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Abstract

In this thesis, we explored the impact of trial functions of Galerkin finite element methods on seismic
waveform modelling. If we use linear spline functions, the modelling will be the same as second-order finite
difference. Here we propose the sinc functions instead in order to reconcile with the nature of wavefield.
We derive formally the errors of operators and show the potential superiority of sinc function to spline
functions. We tested numerical solutions for 1D SH cases. The future work is the optimisation of these
operators (Geller & Takeuchi 1995) but since there have been no systematical recipe of optimisation, we
reformulate the optimisation for future automatisation.
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1 Introduction

Seismology has been the prime tool for the investigation of the Earth’s interior within the
branches of geophysical imaging. Seismic waves can contain broadband frequencies of energy
after intercting with the structure of the Earth’s interior and experiences the least waveform
distortion and amplitude attenuation compared to other observable geophysical phenomena
[Aki and Richards, 2002]. These features enable seismic imaging to achieve superior resolution
and accuracy compared to other geophysical methods such as heat flow, static displacement,
strain, gravity and electromagnetic waves [Aki and Richards, 2002]. Combined with a large
range in coverage from a local to a global scale it is a versatile methodology for both small
scale shallow targets and great depth, which makes seismology a valuable method for both
research and industrial purposes. Optimisation of seismic methodologies is therefore essential
for improving the comprehension of the inter structure by improving model accuracy and aiding
in cost reduction in these sectors.

One of the most powerful methods to extract information of the Earth’s interior from seismic
waves is seismic tomography. It uses a forward modelling approach to seismic imaging in com-
bination with a non-linear inverse problem. During forward modelling, an initial model for the
Earth’s structure and properties is assumed, and according to ray theory, a prediction is made for
the outcome of the observations in the form of synthetic travel-time data. The inverse problem,
on the other hand, attempts to reconstruct the distribution of physical parameters that control
seismic wave propagation from observed data into an Earth model [Thurber and Ritsema, 2007].
Inverting the waveform difference between the forward modelled synthetics and observed data
allows computation of model perturbations through partial derivatives. The initial model used
for forward modelling is enhanced through solving the inverse approach and is resubmitted in
the forward scheme to generate an improved set of synthetics. The two approaches work in
conjunction as an iterative process called Full Waveform Inversion (FWI) to refine the model
parameters and the synthetics in a stepwise manner to minimise the misfit between the synthetic
seismograms and the observed data [Tromp et al., 2005][Plessix, 2006]. Since computation of
the synthetics and the partial derivatives are achieved through a forward modelling scheme, ef-
fective realisation of this method depends highly on the accuracy and efficiency of the numerical
operators used for forward modelling.

Current forward modelling schemes for seismic wavefield simulation that are prevalent in ex-
ploration and global seismology are methods such as the Spectral Element Method (SEM: [Ko-
matitsch and Vilotte, 1998]) and the Discontinuous Galerkin method (DG: [Käser and Dumbser,
2006]). By defining an unstructured grid mesh in a sophisticated manner, such methods can
accurately cope with complex topography, a feat that a finite difference approach struggles with
if not optimised. However, unstructured grid methods such as SEM and DG are still too costly,
and meshing would be a burden for the realisation of FWI. Firstly, detailed information of the
Earth structure is required for sophisticated mesh designing. Information which, besides surface
topography and bathymetry, we do not have in such detail. Secondly, these methods rely on
a computationally heavy meshing process that would have to be repeated for each iteration of
the FWI, making the expenses for this method excessive. Instead, the numerical approach for
forward modelling synthetic seismograms should rely on a simple and regular meshing process in
order to viably attempt FWI; numerical methods such as the Finite Difference Method (FDM).

However, the conventional numerical schemes for a FDM approach come with numerical errors
because of numerical dispersion. Geller & Takeuchi [Geller and Takeuchi, 1995][Geller and
Takeuchi, 1998] have developed a method to optimise the operators of the equation of motion
for a one-dimensional second order Finite-Difference (FD) scheme to remove the truncation
errors. In this paper they use the Direct Solution Method, a form of the Finite Element Method
(FEM), to display the elastic equation of motion in its Galerkin weak form [Strang and Fix,
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1973], in order to deal with the spatial and temporal operators in the same framework. The
operators are modified through a predictor-corrector scheme, which works in conjuction with
the three-point FD scheme without altering the main engine.

In this master thesis we revisit the work of Geller & Takeuchi (1995; 1998) in order to explore
the possibility of optimising operators for wave propagation when using higher order difference
schemes. We study the Galerkin weak form of the elastic wave equation and review the method-
ologies of FD and FEM with regard to the trial functions used for three-point and five-point
difference schemes. We introduce an alternate form of the trial function for grid interpolation
that coincides better with the particle motion seen in wave propagation, assisted by numerical
examples of their effect on the waveform operators for a three-point and five-point difference
scheme in a 1D and 2D medium.

2 Theory

2.1 3D equation of motion for isotropic media

In this section we start with the strong form of the elastic equation of motion describing the
propagation of a wavefield through a medium:

ρ
∂2

∂t2
ui −

∂

∂xj

(
Cijkl

∂uk
∂xl

)
= fi (1)

where ρ is the density, Cijkl the elastic moduli and are time-dependent when the medium is
anelastic.

