right cooling scheme can again be very di�cult, since no �xed pop-
ulation size is used in pGOMEA. In this experiment we will test this assumption. We compare
a limited amount of cooling schemes starting with wpop. = 1.0 and w1

dom. = 4.0, meaning that
domain knowledge dominates. We vary the cool-down rate α from 0.0 to 1.0, i.e. we compare
immediate cooling, no cooling and cooling rates in between.

Tables 8.3 and 8.4 show the results of this experiment. As can be seen, a cooling scheme can
hugely improve pGOMEA. In no case, pGOMEA performs best and in about three quarters of the
cases, pGOMEA performs worse than optimal dependency seeded pGOMEA. The cooling scheme
also improves on pGOMEA without a cooling scheme. If α = 1.0, the algorithm never performs
best and often performs signi�cantly worse than the best cooling scheme. This best cooling scheme
has an alpha rate of 0.8. In only one case, this cooling scheme gives signi�cantly worse results than
another cooling scheme; seven times, it gives the best result itself. We can therefore conclude that
the choice of parameters is easier and often gives better results than choosing �xed weights. We
also see that the best cooling scheme is good on any type of instance, while best results for �xed
weights depend on the amount of jobs in the instance.

8.3.3 Heuristic dependencies

Now that we know what a good weight-con�guration is, we can compare di�erent forms of depen-
dency seeding. Here, we compare heuristic-dependency seeding with the index-dependency seeding.
For the weight-con�guration we use the cooling scheme with wpop. = 1.0, w1

dom. = 4.0 and α = 0.8,
which performed best in the previous experiment. The heuristic dependency values are found over
a population with a maximum amount of schedules generated from the CDS heuristic (creating
M − 1 schedules) for Cmax and the LR heuristic (creating J schedules) for the TFT criterion.

The results, shown in Tables 8.5 and 8.6, show how dependency seeding almost always gives
the best solution. Though not visible in the tables, index-dependency seeding never performs
signi�cantly worse than pGOMEA, index-dependency seeding is twice outperformed by heuristic-
dependency seeding. While heuristic-dependency seeding sometimes performs very good, the con-
structive heuristic can have a bias, which is ipresent in all its results. This leads to very high
dependencies in terms of relative ordering. Index-dependency seeding is able to capture the de-
pendencies better by calculating the relative distance between the indices.

(50× 5) (50× 10) (50× 20)
Best 2724 2834 2621 2991 2867 2839 3850 3704 3640

pGOMEA 0.00 (0.00) 0.07 (0.07) 0.00 (0.00) 1.60 (1.57) 1.55 (1.66) 1.13 (1.23) 1.84 (1.78) 1.70 (1.61) 2.14 (2.15)
Palmer-depencency 0.00 (0.00) 0.07 (0.07) 0.00 (0.00)1.57 (1.46)1.53 (1.63) 1.23 (1.28) 1.64 (1.64) 1.70 (1.70) 2.17 (2.10)
Heuristic-dependency0.00 (0.00)0.07 (0.05)0.00 (0.00) 1.65 (1.67) 1.53 (1.58) 1.13 (1.17) 1.78 (1.81) 1.46 (1.45) 2.35 (2.33)

(100× 5) (100× 10) (100× 20)
Best 5493 5268 5175 5770 5349 5676 6202 6183 6271

pGOMEA 0.00 (0.00) 0.13 (0.10) 0.00 (0.00)0.23 (0.20) 0.52 (0.43) 0.05 (0.08) 2.89 (2.89) 2.54 (2.52) 2.29 (2.26)
Palmer-depencency 0.00 (0.00)0.13 (0.09)0.00 (0.00) 0.23 (0.23) 0.24 (0.32) 0.05 (0.11) 2.53 (2.59)2.35 (2.33)2.09 (2.18)
Heuristic-dependency0.00 (0.00) 0.13 (0.14) 0.00 (0.00) 0.25 (0.29) 0.52 (0.42) 0.05 (0.11) 2.81 (2.75) 2.46 (2.48) 2.18 (2.14)

Table 8.5: Quality of two forms of dependency seeding and pGOMEA for the Cmax criterion.

These results also indicate that the main reason for the quality improvement for multi-solution
population-seeding does not lie in the improved dependency learning by pGOMEA. Instead, the
amount of di�erent good solutions are the main contribution of the population-seeding improve-
ment. This is also supported by side-experiments showing that multi-solution population seeding
performs signi�cantly better than index-dependency seeding and heuristic-dependency seeding.

60 CHAPTER 8. INFORMED MODEL LEARNING: EXPERIMENTAL STUDY

(50× 5) (50× 10) (50× 20)
Best 64803 68062 63162 87207 82820 79987 125831 119259 116459

pGOMEA 0.87 (0.86) 1.02 (1.03) 1.45 (1.47) 1.67 (1.71) 1.74 (1.66) 1.27 (1.32) 1.32 (1.39) 1.34 (1.34) 1.61 (1.61)
RZ-depencency 0.80 (0.82) 0.93 (0.95) 1.53 (1.48) 1.49 (1.51)1.60 (1.57)1.06 (1.12)1.21 (1.23)1.07 (1.05) 1.47 (1.38)

Heuristic-dependency0.79 (0.80) 1.06 (1.11) 1.46 (1.49) 1.72 (1.79) 1.59 (1.67) 1.45 (1.43) 1.29 (1.30) 1.26 (1.29) 1.32 (1.36)

(100× 5) (100× 10) (100× 20)
Best 253713 242777 238180 229431 274593 288630 367267 374032 371417

pGOMEA 2.01 (2.00) 2.00 (2.09) 2.10 (2.07) 2.31 (2.26) 2.66 (2.56) 2.52 (2.53) 2.51 (2.51) 2.30 (2.34) 2.40 (2.37)
RZ-depencency 1.75 (1.75)1.98 (1.99)1.70 (1.69)1.99 (2.05)2.41 (2.42)2.20 (2.15)2.41 (2.32)2.20 (2.19)2.23 (2.18)

Heuristic-dependency 2.20 (2.17) 2.26 (2.30) 1.98 (1.99) 2.28 (2.24) 2.44 (2.47) 2.44 (2.41) 2.53 (2.51) 2.23 (2.29) 2.45 (2.37)

Table 8.6: Quality of two forms of dependency seeding and pGOMEA for the TFT criterion.

8.4 Conclusions

• Seeding enables pGOMEA to build a better model from the �rst generation of
a population.
As shown in Section 8.1, a fully seeded population gives non-random results in building the
linkage tree. Instead, pGOMEA is able to learn dependencies with strengths that would
normally be found after a few generations. The dependency values per generation show no
sign of changes in later generations, indicating that seeding has the biggest e�ect on the
linkage tree in the �rst generations.

• Weight cooling schemes give best results for dependency seeding.
As shown in the experiments, �xed-weight dependency seeding gives di�culties in �nding the
right values for the weights. As pGOMEA should be able to �nd new, better dependencies
from the population in later generations, the weights for the seeded dependency should not be
to high. In order to exploit the seeded dependencies in early generations, the weights should
also not be too low. A cooling scheme is able to combine both high weights for the seeds in
the �rst generations and low weights in the later generations. Using the seeded dependencies
only in the �rst generation already improves on pGOMEA. Better cooling parameters result
in signi�cantly better results than pGOMEA. The close to optimal cooling parameter of
α = 0.8 has shown to be e�ective for instances with di�erent amounts of jobs and machines.

• Index-dependency seeding performs better than heuristic-dependency seeding.
As index-dependency seeding directly transforms domain knowledge (in the form of indices)
into dependencies, no extra bias is introduced. Incorrect assumptions are likely to introduce
only a small error. Heuristic-dependency seeding however uses domain knowledge in order
to create a population. Every solution in this population su�ers from this small error. When
calculating dependency values, this error becomes larger as it is present throughout the
population.

• dependency seeding is a good alternative if multi-solution population-seeding is
not possible.
Though multi-solution population-seeding outperforms dependency seeding, dependency seed-
ing can still improve pGOMEA. For instance in cases where multi-solution population-seeding
is not possible (e.g. only the RZ heuristic is known). One can then seed dependency-
knowledge in pGOMEA, leading to better crossovers in the �rst iterations of pGOMEA.
After these iterations, pGOMEA can learn better dependencies using population-knowledge.
Therefore, the weight of dependency-seeds should be decreased using a cooling scheme. This
approach leads to good results, given that the seeded dependencies re�ect true dependencies
between variables.

Chapter 9

Substructural neighborhoods:

Experimental study

In previous chapters we have seen how pGOMEA can be improved when information from domain
knowledge is added (e.g. (dependency) seeding and hybridization). In this chapter, we will look
into the combination of domain knowledge and model learning from another perspective. Here, we
study the concept of substructural neighborhoods as explained in Section 4.4. We have researched
switching between domain knowledge and model knowledge (seeding and hybridization) we have
also seen how domain knowledge can enhance the model (dependency-seeding). What is left, is
to seen how model knowledge can enhance domain speci�c operators (heuristics). Substructural
neighborhood searching is such a form of combining model-knowledge and domain-knowledge. As
research guideline we use the following question:

How can model knowledge be used in domain knowledge-based search methods?

In order to research this question, we �rst identify the ways a substructral neighborhood can
be de�ned and used in Section 9.1. Using this information, we experiment with various forms of
neighborhood searchers in Section 9.2. We end this chapter with some conclusions in Section 9.3.

9.1 Substructural neighborhoods for pGOMEA

Substructural neighborhood searching uses the building blocks of a problem in order to de�ne the
neighborhood for a local searcher. Building blocks are de�ned as a set of variables that are depen-
dent on each other. MBEAs try to learn the building blocks for problems using model-building.
GOMEA has sets in the linkage tree as building blocks, eCGA uses sets in the marginal product
model as building blocks, while building blocks for BOA can be de�ned using the Parental and/or
Child-neighborhood of nodes in the Bayesian network.
A simple substructural neighborhood searcher for problems in Carthesian space uses the variable-
sets to search in the neighborhood of a solution. A solution is updated using a set with k m-valued
variables, by selecting the best out of the mk neighbors di�ering in the k variables. Substructural
neighborhood searchers have been analyzed as stand-alone optimization algorithms [33] and as a
part of an MBEA [4, 23].

9.1.1 Di�culties for substructural neighborhoods in pGOMEA

Substructural neighborhoods in this form have some drawbacks for hybridization or combination
with pGOMEA.

• E�ectiveness: Substructural neighborhoods have only been e�ective when not hybridized
in an MBEA or when a �tness approximation can be used as possible for BOA [23].

• Overlapping subsets: Sastry and Goldberg claim that since the e�ect of overlapping vari-
able interactions is similar to that of exogenous noise, .. a crossover is likely to be more useful

61

62 CHAPTER 9. SUBSTRUCTURAL NEIGHBORHOODS: EXPERIMENTAL STUDY

than mutation [33]. As the linkage tree assumes that the problem has overlapping building
blocks and variables in permutation problems have some relation to any other variable, this
suggests that substructural neighborhoods are not suitable for permutation problems and
pGOMEA.

• Permutation neighborhood: As pGOMEA tackles permutation problems, a neighbor-
hood is di�erent than in GOMEA. Suppose we want to perform a substructural neighborhood
search on the permutation (x1, x3, x5, x2, x4) using the linkage-set {x1, x2}, how can this be
done e�ectively?
Swapping the variables x1 and x2 can be considered a disturbance of the building-block, as
building blocks are based on relative-ordering which is broken by the swap. The swap also
a�ects the variables between the swapped variables, meaning that it in�uences other building
blocks. For bigger linkage-sets of size k, the neighborhood consists of k! new variable-orders,
which can become too large for most linkage-sets.
A better approach is to perform insertion: variables x1 and x2 are kept in order, but
are moved towards each other, possibly towards another position. Possible neighbors are
(x1, x3, x2, x5, x4) and (x3, x1, x2, x5, x4). This form of insertion is however already incorpo-
rated in pGOMEA in the form of rescaling.

Using the knowledge about the di�culties of combining pGOMEA and substructural neighbor-
hoods, we de�ne two methods combining pGOMEA and substructural neighborhood searchers
worth investigating:

9.1.2 Insertion-based substructural neighborhood searcher: Description

Like the substructural neighborhood searcher introduced by Sastry and Goldberg [33], we can
design a mutation-only pGOMEA variant. First we create a linkage tree using pGOMEA's depen-
dencies over a good population. The substructural neighborhood searcher then improves the best
solution of that population by repeatedly applying the rescaling operator on it. Rescaling is tried
until a local optimum has been found or until the computational budget is spend. The outline of
this substructural neighborhood searcher based on pGOMEA is shown in Algorithm 3.

Result: A good/optimal solution with respect to �tness function f
Pop← rand_Pop(n);
Pop← Selection(Pop);
FOS ← build_FOS(Pop);
solution← best(Pop);
while ¬termination_criterion do

foreach set ∈ FOS do
solution∗ ← Rescale(solution, set, solution);
if f(solution∗) ≥ f(solution) then

solution← solution∗
Re-encode(solution);

return solution
Algorithm 3: Insertion based substructural neighborhood searcher

Instead of using selection over a random population, as shown in the algorithm outline, one can
also create a good population using a constructive heuristic. Also, the algorithm uses re-encoding,
as it add random key diversity, which is e�ective for pGOMEA. Instead of using the rescaling
operator, one can also try to scramble the values in a linkage set. Early experiments however have
shown that this is not very e�ective. This will not be researched any further.

9.1.3 Model-based swapping in pGOMEA: Description

Insertions are already present in pGOMEA in the form of rescaling, similarly we can add a swap
operator. This swap operation is performed as mutation after donations are performed. The op-
erator changes the schedule by swapping the values of variables that are contained in two linkage
sets with the same cardinality. The change is only accepted if this results in an improvement of
the solution. This model-based swapper is used to hybridize pGOMEA.

9.2. EXPERIMENTAL RESULTS 63

Input: FOS, solution
Result: An solution, improved using the FOS
foreach (S1, S2) ∈ FOS × FOS do

if |S1| 6= |S2| then
continue;

solution∗ ← solution;
solution∗ ← Swap(solution∗, S1, S2);
if f(solution∗) ≥ f(solution) then

solution← solution∗
return solution

Algorithm 4: Substructural swapper.

An outline of this substructural swapping is given in Algorithm 4. Though the pseudocode
suggests that in worst case O(|FOS|2) sets are matched, this can be reduced. First, the contents
of the FOS are sorted based on size (O(|FOS| · log |FOS|), after which matching pairs can easily
be found. Note that in a linkage tree, all singleton sets are present, still leading to O(|FOS|2)
matches and �tness evaluations.

9.2 Experimental results

We have experimentally tested the quality of the two proposed algorithms. Both algorithms are
tested against variants using only the singleton sets in the linkage tree (i.e. the simple improvement
heuristics). As a computational budget, we use a standard amount of �tness evaluations.

