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Preface

The thesis laying before the reader in many ways represents a mile stone in a
larger project which has occupied me for the entirety of my adult life. The ori-
gins of this project may be traced to my Profielwerkstuk for secondary school.
Initially planning to devote this magnum opus of my high-school career to a
topic of a purely mathematical nature, this intent was foiled by a policy of the
school which required me to combine two different subjects in this project. The
combination in question did not require much thought, as I had a longstand-
ing interest in both physics and mathematics. Surely, there was no shortage of
potential topics within this intersection. However, placing a perhaps excessive
amount of value on the originality of my personal projects, my wish became to
pioneer a new way in which to combine the two subjects. More specifically, I
hoped to lay the groundwork of a ‘new physics’, based on a branch of mathe-
matics not previously applied to the study of nature.

The end product of my high-school investigations did not quite live up to this
rather lofty goal. Nevertheless, the ambition to formulate a physics grounded
in an alternative mathematical language remained within my consciousness as I
proceeded with my bachelor studies in physics and mathematics. Being exposed
to more and more different subfields of mathematics and increasingly recogniz-
ing the extent to which the conceptual structure of contemporary physics was
linked to its underlying mathematical formalisms, it did not take long for these
dormant aspirations to reawaken.

It was not until my first encounter with the subject of logic, however, that
my eyes were opened to a new dimension of my ‘grand project’. The discipline of
model theory, in particular, proved to be a definitive influence on the evolution
of my academic interests. With the relation between formal languages and
mathematical structures being at the locus of model-theoretic investigations, it
did not take long for me to recognize the potential this field of study had to
offer for investigating the relation between mathematical languages and physical
systems (essentially moving the framework of model theory one rung down on
the ladder of abstraction). Against the backdrop of my interest in ‘alternative
physics’, it was now but a small step to formulating higher-level questions: What
is a scientific theory, construed as generally as possible? How indispensable is
mathematics, and specifically calculus, to the study of nature? And how can we
apply the framework of model theory to answer such questions? These queries
eventually led me to become interested in the history, logic and philosophy of
science and have been at the center of spare-time readings and course papers
ever since, also inspiring the topic of my bachelor’s thesis.

With my interests in physics shifted to the philosophical end of the spectrum
and my mathematical interests increasingly focused in the realm of logic, the
direction of my future studies seemed clear. It was through these sequence of
events that I would eventually find myself at Utrecht University, where I would
take up a double master’s program in History and Philosophy of Science on
the one hand and Mathematical Sciences (with a specialization in logic) on
the other. Here, I experienced an unprecedented amount of academic freedom,
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which I eagerly employed for the further advancement of my ever-evolving grand
project. The culmination of this latest stage of my academic development may
be found in the pages of the following master’s thesis. With the exception of
the historical dimension of my interest in ‘alternative physics’, which includes
topics such as the Scientific Revolution, the mathematization of nature and both
western and non-western schools of natural philosophy, the present text provides
the reader with a reasonably comprehensive overview of the cerebrations that
have occupied me for the last number of years.

I would like to thank my supervisors F.A. Muller and Jaap van Oosten for
supervising such an idiosyncratic research project. Moreover, I would like to
express gratitude to David Baneke for being an extremely kind and responsive
study advisor during these past years and for assisting me with the administra-
tive formalities concerning my double master’s program.

It is with some sadness that I see the end of my time at Utrecht Univer-
sity approaching. Both academically and socially, Utrecht provided me with a
homely environment of which I am glad to have been a part for the duration of
my master studies. However, I am most happy to report that during the writing
of this thesis, I have succeeded in obtaining a PhD position at the History and
Philosophy of Science department of the University of Cambridge. I have no
doubt that Cambridge will prove to be an extremely stimulating environment
and I am certain I will find myself well poised for taking the next steps in my
ongoing quest to understand the fundamental nature of the scientific enterprise.
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Chapter 1

Prolegomena

The present chapter serves to lay out the main issues, claims and methodol-
ogy that will be of concern to us throughout this thesis. In section 1.1, I argue
that the field of ‘metascience’ is plagued by recurring methodological difficulties,
which may be solved by turning to a recent stream of logical research. Subse-
quently, I outline the manner in which I shall unfold this argument over the
course of the thesis. Next, in section 1.2, we will take a moment to reflect upon
the notion of metascience and will specify which fields of study are referred to
exactly by this denomination. Lastly, in section 1.3, we will discuss some pre-
liminary notions from many-sorted first-order logic, which will be required in
later chapters.

1.1 Introduction

The meta prefix, perhaps more so than any other of its linguistic relatives,
possesses an inherent, enigmatic appeal. The act of prepending it to even the
simplest of terms can open up fascinating avenues of thought. A shining example
demonstrating the latter possibility is found in the study of metamathematics.
It is with this example that we encounter a helpful tool in such metatheoretical
investigations, viz. the discipline of logic. As is well-known, the application
of logic to metamathematics has led to many results of great conceptual and
technical interest, such as Gödel’s incompleteness theorem.

Enamored with the early applications of logic to metamathematics during
the first half of the twentieth century, the group of philosophers known as the
logical positivists concurrently set about giving a logical formalization1 of the

1Throughout this thesis, I shall employ the term formal and derived expressions to refer to
any type of methodology or entity explicated in a rigorous, precise and (often) mathematical
fashion. In particular, formal in general does not necessarily refer to the usage of logic and
syntactic expressions as a means of explication. The only exception to this rule will be my
usage of the term formal language, which will be used to refer to languages consisting of
meaningless, syntactic symbols and statements.
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natural sciences and hence metascience was born.2 Despite the positivist
project’s eventual demise, the notion of a formally expounded metascience re-
mained alive in the collective consciousness of the philosophy-of-science com-
munity. The twentieth century saw a host of approaches to the formalization
of science employing a variety of different formalisms. Eventually, an approach
was established relying only on tools from set theory, and logic was displaced
to the background. Thus, while the development of logical metascience had all
but stagnated, metascience as a whole still received a considerable amount of
attention. Yet, in spite of much effort, we have yet to formulate a metascience
that is on par with metamathematics in terms of fruitfulness and rigor. This
has led some philosophers of science to question the tenability of such formal
research programs altogether, cf. (Contessa 2006, 376).

This thesis forms part of a wider project, first described in (Vos 2015b),
to reappraise metascience as a whole and logical metascience in particular. To
accomplish this, I hold we must first identify a crucial flaw of traditional meta-
scientific research.

Problem (First-Order Fixation)
The traditional approaches to metascience rely on an inappropriate concep-
tion of logic as a metatheoretical formalism, i.e. a conception which largely
identifies the use of logic with the use of first-order logic.

This conflation, I hold, leads to awkward and unfruitful formal frameworks for
the analysis of science. In slogan form, we might say the traditional approaches
to metascience suffer from first-order fixation.3,4

Associated to this perceived problem, I of course also propagate a solution.
In line with the latest developments in the field known as universal logic, we can
adopt a more abstract view of the notion of logic, by identifying a logic with
a certain type of mathematical structure. Broadening or view of logic in this
manner, so I claim, holds great potential for metascience:

Solution (Logical Abstractivism)
By adopting a more abstract view of logic, in the sense of universal logic,
we can circumvent many flaws of the traditional approaches and potentially
arrive at much more fruitful frameworks for metascience.

2The usage of the term metascience here is a personal idiosyncrasy and does not seem
to have caught on among philosophers of science. To my knowledge, the term has only seen
prominent usage in the work of David Pearce and Veikko Rantala (1983a) and, to a lesser
extent, Mario Bunge (1959).

3As has been noted by Lutz (2012, 80–3), the oft-heard claim that the logical positivists
relied exclusively on first-order logic is historically false. Accordingly, the term first-order
fixation should not be taken to denote an exclusive preoccupation with the formalism of first-
order logic, but rather a preoccupation with formalisms inspired by first-order logic, such as
higher-order logic or some other extensions of first-order logic.

4Alternatively, predicate predilection or classical constipation.
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This conviction, i.e. that an abstract conception of logic may prove valuable
for metascience, I have dubbed logical abstractivism. This, by itself, is not
an entirely new idea. In fact, it has been directly inspired by the joint work
of the Finnish philosopher-logician Veikko Rantala (b. 1933) and the British
philosopher-logician David Pearce (b. 1952). From the late 1970s to the early
2000s, Pearce and Rantala argued in a number of papers and monographs for
the application of abstract logics to the branch of metascience known as struc-
turalism. I shall refer to this body of work as the first wave of logical ab-
stractivism (FWLA). This first wave, however, does not seem to have made
a large splash in the philosophy-of-science community and remains very much
at the periphery of metascientific investigations.

In this thesis, I shall not be concerned with substantiating the supposed
first-order fixation of metascience and its harmfulness to the discipline. Rather,
the focus here will lie with assessing the reasons for the failure of the FWLA
and discussing a novel way in which we might apply methods from universal
logic to metascience, laying the groundwork for what may eventually become a
second wave of logical abstractivism (SWLA), and showing how this can
help us improve upon several important deficiencies within the first wave. More
specifically, I will argue that two comparatively recent, highly abstract strands
of research within universal logic can help give new impetus to the formal study
of science. We can thus express the central claim of this thesis as follows.

Central Claim
The first wave of logical abstractivism has failed to, and is not well-suited
to, make a significant impact on metascience. However, a second, more suc-
cessful wave of logical abstractivism may be initiated by employing newer,
more abstract subfields of universal logic.

Now, in expounding this claim, it is essential to first establish what the
extant approaches to metascience actually are. This is not a trivial task. As
noted in footnote 2, the term metascience is not common among philosophers
of science. Hence, it is not immediately clear what the scientific counterpart
of metamathematics in the philosophical literature is supposed to be. It turns
out, however, that one division of the literature can be seen to provide a de
facto account of metascience. This is the literature concerned with the question
what is a scientific theory? There currently exist three major approaches to this
question, viz. the syntactic view of theories, the structural view of theories and
the categorical view of theories. Of these, the former two can be seen as ‘old’
approaches, having taken form in the first and second halves of the twentieth
century respectively. We shall explore these old approaches in chapter 2. The
focus, in particular, will lie with the most well-developed subapproaches within
the framework of the structural view, viz. the state-space approach and the
set-theoretic approach.

The set-theoretic approach, more so than the other two, is of a rather ex-
pansive nature. A discussion of this framework will thus require us to weigh
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completeness against concision. Therefore, I have opted for the following pre-
sentation. We will discuss the set-theoretic framework in a two-step fashion.
Firstly, we simply look at the manner in which the notion of an individual sci-
entific theory is formalized in the framework. This will already unveil some
of the concepts valued by the framework’s proponents. Secondly, we expand
our scope to include not only the formalization of a scientific theory by itself,
but also the explication of various kinds of intertheory relations, such as the
reduction of one theory to another.

Before turning to the more recent approach to theory-structure, we will
examine the first wave of logical abstractivism, as applied to the metascience of
old, in chapter 3. This will be done by first investigating the logical formalism
presupposed by the FWLA. This is the formalism widely known as abstract
model theory but better referred to as semi-abstract model theory for reasons
that will become apparent in due time.5 We will look into some of the defining
characteristics of the discipline and reflect on the potential it has to offer for for
the study of metascience. Next, we will investigate how Pearce and Rantala have
tried to actualize this potential, by discussing their application of semi-abstract
model theory to the set-theoretic approach to scientific theories.

In chapter 4, we set foot in modern times with a discussion of the cate-
gorical approach to scientific theories. Obtaining an adequate picture of this
contemporary school of metascience is a somewhat mathematically involved
task, requiring notions from the discipline of category theory. Readers unfamil-
iar with this discipline may consult appendix A for an introduction. Typical
of this approach is the existence of several different mathematical characteriza-
tions of a given notion, e.g. the concept of theory or equivalence. Hence, much
of the chapter is dedicated to properly explicating the variety of these notions,
following broadly the same two-step approach as used for the discussion of the
set-theoretic approach.

Finally, I will argue that the first wave of logical abstractivism presents us
with an ultimately misguided attempt to extend the metascientist’s formal ap-
paratus and sketch the outlines of a possible second wave of logical abstractivism
in chapter 5. This SWLA, I argue, possesses a number of attractive features
when compared to the FWLA and has a rich potential for metascientific appli-
cations. Roughly, the line of attack here will be to show that the FWLA fails
in at least two different ways. That is:

(i) It fails to optimally utilize its ambient formal framework, i.e. semi-abstract
model theory.

(ii) It fails to improve the metascientific framework at which it was targeted.

After this, we will explore two recent model-theoretic frameworks, viz. the study
of abstract modal logics and the field of institution-independent model theory,
which, each in their own way, represent marked improvements with respect to

5Less common names, for this discipline include abstract logic and general model theory.
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semi-abstract model theory. Lastly, I will argue that these new formal frame-
work can help give rise to a SWLA which avoids the pitfalls of the FWLA. This
would establish, then, the central claim of the thesis as described above.

Now, before we commence with our undertaking, I wish to lay out some
conventions to which I shall adhere throughout the thesis.

• While it is common among mathematicians to employ an omnipresent we
in written text, I never found this practice to be of much value. Instead,
I shall reserve ‘we’ for instances in which I am involving the reader in a
certain task, e.g. ‘We shall now look at...’ In all other cases, I simply
adhere to ‘I’, as in ‘I will now argue...’

• New paragraphs are indicated by indentation. This means that when we
have an equation, table or similar object separating two lines of the same
paragraph, the first line following the equation/table will not be indented.
An exception is when the first line of a new paragraph is both directly
preceded and directly followed by white space in the adjacent lines. In
this case, the first line of the new paragraph will be unindented.

• References and citations are given in accordance with the guidelines of the
journal Philosophy of Science. In particular, this means that all citations
are given by stating the author’s last name, year of publication and, if
relevant, a page number encased within parentheses in the body of the
text. The author’s name will be separated from the year of publication
by a white space, while the year of publication is separated from the page
number by a comma. An exception to this rule is when the author’s name
occurs as part of a sentence, in which case only the year of publication
and, if relevant, a page number are given within parentheses.

• At the beginning of each chapter I briefly reiterate its purpose within the
thesis as a whole. The content of the chapter will then be outlined in more
detail, referencing the various sections.

• New concepts or phrases, the first time they are introduced, will be written
in italics. For the most part, italics will also fulfill the role of quotation
marks. In particular, italics rather than quotation marks will be used to
refer to words, terms or symbols.6 In addition, the use of italics will also
retain its traditional meaning of placing emphasis on a certain expression.
By contrast, quotation marks will generally be used to indicate ‘figurative
speech’. Boldface is used occasionally to signify an important notion
or expression being introduced in running text, i.e. outside of definitions,
lemmas, etc.

• For the most part, I adhere to the ‘Mermin Imperative’, i.e. the practice
to “Number all your formulae, because although you may not refer to all

6If lexicographical considerations demand it, e.g. when referring to the symbol ‘+’, I will
use quotation marks instead.
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of them, someone else might want to refer to some formula you do not
refer to” (Muller 1998, x).

• Throughout the thesis, we will encounter several different views, approaches
and frameworks for analyzing scientific theories and doing metascience.
To allow for a healthy variation in vocabulary, I shall, for all intents and
purposes, treat these three terms as synonyms.

There is nothing I value more in academic writing than a clear, well-defined
structure. At no point should one be left wondering what we are doing, why we
are doing it, and where we are with respect to our overall goals or argument.
Accordingly, I hope the reader will find these values exemplified in the material
presented below.

1.2 Metascience Defined

As already noted several times above, I identify the extant approaches to meta-
science with the approaches to the structure of scientific theories debate within
the philosophy of science. Whence this identification? After all, ‘metascience’,
in the present usage, refers to the formal study of science, not scientific theories.
Thus, while we may perfectly well set a proper analysis of scientific theories as a
necessary condition for a metascientific framework, it is certainly not a sufficient
condition.

Let us ask, then, what requirements we do need a metascience to satisfy. We
need not search far for these conditions. In fact, they are already present in the
brief characterization given above, viz. metascience being the formal study of
science. This suggests the following two criteria for frameworks for metascience.
Such a framework should

(i) be articulated by means of some formal apparatus (e.g. logic, set theory)
and

(ii) be able to explicate a reasonable number of aspects of the scientific enter-
prise.

The critical reader may note that these criteria still underdetermine what is
to qualify as metascience and what not. In particular, it is unclear what is to
count as a ‘reasonable number’ in criterion (ii).7 However, while such a concern
would be, in principle, justified, in practice we find that criteria (i) and (ii)
are already sufficient to determine which frameworks are deserving of the name
metascience.

To see why this the case, we must look at the evolution of the philosophy
of science as a discipline. We may roughly divide the philosophy of science

7Note that replacing a reasonable number of with all in criterion (ii) would make it far
too stringent. Indeed, not even metamathematics has managed to successfully include each
and every aspect of mathematics within its scope. For example, the concept of explanation in
mathematics still falls exclusively within the purview of informal philosophy of mathematics.
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in two large subdisciplines. First, there is the general philosophy of science,
which, true to its name, seeks to understand science at a general level without
involving the details of a particular field of study such as physics, biology or
geology.8 Second, we have the philosophy of the special sciences, which serves
as an umbrella term for various disciplines, such as the philosophy of physics
and the philosophy of biology. Characteristic for these disciplines is the preoc-
cupation with philosophical problems specific to the particular discipline under
consideration, e.g. the measurement problem in philosophy of physics.

At first glance, we might consider the general philosophy of science to be
the ideal breeding ground for metascience. And to some extent this true: every
framework we will consider below originates from the general philosophy of
science. Yet, the general philosophy of science traditionally is shaped in such a
way that makes development of a full-fledged metascience difficult. Each general
scientific concept, e.g. theory, model, explanation, accrues its own literature
and research community and interconnections are rarely made. Naturally, this
situation has not proved conducive to the formation of metascience. For much
the same reason, we find no instances of metabiology or metageology9 within
the philosophy of the special sciences, which proceeds in a similar, piecemeal
fashion as the general philosophy of science.

This overarching approach to philosophy of science has made ‘grand frame-
works’, that analyze science or scientific discipline from a high level of generality,
a rarity. Even the general philosophy of science itself has, in recent times, seen
much neglect in favor of the philosophy of the special sciences. Now, the reason
why the discourse on the notion of scientific theory has managed to produce
such ‘grand’ approaches is because the notion of theory itself already occupies
a central node in our informal conception of science. Indeed, if asked to make
a list of the most important entities in the scientific enterprise, we might very
well expect scientists to put the concept of theory near the top. Because of this,
frameworks for analyzing scientific theories often make natural starting points
for the analysis for other scientific concepts, as we will see below.

None of this, however, is to say that the shift away from generality towards
more specialized problems is to be regarded as something lamentable. By focus-
ing on specific issues in specific disciplines, the philosophy of science has seen
a great increase in fruitfulness. In fact, the unsatisfactory nature of current
attempts at metascience is the very starting point of this thesis. What I do
find regrettable, though, is the complacency that has befallen the contemporary
philosophy of science. Science as we know it today only took form after 2200
years of intellectual inquiry into the fundamentals of nature. Metascience, by
contrast, has been abandoned after a mere century! Surely, there is more to be
done. With these words of encouragement in mind, let us now proceed with our
quest for a new metascience.

8This notwithstanding, a frequently encountered modus operandi in generalist frameworks
is to explicitly address only a few paradigmatic disciplines, often from within physics, and
leave different branches of science for future research.

9For historical reasons, the name of metaphysics has already been taken by a different field
of philosophical study.
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1.3 Logical Preliminaries

Throughout this thesis we will make use of several technical notions from mathe-
matical logic and adjacent areas. To ensure the following text is largely self-
contained, we will now go over some basic logical preliminaries which are needed
below.10 In addition, more elaborate introductions to the areas of category the-
ory and topos theory may be found in appendices A and B respectively. As
always, the most significant prerequisite required of the reader is the illustrious
trait that is mathematical maturity.

The definitions that are to follow all pertain to many-sorted first-order logic.
Whenever a new notion is introduced, this will be understood to be relative to
the system of many-sorted first-order logic. For example, when we say that ‘X
is defined to be such and such’, what is implicitly meant is that ‘X is defined to
be such and such with respect to many-sorted first-order logic’. We require this
provision since each of the defined notions has identically named counterparts
for different logical systems. In practice, however, it will usually be clear which
system of logic we are working in.

Definition 1.3.1. A signature Σ is a set of sort symbols, relation symbols,
functions symbols and constant symbols.11 Each of these symbols are simply
syntactic, meaningless objects, except that to each symbol we associate the
property of arity as follows:

• Sort symbols are assigned no arity.

• Each relation symbol P has an arity of form σ1×. . .×σn, where σ1, . . . , σn
denote sort symbols.

• Each function symbol f has an arity of form σ1 × . . . × σn → σ, where
σ1, . . . , σn, σ denote sort symbols.

• Each constant symbol c has an arity of form σ, where σ denotes a sort
symbol.

Intuitively, we can think of n as the number of ‘open places’ of a relation or
function symbols.

Whenever a given signature contains only a single sort, we will adhere to the
practice of omitting this sort symbol when specifying the signature in question.
For example, suppose the signature Σ contains exactly one sort symbol σ and
one relation symbol P then we simply denote this signature as Σ = {P}.

Definition 1.3.2. A variable x denotes a meaningless, syntactic object. The
arity of a variable is given by a sort symbol σ.

10The following subsection borrows heavily from section 2 of (Barrett & Halvorson 2015).
11Some logicians refer to this notion by the names of vocabulary or language, reserving the

term signature for another, closely related notion. In this thesis, however, we will not be
concerned with this distinction.
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It is assumed we have a countably infinite number of symbols and variables.

Definition 1.3.3. Let Σ be a signature and let σ ∈ Σ be a sort symbol. Then
a Σ-term of sort σ is recursively defined as follows:

• Every variable x of arity σ is a Σ-term of sort σ.

• Every constant symbol c ∈ Σ is a Σ-term of sort σ.

• If f ∈ Σ is a function symbol of arity σ1× . . .× σn → σ and t1, . . . , tn are
Σ-terms of sorts σ1, . . . , σn respectively, then f(t1, . . . , tn) is a Σ-term of
sort σ.

We say that t is a Σ-term if t is a Σ-term of sort σ for some σ ∈ Σ.

Definition 1.3.4. Let Σ be a signature and let t be a Σ-term. We write
t(x1, . . . , xn) to denote the fact that the variables occurring in t are included in
the set {x1, . . . , xn}.12

Definition 1.3.5. Let Σ be a signature. Then the atomic formulas over Σ are
defined to be all expressions either of the form

s(x1, . . . , xn) = t(x1, . . . , xn),

where s and t are Σ-terms of the same sort, or of the form

P (t1, . . . , tm),

where P ∈ Σ is a relation symbol of arity σ1 × . . . × σm and t1, . . . , tm are
Σ-terms of sorts σ1, . . . , σm respectively.

Definition 1.3.6. Let Σ be a signature. Then the Σ-formulas are recursively
defined as follows:

• Every atomic formula over Σ is a Σ-formula.

• If ϕ is a Σ-formula, then ¬ϕ is a Σ-formula as well.

• If ϕ,ψ are Σ-formulas, then ϕ ∨ ψ, ϕ ∧ ψ and ϕ → ψ are all Σ-formulas
as well.

• If ϕ is a Σ-formula and x is a variable of arity σ, then ∀σxϕ and ∃σxϕ are
Σ-formulas as well.

