
Minimum Feedback Vertex Set for graphs of

restricted degree

I.G. de Wolff

Bachelor thesis

Supervisor: dr. J.A. Hoogeveen

Daily supervisor: T.C. van der Zanden

June 15, 2017

Abstract

Finding a minimum feedback vertex set, a set whose removal makes
a graph acyclic, is an NP-complete problem. We study the behaviour of
existing algorithms for this problem on bounded degree graphs. Using
the notion of generalized degree, we show that the algorithm of Fomin et
al. [2] runs in time O∗ (1.6181n) on graphs of maximum degree three (al-
though this case is polynomial-time solvable using a different algorithm)
and in contrast, show that for graphs of degree four the generalized de-
gree can become arbitrarily large. We show that the algorithm of Xiao
[7] runs in time O∗ (1.7180n) on degree four graphs, which improves the
best known bound for this case. Finally, we show that we cannot extend
the measure of Fomin et al. [2] by using the generalized degree.

1

1 Introduction

Algorithms can be categorized by whether they run in polynomial time or not. If
the running time of an algorithm is in O(nk) for some k, it runs in polynomial
time and it is considered a fast algorithm. For a wide range of problems it
has been proven that they cannot be solved in polynomial time, except when
P = NP , one of the major open questions in computing science [3]. The
problem of finding a minimum feedback vertex set is one of those problems. A
minimum feedback vertex set is a set of vertices, such that the graph without
these vertices is acyclic [5, 2]. In this thesis, we will look at the role of the degree
in this problem. We will make better analyses and prove that certain analyses
are not possible for instances of a restricted degree.

The trivial algorithm, which tries all subsets of vertices of the graph, takes
O∗ (2n) time1. The first algorithm that broke this barrier was only targeted
at graphs of maximum degree four. This algorithm had a time complexity of
O∗ (1.945n) [4]. Later on, algorithms have been designed which can solve the
general case, without a restriction on the degree of graphs. The first algorithm
that outperformed the trivial algorithm, without a restriction on the graph
ran in O∗ (1.8899n) [5]. Later, this has been improved to O∗ (1.7548n) [2] and
O∗ (1.7266n) [7]. These algorithms are faster than the algorithm designed for a
maximum degree of four [4].

This thesis focuses on the role of the degree in this problem. We will first de-
fine the feedback vertex set problem and provide some background information
on exponential algorithms in section 2. We describe some existing algorithms
in section 3.

We will look at the relation between the maximum degree and the general-
ized degree, a property of vertices which is used in the studied algorithms. We
will start by looking at graphs of maximum degree three. While this problem
is solvable in polynomial time, we will look at the behavior of an existing ex-
ponential algorithm [2] in section 4. We will show that the generalized degree
is bounded when the maximum degree of a graph is three. Using this result,
we find an upper bound of O∗ (1.6181n) for graphs of maximum degree three
for an existing algorithm. An upper bound on generalized degree does not exist
for graphs of maximum degree four, as the generalized degree can become arbi-
trarily large as shown in section 5. However, we do find a better upper bound,
O∗ (1.7180n), based on the measure used in the analysis of Xiao et al. [7].

The studied algorithms use measures which do not use the generalized de-
gree. However, since the generalized degree is heavily used in the algorithms and
since it gives information on the reduced instances generated by the branching
rules, it sounds like a good candidate to use in the analysis. Furthermore, given
that the generalized degree is initially equal to the degree, it can be used to give
tighter upper bounds for classes of graphs of restricted degree. We will show in
section 6 that such analysis cannot be made.

1Similar to Big-O notation, the O∗ ignores all constant and polynomial factors.

2

2 Preliminaries

Let G = (V,E) be an undirected simple graph consisting of a set of vertices V
and a set of undirected edges E between those vertices. We denote by deg(v)
the degree of a vertex v ∈ V and by ∆(G) the maximum vertex degree of G.
We write N(v) for the set of neighbours of v [1]. Given V ′ ⊂ V , we define the
induced subgraph, the graph with only the vertices in V ′ and the edges from E
between the vertices in V ′, as G[V ′]. We write G \V ′ for G[V \V ′] [2]. Given a
non-empty set X ⊂ V , we write ∆∗(X) for the maximum degree of vertices in
X in graph G. We define ∆∗(∅) = 0.

The connected components of a graph are the equivalence classes under
the is-reachable-from relation [1]. Thus, a connected component is a subset of
vertices such that all vertices in that set are reachable, and all other vertices
are not reachable from that set. Let F ⊂ V be an acyclic subset of vertices. A
connected component of G[F] is non-trivial if it has at least two vertices.

In this thesis we will take a look at the problem of finding a minimum
feedback vertex set (FVS).

Definition 1 (Feedback Vertex Set, FVS). A subset X ⊂ V is called a feedback
vertex set (FVS) if G \X has no cycles. If X has the lowest cardinality among
all feedback vertex sets, it is called a minimum feedback vertex set.

Most algorithms that construct a minimum feedback vertex set actually
search for a (forced) maximum induced forest.

Definition 2 (Maximum Induced Forest, MIF). A subset Y ⊂ V is called an
induced forest if G[Y] is a forest. If Y has maximum cardinality among all
induced forests, it is called a maximum induced forest (MIF).