If the medium is isotropic, Cijkl can be written as:

Cijkl = λδijδkl + µδikδjl + µδilδjk (2)

with λ the Lamé parameter, µ the shear modulus and the i-th component of the displacement
and excitation force are denoted by ui and fi. This expression can be rearranged to separate
the homogeneous and heterogenous components of the elastic parameters:

ρ
∂2

∂t2
ui −

(
∂

∂xj
Cijkl

)
∂uk
∂xl
− Cijkl

∂2uk
∂xj∂xl

= fi (3)

with the heterogeneous component:

−
(

∂

∂xj
Cijkl

)
∂uk
∂xl

=

(
∂

∂xi
λ

)
∂uk
∂xk
−
(

∂

∂xk
µ

)
∂uk
∂xi
−
(

∂

∂xj
µ

)
∂ui
∂xj

(4)

and the homogeneous component:

− Cijkl
∂2uk
∂xj∂xl

= λ
∂2uk
∂xi∂xk

− µ ∂2uk
∂xk∂xi

− µ∂
2ui
∂2xj

. (5)

Decomposing the equation of motion for an isotropic medium achieves separation of wavefields
into P-SV and SH wavefields. The last term in eq. 4 and of eq. 5 describe the elastic parameters
for the SH case, while the P-SV case is defined by the remaining terms in the right hand side of
the equations. The equation of motion for an SH wavefield can be written as:

ρ
∂2

∂t2
ui −

∂

∂xj
µ
∂ui
∂xj
− µ∂

2ui
∂2xj

= fi (6)
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2.2 1D equation of motion for the SH case

We apply the Fourier transform from t to ω as:

A(ω) =

∫ ∞
−∞

dtA(t) exp(−iωt) (7)

from x to kx as:

A(kx) =

∫ ∞
−∞

dtA(x) exp(−ikxx) (8)

and from y to ky as:

A(ky) =

∫ ∞
−∞

dtA(y) exp(−ikyy) (9)

in order to focus on the wave propagation along z direction. For a 1D model along z, the Fourier
transform of eq. 6 from the time- to frequency-domain, x to the kx domain and y to ky domain,
yields:

(ρω2 − (kx + ky)2µ)u+
∂

∂z

(
µ
∂u

∂z

)
= −f (10)

Equation eq. 10 is the strong form of the equation of motion for a laterally homogenous SH
problem in the frequency domain, where ω is the angular frequency acquired from the Fourier
transformation of the second time-derivative in eq. 6 , and kx and ky the wavenumbers acquired
through Fourier transforming the spatial derivative. Since there is no change in µ along the
x-axis for the 1D model, the spatial derivative over x equals to zero and is omitted.

2.3 Discretisation

Numerical modelling of the seismic wavefield is performed through discretising the continuous
equation of motion, which is an approximation to the solution of the continuous function. By
representing the displacement u as a summation of trial functions a weak form of the equation
of motion can be constructed from eq. 10.

u =

N∑
m

cmψm (m = 0, ..., N) (11)

where the displacement in one dimension u is represented as a combination of trial functions,
with cn as the eigenvector of the n-th node that exists in a finite space from 0 to N . Substituting
eq. 11 into eq. 10 for this finite medium we obtain:∫ zN

z0

dz(ρω2 − k2
xµ− k2

yµ)
∑
m

cmψm(z) +
∂

∂z

(
µ
∂

∂z

∑
m

cmψm(z)

)
= −

∫ zN

z0

ψn(z)fdz. (12)

ψ(m) and ψ(n) define respectively the m-th and n-th spatial trial functions. Rearranging this
expression by bringing the right-hand side to the left yields:

∫ zN

z0

dz

[
(ρω2 − k2

xµ− k2
yµ)

∑
m

cmψm(z) +
∂

∂z

(
µ
∂

∂z

∑
m

cmψm(z)

)
+ f

]
ψn(z) = 0 (13)

The weak form of the equation of motion can be rewritten into the discretised spatial components
by simplification of eq. 13 using the following expressions for the unmodified matrix and vector
elements for the SH problem.
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gm =

∫ zN

z0

ψmfdz (14)

Tmn =

∫ zN

z0

ψmρψndz (15)

and

Hmn = (kx + ky)2H(1)
mn +H(2)

mn (16)

with,

H(1)
mn =

∫ zN

z0

ψmµψndz (17)

H(2)
mn =

∫ zN

z0

ψ
′
mµψ

′
ndz (18)

into,

(ω2T−H)c = −g (19)

Eq. 19 describes the Galerkin weak form for solving the equation of motion known as the Direct
Solution Method (DSM), where T is the mass matrix, H the stiffness matrix, g defines the force
vector and c is the eigenvector. Prime’s in the superscript denote partial derivatives in space z.
This formulation adheres to free surface boundary conditions, and further coverage of boundary
conditions is not discussed in this paper.

2.4 Trial Functions

The general matrix expression in eq. 19 for the equation of motion is suitable for both an FDM
and FEM approach, depending on the shape of the function which are arbitrarily chosen for trial
functions ψm and ψn. Finite difference operators are obtained if the trial functions are taken as
a linear spline function. The solution to equation eq. 19 is exact only if trial functions ψm and
ψn are infinite in number. Hence, errors in the numerical schemes originate due to truncation
of the trial functions. The error will vary depending on the shape function chosen for the trial
functions in eq. 11 , being a linear spline function ψlin

m or a sinc function ψsinc
m .

ulin =
N∑
m

clinm ψlin
m (m = 0, ..., N) (20)

usinc =

N∑
m

csincm ψsinc
m (m = 0, ..., N) (21)

ψsinc
m = ψlin

m + Eψlin
m (E 6= 0) (22)

where the function E represents the difference between the shape functions. However, the
operators in eq. 15 and eq. 16 are not exact, but contain an error due to the truncation of either
of these trial functions.
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T = Texact + δT (23)

H = Hexact + δH (24)

c = cexact + δc (25)

The exact operators are denoted by Texact and Hexact, and the exact solution by cexact. The
error of the numerical operators are defined by δT and δH, whereas the error of the numerical
solution is given by δc. Since the error of the numerical solution changes depending on the
shape of the trial function, the error to the numerical solution can be written by subtracting
the solution of the sinc case from the linear case:

δc = clin − csinc (26)

where clin and csinc are the solutions to the eigenvectors of respectively the linear and the sinc
interpolation.

2.5 Normal mode basis analysis

To discuss the spatial dependence of the operators we consider eq. 19 for a single point M in
time.