We say that ϕ is a formula if it is a Σ-formula for some signature Σ.13

Definition 1.3.7. Whenever a variable x in a Σ-formula ϕ occurs in tandem
with a quantifier Qx, where Q ∈ {∀,∃}, it is said to be a bound occurrence of x.
Alternatively, if x does not occur bound, it is referred to as a free occurrence.

12Note that this definition does not entail that all x1, . . . , xn necessarily occur in t.
13In general, whenever we define something to be an X relative to some signature Σ, we

say that something is simply an X in case there exists some Σ for which it is X relative to Σ.

13



Definition 1.3.8. Let Σ be a signature and let ϕ be a Σ-formula. We write
ϕ(x1, . . . , xn) to denote the fact that the free variables occurring in ϕ are in-
cluded in the set {x1, . . . , xn}.14

The goal is now to establish a relation between our meaningless, syntactic
formulas and some meaningful, mathematical entities. The entities in question
are given as follows:

Definition 1.3.9. Let Σ be a signature. Then a Σ-model M is defined to be a
tuple consisting of

• for every sort symbol σ ∈ Σ, a non-empty set Mσ such that Mσ is disjoint
from Mσ′ , for any other sort symbol σ′ ∈ Σ,

• for every relation symbol P ∈ Σ of arity σ1 × . . .× σn a relation
PM ⊆Mσ1 × . . .×Mσn ,

• for every function symbol f ∈ Σ of arity σ1 × . . . × σn → σ, a function
fM : Mσ1

× . . .×Mσn →Mσ,

• for every constant symbol c ∈ Σ of arity σ, a constant cM ∈Mσ.

In light of the above terminology, we need to distinguish carefully between, for
instance, function symbols and functions. The only case in which this dichotomy
is not observed for sort symbols, which, for convenience, will frequently be
referred to as simply sorts. Accordingly, we will say that a is an element of sort
σ if a ∈Mσ.

Next, prior to linking these models to formulas, we need to relate them to terms.

Definition 1.3.10. Let Σ be a signature and M be a Σ-model. Let a1, . . . , an
be elements of sorts σ1, . . . , σn respectively. For any term t(x1, . . . , xn) of sort σ
with x1, . . . , xn of sorts σ1, . . . , σn respectively, we recursively define a mapping
to elements of M as follows:

• xi[a1, . . . , an] = ai, for any 1 ≤ i ≤ n.

• c[a1, . . . , an] = cM , for any constant symbol c ∈ Σ with sort σ.

• For any term of the form f(t1, . . . , tn) with sort σ and t1, . . . , tn of sorts
σ1, . . . , σn respectively, define

f(t1, . . . , tn)[a1, . . . , an] = fM (t1[a1, . . . , an], . . . , tn[a1, . . . , an]).

What the above definition tells us is that given an assignment of variables
x1, . . . , xn to elements a1, . . . , an of the appropriate sorts, we can extend this
assignment to all Σ-terms in the obvious manner.

Now, the relation between models and formulas can be explicated as follows:

14Note that this definition does not entail that all x1, . . . , xn necessarily occur in ϕ.
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Definition 1.3.11. Let Σ be a signature, ϕ(x1, . . . , xn) be a Σ-formula, M be
a Σ-model and let a1, . . . , an be elements of M . It is assumed that xi and ai
are both of sort σi, for all 1 ≤ i ≤ n. We now define the relation |= between the
sequence a1, . . . , an and formula ϕ, denoted M |= ϕ[a1, . . . , an], as follows:

• If ϕ is of the form s(x1, . . . , xn) = t(x1, . . . , xn), then M |= ϕ[a1, . . . , an]
if and only if s[a1, . . . , an] = t[a1, . . . , an].

• If ϕ is of the form P (t1, . . . , tn) for some relation symbol P ∈ Σ, then
M |= ϕ[a1, . . . , an] if and only if (t1[a1, . . . , an], . . . , tn[a1, . . . , an]) ∈ PM .

• M |= ¬ϕ[a1, . . . , an] iff not M |= ϕ[a1, . . . , an].

• M |= ϕ ∧ ψ[a1, . . . , an] iff M |= ϕ[a1, . . . , an] and M |= ψ[a1, . . . , an].

• M |= ϕ ∨ ψ[a1, . . . , an] iff M |= ϕ[a1, . . . , an] or M |= ψ[a1, . . . , an].

• M |= ϕ→ ψ[a1, . . . , an] iff M |= ϕ[a1, . . . , an] implies M |= ψ[a1, . . . , an].

• M |= ∀σyϕ[a1, . . . , an] iff M |= ϕ[a1, . . . , an, a] for all a ∈Mσ.

• M |= ∃σyϕ[a1, . . . , an] iff M |= ϕ[a1, . . . , an, a] for some a ∈Mσ.

This definition is often referred to as a truth definition, since it tells us intuitively
what it means for a formula ϕ to be considered ‘true’ in a given model M
and given that we interpret the variables x1, . . . , xn as the elements a1, . . . , an
respectively. Of particular importance is the truth definition applied to a specific
type of formula.

Definition 1.3.12. Let ϕ be a formula. If ϕ contains no free variables, then it
is called a closed formula or a sentence.

Definition 1.3.13. Let ϕ be a sentence. Then we denote the fact that M |= ϕ[],
i.e. ϕ is made true in the model M for the empty sequence, by writing simply
M |= ϕ. We then say that M satisfies ϕ or M makes true ϕ.

Definition 1.3.14. Let Σ be a signature, Γ be a set of Σ-sentences and M be
a Σ-model. Then we say that M satisfies Γ, symbolically M |= Γ, if we have
M |= ϕ for every ϕ ∈ Γ.

In addition, we now have the following derived notions.

Definition 1.3.15. Let Σ be a signature, Γ be a set of Σ-sentences and ϕ be
a Σ-sentence. Then we write Γ |= ϕ if for every Σ-model M we have M |= Γ
implies M |= ϕ.

Definition 1.3.16. Let Σ be a signature and Γ be a set of Σ-sentences. Then
Γ is called a theory if Γ is deductively closed, i.e. if for every Σ-sentence ϕ we
have Γ |= ϕ implies ϕ ∈ Γ.

Definition 1.3.17. Let Σ be a signature and M be a Σ-model. Then the theory
of M , denoted Th(M), is the set of all Σ-sentences ϕ such that M |= ϕ.
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The above definitions lie at the heart of the discipline known as model the-
ory, i.e. the branch of mathematical logic concerned with the relation between
formulas and models. In particular, it is of great interest to examine to what ex-
tent truth is preserved by several different relations between models. A number
of paradigmatic examples of such relations are given below.

Definition 1.3.18. Let Σ be a signature and let A,B be two Σ-models. A
homomorphism h between A and B, denoted h : A → B, is given by a family
of maps hσ : Aσ → Bσ, with σ ranging over all sort symbols in Σ, such that

• for every relation symbol P ∈ Σ of arity σ1 × . . . × σn and elements
a1, . . . , an ∈ A of sorts σ1, . . . , σn respectively, we have

(a1, . . . , an) ∈ PA implies (hσ1(a1), . . . , hσn(an)) ∈ PB ,

• for every function symbol f ∈ Σ of arity σ1 × . . . σn → σ and all elements
a1, . . . , an of sorts σ1, . . . , σn respectively, we have

hσ(fA(a1, . . . , an)) = fB(hσ1
(a1), . . . , hσn(an)),

• for every constant symbol c ∈ Σ of arity σ, we have

hσ(cA) = cB .

Definition 1.3.19. Let Σ be a signature, A,B be two Σ-models and h : A→ B
be a homomorphism. The map h is called an isomorphism if every hσ has an
inverse h−1

σ and the resulting family of maps h−1 is a homomorphism.

Definition 1.3.20. Let Σ be a signature. Two Σ-models A,B are called iso-
morphic, denoted A ∼= B, if there exists an isomorphism h : A→ B.

Definition 1.3.21. Let Σ be a signature and let A,B be two Σ-models. An
elementary embedding h between A and B, denoted h : A → B, is given by an
injective homomorphism h : A→ B such that

A |= ϕ[a1, . . . , an] if and only if B |= ϕ[hσ1
(a1), . . . , hσn(an)]

for all Σ-formulas ϕ(x1, . . . , xn) and elements a1, . . . , an of sorts σ1, . . . , σn re-
spectively.

How do the notions of isomorphism and elementary embedding relate to one
another? By induction on structure of formulas, a technique ubiquitous in the
realm of mathematical logic, we can derive the following statement:

Proposition 1.3.22. Let Σ be a signature and let A,B be two Σ-models. Let
h : A→ B be an isomorphism. Then h is also an elementary embedding.

The converse, however, is not true in general.
Finally, we may note that the above relations are defined only for models

having the same signature. We would, however, also like to have to have the
ability to compare models having different signatures. To this end, the following
notions prove invaluable:
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Definition 1.3.23. Let Σ,Σ′ be signatures such that Σ ⊆ Σ′ and let M be a
Σ′-model. The model M |Σ, called the reduct of M with respect to Σ, is the
model obtained from deleting from the tuple M any set, relation, function or
constant associated to a symbol in Σ′ \ Σ. The model M is then referred to as
an expansion of M |Σ to Σ′.

As we can see, reducts provide us with a natural way to obtain ‘smaller’
models from larger ones. In the case of single-sorted signatures15, there exists
another straightforward manner in which we can construct smaller models, this
time without changing the underlying signature.

Definition 1.3.24. Let Σ be a single-sorted signature, M be Σ-model and
S ⊆ M be non-empty. Then S is called Σ-closed in M if, for all constant
symbols c ∈ Σ and function symbols f ∈ Σ, cM ∈ S and S is closed under fM .

Definition 1.3.25. Let Σ be a single-sorted signature, M a Σ-model having
relations PM1 , . . . , PMk , functions fM1 , . . . , fMm and constants cM1 , . . . , cMn and S
a set Σ-closed in M . Then the Σ-model M |S consisting of domain S, relations
PM1 ∩ S, . . . , PMk ∩ S, functions fM1 |S , . . . , fMm |S and constants cM1 , . . . , cMn is
called the submodel of M generated by S.

The notions of reduct and submodel can now be nicely brought together:

Definition 1.3.26. Let Σ,Σ′ be single-sorted signatures such that Σ ⊆ Σ′. Let
M be a Σ’-model and P ∈ Σ a unary relation symbol such that PM is Σ-closed
in M |Σ. Then the Σ-model (M |Σ)|PM is called the relativized reduct of M with
respect to Σ and P .

With these initial preliminaries in place we are now well-equipped to move
on to the subsequent chapters and investigate the various ways in which logic
has been applied to the study of metascience.

15The restriction to single-sorted signatures is not of essential import, but merely serves to
make the subsequent definitions less cumbersome. For the purposes of this thesis, we shall
only be requiring the single-sorted case.
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Chapter 2

Metascience of Old

We will now meet what we may consider to be the ‘traditional’ approaches to
metascience. As described in the previous chapter, the study of metascience
will be identified with the philosophical investigations into the structure of sci-
entific theories. I start by setting out a number of terminological conventions
and recommendations (sec. 2.1), after which we will briefly make acquaintance
with the oldest of all approaches to theory-structure, i.e. the syntactic view of
theories (sec. 2.2). Since this approach largely falls outside of the scope of the
FWLA, we can suffice here with only a superficial description. Next, the struc-
tural view of theories is considered. This view has given rise to a wide variety
of frameworks, of which we will discuss the two most prominent, namely the
state-space approach (sec. 2.3) and the set-theoretic approach (sec. 2.4). Due
to its expansive nature and connection to the FWLA, the set-theoretic approach
will receive the most elaborate treatment in this chapter. Having analyzed the
preceding approaches, we will be well-prepared to consider the first wave of logical
abstractivism in the subsequent chapter.

2.1 Notes on Terminology

Before we commence our discussion of the traditional schools of metascience,
let us briefly dwell on some terminological matters pertaining to the different
approaches to scientific theories.

• Two alternative designations of the syntactic view of theories are encoun-
tered in the literature, viz. the received view, a term first coined by Hilary
Putnam, and the statement view. The former of these, however, has be-
come all but obsolete, as the syntactic view has not occupied a position
of dominance in the philosophical literature since the early 1950s.

• Both the set-theoretic and state-space approach are usually designated as
being part of the semantic view or, less commonly, the model-theoretic
view. Both names are rooted in considerations from logic, in which the

18



structures interpreting a formal language are referred to as models. These
models, in turn, then provide a semantics for the formal language in ques-
tion. In this light, however, we see the standard terminology to be highly
undesirable. As noted by Muller (2011, 103), it is not the case that a
given class of structures which we take to represent a scientific theory is
also the class of models of some set of sentences in a formal language.1

Now, while we may or may not have good reason to assume that a given
class of structures is also a class of models, a priori it is certainly not
obvious that we ought to impose such a restriction. Thus, we see that the
name structural view provides us with a far more fitting designation than
either semantic view or model-theoretic view can hope to offer.2

• The denotation set-theoretic approach is used here as a synonym for the
approach known as structuralism, as developed by Sneed (1971). Strictly
speaking, however, set-theoretic approach denotes a slight more general ap-
proach to scientific theory-structure, which includes not only structuralism
but also the work of Suppes (1967). The structuralist approach, however,
has seen by far the most development and differs only subtly from Suppes’
account. Hence, we can freely indulge in the aforementioned totum pro
parte without significant risk of confusion.

• The term structuralism and derived expressions have a myriad applica-
tions within philosophy of science and the debate on theory-structure is no
exception. Though not common, some authors3 use the denotation struc-
turalism to refer to a group of three similar accounts of theory-structure
which, besides the Sneed’s account, includes the work of Scheibe (1979)
and Ludwig and Thurler (2006). Again, however, we find that the Snee-
dian framework eclipse in size and impact the other two approaches. In
practice, therefore, we might safely use structuralism to refer to the body
of work of Sneed et al.4

2.2 Syntactic Approach

The syntactic approach to scientific theories, along with much else of the philo-
sophy of science, finds its origin in the first half of twentieth century in the
work of the Viennese group of scholars known as the logical positivists. Inspired
by the early successes of the logical formalization of mathematical theories at
the hands of, among others, Peano, Frege and Russell, the positivists sought to
apply the fledgling discipline of mathematical logic to the formal analysis of the

1We must be careful here to distinguish between the notion of a scientific theory, which
is the target of our formalization efforts, and the notion of theory as found in logic, where it
denotes a (deductive closed) set of sentences.

2To add insult to injury, we might note that approaches in the semantic or model-theoretic
view all but never employ methods that are semantical or model-theoretic in nature.

3E.g. Schmidt (2014).
4That is, within the context of theory-structure. In the more general realm of philosophy

of science, such a reference would still necessitate due amounts of elaboration.
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scientific enterprise. Now, logic, at this time, was a purely symbolic affair, as the
notions we would nowadays consider semantic would not be formulated until
the 1950s. Accordingly, the positivists championed a syntactic formalization of
scientific theories.

In the broadest of strokes, we may describe the syntactic view on scientific
theories as the claim that a scientific theory S is specified by the following two
sets of data. First, we have:

• A system of logic L, in this context taken to be first-order logic or some
suitable extension thereof, equipped with a standard syntax (i.e. rules for
sentence formation).

• A certain proof-theoretic structure ` on L, allowing us to make deductions
in L. The logic L together with the relation ` may then also be called a
logical calculus.

• A tripartitioned signature Σ = ΣM ∪ ΣO ∪ ΣT and ΣM ,ΣO and ΣT
represent the theory’s mathematical, observational and theoretical terms
respectively.5

• A deductively closed set of Σ-sentences Γ.

Were we to stop at this stage, we might simply choose to identify the scientific
theory S with the set Γ relative to L,` and Σ. Scientific theories would then
simply reduce to the special case of mathematical theories with tripartitioned
signatures. To characterize S as being a truly scientific theory, we further
require:

• A set of correspondence rules, providing each observational term with
an interpretation in terms of physical objects.

• A set of correspondence rules, providing each theoretical term with a par-
tial interpretation in terms of observational terms.

Already, we can discern one of the problematic features associated to the
syntactic view: it is very difficult to obtain a complete specification of theo-
retical terms in terms of observational terms. At best, we can only hope to
partially interpret such terms. Further complicating matters is the fact that
much of the positivists’ work on scientific theories remains clad in informal de-
scriptions, consequently making it harder to adequately assess the tenability of
the proposed their proposed theory-concept. A more formal continuation of the
syntactic view may be found in (Prze lecki, 1969), although in this work too the
explication of concrete scientific theories runs into much difficulty. I shall limit
my treatment of the syntactic approach to the brief sketch provided above. For

5Straightforward examples include ‘+’ for the mathematical terms, ‘chair’ for the obser-
vational terms and ‘electron’ for the theoretical terms. It should be noted, however, that the
exact distinction between the latter two types of terms is a topic of much controversy within
the philosophy of science.
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more comprehensive descriptions of the syntactic view, see (Suppe 1977, 16–57),
(Suppe 1989, 38–72).

The syntactic conception of theories reigned supreme for most of the first
half of the twentieth century. In spite of, or perhaps because of, this position of
dominance, the syntactic approach came to be the target of a host of criticism
from philosophers of science. The untenability of the observational-theoretical
distinction and the overall difficulty of formalizing actual scientific theories in
formal languages were but some of the factors that eventually led to the syn-
tactic view’s demise. In its place, a new paradigm for theory-structure rose to
prominence over the second half of the twentieth century that took a distinctly
different approach to the formal study of theories. Characteristic of this new
approach was the conviction that not statements, but (mathematical) structures
are the most valuable tools at our disposal for the analysis of scientific theories.
Accordingly, we may refer to this new view as the structural view of scientific
theories.

Unlike its comparatively monolithic predecessor, the structural approach to
theories consists of a family of different, closely related frameworks, each having
a different notion of structure at its core. Of all these approaches, however,
only two have seen significant uptake in the philosophical community. These are
the so-called state-space approach to scientific theories, as pioneered by E.W.
Beth (1960) and Bas C. van Fraassen (1970), and the set-theoretic approach,
as pioneered by Patrick Suppes (1967) and Joseph Sneed (1971). The latter
of these two in particular has gained a considerable following, making up a
significant amount of the literature on the structural view. We will examine
both approaches in the subsequent sections.

2.3 State-Space Approach

Inspired by foundational work in quantum mechanics by, among others, von
Neumann, and Tarski’s semantics for formal languages, the state-space approach
was first developed by the Dutch logician Evert Willem Beth in the late 1940s
(Dieks 2010, 278). Beth’s work, however, is limited to classical and quantum
mechanics and he does not present, nor claim to present, a general or complete
account of theory-structure. The novel component of Beth’s ideas was the man-
ner in which physical theories could be given a formal semantics by using an
appropriate state space to evaluate the truth conditions of certain statements
of the theories (Beth 1960). Beth’s ideas ideas were later developed by the
Dutch-American philosopher Bas van Fraassen (1970).6 American philosopher
Frederick Suppe independently developed an approach similar to that of Beth
and Van Fraassen (Suppe 1989, 16). For present purposes, however, I shall limit
my exposition here to the version of the state-space approach as formulated by

6As noted in (Van Fraassen 1989, 365n), Van Fraassen later came to use a modification
of the original approach, as set out in his (1970). I, however, believe Van Fraassen’s early
work to provide us with the more interesting explication of scientific theory-structure and
shall consequently focus exclusively on the 1970 framework.
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Van Fraassen.7

In Van Fraassen’s formalization, a scientific theory8 consists of the following
components:

• A state space H, i.e. a mathematical space consisting of the possible
states of the physical system under consideration.

• A language consisting of a set E of elementary statements of the form
P (m, r, t), or P for short, and modal connectives and ‘�’ and ‘♦’. The
statement P (m, r, t) should be thought to mean that the magnitude m has
value r at time t. The compounded statements �P and ♦P , signify that
the statement P holds for all values of t and some value of t respectively.

• A group of operators Ut defined such that if s is the state of the physical
system at time t′, then Ut(s) is the system’s state at time t′ + t. In other
words, the operators define a time evolution on the state space.

• A satisfaction function h, which associates to each elementary state-
ment P a region of state space h(P ) and is defined as

h(P (m, r, t)) = {s ∈ H : Ut(s) ∈ h(P (m, r, 0))}. (2.1)

The set h(P (m, r, 0)) should be thought of as the region of state space in
which all states satisfy the statement P (m, r).

Furthermore, Van Fraassen provides us with a definition of truth for the state-
ments of the scientific theory. Let X be the system with which the theory in
question is concerned and let loc be a function that associates to X a state in
the state space, i.e. loc(X) ∈ H. A statement P about the system X is then
said to be true if and only if loc(X) ∈ h(P ). This truth definition may be seen
to provide us with a semantics of the scientific theory.

The above definitions can be readily applied to Newtonian physics. Take,
for instance, a one-dimensional system with a single object. The state space
is then, by definition, the subset of R2 consisting of pairs (x, p) of all possible
values of the object’s position and momentum. The system’s time evolution is
given by Newton’s second law. An instance of an elementary statement would
be ‘position x has value 0 at t = 0’, which by the satisfaction function would be
mapped to the p-axis of the state space. The more expressive, modal statements
of the form �P correspond here to quantified statements such as ‘x(t) = 1/2gt2’,
which by h are mapped to the state-space trajectories of the system.

Overall, it seems more philosophers have taken up the set-theoretic approach
than the state-space approach. Nevertheless, the state-space approach has still
found several supporters. In particular, it has been applied to the analysis of
the structure of biological theories, cf. (Lloyd 1994), (Thompson 1989).

7The subsequent material of this subsection has been taken, with minor modifications,
from (Vos 2015a).

8It should be noted that Van Fraassen limits his analysis to non-relativistic, physical theo-
ries (1970, 328).
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2.4 Set-Theoretic Approach

In this section we turn to the next major approach within the structural view of
theories known as the set-theoretic approach or structuralism. Although struc-
turalism is somewhat notorious for its elaborate formal machinery, it remains
one of the most extensively developed and well-known accounts of scientific
theory-structure. Heavily influenced by the work of Patrick Suppes (1967), the
structuralist approach to theory-structure was first expounded by Joseph D.
Sneed in his 1971 book The Logical Structure of Mathematical Physics. Since
then, structuralism underwent a number of revisions and expansions by a num-
ber of different authors, most notably at the hands of German-Austrian philoso-
pher Wolfgang Stegmüller (1976). I shall focus here on the views proposed in
one of its most recent incarnations found in (Balzer, Moulines & Sneed 1987).

2.4.1 Theories as Structures

In the structuralist approach a scientific theory is represented by a class of
models which is given by some structure species. Consequently, we must first
examine this notion of structure species if we wish to understand the structural-
ist conception of theories. The definition of structure species is built on several
auxiliary notions which we will have to look at first. To understand what moti-
vates the upcoming definitions, it is useful to refer to the set-theoretic definition
of a semigroup.