Definition 3 (Forced Maximum Induced Forest, F -MIF). Given a set F ⊂ V ,
a subset Y ⊂ V is called a forced induced forest if Y ⊃ F and G[Y] is a forest.
If Y has maximum cardinality among all forced induced forests, it is called a
forced maximum induced forest (F -MIF).

Note that finding a MIF is equivalent to finding a ∅-MIF, and that the
complement of a MIF is a minimum FVS. We write mif(G,F) for the size
of the forced maximum induced forests of a graph G. The MIF problem is
equivalent to ∅-MIF.

The algorithms we look at [5, 2, 7], require that F is an independent set.

Definition 4 (Independent set). A subset Y ⊂ V is called an independent set
if G[Y] has no edges.

When F is not an independent set, the algorithm compresses a component
of F into a single vertex. This happens in the Id∗ operation. The Id∗(T, vT)
procedure contracts all vertices in T to a single new vertex vT . Self loops on vT
(edges between vT and vT) are removed. If vT has multiple edges with a vertex
w, then vertex w is removed from the graph, since including that vertex would
give a cycle.

3

Definition 5 (Generalized neighbours and generalized degree). Let (G,F) be an
instance of F -MIF and let v, w ∈ V \F . Then v and w are generalized neighbours
if they are neighbours or if they share a common neighbour in F \ {t}. Vertex t
is the active vertex; we will define this in more detail later on. We write GD(v)
for the set of all generalized neighbours of v. We define gd(v) as the generalized
degree, the amount of generalized neighbours of v [7].

t

f

v

w1

w2

w3

F

w4

Figure 1: Example to illustrate the generalized degree

Consider the example in Figure 1. The generalized neighbours of v are w1,
w2 and w3. Vertex w3 is a normal neighbour and w1, w2 and v share f as
a common neighbour. Vertices f and t are not generalized neighbours since
they are in F , and w4 is not a generalized neighour since t does not count as a
common neighbour.

We use Big-O notation to write the asymptotic upper bound on time com-
plexity of algorithms [3].

Definition 6 (Big-O notation). We write O(g(n)) for the following set of func-
tions [1]:

O(g(n)) = { f(n) | ∃ c, n0 ≥ 0 : ∀n ≥ n0 : 0 ≤ f(n) ≤ cg(n) }

We use O∗(g(n)) to suppress any polynomial factors [3].

O∗(g(n)) = { f(n) | f(n) ∈ O(g(n) poly(n)), poly(n) is a polynomial }

It is common to write f(n) = O(g(n)) instead of f(n) ∈ O(g(n)).

2.1 Branching algorithms

We will give a small introduction to branching algorithms. These algorithms can
also be called splitting, backtracking or search tree algorithms. Such algorithm
perform the following rules [3]:

• Reduction rules: A problem instance is simplified or the algorithm is
halted

4

• Branching rules: A problem instance is split in smaller instances

The following rules are examples of reduction rules for the maximum induced
forest problem, quoted from the algorithm in [2]:

1) If there is a v ∈ N(t) with gd(v) ≤ 1, then

mif(G,F) = mif(G,F ∪ {v})

2) If F = V , then
mif(G,F) = |V |

In these algorithms, the original instance (mif(G,F)) is simplified (rule 1),
or the algorithm is halted and the result is calculated directly (rule 2).

Branching rules may split the instance in multiple instances, as illustrated
by the following example, cited from [2]. These rules usually result in an ex-
ponential time complexity, as they can recursively branch into an exponential
number of instances.

If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove
v from G:

mif(G,F) = max{mif(G,F ∪ v),mif(G \ {v}, F)}

2.1.1 Analysis

Various methods exist to analyze an algorithm. The branching of algorithms
can be modeled using recurrence relations. If a rule branches on r instances and
the size of those instances is reduced with at least r1 . . . tr vertices, we can write
this as the following linear recurrence [3]:

T (n) ≤ T (n− t1) + T (n− t2) + ...+ T (n− tr) (1)

Polynomial factors are ignored here. The equality variant of this recurrence
has solutions which can be written as T (n) = xn [3]. This can be solved by
taking the roots of

xn − xn−t1 − xn−t2 − ...− xn−tr (2)

Let α be the (unique) positive root of this polynomial. We call α the branch-
ing factor of this branching rule. Let β be the maximum of all branching num-
bers. The algorithm has a time complexity of O∗ (βn) [3].

More sophisticated analysis can be made using Measure & Conquer [3]. In-
stead of giving each vertex the same weight, a vertex can get a weight based on
some metric related to the problem. One can for instance give different weights
to vertices based on their degree or whether they are in some set. The rest of
the analysis can be done in the same manner. Note that this analysis finds the
running time expressed in the weight of an instance. If the weight of a vertex is
at most one, this will directly give the time complexity expressed in the amount
of vertices. The algorithms that we will discuss use Measure & Conquer in their
analysis.

5

3 Algorithms

We will discuss various algorithms that find a minimum FVS. These algorithms
search for a maximum induced forest (MIF). Clearly, F is a maximum induced
forest iff V \ F is a minimum feedback vertex set.

We will discuss the following algorithms, which all solve the F -MIF problem:

• Razgons algorithm, O∗ (1.8899n) [5].

• Fomins algorithm, O∗ (1.7548n) [2].