9.2.1 Insertion-based substructural neighborhood searcher: Experiments

To determine the quality of the insertion-based substructural neighborhood searcher, we compare
three forms of this substructural neighborhood searcher. The �rst type learns the linkage tree over
the top-1000 solutions in a population with 2000 random solutions. The second type learns the
linkage tree over a population with a maximal amount of constructive solutions. The last type
constructs the linkage tree using RZ-dependency seeding. Each form starts its substructural search
from the best solution in the population. When the constructive heuristic is used, the best schedule
in the population is already very good, leading to an advantage. This is also visible in results of
Table 9.1, where the best result is marked bold and a signi�cantly worse result has a grey cell.
Here, we see that though the constructive approach works very well, this is mainly contributed to
the fact that a good solution is taken as starting point. This can be seen as the simple insertion
hill-climber performs equally well.
Wecondly, we see that the RZ heuristic is better in building a tree for the substructural neigh-
borhood searcher than the Top-1000 searcher. The substructural neighborhood searcher here out-
performs the simple insertion searcher, though it uses about three times more �tness evaluations
until convergence. Therefore, we might be able to use this form of model building to improve local
searchers like tabu-search.

Top-1000 RZ Constructive
Best known Insert Substruct Insert Substruct Insert Substruct

50x5 64803 3.71 2.94 3.04 2.38 2.53 2.53
50x5 68062 4.12 3.96 4.26 2.53 0.86 0.90
50x5 63162 4.44 4.61 4.68 3.14 1.77 2.00

50x10 87207 4.38 4.31 4.38 4.05 1.79 1.69
50x10 82820 4.23 4.57 4.68 4.26 2.13 2.48
50x10 79987 4.61 4.34 4.52 3.30 3.36 2.81

50x20 125831 3.77 4.23 4.28 3.31 2.32 2.44
50x20 119259 3.68 3.83 3.67 3.08 1.86 2.06
50x20 116459 4.34 3.67 4.12 3.17 2.49 2.25

Table 9.1: Simple insertion heuristic versus insertion-based substructural neighborhood searcher.

64 CHAPTER 9. SUBSTRUCTURAL NEIGHBORHOODS: EXPERIMENTAL STUDY

In order to combine the advantages from the constructive and RZ substructural neighborhood
searcher, we create a new searcher. This substructural searcher starts from the best constructive re-
sult, while it uses the RZ-dependency linkage tree. This does however not show signi�cant changes
with respect to the behavior of the constructive-based substructural neighborhood searcher. This
indicates that on more optimized solutions, the di�erence between a simple insertion neighbor-
hood searcher and a substructural neighborhood searcher is not signi�cant, except in the amount
of �tness evaluations before a local optimum is found (the substructural searcher uses more �t-
ness evaluations). We can therefore conclude that a substructural insertion searcher is not able to
outperform the simple insertion heuristic.

9.2.2 Model-based swapping in pGOMEA: Experiments

In order to test the quality of pGOMEA with the model-based swap heuristic, we perform exper-
iments on the PFSP with the TFT criterion. As the standard swap heuristic is able to improve
pGOMEA, the model-based swap heuristic might perform even better. Here, we compare the one-
pass model-based swap heuristic with the same swap heuristic, ignoring sets with cardinality larger
than one. Figure 9.1 shows for di�erent probabilities of local search how model-based swapping
di�ers from normal swapping.

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D

(a) J = 50

0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

Probability of local search (Prls)

A
v
e
ra
g
e
M
R
P
D Swap: M = 5

Swap: M = 10
Swap: M = 20
Model: M = 5
Model: M = 10
Model: M = 20

(b) J = 100

Figure 9.1: Hybrid pGOMEA with the standard and model-based swap heuristic.

Here we see that there is not a big di�erence between model-based searching and a simple swap
heuristic. If there is any signi�cant di�erence, standard swapping outperforms model-based swap-
ping. Therefore, we can conclude that model-based swapping does not help pGOMEA. Instead, we
see that limiting the swaps to a single pass does help pGOMEA. In contrast to exhaustive swap-
ping (Chapter 7), one-pass swapping improves pGOMEA with low probabilities of local search for
almost any instance of the PFSP with the TFT criterion. It can therefore be worthwhile to design
a (parameter-based) local searcher that limits the swap heuristic in the right way to help it improve
pGOMEA.

9.3 Conclusions

• A substructural insertion-based neighborhood searcher does not perform sig-
ni�cantly better on good solutions than a simple insertion-based neighborhood
searcher.
The insertion-based substructural neighborhood of pGOMEA is signi�cantly better than the
insertion neighborhood, when starting from a random solution. On more optimized solutions
(e.g. constructed with a constructive heuristic) the substructural neighborhood is not better
than the insertion neighborhood. Therefore a meta-heuristic using a substructural neighbor-
hood searcher with the linkage tree has no great bene�ts with respect to an insertion local
search.

9.3. CONCLUSIONS 65

• A model-based swap heuristic has no bene�ts over a standard swap heuristic.
The standard swap heuristic performs better or equally well as the model-based swap heuris-
tic, when incorporated in pGOMEA. The quality of the standard and model-based swap
heuristic both depend on the amount of jobs and machines in the problem instances.

• A one-pass swap heuristic is more promising than an exhaustive swap heuristic.
In contrast to the exhaustive swap heuristic, the one-pass heuristic has low probabilities
of local search for which it improves pGOMEA for almost any instance size. Therefore,
hybridizing pGOMEA for the TFT with a form of a swap heuristic is worthwhile to research.
As local search is cheaper than optimal mixing, hybridizing pGOMEA might be useful when
we use the running time as computational budget for pGOMEA.

Chapter 10

Comparative results

In previous chapters we have determined how pGOMEA can be improved by adding domain knowl-
edge to it. We are can now compare pGOMEA with other algorithms designed to solve the PFSP.
In this chapter we will therefore compare pGOMEA with two well-performing PFSP algorithms.
We compare our best implementation of pGOMEA for the Cmax criterion with an Iterative Greedy
(IG) algorithm. We also compare our best pGOMEA implementation for the TFT criterion with
the VNS4 algorithm. Besides the standard Taillard benchmarks, we also use structured instances
in order to review pGOMEA's quality. For these problems, we also research the in�uence of the
dependency measure, by comparing pGOMEA with a variant that uses random dependencies. The
main question answered in this chapter is:

How does pGOMEA with domain knowledge compare to state-of-the-art algorithms for the per-
mutation �owshop scheduling problem and how does pGOMEA's performance depend on structure
in the instances?

First, we will introduce the used algorithms in Section 10.1. Sections 10.2 and 10.3 compare the
algorithms pairwise on the Taillard and Watson instances. After this we test pGOMEA on a new
benchmark set in Section 10.4. Here we compare pGOMEA both with the state-of-the-art algo-
rithms as well as a dependency-free version of pGOMEA. We end this chapter with conclusions on
the quality of pGOMEA with respect to state-of-the-art algorithms under di�erent circumstances.

10.1 Algorithms

For the comparison of pGOMEA with state-of-the-art algorithms, we use two easy-to-implement
algorithms: VNS4 and IG. These algorithms solve the PFSP with the TFT and Cmax criterion
respectively. We compare these algorithms with pGOMEA using the best types of hybridization
and seeding. In this section we shortly introduce the algorithms in text and pseudocode. Our
implementations of the algorithms have been optimized to the level of big-O notation and its
correctness has been veri�ed by comparision with code of the original authors.

10.1.1 VNS4

VNS4 is a variable neighborhood searcher, switching between the swap neighborhood and inser-
tion neighborhood. VNS4 optimizes the balance between the swap and insertion neighborhood.
Therefore VNS4 starts with an exhaustive search in the swap neighborhood, whereafter a one-pass
insertion heuristic is started. The best solution from an LR(J/M) heuristic is used as initial so-
lution. When a local optimum is found with respect to both neighborhoods, the best solution is
updated and a new search is started from a perturbation of the best solution. An outline of this
algorithm is given in Algorithm 5.

10.1.2 pGOMEA for PFSP with the TFT criterion

pGOMEA for the TFT criterion can greatly bene�t from population seeding, as already shown in
Chapter 6. Therefore our pGOMEA implementation will use the LR(n) heuristic for seeding the

66

10.1. ALGORITHMS 67

population. As the swap heuristic can sometimes improves pGOMEA, we used parameter tuning
in order to �nd a good swap heuristic that is globally applicable.

Parameter tuning for the swap heuristic

In previous chapters we found that the swap heuristic was the most promising heuristic for hy-
bridizing pGOMEA when solving the PFSP with the TFT ccriterion. The results also showed that
the swap heuristic performed best on instances with a large amount of jobs and a low amount of
machines. Limiting the amount of considered swaps can potentially give better results. Therefore,
we propose a swap heuristic that considers an amount of random swaps that is dependent on the
amount of machines and jobs in the instance. For that amount we propose the following value:

Swaps = c · J
M
, (10.1)

where c is some constant. Since the swap neighbor-space is quadratic, this formulation implies

that: 0 < c ≤ M ·(J−1)
2 , when every swap is tried at most once. Because the quadratic nature of

the neighborhood-space we will also consider values of c for

Swaps = c · J · (J − 1)

M
, (10.2)

where 0 < c . M
2 , when every swap is tried at most once.

Given the limits of c for both swap types, we research the quality of hybridized pGOMEA with
respect to c. In our implementation, swaps are tried in a random order and lcal search is applied
with a probability of 1.0 when a solution has been changed by optimal mixing.

0 5 10 15 20
0.5

1

1.5

2

2.5

c

A
v
e
ra
g
e
M
R
P
D

(a) Job-linear

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

c

A
v
e
ra
g
e
M
R
P
D (50× 5)

(50× 10)

(50× 20)

(100× 5)

(100× 10)

(100× 20)

(b) Job-quadratic

Figure 10.1: Instance-dependent swapping in pGOMEA.

Figure 10.1 shows the results for di�erent values of c when using a standard amount of �tness
evaluations. The optimal value of c is still dependent on the amount of jobs and machines in
the problem. Therefore, we will not use an improvement heuristic in pGOMEA for the TFT
criterion. The resulting pGOMEA algorithm for solving the PFSP with the TFT criterion is
shown in Algorithm 6.

10.1.3 Iterative Greedy

The Iterative Greedy algorithm for the PFSP with the Cmax criterion uses the NEH-heuristic as
basis. First, an initial solution is generated using the NEH constructive heuristic. After that
the iterative phase is started. In the iterative phase, the current solution is �rst destructed by
removing six jobs. After destruction, the solution is reconstructed by re-inserting the removed
jobs in random order using the NEH-heuristic. Hereafter the NEH improvement heuristic is used
to further optimize the schedule. At the end of each iteration, the best solution is updated. The
new iteration is started from best or currrent solution, depending on the solution quality and
randomness. An overview of the IG algorithm is shown in Algorithm 7.

68 CHAPTER 10. COMPARATIVE RESULTS

Result: A good/optimal PFSP solution with respect to the TFT criterion
Sol← LR(N/M); // Solution constructed with LR heuristic

Best← Sol;
while ¬termination_criterion do

condition← true;
while condition ∧ ¬termination_criterion do

Job_Swap_LS(Sol); // Swap to local optimum

condition← Reduced_Job_Insert(Sol) ; // One pass of insertions

if Cmax(Sol) < Cmax(Best) then
Best← Sol ; // Update best

Sol← Best;
Rand_Insertions(Sol, 14) ; // Shake procedure

return Best
Algorithm 5: Outline of VNS4 searcher

Result: A good/optimal PFSP solution with respect to the TFT criterion
Pop← rand_Pop(P − n) ∪ LR(n) ; // Population seeded using LR(n)

while ¬termination_criterion do
FOS ← build_FOS(Pop);
foreach receiver ∈ Pop do

receiver∗ ← receiver;
foreach set ∈ FOS do

donor ← Random(Pop);
child← Donate(receiver∗, set, donor);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child;
improved = true;

return best solution from Pop
Algorithm 6: Outline of pGOMEA for the TFT criterion

Result: A good/optimal PFSP solution with respect to the TFT criterion
Sol← NEH(); // Solution constructed with NEH heuristic

Sol← NEH_Improve(Sol);
Best← Sol;
while ¬termination_criterion do

Destruct← Random_Jobs(6);
Sol← Sol/Destruct;
foreach j ∈ Destruct do

NEH_Insert(Sol, j) ; // Insert back at best possible position

Sol← NEH_Improve(Sol);
if TFT (Sol) < TFT (Best) then

Best← Sol ; // Update best, continue with best

else if ¬(Random < exp
TFT (Best)−TFT (Sol)

4) then
Sol← Best; // Start again from best

return Best
Algorithm 7: Outline of IG searcher

10.2. BENCHMARKING: TAILLARD INSTANCES 69

Result: A good/optimal PFSP solution with respect to the Cmax criterion
Pop← rand_Pop(P − (m− 1))∪CDS(m− 1) ; // Population seeded using CDS(m-1)

while ¬termination_criterion do
FOS ← build_FOS(Pop);
foreach receiver ∈ Pop do

receiver∗ ← receiver;
foreach set ∈ FOS do

donor ← Random(Pop);
child← Donate(receiver∗, set, donor);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child;
improved = true;

if improved then
NEH_Improve(receiver); // Improve using NEH-insertion

return best solution from Pop
Algorithm 8: pGOMEA for PFSP with Cmax

10.1.4 pGOMEA for PFSP with the Cmax criterion

pGOMEA for the Cmax criterion can bene�t from population seeding. In Chapter 6 we have seen
that the CDS heuristic works best when a maximal amount of seeds are generated. Therefore,
the initial population in our algorithm will be seeded with M − 1 schedules generated by the CDS
heuristic. pGOMEA will also incorporate the NEH-improvement heuristic. This heuristic will be
used with probability 1.0 on schedules that are changed by optimal mixing. An overview of this
pGOMEA algorithm is given in Algorithm 8.

10.2 Benchmarking: Taillard instances

For comparing pGOMEA with state-of-the-art algorithms we �rst use unstructured instances. For
this, we use the Taillard instances, as they have often been used in literature. All algorithms get
the same computational budget of 400 ·M · J milliseconds, as also used in the VNS4 paper. We
experiment on all 50 ×M and 100 ×M instances. For each instance we perform 20 runs of the
algorithms, after which the Mann-Whitney-Wilcoxon statistical test (p < 0.05) is used to determine
whether the best algorithm performs statistically signi�cantly better than the others.

10.2.1 Solving PFSP with the TFT criterion

The quality of pGOMEA with respect to the TFT criterion is compared with VNS4. The outcomes
of this experiment are shown in Table 10.1. Here, we see that pGOMEA often outperforms VNS4
as can be seen in the grey cells, where VNS4 performs signi�cantly worse than pGOMEA. VNS4
however also sometimes performs signi�cantly better than pGOMEA. This might be caused by the
random nature of the instances. As no clear structure exists, pGOMEA might learn a misleading
structure, resulting in too little exploration.

10.2.2 Solving PFSP with the Cmax criterion

Secondly we tested pGOMEA with respect to the Cmax criterion by comparison with IG. The
results of this experiment are shown in Table 10.2. The results clearly show that IG easily �nds
good or optimal solutions, while pGOMEA performs signi�cantly worse (marked grey). As IG
does not use complete �tness evaluations, IG explores more results. pGOMEA however uses �t-
ness evaluations in its optimal mixing phase. As a lot of time is used there, the running time of
pGOMEA scales worse with respect to the amount of jobs and machines.

The results also show how pGOMEA does not always �nd the optimal solution on (J × 5)
instances. Even though pGOMEA �nds a close to optimal solution very fast, pGOMEA is not able
to �nd a better solution. Possibly the forced improvement and seeds steers pGOMEA to much to
a local optimum which is not strongly related to the global optimum.