Definition 2.4.1. x is a semigroup if there exist G, · such that

• x = (G, ·)

• G is a non-empty set

• · is a binary operation

• for all a, b, c ∈ G : (a · b) · c = a · (b · c)

We can extract several general properties from the above list. First, there
is the denotation of the base sets. In the case of semigroups there is only one,
but we can easily imagine structures, e.g. vector spaces, for which this does not
hold. Note that since we are defining the general notion of semigroup, it is
irrelevant which set is used in the definition. We might just as well have used
G′ instead of G, without altering the definition in any salient manner. Thus, we
see that the first essential component of the definition of a structure species is
the number of base sets. Second, we find that from the base set G, a ternary
relation · is defined. Since it is again unimportant with which symbol we refer
to this relation, we only require the typification of the relation, i.e. the arity
of the relation in the case of a single base set. Lastly, there are set-theoretic
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sentences expressing several substantial properties of the structure species.9

Axiom (4) obviously is such a sentence, but also the statement that · is a binary
operation, as this does not follow from the fact that is a ternary relation.

Before proceeding let us first make the notion of typification more rigorous.
We first require a number of definitions (Balzer et al. 1987, 8).

Definition 2.4.2. For each k ∈ N, k-types σ are defined inductively as follows:

• for each i ≤ k: i is a k-type,

• if σ is a k-type then so is P(σ),

• if σ1 and σ2 are k-types then σ1 × σ2 is a k-type.

Instances of 4-types would be 2, P(1) and 3 × 4. Note that at this point such
expressions are of a purely syntactic character and have yet to supplied with
any meaning.10 This constitutes our next step.

Definition 2.4.3. Suppose k ∈ N, D1, . . . , Dk are sets and σ is a k-type then the
echelon set σ(D1, . . . , Dk) is defined by induction with respect to σ as follows:

• if σ is some i ≤ k then σ(D1, . . . , Dk) = Di,

• if σ has the form P(σ1) where σ1 is a k-type previously defined then
σ(D1, . . . , Dk) = P(σ1(D1, . . . , Dk)), where P denotes the power set op-
eration;

• if σ has the form σ1 × σ2 where σ1 and σ2 are k-types previously defined
then σ(D1, . . . , Dk) = σ1(D1, . . . , Dk)× σ2(D1, . . . , Dk), where × denotes
the Cartesian product.

We can now give a general definition of the notion of typification.

Definition 2.4.4. A set-theoretic sentence11 A is called a typification if there
exists some k-type σ such that A has the form ‘R ∈ σ(D1, . . . , Dk)’, where
R,D1, . . . , Dk denote sets.

Having defined the notion of a typification, we now also have the following:

Definition 2.4.5. A type τ is defined to be a tuple (k, σ1, . . . , σn) such that
k ∈ N and σ1, . . . , σk are k-types. A structure of type τ is taken to be a tuple
(D1, . . . , Dk, R1, . . . , Rn) such that D1, . . . , Dk are sets and for all i ≤ n we have
Ri ∈ σi(D1, . . . , Dk).

9The word ‘substantial’ is of essence here. As we will see below, typifications are defined
to be a particular kind of set-theoretic sentences. Regardless, Balzer et al. still maintain a
division of typifications on one hand and the set-theoretic sentences mentioned here on the
another. Typifications, they say, only serve to fix the structure species’s conceptual framework,
e.g. the arity of its relations or operations, whereas set-theoretic sentences as used here are
meant to denote more characteristic properties.

10Of course, the notation P,× has been chosen so as to suggest a natural interpretation.
11The structuralists only use this term informally, not providing a formal definition. The

intuition underlying this notion, however, seems to be clear.
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We see that two of the three components of structure species mentioned above,
namely the number of base sets and typifications, are fixed by the specification
of a type. To complete the definition of a structure species, we thus only have
to add the final part, i.e. set-theoretic sentences expressing the structures’ char-
acteristic properties.

Definition 2.4.6. A set-theoretic sentence A applies to some given structure
(D1, . . . , Dk, R1, . . . , Rn) if at most the symbols ‘D1’, . . . , ‘Rn’ occur freely in
the sentence A.

With this final definition in place, we can now bring all of the preceding together.

Definition 2.4.7. If τ = (k, σ1, . . . , σn) is a type, then Σ is a structure species
of type τ if there exist A1, . . . , As such that Σ = (k, σ1, . . . , σn, A1, . . . , As) and
for all i ≤ s : Ai is a set-theoretic sentence12 applying to some structure of type
τ .

Definition 2.4.8. Σ is a structure species if there is some type τ such that Σ
is a structure species of type τ .

Let us now examine how Balzer et al. link this abstract definition of struc-
ture species to scientific theories. In (Balzer et al. 1987) the discussion of
theories proceeds in three stages. First, they define theory-elements, followed
by theory-nets and finally theory-holons. The first is meant to formalize the
structure of individual theories, the second of webs of interconnected theories
and the third of science as a whole. Since it is my aim to give only the charac-
teristics of the approach, I limit my discussion here to theory-elements. To this
end, I shall first present the reader with the definition of a theory-element and
will then proceed by explicating each concept that occurs in it in turn.

Definition 2.4.9. A theory-element is a pair T = (K, I) where

1. K = (Mp,M,Mpp, GC,GL) is a theory-core consisting of

(a) a class of potential models Mp,

(b) a class of models of M within Mp,

(c) a class of partial potential models Mpp given by Mp and M ,

(d) the global constraint belonging to Mp,

(e) the global link belonging to Mp.

2. a set of intended applications I ⊆Mpp.

It is apparent that explicating even the fundamental notion of theory-element
is a rather involved task in the structuralist framework, presupposing the defi-
nitions of a number of different ancillary notions all of which require there own
set of motivations. Nevertheless, explicating these concepts will present us with

12Note that this includes typifications.
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a characteristic insight into the set-approach approach and well thus serve well
as an introduction to this framework.

First and foremost, we have the notion of potential model. Intuitively, a
potential model of a certain structure species is a structure satisfying the ba-
sic set-theoretic sentences but not necessarily satisfying the more substantial
sentences. What does it mean for a set-theoretic sentence to be ‘basic’ or ‘sub-
stantial’? As noted before, we may view typifications as being of the former
kind. However, other sentences might also fall under this denominator. The
claim that · is a binary operation in definition 2.4.1 needs to be expressed by
a certain set-theoretic sentence that is more than just a typification. Such a
claim, however, can hardly be considered ‘substantive’ for the definition of a
scientific theory.

To decide which structures are to be designated as potential models, we
need a proper understanding of the ‘basic’ sentences which they need to satisfy.
Balzer et al. note that a common feature of these basic sentences is that they
contain, besides symbols for base sets, only one function or relation symbol.
They refer to such sentences as (mathematical) characterizations (Balzer et al.
1987, 13-14). This definition is motivated by the observation that sentences
expressing more substantive structural properties establish some kind of con-
nection between the relations or functions of a given structure. For instance,
while Newton’s second law is a substantive statement, the prerequisite that any
position function is twice-differentiable hardly seems like a substantive claim
of classical mechanics and is better thought of as mathematical requirement
on the position function. Therefore, characterizations (typifications included)
only serve to fix the theory’s conceptual framework and eliminate any structure
which the theory cannot sensibly be applied to, e.g. structures with a nowhere-
differentiable position function for classical mechanics. These considerations
can now be formally expressed in the definition of a potential model.

Definition 2.4.10. x is said to be potential model with respect to some struc-
ture species Σ = (k, σ1, . . . , σn, A1, . . . , As) if

• x is a structure of species Σ,

• s = n,

• for all i ≤ n, Ai is a characterization.

We can now define the first major component of theory-elements.

Definition 2.4.11. A set Mp is a class of potential models if there is a structure
species Σ such that Mp is the class of all potential models with respect to Σ.

So far the potential models. What can we now say about a theory’s (actual)
models? While the class of potential models was constrained by having to
satisfy characterizations, the class of models will have to satisfy, in addition
to characterizations, the ‘substantive’ claims mentioned earlier. These claims
can intuitively be thought of as the laws of the theory. We might try to define
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models analogously to how we defined potential models. This would require
us to specify which set-theoretic sentences qualify as laws and which do not.
However, since the notion of law-likeness has proved to be hard to rigorously
define in philosophy of science, Balzer et al. opt for a simpler definition of
models (1987, 16).

Definition 2.4.12. A set M is a class of models if there exists a structure
species Σ such that M is the class of all structures of species Σ and M is not a
class of potential models.

In practice, this means Σ will have to contain some set-theoretic sentences
other than characterizations, which we may then refer to as laws. If we let
Σ′ be the structure species equal to Σ minus the laws, it is easy to see that
any structure of species Σ will also be a potential structure with respect to Σ′.
Hence, any model of a theory is also a potential model of that theory.

The next variety of models we encounter in theory-elements is the partial
potential model. As their name suggests, partial potential models are ob-
tained by truncating potential models. The introduction of partial potential
models is motivated by the great importance Balzer et al. place on explicating
the role of theoretical terms in scientific theories. Accordingly, partial poten-
tial models can be seen as consisting of those and only those parts of potential
models that pertain to non-theoretical terms. This is made precise below.

Definition 2.4.13. The set Mpp is the class of partial potential models given
by Mp and M for a theory T if for each x ∈Mpp. there exist

D1, . . . , Dk, A1, . . . , Al, n1, . . . , np, t1, . . . , tq

such that

• x = (D1, . . . , Dk, A1, . . . , Al, n1, . . . , np),

• (D1, . . . , Dk, A1, . . . , Al, n1, . . . , np, t1, . . . , tq) ∈Mp,

• exactly t1, . . . , tq are T -theoretical.

As we can see, a term is construed here as a function or relation defined on a
potential model. I will not go into detail here about the manner in which Balzer
et al. define the notion of T -theoreticity for a given theory T . For the purpose
of understanding the notion of theory-element, it suffices to keep in mind an
intuitive division between theoretical and non-theoretical terms. A more formal
discussion can be found in (Balzer et al. 1987, 61-78).

Having discussed the different varieties of models, we now turn to the last two
components of theory-cores. Let us first consider the notion of a constraint.
Informally, constraints impose certain conditions on the relations holding be-
tween potential models. To see why we ought to be interested in such relations,
consider an example from classical mechanics (Balzer et al. 1987, 44–5). Sup-
pose we want to send a rocket from the Earth to the Moon. To determine the
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maneuvers needed for the rocket to successfully land on the lunar surface, it is
critical we know the rocket’s mass. Therefore, before take-off, it is necessary to
determine the mass of the rocket on Earth.

Next, the system containing the rocket, Earth and Moon is considered and
the appropriate calculations are performed using, among other things, the mass
of the rocket that was previously determined. In doing so, the structuralists
claim, we are using an implicit assumption of classical mechanics. When we
determine the mass of the rocket on Earth, we assumed its mass would be the
same on its journey to the Moon (taking into account the mass of the fuel). In
general, the assumption is made that in classical mechanics the mass of an object
is constant in all physical systems. In structuralist terms, this translates to the
assumption that if x, x′ ∈ Mp and m and m′ are the respective mass functions
that then m(p) = m′(p) for all particles p that occur in both x and x′. This
is what Balzer et al. refer to as an ‘equality constraint’ for classical mechanics
(1987, 45). This constraint effectively forbids combinations of systems in which
the same object has different mass. Formally then, we can construe a constraint
as picking out certain admissible subsets of Mp. A constraint can therefore be
identified with the set of all admissible subsets. This leads us to the following
definition.

Definition 2.4.14. If Mp is a class of potential models, then C is a constraint
for Mp if we have that

• C ⊆ P(Mp),

• ∅ /∈ C,

• for all x ∈Mp, {x} ∈ C.

The first condition is a direct translation of the characterization of constraints
in terms of all admissible subsets of Mp. Furthermore, Balzer et al. consider
‘combinations’ of zero potential models nonsensical, hence the second condition.
The third requirement simply states that any potential model combined only
with itself always is always admissible.

There is, of course, no reason to assume a theory has only a single constraint.
Suppose C1, . . . , Cn are all constraints belonging to some theory, we then define
the global constraint GC of that theory to be the intersection of C1, . . . , Cn.
This constitutes the fourth component of a theory-core.

To complete our survey of the components of theory-cores we now consider
the notion of an inter-theoretical link. The introduction of this notion is mo-
tivated by the observation that theories often depend on notions from earlier
theories. More explicitly, Balzer et al. note that for a theory T , it is often the
case that the T -non-theoretical terms can only be determined by means of other
theories that do not presuppose T (1987, 58). This is for instance the case for
time in classical mechanics, since the conditions of time measurement are not
a part of that theory. Even though such prerequisites are often not explicitly
acknowledged in expositions of theories, it is clear they can form integral parts
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of these theories. Thus, Balzer et al. consider inter-theoretical links to be a
necessary component of their account of theory-structure (1987, 59).

Before looking at the formal definition of links, we first consider a matter of
notation.

Definition 2.4.15. For any theory T and i1, . . . , in ∈ N, let π(T, i1, . . . , in)
denote the set of all tuples (Ri1 , . . . , Rin) for which there is some x ∈ Mp such
that for all 1 ≤ j ≤ n, Rij equals the ij-th component of x.

With this convention in place, let us now define the notion of link.

Definition 2.4.16. Let Mp and M ′p be classes of potential models having m
and m′ relations/functions respectively. We call L a link between Mp and M ′p
if there exist i1, . . . , is ∈ {1, . . . ,m} and j1, . . . , jt ∈ {1, . . . ,m′} such that

• L ⊆Mp × π(T, i1, . . . , is)×M ′p × π(T, j1, . . . , jt),

• if (x, (r1, . . . , rs), x
′, (r′1, . . . , r

′
t) ∈ L, then for all k ≤ s and l ≤ t: rk and

r′l are the ik-th and jl-th components of x and x′ respectively.

Suppose now that for a given theory T with class of potential models Mp, we
have links L1, . . . , Ln between Mp and the classes M1

p , . . . ,M
n
p respectively. For

each i ≤ n, let λi = {x ∈ Mp | ∃ā∃x′∃ā′ : (x, ā, x′, ā′) ∈ Li)} where ā and
ā′ denote tuples of arbitrary length. Each λi consists of the potential models
satisfying the link Li. Finally, we define the global link GL of the theory T to
be the intersection of all λ1, . . . , λn.

We have now covered the five components that make up a theory-core. While
a theory-core can be thought of as representing the formal structure of a theory-
element, we have yet to consider the other major component of theory-elements,
i.e. the set of intended applications. From definition 2.4.9 we know that the
structure the intended applications is significantly less complicated than that
of the theory-core. The set of intended applications I is simply a subclass of
the class of partial potential models Mpp. The underlying intuition here is
that the partial potential models, containing only the non-theoretical part of
the potential models, represent all the possible applications of the theory in
question. The intended applications are then selected from these by specifying
a subset of Mpp.

13 It should be noted that Balzer et al. do not claim this
definition of intended applications is entirely satisfactory. Instead, they claim
the present definition can only capture some necessary conditions for something
to be considered an intended application. Sufficient conditions are considered
much harder to identify (1987, 87–8).

How are empirical phenomena, in this case given by the intended applications
of some theory, related to the theory itself? We find this question to have a

13 An example of unintended applications, according to Balzer et al, would be a partial
potential model of classical particle mechanics in which we have people instead of particles,
animals instead of time and the velocity function is replaced by the function denoting how
many of certain animal species each person owns (1987, 87). Even though such a structure
qualifies as a partial potential model, it is clear we would not want to consider it an intended
application of the theory.
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rather explicit answer in the structuralist program. As we might expect, the
theory-phenomena relation is explicated in terms of set-theoretic notions. In
particular, we need to consider the set Cn, which denotes the content of a
given theory.14 The definition of content depends on several auxiliary notions
that need to be considered first.

Definition 2.4.17. Let K = (Mp,M,Mpp, GC,GL) be a theory-core. The
theoretical content of K is the set Cnth = P(M) ∩ GC ∩ P(GL).

As we can see, the theoretical content of a theory-coreK consists of those and
only those sets of models of K that satisfy all constraints and inter-theoretical
links. Note that the theoretical content is completely determined by only four
of the five components of the theory-core. We have yet to account for the influ-
ence of the class of partial potential models. For this we require the following
definitions.

Definition 2.4.18. Let K = (Mp,M,Mpp, GC,GL) be a theory-core. Then
r : Mp → Mpp is the map given by r(D1, . . . , Dk, n1, . . . , nm, t1, . . . , tn) =
(D1, . . . , Dk, n1, . . . , nm) for any potential model in Mp.

Definition 2.4.19. Let K = (Mp,M,Mpp, GC,GL) be a theory-core and let
r : Mp →Mpp be as in definition 2.4.18. We then define r′ : P(Mp)→ P(Mpp)
to be the map given by r′(X) = {r(x) | x ∈ X} for any X ⊆Mp. Similarly, we
let r′′ : P(P(Mp)) → P(P(Mpp)) be the map r′′(X ′) = {r′(X) | X ∈ X ′} for
any X ′ ⊆ P(Mp).

As already noted, we might think of partial potential models as representing
the phenomena about which a theory speaks. What the map r does then, is
map a certain part of theory (in the form of a potential model) to a certain
empirical phenomenon. Since the theoretical content of a theory is given by
some set of potential models Cnth, the phenomena about which the theory in
question speaks are given by the set r′′(Cnth). Indeed, this is precisely what we
define the content of a theory to be.

Definition 2.4.20. Let K = (Mp,M,Mpp, GC,GL) be a theory-core. The
content of K is then given by the set Cn := r′′(Cnth).

For a theory-element T = (K, I), the content of T represents all phenomena
the theory-core, i.e. the formal part of the theory, speaks about. Thus, to say
that a theory successfully describes the set of intended applications I, amounts
to saying that I in included in theory’s content. In other words (Balzer et al.
1987, 91):

Definition 2.4.21. If T = (K, I) is a theory-element, then the empirical claim
of T is that I ∈ Cn.

Thus far the structuralist construal of individual theories. Much of the
preceding discussion has taken place in a rather abstract plane far removed from

14Or more precisely: of a given theory-core.
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the level of concrete scientific theories. Therefore, let us consider an example of
how the above definitions are applied to the paradigmatic example of a scientific
theory, viz. classical particle mechanics (CPM). To obtain the theory-
element associated to CPM, we will consider each of its constituents in turn.

Again, our point of departure will be the identification of the theory’s po-
tential models. In the case of classical particle mechanics, these are defined as
follows (Balzer et al. 1987, 103).

Definition 2.4.22. The class Mp(CPM) of potential models for CPM consists
of all tuples x such that

• x = (P, T, S,N,R, c1, c2, s,m, f),

• P is a finite, non-empty set and S, T are sets;

• c1 : T → R and c2 : S → R3 are bijections,

• s : P ×T → S is a function such that c2 ◦sp ◦c−1
1 is smooth for all p ∈ P,15

• m : P → R\{0} and f : P × T × N are functions.

Intuitively, we should think of P as representing a set of particles, T as an
interval of time and S as a region of space. In the same vein, the functions s,m
and f can be taken to represent position, mass and force functions respectively,
whereas the set N serves to label all possible component forces. With this
in mind, the (actual) models of CPM are now readily defined. Let us recall
that the key difference between potential and actual models of a theory was
that the latter have to satisfy, in addition to the requirements placed on the
potential models, certain characteristic set-theoretic sentences. Namely, they
had to satisfy those sentences relating at least one function or relation to some
other function or relation occurring in the models. Moreover, we noted that
such sentences could informally be labeled as the laws of the theory under
consideration. Now, in the case of CPM, it is clear which law we should consider:
Newton’s second law of motion. This leads us to the following definition.

Definition 2.4.23. The class M(CPM) of models for CPM consists of all tuples
x such that

• x = (P, T, S,N,R, c1, c2, s,m, f),

• x ∈Mp(CPM),

• for all p ∈ P and a ∈ R: m(p) ·D2r(p, a) =
∑
i∈N f(p, c−1

1 (a), i),

where D2 denotes the differential operator d2/dt2 and r(p, a) := (c2◦sp◦c−1
1 )(a).

15Here, we use the notation sp to denote the function s(p, ·) : T → S.
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Next, we consider how to obtain from our class of potential models the
class of partial potential models. In effect, this is achieved by deciding which
functions/relations are to be viewed as theoretical and which are to be deemed
non-theoretical with respect to CPM. While this is no trivial task, especially
given the controversy regarding the definability of force and mass in classical me-
chanics,16 we will not enter into the philosophical details of these considerations
here and will simply take as given that the force function f and mass function
m are theoretical in the theory-element CPM. Thus, let r be the function trun-
cating from any potential model in Mp(CPM) the force and mass functions as
well as the base set N. This then yields the following definition.

Definition 2.4.24. The class Mpp(CPM) of partial potential models for CPM
is given by the class r(Mp(CPM)).

Lastly, we need to specify the constraints and links for the theory-element
CPM. Balzer et al. identify three different constraints necessitated by the study
of classical particle mechanics (1987, 106):

Definition 2.4.25. The global constraint GC(CPM) of CPM is given by the
intersection C1(CPM) ∩ C2(CPM) ∩ C3(CPM), where

(i) C1(CPM) is the equality constraint for mass, i.e. the constraint defined by
X ∈ C1(CPM) iff X is non-empty, X ⊆Mp(CPM) and for all x, y ∈ X: if
p ∈ Px ∩ Py, then mx(p) = my(p);

(ii) C2(CPM) is the extensivity constraint for mass if there exists a function

◦ : {Px : x ∈Mp(CPM)} → {Px : x ∈Mp(CPM)}

such that X ∈ C2(CPM) iff X is non-empty, X ⊆ Mp(CPM) and for all
x ∈ X: if p ◦ p′ ∈ Px, then mx(p ◦ p′) = mx(p) +mx(p′);

(iii) C3(CPM) is the equality constraint for force, i.e. the constraint defined by
X ∈ C3(CPM) iff X is non-empty, X ⊆Mp(CPM) and for all x, y ∈ X: if
p ∈ Px ∩ Py, t ∈ Tx ∩ Ty and i ∈ N, then fx(p, t, i) = fy(p, t, i).

Here, we append our sets and functions with subscripts x to denote the fact
that it represents the set/function occurring in the potential model x.

Let us reflect for a moment on the above definition. The motivation for in-
troducing the so-called equality constraint for mass has already been discussed
in the example of the rocket-Moon-Earth system above. The extensivity con-
dition, on the other hand, expresses that if we concatenate two particles p, p′

to form a new particle p ◦ p′ that the mass of this new particle equals the sum
of the masses of its constituent particles. Finally, the equality constraint for
force requires, akin to the equality constraint for mass, that any force f acting
on some particle p at time t is independent of the ambient physical system the

16cf. (Balzer et al. 1987, 103-5).
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particle is located in. Referring once again to the rocket example, we require
that the force function denoting the gravitational force acting on the rocket in
the rocket-Moon-Earth system is identical to the gravitational force function for
the system consisting of the rocket and the entire solar system. Of course, we
may now observe that this condition is false in this and many other examples.
Balzer et al. (1987, 106) acknowledge this issue, but simply state that the con-
straint is meant to ensure that the forces in the new system do not become “too
false” with respect to the old system.

Now, what are the links of the theory-element CPM? As noted above, links
are intended to represent all theory upon which the theory under consideration
implicitly relies in its scientific underpinning, e.g. chronometry and physical
geometry for CPM. So we see that, before we could begin explicating all the
different links we have for classical particle mechanics, we first require rational
reconstructions of all its prerequisite theories. Moreover, it is by no means ob-
vious which and only which theories would constitute a prerequisite theory of
CPM. Thus, the full explication of the theory’s links is most likely a rather ar-
duous and daunting enterprise, one which Balzer et al. do not seek to undertake
(1987, 106–7). For convenience, therefore, it assumed that each potential model
of CPM in fact satisfies any given link to another theory, i.e. the links do not
place any restriction on the theory-element of CPM.