• Xiaos algorithm, O∗ (1.7266n) [7].

Razgons [5] algorithm was the first algorithm to beat the trivial O∗ (2n)
algorithm. Later he found an algorithm which runs in O∗ (1.7548n) with Fomin
et al. [2]. Xiao and Nagamochi [7] improved this algorithm with additional
branching rules and a different measure in their analysis.

3.1 Reduction & branching rules

We will describe the algorithm of Fomin et al. [2] here. We will use this
algorithm in most of our analyses.

Choose the first procedure that applies:

Preprocessing

1. If G consists of multiple connected components, invoke the al-
gorithm on each connected component and take the sum of
these results.

2. If G is not independent, then apply Id∗(T, vT) on a non-trivial
component T of F , which compresses all vertices in T to a new
vertex vT . If t ∈ T , vT will become the active vertex.

Main procedures

1. If F = V , no other vertices can be added to the induced forest,
thus mif(G,F) = |V |.

2. If F = ∅ and ∆(G) ≤ 1, G has no cycles, thus mif(G,F) = |V |.
3. If F = ∅, branch on a vertex v with a degree of at least two:

mif(G,F) = max{mif(G, {v}),
mif(G \ {v}, ∅)}

4. If F has no active vertex, then choose an arbitrary vertex as
the active vertex and denote it by t.

6

5. If V \ F = N(t), then we must choose vertices from V \ F ,
without choosing two vertices that are generalized neighbours.
Thus, construct a graph with all vertices in V \ F and add an
edge between two vertices if they are generalized neighbours
and construct a maximum independent set for this graph. Let
m be the size of this set. Then mif(G,F) = |F |+m.

6. If the graph has a vertex v ∈ N(t) with gd(v) ≤ 1, then there is
an F -MIF containing v. Thus, mif(G,F) = mif(G,F ∪ {v}).

7. If the graph has a vertex v ∈ N(t) with gd(v) ≥ 4, branch on
that vertex:

mif(G,F) = max{mif(G,F ∪ {v}),
mif(G \ {v}, F)}

8. If the graph has a vertex v ∈ N(t) with gd(v) = 2, then we will
branch on v. Let w1 and w2 be the generalized neighbours of
v. Then

mif(G,F) = max{mif(G,F ∪ {v}),
mif(G \ {v}, F ∪ {w1, w2})}

If the last branch gives a cycle, we ignore that branch.

9. If all neighbours of t have generalized degree three, at least
one vertex must have a generalized neighbour which is not a
neighbour of t, since Main 5 did not apply. Let v ∈ N(t) be
such vertex. We will branch on v. Let w1, w2 and w3 be the
generalized neighbours of v, such that w1 is not a neighbour of
t. Then

mif(G,F) = max{mif(G,F ∪ {v}),
mif(G \ {v}, F ∪ {w1}),
mif(G \ {v, w1}, F ∪ {w2, w3})}

If the last branch gives a cycle, we ignore that branch.

By removing Main 5 and 9 and by replacing gd(v) ≥ 4 by gd(v) ≥ 3 in Main
7, we get the algorithm of Razgon [2], as pointed out in [2]. The algorithm
of Xiao et al. [7] has additional branching rules. Whereas the rules of the
algorithm of Fomin et al. only determine the applied rule based on generalized
degrees, Xiao et al. also use the degree of vertices. Furthermore, they also use
the degree of vertices in the measure of their analysis.

4 Maximum degree 3

For graphs of maximum degree three, the problem can be solved in polynomial
time [6]. However, the mentioned algorithms run in exponential time on these

7

graphs since they will branch on vertices of generalized degree two. We will
make a more precise analysis of the algorithm of Fomin et al. for graphs of
maximum degree three. The analysis is only targeted at the MIF problem, not
its forced variant, since we assume that the algorithm starts with F = ∅.

We will prove the following statements in this order:

• The degree of vertices in F \ {t} is at most two

• The generalized degree of vertices in F \ V is at most three and the gen-
eralized degree of vertices in N(t) is at most two.

• Procedures Main 7 and 9 will never apply.

• The algorithm of Fomin et al. solves these instances in O∗ (1.6180n) time.

4.1 Degree of vertices in F \ {t}
We start by showing that the degree of vertices in F , except t, is at most two.

Lemma 1. When the algorithm of Fomin et al. starts with a graph of maximum
degree three, ∆∗(F \{t}) ≤ 2 holds at any point in execution after preprocessing.

If there is no active vertex t, F \ {t} should be read as F . To prove this
lemma, we will first prove some auxiliary lemmas.

Lemma 2. If ∆∗(F \ {t}) ≤ 2 holds before Preprocessing 1, this will also hold
on the instances on which the program goes in recursion.

Proof. If Preprocessing 1 is applied, the graph is split into its connected com-
ponents. This does not alter the degree of the vertices.

Let Fi be a connected component of F . Then Fi \ {t} is a subset of F \ {t}.
Thus ∆∗(Fi \ {t}) ≤ ∆∗(Fi \ {t}) ≤ 2.

Lemma 3. If ∆∗(F \ {t}) ≤ 2 holds before Preprocessing 2, this will also hold
on the reduced instance.