(ω2
MT−H)cM = −gM . (27)

The exact solution, the numerical solution and its errors are represented by eigenfunction expres-
sions as in [Geller and Takeuchi, 1995]. The numerical values of the eigenvalues and eigenvectors
are not required to be known. We represent the normal modes as following:

(ω2
MTexact −Hexact)dM = 0. (28)

Here, ωM is the eigenfrequency of the m-th mode, dM is ortho-normalized eigenvector. The mass
and stiffness matrices are the exact operators rather than the conventional ones. Equation 28
can be rewritten as follows:

d∗MHexactdN = ω2
Md∗MTexactdN = ω2

MδMN (29)

with δMN being a Kronecker delta. Using an eigenfunction expansion for eq. 29, we obtain the
following expression that the exact operators must satisfy:

d∗M(ω2
MTexact −Hexact)dM = 0. (30)

For a one-dimensional medium the normal mode can be written as the sum of the spatial trial
functions as in eq. 11, in which case the exact operators in eq. 29 should satisfy:

d∗M(ω2
MTexact −Hexact)dM

=
∑
m

d∗nM

[
ω2
M

∫
z
ψm∗ρu

Mdz −
∫
z
ψm∗µ

MuM
′
dz

]
= ω2

M

∫
z
uM∗ρuMdz −

∫
z
uM∗µMuM

′
dz

= 0 (31)
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2.6 Cartesian regular grid

The computational grid is described by a Cartesian coordinate system with N gridpoints. We
consider only localized spatial trial functions for a receiver point rn:

ψm(rn) = δmn (32)

and
∃α > 0;∀|r− rn| > α;φm(r) = 0 (33)

for discretized nodes the receiver points are written as:

(rn) = zn (34)

zn = z0 + n∆z (35)

where ∆z denotes the grid spacing and r0 the starting point. This theory can be generalised to
a set of spatial trial functions that have sensitivities in several nodes.

The localised trial function ψ can be rewritten as a product of one-dimensional localised trial
functions:

ψm(r) =

N∏
k=1

X
(mk)
k (36)

with
X(m)(zn) = δmn (37)

and
X(m)(z) = 0 for |z − zm| > l∆z (38)

where 2l + 1 is the number of nodes that contain non-zero values in the operators. Truncation
of the trial functions at the boundary nodes will be satisfied through the application of natural
boundary conditions.

2.7 Optimally Accurate 1D SH operators

For the optimal case the Galerkin weak form of the equation of motion will look as in eq. 39.
Instead of expressing the displacement as a summation of the trial functions and the eigenvector
in point m, we rewrite it as an infinite Taylor series expansion, which can be expanded to get
eq. 40. Here l denotes the number of nodes in the forward/backward difference stencil (l=0 in
boundary nodes). The operators are determined for l ≤ m ≤ N − l.

m+l∑
n=m−l

(ω2T opt
mn −Hopt

mn)

∞∑
h=0

uh(m∆z)

h!
(n∆z)h (39)

=
m+l∑

n=m−l
(ω2T opt

mn −Hopt
mn)[u(m∆z) + (n∆z)u

′

(m∆z) +
(n∆z)2

2
u

′′

(m∆z)

+
(n∆z)3

6
u

′′′

(m∆z) +
(n∆z)4

24
u

′′′′

(m∆z) + O(∆z)5] (40)

Expanding eq. 40 by multiplying the Taylor series with the individual operators T and H gives
the following expression.
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=

m+l∑
n=m−l

[ω2Tmnu(m∆z) + ω2Tmn(n∆z)u
′

(m∆z) + ω2Tmn
(n∆z)2

2
u

′′

(m∆z) + . . . ]

−
m+l∑

n=m−l
[ω2Hmnu(m∆z) + ω2Hmn(n∆z)u

′

(m∆z) + ω2Hmn
(n∆z)2

2
u

′′

(m∆z) + . . . ] (41)

For each order of derivation for u in the above expression we evaluate the value of the operators
according to eq. 15 and eq. 16. Using Fig. 1a and Fig. 1b which display the values of the trial
functions and its derivative in a central node m these expressions can be verified. For a 0th
order derivative u(m∆z), the operators T and H look as following,

m+l∑
n=m−l

ω2Tmn = ω2

∫ zN

z0

ψmρdz (42)

m+l∑
n=m−l

ω2Hmn = 0 (43)

The 1st order derivative u
′

(m∆z) for the operators yield:

m+l∑
n=m−l

ω2Tmn(n∆z) = 0 (44)

m+l∑
n=m−l

ω2Hmn(n∆z) = −
∫ zN

z0

ψmµdz (45)

And for the 2nd order derivative u
′′

(m∆z) the results are:

m+l∑
n=m−l

ω2Tmn
(n∆z)2

2
= 0 (46)

m+l∑
n=m−l

ω2Hmn
(n∆z)2

2
= −

∫ zN

z0

ψmµdz (47)

By substituting these expressions into eq. 41 we can obtain the ideal operators as function of
the trial function ψm and displacement u.

Hexact(ψm, u) = ψmµu
′ |discon −

∫ zN

z0

ψm(µu
′
)
′
dz (48)

Texact(ψm, u)m =

∫ zN

z0

ψmρudz (49)
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Eq. 48 contains a discontinuity term which is only relevant for boundary nodes, which we do
not treat in this paper. Equations 48 and 49 must be evaluated only for uh(m∆z) to obtain the
optimised operators for the one-dimensional SH case.

[ω2T exact
mn −Hexact

mn ]u = ω2

∫ zN

z0

ψmρ
∞∑
h=0

uh(m∆z)

h!
(z −m∆z)hdz

− ψmµ(zN )u
′

(zN ) + ψmµ(z0)u
′

(z0)

+

∫ zN

z0

ψmµ
∞∑
h=2

uh(m∆z)

h!
h(h− 1)(z −m∆z)h−2dz

+

∫ zN

z0

ψmµ
′
∞∑
h=1

uh(m∆z)

h!
h(z −m∆z)h−1dz (50)

=
[
ω2

∫ zN

z0

ψmρu(m∆z)dz + ω2

∫ zN

z0

ψmρu
′

(m∆z)

( z

∆z
−m

)
∆zdz

+ ω2

∫ zN

z0

ψmρu
′′

(m∆z)

( z

∆z
−m

)2 ∆z2

2
dz + . . .

]
− ψmµ(zN )u

′

(zN ) + ψmµ(z0)u
′

(z0)

+
[ ∫ zN

z0

ψmµu
′′

(m∆z)dz +

∫ zN

z0

ψmµu
′′′

(m∆z)

( z

∆z
−m

)
∆zdz

+

∫ zN

z0

ψmµ
′
u

′′′′

(m∆z)

( z

∆z
−m

)2 ∆z2

2
dz + . . .