70 CHAPTER 10. COMPARATIVE RESULTS

Best pGOMEA VNS4 Best pGOMEA VNS4 Best pGOMEA VNS4

5
0
×

5

64803 0.47 0.54

50
×

1
0

87207 1.26 1.23

50
×

2
0

125831 0.78 1.06
68062 0.63 0.63 82820 0.79 1.42 119259 0.56 0.94
63162 0.92 1.02 79987 0.84 1.07 116459 0.71 1.11
68226 0.85 0.84 86581 0.71 0.99 120712 0.92 0.96
69392 0.65 0.65 86450 0.48 1.15 118184 1.25 1.16
66841 0.65 0.71 86637 0.97 1.00 120703 0.82 1.04
66253 0.60 0.69 88866 0.63 1.07 122962 1.01 1.03
64359 0.52 0.77 86824 1.18 1.09 122489 1.02 1.03
62981 0.69 0.62 85526 1.07 1.24 121872 0.99 1.06
68853 0.93 0.84 88077 0.62 1.11 124064 0.90 1.06

1
00
×

5

253713 0.80 0.94

1
00
×

1
0

299431 1.02 1.43

1
00
×

2
0

367267 1.63 1.57
242777 1.04 1.12 274593 1.55 1.77 374032 1.41 1.50
238180 0.57 0.94 288630 1.15 1.54 371417 1.47 1.56
227889 0.82 1.01 302105 1.55 1.59 373822 1.54 1.75
240589 0.77 0.95 285340 1.09 1.19 370459 1.58 1.50
232936 0.82 1.12 270817 1.14 1.56 372768 1.60 1.66
240669 0.85 0.90 280649 1.21 1.30 374483 1.30 1.71
231428 1.00 1.06 291665 0.81 1.52 385456 1.39 1.56
248481 1.00 0.93 302624 1.20 1.44 376063 1.43 1.58
243360 0.87 0.88 292230 1.02 1.58 379899 1.45 1.68

Table 10.1: Quality of pGOMEA and VNS4 on Taillard instances, using the TFT criterion.

Best pGOMEA IG Best pGOMEA IG Best pGOMEA IG

50
×

5

2724 0.00 0.00

50
×

10

2991 1.14 1.14

50
×

20

3850 1.34 1.12
2834 0.07 0.00 2867 1.53 0.12 3704 1.23 0.42
2621 0.00 0.00 2839 1.06 0.46 3640 1.77 1.02
2751 0.04 0.00 3063 0.18 0.00 3723 1.26 0.83
2863 0.00 0.00 2976 1.01 0.10 3611 1.44 0.55
2829 0.00 0.00 3006 0.50 0.00 3681 1.40 0.60
2725 0.00 0.00 3093 0.71 0.26 3704 1.35 0.61
2683 0.00 0.00 3037 0.23 0.03 3691 1.87 1.04
2552 0.08 0.00 2897 0.28 0.17 3743 1.51 0.81
2782 0.00 0.00 3065 0.85 0.42 3756 1.05 0.43

10
0
×

5

5493 0.00 0.00

10
0
×

10

5770 0.05 0.00

10
0
×

20

6202 1.80 0.74
5268 0.13 0.00 5349 0.24 0.00 6183 1.52 0.49
5175 0.00 0.00 5676 0.05 0.05 6271 1.28 0.58
5014 0.08 0.00 5781 0.43 0.00 6269 1.55 0.54
5250 0.02 0.00 5467 0.53 0.00 6314 1.60 0.78
5135 0.00 0.00 5303 0.09 0.00 6364 1.93 0.35
5246 0.00 0.00 5595 0.13 0.05 6268 1.52 0.63
5094 0.00 0.00 5617 0.41 0.11 6401 1.87 0.77
5448 0.00 0.00 5871 0.34 0.07 6275 1.57 0.52
5322 0.04 0.00 5845 0.05 0.00 6434 1.50 0.70

Table 10.2: Quality of pGOMEA and IG on Taillard instances, using the Cmax criterion.

10.3. BENCHMARKING: EXISTING STRUCTURED INSTANCES 71

10.3 Benchmarking: Existing structured instances

Watson et al. [42] have shown that for the PFSP with the Cmax criterion the problem structure
has a big impact on how easy a problem is solved. The majority of structured problems are easily
solved by both simple and complex algorithms. As pGOMEA models structure in order to solve
permutation problems, it is expected that these structured instances are particularly suitable to be
solved by pGOMEA. Since real-world instances often contain structure, we will experiment with
pGOMEA on structured instances to verify its quality in practical situations.

10.3.1 Structured instances

Watson et al. use three types of structured instances: Job-correlated, Machine-correlated and
Mixed-correlated instances (see Figure 10.2). In job-correlated instances, processing times are
dependent on the job and not on the machines, therefore Watson et al. create a distribution per job
for sampling processing times. Therefore the processing times of operations in one job are related.
In machine-correlated instances the structure goes the other way around. Here, processing times
on one machine are related as they are sampled from one distribution. Processing times within
one job are unrelated. Mixed-correlated instances are equal to Machine-correlated instances, but
here the relative ranks of job processing times are largely independent of the machine.

Every distribution (job/machine) has a range of less than 12 values that can be chosen. Using
the alpha-parameters, the distribution means are more (high α) or less (low α) spread apart.
Therefore with α = 1.0, distributions hardly overlap, while for α = 0.0 the distributions all
overlap. Unfortunately α = 0.0 does not create Taillard-like instances. Taillard samples from a
distribution with range of 99 values with mean 50, Watson uses multiple distributions with a range
smaller than 12 having the same random mean in [1, 99].

1 2 3

Machine

J
o
b
p
ro
ce
ss
in
g
ti
m
e

(a) Job-correlated

1 2 3

Machine

J
o
b
p
ro
ce
ss
in
g
ti
m
e

(b) Machine correlation

1 2 3

Machine

J
o
b
p
ro
ce
ss
in
g
ti
m
e

Job 1
Job 2
Job 3

(c) Mixed correlation

Figure 10.2: Types of structure in PFSP instances.

For the Cmax criterion, instances with a few machines are easily solved. Therefore Watson
et al. only generate instances with twenty machines. Therefore we also limit our experiments to
instances with twenty machines. We will experiment both with very structured instances (α = 1.0),
half structured instances (α = 0.5) and slightly structured instances (α = 0.1 and α = 0.2).
Experiments will be performed on the �rst three problems provided by Watson et al.

10.3.2 Solving PFSP with the TFT criterion

For the PFSP with the TFT criterion we have run pGOMEA and VNS4 on the Watson instances.
Unfortunately, no results are known about lower bounds and previous results. Therefore the re-
sulting MRPD values as given in Table 10.3 use the best result found by pGOMEA and VNS4 as
upper bound. The best results are marked bold and if the other algorithm performs signi�cantly
worse, its result is highlighted grey.

In these results, we see that the MRPD values are very low. As our reference point is the best
solution found by pGOMEA and VNS4, this does not say very much by itself. However, we also
observe very small di�erences within the results of one algorithm. For the Taillard instances, these
di�erences were sometimes larger than 1000, whereas for the Watson instances this di�erences are
usually smaller than 100. Since this di�erence goes down when algorithms �nd solutions close to

72 CHAPTER 10. COMPARATIVE RESULTS

the optimum, we can assume that these structured instances are very easy for the TFT criterion.
Though these instances are so easy some signi�cant di�erences were still found. The general trend is
that for unstructured instances pGOMEA is best. More correlation makes pGOMEA perform worse
than VNS4 (until pGOMEA gives optimal results). The amount of problem structure VNS4 needs
to outperforms pGOMEA is higher for larger instances (higher correlation factors are needed).

Job correlated Machine Correlated Mixed correlated
Best pGOMEA VNS4 Best pGOMEA VNS4 Best pGOMEA VNS4

50
×

2
0

α = 0.1
159817 0.001 0.005 145084 0.010 0.012 193977 0.001 0.002
95140 0.008 0.003 191223 0.006 0.019 43898 0.011 0.013
33617 0.006 0.000 37324 0.042 0.035 89242 0.000 0.000

α = 0.2
104206 0.000 0.000 104893 0.017 0.033 195884 0.000 0.000
47081 0.000 0.000 144323 0.000 0.000 57859 0.003 0.003
171661 0.000 0.000 188073 0.012 0.008 102555 0.006 0.005

α = 0.5
63632 0.000 0.000 134775 0.010 0.006 189823 0.000 0.000
136888 0.000 0.000 152219 0.005 0.007 131033 0.000 0.000
103623 0.000 0.000 186151 0.000 0.000 157945 0.000 0.000

α = 1.0
109907 0.000 0.000 153329 0.000 0.000 154222 0.000 0.000
69177 0.000 0.000 160736 0.000 0.000 172350 0.000 0.000
95357 0.000 0.000 169213 0.000 0.000 168092 0.000 0.000

10
0
×

20

α = 0.1
64021 0.015 0.014 589024 0.002 0.007 566746 0.004 0.006
338828 0.029 0.013 109702 0.012 0.016 97046 0.058 0.250
611015 0.023 0.018 250483 0.010 0.003 245350 0.007 0.012

α = 0.2
559950 0.016 0.011 582125 0.003 0.020 585337 0.003 0.021
256739 0.018 0.020 170913 0.038 0.111 153385 0.026 0.052
499133 0.022 0.006 288881 0.007 0.025 287695 0.006 0.004

α = 0.5
218030 0.002 0.001 608557 0.011 0.004 581895 0.001 0.001
353962 0.001 0.001 319449 0.008 0.005 289704 0.001 0.001
173033 0.000 0.000 411090 0.014 0.010 415477 0.001 0.002

α = 1.0
244157 0.000 0.000 509180 0.008 0.002 608588 0.018 0.005
246583 0.000 0.000 517291 0.000 0.000 565043 0.000 0.000
328199 0.000 0.000 556120 0.000 0.000 572648 0.001 0.000

Table 10.3: pGOMEA on Watson instances using the TFT criterion.

10.3.3 Solving PFSP with the Cmax criterion

For the PFSP with the Cmax criterion we have run pGOMEA and IG for each types of correla-
tion and for multiple problem sizes. In Table 10.4 the MRPD values are given for these results,
best results are marked bold and if the other algorithm performs signi�cantly worse, its result is
highlighted grey. Again both pGOMEA and IG �nd the best known solution nearly every time.
Only for job correlated instances pGOMEA and IG are signi�cantly di�erent. For large instances,
pGOMEA works best. Smaller, non-structured (or slightly structured) instances are best solved
using IG. Both algorithms however �nd better results than Watson et al. for these instances. As
the results are very close to the lower bounds computed by Watson et al., we can assume that both
pGOMEA and IG work very well on these instances.

10.3.4 Watson instances: why so easy?

As already mentioned by Watson et al., the structured instances are easier than unstructured
instances. This might explain why all algorithms perform this good. However, the algorithms also
perform very well on unstructured instances (α = 0.1) as shown in Table 10.4. Three things may
cause this di�erence:

• Watson with α = 0.0 samples from a uniform distribution of [mean − x,mean + x], where
x is sampled from the uniform distribution [1, 5]. Taillard instances are however uniformly
sampled from [1, 99],

10.4. BENCHMARKING: NEW STRUCTURED INSTANCES 73

Job correlated Machine Correlated Mixed correlated
Best pGOMEA IG Best pGOMEA IG Best pGOMEA IG

5
0
×

20

α = 0.1
5050 0.04 0.02 4540 0.00 0.00 6101 0.03 0.02
3062 0.03 0.00 5969 0.02 0.02 1420 0.00 0.00
1147 0.17 0.00 1226 0.00 0.00 2825 0.00 0.00

α = 0.2
3444 0.06 0.00 3314 0.00 0.00 6168 0.00 0.00
1735 0.00 0.00 4622 0.00 0.00 1939 0.00 0.00
5582 0.02 0.02 5932 0.02 0.01 3311 0.00 0.00

α = 0.5
2645 0.00 0.00 4465 0.00 0.00 6174 0.00 0.00
4969 0.00 0.00 5018 0.06 0.00 4337 0.00 0.00
3821 0.00 0.00 5991 0.00 0.00 5193 0.00 0.00

α = 1.0
4697 0.00 0.00 5195 0.00 0.00 5178 0.00 0.00
3829 0.00 0.00 5572 0.00 0.00 5808 0.00 0.00
4430 0.00 0.00 5791 0.00 0.00 5731 0.00 0.00

10
0
×

2
0

α = 0.1
1239 0.48 0.16 10170 0.00 0.00 9856 0.00 0.00
5931 0.08 0.05 2020 0.00 0.00 1824 0.00 0.00
10604 0.05 0.02 4411 0.00 0.00 4274 0.02 0.07

α = 0.2
10000 0.02 0.01 10150 0.00 0.00 10181 0.00 0.00
4760 0.02 0.05 3143 0.00 0.00 2811 0.00 0.00
8909 0.04 0.04 5135 0.00 0.00 5112 0.00 0.00

α = 0.5
4714 0.00 0.00 10832 0.00 0.00 10450 0.00 0.00
7137 0.00 0.00 5951 0.00 0.00 5257 0.00 0.00
4005 0.00 0.02 7516 0.00 0.00 7534 0.00 0.00

α = 1.0
6400 0.02 0.01 9380 0.00 0.01 10907 0.00 0.00
6444 0.00 0.00 9473 0.00 0.00 10402 0.00 0.00
7512 0.00 0.00 10422 0.00 0.00 10455 0.00 0.00

Table 10.4: pGOMEA on Watson instances using the Cmax criterion

• The Watson instances have not been researched a lot, therefore best known upper bounds of
Watson instances are not very tight,

• Taillard instances are selected as the hardest from a set random instances.

From these reasons, the second one is the least probable, as our results also show that IG or
pGOMEA always result in the same local optimum (which is then probably the global optimum).
The �rst reason is most likely to cause this di�erence, as the values jobs can have are much more
limited. Therefore, more solutions with the same �tness exist, leading to more global and local
optima that can be found. The third reason can also contribute to our �ndings, but we expect this
to be less important.

Though IG performs slightly worse than pGOMEA and VNS4 performs slightly better than
pGOMEA on structured instances, the simplicity of these problems makes that we cannot draw
strong conclusions about the e�ectiveness of pGOMEA on the di�erent types of (semi-)structured
instances with larger spread.

10.4 Benchmarking: New structured instances

As we couldn't draw strong conclusions using the Watson instances, we introduce a new type of
structured instances. Again job-correlated and machine-correlated instances are generated, with
a correlation factor α ∈ [0, 1]. With α = 0.0 these instances re�ect the Taillard instances, except
instances are not selected based on di�culty. For α = 1.0, jobs or machines are completely
correlated meaning that every action on a job or machine has the same processing time. Such
structured instances are trivially solved in polynomial time for the Cmax criterion. Appendix A
shows in detail how instances are generated using the alpha-parameter. Using multiple of these
instances, we again evaluate the performance of pGOMEA on structured instances.

74 CHAPTER 10. COMPARATIVE RESULTS

10.4.1 Experimental Setup

For our experiments we consider instances with three di�erent alpha-values, namely 0.2, 0.4 and
0.6. For these instances, the problem is not easily solved, but we can still research high, medium
and low correlations between jobs and machines. Our experiments will be performed on instances
with 50 and 100 jobs and 20 machines, as these Taillard instances are hard for the Cmax criterion.
For each combination of correlation (type and value) and instance size we test on the �rst ten
instances generated. For the computational time we use 400 · J ·M · (1 − α) milliseconds. This
makes sure that we do not waste time on the easier problems with a lot of structure. In our
experiments, we compare pGOMEA pairwise with IG/VNS4. We also compare pGOMEA with
pGOMEA using random dependency values. This gives useful insights in the amount of structure
pGOMEA is able to learn in (un)structured instances.