Proof. If Preprocessing 2 is applied, a non-trivial component T of G is com-
pressed to a single vertex. If t /∈ T , T contains only vertices of degree 2. Since
these vertices are connected, and F does not contain cycles, they must lay in a
path. The first and last vertex may have an edge with a vertex outside of F .
The constructed vertex vT will be connected with only those neighbours and
will thus have a degree of at most two.

If t ∈ T , the new vertex vT will become the new active vertex. The reduced
instance has F ′ = (F \ T) ∪ {vT }. Ignoring the new active vertex gives F \ T ,
which is a subset of F \ {t}. Thus ∆∗(F \ T) ≤ ∆∗(Fi \ {t}) ≤ 2.

In the following proofs, we will often show that property ∆∗(F \ {t}) ≤ 2
holds after some operation and Preprocessing 2. However, the algorithm might
first apply Preprocessing 1. To justify this, we will prove that the order on
which Preprocessing 1 and Preprocessing 2 occur does not alter the generated
instances.

8

Lemma 4. When applying Preprocessing 2 before Preprocessing 1, the same
instances are created as in the normal order.

Proof. Let T be a subset of a connected component in F . The operation
Id∗(T, vT) affects the vertices in T and neighbours of those. Given that T
is connected, this affects only a single connected component of the graph and
does not change other connected components. So, applying Preprocessing 2
does not alter the behavior of Preprocessing 1.

Since Preprocessing 1 splits the graph into its connected components, it will
preserve any connected components. Thus, applying Preprocessing 1 does not
affect Preprocessing 2.

We will also use that two vertices will be compressed and show that ∆∗(F \
{t}) ≤ 2 holds after that compression. However, the algorithm might compress
more vertices than those two. The following lemma justifies that.

Lemma 5. If ∆∗(F \ {t}) ≤ 2 holds after applying Id∗ on a set of vertices A,
which is a subset of a component T ⊂ F , it will also hold after applying both
Preprocessing 1 and Preprocessing 2.

Proof. We will first show that applying Id∗(T, vT) gives the same result as
applying Id∗(A, vA) and Id∗(T, vT). The first will compress all vertices in T to
a single vertex, whereas the second compresses all vertices in {vA}∪T \A. Thus,
both operations compress the same set of vertices. Both operations remove
vertices connected with a multi-edge. The second will first remove vertices
connected with a multi-edge with vertices in A. Both operations will remove
the same vertices, namely all vertices connected with a multi-edge with vertices
in T .

This shows that ∆∗(F \ {t}) ≤ 2 holds after applying Preprocessing 2. We
have seen before that Preprocessing 1 preserves this property and that the order
of the preprocessing procedures does not alter the generated instances.

We will now show that ∆∗(F \ {t}) ≤ 2 is preserved in the instances on
which the algorithm goes in recursion.

Lemma 6. If ∆∗(F \ {t}) ≤ 2 holds before the main procedures, this will also
holds on the recursive instances generated by the main procedures, after these
have been modified by the preprocessing steps.

Proof. Main 1, 2 and 5 are the base cases of the algorithm and do not go in
recursion. Main 4 marks a vertex in F as the active vertex. No degrees change
and F \ {t} contains one fewer vertex. Thus, ∆∗(F \ {t}) ≤ ∆∗(F) ≤ 2

In main 3, F = ∅. The first case adds a vertex to F , which will be marked
as the active vertex t. Thus, F \ {t} = ∅ and ∆ ∗ (∅) = 0. In the second case,
F is still empty and ∆∗(∅) ≤ 2 will thus also hold.

We will now look at Main 6, 7, 8 and 9. In the first case of these procedures,
a vertex v is added to F . In recursion, preprocessing 1 will not apply since the
graph itself has not changed. In preprocessing 2, vertex v will be compressed

9

with t. Other vertices in F \ {t} may also be compressed with t. Let F ′ and
t′ be the values of the generated instance. Then F ′ \ {t′} ⊂ F \ {t}, thus
∆∗(F ′ \ {t′}) ≤ ∆∗(F \ {t}) ≤ 2.

The second case of Main 7 removes a vertex from the graph. This does not
increase degrees, nor does it change F , so the generalized degree of vertices
in F \ {t} is at most 2 before preprocessing. As seen in Lemma 2 and 3,
preprocessing preserves this property.

The second recursion of Main 8 removes v from the graph and adds w1 and
w2 to F . Vertices w1 and w2 are generalized neighbours of v and have a degree
of at most three. Thus, w1 is either a neighbour of v, or they share a common
neighbour in F \ {t}. If w1 is a neighbour of v, the degree of w1 will be at most
two when v is removed from the graph. If w1 and v share a common neighbour
in F \ {t}, say f , then w1 will be compressed with f during Preprocessing 2.
The degree of f is at most two, since f ∈ F \ {t}, thus the only neighbours
of f are v and w1. After the removal of v and the compression of w1 and f ,
the only neighbours of the created vertex are the neighbours of w1, except f .
Thus, the degree of this vertex is at most two. Note that these vertices might
be compressed with more vertices, in case w1 has neighbours in F \ {t} or if w1

and w2 are neighbours. Based on Lemma 5, we do not have to consider those
cases. The same reasoning applies to w2. Vertices w1 and w2 have a degree of
at most two, so the property holds on the generated instances.