]
+
[ ∫ zN

z0

ψmµ
′
u

′

(m∆z)dz +

∫ zN

z0

ψmµ
′
u

′′

(m∆z)

( z

∆z
−m

)
∆zdz

+

∫ zN

z0

ψmµ
′
u

′′′

(m∆z)

( z

∆z
−m

)2 ∆z2

2
dz + . . .

]
(51)

Eq. 51 can be simplified to give the optimised operator to a second order of accuracy, displayed
below.

[ω2T exact
mn −Hexact

mn ]u = ω2

∫ zN

z0

ψmρu(m∆z)dz +

∫ zN

z0

ψmµu
′′

(m∆z)dz +

∫ zN

z0

ψmµ
′
u

′

(m∆z)dz (52)

3 Impact of trial functions on seismic modelling

The solutions to the Galerkin weak form of the equation of motion only requires the continuity
of displacement to be explicitly satisfied. Boundary conditions involving traction are treated as
natural boundary conditions, which are completely satisfied by a complete set of trial functions.
However, since the computational domain consists of a grid the set of trial functions is not
complete, obtaining only an approximation to the solution [Geller and Hatori, 1995]. Truncation
of the trial functions between the grid points causes numerical dispersion, producing errors in
the solution. Only when the trial function expansion used for grid interpolation is infinite and
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incorporates infinitesimally small grid spacing, then an exact solution will be reached. Since
these conditions are computationally unattainable, we require optimisation of the operators to
accommodate the truncation error.

The trial function of choice for the interpolation of the computational grid is arbitrary, on the
premise that the weighting of the elastic parameters is stable along the entire grid. According
to equations 15 and 16 stability is governed by the product of the m-th and n-th trial function,
which must produce a constant value of 1 for ρ and µ to be stable along the grid.

3.1 Finite Difference Method

When using a Finite Element Method with a linear grid interpolation of the nodes as the basis of
the trail functions we speak of the Finite Difference Method. Use of FDM has had an increased
popularity within exploration geophysics for the modelling of seismic waveforms. FD numerical
schemes are able to handle fairly complex geological models and produce relatively accurate
results, whereas computationally it is comparatively efficient. The balanced tradeoff between
accuracy and efficiency make it a suitable method to suppress costs while attaining sufficient
resolution to meet target criteria [Moczo et al., 2007].

With FD modelling of seismic wave propagation the computational domain consists of a con-
ventional uniform Cartesian space-time grid, where the functions describing the wavefield and
material properties are contained in the nodal points of the non-staggered grid. At any given
grid position the spatial and time derivatives of these functions are approximated by FD expres-
sions through a system of algebraic equations using function values of neighbouring grid points
through Taylor expansions [Moczo et al., 2007]. For a scheme considering only the direct neigh-
bours, a three-point scheme, the first derivative of a continuous displacement function u(z) can
be approximated by the forward, backward and central difference relations between the nodes.

∂u(z0)

∂z
≈ u(z0 + ∆z)− u(z0)

∆z
(53)

∂u(z0)

∂z
≈ u(z0)− u(z0 −∆z)

∆z
(54)

∂u(z0)

∂z
≈ u(z0 + ∆z)− u(z0 −∆z)

2∆z
(55)

Here z0 describes the central node in question, and ∆z the grid spacing between the nodes.
We express the forward and backward functional values u(z0 + ∆z) and u(z0 − ∆z) as their
respective Taylor expansions about point z0:

u(z0 + ∆z) = u(z0) + ∆z
(∂u(z0)

∂z

)
+

(∆z)2

2

(∂2u(z0)

∂z2

)
+

(∆z)3

6

(∂3u(z0)

∂z3

)
+ . . . (56)

u(z0 −∆z) = u(z0)−∆z
(∂u(z0)

∂z

)
+

(∆z)2

2

(∂2u(z0)

∂z2

)
− (∆z)3

6

(∂3u(z0)

∂z3

)
+ . . . (57)

Rearranging these expressions to solve for the first derivative of the displacement will give us a
first approximation truncation error (red) for the forward and backward operators proportional
to grid spacing ∆z,
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∂u(z0)

∂z
=
u(z0 + ∆z)− u(z0)

∆z
−∆z

2

(∂2u(z0)

∂z2

)
− (∆z)2

6

(∂3u(z0)

∂z3

)
+ . . . (58)

∂u(z0)

∂z
=
u(z0)− (z0 −∆z)

∆z
+

∆z

2

(∂2u(z0)

∂z2

)
− (∆z)2

6

(∂3u(z0)

∂z3

)
+ . . . (59)

and a second approximation for the central difference operator with truncation error proportional
to ∆z2,

∂u(z0)

∂z
=
u(z0 + ∆z)− u(z0 −∆z)

2∆z
−(∆z)2

6

(∂3u(z0)

∂z3

)
+ . . . (60)

These equations describe the solution to a conventional Finite Difference approach. During the
process of full waveform inversion using the conventional method truncation errors will propagate
through the solution, inflating for each iteration of the inversion. Therefore it is imminent to
modify the mass matrix T and stiffness matrix H to become optimally accurate to maintain
accuracy during the inversion process.

For a three point difference scheme a linear spline interpolation meets these criteria for solving
the mass matrix T, since the sum of the area between the spline functions remains 1 throughout
the grid (Fig. 2). However, numerically solving for the stiffness matrix H will produce a slight
error because the derivative of a triangle function is non-existent in its peak and will therefore
not produce an output for the central node (Fig. 1a). This error is proportional to the spacing
of the points used to interpolate the trial function, and can be diminished by increasing the
number of points to describe the function in return for additional computation time. The linear
spline interpolation is only suitable for a three-point scheme since when used for higher order
difference schemes too much weight is given to the direct neighbouring nodes. To counter this
imbalance an additional correction term is required to stabilise the elastic parameters for each
increasing order of the difference scheme, costing unnecessary computation time. The linear
spline function therefore doesn’t hold up for higher order difference schemes, which is why it is
favourable to revisit the possibilities for the shape function used for grid interpolation of higher
order difference schemes.