Definition 2.4.26. The global link GL(CPM) of CPM is given by the class
Mp(CPM).

This concludes the presentation of the theory-core of CPM and, conse-
quently, also of the theory-element. One might wonder about the formal repre-
sentation of the set I of intended applications. But as noted earlier, we cannot
expect to be able to give sufficient conditions for something to constitute an in-
tended application. It is a much-bemoaned observation in the philosophy of sci-
ence that since we cannot meaningfully distinguish between one specific mathe-
matical structure and another, isomorphic structure, we also cannot formulate
any meaningful criteria with which to characterize the set of intended appli-
cations. Hence, any intended application will always have associated to it an
isomorphic, unintended application.17 Thus, the best we can hope to do in the
structuralist approach, is specify the intended applications by means of osten-
tion, i.e. I = {the solar system, harmonic oscillators, . . .}. But this, of course,
places no actual restrictions on the formal structure of the theory-element.

Let us conclude this subsection with a brief discussion of the role of linguistic
formulations of theories. First, it should be remarked that Balzer et al. do not
categorically oppose linguistic analyses of theories. Instead, they believe that
reference to language and its resulting syntactic complications are simply too
unpractical to allow in their account of theory-structure (1987, 306-7). Con-
sequently, no single logical language is explicitly specified in the structuralist
approach. However, while no syntax is specified with which to construct logical

17cf. footnote 13.
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sentences, the non-logical vocabulary of possible languages is determined by the
structuralist notion of theories.

Recall that any relation/function in a theory’s potential models has an as-
sociated typification. This typification, in turn, specifies the number of open
places for each relation or function symbol. Additionally, the type of the asso-
ciated structure species of the potential models specifies (through specification
of the number of base sets) the number of different sorts of variables that would
be required for any appropriate language. So although there is no inherent logic
of scientific theories that can be associated with the structuralist approach, it is
not ruled out we might equipped theories’ vocabularies with an appropriate syn-
tax which might allow for an interesting linguistic analysis of scientific theories.
This observation about the nature of language in the structuralist approach is
of quite some import, and, as it turns out, will be vital in assessing some key
aspects of the FWLA.

2.4.2 Intertheory Relations

Now that we are familiar with the structuralist analysis of scientific theories by
themselves, we next turn to the study of intertheory relations, i.e. the study
of the various types of relations holding between different scientific theories.
This is a topic not only of crucial import to metascience generally construed,
but also to the analysis of individual scientific theories. To see this, suppose
we are presented by the seemingly innocuous task of formalizing classical me-
chanics. One way to go about this assignment would be to proceed in the same
manner as the structuralists in their exposition of classical particle mechanics.
In particular, this means we construct our account of classical mechanics around
Newon’s second law F = ma. Such a course of action, however, might be faced
with a troubling riposte: it is not classical mechanics we have formalized, but
only its Newtonian formulation. After all, classical mechanics may just as well
be expounded in its Lagrangian and Hamiltonian formulations. Hence, we see
that a proper understanding of the structure of the theory of classical mechan-
ics cannot be obtained without also properly elucidating the interrelations of its
various formulations.

And what to think of the relation between classical mechanics and its gener-
alizations found in modern physics, such as relativistic dynamics? An analysis of
the latter theory suggests that the type of spacetime presupposed by a physical
theory is fundamental to understanding the structure underlying such a theory.
This is, however, not at all evident when looking at classical mechanics in iso-
lation. Indeed, we might wonder to what extent the structuralist construal of
classical particle mechanics accurately reflects this particular feature of the the-
ory. Again, we see that explicating a particular intertheory relation, this time
between classical and relativistic dynamics, is required to fully comprehend the
minutiae of the individual theories under consideration.

Recognizing the fundamental import of the study of intertheory relations
to the metascientific enterprise, the structuralists devote a significant portion
of their research program to the formal explication of these relations. Numer-
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ous types of relations between theories are considered including specialization,
translation, equivalence and empirical equivalence. For our present purposes,
however, it will suffice to consider here only a single, particularly important
type of intertheory relations, i.e. the relation of reduction.

Traditionally, the notion of a theory T being reducible to some other theory
T ′ is characterized along the lines of being able to deduce all laws of T from
those of T ′ in some given system of inference. Clearly, such a description brings
with it some obvious linguistic connotations. How, then, do the structuralist
explicate the concept of reduction in a completely language-free manner? The
answer lies in the following definition (Balzer et al. 1987, 277).

Definition 2.4.27. Let T = (K, I) and T ′ = (K ′, I ′) be two theory-elements
with theory-coresK = (Mp,M,Mpp, GC,GL) andK ′ = (M ′p,M

′,M ′pp, GC
′, GL′).

Then a relation ρ ⊆M ′p ×Mp is said to directly reduce18 T to T ′ if we have

(i) rg(ρ) = Mp,

(ii) for all x′ ∈M ′p: if x′ ∈M ′ and (x′, x) ∈ ρ, then x ∈M ,

(iii) for all X ′ ⊆ dom(ρ): if X ′ ∈ GC ′, then ρ̄(X ′) ∈ GC,

(iv) for all x ∈Mp, x
′ ∈M ′p: if x′ ∈ GL′ and (x′, x) ∈ ρ, then x ∈ GL,

(v) for all y ∈ I: there exist x ∈ Mp, x
′ ∈ M ′p, y′ ∈ I ′ such that (x′, x) ∈ ρ,

r′(x′) = y′, r(x) = y,

where

• r and r′ are the truncation functions for T and T ′ respectively, sending
each potential model to its associated partial potential model;

• dom(ρ) = {x′ ∈M ′p : ∃x ∈Mp : (x′, x) ∈ ρ},

• rg(ρ) = {x ∈Mp : ∃x′ ∈M ′p : (x′, x) ∈ ρ},

• ρ̄(X ′) = {x ∈Mp : ∃x′ ∈ X ′ : (x′, x) ∈ ρ}.

The relation ρ itself is then called a direct reduction of T to T ′.

Let us reflect upon the meaning of the various conditions. The first condition
states that for each potential model of T we can find some ρ-related potential
model of T ′. Thinking of potential models as providing the conceptual bases
for our theories, condition (i) can thus be paraphrased as saying that each
concept of T is directly reducible to a concept in T ’. Similarly, recalling that a
theory’s actual models can be thought to represent that theory’s law statements,
condition (ii) becomes the requirement that each law of T reduces to a law of
T ′. Conditions (iii) and (iv) merely state that the reduction relation should

18Balzer et al. reserves the proper term reduces for another, more general sense of reduction.
This expanded notion, however, is not required for our current aims and is thus omitted from
our discussion.
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preserve constraints and links, while the final provision expresses that for each
intended application y of theory-element T we can find a corresponding intended
application y′ of theory-element T ′.

Oftentimes, the above definition proves to be of too great a generality to
allow for the derivation of desirable results. Hence, Balzer et al. (1987, 278)
introduce a number of ways in which we might strengthen the notion of a direct
reduction. e.g.

Definition 2.4.28. Let T, T ′ be theory-elements and let ρ be a direct reduction
between T and T ′. Suppose that for all x, y ∈ Mp, x

′ ∈ M ′p: if (x′, x) ∈ ρ and
(x′, y) ∈ ρ then x = y. In this case, we write ρ : dom(ρ)→Mp.

Let us conclude here this exposition of the set-theoretic approach to theories.
Contrasting this approach to the syntactic and state-space views we encountered
earlier this chapter, one characteristic feature of the structuralist framework
stands out above all else, i.e. the lack of language in nearly all of its major defi-
nitions. Even the notion of reduction, which has in previous analyses had always
been inextricably linked with some underlying language,19 is now formulated in
entirely structural terms. But do such structural construals truly capture all the
salient properties of the intuitive concepts they are meant to formalize? Pearce
and Rantala (1983a) answer these questions in the negative, at least as far as
intertheory relations are concerned. To remedy this situation, they proposes we
adopt a new formal toolbox, viz. the framework of semi-abstract model theory,
leading us into our next chapter.

19To give a short characterization: to reduce one theory to another meant the reduction of
the one’s laws to the other’s. Laws, in turn, were most naturally construed as being statements
expressed in some underlying language. Indeed, this type description essentially characterizes
the positivist view on reduction associated to their theory-concept.
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Chapter 3

First Wave of Logical
Abstractivism

As evidenced by the preceding chapter, the structuralist program offers a host of
formal explications of a wide variety of scientific concepts. Not all of these expli-
cations, however, were considered to be equally successful by all philosophers of
science. In particular, the treatment of intertheory relations in the set-theoretic
framework drew some criticism of David Pearce and Veikko Rantala, who in-
stigated, during the late 1970s and ’80s, a first wave of logical abstractivism,
resulting in numerous papers and monographs at the hands of both researchers.
In this chapter we will analyze more closely the contents of this FWLA. To this
end, I first introduce the formalism from which Pearce and Rantala draw their
most important concepts, i.e. the field of semi-abstract model theory (sec. 3.1).
Following this exposition, we will look into the manner in which Pearce and
Rantala apply this field of study to the metascientific enterprise (sec. 3.2).

3.1 Semi-Abstract Model Theory

We will begin our assessment of the FWLA by considering the formalism from
which it draws inspiration, which we shall refer to here as semi-abstract model
theory. This name is not standard in the literature, in which it is primarily
known as the study of abstract logic or abstract model theory. The former of
these will be used here for a different purpose, viz. to denote the objects of
study of semi-abstract model theory, which I refer to here as abstract logics. As
for the latter, I follow Diaconescu (2008, 3) in employing abstract model theory
as an umbrella term for a variety of abstract approaches to model theory and
referring to the framework of this chapter as being half- or semi-abstract.

The goal of this section will be to establish some familiarity with semi-
abstract model theory, so that we are well-equipped to assess the usage of the
discipline by Pearce and Rantala, which we consider in the subsequent section.
For an impression of this field, we can turn to Barwise and Feferman (1985),
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in whose voluminous compendium book Model-Theoretic Logics we find an ex-
tensive introduction to many different facets of the discipline.1 In the book’s
preface (1985, vii) , it is noted how semi-abstract model theory may be viewed
as the culmination of three different strands of logical research:

• Work on cardinality quantifiers, mounted by Andrzej Mostowski, in
the late 1950s.

• Studies of Tarski et al. into infinitary languages in the mid-1960s.

• Per Lindström’s work on generalized quantifiers and model-theoretic
characterization theorems in the late 1960s.

Even though semi-abstract model theory has expanded greatly since the 1960s,
a cursory glance at (Barwise & Feferman 1985) reveals the three subjects still
make up a significant portion of research in the field.

Since it is beyond the scope of this thesis chapter to give a detailed intro-
duction to each of the above research topics, we will focus on one in particular,
viz. the work on model-theoretic characterization theorems. As noted above,
this line of research was first initiated by the Swedish logician Per Lindström,
who in his (1969) proved a characterization of first-order logic that has since
become known as Lindström’s theorem. Today, the enterprise of finding Lind-
ström-style characterization theorems, or simply Lindström theorems, for both
systems of standard and non-standard logic remains an active area of investiga-
tion. In this section, we will look into a particularly abstract characterization
result that will provide some insight into the generality of semi-abstract model
theory. Now, before we can set about characterizing systems of logic, we must
first agree on what exactly constitutes a logic. This will be the focus of the
following subsection.2

3.1.1 Abstract Logics

Before anything else, an abstract approach to model theory will need to be
grounded in an equally abstract conception of the notion of logical system.3

That is, we will need to ask what properties a given (mathematical) structure
needs to satisfy in order for it to be considered a logic. In semi-abstract model
theory, these considerations are codified in the concept of an abstract logic.
Before delving into its definition, we first require the following prerequisites.

1To my knowledge, (Barwise & Feferman 1985) remains to this day the most extensive
work dedicated solely to the study of semi-abstract model theory.

2The following remarks are in order. Two of Lindström’s original characterizations of first-
order logic formed the subject of my bachelor’s thesis. Thus, despite the paradigmatic status
of these results for the field of semi-abstract model theory, I will not go into either of the
proofs in the present text. Instead, the interested reader is referred to (Vos 2014). For sake
of completeness, however, I will repeat the definition of the notion of abstract logic as found
in (Vos 2014, 3–5), albeit in a somewhat modified form.

3The following subsection is based largely on (Ebbinghaus 1985, 26-45), with some minor
modifications in terms of presentation.
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Definition 3.1.1. Let A = (As, . . . , R
A, . . . , fA, . . . , cA, . . .) be a model. We

then call the signature (s, . . . , R, . . . , f, . . . , c . . .) the signature of A and denote
it as ΣA.

Definition 3.1.2. Let Σ,Σ′ be two signatures. An injection ρ : Σ→ Σ′ is said
to be a renaming from Σ to Σ′ if it preserves the type of each symbol (e.g. sort,
relation, function) in Σ. From any Σ-model A, we can obtain a ρ(Σ)-model B
by setting Bρ(σ) = Aσ for any sort symbol σ ∈ Σ and ρ(s)B = sA for any other
symbol s ∈ Σ. We will denote such a model B by Aρ.

We are now ready to articulate a formalized notion of logic:

Definition 3.1.3. An abstract logic4 is a triple (L, SentL, |=L), with L : Sig →
P(SentL) a mapping from the set of many-sorted first-order signatures Sig to
the powerset of SentL and |=L a relation between many-sorted first-order models
and elements of SentL such that we have:

(i) For any model A and ϕ ∈ SentL: if A |=L ϕ, then ϕ ∈ L(ΣA).

(ii) Monotonicity Property. For any two signatures Σ,Σ′: if Σ ⊆ Σ′, then
L(Σ) ⊆ L(Σ′).

(iii) Finite Occurrence Property. For any signature Σ and ϕ ∈ L(Σ), there
exists a smallest, finite signature Σϕ ⊆ Σ such that ϕ ∈ L(Σϕ).

(iv) Isomorphism Property. For any two models A,B and ϕ ∈ SentL: if we
have A |=L ϕ and A ∼= B, then B |=L ϕ.

(v) Reduct Property. For any signature Σ, model A and ϕ ∈ SentL: if ϕ ∈
L(Σ) and Σ ⊆ ΣA, then A |=L ϕ if and only if A|Σ |=L ϕ.

(vi) Renaming Property. For any two signatures Σ,Σ′, renaming ρ : Σ → Σ′

and ϕ ∈ SentL: if ϕ ∈ L(Σ), then there exists ϕρ ∈ L(Σ′) such that for
all Σ-models A we have A |=L ϕ if and only if Aρ |=L ϕ

ρ.

(vii) Closure Properties. For all signatures Σ, we have:

• for any ϕ ∈ L(Σ), there exists ψ ∈ L(Σ), denoted ¬ϕ, such that
ModΣ

L(ψ) = Mod(Σ)\ModΣ
L(ϕ);

• for any ϕ,ψ ∈ L(Σ), there exists π ∈ L(Σ), denoted ϕ∧ ψ, such that
ModΣ

L(π) = ModΣ
L(ϕ) ∩ModΣ

L(ψ);

• for any constant symbol c ∈ Σ of sort σ and ϕ ∈ L(Σ), there exists
ψ ∈ L(Σ\{c}), denoted ∃xϕ, such that for all Σ\{c}-models A we
have A |=L ψ if and only if (A, a) |=L ϕ for some a ∈ As;

where Mod(Σ) denotes the class of all Σ-models, ModΣ(ϕ) denotes the
class of Σ-models satisfying ϕ (in the sense of first-order logic) and ModΣ

L(ϕ)
denotes the class {A ∈ Mod(Σ) : A |=L ϕ}.

4We may compare this terminology to that used in group theory, where one sometimes
speaks of an abstract group.
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Intuitively, we may think of the elements of SentL as representing generalized
instances of sentences and the set L(Σ) as the set of Σ-sentences in the abstract
logic L. Moreover, the relation |=L is readily seen to be a generalization of the
satisfaction relation |= of first-order logic.

In the remainder of this thesis, we will follow the usual abuse of notation
in denoting an entire mathematical structure by one its constituents. In this
case, we will consistently write L to denote the abstract logic (L, SentL, |=L).
Elements of L(Σ), for some signature Σ will, on occasion, be informally referred
to as sentences in L. Similarly, the relation A |=L ϕ will be casually expressed
by saying that A makes true ϕ in L.

Already, we can clearly discern the model-theoretic nature of the framework
in definition 3.1.3. At no point in this definition, have we been concerned
with anything resembling rules of deduction or proof trees. This is why in some
sources, e.g. (Barwise & Feferman 1985), abstract logics are referred to as model-
theoretic languages. Accordingly, the framework of semi-abstract model theory
is well-suited to formulate and study abstract versions of various model-theoretic
properties of first-order logic:

Definition 3.1.4. Let L be an abstract logic. Then we say that

• L is κ-compact for some infinite cardinal κ if for all signatures Σ and
Γ ⊆ L(Σ) of cardinality at most κ, we have that if every finite subset of Γ
has a model then Γ itself has a model;

• L is countably compact or has the countable compactness property if it is
ℵ0-compact;

• L is compact or has the compactness property if it is κ-compact for all
infinite cardinals κ;

• L has the Löwenheim-Skolem property down to κ, for some infinite cardinal
κ, if for all signatures Σ and ϕ ∈ L(Σ) we have that if ϕ has a model then
ϕ has a model of cardinality at most κ;

• L has the downward Löwenheim-Skolem property if it has the Löwenheim-
Skolem property for ℵ0.

Let us now consider some examples of abstract logics. Clearly first-order
logic, denoted by Lωω, satisfies the conditions of an abstract logic under the ob-
vious interpretations of L and |=L. Other instances of abstract logics, as we will
see, can be found by considering extensions5 of first-order logic. Indeed, many
of the results we encounter in semi-abstract model theory hold true only under
the assumption that the abstract logics under consideration are extensions of
first-order logic.6 Examples of such logics include:

5The notion of one logic extending another will be made precise below.
6This already gives us some idea of why we would want to refer to this formalism as

semi-abstract model theory.
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Second-Order Logic. Denoted L2. This is the abstract logic obtained by

• letting L(Σ) be the class of first-order Σ-sentences augmented, for each
sort symbol σ ∈ Σ and n,m ∈ N, by variables and quantifiers ranging over
relations of arity n and functions of arity m on the domain of sort σ.

• letting |=L2
be identical to the usual satisfaction relation |=, extended by

the provision that sentences of the form ∀σXϕ(X) and ∃σXϕ(X), whereX
denotes a relation variable of sort σ and arity n, are considered true under
|=L2 if ϕ(X)[S] holds true7 for respectively all and some relations S ⊆ Ans
and an analogous provision for quantification over function variables.8

Weak Second-Order Logic. Denoted Lw2. This is the abstract logic that is
identical to L2 except in that we have only relation variables and quantification
over these variables is restricted over finite predicates.

Logics of form Lωω(Qα). For any ordinal number α, we can define an abstract
logic Lωω(Qα), which denotes the abstract logic obtained by

• letting Lωω(Qα)(Σ) be the class of first-order Σ-sentences augmented by
the additional quantifier Qσα for every sort symbol σ ∈ Σ,

• letting |=Lωω(Qα) be identical to the usual satisfaction relation |=, extended
by the provision that sentences of the form Qσαxϕ(x) are considered true
under |=Lωω(Qα) if there exist at least ℵα many elements a in domain As
such that ϕ(x)[a] is true in the model.

As we can see, abstract logics are abstract mainly in the sense that their
syntax is left open. By contrast, the allowed class of models and the nature
of signatures necessarily remain unaltered from their first-order counterparts.
This, then, provides us with some ready examples of logics not qualifying as
abstract logics:

Topological Logic. The ‘logic of topological structures’ fails to qualify as an
abstract logic by sheer virtue of the fact it deals with topological structures as
opposed to first-order models.

ω-logic. The logic known as ω-logic is obtained by fixing a single-sorted sig-
nature {@}, with binary relation symbol @, and considering only signatures Σ
such that Σ ⊇ {@}. Furthermore, for any such Σ-model A, we require that
A|{@} ∼= (N, <). As in the above case, this logic cannot be accommodated by
the notion of abstract logic, since it does not allow us to restrict the kind of

7The formal definition of the expression ϕ(X)[S] proceeds analogously to that of its first-
order counterpart ϕ(x)[a].

8This type of semantics for second-order logic is usually referred to as the standard seman-
tics for second-order logic. Alternatively, one might also equip second-order logic with the
more restrictive Henkin semantics, which we will not explore here.
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models under consideration.

These counterexamples are somewhat disheartening, as they seem to greatly
restrict the scope and applicability of semi-abstract model theory, especially if
we are interested in a formalism that can help elucidate the logical structure
of science. Fortunately, there are ways around this restriction which will allow
us to make some meaningful statements about such non-standard logics. The
case of topological logic will be considered in the next subsection. For ω-logic,
we can at this stage introduce a straightforward generalization of the abstract
logic concept. Just as we generalized the notion of sentence and the satisfaction
relation to give shape to abstract logics in the sense of definition 3.1.3, so too
can we allow for a generalization of the class of models.

Definition 3.1.5. A generalized abstract logic is a quadruple

(L, SentL,ModL, |=L) (3.1)

with L = (L1, L2), L1 : Sig → P(SentL) and L2 : Sig → P(ModL), such
that it satisfies the conditions set out in definition 3.1.3 under the appropriate
modifications.9

Henceforth, generalized abstract logics shall be referred to as simply abstract
logics, subsuming the above usage of the term.

With this generalization in place, we see that the only place where abstract
logics are still yoked to the first-order paradigm is in the set Sig of first-order
signatures. Indeed, it is exactly in this regard that the formalisms which we
will encounter in chapter 5 can be said to provide us with an improvement
with respect to semi-abstract model theory. For the moment, however, we may
note that definition 3.1.5 already aids us greatly in expanding the scope of the
abstract logic concept.

Definition 3.1.6. Let L be an abstract logic and Σ0 a single-sorted signature.10

Let P be a unary relation symbol such that P 6∈ Σ0 and let R be a class of Σ0-
models closed under isomorphism. The logic L(R) is then defined as follows:11

For any signature Σ, let

L1(R)(Σ) =

{
L1(Σ) if Σ0 ∪ {P} ⊆ Σ,

∅ otherwise.
(3.2)

and let

L2(R)(Σ) =

{
C(Σ) if Σ0 ∪ {P} ⊆ Σ,

∅ otherwise.
(3.3)

9That is, by incorporating in the conditions the class L2(Σ) of Σ-models in L.
10For convenience, we consider here only the definition for single-sorted signatures.
11Note that the dependency on Σ0 and P is suppressed in this notation. In practice, it will

be clear what the intended interpretations of the symbols in Σ0 ∪ {P} are supposed to be.
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where C(Σ) denotes the class of all Σ-models A such that PA is Σ0-closed in A
and (A|Σ0)|PA ∈ R.

Furthermore, for any signature Σ, Σ-model A and ϕ ∈ L(R)(Σ), let

A |=L(R) ϕ iff A ∈ L2(R)(ΣA), ϕ ∈ L1(R)(ΣA) and A |=L ϕ. (3.4)

We can now formally represent ω-logic as the abstract logic Lωω(Ω), where
Ω is the class of all {@}-models (A,@A) such that (A,@A) ∼= (N, <) for @
a binary relation symbol.12 In the same vein, we can now associate to any
isomorphically closed class of first-order models R0 a corresponding abstract
logic L(R0) relative to some underlying abstract logic L. In particular, consider
the following.