A similar reasoning as in Main 8 can be applied to the second and third
recursion of Main 9. In these cases, vertices are added to F and a generalized
neighbour (v) of these vertices is removed from the graph, which reduces their
degree by one.

Now we will prove Lemma 1.

Proof. The algorithm starts with F = ∅. During Preprocessing 1 and 2 no
vertices are added to F , so the statements holds at the start of the algorithm.
We have seen in Lemma 6 that this property is preserved during the execution
of the algorithm.

4.2 Bound on generalized degree

Based on the results of the previous section, we can now deduce a bound on the
generalized degree:

Theorem 1 (Maximum generalized degree for graphs of degree three). When
the algorithm of Fomin et al. starts with a graph of maximum degree three, the
generalized degree of a vertex in V \ F is at most three, at any point in the
execution after preprocessing. Furthermore, the generalized degree of a vertex in
N(t) is at most two.

Proof. Let v be an arbitrary vertex in V \ F . The degree of v is at most three.
We will first show that the generalized degree of v is at most three.

10

On the contrary, assume that v has a generalized degree of at least four. We
will show that we can find a neighbour for each generalized neighbour. Let w be
a generalized neighbour of w. Then w is either a neighbour of v or they share
a common neighbour in F \ {t}. In both cases we found a neighbour of v.

Since the degree of v is at most three, there must be at least two generalized
neighbours w1 and w2, which share the same common neighbour with v. Let f
be that neighbour. Then w1, w2 and v are neighbours of f , thus the degree of
f is at least three. This contradicts with Lemma 1, thus the assumption that
the generalized degree is at least four is false. So, the generalized degree of v is
at most three.

Consider the case when v ∈ N(t). Vertex v has at most two neighbours
other than t. Using the same reasoning, we can show that v has at most two
generalized neighbours.

4.3 Time analysis

Since an instance cannot have a vertex of generalized degree 4 or higher, Main
7 will never be applied. Fomin et al. show that this is the only tight recurrence
[2], so ignoring this case will yield a tighter time bound. Furthermore, the
generalized degree of neighbours of t is at most two, thus Main 9 will also never
be applied. In this section we will make a better analysis for graphs of maximum
degree three.

Theorem 2. The algorithm of Fomin et al. solves instances of maximum degree
three in O∗ (1.6180n) time.

Proof. We use Measure & Conquer [3] with the same measure as [2]:

µ = |V \ F |+ α|V \ (F ∪N(t))| (3)

All vertices in F have no weight, all vertices in N(t) have weight 1 and all
other vertices have weight 1 + α. Fomin et al. used α = 0.955 and found an
upper bound of O(1.33328µ). Given that we are looking at a different problem,
we will use a different value to get a tighter time bound, satisfying 0 ≤ α ≤ 1.
Note that the following analysis is largely adapted from [2].

Main 1 and 2 can be computed in polynomial time. Main 4 does not alter the
weight, but cannot be executed in two consecutive runs: after applying Main 4,
the instance has an active vertex, thus Main 4 will not be applied again in the
next run. Thus, we may ignore these cases. Main 6 only recurses into a single
instance. Preprocessing 1 splits the instance into smaller, distinct instances
and Preprocessing 2 simplifies the problem without changing its weight. Thus,
Preprocessing 1, 2 and Main 1, 2, 4 and 6 do not contribute to the exponential
factor. Main 5 can be solved in O(1.2278µ), by theorem 4 in [2].

Let f(µ) be the largest number of recursive calls for an instance of size µ.
We will show that f(µ) ≤ xµ, for some x ∈ R with induction. The induction
base case clearly holds, as f(0) = 1.

11

We will now cite an equation for each main procedure from [2]. First we
consider Main 3. Each vertex has weight 1 + α, so including or excluding t
reduces the weight with at least 1 + α. By including it, t becomes the active
vertex. This reduces the weight of at least two neighbours by α.

f(µ) ≤ f(µ− 1− α) + f(µ− 1− 3α) ≤ xµ−1−α + xµ−1−3α ≤ xµ (4)

Based on our Theorem 1, we may ignore Main 7 and 9. In Main 8, we
parameterize the relation based on the number of generalized neighbours with
weight 1 + α. Let i ∈ {0, 1, 2} be that number. Then we get the following
recurrence relation:

f(µ) ≤ f(µ− (3− i)− iα) + f(µ− 3− iα)

≤ xµ−(3−i)−iα + xµ−3−iα ≤ xµ
(5)

These conditions hold when α = 1 and x = 1.2721. These values have been
calculated numerically using a Haskell program2, which tried values of α between
zero and one on a scale of 0.005. It searched for the corresponding best value
for x using binary search. These values give an upper bound of O∗ (1.27204µ).
When the algorithm starts, each vertex has weight 1 + α, thus µ = (1 + α)n.
This yields an upper bound of O∗

((
1.272041+α

)n)
. By rounding this value we

get O∗ (1.6181n).

5 Maximum degree 4

In the previous section, we have shown that a maximum degree of three implies
that the generalized degree of vertices in V \ F will be at most three. Sadly, a
similar result cannot be found for graphs of maximum degree four. We will show
that the generalized degree can become arbitrarily large when constraining the
input to graphs of maximum degree four. We will show that in the following
steps:

• We can construct graph A(p, 0) (p ≥ 0) by starting with a graph of maxi-
mum degree four.