3.2 Sinc Trial Function for FEM

The proposed trial function to be used for higher order difference schemes in this paper is a
sinc-function (Fig. 1c to Fig. 1f).

sinc(πxi) =
sin(πxi)

πxi
(61)

The properties of this function that make it suitable for higher order schemes, additionally to
being differentiable in each point, is the repeating nature of the sinc-function for every cycle
of π. Regardless of the number of points in the scheme, the sinc-function equals to zero in
each of the neighbouring nodal points, whereas in between the nodes the sidelobes of the trial
functions sum to effectively negate each other to approach a constant weighting of 1 along the
grid (Fig. 4). The only exception to this is for a three-point scheme, where the sinc-function is
incomplete and instead closely resembles a non-linear spline, causing the weighting of the elastic
parameters to fluctuate in between the nodal points (Fig. 3). Thus, for a three-point difference
scheme the linear interpolation remains superior. However, one could argue that in order to
realistically model wave propagation neither the linear spline function nor a sinc-function for a
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three-point system adequately represents the particle motion of a waveform, which could make a
slight difference for heterogenous media. Both for more realistic grid interpolation and improved
reduction of the truncation error, we propose to use a five-point sinc interpolation for waveform
generation.

At a single node m the weighting of the elastic parameters for the forward and backward differ-
ence is decided by the overlap between the m-th and n-th trial function. A weight distribution
of the elastic parameters about m is represented by an array (1D) or matrix (2D) containing
coefficients for each possible overlap scenario as the n-th trial function is shifted along m. The
summation of these arrays, or matrices, along the entire grid will equal to 1.

For any given shape function in a three-point system there are only three possible overlap
scenarios per cardinal direction, as shown in Fig. 2 and Fig. 3 for the one-dimensional case,
and Fig. 5 for two dimensions. The weight distribution around point m for one-dimension is
therefore described by a one-by-three array, and for the two-dimensional case by a three-by-three
matrix. For higher order difference schemes the number of overlap scenarios increases at double
the rate than that of the number of points in the scheme. A five-point difference scheme, for
example, gives seven trial function overlap possibilities in each cardinal direction as is shown in
Fig. 4 and Fig. 6, giving a weight distribution in the form of a seven point array or a seven-
by-seven matrix. Going further, a seven-point scheme would provide eleven overlap scenarios.
The increase in grid coverage per difference scheme means that as we increase the order of
the difference scheme, heterogeneities along the grid will be accommodated better during the
computation of the displacement for a single node m.

Given a one-dimensional overlap scheme (either three- or five-point) between the trial functions
we obtain each individual weight coefficient for the mass matrix T and stiffness matrix H1 for
each possible combination of the m-th and n-th position, as shown in equations 15 and 17.
The same scheme for the 1-st order derivative of the trial function gives us the coefficients for
stiffness matrix H2 as shown in equation . In the two-dimensional space another set of trial
functions is introduced for the direction orthogonal to the primary axis. For an overlap stencil
where all trial functions in the x and z orientation are derivatives of the 0-th order, we obtain
the following two-dimensional expression for mass matrix T .

Tmn =

∫ N

m=0
dV ρ(x, z)

(
ψ(mx,mz)
x ψ(mx,mz)

z

)(
ψ(nx,nz)
x ψ(nx,nz)

z

)
(62)

Multi-directional variety in the combination of the 0-th and 1-st order trial function derivatives
in the x and z direction result in four different components of the stiffness matrix, H11, H33,
H13 and H31, where the numerals 1 and 3 denote respectively the x and z orientation.

H11 =

∫ N

m=0
dV Cxxxx

([ ∂
∂x
ψ(mx,mz)
x

]
ψ(mx.mz)
z

)
·
([ ∂

∂x
ψ(nx,nz)
x

]
ψ(nx,nz)
z

)
(63)

H33 =

∫ N

m=0
dV Czzzz

(
ψ(mx,mz)
x

[ ∂
∂z
ψ(mx.mz)
z

])
·
(
ψ(nx,nz)
x

[ ∂
∂z
ψ(nx,nz)
z

])
(64)

H13 =

∫ N

m=0
dV Cxxzz

([ ∂
∂x
ψ(mx,mz)
x

]
ψ(mx.mz)
z

)
·
(
ψ(nx,nz)
x

[ ∂
∂z
ψ(nx,nz)
z

])
(65)

H31 =

∫ N

m=0
dV Czzxx

(
ψ(mx,mz)
x

[ ∂
∂z
ψ(mx.mz)
z

])
·
([ ∂

∂x
ψ(nx,nz)
x

]
ψ(nx,nz)
z

)
(66)
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4 Numerical examples

4.1 Trial function coefficients

In tables 1 to 21 we present the coefficients related to the contribution of the trial functions
for the mass matrix T and the stiffness matrix H, for the different trial functions, difference
schemes and spatial dimensions. The benchmark results for a one-dimensional three-point spline,
as shown in [Geller and Takeuchi, 1995], are presented in tables 1 and 2. Here the position of
the m-th trial function along a grid with five points is displayed vertically, whereas the position
of the n-th trial function is shown horizontally, as the wave displaces through time from the
first to the fifth node in a homogeneous medium. The results for the same case using sinc trial
function are shown in table 3 and 4. For a one-dimensional five-point difference scheme using
a sinc function the results are shown in table 5 and 6, and only display the coefficients for one
node in a system rather than a grid of five nodes. This format will from here on be used for
the remainder of the result tables. The two-dimensional case is treated in tables 7 to 21, where
tables 7 to 11 show the results for a three-point spline function, tables 12 to 16 for a three-point
sinc function, and tables 17 to 21 for a five-point sinc function.

4.2 2D synthetic waveforms

Two dimensional synthetic waveforms were generated for a homogeneous medium, using the
conventional and optimised operators as shown in respectively Fig. 12 and Fig. 13. Frechet
sensitivity kernels are displayed in Fig. 14 and Fig. 15, generated for both the conventional and
optimised operators for elastic wave propagation.