10.4.2 TFT

For the TFT criterion we tested pGOMEA on multiple structured instances. Table 10.5 shows the
results of the algorithms. pGOMEA has been statistically compared with VNS4 and pGOMEA
with random dependencies (RAND). When an algorithm performs signi�cantly better than pGOMEA,
its result is marked bold. Signi�cantly worse results are marked grey. Here, we observed that
pGOMEA performs better that VNS4 on job correlated and big mixed correlated instances. For
(large, high correlation) machine correlated instances and smaller mixed correlated instances, VNS4
is often more e�ective than pGOMEA. Using random dependencies is however not useful, as it per-
forms better on only one instance.

10.4.3 CMAX

For the Cmax criterion we have compared pGOMEA, IG and random-dependency pGOMEA
(RAND), using the new structured instances. Table 10.6 shows the results of the algorithms.
pGOMEA has been statistically compared with both other algorithms. When an algorithm per-
forms signi�cantly better than pGOMEA, its result marked in bold. Signi�cantly worse results
are marked grey. In these results we �nd that IG is still signi�cantly better than pGOMEA,
though machine and mixed correlated instances are solved easily. Using smart dependencies is
more important when problems become harder. This is shown by the signi�cant di�erences in job
correlated instances, while the machine and mixed correlated instances are also easily solved with
random dependencies.

10.5 Conclusions

In this chapter we have compared pGOMEA with two state-of-the-art algorithms and we have ex-
amined the in�uence of problem structure on the (relative) quality of pGOMEA. Here we have found
that in a non-structured environment pGOMEA is outperformed by the IG algorithm. The IG
algorithm is very good at calculating multiple �tness evaluations at once, in contrast to pGOMEA.
As the VNS4 algorithm does not employ any speedups in �tness evaluations, pGOMEA is able to
outperform that algorithm. After discarding known structured benchmarks, we used a new bench-
mark to create structured instances. Using these instances, we were able to observe the quality
of pGOMEA when problems get more structure in it. The results have shown that pGOMEA
performs better on structured instances. This can however not be fully ascribed to dependency
learning. Other algorithms also perform better, as the search space is probably much more struc-
tured and the problems are thus less deceptive. We can still conclude that dependency learning is
a key part of pGOMEA in structured problems. When pGOMEA uses random dependency values,
pGOMEA often performs signi�cantly worse.

10.5. CONCLUSIONS 75

Job correlated Machine Correlated Mixed correlated
Best pGOMEA VNS4 RAND Best pGOMEA VNS4 RAND Best pGOMEA VNS4 RAND

5
0
×

2
0

α = 0.2

115932 0.29 0.41 0.28 121466 0.36 0.29 0.30 119556 0.29 0.59 0.49
116443 0.30 0.62 0.40 124700 0.53 0.27 0.43 124278 0.26 0.36 0.38
121138 0.21 0.37 0.30 123541 0.44 0.38 0.42 119270 0.20 0.24 0.17
117199 0.31 0.55 0.39 120350 0.45 0.54 0.47 124036 0.22 0.16 0.26
120609 0.17 0.47 0.32 119436 0.39 0.66 0.34 120075 0.39 0.74 0.30
118530 0.13 0.53 0.32 117507 0.42 0.51 0.31 125952 0.15 0.15 0.30
118882 0.22 0.60 0.37 120691 0.15 0.39 0.24 120729 0.14 0.18 0.20
120485 0.32 0.57 0.38 120256 0.22 0.34 0.42 121931 0.19 0.24 0.17
115047 0.38 0.46 0.31 127320 0.34 0.38 0.40 127902 0.20 0.23 0.31
113643 0.24 0.42 0.37 125185 0.26 0.32 0.36 123188 0.24 0.40 0.28

α = 0.4

112233 0.17 0.35 0.14 129585 0.11 0.08 0.12 132369 0.08 0.10 0.09
104133 0.14 0.28 0.22 121772 0.10 0.19 0.20 129112 0.11 0.02 0.08
109701 0.06 0.27 0.16 125712 0.18 0.18 0.20 118197 0.04 0.20 0.11
108567 0.26 0.26 0.31 128817 0.14 0.14 0.16 128669 0.18 0.03 0.07
114933 0.20 0.34 0.24 124572 0.16 0.19 0.22 122102 0.15 0.23 0.22
114286 0.05 0.25 0.10 126417 0.09 0.23 0.13 118722 0.16 0.44 0.27
113312 0.11 0.23 0.18 129705 0.21 0.24 0.21 123119 0.09 0.11 0.07
111915 0.17 0.38 0.21 129424 0.06 0.10 0.13 117565 0.02 0.09 0.07
111720 0.10 0.19 0.15 134549 0.16 0.23 0.25 128085 0.09 0.07 0.08
111452 0.13 0.27 0.15 119268 0.23 0.19 0.21 129006 0.05 0.08 0.05

α = 0.6

103452 0.01 0.00 0.01 130768 0.08 0.07 0.11 137091 0.01 0.00 0.00
102201 0.01 0.02 0.02 132077 0.05 0.02 0.04 130445 0.00 0.00 0.00
107023 0.00 0.00 0.00 144648 0.05 0.09 0.06 141593 0.00 0.00 0.00
94201 0.00 0.00 0.00 143034 0.02 0.05 0.05 134738 0.01 0.00 0.01
105104 0.03 0.07 0.03 122944 0.05 0.05 0.05 129048 0.00 0.00 0.00
104715 0.02 0.06 0.05 141008 0.08 0.06 0.10 141035 0.01 0.00 0.00
95312 0.00 0.02 0.00 141875 0.06 0.06 0.07 148554 0.00 0.00 0.00
113632 0.00 0.03 0.00 135961 0.01 0.02 0.01 129213 0.00 0.00 0.00
105767 0.00 0.00 0.00 122958 0.12 0.11 0.10 133431 0.00 0.00 0.00
103308 0.00 0.01 0.01 146136 0.06 0.07 0.09 123618 0.00 0.00 0.00

10
0
×

20

α = 0.2

354483 0.42 0.46 0.53 376876 0.28 0.18 0.46 392925 0.35 0.48 0.54
352436 0.38 0.58 0.61 379781 0.31 0.42 0.45 375810 0.26 0.66 0.43
354530 0.34 0.43 0.47 395682 0.18 0.42 0.48 400652 0.14 0.36 0.27
341043 0.26 0.52 0.55 389305 0.36 0.58 0.63 376562 0.31 0.67 0.41
354807 0.31 0.69 0.53 389688 0.25 0.59 0.45 368258 0.29 0.29 0.40
370144 0.33 0.54 0.69 360776 0.15 0.54 0.52 388375 0.33 0.63 0.59
351676 0.32 0.62 0.50 389651 0.33 0.59 0.45 379751 0.62 0.38 0.80
372308 0.31 0.39 0.46 377689 0.38 0.35 0.44 372021 0.18 0.29 0.41
362577 0.43 0.48 0.56 385017 0.29 0.40 0.49 364454 0.29 0.29 0.53
360703 0.39 0.57 0.46 389271 0.25 0.35 0.34 349791 0.28 0.52 0.60

α = 0.4

338303 0.27 0.39 0.38 432943 0.25 0.20 0.26 409404 0.15 0.23 0.19
331602 0.23 0.51 0.35 404417 0.20 0.19 0.35 408221 0.11 0.11 0.18
337449 0.14 0.23 0.30 411893 0.10 0.09 0.20 381029 0.07 0.15 0.16
343512 0.15 0.49 0.32 410707 0.26 0.16 0.40 367183 0.18 0.30 0.33
321656 0.28 0.41 0.40 437327 0.20 0.12 0.36 392645 0.12 0.33 0.31
348395 0.23 0.53 0.38 418578 0.23 0.16 0.37 428664 0.06 0.10 0.11
350807 0.26 0.28 0.39 402707 0.14 0.13 0.22 400714 0.15 0.12 0.22
336867 0.11 0.47 0.41 419103 0.14 0.14 0.19 378965 0.16 0.28 0.26
334469 0.16 0.44 0.27 440173 0.21 0.15 0.28 411678 0.06 0.15 0.13
341423 0.35 0.78 0.50 417045 0.13 0.08 0.24 392508 0.10 0.22 0.20

α = 0.6

319476 0.17 0.32 0.26 491858 0.11 0.12 0.18 395660 0.03 0.06 0.05
335018 0.13 0.30 0.21 407094 0.14 0.05 0.23 454738 0.02 0.02 0.02
311021 0.06 0.22 0.07 450581 0.04 0.02 0.04 365546 0.02 0.02 0.03
301670 0.16 0.37 0.22 391007 0.14 0.06 0.18 400760 0.00 0.00 0.00
303487 0.10 0.21 0.16 449246 0.13 0.03 0.21 447317 0.01 0.03 0.02
299529 0.12 0.22 0.15 479164 0.12 0.14 0.19 412359 0.02 0.05 0.03
320155 0.14 0.17 0.19 469897 0.41 0.10 0.39 450060 0.02 0.02 0.03
290573 0.15 0.27 0.26 471761 0.18 0.06 0.29 484204 0.01 0.02 0.01
305220 0.12 0.26 0.18 463159 0.14 0.10 0.18 414879 0.02 0.02 0.04
328872 0.15 0.27 0.21 453227 0.10 0.06 0.21 480739 0.02 0.02 0.02

Table 10.5: GOMEA, VNS4 and GOMEA with random dependencies: Structured TFT instances.

76 CHAPTER 10. COMPARATIVE RESULTS

Job correlated Machine Correlated Mixed correlated
Best pGOMEA IG RAND Best pGOMEA IG RAND Best pGOMEA IG RAND

5
0
×

2
0

α = 0.2

3680 0.90 0.31 0.95 3751 0.17 0.00 0.21 3877 0.05 0.00 0.05
3636 1.13 0.52 1.39 3816 0.63 0.42 0.63 3956 0.00 0.00 0.00
3741 0.87 0.37 1.04 3810 0.75 0.00 0.81 3731 0.52 0.00 0.64
3725 0.99 0.34 1.37 3897 0.00 0.00 0.00 3989 0.45 0.00 0.45
3761 0.72 0.40 0.94 3843 1.41 0.08 0.78 3980 0.43 0.00 0.43
3700 0.74 0.20 1.00 3720 0.00 0.00 0.09 4072 0.05 0.00 0.05
3750 0.77 0.28 0.99 3780 0.50 0.13 0.62 3970 0.05 0.00 0.05
3778 0.73 0.25 1.10 3795 0.29 0.03 0.45 3908 0.54 0.00 0.51
3602 0.78 0.36 1.19 3968 0.68 0.00 0.68 3973 0.91 0.30 1.06
3611 1.19 0.22 1.40 3960 0.48 0.23 0.48 3881 1.16 0.30 1.16

α = 0.4

3639 0.58 0.30 0.74 4346 0.00 0.00 0.00 4350 0.45 0.10 0.46
3481 0.82 0.16 1.03 4087 0.00 0.00 0.00 4303 0.00 0.00 0.00
3590 0.43 0.06 0.52 4155 0.00 0.00 0.00 4139 0.17 0.00 0.19
3565 0.50 0.15 0.67 4343 0.00 0.00 0.00 4243 0.05 0.00 0.26
3770 0.82 0.32 0.93 4080 0.42 0.00 0.23 4135 0.00 0.00 0.00
3719 0.42 0.16 0.62 4269 0.00 0.00 0.00 4149 0.00 0.00 0.00
3734 0.48 0.13 0.55 4353 0.00 0.00 0.00 4308 0.07 0.00 0.00
3626 0.65 0.32 0.85 4312 0.00 0.00 0.00 4070 0.12 0.00 0.05
3719 0.51 0.17 0.66 4459 0.06 0.00 0.00 4389 0.05 0.00 0.05
3761 0.56 0.19 0.82 4050 0.00 0.00 0.00 4228 0.05 0.00 0.05

α = 0.6

3806 0.17 0.03 0.16 4335 0.00 0.00 0.00 4710 0.00 0.00 0.00
3785 0.29 0.11 0.40 4664 0.00 0.00 0.00 4645 0.00 0.00 0.00
3907 0.10 0.03 0.13 4867 0.00 0.00 0.00 4999 0.00 0.00 0.00
3575 0.14 0.08 0.14 4814 0.00 0.00 0.00 4706 0.02 0.00 0.02
3764 0.15 0.00 0.13 4399 0.00 0.00 0.00 4563 0.00 0.00 0.00
3925 0.19 0.08 0.25 4812 0.00 0.00 0.00 4637 0.00 0.00 0.00
3583 0.39 0.11 0.31 4789 0.00 0.00 0.00 4897 0.10 0.00 0.08
3976 0.25 0.13 0.26 4725 0.00 0.00 0.00 4481 0.00 0.00 0.00
3940 0.30 0.13 0.28 4112 0.00 0.00 0.00 4610 0.00 0.00 0.02
3691 0.24 0.11 0.23 4858 0.00 0.00 0.00 4244 0.00 0.00 0.00

10
0
×

20

α = 0.2

6090 1.08 0.39 1.35 6793 0.00 0.00 0.00 7003 0.00 0.00 0.00
6068 0.87 0.12 1.16 6891 0.09 0.00 0.09 6656 0.32 0.14 0.31
6060 1.26 0.26 1.42 6909 0.39 0.14 0.39 7166 0.31 0.08 0.31
5879 1.05 0.48 1.22 6849 0.66 0.09 0.66 6824 0.10 0.00 0.10
6178 0.80 0.35 1.06 6665 0.70 0.41 0.74 6596 0.15 0.00 0.11
6330 0.98 0.40 1.25 6297 0.30 0.30 0.30 6839 0.12 0.00 0.19
6072 1.00 0.14 1.22 7215 0.00 0.00 0.00 6593 0.46 0.06 0.48
6334 0.99 0.24 1.04 6766 0.09 0.00 0.09 6731 0.34 0.34 0.34
6155 0.87 0.20 1.06 7038 0.09 0.00 0.09 6368 0.56 0.19 0.73
6214 1.09 0.14 1.29 6999 0.00 0.00 0.00 6507 0.41 0.41 0.41

α = 0.4

6120 0.83 0.38 0.96 7786 0.01 0.00 0.00 7761 0.12 0.00 0.12
6038 0.68 0.20 0.82 7266 0.00 0.00 0.00 7627 0.09 0.07 0.09
6118 0.42 0.26 0.56 7739 0.00 0.00 0.08 7413 0.00 0.00 0.00
6361 0.75 0.20 0.83 7723 0.00 0.00 0.00 6865 0.20 0.13 0.20
5898 0.46 0.35 0.68 7912 0.00 0.00 0.00 7387 0.09 0.09 0.09
6296 0.79 0.25 0.85 7842 0.00 0.00 0.00 8111 0.05 0.00 0.05
6360 0.85 0.31 1.00 7754 0.00 0.00 0.00 7381 0.09 0.00 0.09
6173 0.65 0.18 0.87 7848 0.00 0.00 0.00 7302 0.08 0.00 0.08
6146 0.82 0.28 0.97 8145 0.00 0.00 0.00 7723 0.04 0.00 0.04
6329 0.80 0.38 0.93 7524 0.00 0.00 0.03 7373 0.03 0.00 0.03

α = 0.6

6175 0.59 0.25 0.57 9027 0.00 0.00 0.00 7723 0.00 0.00 0.00
6611 0.60 0.20 0.57 7507 0.00 0.00 0.00 8528 0.06 0.01 0.04
6237 0.65 0.22 0.71 8741 0.00 0.00 0.00 7117 0.00 0.00 0.00
6032 0.46 0.14 0.46 7369 0.00 0.00 0.00 7872 0.00 0.00 0.00
6120 0.40 0.15 0.49 8145 0.00 0.00 0.00 8384 0.00 0.00 0.00
6047 0.49 0.17 0.51 8772 0.00 0.00 0.00 7904 0.00 0.00 0.00
6381 0.35 0.16 0.48 8842 0.00 0.00 0.00 8486 0.00 0.00 0.00
5789 0.57 0.17 0.58 8820 0.00 0.00 0.00 8835 0.08 0.02 0.07
6187 0.34 0.09 0.44 8519 0.01 0.00 0.00 7927 0.00 0.00 0.00
6286 0.56 0.10 0.64 8303 0.00 0.00 0.00 8825 0.08 0.08 0.08

Table 10.6: GOMEA, IG and GOMEA with random dependencies: Structured Cmax instances.