• We can transform graph A(p, q) (p ≥ 1) into A(p− 1, q + 1).

• The graph A(0, q) has a vertex whose generalized degree is at least q.

We use these steps to show that we can make the generalized degree arbi-
trarily large. This demonstrates that the same analysis as the previous section
cannot be done here. We can however use the measure in the algorithm of
Xiao et al. [7] to find a better upper bound. Their measure uses the degree of
vertices, which we can use to find an upper bound of O∗ (1.7180n).

2The source code can be found at
https://gist.github.com/ivogabe/c4c192a492cf83d3bc868ba9c2fa721e.

12

https://gist.github.com/ivogabe/c4c192a492cf83d3bc868ba9c2fa721e

5.1 Graph construction

We use the following construction for our graph. Given p, q ≥ 0, let A(p, q)
denote the instance in Figure 2, with F = {t, x} and t as the active vertex. The
center part is repeated p times and vertex x is connected with q other vertices,
thus deg(x) = q + 2.

Lemma 7. The graph A(p, 0) can be constructed by starting with an instance
of maximum degree four and F = ∅.

Proof. We start with the graph in Figure 3. The center part in this graph is
repeated p times. The graph has maximum degree four. We apply the first
case of Main 3 on t and make it the active vertex. We apply the second case of
Main 8 on vertex z and remove the isolated vertex with Preprocessing 1. The
resulting graph is A(p, 0).

Lemma 8. An instance A(p, q) with active vertex t can yield A(p− 1, q+ 1) as
a recursive instance.

Proof. We start with the instance A(p, q). All generalized neighbours of t have
generalized degree two, so the algorithm will apply Main 8. First we apply the
first case of Main 8 on vp. Vertex vp is then compressed with t. This is shown
in Figure 4, with F = {t, x}. All neighbours of t have again generalized degree
two, so Main 8 will be applied. We apply the second case of Main 8 on up.
Vertex up is removed, the isolated vertex is removed during Preprocessing 1
and wp is compressed with x. This results in A(p− 1, q + 1).

We can now prove that the generalized degree can become arbitrarily large
for graphs of maximum degree four.

Theorem 3. Given a positive integer k, an instance of the MIF problem exists
such that during the execution of the algorithm of Fomin et al., the generalized
degree of a vertex in V (t) is at least k in some recursive instance.

Proof. Let k be an arbitrary positive integer. We will construct a graph such
that the generalized degree of a vertex will be at least k. We also show that
this applies to vertices in N(t) and for vertices in V \ (F ∪N(t)).

We have demonstrated that we can construct a graph which is reduced to
A(k, 0). This instance can be reduced to A(k − 1, 1) and further reduced to
A(0, k). Such instance is shown in Figure 5. The generalized degree of vertex y
is now k + 1 and y ∈ N(t), which proves this theorem.

13

vp

vp−1

...

v1

t

x

y

q vertices

up

up−1

...

u1

wp

wp−1

...

w1

g

Figure 2: The instance A(p, q), with F = {t, x}

14

vp

vp−1

...

v1

t

z x

y

up

up−1

...

u1

wp

wp−1

...

w1

Figure 3: Instance of MIF which can be transformed to A(p, 0)

15

vp−1

...

v1

t

x

y

up

up−1

...

u1

wp

wp−1

...

w1

q verticesg

Figure 4: Instance during transition from A(p, q) to A(p − 1, q + 1), with F =
{t, x}

16

t

x

y

q verticesg

Figure 5: Instance A(0, q), with F = {t, x}

5.2 Degree based measure

The algorithm of Xiao et al. used a measure based on the degree of vertices.
The weight of a vertex v ∈ V is defined as [7]:

w(v) =



α+ β if v = t

0 if v ∈ V \ {t} and d(v) ∈ {0, 1}
β if v ∈ F \ {t} and d(v) ≥ 2

α if v ∈ N(t) ∩ (V \ F) and d(v) ≥ 2

wi if v ∈ V \ (F ∪N(t)) and d(v) = i for i ∈ {2, 3, 4}
1 if v ∈ V \ (F ∪N(t)) and d(v) ≥ 5

where w2 = 0.1695, w3 = 0.9760, w4 = 0.9898, α = 0.5176, β = 0.1668

(6)

We use this measure to find a tighter time bound for instances of MIF with
a degree of at most four.

Theorem 4. The algorithm of Xiao et al. can solve instances of MIF with a
degree of at most four in O∗ (1.7180n) time.

Proof. Assume that the degree of vertices in G is at most four. When the
algorithm starts, F = ∅ and the instance has no active vertex. Thus, all vertices
are in V \(F ∪N(t)). Since all vertices have a degree of at most four, the weight
of n vertices is at most nw4.

Let µ be the weight of an instance. Xiao et al. prove in their analysis that
they can solve such instance in O∗ (1.7266µ) time. For a graph of a degree of at
most four, we have µ ≤ nw4. Such instance can be solved in O∗

(
1.72660.9898n

)
.

Thus, their algorithm solves these instances in O∗ (1.7180n).