Definition 3.1.7. Let Σ = {@} be a signature with binary relation symbol @
and let ϕ0 ∈ Lωω(Q1)(Σ) be the sentence expressing that, for any Σ-model A,
the relation @A is a total order. Then we define an ℵ1-like ordering to be any
Σ-model A such that

A |=Lωω(Q1) {ϕ0, Q1x(x = x) ∧ ∀y¬Q1x(x @ y)}. (3.5)

Now, let R denote the class of all ℵ1-like orderings. By isomorphism property
of abstract logics, we may observe that R is closed under isomorphism. Hence,
from the construction in definition 3.1.6, we obtain an abstract logic Lωω(R).13

We will return to this particular abstract logic in the discussion below.
Having seen various examples of abstract logics, let us next consider how

different abstract logics may be relate to one another. One of the most natural
questions to ask concerning two logics is whether one is stronger than the
other. In other words: is the one logic an extension of the other? Ebbinghaus
(1985, 43) discuss several different ways in which this type of relation can be
made precise. First, let us introduce some preliminary notions.

Definition 3.1.8. Let L be an abstract logic, Σ be some signature and R a
class of Σ-models. Then R is called an elementary class in L, or simply EC in
L, if there exists some ϕ ∈ L1(Σ) such that R = ModΣ

L(ϕ).

Elementary classes are useful tools in determining the definability of properties
of models. In some cases, however, it can be seen to be far too strict. In
particular, any property involving two or more models of different signatures
can never be specified by an elementary class, since all the models in such a
class must necessarily be of the same signature. In light of this deficiency, we
might desire a liberalization of definition 3.1.8. To this end, introduce

Definition 3.1.9. Let L be an abstract logic, Σ be some signature and R a
class of Σ-models. Then R is called a projective class in L, or simply PC in L,
if there exists some Σ′ ⊇ Σ with the same sort symbols as Σ and an elementary
class R′ of Σ′-models such that R = R′|Σ := {A|Σ : A ∈ R′}.

12Here, we take PA = dom(@A) ∪ rg(@A).
13The symbol P is interpreted in the same manner as for ω-logic.
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In addition, it will prove useful to go one step further and allow a class of
models to be definable as being a ‘subclass’ of some projective class. This is
accomplished as follows.

Definition 3.1.10. Let L be an abstract logic, Σ be some signature and R a
class of Σ-models. Suppose Σ is single-sorted. Then R is called a relativized
projective class in L, or simply RPC, in L if there exists some Σ′ ⊇ Σ, unary
relation symbol P ∈ Σ′ \ Σ and elementary class R′ such that

R = {(A|Σ)|PA : A ∈ R′ and PA is Σ-closed in A}. (3.6)

Lastly, let us note that the above explications of definability all presuppose that
we may only use a single sentence in the specification of model classes. This
observation leads us to some straightforward liberalizations:

Definition 3.1.11. Let L be an abstract logic, Σ be some signature and R a
class of Σ-models. Then R is called a ∆-elementary class in L, or simply EC∆

in L, if there exists some Γ ⊆ L1(Σ) such that R = ModΣ
L(Γ).

Definition 3.1.12. Let L be an abstract logic, Σ be some signature and R
a class of Σ-models. Then R is called a ∆-projective class in L, or simply
PC∆ in L, if there exists some Σ′ ⊇ Σ with the same sort symbols as Σ and a
∆-elementary class R′ of Σ′-models such that R = {A|Σ : A ∈ R′}.

The above definition only applies to signature having a single sort, which suf-
fices for present purposes. In the many-sorted case, note that we can weaken
the condition on the signatures in definition 3.1.9 to state that Σ and Σ′ can
have possible different sort symbols to achieve a many-sorted counterpart of
relativized projective classes.

Now, a natural first candidate for the notion of an extension is the following:

Definition 3.1.13. Let L,L′ be abstract logics. Then L′ is an extension of
L, symbolically L ≤ L′, if we have that every elementary class in L is also an
elementary class in L′. We say L′ is equivalent to L, symbolically L ≡ L′, if
L ≤ L′ and L′ ≤ L.

Definition 3.1.14. Let L,L′ be abstract logics. Then L′ is said to be stronger
than L, symbolically L < L′, if L ≤ L′ and not L ≡ L′.

Indeed, the above notion of extension conforms well with many of our intui-
tive judgments about logics’ relative strength: L2 is stronger than Lw2, Lw2 is
stronger than Lωω, etc. In some instances, however, we may find this particu-
lar notion of extension to be less than satisfactory. Consider, for example, the
abstract logics Lωω(Q1) and Lωω(R), where R once again denotes the class of
all ℵ1-like orderings. Now, observe (Ebbinghaus 1985, 43):

Proposition 3.1.15. Let R denote the class of ℵ1-like orderings. Then we
have that Lωω(R) ≤ Lωω(Q1).
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Proof. For the first statement, let R’ be an elementary class in Lωω(R) for
some signature Σ. This means that there exists some ϕ ∈ L1

ωω(R)(Σ) such that
R′ = {A ∈ Mod(Σ) : A |=Lωω(R) ϕ}. Looking at the construction in definition
3.1.6, we see that, necessarily, ϕ must be a first-order sentence over a signature
Σ containing at least one binary relation symbol @. Moreover, by condition
(3.4), we know that A |=Lωω(R) ϕ is equivalent to

A ∈ L2
ωω(R)(ΣA), ϕ ∈ L1

ωω(R)(ΣA) and A |=Lωω ϕ. (3.7)

which, in turn, reduces to

A ∈ C(ΣA), ϕ ∈ L1
ωω(ΣA) and A |=Lωω ϕ, (3.8)

with C(ΣA) the class of all ΣA-models A′ such that (A′|{@})|PA
′ ∈ R. Then, by

definition of R and condition (3.8), we can thus express the conditions placed
on A to be as follows:

• A makes true ϕ in Lωω,

• (A|{@})|PA is an ℵ1-like ordering.

Now, let ψ denote the following Σ-sentence in Lωω(Q1):

ϕ∧∀x∀y∀z(Px∧Py∧Pz → ϕ0(x, y, z)∧Q1x(x = x)∧∀y¬Q1x(x @ y)), (3.9)

in which ϕ0(x, y, z) denotes the formula

(x v y ∧ y ≤ x→ x = y) ∧ (x v y ∧ y v z → x v z) ∧ (x v y ∨ y v x). (3.10)

where the symbol v is defined in terms of @ in the obvious way. Clearly, we
have that A |=Lωω(Q1) ψ. Thus, we see that for any Σ-model A we have that
A |=Lωω(R) ϕ implies A |=Lωω(Q1) ψ.

Conversely, let A be a Σ-model such that A |=Lωω(Q1) ψ. It is then readily
verified that A makes true ϕ in Lωω and A is an ℵ1-like ordering. Hence,
condition 3.7 is satisfied and we infer A |=Lωω(R) ϕ. Thus, we have established:

A |=Lωω(R) ϕ if and only if A |=Lωω(R) ϕ, (3.11)

i.e.

R′ = {A ∈ Mod(Σ) : A |=Lωω(R) ϕ} = {A ∈ Mod(Σ) : A |=Lωω(Q1) ψ}. (3.12)

We conclude R’ is an elementary class in Lωω(Q1) as well and hence that
Lωω(R) ≤ Lωω(Q1).

�

Of course, the question whether the converse statement of proposition 3.1.15
holds true now immediately suggests itself. In other words, do we have that
Lωω(Q1) ≤ Lωω(R)? We answer this question in the negative:
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Proposition 3.1.16. Let R denote the class of ℵ1-like orderings. Then we
have Lωω(Q1) 6≤ Lωω(R).

Proof. Suppose Lωω(Q1) ≤ Lωω(R). Consider the elementary class

R′ := {A ∈ Mod(Σ) : A |=Lωω(Q1) Q1x(x = x)}. (3.13)

By assumption, then, R′ is also EC in Lωω(R), i.e. there exits a signature Σ
and ϕ ∈ Lωω(R)(Σ) such that

R′ = {A ∈ Mod(Σ) : A |=Lωω(R) ϕ}. (3.14)

Examining (3.13), we see that R’ is exactly the class of all Σ-models of cardi-
nality at least ℵ1. Applying this knowledge to (3.14), we see that

A |=Lωω(R) ϕ if and only if A has cardinality at least ℵ1. (3.15)

Now, by the construction given in definition 3.1.6 and (3.15), we obtain the
statement that A has cardinality at least ℵ1 if and only if

A ∈ L2
ωω(R)(ΣA), ϕ ∈ L1

ωω(R)(ΣA) and A |=Lωω ϕ. (3.16)

In other words, we have that A has at least ℵ1 elements if and only if A |=Lωω ϕ
and (A|{@})|PA is an ℵ1-like ordering. So, in particular, we have that if A has
at least ℵ1 elements then (A|{@})|PA is an ℵ1-like ordering. But it is clear that
this is too strong an implication. Hence, we have arrived at a contradiction and
conclude that R′ cannot be EC in Lωω(R).

�

A brief comparison of propositions 3.1.15 and 3.1.16 might now lead us to
think that Lωω(R) and Lωω(Q1), in all likelihood, will have some rather different
model-theoretic properties. By virtue of the above propositions, we can of course
conclude this to be true to some extent. In another sense, however, we see that
the two abstract logics have, in fact, quite comparable expressive capabilities.
This is captured by the following statement:

Proposition 3.1.17. Let R denote the class of ℵ1-like orderings. Suppose that.
Then a class is RPC in Lωω(Q1) if and only if it is RPC in Lωω(R), provided
we do not use the symbol @ used to denote the ℵ1-like orderings in the signatures
for Lωω(Q1).

Proposition 3.1.17 now suggests to us another way for comparing the ex-
pressive power of abstract logics, one not grounded in elementary classes, but
in (relativized) projective classes instead:

Definition 3.1.18. Let L,L′ be two abstract logics. We write L ≤(R)PC L′ if
every (relativized) projective class in L is also a (relativized) projective class in
L′. If both L ≤(R)PC L′ and L′ ≤(R)PC L, then we write L ≡(R)PC L′.
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By proposition 3.1.17, we immediately see that Lωω(R) ≡RPC Lωω(Q1).
Obviously, the ordering specified in definition 3.1.17 is of a quite more liberal

nature than the one given in definition 3.1.13. In what sense, then, can we
consider ≤RPC to represent an adequate ordering of abstract logics? As it
turns out, ≤RPC does, in fact, possess a number of desirable properties we
might expect from an ordering relation on abstract logics. More specifically, we
find that several model-theoretic properties ‘descend down’ the ordering ≤RPC .
For example, consider compactness. We have the following theorem for Lωω(R).

Theorem 3.1.19. Let R be the class of ℵ1-like orderings. Then Lωω(R) has
the countable compactness property.

Now, suppose we are interested in the compactness properties of the logic
Lωω(Q1). Rather than expending much effort in the attempting to establish
such properties from scratch, we can use the fact that Lωω(Q1) ≤RPC Lωω(R),
in tandem with theorem 3.1.19, to establish swiftly:

Theorem 3.1.20. Lωω(Q1) has the countable compactness property.

With the above considerations in mind, it is clear that there does not exist
a single uniform way of defining the notion of a logical extension. In particular,
we have seen that a case can be made for defining extensions in terms of (rel-
ativized) projective classes as opposed to elementary classes despite the former
being inherently a more crude ordering. For the remainder of this thesis, we
will conform to the notion of extension as presented in definition 3.1.13. Nev-
ertheless, it is my hope that the preceding discussion will have already given
the reader some feeling for the framework of semi-abstract model theory and an
appreciation for the level of generality that comes along with it.

3.1.2 Characterization Results

In this subsection, we will take up some of the most characteristic results of
semi-abstract model theory, viz. Lindström-style characterization theo-
rems for a number of different abstract logics.14 The paradigmatic result here
is Lindström’s theorem:

Theorem 3.1.21. Let L be an abstract logic with L2(Σ) the class of first-order
models for any signature Σ. Suppose L extends Lωω and has the countable
compactness property and the downward Löwenheim-Skolem property. Then L
is equivalent to Lωω.

In slogan form, this theorem tells us that first-order logic is the strongest logic
with the countable compactness and downward Löwenheim-Skolem properties.
That is, this theorem provides us with a characterization of first-order logic
with respect to the class of its extensions.

Lindström’s theorem has given rise to a host of model-theoretic investigations
hoping to establish similar characterization results, both for Lωω and other,

14This subsection is based primarily on (1985, 91–120).
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non-standard systems of logic. Let us start here by considering an alternative
to theorem 3.1.21, which seeks to characterize first-order logic in terms of the
Tarski union property.

Definition 3.1.22. Let L be an abstract logic, Σ be a signature, A and B
be Σ-models. Then we say A is an elementary submodel of B relative to L,
symbolically: A �L B, if A is a submodel of B and it holds for every sentence
ϕ in L and a ∈ A that A |=L ϕ iff B |=L ϕ. The model B is then called an
elementary extension of A relative to L.

Definition 3.1.23. Let L be an abstract logic. Then an elementary chain
relative to L is a set of models {An}n∈N such that An �L An+1 for all n ∈ N.

Definition 3.1.24. Let L be an abstract logic. Then L is said to have the
Tarski union property if for every elementary chain relative to L it holds that

Ak �L
⋃
n∈N

An (3.17)

for every k ∈ N, where the model⋃
n∈N

An = (A,RA1 , . . . , R
A
p , f

A
1 , . . . , f

A
q , c

A
1 , . . . , c

A
r ) (3.18)

is defined by setting

• A = ∪n∈NAn,

• RAi = ∪n∈NRAni for each 1 ≤ i ≤ p,

• fAi = ∪n∈NfAni for each 1 ≤ i ≤ q,

• cAi = cAni for each 1 ≤ i ≤ r.

Informally, an abstract modal logic L has the Tarski union property if the union
of any elementary chain is an elementary extension of each model in the chain
relative to L.

To obtain a characterization for Lωω, we require the following preliminaries:

Definition 3.1.25. Let L be an abstract logic and A some model for L. Then
the L-theory of A is defined to be the set

ThL(A) := {ϕ ∈ SentL : A |=L ϕ}. (3.19)

Furthermore, the L-diagram ofA is taken to be the setDL(A) := ThL(A, (a)a∈A).

Definition 3.1.26. Let L be an abstract logic and A and B some models for L.
Then A and B are said to be L-elementarily equivalent, symbolically A ≡L B,
if ThL(A) = ThL(B).

48



Lemma 3.1.27. Let L,L′ be abstract logics such that L′ extends L. Suppose
L′ has the compactness property and, for any models A,B, we have:

A ≡L B implies A ≡L′ B (3.20)

Then L′ is equivalent to L.

Proof. Consider an arbitrary elementary class in L′, given by some L′-sentence
ϕ. First, note that for any model A, we have:

A |=L′ ϕ iff A |=L

∨
B|=L′ϕ

ψB (3.21)

with
ψB :=

∧
{ψ ∈ SentL : B |=L ψ}. (3.22)

For the if-direction, it suffices to note that if A |=L′ ϕ then a |=L ψA. Conversely,
if we have A |=L ψB for some model B such that B |=L′ ϕ, then it readily follow
that A ≡L B. By (3.20), we then also have A ≡L′ B and therefore A |=L′ ϕ.

Next, we need to verify that the conjunction and disjunction in (3.21) can
be replaced by finite ones, since this would establish that the elementary class
in L′ given by ϕ is then an elementary class in L as well. We consider here only
the case for disjunction. The conjunction case proceeds analogously.

Suppose there exists no finite sequence of L-sentences ψB1 , . . . , ψBn such
that we have

A |=L′ ϕ iff A |=L ψB1
∨ . . . ∨ ψBn (3.23)

and Bi |=L′ ϕ for every 1 ≤ i ≤ n. Now, consider the set

{ϕ} ∪ {¬ψB : B |=L′ ϕ}. (3.24)

By our preceding assumption, every finite subset of this set will have at least
one model. It then follows from the compactness property, however, that the
entire set has a model. But this would contradict (3.21). We conclude that
the elementary class of ϕ in L′ is indeed also an elementary class in L and,
consequently, that L′ is equivalent to L. �

Lemma 3.1.28. Let L be an abstract logic and A some model for L. Then the
elementary extensions of A relative to L are exactly the reducts of the models of
DL(A) to ΣA.

Lemma 3.1.29. Let L be an abstract logic with L2(Σ) the class of first-order
models for any signature Σ. Suppose L extends Lωω and has the compact-
ness property. Then, for any model A and set of L-sentences Γ, we have: if
ThLωω (A) ∪ Γ has a model then there exists a model B such that

A �Lωω B and B |=L Γ. (3.25)

Now, we can state:
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Theorem 3.1.30. Let L be an abstract logic with L2(Σ) the class of first-
order models for any signature Σ. Suppose L extends Lωω, has the compactness
property and has the Tarski union property. Then L is equivalent to Lωω.

Proof. Suppose L is not equivalent to Lωω. Then, by lemma 3.1.27, there exist
some models A,B and sentence ϕ in L such that

A ≡Lωω B, A |=L ϕ and B |=L ¬ϕ. (3.26)

Next, we inductively construct a sequence (An)n∈N as follows. Set A0 = A.
Furthermore, let A1 be an arbitrary model such that A �Lωω A1 and A1 |=L ¬ϕ.
The existence of such an A1 is guaranteed by lemma 3.1.29 and the observation
that ThLωω (A) ∪ {¬ϕ} = ThLωω (B) ∪ {¬ϕ} has at least one model by (3.26).
Now, for any n > 1, define the model An+1 to be an arbitrary model such that
(An, (a)An−1

) �Lωω (An+1, (a)a∈An−1
) and (An+1, (a)a∈An−1

) |=L DL(An−1).
The existence of such an An+1 is guaranteed, as before, by lemma 3.1.29 as well
as the observation that there exists a model satisfying

ThLωω (An, (a)a∈An−1
) ∪DL(An−1) = DL(An−1). (3.27)

From this construction, it is evident that An �Lωω An+1 for any n ∈ N.
Furthermore, it follows from lemma 3.1.28 that An−1 �L An+1 for any n ≥ 1.
That is:

A0 �Lωω A1 �Lωω A2 �Lωω . . . (3.28)

A0 �L A2 �L A4 �L . . . (3.29)

A1 �L A3 �L A5 �L . . . (3.30)

Consider now the union C :=
⋃
nA2n =

⋃
2n+1A2n+1. Since L has the Tarski

union property, we know that Ak �L C for all k ∈ N. In particular, we have
A0 = A �L C and A1 �L C. However, recall that also have A |=L ϕ and
A1 |=L ¬ϕ. But since C is an L-elementary extension of both A and A1, we
infer C |=L ϕ as well as C |=L ¬ϕ. Thusly, we have arrived at a contradiction.

�

Again, note that this is but an example of how first-order logic can be cha-
racterized by some of its well-known model-theoretic properties. Different pro-
perties, such as the Robinson property and the omitting types property, might
similarly be employed for the characterization of Lωω. Let us consider a final
example for the case of Lωω, which will prove to be significant for our consider-
ations below. Once again, some preliminary notions are required:

Definition 3.1.31. Let A and B be Σ-models for some signature Σ. A par-
tial isomorphism between A and B is a relation I on pairs of finite sequences
(a1, . . . , an), (b1, . . . , bn) of elements of A and B of the same length such that
the following hold:

• ∅I∅, where ∅ denotes the empty sequence.
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• If (a1, . . . , an)I(b1, . . . , bn) then (A, a1, . . . , an) and (B, b1, . . . , bn) satisfy
the same atomic Σ′-sentences in Lωω, where Σ′ = Σ ∪ {c1, . . . , cn} and
c1, . . . , cn denote fresh constant symbols not occurring in Σ.

• Back-and-Forth Property. If (a1, . . . , an)I(b1, . . . , bn) then for all a ∈ A
there exists b ∈ B such that (a1, . . . , an, a)I(b1, . . . , bn, b) and vice versa.

We call A and B partially isomorphic, symbolically A ∼=p B, if there exists a
partial isomorphism between A and B.15

Definition 3.1.32. Let L be an abstract logic. L is said to be invariant under
partial isomorphisms or ∼=p-invariant if for any signature Σ, ϕ ∈ L1(Σ) and
A,B ∈ L2(Σ), we have

A ∼=p B and A |=L ϕ implies B |=L ϕ. (3.31)

Alternatively, abstract logics satisfying (3.31) are also said to have the Karp
property, though in this thesis we will adhere to the above terminology.

We are now ready to formulate:

Theorem 3.1.33. Let L be an abstract logic with L2(Σ) the class of first-
order models for any signature Σ. Suppose L extends Lωω, has the countable
compactness property and is invariant under partial isomorphisms. Then L is
equivalent to Lωω.

The proof of theorem 3.1.33 overlaps almost completely with the proof of theo-
rem 3.1.21 as expounded in (Vos 2014). In fact, once a proof has been provided
for theorem 3.1.33, we can then suffice by proving the downward Löwenheim-
Skolem property implies invariance under partial isomorphisms in abstract logics
satisfying the appropriate conditions to establish theorem 3.1.21.

Now, the observant reader may note that the above characterization theo-
rems do not exhaust the level of generality offered by the notion of an abstract
logic. More specifically, we have the following, interconnected points:

(i) The preceding theorems were all aimed at situating first-order logic within
a certain class of abstract logics. Thus, a natural continuation of our
model-theoretic investigations would now be to look for characterization
theorems for different abstract logics.

(ii) All the above characterization results have explicitly required the class
of models L2(Σ) to be identical to the class of first-order Σ-models for
any signature Σ. This can be problematic if we want to transcend the
realms of standard predicate logic. Therefore, it is of great interest to
examine whether we can formulate Lindström-style characterization results
for different classes of structures.

15This definition of partial isomorphisms has been adapted from (Vos 2014, 6–7).
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Let us, for the remainder of this subsection, explore how we can extend the
formal machinery of semi-abstract model theory along the two lines mentioned
above. As it turns out, we can formulate an abstract characterization result
resolving both of the points (i) and (ii).

Of all the characterization theorems considered so far, it turns out that the-
orem 3.1.33 lends itself the best for the desired generalizations. This is quite
fortunate: it might be argued on independent grounds16 that characterizations
in terms of invariance properties are to be preferred over other types of charac-
terization results.17 The generalization of theorem 3.1.33 will naturally require
suitably generalized ancillary concepts. Hence, we have:

Definition 3.1.34. Let L be an abstract logic, ϕ a sentence in L and R a
binary relation on the class of all models of L. Then ϕ is called invariant under
R or R-invariant if for any models A,B in L we have

ARB and A |=L ϕ implies B |=L ϕ. (3.32)

Definition 3.1.35. Let L be an abstract logic and R a binary relation on the
class of all models of L. Then we say that L is invariant under R or R-invariant
if every sentence ϕ in L is R-invariant.

Finally, we have:

Definition 3.1.36. Let R be a binary relation on the class of all first-order
models. Then we say that R is invariantly definable with definable finite approx-
imations if for any signature Σ, there exists a signature Σ′ ⊇ Σ and first-order
Σ′-sentences ϕ0, ϕ1, . . . such that for any two Σ-models A,B we have

ARB iff there is an expansion C of (A,B) to Σ′ such that C |= {ϕi : i ∈ N}, 18

and, for any n ∈ N and binary relation Rn defined by

ARnB iff there is an expansion C ′ of (A,B) to Σ′ such that C ′ |= {ϕi : i ≤ n},

the following properties hold true:

• Rn is an equivalence relation on RΣ.