5 Discussion

To establish a benchmark for the validation of the data tables for the weighting coefficient arrays
and matrices in the result section we used the results of the 1D homogeneous SH case from Geller
and Takeuchi 1995. Reproducing the results for the bulk of their mass and stiffness matrices
plus the surface boundary conditions, as shown in tables 1 and 2, we can verify that the main
motor of the code works as expected. The table presents the overlap coefficients between two
splines for each node between 1 and 5. The boundary nodes only receive half the contribution
of the overlapping trial function, resulting in half the weight value for these nodes. Only the
H(2) boundary nodes display a slight deviation of 0.02 from the result of Geller & Takeuchi
1995, which is because there is no 1st derivative of the spline function in the central node. The
function is interpolated using 100 points for ∆z, and the trial function ranges from (z0 −∆z)
to (z0 + ∆z), giving 200 points for the interpolation of a three-point trial function. However,
the spline function is computed in two steps, separated into the ascending and descending part
of the function, meaning there are two points which describe the central node, for which there
is no derivative. Each point accounts for 1/100th of the weight coefficient, hence the deviation
of 0.02 for both points. It was decided to leave the code unaltered since the focus of the study
was with the sinc trial functions, and since these are differentiable in each point it would not
result into an error for sinc functions. From this we conclude that the values for the three-
point sinc function presented in Fig. 3 and Fig. 4 are correct. The values are higher than their
linear spline counterparts, since although closely resembling a linear spline as seen in Fig.1c, its
rounded features cause it to have a higher area than the spline function. Eventhough at the
nodal points the contributions of the m-th and the n-th trial function is 1 and 0 that sum to
a stable value of 1 at each grid point, exactly halfway in between the grid points the value of
both functions is slightly higher than 0.5. The joint contribution of the sinc trial functions to
the elastic parameters in between the nodes is therefore greater than 1 (Fig. 3), meaning the
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elastic parameters are not constant along the grid for this case. Using a sinc interpolation for
a three-point difference scheme is therefore not accurate. However, verification of the values for
this case was valuable to guarantee proper functioning of the motor of the code. By expanding
the algorithm it allows for the computation of the weight coefficients for sinc functions in higher
order difference schemes. Spline functions for higher order schemes are not a viable option,
because the contribution of a linear spline function across two nodes will double the weighting
coefficients in each node. The trial function needs a negative contribution to avoid inflation
of the elastic parameters. Fig.4 shows that for a five-point sinc function the sum of the trial
functions is not precisely stable around the value 1. Due to a slight asymmetry in the side lobes
of the sinc function there is a slight fluctuation of the stability, which converges to 0 as the
order of the difference scheme increases. This means the viability of a sinc function for grid
interpolation improves as the order of the scheme increases.

From the data tables it is possible to quantify the instability from the trial functions upon the
elastic parameters, by summing the coefficients in the matrices. To obtain stable operators the
weight coefficients for the mass matrix T should sum to a value of 1, which is confirmed by
the results for one- and two-dimensional spline functions for a three point difference scheme in
tables 1 and 7. For the three-point sinc case it is already known the trial functions do not
provide a stable weight distribution, which is verified by tables 3 and 12. The one-dimensional
case inflates the elastic parameters by roughly a factor 1.4, and in two dimensions this increases
to approximately 2. It shows a strong propagation of the instability of the trial function in the
solution as the model dimensions increase. For a three-dimensional wave propagation model the
weight coefficients for the elastic parameters would have a projected increase of a factor 2.8,
nearly three times the desired value. This strong effect is similarly observed in the case of a
five-point sinc function. Addition of the two negative sidelobes to the scheme has resulted in
the sum of the coefficients for the mass matrix to fall slightly below 1 instead (0,8172), which
means an underrepresentation of the elastic parameters. For a two dimensional case this would
mean a decrease to roughly two-thirds (0,668) of the actual coefficient value, and estimated
half the value for a three-dimensional space. The numerical examples show a high sensitivity of
the stability of the trial functions to the numerical solution, and the importance of stable trial
functions especially as we work towards a three-dimensional model. Although the deviation of
the weight coefficients reduces with increasing order of the difference scheme, the results show
that sinc trial functions for a five-point scheme have too large of an error margin.

However, as the order of the difference scheme increases by one node on either side, the number
possibilities in which the trial functions can overlap increases by double of that. For example,
a five-point difference scheme in a one-dimensional system (Fig.4) shows 7 overlap scenarios for
the trial functions, which are 4 more possibilities than that of a three-point difference scheme.
The reason is because the difference scheme gains an additional off-centre forward and backward
difference operator per expansion of the points used in the system. In the five-point case the
forward difference formula incorporates the nodes from (z0 − ∆z) to (z0 + 3∆z), whereas the
backward difference formula from (z0−3∆z) to (z0 +∆z). Therefore the nodes at (z0−3∆z) and
(z0 + 3∆z) have a single overlap situation contributing to the stability of the elastic parameters,
despite being outside the influence of the central difference operator. The increase in grid
coverage for each higher order of the difference scheme has an exponential effect as we add extra
dimensions to our model, which is apparent through a comparison between the three-point and
five-point overlap figures in the two-dimensional space (Fig.5 and Fig.6) with respect to one
dimension. It shows that as we move from a three-point system to a five point system for a
2D-case, there is an increase from 9 to 49 overlap scenarios, which is rather significant compared
to an increase from 3 to 7 for the 1D-case. If we would use a five-point difference stencil for
synthetic wave propagation for a hypothetical three-dimensional case, there would be a total
of 343 overlap possibilities for the trial functions compared to 49 scenarios for a three-point

2015 – 2016



16 Master thesis

scheme. That is 343 coefficients to express the weighting of the elastic parameters for the mass
matrix T and stiffness matrices H for a grid point m. For heterogenous media that means
that the coefficients in H are a function of the shear modulus µ in point m and n, as the
elastic modulus is anisotropic. The solution for the weak form of the equation of motion for a
five-point difference scheme will therefore accommodate heterogeneity much better than a three-
point scheme because the grid coverage for the assessment of a nodal point m gets exponentially
larger for each dimensional space.