Chapter 11

Conclusions

This research has shown the interaction of pGOMEA with domain knowledge and vice versa. The
research question How can domain-knowlege of permutation problems be exploited (using heuristics)
in the permutation-based Gene-pool Optimal Mixing Evolutionary Algorithm? has been extensively
answered. Di�erent forms of seeding and hybridization have been discussed. In this chapter we
give a global overview of the results. In our discussion we will interpret these results of pGOMEA
on the PFSP for the broader perspective of permutation problems and GOMEA in general. Using
the results of our experiments, we will give some practical recommendations for using pGOMEA
in combination with domain knowledge in Section 11.2. We �nally conclude this thesis with some
recommendations for future work concerning pGOMEA and using domain knowledge in Section
11.3.

11.1 Summary

In recent research, GOMEA has been extended to work for permutation problems. This new
pGOMEA algorithm uses a random-key encoding to ensure correct crossovers. A linkage tree is
build using dependencies-values based on random-key order and proximity. This new pGOMEA
algorithm has shown to be e�ective on the PFSP with the TFT criterion. In this problem, the
optimal processing order of J jobs processed on M machines should be found. In experiments it
outperforms an other recently proposed permutation estimation of distribution algorithm.
The good performance of pGOMEA is surprising as it does not incorporate any form of domain
knowledge. Therefore pGOMEA might be able to compete with state-of-the-art algorithms when
incorporating domain knowledge by itself. Domain knowledge comes in many forms. Mostly, do-
main knowledge is incorporated using constructive or improvement heuristics. Multiple heuristics
exist for the two main objectives of the PFSP: the TFT and Cmax criterion. The RZ constructive
heuristic can be used to generate one good solution for the PFSP with the TFT criterion, while
the Palmer heuristic uses a similar approach to generate a good solution for the PFSP with the
Cmax criterion. For this criterion the most used constructive heuristic is the NEH-heuristic, which
builds a solution by repeatedly inserting a job in the best suitable place in the permutation. These
single-solution constructive heuristics can be used to seed one good solution to the populations or
forced improvement phase of pGOMEA. Unfortunately this approach steers pGOMEA too much
towards this one solution, which leads to a bias that can possibly decrease the quality of pGOMEA.

Using multi-solution constructive heuristics we can seed more solutions in the populations of
pGOMEA. For the PFSP with the TFT criterion we can use the LR heuristic, which can generate
up to J di�erent good solutions. For the Cmax criterion the CDS heuristic which generates up
to M − 1 solutions can be used. For both criteria multi-solution seeding improves pGOMEA, the
more good solutions are added to the population, the better pGOMEA performs. The costs of
generating the seeds should however be taken into account. Seeding with heuristically improved
random solutions is therefore too expensive.

The improvement heuristics can however be used for hybridizing pGOMEA. Experiments show
that the improvement heuristics are best applied when pGOMEA has changed a solution. This
gives the best e�ect on both �tness and convergence. Most improvement heuristics for permuta-

77

78 CHAPTER 11. CONCLUSIONS

tion problems are based on simple swap and insertion heuristics. These heuristics can be applied
with a limit on the improvement depth or a limit on the probability of applying the improvement
heuristic. These forms of hybridization however do not give better results. Only for the TFT
criterion and instances with a few machines, the swap heuristic can be useful.
Though the simple insertion and swap heuristic cannot easily improve pGOMEA, they do not use
any domain knowledge. More advanced improvement heuristics have therefore been tested. The
advanced Cut-and-Repair heuristic was clearly not improving pGOMEA for the TFT criterion,
as it still uses little domain knowledge and expensive �tness evaluations. The NEH improvement
heuristic for the Cmax criterion can however improve solutions much faster than the regular inser-
tion heuristic. Using this heuristic in pGOMEA gives better results as less time is needed for a
population to convergence.

When no improvement or constructive heuristics are known for a permutation problem, pGOMEA
can still pro�t from domain knowledge. In Chapter 8 we have introduced dependency seeding. De-
pendency seeding enhances the proximity and relative ordering dependency with a third factor
derived from domain knowledge. In our experiments we have �rstly seen that the in�uence of do-
main knowledge should be carefully determined. Using a constant factor determining the domain
knowledge in�uence is not su�cient. A better approach is to use a cooling scheme for the amount
of domain knowledge in�uence. This leads to a lot of domain knowledge in early generations and
a lot of model knowledge in later generations. The use of a cooling scheme needs parameters for
the initial in�uence and the cooling factor. For such a scheme it is not very hard to �nd values for
the parameters such that pGOMEA is improved. Finding the optimal parameters can however be
more di�cult.
Secondly, our experiments show that dependency seeding needs the right type of seeded depen-
dency values. The RZ and Palmer heuristic slope indices were able to improve pGOMEA. However
pGOMEA could not be improved by adding dependency-values from a constructive population.

As a last form of improving pGOMEA, we have experimented with substructural neighborhoods.
pGOMEA cannot be improved by hybridization with a substructural neighborhood searcher. Sub-
structural neighborhood searchers also do not outperform simple improvement heuristics, as the
local optima of simple improvement heuristics seem equally good as the local optima of the sub-
structural neighborhood searcher.

Finally, we have researched the quality of pGOMEA on instances with varying sizes and struc-
ture. For the Cmax criterion pGOMEA was outperformed by the IG algorithm on the well-known
Taillard benchmark set. For the same instances, pGOMEA performs better than the VNS4 algo-
rithm for the TFT criterion. As structured instances by Watson et al. were too easily solved, we
experimented on newly generated structured instances. For these instances we observed similar
results as for Taillard instances, since other algorithms also pro�t from structure in the instances.
A di�erence can however be found in mixed-correlated instances, where VNS4 suddenly outper-
formed pGOMEA on large structured instances. This indicates that the dependendency values of
pGOMEA model job-correlation the best. In our tests on structured instances we have also ex-
amined the di�erence between pGOMEA and pGOMEA using random dependency values. Here,
we have seen that the choice of dependency value does certainly matter, as standard pGOMEA
performs better than pGOMEA with random dependencies.

11.2 Recommendation

Though we have found some useful ways of enhancing pGOMEA, the question remains whether
our observations apply for each type of permutation problem. For example: is population seeding
still e�ective when pGOMEA is used to solve the traveling salesman problem? And how should we
apply dependency seeding for this problem if multi-solution seeding cannot be achieved? Though
some of these questions need further research, we can give some guidelines from the results we have
achieved on the PFSP.

For population seeding we have seen that the more seeds are given, the better pGOMEA per-
forms. Seeding a single solution can however misguide pGOMEA. When �nding a multi-solution
constructive heuristic one should keep in mind that this can also misguide pGOMEA. When the

11.3. FUTURE WORK 79

generated permutations only di�er slightly, pGOMEA will �nd a group of strong dependencies that
might limit the explorative behaviour of pGOMEA. One should therefore make sure that the used
constructive heuristic does not result in strongly dependent permutations. If this is not possible
one might prove or show that the structure from constructive heuristic never misguides the search,
this also enables one to use single-solution seeding. A third option is to use larger population sizes,
but this comes at the cost of more computation time and slower convergence (and pGOMEA uses
a population sizing scheme). When using population seeding one should always balance the time
spend by the constructive heuristic with the amount of time spend in pGOMEA. At some point
one can better explore using the existing seeds, than create more seeds that do not really add much
information.

If population seeding is not possible, one might consider using dependency seeding. When using
dependency seeding, one should make sure that the dependency values are in balance. Heuristic
dependency seeding for instance has failed because the dependency values had some extreme de-
pendency values that do not re�ect the real dependency between two variables. One is advised
to use dependency values that closely re�ect the actual dependency between variables e.g. the
distance between two cities in the traveling salesman problem.

The use of improvement heuristics in pGOMEA is harder to give any recommendations for.
The quality of hybridization depends on the quality of the available improvement heuristics and
the properties of the instance. We have for instance seen that the quality of the swap heuristic is
very dependent on the amount of machines and jobs in the problem. For the TFT criterion the
swap heuristic could improve pGOMEA for some instances, while it did not improve pGOMEA for
the Cmax criterion. One is advised to look both at heuristics with a high probability of improving
a solution and to heuristics with a large average improvement. Though this second type intuitively
sounds the best, the �rst type performs better for the PFSP with the TFT criterion. A second
advise is to use local search only if a solution has changed. This gives the best results with respect
to the convergence of pGOMEA, even if the local search is limited by a probability of improvement.

The type of problems that are best solved using pGOMEA, are problems or instances with a
�tness-landscape containing a lot of global optima. This can be seen by the results on PFSP-Cmax
instances and by the results of pGOMEA on the simpler Watson-instances. These problems however
seem easier in general. As pGOMEA is not outperformed on problems without domain-speci�c
local search, we recommend using pGOMEA for problems without such local searchers. When
domain-speci�c local search is present, one can either use this local searcher in a metaheuristic
or in pGOMEA. For the Cmax criterion we have however seen that this pGOMEA is not always
better, though it is a parameter-free algorithm �nding solutions with a decent quality.

11.3 Future work

This research has mainly focussed on enhancing pGOMEA with domain knowledge. As little re-
search has been done on the convergence behavior and dependency-in�uence on pGOMEA, most
conclusions are limited to pGOMEA for the PFSP criterion. The conclusions can only be used as a
rule of thumb when applying pGOMEA to other permutation problems. The (aggregated) in�uence
of both individual dependency measures should be researched on benchmark problems with di�er-
ent types of structure in the �tness function (relative order/proximity). On top of this research,
the (parameter) in�uence and types of dependency-seeds can be analyzed to answer questions like:
What is the e�ect of over/under-estimating dependency-seeds on the quality of the linkage tree?
and What e�ect has noise in dependency-values on the explorative behavior of pGOMEA?. These
questions are also not answered for standard GOMEA yet, while this might give new insights in
the behavior of pGOMEA.

One can also further research the e�ect of insertion-behavior of the rescaling operator. Can
this be completely replaced with an insertion local searcher, or is the scaling e�ect also neces-
sary? Such fundamental questions about pGOMEA might best be answered by analyzing the
performance on permutation problems with a known optimum (e.g. sorting or polynomial solvable
machine scheduling problems).

80 CHAPTER 11. CONCLUSIONS

Besides a fundamental research, more practical research can be performed. For instance the
quality of pGOMEA on the TSP can be analyzed. Here, dependency seeding might be applied
with the distance between cities as dependency values. Secondly one can try to solve real-world
problems or instances using pGOMEA, this will also give more insight about pGOMEA's quality
than arti�cially structured problems.

Appendices

81

Appendix A

New Structured PFSP benchmark

In this appendix, we introduce a new way of generating structured PFSP instances. First we de�ne
the requirements of our PFSP generator in Section A.1. In Section A.2 we introduce an algorithm
generating PFSP instances meeting the speci�ed requirements. Finally, we review the properties
of the generated instances from a theoretical and practical viewpoint in Sections A.3 and A.4

A.1 Requirements

For the generated instances, we have multiple strong requirements:

• Job and machine correlated instances can be generated,

• The amount of correlation should be tunable using a parameter α ∈ [0, 1],

• Instances with any amount of jobs and machines can be generated,

• Instances can be generated with processing times between two speci�ed bounds: plb and pub,

• Instances with α = 0.0, plb = 1 and pub = 99 should be generated in the way Taillard
instances are generated,

• For instances with α = 1.0, processing times for the same machine/job should be equal.

Also we have some secondary requirements, which we would like to meet:

• For every α ∈ [0, 1] any value between plb and pub should be equally likely selected for every
processing time,

• Mixed correlated instances can be generated.

A.2 Details

Our algorithm for generating structured instances contains the following input parameters:

• The instance size: n jobs and m machines,

• The bounds of processing times: [plb, pub],

• The correlation type: job-correlated (JC) machine-correlated (MC) or mixed-correlated (MXC)

• The correlation factor: α ∈ [0, 1].

Our algorithm for generating job-correlated instances follows the same idea as Watson et al.
For every job j, we de�ne a distribution Dj from which its processing times are sampled. Here,
every job has the same size of its distribution. The processing times are now sampled in three
steps using the uniform distribution U(min,max):

82

A.3. PROPERTIES OF THE GENERATED INSTANCES: THEORY 83

1. Determine distributions width:
First, we de�ne the distribution half-widths of all these distributions as: HW = (1−α)·(pub−plb)

2 .

This results in a value in [0, (pub−plb)
2].

2. Determine distributions means:
Secondly, we sample a mean µj for every distribution Dj . This mean is sampled from
U(plb +HW, pub −HW]).

3. Determine processing times:
For any processing time of job j, a random value is sampled from U(µj −HW,µj +HW).

For machine-correlated instances, we use the same process with one distribution per machine in-
stead of one distribution per job.

For mixed-correlated instances, we �rst sample processing times using machine-correlated sam-
pling. Then, the processing times p(i, j) within each machine i are re-assigned to the jobs. We
do this using the processing times p′(i, j) of the job-dependent sampling method. The largest
processing time p(i, j) is assigned to the job k with the largest processing time p′(i, k). This way
of sampling can again be described in three steps:

1. Machine processing times sampling:
Sample the processing times for all machines using machine-correlated sampling

2. Job order-sampling:
Sample processing times using job-correlated sampling

3. Re-assigning machine processing times:
Re-assign the the processing times for each machine based on the ranks of the processing
times found in step 2).

In step 1) the processing times are sampled using the same parameters as given for the mixed-
correlated sampling. In step 2) sampling is done with the same correlation factor and with pro-
cessing times in [0, 1], while allowing non-discrete processing times and distribution widths.

A.3 Properties of the generated instances: theory

A.3.1 Job- and machine-correlated instances

For job- and machine-correlated instances, we can easily prove the following statements:

• Instances with α = 0.0, plb = 1 and pub = 99 should be generated in the way Taillard
instances are generated:
Filling in the values gives HW = 49 and µj ∈ [50, 50] = 50. Therefore every processing time
is sampled from the distribution U(1, 99), like for Taillards instances.