• For any D ∈ RΣ, there exists a first-order Σ-sentence ψnD such that for
any E ∈ RΣ we have

DRnE if and only if E |= ψnD.

We can now establish the following generalization of theorem 3.1.33.

16That is, independent from the mathematical considerations of semi-abstract model theory.
17We will return to this argument briefly in chapter 5.
18The notation (A,B) denotes the model obtained from concatenating the tuples A and B.

In case A and B have overlapping sorts, we simply replace in (A,B) one of the corresponding
domains and the associated relations, functions and constants by isomorphic copies.
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Theorem 3.1.37. For any signature Σ, let RΣ some ∆-elementary class in
Lωω and let R be binary relation on the class of all first-order models such that
the following hold:

(i) R ∩Mod(Σ)2 is an equivalence relation on RΣ for any signature Σ.

(ii) For any renaming ρ : Σ → Σ′ and Σ′-models A,B, we have that ARB
implies A|ρΣRB|

ρ
Σ.

(iii) For any two models A and B we have ARB implies A,B ∈ RΣ for some
signature Σ.

(iv) R is definably invariant with definable finite approximations.

Furthermore, let LRωω denote the abstract logic such that, for any signature Σ,
LR1
ωω(Σ) consists of all first-order Σ-sentences invariant under R and LR2

ωω = RΣ.
Now, let L be an abstract logic with L2(Σ) = RΣ, for any signature Σ,

and suppose that L extends LRωω, has the compactness property and is invariant
under R. Then L is equivalent to LRωω.

Proof. The proof of this theorem proceeds trough a proof of a stronger state-
ments, viz. that any L-elementary classes can be separated by an LRωω-elementary
class.19 The theorem then follows from applying this more general result to any
L-elementary class along with its complement.

Fist, note that LRωω indeed qualifies to be an abstract logic by conditions
(i)–(ii) above. Moreover, it is readily verified that LRωω inherits the compactness
property from Lωω.

Now, let ϕ,ψ be sentences over some signature Σ and consider the L-
elementary classes ModL(ϕ),Mod(ψ). Then, note that we have for any n ∈ N
and model A:

if A |=L ϕ then A |=L

∨
B|=Lϕ

ψnB , (3.33)

where ψnB is the sentence as specified in definition 3.1.36. To see this, note that
Rn is an equivalence relation on RΣ for any n ∈ N and thus at least we will
always A |=L ψ

n
A for any A. Now, employing a similar compactness argument

as used in the proof of lemma 3.21, we can replace the disjunction in (3.33) by
a finite disjunction. Thus, (3.33) can be reformulated, for any n ∈ N model A,
as:

if A |=L ϕ then A |=L χn, (3.34)

where χn := ψnAn1 ∨ . . . ∨ ψ
n
Anm

.

We shall now show the set {χi : i ∈ N}∪{ψ} has no model in RΣ. Once this
is established, it follows from the compactness property that there exists some
finite subset {χ0 ∧ . . . ∧ χn} ∪ {ψ} having no model. That is:

ModL(χ0 ∧ . . . ∧ χn) ∩ModL(ψ) = ∅. (3.35)

19Two classes A,B are said to be separated by a third class C if A ⊆ C and B ∩ C = ∅
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In addition, we know from (3.34) that

ModL(ϕ) ⊆ ModL(χ0 ∧ . . . ∧ χn). (3.36)

Hence, ModL(χ0∧ . . .∧χn) would then be the desired class separating ModL(ϕ)
and ModL(ψ).

Let us thus suppose there exists some model B of {χi : i ∈ N} ∪ {ψ} in
RΣ. By definition of the χi, we then have, for every i ∈ N, a model An in
RΣ such that An |=L ϕ and B |=L ψnAn . Since R is definably invariant with
definable approximations, the latter of these facts implies that AnRnB for every
n ∈ N. This, in turn, implies there exists an expansion of C of the model (An, B)
satisfying {ϕi : i ≤ n} ∪ {ϕ,ψ} for every n ∈ N. By compactness, we then also
have, for appropriate choice of A′, B′, an expansion C ′ of (A′, B′) satisfying
{ϕi : i ∈ N} ∪ {ϕ,ψ} such that A′ |=L ϕ and B′ |=L ψ. But this also means
that A′RB′. Consequently, we obtain from the R-invariance of L (and hence of
ϕ) that B′ |=L ϕ as well and hence B ∈ ModL(ϕ) ∩ModL(ψ). This, however,
contradicts our original assumption that ModL(ϕ) and ModL(ψ) are disjoint.

�

Theorem 3.1.37, also known as the abstract maximality theorem, provides
us with a characterization result for any abstract logic whose classes of models
are given by first-order ∆-elementary classes and thus represents a significant
improvement on theorem 3.1.33, which we now obtain as a special case by
setting R = ∼=p and letting RΣ denote simply the class of all first-order Σ-
models for every signature Σ. This is, however, but one of myriad possibilities.
In particular, we can specialize the theorem in such a manner that it provides
us with a characterization of the fragment of first-order logic for topological
structures as the strongest abstract logic satisfying compactness and invariance
under partial homeomorphisms.

The abstract maximality theorem is of great interest for the metascientist
in search of model-theoretic formalization tools. It shows us that semi-abstract
model theory, as represented by field of study aimed at finding Lindström-
style characterization theorems, is by no means limited to the investigation
of (extensions of) first-order logic. What makes this observation particularly
salient is that past formalization efforts for metascience have been regarded as
being too unwieldy, exactly because of the difficulties involved in formalizing
theories of science in the basic language of first-order logic.

What the abstract maximality theorem now shows us is that, once we have
broken free of the chains of first-order fixation, that there still exist ample
possibilities for finding powerful formal tools in the field of logic. The application
of theorem 3.1.37 to the case of topological logic, for instance, might be of great
value to the formalization of theories from physics. Moreover, if we expand the
scope of our inquires into semi-abstract model theory beyond the domain of
characterization theorems, we also find much work being done in the logic of
probability, topology and Borel structures.20

20cf. part E of (Barwise & Feferman 1985). While of arguably of greater immediate rele-
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3.2 The Pearce-Rantala Approach

The goal of this section is to give an exposition of the approach to metascience
as expounded by David Pearce and Veikko Rantala in numerous papers and
monographs over the course of the 1970s and ’80s which I collectively refer to as
the first wave of logical abstractivism (FWLA)21 due to the account’s reliance on
semi-abstract model theory. To my knowledge, the earliest published account
of the FWLA can be found in (Rantala 1978) after which Pearce and Rantala
set out a general program for applying semi-abstract model theory to the study
of metascience in their (1983a). We find the most formally elaborate account in
(Pearce 1985), which will serve as the basis of the presentation below.

Of particular concern to Pearce (1985) is elucidation of intertheory relations,
most notably the relation of translation. It is the notion of translation, Pearce
claims, that holds the key to understanding intertheory relations more generally.
In particular, the claim is that by understanding translation we open the door to
understanding reduction relations between scientific theories. Now, we already
encountered one explication of the notion of reduction in subsection 2.4.2. But
as already noted there, this encounter was rather atypical in the sense that the
reduction relation considered was one between structures rather than a relation
between linguistic entities. Attuned to this discrepancy, the aim of Pearce (1985)
is now twofold:

• Using concepts from semi-abstract model theory, to develop a notion for-
malizing the concept of translation between languages.22

• Using this notion of translation, to show how we may rework the set-
theoretic explication of reduction so as to incorporate language into its
account, mending the structuralist and linguistic views on reduction.

We will take up each of these points in turn, with subsection 3.2.1 focused on
the explication of a model-theoretic concept of translation and subsection 3.2.2
showcasing the reworking of the structuralist framework. Finally, in subsection
3.2.3, I will draw upon the preceding exposition in order to distill the primary
tenets of the Pearce-Rantala approach as well as offer a preliminary appraisal.

vance to issues pertaining to metascience, I have omitted a discussion of these logics from my
presentation here because such an exposition would make, in my view, less apparent the level
of generality afforded to us by semi-abstract model theory.

21On occasion, I shall employ the term Pearce-Rantala approach as a synonym.
22Note that we have tacitly made a switch here from translation construed as a relation

between theories to translation as a relation between languages. For our present purposes,
this makes little difference, since translation merely serves as a gateway to reformulating
the intertheory relation of reduction. If one wished, however, we could just as well define
translation between theories in terms of translation between languages. What exactly is
meant here by language will be made clear in the next subsection.
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3.2.1 Semantic Systems

Central to the framework of (Pearce 1985) is the notion of an abstract seman-
tic system.23 Let us start by examining this concept.

Definition 3.2.1. Let L be an abstract logic. Then an abstract semantic system
for L is a pair S = (Σ,R), where Σ is a many-sorted first-order signature and
R ⊆ L2(Σ) closed under isomorphism.

Immediately, then, we see a first, tentative link between the Pearce-Rantala ap-
proach to metascience and the framework of semi-abstract model theory. Some
caveats are in order, however, which unveil already some ways in which the
FWLA makes only limited use of the generality offered by semi-abstract model
theory. Any abstract logic L in the Pearce-Rantala approach is subject to the
following restrictions:

• The class ModL of models of L is a subclass of all first-order models.

• L is an extension of first-order logic, i.e. Lωω ≤ L.

Intuitively, we may view an abstract semantic system as a signature plus
some interpretation provided by the class R. That is, we might consider it
to be an interpreted language. Our objective is now to expound a notion of
translation between abstract semantic systems. This is accomplished as follows:

Definition 3.2.2. Let S = (Σ,R) and S′ = (Σ′,R′) be abstract semantic
systems for some abstract logic L. Then S′ is called a conservative extension of
S if we have Σ ⊆ Σ′ as well as R′ = R|Σ.

Definition 3.2.3. Let S = (Σ,R), S1 = (Σ′,R1) and S2 = (Σ2,R2) be ab-
stract semantic systems for some abstract logic L. Then S is called a common
conservative extension of S1 and S2 if it holds that S is conservative extension
of both S1 and S2.

Pearce (1985, 109–10) then defines translation as follows:

Definition 3.2.4. Let S = (Σ,R), S1 = (Σ1,R1) and S2 = (Σ2,R2) be abstract
semantic systems for some abstract logic L and suppose that S is a common
conservative extension of S1 and S2. Then two sentence ϕ ∈ L1(Σ1), ψ ∈ L1(Σ2)
are said to be intertranslatable24 relative to S if it holds for every A ∈ R that

A |=L ϕ if and only if A |=L ψ. (3.37)

Definition 3.2.5. Let S = (Σ,R), S1 = (Σ1,R1) and S2 = (Σ2,R2) be abstract
semantic systems for some abstract logic L and suppose that S is a common
conservative extension of S1 and S2. Then a sentence ϕ ∈ L1(Σ) is called
translatable into S2 relative to S if there exists a sentence ψ ∈ L1(Σ2) such that
ϕ and ψ are intertranslatable relative to S.

23Adapted from the original terminology of general semantical system (Pearce 1985 109).
24Here, I employ the term intertranslatable as opposed to Pearce’s phrasing of ϕ is translated

by ψ because I believe it to better accentuate the symmetrical natural of the notion.
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Definition 3.2.6. Let S = (Σ,R), S1 = (Σ1,R1) and S2 = (Σ2,R2) be abstract
semantic systems for some abstract logic L and suppose that S is a common
conservative extension of S1 and S2. Then S is said to be a translation25 of S1

into S2 if every sentence ϕ ∈ L1(Σ1) is translatable into S2.

Having established the notion of translation as a relation between abstract
semantic systems, Pearce (1985, 114–24) next seeks to identify which sufficient
conditions on the systems’ respective classes of models need to hold true in
order for this relation to hold as well. The motivation for such an exercise may
be fathomed by looking ahead to subsection 3.2.2: if we wish to combine the
present notion of translation with the structuralist notion of reduction, it is of
interest to examine how translation can be expressed in terms of structures, i.e.
models. Central to this undertaking are the following notions, dating back to
Feferman (1974):

Definition 3.2.7. Let L be an abstract logic. Then a compactness property for
L is a pair δ = (F, I) of sets F, I of L-sentences such that

(i) I contains F ,

(ii) ϕ ∈ SentL implies {ϕ} ∈ F ,

(iii) Γ ∈ F ∩ L1(Σ) implies ModL(Γ) is elementary,

(iv) Γ ∈ F implies Γ ∩ L1(Σ) ∈ F for all signatures Σ,

(v) I is closed under unions and renaming,26

(vi) if Γ ∈ I,Γ ⊆ L1(Σ) and for every Γ′ ⊆ Γ we have that Γ′ ∈ F implies
ModL(Γ) 6= ∅ then ModL(Γ) 6= ∅,

where ModL(Γ) denotes the class of all models satisfying Γ.

Definition 3.2.8. Let L be an abstract logic, R ⊆ L2(Σ) for some signature Σ
and δ a compactness property for L. Then R is called a δ-elementary class, or
simply ECδ, in L if we have R = ModLΣ(Γ) for some Γ ∈ I ∩ L1(Σ). Similarly,
R is called a δ-projective class in L, or simply PCδ in L if there exists some
Σ′ ⊇ Σ and R′ such that R′|Σ = R and R′ is ECδ in L.

Intuitively, conditions (i)–(v) of definition 3.2.7 express that F and I ‘behave’ as
finite and infinite sets of sentences. Condition (vi) may then be viewed as gener-
alization of the the standard compactness property for abstract logics. Indeed,
taking in this definition F to consist of all finite sets of first-order sentences and
and I the set of all possible infinite first-order sentences, we recover the com-
pactness property for Lωω. However, in cases where the usual compactness fails

25In Pearce’s terminology: full translation.
26For any abstract logic L, a renaming ρ : Σ → Σ will induce in the obvious manner a

map ρ′ : L1(Σ) → L1(Σ). Closure under renaming can then be defined as closure under the
induced map ρ′.
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for an abstract logic L, the presence of some (weaker) compactness property δ
for L might still enable us to prove some desirable results.

Next, we require a further property of abstract logics. This property may be
compared to the closely related Robinson property encountered in subsection
3.1.2. We have:

Definition 3.2.9. Let L be an abstract logic. Then we say L has the inter-
polation property if, for any signature Σ, any two disjoint projective classes
R1,R2 ⊆ L2(Σ) are separated by an elementary class R ⊆ L2(Σ).

To further demonstrate the manner in which compactness properties can be of
help in find useful features of abstract logic which might otherwise lack nice
properties as compactness and interpolation, consider:

Definition 3.2.10. Let L be an abstract logic and δ a compactness property
for L. Then we say that L has the δ-interpolation property if the conditions of
definition 3.2.9 hold true with projective classes replaced by δ-projective classes
in the hypothesis.

That δ-interpolation indeed represents a weaker property than usual interpola-
tion is made explicit by the proposition below (Feferman 1974, 159):

Proposition 3.2.11. Let L be an abstract logic, δ = (F, I) a compactness
property for L and suppose that L has the interpolation property. Then L has
the δ-interpolation property.

Proof. Let R1,R2 be two disjoint δ-projective classes of signatures Σ1,Σ2 re-
spectively and let Σ = Σ1 ∩Σ2 and Σ′ = Σ1 ∪Σ2. For i ∈ {1, 2}, let Γi ∈ I be a
set of L-sentences over Σ′ such that Ri = ModLΣ′(Γi)|Σi . Since I is closed under
unions, we know that Γ = Γ1 ∪ Γ2 ∈ I as well. Now, we know Γ cannot have a

Σ′-model A. For suppose there exists such a model A. Then A|Σi ∈ ModΣ′

L (Γi).
But it would then hold that the Σ-model A0 := (A|Σ1

)|Σ = (A|Σ2
)|Σ ∈ R1∩R2,

resulting in a contradiction.
So we indeed have ModLΣ′(Γ) = ∅. By property (vi) of definition 3.2.7,

we then know that there must also exist some Γ0 ⊆ Γ such that Γ0 ∈ F and
ModLΣ′(Γ

0) = ∅. Now, let Xi = Γ0∩L1(Σi). By closure of F under intersections,
we then also have Xi ∈ F . It then follows, by property (iii) of definition 3.2.7,
that ModLΣi(Xi) is EC in L. Consequently, we have that R∗i := ModLΣi(Xi)|Σ
is PC in L. Moreover, since Xi ⊆ Γi and there exists no Σ′-model for Γ0, we
see that Ri ⊆ R∗i and R∗1 ∩R∗2 = ∅. That is, R∗1,R

∗
2 are two disjoint projective

classes in L. Hence, since L has the interpolation property, we infer there exists
some elementary class in L separating R∗1 and R∗2. A fortiori, this elementary
class then also separates R1 and R2. �

Let us now continue to the next order of business. Recall that our aim is to
understand how translations between semantic systems can be represented by
relations between models. To this end, let us consider:
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Definition 3.2.12. Let S = (Σ,R), S1 = (Σ1,R1) and S2 = (Σ2,R2) be
abstract semantic systems for some abstract logic L with Σ1 ∩ Σ2 = ∅27 and
Σ = Σ1 ∪ Σ2. Then let R ⊆ L2(Σ1) × L2(Σ2) denote the relation given by
R(A,B) if and only if (A,B) ∈ R.

Definition 3.2.13. Let S = (Σ,R), S1 = (Σ1,R1) and S2 = (Σ2,R2) be
abstract semantic systems for some abstract logic L, with Σ1 ∩ Σ2 = ∅ and
Σ = Σ1∪Σ2. Then the relation R is called elementary, projective, δ-elementary
and δ-projective if R is EC, PC, ECδ, PCδ in L respectively.

We now have:

Proposition 3.2.14. let S = (Σ,R), S1 = (Σ1,R1) and S2 = (Σ2,R2) be
abstract semantic systems for some abstract logic L, with Σ1 ∩ Σ2 = ∅ and
Σ = Σ1 ∪ Σ2. Then S is a common conservative extension of S1 and S2 if and
only if dom(R) = R1 and rg(R) = R2.

Proof. First, suppose S is a common conservative extension of S1 and S2. We
then know R|Σi = Ri for i ∈ {1, 2}. Now, if A ∈ dom(R), then (A,B) ∈ R for
some B. Clearly, then, we have A ∈ R|Σ1 and hence A ∈ R1. Conversely, if
A ∈ R1 then A ∈ R|Σ1

and hence there exists some B such that (A,B) ∈ R,
i.e. R(A,B). Thus, we have A ∈ dom(R). We conclude dom(R) = R1. The
identity rg(R) = R2 is obtained in an analogous fashion.

Next, suppose dom(R) = R1 and rg(R) = R2. Clearly, it suffices to es-
tablish dom(R) = R|Σ1 and rg(R) = R|Σ2 . Now, A ∈ dom(R) is equivalent
to the existence of some B such that R(A,B) which, in turn, is equivalent
to the existence of some B such that (A,B) ∈ R, that is A ∈ R|Σ1

. Hence,
dom(R) = R|Σ1

. In as similar vein, we obtain the second identity as well. Thus,
we conclude S is a common conservative extension of S1 and S2. �

At last, we are now able to express the so-called uniform reduction theorem,
first formulated by Feferman (1974, 161–2), which reads:

Theorem 3.2.15. Let L be an abstract logic with the interpolation property
and compactness property δ. Furthermore, let S = (Σ,R), S1 = (Σ1,R1) and
S2 = (Σ2,R2) be abstract semantic systems for L, with Σ1 ∩ Σ2 = ∅. Suppose
that R is a δ-projective relation. Then, for any ψ ∈ L1(Σ2) such that for all A,
B, B′ ∈ L2(Σ) we have

R(A,B) and R(A,B′) implies (B |=L ψ ⇐⇒ B′ |=L ψ) (3.38)

there exists ϕ ∈ L1(Σ1) such that for all A, B ∈ L2(Σ)

R(A,B) implies (A |=L ϕ ⇐⇒ B |=L ψ). (3.39)

27In practice, this condition imposes on us no real restrictions: if two signatures Σ1,Σ2 were
to overlap, we can simply rename the symbols in, say, Σ2, by means of a suitable renaming
ρ : Σ2 → Σ3 in such a way that Σ1 ∩ Σ3 = ∅.
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Informally, condition (3.38) states that a certain property, expressed by ψ, is
invariant on the ‘range’ of R. Condition (3.39), on the other hand, states that
for the sentence ψ we have a corresponding, semantically equivalent sentence
ϕ on the ‘domain’ of R. Theorem 3.2.15 then express the fact that to every
property, expressed by some ψ, invariant on the range of R, there exists a
corresponding, equivalent property, expressed by ϕ, on the domain of R. Such
a sentence ϕ is then called a uniform reduction of the property ψ of B to A.

Pearce (1985, 120–1) now invokes the uniform reduction theorem to prove
the following two statements concerning translations:

Proposition 3.2.16. Let L be an abstract logic with the interpolation property
and compactness property δ. Furthermore, Let S = (Σ,R), S1 = (Σ1,R1) and
S2 = (Σ2,R2) be abstract semantic systems for L, with Σ1 ∩ Σ2 = ∅ and
Σ = Σ1∪Σ2, and suppose that S is a common conservative extension of S1 and
S2. Finally, suppose that R is a δ-projective relation. Then, for any ψ ∈ L1(Σ2)
such that for all A, B, B′ ∈ L2(Σ) we have

R(A,B) and R(A,B′) implies (B |=L ψ ⇐⇒ B′ |=L ψ) (3.40)

there exists a sentence ϕ ∈ L1(Σ1) such that ϕ and ψ are intertranslatable
relative to S.

Proof. Let ϕ be the sentence associated to ψ by the uniform reduction theorem.
By definition 3.2.4, this ϕ will be intertranslatable with ψ relative to S if the
consequent of (3.39) holds for all Σ-models C in R. Hence, let C ∈ R. Then we
can write C = (A,B) for some A,B. By definition of R, it follows that R(A,B).
By implication (3.39), we can then infer A |=L ϕ iff B |=L ψ. Now, note that
since ϕ and ψ are sentences over the signatures Σ1 and Σ2 respectively, we can
use the reduct property of abstract logics to conclude that C |=L ϕ iff C |=L ψ.
Hence, ϕ and ψ are intertranslatable relative to S. �

Proposition 3.2.17. Let L be an abstract logic with the interpolation property
and compactness property δ. Furthermore, Let S = (Σ,R), S1 = (Σ1,R1) and
S2 = (Σ2,R2) be abstract semantic systems for L, with Σ1 ∩ Σ2 = ∅ and
Σ = Σ1∪Σ2, and suppose that S is a common conservative extension of S1 and
S2. Finally, suppose that R is a δ-projective relation. Then, if we have for A,
B, B′ ∈ L2(Σ) that

R(A,B) and R(A,B′) implies B ≡L B′ (3.41)

then it holds that S is a translation of S2 into S1.