Regardless of the difference scheme used for synthetic waveform generation, the method remains
based on approximations of the partial differential equations and will contain numerical errors.
Optimisation of the spatial and temporal operators to obtain the exact mass and stiffness matri-
ces is encouraged in order to reduce numerical dispersion from the synthetic waveforms. Figures
12 and 13 compare 2D synthetic waveforms using the conventional and optimal operators for
a homogenous medium. There is clear ringing behind the ray fronts in figure 12, caused by
the numerical dispersion from approximating the solution. Using the optimised operators as
in figure 13, it is shown that the ringing is greatly reduced. The Frechet kernels in figures 14
and 15 show a more localised sensitivity when using optimised operators. Especially for layered
model structures there is increased interference of numerical errors with the waveform that cause
artefacts within the synthetic waveforms.

6 Conclusion

The results highlight the importance of stable trial functions to accurately describe the elastic
parameters along the grid for the operators of wave propagation. High sensitivity to deviations
will cause fluctuations in the weight coefficients when summed for the grid which amplify for
each dimension added to the computational space. Therefore using sinc trial functions for
grid interpolation becomes less feasible for synthetic wave generation for the two- and three-
dimensional cases. Perspectives for sinc trial function remain within one-dimensional wave
propagation models for higher order schemes, where the sum of the coefficients converges to 0
and acceptable stability is acquired.

Although the use of Sinc trial functions for grid interpolation provides adequate stability for
a limited number of cases, it remains of interest to quantify the effect of using waveform-like
trial functions compared to linear splines. Further potential research could involve higher order
1D difference schemes for synthetic waveform generation, where a stable sinc interpolation is
compared with a linear spline approach for the modeling of more complex, ”real Earth” scenarios.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Trial functions and their derivatives for the different difference schemes covered in this paper.
(a):Three-point spline function. (b): First derivative of a three-point spline function. (c):Three-point
sinc function. (b): First derivative of a three-point sinc function. (e):Five-point sinc function. (b):
First derivative of a five-point sinc function. The x-axis displays the number of points the function is
interpolated with; on the y-axis the weight coefficient of the trial function.
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Figure 2: The overlap stencil for a three-point spline function in one dimension. The x-axis displays the
gridpoints; the y-axis the weight coefficients. The dotted green spline functions depict the trial functions
at (z + ∆z) and (z −∆z) which are considered for the forward and backward difference. The sum of the
overlap between the central trial function z0 and (z ±∆z) is represented by the red line.

Figure 3: The overlap stencil for a three-point sinc function in one dimension.

Figure 4: The overlap stencil for a five-point sinc function in one dimension. In black the sinc trial
function at gridpoint z0; greenforthetrialfunctionsat(z±∆z), blue for the trialfunctions at (z ± 2∆z)
and purple for the trialfunctions at (z± 3∆z). The red line is the joint contribution of the trial functions
along the grid.
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Figure 5: All the possible two-dimensional overlap scenarios for a three-point difference scheme between
two arbitrary trial functions m (light green grid) and n (white grid). A dark green highlight annotates an
area of overlap between the trial functions, which corresponds to its respective weight coefficient in the
tables 7 to 16 , depending on the shape of the overlapping trial functions in question.
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Figure 6: All the possible two-dimensional overlap scenarios for a five-point difference scheme between
two arbitrary trial functions m (light green grid) and n (white grid). A dark green highlight annotates an
area of overlap between the trial functions, which corresponds to its respective weight coefficient in the
tables 17 to 21 , depending on the shape of the overlapping trial functions in question
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Figure 7: Two-dimensional waveform using the conventional operators for synthetic waveform generation.

Figure 8: Two-dimensional waveform using the optimal operators for synthetic waveform generation.
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Figure 9: Two dimensional Frechet sensitivity kernels using conventional operators for the wave equation

Figure 10: Two dimensional Frechet sensitivity kernels using optimal operators for the wave equation
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Table 1: Trial function parameters for mass and stiffness matrices T and H1 for a three point spline func-
tion in a one-dimensional system containing five gridpoints, including free surface boundary conditions.
Conforms to results of [Geller and Takeuchi, 1995]

1/3 1/6 0 0 0
1/6 2/3 1/6 0 0
0 1/6 2/3 1/6 0
0 0 1/6 2/3 1/6
0 0 0 1/6 1/3

Table 2: Trial function parameters for stiffness matrix H for a three point spline function in a one-
dimensional system containing five gridpoints, including free surface boundary conditions. Conforms to
results of [Geller and Takeuchi, 1995]

0.98 -1.0 0 0 0
-1.0 2.0 -1.0 0 0
0 -1.0 2.0 -1.0 0
0 0 -1.0 2.0 -1.0
0 0 0 -1.0 0.98

Table 3: Trial function parameters for mass and stiffness matrix T and H1 for a three point sinc function
in a one-dimensional system containing five gridpoints, including free surface boundary conditions.

0.4514 0.2470 0 0 0
0.2470 0.9028 0.2470 0 0
0 0.2470 0.9028 0.2470 0
0 0 0.2470 0.9028 0.2470
0 0 0 0.2470 0.4514
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Table 4: Trial function parameters for stiffness matrix H2 for a three point sinc function in a one-
dimensional system containing five gridpoints, including free surface boundary conditions.

1.1515 -0.9591 0 0 0
-0.9591 2.3034 -0.9591 0 0
0 -0.9591 2.3034 -0.9591 0
0 0 -0.9591 2.3034 -0.9591
0 0 0 -0.9591 1.1515

Table 5: The one-dimensional weight coefficients for mass and stiffness matrix T and H1 at a central
node m, calculated for five-point sinc functions according to the overlap stencil in Fig. 4

0.0229 -0.1578 0.0686 0.9499 0.0686 -0.1578 0.0229

Table 6: The one-dimensional weight coefficients for stiffness matrix component H2 at a central node m,
calculated for the 1st order derivatives of five-point sinc trial functions according to the overlap stencil in
Fig. 4

0.2153 -0.2408 -1.3132 2.7918 -1.3132 -0.2408 0.2153

Table 7: The two-dimensional weight coefficients for mass matrix T at a central node m, calculated for a
three-point linear spline trial function according to the overlap stencil in Fig. 5