• For instances with α = 1.0, processing times for the same machine/job should be
equal:
As HW = 0, the means are sampled from a uniform distribution of all possible processing
times. The processing times do not di�er from this mean as we sample the processing times
from U(µj , µj).

• Processing times are exactly within the bounds:
The means are sampled from U(plb + HW, pub − HW). In the ultimate case, we sample a
mean from the end of this distribution. Then, we can get a value of at most HW higher or
lower, resulting in the value plb or phb.

A.3.2 Mixed correlated instances

For mixed-correlated instances we can also prove these statements:

84 APPENDIX A. NEW STRUCTURED PFSP BENCHMARK

• Instances with α = 0.0, plb = 1 and pub = 99 should be generated in the way Taillard
instances are generated:
Filling in the values gives HW = 49 and µj ∈ [50, 50] = 50. Therefore every initial processing
time is sampled from the distribution [1, 99], like for Taillards instances. Re-assignment
within machines is not biased, as the ranks are based on random processing times generated
using Taillard method (job-correlation with α = 0.0).

• For instances with α = 1.0, processing times for the same machine should be
equal:
This argument is equal to that for machine-correlated instances. Re-assignment does not
change any value.

• Processing times are exactly within the bounds:
This argument is equal to that for machine-correlated instances. Re-assignment does not
change any value.

A.3.3 Processing time distribution

For α = 0.0 and α = 1.0 we have seen that a processing time is in fact the result of one uniform
distribution. For correlation-values in between, we do not have this property. For these values we
observe that low and high processing times are less likely to occur. Figure A.1 shows how these
probabilities are distributed for the standard bounds plb = 1 and pub = 99, the distribution for α
is equal to the distribution for 1− α. This e�ect of the α parameter should be kept in mind when
using this benchmark.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·10−2

Processing time

P
ro
b
a
b
il
it
y
o
f
se
le
c
ti
o
n

0.0
0.1
0.2
0.3
0.4
0.5

Figure A.1: Probability of selecting a processing time for di�erent α.

A.4 Properties of the generated instances: practice

A.4.1 Lower bounds and Upper bounds

In order to get insight in the di�culty of structured problems, we generated multiple instances
with sizes (50 × 20), (100 × 20) and (200 × 20), using di�erent alpha-values. For each of these
instances we calculate two lower bounds for the Cmax citerion (using Taillard method [35] and a
Proportionate method [42]). We also run IG and pGOMEA once on each instance for only J · 100
milliseconds to get an upper bound. Using the distance between the upper and lower bounds we can

A.4. PROPERTIES OF THE GENERATED INSTANCES: PRACTICE 85

α
Correlation type 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50× 20 problems
Job 318 319 355 362 286 183 98 44 10 0 0
Machine 316 225 122 82 43 29 22 13 3 1 0
Mixed 307 246 168 131 109 84 95 73 26 10 0

100× 20 problems
Job 270 280 322 320 421 449 295 142 49 1 0
Machine 279 151 91 60 31 22 11 9 2 0 0
Mixed 285 172 118 79 42 28 16 22 10 2 0

200× 20 problems
Job 214 217 248 275 324 384 502 448 190 24 0
Machine 208 116 54 30 27 17 12 7 3 0 0
Mixed 227 134 78 52 26 15 5 1 2 2 0

Table A.1: Average distance between lower and upper bound.

get an intuition about the di�culty of the problem instances. Table A.1 shows the average distance
between the upper and lower bound over �fty runs, using di�erent instances and correlation-factors.

For machine-correlated instances, we see a rapid non-linear decrease in the distance between
the two bounds. We can therefore conclude that machine-correlated instances get easier when
more structure is added. The di�erence in distance might however also be caused by the improved
quality of the lower bound (here, mostly the Taillard-bound).

For the job-correlated instances, we see how the di�erence between the bounds initially increases
as structure is added. The moment of decrease depends on the size of the problem. As already
mentioned by Watson et al., the Taillard-bound does not give a good approximation for job-
correlated instances. The di�erence in upper and lower bound can possibly be caused by the
Taillard-bound performing badly on these instances. One should take this into account before
labeling job-correlated instances as harder than machine-correlated instances.

Appendix B

Paper draft

Heuristics in permutation GOMEA for solving the
permutation flowshop scheduling problem with the total

flowtime criterion.

Gerben Aalvanger

July 7, 2017

Abstract

The recently introduced permutation Gene-pool Optimal Mixing Evolutionary Algorithm
(pGOMEA) has shown to be an effective Model Based Evolutionary Algorithm (MBEA) for
permutation problems. So far, pGOMEA has only been used in the context of Black-Box Op-
timization (BBO). This paper firstly shows that pGOMEA can be greatly improved by incor-
porating constructive heuristics that seed the population. Secondly the paper shows whether
pGOMEA can be improved using hybridization with improvement heuristics. The improved
pGOMEA is compared to state-of-the-art algorithms solving the PFSP. Both unstructured
and structured instances are used in the benchmarks. The results show that pGOMEA out-
performs the VNS4 algorithm for the PFSP with the Total Flowtime criterion.

1 Introduction
Recently, Bosman et al. [2] introduced permutation GOMEA (pGOMEA), a Model Based Evolu-
tionary Algorithm (MBEA) which is able to solve permutation problems from a Black-Box Opti-
mization (BBO) perspective. pGOMEA has been tested on the Permutation Flowshop Scheduling
Problem (PFSP) with the total flowtime (TFT) criterion. In these tests, pGOMEA outperformed
GM-EDA [3] an other permutation MBEA. In order to improve pGOMEA further, we should shift
from a BBO perspective to a White-Box perspective. In this paper we show the effect of adding
constructive and improvement heuristics to pGOMEA. The experiments are an selection and ex-
tension of the experiments in the thesis of Aalvanger [1].

In Section 2 we shortly introduce pGOMEA. After this we explain the PFSP and benchmark
instances and performance measures in Section 3. Constructive heuristics for the PFSP are given in
Paragraph 4.1, along with some experiments on the effectiveness of these heuristics. In Paragraph
4.3 we do the same for improvement heuristics for the PFSP. Finally, we compare the enhanced
pGOMEA with VNS4, a state-of-the-art algorithm solving the PFSP in Section 5. Section 6
concludes this paper with some conclusions and final remarks.

2 Permutation GOMEA

2.1 Solution and Model Encoding
pGOMEA encodes solutions using a random-key encoding. An n−variable permutation is encoded
as r = (r1, · · · rn), where each random key ri ∈ [0, 1]. The position of variable i in the permutation
is equal to the position of ri when r is sorted in ascending order. Multiple random key encodings
can encode the same permutation. For example, r1 = (0.34, 0.56, 0.21) and r2 = (0.72, 0.93, 0.12)
both encode x = (1, 2, 0).

2.2 Model building
The model used in pGOMEA is a linkage tree. The root of the linkage tree is a set with all
variables. Each node is recursively split up, ending in leaves containing only a single variable.
Variables grouped in a node are supposed to be dependent, so optimal mixing can improve solutions

1

86

87

effectively.
In pGOMEA, the linkage tree is build for each generation, by merging nodes starting at the bottom
of the tree. The two sets i and j are merged which have the strongest dependency δ(I, J). For two
variables i and j, the dependency is composed of two factors: δ(i, j) = δ1(i, j) · δ2(i, j). The first
dependency factor is based on relative-ordering information in the population and is calculated
using the entropy of the probability that variable i is before variable j in the population:

δ1(i, j) = 1− Entropy(pi,j). (1)

The second dependency factor uses the average squared distance in random key values of
variable i and j:

δ2(i, j) = 1− 1

n

n−1∑

k=0

(rki − rkj)2. (2)

This results in a symmetric dependency measure between two variables, where high values
indicate a high dependency. We can extend the dependency measure to calculate the dependency
between two sets, by taking the average pairwise dependency of the variables in the sets:

δ(I, J) =
1

|I| · |J |
∑

i∈I

∑

j∈J
δ(i, j). (3)

2.3 Optimal Mixing
Using the sets in the linkage tree pGOMEA improves the solutions in a population, therefore
pGOMEA uses Gene-pool Optimal Mixing (GOM). For each solution, pGOMEA takes every set
in the linkage tree as a crossover mask. The values of the masked variables are then substituted
by values from a random donor solution. For example, solution r1 = (0.2, 0.3, 0.6, 0.5) is changed
using crossover mask (x1, x2, x4) and donor r2 = (0.9, 0.5, 0.1, 0.7) to r′1 = (0.9,0.5, 0.6,0.7). If
such a change is not strictly improving a solution, the substitution is reverted. Thanks to the
random keys encoding, optimal mixing always results in a feasible permutation.

If a solution is not improved using any crossover mask, pGOMEA will ‘force’ improvements
using the best known solution so far. In this Forced Improvement (FI) phase, pGOMEA repeats
optimal mixing but the best known solution is used as donor, instead of a random one. In order to
improve convergence changes are accepted when they do not decrease the quality of the solution.
For the same reason, Forced improvement is also entered if the best overall solution has not changed
for NIS = 10 + 10 · log n generations.

With a probability of 0.1, pGOMEA will ‘scale’ the random keys before substitution. Here, the
values to substitute are scaled to a new interval. For example, scaling random keys (0.9, 0.5, 0.7) to
the interval [0.3, 0.5] results in (0.50.3, 0.4. Scaling allows pGOMEA to move a group of variables
closer together in the permutation. Also, the random key diversity is improved in the population.
Random key diversity is also ensured by re-encoding. After the GOM phase of pGOMEA, each
random key gets a new values, while retaining the order of the random keys.

2.4 Population Sizing Scheme
When implemented, pGOMEA would look like the pseudocode in Algorithm 1. However, one needs
to specify the population size before running the algorithm. Therefore, pGOMEA incorporates an
exponential population sizing scheme. In this scheme, a population is started with size nbase. Every
four times this population is evaluated, a population with size 2 · nbase is evaluated once. This
pattern recurses, so population i is evaluated four times as often as population i+1. Using such a
scheme, no population size has to be estimated. When a population is converged, no evaluations
are performed anymore for that population, allowing pGOMEA to evaluate more in the other
populations.

3 Benchmark problem: Permutation Flowshop Scheduling
The PFSP is concerned with finding the optimal solution for scheduling J jobs on M machines.
Each job requires M operations, which should be performed sequentially, starting on machine 1

2

88 APPENDIX B. PAPER DRAFT

Result: A good/optimal solution with respect to fitness function f
Pop← rand_Pop(n) ;
while ¬termination_criterion do

LT ← build_LT (Pop) ; // Model-building
foreach receiver ∈ Pop do

receiver∗ ← receiver;
improved← False;
foreach set ∈ FOS do // Gene-pool Optimal Mixing

donor ← Random(Pop);
child← Donaterescale(receiver

∗, set, donor,Rand(0, 1) < 0.1);
if f(child) > f(receiver∗) then

receiver∗ ← child;
improved← True;

if ¬improved ∨NIS then // Forced Improvement
foreach set ∈ FOS do

child← Donaterescale(receiver
∗, set, best_solution,Rand(0, 1) < 0.1);

if f(child) ≥ f(receiver∗) then
receiver∗ ← child;
break

receiver = Reencode(receiver∗) // Re-encoding
return best solution from Pop

Algorithm 1: GOMEA outline

and finishing on machineM (the Flowshop property). Operations cannot be interrupted, but a job
can be delayed when its operations are not performed immediately after each other. Any solution
can be seen as a permutation of jobs, since each machine has to process the jobs in the same order
(the Permutation property). In three field notation, the PFSP is denoted by F |prmu|γ, where
γ refers to the objective function that is used for optimizing the schedule. Here, we consider the
total flowtime (TFT) criterion, which is defined as the sum of completion times of all jobs:

TFT (π) =

J∑

i=1

c(πi,M). (4)

The completion times of all jobs can be calculated using the equations in (5) in O(J ·M) time.
For the TFT criterion, the PFSP is NP-hard when M > 1.

c(π1, 1) = p(π1, 1)

c(π1, j) = c(π1, j − 1) + p(π1, j) for j = 2 · · ·M
c(πi, 1) = c(πi−1, 1) + p(πi, 1) for i = 2 · · · J
c(π1, 1) = max{c(πi−1, j), c(πi, j − 1)}+ p(π,j),

for i = 2 · · · J ; for j = 2 · · ·M.

(5)

3.1 Problem instances
Taillard Instances
For the PFSP, the most often used benchmark set is developed by Taillard [6]. The benchmark
set can be divided in 12 (J ×M) sets with 10 instances each (See Table 1). The instances are a
selection of the hardest randomly generated instances. Instances are considered to be difficuld if
a simple metaheuristic does not often find the same makespan or if the found makespans are far
from a lower bound on the makespan.
Structured Instances
Aalvanger [1] introduced a new set of benchmarks for testing algorithms on structured instances.
The benchmark set contains the three types of structured instances as described by Watson et
al. [7]: Job-correlated (JC), Machine-correlated (MC) and Mixed-correlated (MXC) instances (see
Figure 1). In job-correlated instances, processing times are dependent on the job and not on the ma-
chines. Therefore the processing times of operations in one job are related. In machine-correlated
instances the structure goes the other way around. Here, processing times on one machine are

3

89

related, while processing times within one job are unrelated. Mixed-correlated instances are equal
to Machine-correlated instances, but here the relative ranks of job processing times are largely
independent of the machine.

1 2 3

Machine

Jo
b
pr
oc
es
si
ng

ti
m
e

(a) Job-correlated

1 2 3

Machine

Jo
b
pr
oc
es
si
ng

ti
m
e

(b) Machine correlation

1 2 3

Machine

Jo
b
pr
oc
es
si
ng

ti
m
e

Job 1
Job 2
Job 3

(c) Mixed correlation

Figure 1: Types of structure in PFSP instances.

For each of the three correlation types, four (J × 20) sets are generated (See underlined in
Table 1). For each instance size, 1100 instances are generated, with varying values for correlation:
α ∈ {0.0, 0.1 · · · 1.0}. For α = 0.0, instances reflect the way Taillard instances are generated,
higher values introduce more correlation. For α = 1.0, every task in a job/machine has the same
processing time.

J = 20 J = 50 J = 100 J = 200 J = 500
M = 5 20× 5 50× 5 100× 5
M = 10 20× 10 50× 10 100× 10 200× 10
M = 20 20× 20 50× 20 100× 20 200× 20 500× 20

Table 1: Sizes of the Taillard PFSP instances, for underlined sizes structured instances are available.

3.2 Comparing results
To compare algorithms for PFSP, the Relative Percentage Deviation (RPD) is often used. The
RPD describes the relative distance to the best known upper bound (UB) of an instance and the
result of the algorithm RES. The RPD is calculated by

RPD(RES) =
100 · (RES − UB)

UB
. (6)

RPD values are best used when the upper bound is very close to the optimal solution. An RPD
value of 0.0 then means that the optimal solution has been found. Over a set of runs, the average
or median RPD is often reported (ARPD/MRPD). In our results, we also report the average over
the MRPDs of multiple instances (AMRPD).
In order to calculate the significance in difference between two algorithms, we use the Mann-
Whitney-U test. Unless reported otherwise, we use sample sizes of 20 per instance to find MRPD
values. AMRPD values are found over 10 instances with the same size. For significance tests we
use a significance level of p < 0.05.