Proof. Let ψ ∈ L1(Σ2). Applying (3.41) to ψ, we obtain condition (3.40) from
proposition 3.2.16. It then follows that there exists some ϕ ∈ L1(Σ) such that ϕ
and ψ are intertranslatable relative to S. We conclude S is indeed a translation
of S2 into S1. �

Proposition 3.2.17 now provides us with the desired characterization of the
notion of translation in terms of relations between models. In the next sub-
section, we will be putting this characterization to work, viz. be applying it to
obtain a model-theoretic reformulation of the structuralist account of reduction.
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3.2.2 Structuralism Revisited

In the preceding subsection we have seen how Pearce (1985) defines a notion
of translation between abstract semantic systems. To show how this notion
carries over to reduction between theories, we first need a way to articulate a
notion of translation for theories in the structuralist sense. Now, recall that
theories in the structuralist framework are given by particular classes of struc-
tures referred to as theory-elements. Thinking back to subsection 2.4.1, remem-
ber that a theory-element was given by a pair T = (K, I), with theory-core
K = (Mp,M,Mpp, GC,GL) and intended applications I ⊆ Mpp. Central to
this definition was the class of potential models Mp, in terms of which all other
components were defined. The class Mp, in turn, was specified by means of a
structure species, consisting of a type τ and a number of set-theoretic sentences
expressing additional structural properties.

How are we now to introduce the linguistic concept of translation into the
seemingly language-free framework of the structuralists? The key here is to note
that, while structuralism is indeed free of syntactic notions, language still factors
into the account through the type τ of any given structure species. By a trivial
procedure, we can associate to any type τ a signature Στ containing the same
information as τ and vice versa. Now, drawing on our experience in dealing with
translations between abstract semantic systems in the preceding subsection, we
are well-poised to introduce corresponding relations between theory-elements
or, more precisely, theory-cores:

Definition 3.2.18. Let L be an abstract logic and K,K ′ be theory-cores with
structure species τ, τ ′ respectively. Furthermore, let R ⊆M ′p ×Mp be a binary
relation. Then R is said to be a translation of K into K ′ relative to L if

• dom(R) ⊆M ′p and rg(R) = Mp,

• for every ψ ∈ L1(Στ ) there exists ϕ ∈ L1(Στ ′) such that for, for all models
A,B, we have:

R(A,B) implies (A |=L ϕ ⇐⇒ B |=L ψ). (3.42)

At last, then, let us consider how to relate this notion of translation for
theory-cores to the structuralist conception of reduction. A straightforward
application of the uniform reduction theorem yields

Proposition 3.2.19. Let L be an abstract logic with compactness property δ
and K,K ′ be theory-cores with structure species τ, τ ′ respectively. Furthermore,
let R ⊆M ′p ×Mp be a binary relation. Suppose that

• L has the interpolation property,

• R is a δ-projective relation,

• dom(R) ⊆M ′p and rg(R) = Mp,
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• for all models A,B,B′, we have: if R(A,B) and R(A,B′) then B ≡L B′.

Then R is a translation of K into K ′ relative to L.

Recalling definitions 2.4.27 and 2.4.28 from the previous chapter, we thus obtain:

Proposition 3.2.20. Let L be an abstract logic with compactness property δ
and T = (K, I), T ′ = (K ′, I ′) be theory-elements with structure species τ, τ ′

respectively. Furthermore, let R ⊆M ′p ×Mp be a binary relation. Suppose that

• L has the interpolation property,

• R is a δ-projective relation,

• R is a unique direct reduction from T to T ′.

Then R is a translation from K into K ′ relative to L.

Proof. First, note that dom(R) ⊆M ′p and rg(R) = Mp holds true for any direct
reduction. Next, observe that the uniqueness of R guarantees that R(A,B)
and R(A,B) implies B = B′ and hence B ≡L B′. The statement then follows
trivially from proposition 3.2.19. �

As we can see, proposition 3.2.20 provides us with some sufficient conditions
for which the structuralist notion of reduction coincides with Pearce’s notion
of translation as defined on theory-cores. This characterization, however, may
be noted to of questionable value. Indeed, the number of conditions that need
to be imposed on the relation R in order for propositions 3.2.19 and 3.2.20 to
hold seems to make theses results rather trivial in nature. The implications of
this observation for our valuation of the FWLA are considered in more detail in
chapter 5. In the final subsection of the current chapter, we will take a bird’s-eye
view of our findings up until this point and use this to contemplate the general
characteristics of the Pearce-Rantala approach.

3.2.3 FWLA: An Appraisal

Having examined the formal machinery behind the FWLA as well as some mod-
est applications to the structural concept of reduction, let us take a moment now
to evaluate the approach to metascience offered to us by Pearce and Rantala.
As one may recall from section 1.1, I defined logical abstractivism to be the
conviction that the field of metascience may benefit from an abstract concep-
tion of logic. Note, however, that this conviction by itself still leaves open to a
great extent how exactly we ought to apply an abstract conception of logic to
the metascientific enterprise or even what an abstract conception of logic ought
to entail in the first place. In answering these questions, we will be led to the
defining features of the FWLA.

Starting from the central tenet of logical abstractivism, the approach of
Pearce and Rantala is further pinned down by the following additional charac-
teristics. In order of increasing specificity:
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(i) The choice of semi-abstract model theory as the formalism with which
to explicate an abstract conception of logic.

(ii) The choice to include only extensions of first-order logic within the
scope of the abstract logics.

(iii) The focus on logical liberalization, i.e. the focus on liberalizing formal
definitions of metascientific concepts from a specific underlying logic, al-
lowing such definitions to involve any logical system meeting some specific
set of desiderata.

(iv) The choice to use the aforementioned formal machinery to try and modify
the structuralist approach to scientific theories by incorporating lan-
guage into its framework.

The choices (i)-(iv) can be thought to characterize the FWLA within the wider
class of frameworks we might label logically abstractivist.28

Let us now dwell briefly on each of the above points and their ramifica-
tions for the FWLA. Point (i), I believe, may be deemed as fairly inevitable.
Looking at (Beziau 2007, 3–19), we see that much of the early work involv-
ing abstract conceptions of logic emphasized the syntactic and proof-theoretic
rather than the semantic and model-theoretic nature of logic. At the same time,
such proof-theoretic vantage points were focused heavily on propositional logics.
Consequently, the choice for a model-theoretic framework may have simply been
predetermined by the need to consider the inner structure of logical sentences.
This, in turn, would then have largely fixed the choice for semi-abstract model
theory: to my knowledge, it remained the only substantive model-theoretic ap-
proach to universal logic until at least the 1990s.29

The motivation for choice (ii), on the other hand, may already be less obvi-
ous. There is no a priori reason to limit our logical abstractivism to only those
logics extending first-order logic. As seen in subsection 3.1, there is, even within
the confines of semi-abstract model theory, much to be gained by letting our
abstract logics range over a wider class of logics than merely the extensions of
first-order logic. Nevertheless, such a restriction may be understood, by noting
that, also in section 3.1, we frequently encountered just this restriction as a
prerequisite of most of the established results.

Point (iii), by contrast, is more contingent in nature. This choice, i.e. the
choice to utilize semi-abstract model theory so as to free metascience from the
limitations of any single logical system, may be appreciated by reflecting on the
interplay between logic and metascience during the first half of the twentieth
century. Indeed, the expressive limitations of first-order logic was oft-lamented
by those seeking to apply logical methods to the formalization of science. In this
light, a tendency towards logical liberalization becomes more understandable.
After all, we might reason, the alternative to logical liberalization would be

28Of course, the existence of such a ‘wider class’ is at this stage still very much hypothetical.
29Recall from section 1.1 that the term universal logic is used here as an umbrella term for

frameworks concerned with the abstract study of logics.
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to choose simply a different, but fixed underlying logic for our metascientific
investigations.

One of two eventualities might then occur. If, on the one hand, this logic
turns out to be inadequate for this assignment, e.g. by lacking sufficient ex-
pressive power or by being too ill-behaved from a model-theoretic perspective,
our account of metascience falls with it. If, on the other hand, such a logic
would prove to be well-suited to its task, we can simply conduct our meta-
science within this single logical system, dispelling the need for semi-abstract
model theory and logical abstractivism altogether. Such a dilemma, however,
would be duplicitous. I will argue in chapter 5 that there is a natural way out
of this predicament, that is at present concealed by the adherence to point (ii)
of the Pearce-Rantala system.

Lastly, let us note that choice (iv) also may be deemed as entirely contingent.
Throughout their body of work, Pearce and Rantala show a clear preference to
the structuralist school of metascience and accordingly base much of their own
account on the structuralist framework. Admittedly, structuralism was and still
is one of most extensive accounts of metascience. However, at the time of the
FWLA, there was still ample selection from a variety of alternative frameworks
within the structural view of theories, most notably the state-space approach.
In chapter 5, I will argue that the state-space approach, in fact, provides us with
an attractive alternative to structuralism and lends itself naturally to serve as
the basis for a logically abstractivist approach to metascience.

In sum, we see that the FWLA can be characterized by a sequence of non-
trivial choices and that a commitment to the ideology of logical abstractivism
should be no means be equated with the specific brand of abstractivism advo-
cated by Pearce and Rantala. How effective is their approach when it comes to
the elucidation of the structure of science? I will postpone such value judgments
to chapter 5. Let me suffice here by articulating my strong conviction that log-
ical abstractivism has much more to offer to the field of metascience than we
have witnessed so far.
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Chapter 4

Contemporary Metascience

Any new approach to the study of metasciene would do well to take note of
not only preceding schools of metascience, but the contemporary activities in
the field as well. This is why, before entering into the critical analysis of tradi-
tional metascience and the first wave of logical abstractivism, the present chapter
will first introduce us to the most prominent present-day account of scientific
theory-structure. This approach, as we will see, relies heavily on concepts and
methods from the highly abstract mathematical discipline of category theory. As
before, we start our discussion by first considering the formalization of theories
in isolation (sec. 4.1), after which we turn to the problem of intertheory rela-
tions (sec. 4.2). In each of case, we are presented with a number of options for
formalization, each of which we will take up and examine extensively.

4.1 Theories as Categories

So far, our discussion of metascience has been concerned mainly with the pro-
gram of structuralism, as formulated during the 1970s and ’80s. This program,
while enjoying substantial levels of development, has failed to consolidate into a
widely accepted and fruitful metascientific framework: while rigorous in nature,
the account nevertheless is sorely lacking in terms of mathematical depth. This
is why, during the 2010s, a new approach to metascience started to emerge at the
hands of Hans Halvorson and Dimitris Tsementzis (2016) and James Weather-
all (2016).1 The driving force behind this new account was to investigate how
we could take notions from the abstract field of category theory and give them
metascientific application. As before, metascience here refers primarily to the
study of scientific theory-structure. Hence, we might dub this account the cat-
egorical approach to the structure of scientific theories. This adjective will also
be employed more generally to refer to concepts of or relating to category theory.

1One may note a similarity here between these efforts and earlier work by Albert Visser
(2004) on intertheory relations in the context of mathematical logic.

65



In this more general context, I will on occasion also employ category-theoretic
as a synonym for categorical.

Unlike the previous two approaches, the categorical framework is not com-
mitted to any particular entity, e.g. sentences or mathematical structures, with
which to formalize scientific theories. Instead, this view brings with it a new
dimension in the methodological debate in metascience. More precisely, if we
opt to formalize the concept of theory with sentences, then, the claim goes, we
should not formalize the theory as simply a set of sentences, but as a category of
sentences instead. Similarly, instead of using a class of structures to represent
theories, it has been claimed that we had better consider a category of structures.
This being said, Halvorson and Tsementzis (2016, 11–3) have acknowledged the
advantages a syntactic approach might have over a structural approach when
the categorical viewpoint is taken, although this conviction seems to hinge on
a particular view of the category of structures that is not shared by all authors
working in the categorical framework.2

In this section, we will investigate the categorical framework for theories
in more detail, focusing on categories of sentences and as well as categories of
structures. Throughout this section, a basic knowledge of category theory is
presupposed. An overview of the most important notions of this discipline may
be found in appendix A. As before, we will start of our discussion by examining
how individual theories are formalized in the framework under consideration.
The categorical approach offers us two options in this regard: formalize a theory
as a category of sentences (syntactic category) or formalize it as a category of
structures (semantic category). Each of these possibilities will be considered in
turn, being taken up in subsections 4.1.1 and 4.1.2 respectively. Much of the
present section is based on (Halvorson & Tsementzis 2016). It should be noted
at the outset, however, that there exists a closely related strand of literature
within the categorical approach, exemplified by (Weatherall 2016), which differs
from (Halvorson & Tsementzis 2016) in a number of significant ways. This is
particularly pertinent for categories of structures. Accordingly, I shall address
this divergence in the relevant subsection below.

4.1.1 Syntactic Categories

We start by considering what the categorical framework has to say about theo-
ries construed as syntactic entities. In the field of categorical logic, there exists
a well-known procedure for constructing from a theory T ,3 a more elaborate
structure, i.e. the syntactic category CT of T . Before delving into this new
notion, we must make an important caveat: the constructions that will follow
below are applicable only to theories formulated in a particular fragment of
first-order logic, known as the coherent fragment. Before proceeding, let us thus
reflect on this system of logic.

2We shall return to this point in our discussion of semantic categories below.
3Recall that a theory in this sense refers to a deductively closed set of sentences.

66



Definition 4.1.1. The coherent fragment of first-order logic, or simply: coher-
ent logic, is the fragment of first-order logic obtained by restricting its connec-
tives to ∧,∨,>,⊥ and its quantifiers to ∃. We denote this logic by Lgωω.4 A
coherent theory is a theory in coherent logic.

Whence this restriction? Halvorson and Tsementzis note as a particular advan-
tage that within the coherent fragment the ‘distinction between intuitionistic
and classical logic essentially disappears’ (2016, 4). Furthermore, we do not loose
any real expressive power when restricting ourselves to the coherent fragment
of first-order logic, as may be seen through the process known as Morleyization
(2016, 3), although we will not go into the details of this procedure here.

With this in mind, let us return to the notion of syntactic category. In the
below definition, I follow Van Oosten (2002, 39-40), except in that I have mod-
ified the definition such that it avoids the notion of sequent. This modification
requires us to allow for a larger class of sentences for Lgωω than we would expect
from definition 4.1.1. More specifically, we hereby extend the set of sentences
for Lgωω so as to include any sentence of the form

∀~x[ϕ(~x)→ ψ(~x)], (4.1)

with ~x = (x1, . . . , xn) a finite tuple, ∀~x an abbreviation for ∀x1 . . . ∀xn and ϕ,ψ
coherent formulas in the sense of definition 4.1.1. Throughout this subsection,
all formulas will be assumed to be formulas in coherent logic.

With these provisions in place, let us now consider:

Definition 4.1.2. Let T be coherent theory. We then define the syntactic
category CT of T as follows:

• Objects. The objects of CT are classes of formulas ϕ(~x) of Lgωω such that
any two formulas ϕ(~x), ψ(~y) are in the same class if ϕ(~x) and ψ(~y) are
the same formulas modulo renaming of variables.5 We will denote an
object of CT as [ϕ(~x)], where ϕ(~x) is a formula belonging to its associated
equivalence class. It is easily verified that the subsequent definitions do
not depend on which formula from within an equivalence class we choose
as its representative.

• Morphisms. The morphisms of CT are defined to be equivalence classes of
so-called (T -provably) functional relations. We thus need to understand
both the functional relations themselves as well as the equivalence relation
between them.

– Functional relations. A functional relation from one formula ϕ(~x)
to another formula ψ(~y) is a formula χ(~x, ~y) such that the following
formulas are in T :

4This notation originates from the fact that coherent logic is occasionally also referred to
as geometric logic.

5Note that the objects of CT are independent from the theory T .
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(i) ∀~x ∀~y [χ(~x, ~y)→ ϕ(~x) ∧ ψ(~y)],

(ii) ∀~x ∀~y ∀~y′[χ(~x, ~y) ∧ χ(~x, ~y′)→ ~y = ~y′],

(iii) ∀~x[ϕ(~x)→ ∃~yχ(~x, ~y)].

That is, χ is a formula such that for any ~x for which ϕ(~x) holds there
exists a unique ~y for which both χ(~x, ~y) and ψ(~y) hold.6

– Equivalence relation. Let [ϕ(~x)], [ψ(~y)] be equivalence classes of
formulas and let χ1(~x, ~y), χ2(~x, ~y) be two functional relations be-
tween the representatives ϕ(~x) and ψ(~y). We then define χ1(~x, ~y)
and χ2(~x, ~y) to be T -equivalent if it holds that

∀~x ∀~y [χ1(~x, ~y)↔ χ2(~x, ~y)] ∈ T. (4.2)

A morphism between ϕ(~x) and ψ(~y) is then a T -equivalence class of
functional relations. For any functional relation χ(~x, ~y), we denote
its T -equivalence class as [χ(~x, ~y)]T .

• Composition. Given two morphisms

[χ1(~x, ~y)]T : [ϕ(~x)]→ [ψ(~y)],

[χ2(~y, ~z)]T : [ψ(~y)]→ [ω(~z)],

we define the composition [χ2(~y, ~z)]T ◦ [χ1(~x, ~y)]T : [ϕ(~x)]→ [ω(~z)] of the
two morphisms to be given by [χ21(~x, ~z)]T , where

χ21(~x, ~z) = ∃~y[χ1(~x, ~y) ∧ χ2(~y, ~z)]. (4.3)

Let us verify that this construction is internally consistent. We have already
noted how the definitions above do not depend on the choice of representative
for the [.]-classes. But what of the [.]T -classes?

Proposition 4.1.3. The equivalence class [χ21(~x, ~z)]T does not depend on the
choice of representatives for [χ1(~x, ~y)]T and [χ2(~y, ~z)]T .

Proof. Let χ′1(~x, ~y) ∈ [χ1(~x, ~y)]T and χ′2(~y, ~z) ∈ [χ2(~y, ~z)]T . We want to show
that

χ′21(~x, ~z) ∈ [χ21(~x, ~z)]T . (4.4)

By definition of T -equivalence classes, this is the case when

∀~x ∀~z [χ21(~x, ~z)↔ χ′21(~x, ~z)] ∈ T. (4.5)

To see that this is indeed the case, let us note that, by the definition of morphism
composition for syntactic categories (4.3), we have:

χ21(~x, ~z) = ∃~y[χ1(~x, ~y) ∧ χ2(~y, ~z)], (4.6)

χ′21(~x, ~z) = ∃~y[χ′1(~x, ~y) ∧ χ′2(~y, ~z)], (4.7)

6Thus, we can view χ as a specifying a function from the set of all ~x such that ϕ(~x) holds
to the set of all ~y such that ψ(~y) holds. Whence the terminology functional relation.
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Moreover, by (4.2), the fact that χ′1(~x, ~y) ∈ [χ1(~x, ~y)]T and χ′2(~x, ~y) ∈ [χ2(~x, ~y)]T
immediately yields:

∀~x ∀~y [χ1(~x, ~y)↔ χ′1(~x, ~y)] ∈ T, (4.8)

∀~x ∀~y [χ2(~y, ~z)↔ χ′2(~y, ~z)] ∈ T. (4.9)

Combining observations (4.6), (4.7) with (4.8) and (4.9), it readily follows that
(4.5) holds. Hence, the equivalence class [χ21(~x, ~z)]T is well-defined.

�

Next, we would do well to check that the syntactic category, as defined above,
indeed satisfies the requirements for categories. Let us observe the following.

Proposition 4.1.4. For any coherent theory T , the syntactic category CT sat-
isfies the axioms of category theory.

Proof. First, we must check whether the composition operation is well-defined,
i.e. whether the composition of two morphisms again results in a morphism. This
is the case when for any two morphisms [χ1(~x, ~y)]T , [χ2(~y, ~z)]T the composition
[χ21(~x, ~z)]T is also a morphism. This, in turn, is the case if

χ21(~x, ~z) = ∃~y[χ1(~x, ~y) ∧ χ2(~y, ~z)] (4.10)

is a functional relation from [ϕ(~x)] to [ω(~z)], where [ϕ(~x)] is the source object
of [χ1(~x, ~y)]T , and [ω(~z)] is the target object of [χ2(~y, ~z)]T . For this to hold,
χ21(~x, ~z) has to satisfy the conditions (i)-(iii) in definition 4.1.2. Using the
fact that [χ1(~x, ~y)]T and [χ2(~y, ~z)]T are functional relations and hence satisfy
conditions (i)-(iii) themselves, we can infer in a straightforward manner that
[χ21(~x, ~z)]T also satisfies each of the three requirements.

Next, we want to verify that morphism composition is associative. Thus, let

[χ1(~x, ~y)]T : [ϕ(~x)]→ [ψ(~y)],

[χ2(~y, ~z)]T : [ψ(~y)]→ [ω(~z)],

[χ3(~z, ~w)]T : [ω(~z)]→ [υ(~w)],

be three morphisms and consider

[χ3(~z, ~w)]T ◦ ([χ2(~y, ~z)]T ◦ [χ1(~x, ~y)]T ). (4.11)

Twice applying the definition of morphism composition (4.3) to (4.11) shows
the latter to be equal to

[χ3(~z, ~w)]T ◦ [∃~y[χ1(~x, ~y) ∧ χ2(~y, ~z)]] = (4.12)

[∃~z[χ3(~z, ~w) ∧ ∃~y[χ1(~x, ~y) ∧ χ2(~y, ~z)]]]T := (4.13)

[χ321(~x, ~w)]T . (4.14)

In a similar vein, the morphism

([χ3(~z, ~w)]T ◦ [χ2(~y, ~z)]T ) ◦ [χ1(~x, ~y)]T (4.15)
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is seen to be equal to

[∃~z[χ2(~y, ~z) ∧ χ3(~z, ~w)]] ◦ [χ1(~x, ~y)]T = (4.16)

[∃~y[∃~z[χ2(~y, ~z) ∧ χ3(~z, ~w)] ∧ χ1(~x, ~y)]]T := (4.17)

[χ′321(~x, ~w)]T . (4.18)

Now, in order to conclude that (4.14) and (4.18) are equal, it suffices to show
that χ321(~x, ~w) ∈ [χ′321(~x, ~w)]T , which is the case if

∀~x∀~w[χ321(~x, ~w)↔ χ′321(~x, ~w)] ∈ T. (4.19)

That is is indeed the case, can be readily verified by eliminating and reintroduc-
ing existential quantifiers in an appropriate way in χ321(~x, ~w) and χ′321(~x, ~w).
We can thus conclude that composition of morphisms satisfies associativity.