1/36 1/9 1/36
1/9 4/9 1/9
1/36 1/9 1/36

Table 8: The two-dimensional weight coefficients for stiffness matrix component H11 at a central node
m, calculated for the joint contribution of three-point linear spline trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

- 1/6 1/3 - 1/6
- 2/3 4/3 - 2/3
- 1/6 1/3 - 1/6

Table 9: The two-dimensional weight coefficients for stiffness matrix component H33 at a central node
m, calculated for the joint contribution of three-point linear spline trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

- 1/6 - 2/3 - 1/6
1/3 4/3 1/3
- 1/6 - 2/3 - 1/6

Table 10: The two-dimensional weight coefficients for stiffness matrix component H13 at a central node
m, calculated for the joint contribution of three-point linear spline trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

- 1/4 0 1/4
0 0 0
1/4 0 - 1/4

Table 11: The two-dimensional weight coefficients for stiffness matrix component H31 at a central node
m, calculated for the joint contribution of three-point linear spline trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

- 1/4 0 1/4
0 0 0
1/4 0 - 1/4
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Table 12: The two-dimensional weight coefficients for overlapping mass matrix T at a central node m,
calculated for the joint contribution of three-point sinc trial functions according to the overlap stencil in
Fig. 5

0.061 0.223 0.061
0.223 0.8151 0.223
0.061 0.223 0.061

Table 13: The two-dimensional weight coefficients for overlapping stiffness matrix component H11 at a
central node m, calculated for the joint contribution of three-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

-0.236 0.569 -0.2369
-0.8659 2.0796 -0.8659
-0.2369 0.5689 -0.2369

Table 14: The two-dimensional weight coefficients for overlapping stiffness matrix component H33 at a
central node m, calculated for the joint contribution of three-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

-0.2369 -0.8659 -0.2369
0.5689 2.0796 0.5689
-0.2369 -0.8659 -0.2369

Table 15: The two-dimensional weight coefficients for overlapping stiffness matrix component H13 at a
central node m, calculated for the joint contribution of three-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

-0.4947 0 0.4877
0 0 0
0.4947 0 -0.4877

Table 16: The two-dimensional weight coefficients for overlapping stiffness matrix component H31 at a
central node m, calculated for the joint contribution of three-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 5

-0.4947 0 0.4947
0 0 0
0.4877 0 -0.4877

Table 17: The two-dimensional weight coefficients for overlapping mass matrix component T at a central
node m, calculated for the joint contribution of five-point sinc trial functions according to the overlap
stencil in Fig. 6

0.00052 -0.0036 0.0016 0.0217 0.0016 -0.0036 0.00052
-0.0036 0.0249 -0.0108 -0.1499 -0.0108 0.0249 -0.0036
0.0016 -0.0108 0.0047 0.0651 0.0047 -0.0108 0.0016
0.0217 -0.1499 0.0651 0.9024 0.0651 -0.1499 0.0217
0.0016 -0.0108 0.0047 0.0651 0.0047 -0.0108 0.0016
-0.0036 0.0249 -0.0108 -0.1499 -0.0108 0.0249 -0.0036
0.00052 -0.0036 0.0016 0.0217 0.0016 -0.0036 0.00052
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Table 18: The two-dimensional weight coefficients for overlapping stiffness matrix component H11 at a
central node m, calculated for the joint contribution of five-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 6

0.0049 -0.0055 -0.0301 0.0638 -0.03 -0.0055 0.0049
-0.034 0.038 0.208 -0.4405 0.2072 0.038 -0.034
0.0148 -0.0165 -0.0904 0.1914 -0.09 -0.0165 0.0148
0.2045 -0.2288 -1.2522 2.6521 -1.2474 -0.2288 0.2045
0.0148 -0.0165 -0.0904 0.1914 -0.09 -0.0165 0.0148
-0.034 0.038 0.208 -0.4405 0.2072 0.038 -0.034
0.0049 -0.0055 -0.0301 0.0638 -0.03 -0.0055 0.0049

Table 19: The two-dimensional weight coefficients for overlapping stiffness matrix component H33 at a
central node m, calculated for the joint contribution of five-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 6

0.0049 -0.034 0.0148 0.2045 0.0148 -0.034 0.0049
-0.0055 0.038 -0.0165 -0.2288 -0.0165 0.038 -0.0055
-0.0301 0.208 -0.0904 1.2522 -0.0904 0.208 -0.0301
0.0638 -0.4405 0.1914 2.6521 0.1914 -0.4405 0.0638
-0.03 0.2072 -0.09 -1.2474 -0.09 0.2072 -0.03
-0.0055 0.038 -0.0165 -0.2288 -0.0165 0.038 -0.0055
0.0049 -0.034 0.0148 0.2045 0.0148 -0.034 0.0049

Table 20: The two-dimensional weight coefficients for overlapping stiffness matrix component H13 at a
central node m, calculated for the joint contribution of five-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 6

-0.00024 0.0049 -0.0154 0 0.0154 -0.0049 0.00024
0.0049 -0.1001 0.3173 0 -0.3173 0.1001 -0.0049
-0.0154 0.3123 -0.9899 0 0.9899 -0.3123 0.0154
0 0 0 0 0 0 0
0.0154 -0.3123 0.9899 0 -0.9899 0.3123 -0.0154
-0.0049 0.1001 -0.3173 0 0.3173 -0.1001 0.0049
0.00024 -0.0049 0.0154 0 -0.0154 0.0049 -0.00024

Table 21: The two-dimensional weight coefficients for overlapping stiffness matrix component H31 at a
central node m, calculated for the joint contribution of five-point sinc trial functions and their 1st order
derivatives according to the overlap stencil in Fig. 6

-0.00024 0.0049 -0.0154 0 0.0154 -0.0049 0.00024
0.0049 -0.1001 0.3123 0 -0.3123 0.1001 -0.0049
-0.0154 0.3173 -0.9899 0 0.9899 -0.3173 0.0154
0 0 0 0 0 0 0
0.0154 -0.3173 0.9899 0 -0.9899 0.3173 -0.0154
-0.0049 0.1001 -0.3123 0 0.3123 -0.1001 0.0049
0.00024 -0.0049 0.0154 0 -0.0154 0.0049 -0.00024
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