4 Heuristics for the PFSP

4.1 Constructive heuristics
For the TFT criterion, Liu and Reeves have introduced the LR(x) heuristic [5], which can generate
up to J schedules, depending on the parameter x. LR(x) builds a schedule from the front to the
back, using the following three steps:

1. Sort all jobs according to the index function.

4

90 APPENDIX B. PAPER DRAFT

2. Create x partial schedules with the top-x jobs scheduled first. Extend the partial schedules
by iteratively adding the best job according to the re-evaluated index function.

3. Select the best schedule generated in step 2).

The index function for adding job i after the last job k in the partial schedule consists of two
components:

1. A weighted total machine idle time, punishing the time the machines wait between job k and
job i. Idle time on the first machines is punished more than idle time on the last machines.

2. The artificial total flow time, is the sum of the completion time of job i plus the completion
time of an artificial job representing the unscheduled jobs.

For the LR(x) heuristic, the last generated schedule is expected to be worse than the first. For
the CDS heuristic, this is not the case.

4.2 Constructive heuristics seeding: results
For the LR heuristic we have tested the effect of seeding solutions in the initial populations of
pGOMEA. Figure 2 shows that for most instances, more seeds result in better solutions. This
holds for both structured and unstructured instances. An interesting fact is the effect of single-
solution seeding. Here, the dominant new solution can misguide optimal mixing, leading to worse
solutions. The effect of multi-solution seeding (maximal amount of seeds) is visible in Figure 3,
where the behavior of (seeded) pGOMEA is shown over time. Here, one can see how the effect of
seeding is the biggest when pGOMEA only uses a few fitness evaluations.

0 20 40 60 80 100
0.5

1

1.5

2

Seeds (k)

A
ve

ra
ge

M
R

P
D

50× 10 50× 20
100× 10 100× 20

(a) Taillard instances

0 20 40 60 80 100
0

0.2

0.4

0.6

Seeds (k)

A
ve

ra
ge

M
R

P
D

50× 20 (JC) 50× 20 (MC) 50× 20 (MXC)
100× 20 (JC) 100× 20 (MC) 100× 20 (MXC)

(b) Structured instances

Figure 2: Seeding with the LR heuristics: amount of seeds vs. solution quality after 50, 000, 000
fitness evaluations.

4.3 Improvement heuristics
For the PFSP with the TFT criterion, various improvement heuristics exist. Each of these im-
provement heuristics are based on two fundamental permutation-heuristics: the insertion and
swap heuristic. The swap heuristic takes two jobs and swaps them in a permutation. The insertion
heuristic takes one job and puts it in another place in the permutation. Both heuristics have a
neighbor-space that is quadratic in the amount of jobs and take O(J ·M) time to compute the
fitness of a neighbor. In pGOMEA an improvement heuristic is best applied when a solution has
changed in the GOM phase. For pGOMEA solving the PFSP with the TFT criterion, the swap
heuristic has the most potential, especially on instances with a few machines [1]. In Figure 4
we show for unstructured instances how pGOMEA performs when this improvement heuristic is

5

91

0 0.5 1 1.5 2

·106

0

1

2

3

Time

A
ve

ra
ge

M
R

P
D

50× 10 (N-T) 50× 10 (S-T)
50× 20 (N-T) 50× 20 (S-T)
50× 20 (N-S) 50× 20 (S-S)

Figure 3: Maximal seeding (S) vs. Non-
seeding (N): behavior over time for Taillard
(T) instances and structured instances (S)
(MXC, α = 0.3).

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Probability of local search (Prls)

A
ve

ra
ge

M
R

P
D

50× 5 100× 5
50× 10 100× 10
50× 20 100× 20

Figure 4: Hybrid pGOMEA quality on with
respect to the probability of local search for
Taillard instances

applied with some probability Prls. The shown AMRPD values are a result of 10 medians over 5
runs.

5 Benchmark
As pGOMEA can best be enhanced with constructive heuristics generating as much schedules as
possible, we add this feature to pGOMEA. Improvement heuristics are not used in pGOMEA, as
they do not show consistent improvements on all instances. We compare pGOMEA with VNS4,
a variable neighborhood searcher which uses an optimal form of combining the insertion heuristic
and swap heuristic in order to solve the PFSP with the TFT criterion [4]. Both algorithms have
been optimized to the level of Big-O notation and have been run for 400 ·J ·M milliseconds. Table
2 shows the MRPD values for VNS4 and pGOMEA. The best solution is marked bold and if the
other solution performs significantly worse, its cell is marked grey.

The results show that pGOMEA often outperforms VNS4 significantly in most cases. In a few
cases, pGOMEA is outperformed by VNS4, though this is often not significant. Unfortunately,
both algorithms find far from optimal solutions within this time period. For better results, the
algorithms should run a longer time.

Secondly, we have tested pGOMEA and VNS4 on multiple structured instances with size
100 × 20. For these problems we have run the algorithms for 400 · (1 − α) · J ·M seconds, as
structure makes the problems easier. Table 3 shows the results for three types of structured in-
stances and three alpha values.

The results show for job-correlated instances that pGOMEA always outperforms the VNS4
algorithm. The type of structure apparently suits pGOMEA best, while VNS4 cannot benefit from
an easier fitness landscape. The machine correlated instances with a high amount of structure
(α ≥ 0.4) are however easier for VNS4. When machine and job correlation are mixed, the PFSP is
best solved using pGOMEA. pGOMEA finds solutions with MRPD values lower than 0.5, showing
that structured instances are much easier than the standard Taillard instances.

6

92 APPENDIX B. PAPER DRAFT

Best pGOMEA VNS4 Best pGOMEA VNS4 Best pGOMEA VNS4

50
×

5

64803 0.47 0.54

50
×
1
0

87207 1.26 1.23

50
×
2
0

125831 0.78 1.06
68062 0.63 0.63 82820 0.79 1.42 119259 0.56 0.94
63162 0.92 1.02 79987 0.84 1.07 116459 0.71 1.11
68226 0.85 0.84 86581 0.71 0.99 120712 0.92 0.96
69392 0.65 0.65 86450 0.48 1.15 118184 1.25 1.16
66841 0.65 0.71 86637 0.97 1.00 120703 0.82 1.04
66253 0.60 0.69 88866 0.63 1.07 122962 1.01 1.03
64359 0.52 0.77 86824 1.18 1.09 122489 1.02 1.03
62981 0.69 0.62 85526 1.07 1.24 121872 0.99 1.06
68853 0.93 0.84 88077 0.62 1.11 124064 0.90 1.06

10
0
×

5

253713 0.80 0.94

10
0
×

1
0

299431 1.02 1.43

10
0
×

2
0

367267 1.63 1.57
242777 1.04 1.12 274593 1.55 1.77 374032 1.41 1.50
238180 0.57 0.94 288630 1.15 1.54 371417 1.47 1.56
227889 0.82 1.01 302105 1.55 1.59 373822 1.54 1.75
240589 0.77 0.95 285340 1.09 1.19 370459 1.58 1.50
232936 0.82 1.12 270817 1.14 1.56 372768 1.60 1.66
240669 0.85 0.90 280649 1.21 1.30 374483 1.30 1.71
231428 1.00 1.06 291665 0.81 1.52 385456 1.39 1.56
248481 1.00 0.93 302624 1.20 1.44 376063 1.43 1.58
243360 0.87 0.88 292230 1.02 1.58 379899 1.45 1.68

Table 2: Quality of pGOMEA and VNS4 on Taillard instances.

Job correlated Machine Correlated Mixed correlated
Best pGOMEA VNS4 Best pGOMEA VNS4 Best pGOMEA VNS4

10
0
×
20

α = 0.2

354483 0.42 0.46 376876 0.28 0.18 392925 0.35 0.48
352436 0.38 0.58 379781 0.31 0.42 375810 0.26 0.66
354530 0.34 0.43 395682 0.18 0.42 400652 0.14 0.36
341043 0.26 0.52 389305 0.36 0.58 376562 0.31 0.67
354807 0.31 0.69 389688 0.25 0.59 368258 0.29 0.29
370144 0.33 0.54 360776 0.15 0.54 388375 0.33 0.63
351676 0.32 0.62 389651 0.33 0.59 379751 0.62 0.38
372308 0.31 0.39 377689 0.38 0.35 372021 0.18 0.29
362577 0.43 0.48 385017 0.29 0.40 364454 0.29 0.29
360703 0.39 0.57 389271 0.25 0.35 349791 0.28 0.52

α = 0.4

338303 0.27 0.39 432943 0.25 0.20 409404 0.15 0.23
331602 0.23 0.51 404417 0.20 0.19 408221 0.11 0.11
337449 0.14 0.23 411893 0.10 0.09 381029 0.07 0.15
343512 0.15 0.49 410707 0.26 0.16 367183 0.18 0.30
321656 0.28 0.41 437327 0.20 0.12 392645 0.12 0.33
348395 0.23 0.53 418578 0.23 0.16 428664 0.06 0.10
350807 0.26 0.28 402707 0.14 0.13 400714 0.15 0.12
336867 0.11 0.47 419103 0.14 0.14 378965 0.16 0.28
334469 0.16 0.44 440173 0.21 0.15 411678 0.06 0.15
341423 0.35 0.78 417045 0.13 0.08 392508 0.10 0.22

α = 0.6

319476 0.17 0.32 491858 0.11 0.12 395660 0.03 0.06
335018 0.13 0.30 407094 0.14 0.05 454738 0.02 0.02
311021 0.06 0.22 450581 0.04 0.02 365546 0.02 0.02
301670 0.16 0.37 391007 0.14 0.06 400760 0.00 0.00
303487 0.10 0.21 449246 0.13 0.03 447317 0.01 0.03
299529 0.12 0.22 479164 0.12 0.14 412359 0.02 0.05
320155 0.14 0.17 469897 0.41 0.10 450060 0.02 0.02
290573 0.15 0.27 471761 0.18 0.06 484204 0.01 0.02
305220 0.12 0.26 463159 0.14 0.10 414879 0.02 0.02
328872 0.15 0.27 453227 0.10 0.06 480739 0.02 0.02

Table 3: Quality of GOMEA and VNS4 on structured instances.

7

93

6 Conclusions
In this paper, we have shown the effect of incorporating constructive and improvement heuristics
in permutation Gene-pool Optimal Mixing Evolutionary Algorithm (pGOMEA) for the permuta-
tion flowshop scheduling problem (PFSP) with the total flowtime criterion. We have shown that
pGOMEA can effectively be improved by using a constructive heuristic for the initial schedules.
In general, the more schedules are generated, the better pGOMEA performs. For improvement
heuristics we have seen that the swap-heuristic can sometimes improve pGOMEA, though this is
very dependent on the nature of the instances. Instances with a few machines are easier solved
when using the swap-heuristic. Other instances become harder to solve for pGOMEA.

Using the effective combination of a constructive heuristic and pGOMEA, we have compared
pGOMEA with VNS4. On structured and unstructured instances, pGOMEA outperforms VNS4.
Only for machine correlated structured instances, VNS4 outperforms pGOMEA, though both
algorithms find near-optimal solutions for these instances. Altogether, this research shows that
pGOMEA is an effective model-based evolutionary algorithm that can easily and effectively be
extended with domain knowledge.

References
[1] Gerben Aalvanger. Incorporating domain knowledge in Permuation Gene-pool Optimal Mixing

Evolutionary Algorithms. Master’s thesis, Utrecht University, the Netherlands, 2017.

[2] Peter AN Bosman, Ngoc Hoang Luong, and Dirk Thierens. Expanding from discrete cartesian
to permutation gene-pool optimal mixing evolutionary algorithms. In Proceedings of the 2016
on Genetic and Evolutionary Computation Conference, pages 637–644. ACM, 2016.

[3] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. Extending distance-based rank-
ing models in estimation of distribution algorithms. In 2014 IEEE Congress on Evolutionary
Computation (CEC), pages 2459–2466, July 2014.

[4] Wagner Emanoel Costa, Marco César Goldbarg, and Elizabeth G Goldbarg. New VNS heuristic
for total flowtime flowshop scheduling problem. Expert Systems with Applications, 39(9):8149–
8161, 2012.

[5] Jiyin Liu and Colin R Reeves. Constructive and composite heuristic solutions to the p||
∑

Ci

scheduling problem. European Journal of Operational Research, 132(2):439–452, 2001.

[6] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278 – 285, 1993.

[7] Jean-Paul Watson, Laura Barbulescu, L Darrell Whitley, and Adele E Howe. Contrasting
structured and random permutation flow-shop scheduling problems: search-space topology and
algorithm performance. INFORMS Journal on Computing, 14(2):98–123, 2002.

8

Appendix C

List of abbreviations

ARPD Average Relative Pairwise Deviation: A performance measure for the solution qual-
ity of an optimization algorithm. This measure uses the average distance to the best
known solution for a problem instance.

BBO Black-Box Optimization: Solving a combinatorial optimization problem, without
knowing or assuming anything about the objective function (except the input).

BOA Bayesian Optimization Algorithm: An estimation-of-distribution algorithm using a
Bayesian network.

CDS Campbell, Dudek and Smith: A constructive heuristic designed to �nd a good solu-
tion for the permutation �owshop scheduling problem.

eCGA extended Compact Genetic Algorithm: An estimation-of-distribution algorithm using
a marginal product model.

EA Evolutionary Algorithm: A sub-group of combinatorial optimization algorithms that
use a population-based approach, populations are incrementally updated using se-
lection, recombination and mutation.

EDA Estimation-of-Distribution Algorithm: A subset of model-based evolutionary algo-
rithms that models the parameter distribution of a population in order to sample
the o�spring for the next population.

FI Forced Improvement : The second phase in the gene-pool optimal mixing step of
the gene-pool optimal mixing evolutionary algorithm, where optimal mixing is per-
formed using the best-known solution in the population. The FI phase is only entered
under certain conditions.

FOS Family-Of-Subsets: A set of subsets of the problem variables. A FOS can be used
to model dependencies between problem variables.

FPE Forward Pairwise Exchange: An improvement heuristic designed to �nd a good
solution for the permutation �owshop scheduling problem.

GA Genetic Algorithm: A subset of evolutionary algorithms using a natural-evolution
approach. Crossovers are used in the recombination phase.

GLS Genetic Local Search: A genetic algorithm using a local search procedure to improve
individuals.

GOM Gene-pool Optimal Mixing : The recombination phase in the gene-pool optimal mix-
ing evolutionary algorithm.

GOMEA Gene-pool Optimal Mixing Evolutionary Algorithm: A model-based evolutionary
algorithm using the contents of a family-of-subsets structure as crossover masks.
Optimal mixing is performed with one randomly selected donor per subset in the
family-of-subsets structure.

pGOMEA permutation Gene-pool Optimal Mixing Evolutionary Algorithm: The gene-pool op-
timal mixing evolutionary algorithm using a random-keys encoding for the permuta-
tion and using proximity and relative ordering information for building the linkage
tree.

LR Liu and Reeves: A constructive heuristic designed to �nd one or more good solutions
for the permutation �owshop scheduling problem.

94

95

LS Local Search(er): An algorithm that optimizes a solution for a combinatorial opti-
mization problem by walking through the search space from one solution towards
better neighboring solutions.

LTGA Linkage Tree Genetic Algorithm: A gene-pool optimal mixing evolutionary algo-
rithm incorporating the linkage tree as family-of-subsets structure.