17

6 Weight functions

The algorithms we looked at give different weight to vertices in F , N(t) and
V \ (F ∪N(t)). The weight functions, which give the weight of a single vertex
[3], used in the analysis of the algorithm of Razgon [5] and the algorithm of
Fomin et al. [2] can be written as:

w(v) =


0 if v ∈ F
1 if v ∈ N(t)

1 + α otherwise

(7)

Xiao et al. noticed that most branching algorithms on graphs use a measure
based on the degree of vertices. They added additional branching rules, and
have made a more precise analysis with a more complex weight function [7].

w(v) =



α+ β if v = t

0 if v ∈ V \ {t} and d(v) ∈ {0, 1}
β if v ∈ F \ {t} and d(v) ≥ 2

α if v ∈ N(t) ∩ (V \ F) and d(v) ≥ 2

wi if v ∈ V \ (F ∪N(t)) and d(v) = i for i ∈ {2, 3, 4}
1 if v ∈ V \ (F ∪N(t)) and d(v) ≥ 5

(8)

6.1 Generalized degree based measure

Given that the algorithm chooses a branching rule based on the generalized
degree, one might consider a measure based on the generalized degree of a
vertex. We will consider a measure of the following form:

w(v) =


0 if v ∈ F
xgd(v) if v ∈ N(t)

ygd(v) otherwise

(9)

Advantages of such a measure include that this measure is closer to the be-
havior of the algorithm than a degree based measure: the algorithm chooses a
vertex to branch on based on the generalized degrees of vertices, and the gen-
eralized degree gives information on how many vertices will become neighbour
of the active vertex after the execution of some procedure of the algorithm.

Furthermore, when the algorithm starts with an MIF instance, F = ∅, thus
the generalized degree of each vertex is equal to its degree. One might want
to use this to find a better time bound with a measure that depends on the
generalized degree. Especially for this case, we will not add the restriction that
yi should have an upper bound. In general, an unbounded weight function
would give trouble, as one cannot give an upper bound on the weight of an
instance as a function of the input size. However, when only looking at graphs
of a restricted degree, one can restrict the weight µ by µ ≤ y∆(G)n.

18

We will make no assumptions on whether yi is increasing, decreasing or
monotone. We do assume that xi ≤ yi+1 for all i ≥ 0, meaning that when a
vertex becomes a neighbour of t, its weight will decrease. In those cases, the
generalized degree will decrease by one since t does not count as a generalized
neighbour, hence the i+ 1 in the index.

In this section, we will prove that such a measure is only possible if yi = yj
for all i, j ≥ 1. This means that one cannot use this measure to find a tighter
upper bound for graphs of a restricted degree, as only vertices of generalized
degree zero, meaning that they are not connected with other vertices and thus
removed during Preprocessing 1, can have a different weight.

Theorem 5. Let w be a weight function satisfying equation 9, with xi ≤ yi+1

for all i ≥ 0. If the weight of an instance will not increase by applying any
main procedure followed by any applicable preprocessing steps, then yi = yj for
all i, j ≥ 1.

We define δi = yi+1 − yi, for i ≥ 0. We will now prove this theorem in the
following steps:

• The sequence δi is bounded from above.

• No values c > 0, N ∈ N exist such that δi > c for all i ≥ N .

• The sequence δi is not negative.

• For all i ≥ 1, δi = 0.

Lemma 9. The sequence δi is bounded from above.

Proof. Assume to the contrary that δi is not bounded from above. For each
ε > 0, there exists an i ≥ 0 such that δi > ε. This implies that such i also exists
satisfying i ≥ 1.

Let ε be arbitrary and let i ≥ 1 be an integer such that δi > ε. Consider
the F -MIF instance in Figure 6, where F = {t} and deg(u) = i. By applying
the second case of Main 8, w will be added to F and the generalized degree of
u will increase from i to i+ 1.

We can make this increase arbitrarily large. Note that the weight of other
vertices does not depend on i and that the weight of vertices vk does not change.
Thus, the change of weight of all vertices except v is constant, whereas the weight
increase of u can become arbitrarily large. When choosing ε large enough, the
weight will increase whereas we assumed that the weight will always decrease.
Thus, the assumption that δi has no upper bound is false.

Let d be an upper bound such that δi < d for all i ≥ 0.

Lemma 10. No values c > 0, N ∈ N exist such that δi > c for all i ≥ N .

Proof. Assume to the contrary that these values exist. Thus, c > 0, N ∈ N exist
such that δi > c for all i ≥ N . Let n > N be arbitrary. We consider the instance

19

t

v

u

w

i− 2 verticesg

Figure 6: Instance of F -MIF where the generalized degree of u can increase

from Figure 7, where F = {t}. We apply the second case of Main 8 on vertex v.
Vertex w will be added to F , which increases the generalized degree of vertices
vi from 1 to n. This increases the weight by at least nc for each vertex ui, thus
n2c in total. Only the weight of w can depend on n, so this vertex should have
a weight which is at least quadratic in n. This means that δi is at least linear,
which means that δi is not bounded. This contradicts with the previous lemma,
thus the assumption that c and N exist is not true.

t

v

w

u1

u2

...

un

Figure 7: Instance of F -MIF where the generalized of n vertices can increase

Lemma 11. The sequence δi is not negative.