LT-GOMEA . . . see LTGA

MBEA Model-Based Evolutionary Algorithm: A subset of evolutionary algorithms that uses
a learned model over the population to improve recombination.

MRPD Median Relative Pairwise Deviation: A performance measure for the solution quality
of an optimization algorithm. This measure uses the median distance to the best
known solution for a problem instance.

MPM Marginal Product Model: A model capturing variable dependencies; this model cre-
ates sets of dependent variables that are independent of all other sets.

NEH Nawaz, Enscore and Ham: A constructive heuristic designed to �nd a good solution
for the permutation �owshop scheduling problem.

NIS No-Improvement Stretch: The amount of consecutive generations without improve-
ment of the best solution in the population after which the forced improvement
phase is entered.

OM Optimal Mixing : Crossover in optimal-mixing evolutionary algorithms using sets of
dependent variables as crossover masks. OM substitutes the masked variables of a
receiver solution by the variables of a donor solution if this does not decrease the
solution quality of the receiver.

PFSP Permutation Flowshop Scheduling Problem: A machine scheduling problem where
J jobs should be scheduled on M machines. All job should be processed on each
machines in the same given order. The order in which jobs are scheduled is the same
for each machine.

RA Rapid Access: A constructive heuristic designed to �nd a good solution for the
permutation �owshop scheduling problem.

RACS Rapid Access with Closed order Search: The rapid access heuristic with a limited
improvement heuristic used afterwards.

RAES Rapid Access with Extensive Search: The rapid access heuristic with an exhaustive
improvement heuristic used afterwards.

ROM Recombinative Optimal Mixing : The recombination phase in the recombinative op-
timal mixing evolutionary algorithm.

ROMEA Recombinative Optimal Mixing Evolutionary Algorithm: A model-based evolution-
ary algorithm using the contents of a family-of-subsets structure as crossover masks
in optimal mixing. Optimal mixing is performed with one randomly selected donor
per receiver.

RZ Rajendran and Ziegler : An index-based constructive heuristic designed to �nd a
good solution for the permutation �owshop scheduling problem.

RZ-LS Rajendran and Ziegler Local Search: Improvement heuristic in the Rajendran and
Ziegler constructive heuristic for permutation �owshop scheduling problems.

TFT Total Flowtime: An objective function for the permutation �owshop scheduling
problem that minimizes the sum of completion times of the jobs.

TSP Traveling Salesman Problem: A permutation problem where n cities should be vis-
ited with a route as short as possible.

UPGMA Unweighted Pairwise Group Method with Arithmetic Mean: A method for calculating
dependencies between two sets of variables. UPGMA only considers the pairwise
dependencies between individual variables in the two sets.

VNS Virtual Neighborhood Search: A meta-heuristic combinatorial optimization algo-

rithm using alternating search-neighborhoods.

Bibliography

[1] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies�a comprehensive introduc-
tion. Natural computing, 1(1):3�52, 2002.

[2] Peter AN Bosman, Ngoc Hoang Luong, and Dirk Thierens. Expanding from discrete cartesian
to permutation gene-pool optimal mixing evolutionary algorithms. In Proceedings of the 2016
on Genetic and Evolutionary Computation Conference, pages 637�644. ACM, 2016.

[3] Peter AN Bosman and Dirk Thierens. Permutation optimization by iterated estimation of
random keys marginal product factorizations. In International Conference on Parallel Problem
Solving from Nature, pages 331�340. Springer, 2002.

[4] Peter AN Bosman and Dirk Thierens. The roles of local search, model building and optimal
mixing in evolutionary algorithms from a BBO perspective. In Proceedings of the 13th annual
conference companion on Genetic and evolutionary computation, pages 663�670. ACM, 2011.

[5] Peter AN Bosman and Dirk Thierens. Linkage neighbors, optimal mixing and forced improve-
ments in genetic algorithms. In Proceedings of the 14th annual conference on Genetic and
evolutionary computation, pages 585�592. ACM, 2012.

[6] Herbert G Campbell, Richard A Dudek, and Milton L Smith. A heuristic algorithm for the n
job, m machine sequencing problem. Management science, 16(10):B�630, 1970.

[7] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. Extending distance-based ranking
models in estimation of distribution algorithms. In 2014 IEEE Congress on Evolutionary
Computation (CEC), pages 2459�2466, July 2014.

[8] Wei-Ming Chen, Chu-Yu Hsu, Tian-Li Yu, and Wei-Che Chien. E�ects of discrete hill climbing
on model building for estimation of distribution algorithms. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, pages 367�374. ACM, 2013.

[9] Wagner Emanoel Costa, Marco César Goldbarg, and Elizabeth G Goldbarg. New VNS
heuristic for total �owtime �owshop scheduling problem. Expert Systems with Applications,
39(9):8149�8161, 2012.

[10] David G Dannenbring. An evaluation of �ow shop sequencing heuristics. Management science,
23(11):1174�1182, 1977.

[11] Xingye Dong, Ping Chen, Houkuan Huang, and Maciek Nowak. A multi-restart iterated
local search algorithm for the permutation �ow shop problem minimizing total �ow time.
Computers & Operations Research, 40(2):627�632, 2013.

[12] Thyago SPC Duque, David E Goldberg, and Kumara Sastry. Enhancing the e�ciency of the
ECGA. In International Conference on Parallel Problem Solving from Nature, pages 165�174.
Springer, 2008.

[13] Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of combinatorial optimization, 3(4):379�397, 1999.

[14] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of �owshop and jobshop
scheduling. Mathematics of operations research, 1(2):117�129, 1976.

[15] Teo�lo Gonzalez and Sartaj Sahni. Flowshop and jobshop schedules: complexity and approx-
imation. Operations research, 26(1):36�52, 1978.

96

BIBLIOGRAPHY 97

[16] Georges Harik. Linkage learning via probabilistic modeling in the ECGA. Urbana, 51(61):801,
1999.

[17] Mark Hauschild and Martin Pelikan. An introduction and survey of estimation of distribution
algorithms. Swarm and Evolutionary Computation, 1(3):111�128, 2011.

[18] Johnny C Ho and Yih-Long Chang. A new heuristic for the n-job, m-machine �ow-shop
problem. European Journal of Operational Research, 52(2):194�202, 1991.

[19] Shih-Huan Hsu and Tian-Li Yu. Optimization by pairwise linkage detection, incremental link-
age set, and restricted/back mixing: Dsmga-ii. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 519�526. ACM, 2015.

[20] David Iclanzan and Dan Dumitrescu. Overcoming hierarchical di�culty by hill-climbing the
building block structure. In Proceedings of the 9th annual conference on Genetic and evolu-
tionary computation, pages 1256�1263. ACM, 2007.

[21] Edward Ignall and Linus Schrage. Application of the branch and bound technique to some
�ow-shop scheduling problems. Operations research, 13(3):400�412, 1965.

[22] Bryant A Julstrom. Comparing Darwinian, Baldwinian, and Lamarckian search in a genetic
algorithm for the 4-cycle problem. In Late Breaking Papers at the 1999 Genetic and Evolu-
tionary Computation Conference, pages 134�138. Citeseer, 1999.

[23] Claudio F Lima, Martin Pelikan, Kumara Sastry, Martin Butz, David E Goldberg, and Fer-
nando G Lobo. Substructural neighborhoods for local search in the Bayesian optimization
algorithm. In Parallel Problem Solving from Nature-PPSN IX, pages 232�241. Springer, 2006.

[24] Jiyin Liu and Colin R Reeves. Constructive and composite heuristic solutions to the p||
∑

Ci
scheduling problem. European Journal of Operational Research, 132(2):439�452, 2001.

[25] DS Palmer. Sequencing jobs through a multi-stage process in the minimum total time�a quick
method of obtaining a near optimum. OR, pages 101�107, 1965.

[26] Quan-Ke Pan and Rubén Ruiz. A comprehensive review and evaluation of permutation �ow-
shop heuristics to minimize �owtime. Computers & Operations Research, 40(1):117�128,
2013.

[27] Quan-Ke Pan, Mehmet Fatih Tasgetiren, and Yun-Chia Liang. A discrete di�erential evo-
lution algorithm for the permutation �owshop scheduling problem. Computers & Industrial
Engineering, 55(4):795�816, 2008.

[28] Martin Pelikan, David E Goldberg, and Erick Cantu-Paz. Linkage problem, distribution
estimation, and Bayesian networks. Evolutionary computation, 8(3):311�340, 2000.

[29] Chandrasekharan Rajendran and Hans Ziegler. An e�cient heuristic for scheduling in a �ow-
shop to minimize total weighted �owtime of jobs. European Journal of Operational Research,
103(1):129�138, 1997.

[30] Rubén Ruiz and Concepción Maroto. A comprehensive review and evaluation of permutation
�owshop heuristics. European Journal of Operational Research, 165(2):479�494, 2005.

[31] Rubén Ruiz, Concepción Maroto, and Javier Alcaraz. Two new robust genetic algorithms for
the �owshop scheduling problem. Omega, 34(5):461�476, 2006.

[32] Rubén Ruiz and Thomas Stützle. A simple and e�ective iterated greedy algorithm for
the permutation �owshop scheduling problem. European Journal of Operational Research,
177(3):2033�2049, 2007.

[33] Kumara Sastry and David E Goldberg. Designing competent mutation operators via proba-
bilistic model building of neighborhoods. In Genetic and Evolutionary Computation Confer-
ence, pages 114�125. Springer, 2004.

[34] SMA Suliman. A two-phase heuristic approach to the permutation �ow-shop scheduling prob-
lem. International Journal of production economics, 64(1):143�152, 2000.

98 BIBLIOGRAPHY

[35] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278 � 285, 1993.

[36] Eric Taillard. Some e�cient heuristic methods for the �ow shop sequencing problem. European
journal of Operational research, 47(1):65�74, 1990.

[37] Dirk Thierens. Scalability problems of simple genetic algorithms. Evolutionary computation,
7(4):331�352, 1999.

[38] Dirk Thierens. The linkage tree genetic algorithm. In Proceedings of the 11th International
Conference on Parallel Problem Solving from Nature: Part I, PPSN'10, pages 264�273, Berlin,
Heidelberg, 2010. Springer-Verlag.

[39] Dirk Thierens and Peter AN Bosman. Optimal mixing evolutionary algorithms. In Proceedings
of the 13th annual conference on Genetic and evolutionary computation, pages 617�624. ACM,
2011.

[40] Lin-Yu Tseng and Ya-Tai Lin. A hybrid genetic local search algorithm for the permutation
�owshop scheduling problem. European Journal of Operational Research, 198(1):84�92, 2009.

[41] AJ Umbarkar and PD Sheth. Crossover operators in genetic algorithms: a review. ICTACT
Journal on Soft Computing, 6(1):1083�1092, 2015.

[42] Jean-Paul Watson, Laura Barbulescu, L Darrell Whitley, and Adele E Howe. Contrasting
structured and random permutation �ow-shop scheduling problems: search-space topology
and algorithm performance. INFORMS Journal on Computing, 14(2):98�123, 2002.

[43] Yi Zhang and Xiaoping Li. Estimation of distribution algorithm for permutation �ow shops
with total �owtime minimization. Computers & Industrial Engineering, 60(4):706�718, 2011.

[44] Mark Zlochin and Marco Dorigo. Model-based search for combinatorial optimization: A
comparative study. In International Conference on Parallel Problem Solving from Nature,
pages 651�661. Springer, 2002.

	Introduction
	Research goal
	Research approach

	Gene-pool Optimal Mixing Evolutionary Algorithm
	Background
	GOMEA
	Forced Improvement
	Population sizing

	FOS-Models
	Univariate model
	Marginal product model
	Linkage tree model

	GOMEA from a Black-Box perspective
	GOMEA for permutation problems: pGOMEA
	Solution ecoding
	Building the Linkage Tree
	Operators

	pGOMEA configurations
	Population sizing
	Forced Improvement

	Results

	Permutation Flowshop Scheduling Problem
	Problem description
	Objective functions

	Comparing solutions
	Constructive Heuristics
	CDS: Campbell, Dudek and Smith
	Palmer's Slope-Index
	Rapid Access: Dannenbring
	NEH: Nawaz, Enscore and Ham
	LR(x): Liu and Reeves
	RZ: Rajendran and Ziegler
	Summary

	Local Search methods
	Swap heuristics
	Insertion heuristics
	Summary

	Metaheuristic solvers

	Domain knowledge in Evolutionary Algorithms
	Domain foreknowledge in Evolutionary Algorithms
	Encoding solutions
	Operators in the Evolutionary Phases
	Issues of incorporating Local search in an EA

	Model Based Evolutionary Algorithms
	Domain foreknowledge in Model Based Evolutionary Algorithms
	Exploiting model-knowledge using domain-knowledge

	Improvement heuristics on pGOMEA solutions: Experimental Study
	Experimental setup
	Benchmark and computational budget
	pGOMEA Configuration
	Neighborhood searchers
	Comparing results

	Results
	Probability of improvement
	Probability of improvement: Machine influence
	Improvement heuristics for TFT: Quality and resources
	Improvement heuristics for lg: Quality and resources
	Variable Neighborhood Searching

	Conclusions

	Solution seeding pGOMEA: Experimental Study
	Forms of seeding
	Experimental setup
	Results
	Single-solution seeding: solution quality
	Single-solution population seeding: Quality and fitness evaluations
	Multi-solution population seeding: Fixed amount of seeds
	Multi-solution population seeding: Proportionate seeding and improvement heuristics

	Conclusions

	Hybridizing pGOMEA: Experimental Study
	Experimental setup
	Results
	Effects of hybridization
	Depth limited local search using a BBO perspective
	Probability of local search using a BBO perspective
	Hybridizing pGOMEA using advanced local search

	Conclusions

	Informed model learning: Experimental Study
	Seeding: effect on model building
	dependency seeding
	Indexing dependency
	Dependency over constructive population
	Determining the weight

	Experimental results
	Fixed weight dependency seeding
	Exponential weight cooling scheme
	Heuristic dependencies

	Conclusions

	Substructural neighborhoods: Experimental study
	Substructural neighborhoods for pGOMEA
	Difficulties for substructural neighborhoods in pGOMEA
	Insertion-based substructural neighborhood searcher: Description
	Model-based swapping in pGOMEA: Description

	Experimental results
	Insertion-based substructural neighborhood searcher: Experiments
	Model-based swapping in pGOMEA: Experiments

	Conclusions

	Comparative results
	Algorithms
	VNS4
	pGOMEA for PFSP with the TFT criterion
	Iterative Greedy
	pGOMEA for PFSP with the Cmax criterion

	Benchmarking: Taillard instances
	Solving PFSP with the TFT criterion
	Solving PFSP with the Cmax criterion

	Benchmarking: Existing structured instances
	Structured instances
	Solving PFSP with the TFT criterion
	Solving PFSP with the Cmax criterion
	Watson instances: why so easy?

	Benchmarking: New structured instances
	Experimental Setup
	TFT
	CMAX

	Conclusions

	Conclusions
	Summary
	Recommendation
	Future work

	Appendices
	New Structured PFSP benchmark
	Requirements
	Details
	Properties of the generated instances: theory
	Job- and machine-correlated instances
	Mixed correlated instances
	Processing time distribution

	Properties of the generated instances: practice
	Lower bounds and Upper bounds

	Paper draft
	List of abbreviations