Proof. Assume to the contrary that there exists a k ≥ 0 such that δk < 0.
Consider the instance in Figure 8 where F = {t}, t has two neighbours, v and w.
Vertices v and w have the same neighbours, namely u1, u2, ...un, for an arbitrary
n ≥ 4. Vertices ui have k−1 other neighbours. Thus, deg(ui) = gd(ui) = k+ 1.

We apply the second case of Main 7 to this instance. The generalized degrees
of vertices ui are reduced by one, increasing the weight by nδk. The only vertex

20

which can compensate for this is v, since the weights of other vertices do not
change. Thus, v should compensate for this increase. Thus, for large enough
values of n, xn should be at least linear: xn > nc if n ≥ N , with N ∈ N, c > 0.
Given that yn+1 ≥ xn, sequence yi is also at least linear for large enough values
for i, thus δi ≥ d, for some d > 0. This contradicts the previous lemma.

t

v

w

u1

u2

...

un

Figure 8: Instance of F -MIF where the generalized of n vertices can decrease

Lemma 12. For all i ≥ 1, δi = 0.

Proof. Assume to the contrary that there exists a k such that δk 6= 0. We have
shown that the sequence δi is not negative, thus δk > 0. Let n > k be arbitrary.
We once more consider the instance from Figure 7, with F = {t}. We apply
the second case of Main 8 on vertex v. Vertex w will be added to F . The
generalized degree of vertices uj will increase from 1 to n. Given that δi is not
negative, this will increase the weight by at least δk per vertex uj , thus δkn in
total.

Only vertex w can have a weight that depends on n. Thus, this vertex should
have a weight linear in n, to compensate for the decrease in weight of δkn. This
contradicts with Lemma 10, thus the assumption that k exists is false. Thus,
δi = 0 for all i ≥ 1.

We can now finish the proof for Theorem 5.

Proof. The previous lemma shows that δi = 0 for all i ≥ 1, thus yi = yi+1. It
follows that yi = yj for all i, j ≥ 1.

7 Conclusion

We have looked at various algorithms that solve the problem of finding a mini-
mum feedback vertex set. The fastest known algorithm has a time upper bound
of O∗ (1.7266n) [7]. The problem is solvable in polynomial time for graphs of
maximum degree three [6]. We made a new analysis for the algorithm of Fomin

21

et al. [2] for graphs of maximum degree three and found an upper bound of
O∗ (1.6181n). We have proven that a similar analysis cannot be made for graphs
of maximum degree four. We did find a better upper bound, O∗ (1.7180n), for
graphs of maximum degree four with the algorithm of Xiao et al., [7].

In 2005, an algorithm was shown which could solve the feedback vertex set
faster than the trivial algorithm for graphs of maximum degree four [4]. This
algorithm got beaten by several algorithms which do not have a restriction on
the graph [5, 2, 7]. With the results in this thesis, the problem restricted to
a maximum degree of four again has a better upper bound compared to the
unrestricted problem.

Furthermore, we have looked at extending the analysis of Fomin et al. [2]
with a measure that uses the generalized degree. We put strong constraints on
such a measure.

7.1 Future work

In this thesis we looked at a maximum degree of three and four. The first gives
an upper bound on the generalized degree, but makes the problem solvable in
polynomial time. In the latter case, the generalized degree can become arbi-
trarily large. It can be interesting to search for a class of graphs, for which the
problem is NP-complete, such that the generalized degree is bounded. Graph
minors might be related, as the compression step can be compared to taking
minors.

During the writing of this thesis, the following question came up multiple
times: is the problem NP-complete for graphs where a few vertices have degree
four, and all other vertices have degree three or less? This might sound as
branching once on the vertex of degree four and then solving it in polynomial
time, but the polynomial time algorithm [6] is only targeted at MIF, not F -MIF.
This class of graphs might also be related to the previous suggestion for future
work.

22

References

[1] Rivest R. L. Stein C. Cormen T. H., Leiserson C. E. Introduction to Algo-
rithms. The MIT Press, 2009.

[2] Fedor V Fomin, Serge Gaspers, Artem V Pyatkin, and Igor Razgon. On the
minimum feedback vertex set problem: Exact and enumeration algorithms.
Algorithmica, 52(2):293–307, 2008.

[3] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer
Science & Business Media, 2010.

[4] Venkatesh Raman, Saket Saurabh, and Somnath Sikdar. Improved exact
exponential algorithms for vertex bipartization and other problems. In Ital-
ian Conference on Theoretical Computer Science, pages 375–389. Springer,
2005.

[5] Igor Razgon. Exact computation of maximum induced forest. In Scandina-
vian Workshop on Algorithm Theory, pages 160–171. Springer, 2006.

[6] Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating
independent set problem and feedback set problem for graphs with no vertex
degree exceeding three. Discrete Mathematics, 72(1-3):355–360, 1988.

[7] Mingyu Xiao and Hiroshi Nagamochi. An improved exact algorithm for
undirected feedback vertex set. Journal of Combinatorial Optimization,
30(2):214–241, 2015.

23

	Introduction
	Preliminaries
	Branching algorithms
	Analysis

	Algorithms
	Reduction & branching rules

	Maximum degree 3
	Degree of vertices in F { t }
	Bound on generalized degree
	Time analysis

	Maximum degree 4
	Graph construction
	Degree based measure

	Weight functions
	Generalized degree based measure

	Conclusion
	Future work