Lastly, we need to check the existence of the identity morphism. Let [ϕ(~x)]
be an object. What is the identity morphism belonging to this object? First,
note that, we can equivalently write the object in question as [ϕ(~x′)]. The claim

is that the identity morphism from [ϕ(~x)] to [ϕ(~x′)] is given by

[ϕ(~x) ∧ ~x = ~x′]T . (4.20)

We readily verify that this a functional relation. Furthermore, for any two
objects [ϕ(~x)], [ψ(~y)] and morphism [χ(~x, ~y)]T , we have

[χ(~x, ~y)]T ◦ [ϕ(~x) ∧ ~x = ~x′]T = (4.21)

[χ(~x′, ~y)]T ◦ [ϕ(~x) ∧ ~x = ~x′]T = (4.22)

[∃~x′[χ(~x′, ~y) ∧ ϕ(~x) ∧ ~x = ~x′]]T . (4.23)

Note that in the step from (4.21) to (4.22) we can substitute the expression

[χ(~x′, ~y)]T for [χ(~x, ~y)]T , since the formulas χ(~x, ~y) and χ(~x′, ~y) are T -provably
equivalent. Moreover, we find

[ψ(~y) ∧ ~y = ~y′]T ◦ [χ(~x, ~y)]T = (4.24)

[∃~y[ψ(~y) ∧ ~y = ~y′ ∧ χ(~x, ~y)]]T . (4.25)

We now need to check the equality of (4.23), (4.25) and [χ(~x, ~y)]T . To this end,
let us verify the T -provable equivalence of χ(~x, ~y) and

∃~x′[χ(~x′, ~y) ∧ ϕ(~x) ∧ ~x = ~x′]. (4.26)

Clearly, we can deduce χ(~x, ~y) from (4.26). Conversely, we can readily deduce
the formula

∃~x′[χ(~x′, ~y) ∧ ~x = ~x′] (4.27)

from χ(~x, ~y). Now, we simply have to note that criterion (i) in the definition
of functional relations guarantees that χ(~x, ~y) implies ϕ(~x) and we are done.
The argument for the equivalence of χ(~x, ~y) and (4.25) proceeds in a completely
analogous manner. Hence, we conclude that the syntactic category CT indeed
satisfies the axiom for identity morphisms. �
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Of what use are these syntactic categories to the metascientific enterprise?
Halvorson and Tsementzis (2016, 4) note how syntactic categories help us to
‘partially eliminate’ the much bemoaned yoke of syntax: if T and T ′ are two
theories formulated in different signatures Σ and Σ′, then they might still have
equivalent syntactic categories. There is, however, no real novelty to be had
in addressing this particular problem, as it is has been tackled well before the
genesis of the categorical view.7 A second advantage of working with syntac-
tic categories cited by Halvorson and Tsementzis (ibid.) is that the resulting
categories possess the structure of what is called a coherent category, which is
noted to have “just the right amount of structure to express models of coherent
theories.” Of course, the desirability of this feature is hinged entirely on our
commitment to coherent logic as valuable instrument for formalizing scientific
theories: a presupposition that is far from trivial. Indeed, we find the primary
justification, as given by Halvorson and Tsementzis (2016, 14), for the potential
fruitfulness of the categorical approach to metascience is based on the observed
effectiveness of its methods in the discourse of metamathematics. The validity
of such an analogy, however, is entirely contingent on the exact manner in which
we choose to explicate our metascientific framework: mutual transferability of
successful methods between the discourses of metascience and metamathematics
is by no means guaranteed.

As of yet, the question of how to apply syntactic categories to the analysis
of concrete scientific theories in a non-trivial fashion remains without answer.
Until such applications come about, it will remain difficult to gauge the potential
syntactic categories hold for the metascientific enterprise. We shall return to
this issue in chapter 5, where the categorical approach will be evaluated in
its entirety while contemplating its compatibility with the ideology of logical
abstractivism. For the moment, however, let us turn our attention towards
different facets of the categorical school.

4.1.2 Semantic Categories

As has already been noted above, the categorical view per se is not committed
to a specific kind of entity, e.g. statements or structures, with which to formalize
scientific theories. Instead, it only seeks to advise us on how a given type of
entity can aid the formalization of theories, viz. by not relying on the traditional
methods of metamathematics, but rather by turning to the new framework of
category theory. Accordingly, the syntactic view of theories is not the only view
to receive a categorical transformation: just as we can associate a category to a
class of sentences in a formal language, so too can we construct a category for
a given class of structures.

Looking at the literature, there appears to exist a dichotomy in the manner
structures are incorporated into the categorical framework. On the one hand,
we have (Halvorson & Tsementzis 2016), which considers a class of structures
to be a class of structures for some coherent theory. In this case, the category

7cf. (Muller 2011, 15–23).
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of structures reduces to a category of models, also referred to as a semantic
category. On the other hand, (Barrett, Rosenstock & Weatherall 2015) and
(Weatherall 2016) do not impose any such restriction on their structures. In-
stead, a class of structures is defined directly and the corresponding category
simply consists of the structures of this class along with a suitable notion of
morphism. For example, Barrett, Rosenstock and Weatherall (2016, 311) in
their analysis of general relativity represent this scientific theory directly by a
category having relativistic spacetimes8 as objects and isometries between these
spacetimes as morphisms.9

Which of these, if any, is the ‘right’ approach to structures? For essentially
the same reasons as expressed in section 2.1, viewing structures as being models
of some class of sentences in a formal language imposes unnecessary restrictions
on the structural view. Moreover, the papers in the second strand of literature
have as an added bonus the fact that they analyze actual scientific theories, such
as general relativity and Newtonian gravity. By contrast, we have yet to see any
applications to scientific theories of the notion of structure employed in the first
strand.10 On the flip side, however, we might note that the approach taken by
Halvorson and Tsementzis (2016) is of a far more general nature, attempting to
formulate methods for the analysis of arbitrary theories (even if these are toy
theories in coherent logic). Such a general vantage point, by contrast, is not
taken up by Weatherall and his collaborators, who instead seem to operate on
a case-by-case basis.

In summary, we can distinguish two varieties of the categorical approach:
one in the style of James Weatherall, focusing on concrete scientific theories
and working with categories of structures not yoked to a particular formal lan-
guage, the other in the style of Hans Halvorson, focusing on the general concept
of a scientific theory and working with syntactic categories or, alternatively, cat-
egories of models of coherent theories. Based on the geographical distribution
of the principal exponents of each approach, California for the former and New
Jersey for the latter, we might refer to these two different approaches within
the categorical school as the west-coast style on the one hand and the east-coast
style on the other. Out of practical considerations, I shall limit myself in this
thesis to the east-coast style framework of (Halvorson & Tsementzis 2016) and,
hence, will limit the present discussion on categories of structures to seman-
tic categories. However, if one were to formulate a proper translation of the
structural view in category-theoretic terms, the above dichotomy would require
serious attention.

8A relativistic spacetime is defined to be a Lorenztian manifold (M, g), consisting of a
smooth four-dimensional manifold M and a Lorentzian metric g (Barett et al. 2015, 310).

9Of course, this category may still be construed of as a category of models, in the sense
that relativistic spacetimes may be viewed as ‘models’ of general relativity. This construal of
the term model, however, should be carefully distinguished from the models of model theory,
where they serve to interpret not scientific theories but theories formulated within a particular
system of logic. It is this latter type of model, as we will see, that makes up the category of
models considered by Halvorson and Tsementzis (2016).

10This is, of course, closely connected to the lack of any significant applications for the
concept of syntactic category in the philosophy of science, as discussed above.
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Let us now consider semantic categories in more detail. Halvorson and Tse-
mentzis (2016, 9–11) present us with two possible definitions. First, consider:

Definition 4.1.5. Let T be a coherent theory over a signature Σ. The seman-
tic category Mod1(T ) of T is the category having as objects models of T and
homomorphisms between Σ-models as morphisms.

We may note that, in general, there exist many homomorphisms between mod-
els of a given theory. This observation leads us to the following, alternative
definition of semantic category.

Definition 4.1.6. Let T be a coherent theory over a signature Σ. The seman-
tic category Mod2(T ) of T is the category having as objects models of T and
elementary embeddings between Σ-models as morphisms.

Clearly, every elementary embedding between Σ-structures is also a homo-
morphism,11 while the converse is certainly not the case. Thus, the category
Mod2(T ) will be a subcategory of Mod1(T ), having fewer morphisms between
each pair of objects.

Which of these two definitions provides us with the ‘best’ notion of semantic
category? Ironically enough, Halvorson and Tsementzis (2016, 12) note that
both notions are, in fact, woefully inadequate.12 More specifically, they argue
that Mod1(T ) and, a fortiori, Mod2(T ), do not contain certain ‘topological’
information about the collections of models that is implicit in the theory T . To
see this, note that we can define a topology on the collection of all models of T
by letting any sequence (Mi)i∈N of models of T converge to another model M of
T if and only if the truth value of ϕ in Mi converges to the truth value of ϕ in
M for every sentence ϕ in T . Let us denote the resulting topological space by
Mod(T ). We can now, for the idealized case of theories in propositional logic,
invoke a well-known result known as the Stone duality theorem to establish:

Theorem 4.1.7. The collection of compact open subsets of Mod(T ) forms a
Boolean lattice that is equivalent, in the categorical sense, to C(T ).

Without entering into the details of this result, we can already see that in
a definite sense the syntactic category C(T ) contains more information than
either Mod1(T ) or Mod2(T ) as far as propositional theories T are concerned.
Whether we can establish similar results for stronger logics, such as coherent
or first-order logic, is still an area of active investigation, with much progress
being made at the hands of Awodey and Forssell (2013).

Halvorson and Tsementzis (2016, 13) infer from the above observation a more
general metascientific morale, which states that the content of a certain scientific
theory T is not exhausted by either its category of models or, a fortiori, its class
of models. It is in this sense that both authors seem to favor a syntactic approach
to scientific theory-structure over a structural one. Such a valuation of the

11Cf. section 1.3 for the definitions.
12This lack of usefulness might also explain why a standard definition of semantic category

does not seem to exist in the first place.
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structural view would, however, rely entirely on our willingness to accept results
obtained for classical systems of logic as indicative for logical metascience, as
acknowledged by Halvorson and Tsementzis (2016, 13–4). Accordingly, any
such recommendations must be approached with due levels of reservation. In
particular, we might note that theorem 4.1.7 loses its metascientific import if
we forego the identification of categories of structures with categories of models,
as is done in the west coast-style of categorical metascience. We shall return
to this observation in the next chapter. For the moment, let us note that
given a methodological commitment to coherent/first-order logic as the basis of
our metascientific frameworks, we can indeed view semantic categories as less
versatile than their syntactic counterparts.

4.2 Intertheory Relations

Having discussed the categorical view of theories, we can now turn our attention
to the explication of intertheory relations. The motivation for such an exercise
has already been discussed at the start of subsection 2.4.2 and will not be re-
iterated here. As noted above, the categorical view is, in principle, neutral as
to whether we need to represent theories by means of statements or structures.
This being said, when it comes to explicating intertheory relations in full gen-
erality, exponents of the categorical view seem to favor the syntactic viewpoint,
i.e. the usage of syntactic categories.

As in the preceding frameworks, the relation of equivalence has received
the most attention in the literature and will accordingly be at the center of
our attention in this section. It is here that we encounter a notion that is
ubiquitous in the literature on the categorical approach, viz. the notion of Morita
equivalence. The claim, as expressed by Halvorson and Tsementzis (2016, 9),
is that this is exactly the right type of equivalence with which to capture the
equivalence between theories.

Let us thus consider what this notion of Morita equivalence is supposed to
be. In the literature, we can identify two different types of Morita equivalence,
referred to as J-Morita equivalence and T-Morita equivalence by Tsementzis
(2015). In brief, the difference between the two notions may be characterized
as follows. On the one hand, T-Morita equivalence is notion of a syntactic
nature, in the sense that it is defined as a relation between two different first-
order theories T1 and T2. By contrast, J-Morita equivalence is fundamentally
a category-theoretic notion and is accordingly defined in terms of syntactic
categories C(T1) and C(T2). In the case of coherent logic, both notions of Morita
equivalence turn out to be equivalent, as demonstrated by Tsementzis (2015).
Through which avenue we choose to familiarize ourselves with the concept of
Morita equivalence is thus largely of matter of taste. For the purposes of this
section, our main focus will be with the notion of T-Morita equivalence, as it is
by far the more intuitive of the two.
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4.2.1 Morita Equivalence

The concept of T-Morita equivalence finds its origin in (Barrett & Halvorson
2015), in which the authors set out to find appropriate criteria for the equiv-
alence of theories in many-sorted first-order logic. Now, T-Morita equivalence
certainly is not the fist notion of equivalence that has been formulated for first-
order theories. So what do we stand to gain from introducing a new type of
equivalence? Consider, for instance, the following definition.

Definition 4.2.1. Let T1, T2 be two theories.13 Then T1 and T2 are said to be
logically equivalent if they have the same class of models.

Is logical equivalence a satisfactory criterion for equivalence between theories?
A brief moment of reflection reveals a negative answer to this question. From
any theory T , we can obtain a new theory T ′ by simply renaming all the non-
logical symbols occurring in the original theory. By any measure, we would like
to consider T and T ′ equivalent theories. Yet, they fail the criterion for logical
equivalence, since T and T ′ have different underlying signatures, the theories
will also have two different classes of models. Thus, we can easily observe that
logical equivalence is far too strict to adequately capture equivalence between
theories.

Clearly, we are in need of a more nuanced criterion for theoretical equiv-
alence. To this end, Barrett and Halvorson (2015, 1) consider three possible
candidates:

(i) definitional equivalence,

(ii) T-Morita equivalence,

(iii) categorical equivalence.

The argument for T-Morita equivalence, which we will take up in more detail
below, now runs as follows. Definitional equivalence is too strict: just as logical
equivalence, it distinguishes theories that ought to be equivalent. Categorical
equivalence, on the other hand, is too liberal: it equates theories we would like
to consider different. T-Morita equivalence, however, is just right: it sits in
between definitional and categorical equivalence and it equates just those and
only those theories that we would intuitively like to think of as equivalent. It
is this process of justification, along with the different notions of equivalence
(i)–(iii), that shall be at the center of our attention for the remainder of this
subsection.

At the very least, a criterion for equivalence should allow for theories for-
mulated in different signatures to be equivalent. This is exactly what motivates
the concept of definitional equivalence. Before we can consider this type of
equivalence, we require several ancillary notions.

13From now until the end of this section, we will assume all signatures, theories and models
to be defined with respect to many-sorted first-order logic.
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Definition 4.2.2. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let P ∈ Σ′ \ Σ
be a relation symbol of arity σ1 × . . .× σn. Then an explicit definition of P in
terms of Σ is a Σ′-sentence

∀σ1
x1 . . . ∀σnxn[P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)], (4.28)

where ϕ is a Σ-formula.

Definition 4.2.3. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let f ∈ Σ′ \Σ be
a function symbol of arity σ1 × . . .× σn → σ. Then an explicit definition of f
in terms of Σ is a Σ′-sentence

∀σ1
x1 . . . ∀σnxn∀σy[f(x1, . . . , xn) = y ↔ ψ(x1, . . . , xn, y)], (4.29)

where ψ is a Σ-formula. To this explicit definition we associate the sentence

∀σ1
x1 . . . ∀σnxn∃!σy[ψ(x1, . . . , xn, y)], (4.30)

called the admissibility condition for (4.29), which expresses a necessary condi-
tion in the signature Σ for ψ defining a function symbol.

Definition 4.2.4. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let c ∈ Σ′ \Σ be
a constant symbol of arity σ. Then an explicit definition of c in terms of Σ is
a Σ′-sentence

∀σx[x = c↔ ρ(x)], (4.31)

where ρ is a Σ-formula. To this explicit definition we associate the sentence

∃!σx[ρ(x)], (4.32)

called the admissibility condition for (4.31), which expresses a necessary condi-
tion in the signature Σ for ρ defining a constant symbol.

Definition 4.2.5. Let T be a theory over the signature Σ and let Σ′ be a
signature extending Σ such that Σ and Σ′ have the same sort symbols. A
definitional extension of T to Σ′ is a theory logically equivalent to

T ∪ {δs | s ∈ Σ′ \ Σ}, (4.33)

where δs is an explicit definition for the symbol s. In case s is a function or
constant symbol, we also require that T |= αs, where αs is the admissibility
condition for δs.

The final clause in definition 4.2.5 is required to eliminate possibility of
nonsensical ‘definitional extensions’. For example, consider:

Example 4.2.6. Let Σ be the signature consisting of only a binary relation
symbol R and let T be the deductive closure of the sentence ∀x[xRx]. That
is, T is the theory of reflexive relations. Next, let Σ′ = Σ ∪ {�}, where � is
a constant symbol and consider the explicit definition ∀x[x = � ↔ ∀y[xRy]].
Clearly, it does not hold that T |= α�. Ignoring the final clause of definition
4.2.5, we could now call T ∪ {δ�} a ‘definitional extension’ of T to Σ′. Such
a claim would vacuous, however, since we can readily identify models of T for
which the explicit definition δ� fails to determine a unique expansion to Σ′.
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We are now ready to formulate the concept of definitional equivalence.

Definition 4.2.7. Let T1 and T2 be theories over the signatures Σ1 and Σ2

respectively. T1 and T2 are definitionally equivalent if there exist theories T ′1,
T ′2 such that

(i) T ′1 is a definitional extension of T1 to Σ1 ∪ Σ2,

(ii) T ′2 is a definitional extension of T2 to Σ1 ∪ Σ2,

(iii) T ′1 and T ′2 are logically equivalent Σ1 ∪ Σ2-theories.

To paraphrase, two theories are definitionally equivalent if they have a ‘common
definitional extension’.

We can immediately verify that definitional equivalence is indeed much more
liberal than logical equivalence. In what follows, we shall write Γcl to denote
the deductive closure for any set of sentences Γ.

Proposition 4.2.8. If two theories are logically equivalent, then they are defi-
nitionally equivalent. The converse, however, does not generally hold true.

Proof. For the first statement, observe that if two theories T1 and T2 are logically
equivalent, then they have identical signatures Σ1 = Σ2 = Σ. Consequently, we
can simply set T ′1 := T1, T ′2 := T2 and the conditions for definitional equivalence
are satisfied.

To see that the converse implication does not hold, we can construct an
easy counterexample. Take, for instance, the theory of non-strict total orders,
formulated in the signature {v} consisting of a single binary relation symbol:

T1 = {∀x∀y[x v y ∧ y v x→ x = y],

∀x∀y∀z[x v y ∧ y v z → x v z],
∀x∀y[x v y ∨ y v x]}cl.

Now, compare this to the theory of strict total orders, formulated in the signa-
ture {@} similarly consisting of a single binary relation symbol:

T2 = {∀x∀y[x @ y → ¬(y @ x)],

∀x∀y∀z[x @ y ∧ y @ z → x @ z],

∀x∀y[x 6= y → x @ y ∨ y @ x]}cl.

Clearly, T1 and T2 fail to be logically equivalent since they have non-identical
classes of models: non-strict total orders for the former and strict total order
for the latter. We can, however, define a common definitional extension. Let

T ′1 = T1 ∪ {∀x∀y[x @ y ↔ x v y ∧ x 6= y]}cl

and
T ′2 = T2 ∪ {∀x∀y[x v y ↔ x @ y ∨ x = y]}cl.
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Then, clearly, T ′1 and T ′2 are logically equivalent theories over the extended
signature {v,@}.

We conclude that T1 and T2, while not logically equivalent, do meet the
requirements for being definitionally equivalent.

�

The notion of definitional equivalence is well established in the logic liter-
ature and has received considerable attention from logicians. We might thus
hope that with definitional equivalence, we have come across the appropriate
notion with which to capture theoretical equivalence. Yet, as noted Barrett and
Halvorson (2015, 8–9), we still find several instances in which definitional equiv-
alence proves to be too harsh of a criterion. For instance, consider the theories
T1 := Th(Z,≤) and T2 := Th(Z+, Z−,≤+,≤−), with Z+, Z− the non-negative
and negative integers and ≤+,≤− the corresponding orders, formulated over
the signatures {σ0,v} and {σ1, σ2,v+,v−} respectively. There is clearly am-
ple reason to consider both theories equivalent. However, T1 and T2 fail to meet
the criteria of definitional equivalence. To see this, note that while definitional
extensions allow us to define new relation, function and constant symbols in
terms of other such symbols, they do not allow us to define new sort symbols
in an analogous manner. Hence, any two theories formulated in signatures with
different sort symbols will automatically be disqualified from being definitionally
equivalent, regardless of any conceptual similarity the two might share.

To remedy this situation, we need to generalize the notion of definitional
equivalence in such a manner that we can define now sort symbols from old
ones. This will lead us to the much-anticipated notion of T-Morita equivalence.
It turns out that, for all intents and purposes, it will suffice to define four
particular ways in which we can construct new sort symbols. Let us consider
each of these four in turn.

Definition 4.2.9. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let σ ∈ Σ′ \ Σ.
An explicit definition of σ as a product sort in terms of Σ is a Σ′-sentence

∀σ1x∀σ2y∃!σz[π1(z) = x ∧ π2(z) = y], (4.34)

where σ1, σ2 ∈ Σ are sort symbols and π1, π2 ∈ Σ′ \Σ are function symbols with
arities σ → σ1 and σ → σ2 respectively.

Some words of clarification might be in order. As its name suggests, the product
sort allows us to syntactically codify what it means for one domain in a model
to be given by the product, in the set-theoretic sense, of two other domains.
The function symbols π1, π2 can then be seen as syntactic representation of the
projection functions from the new domain to the original ones.

Moving on, we have

Definition 4.2.10. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let σ ∈ Σ′ \ Σ.
An explicit definition of σ as a coproduct sort in terms of Σ is a Σ′-sentence

∀σz[∃!σ1
x[ρ1(x) = z] ∨ ∃!σ2

y[ρ2(y) = z]] ∧ ∀σ1
x∀σ2

y[ρ1(x) 6= ρ2(y)], (4.35)
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where σ1, σ2 ∈ Σ are sort symbols and ρ1, ρ2 ∈ Σ′ \Σ are function symbols with
arities σ1 → σ and σ2 → σ respectively.

The motivation here is virtually identical to that for the product case. We now
define what it means for a domain to be the coproduct, in the set-theoretic
sense, of two other domains. The function symbols i1, i2 represent the inclusion
maps from the original domains to the new one.

We see that the idea underlying these definitions is to codify certain set-
theoretic constructions in the language of many-sorted first-order logic, thereby
increasing our language’s expressive power. Thus, in a similar vein, we find

Definition 4.2.11. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let σ ∈ Σ′ \ Σ.
An explicit definition of σ as a subsort in terms of Σ is a Σ′-sentence

∀σ1
x[ϕ(x)↔ ∃σz[i(z) = x]] ∧ ∀σz1∀σz2[i(z1) = i(z2)→ z1 = z2], (4.36)

where ϕ is a Σ-formula, σ1 ∈ Σ is a sort symbol and i ∈ Σ′ \ Σ is a function
symbol with arity σ → σ1. As before, we associate to this explicit definition an
admissibility condition, viz. the sentence ∃σ1x[ϕ(x)].

This time, it is the subset relation we are seeking to formalize. To this end, we
employ a function symbol i which is interpreted as the injection sending each
element z to the same element i(z) in the extended domain.

Our final definition now reads:

Definition 4.2.12. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. Let σ ∈ Σ′ \ Σ.
An explicit definition of σ as a quotient sort in terms of Σ is a Σ′-sentence

∀σ1x1∀σ1x2[ε(x1) = ε(x2)→ ϕ(x1, x2)] ∧ ∀σz∃σ1x[ε(x) = z], (4.37)

where ϕ is a Σ-formula, σ1 ∈ Σ is a sort symbol and ε ∈ Σ′ \ Σ is a function
symbol with arity σ1 → σ. To this explicit definition we associate the following
three admissibility conditions:

(i) ∀σ1x[ϕ(x, x)],

(ii) ∀σ1
x1∀σ1

x2[ϕ(x1, x2)→ ϕ(x2, x1)],

(iii) ∀σ1
x1∀σ1

x2∀σ1
x3[ϕ(x1, x2) ∧ ϕ(x2, x3)→ ϕ(x1, x3)].

In this case, we are defining a new domain to consist of equivalence classes of
elements of our original domain. The equivalence relation in question is encoded
by the formula ϕ(x1, x2) and the function mapping each element of the original
domain to its equivalence class in the new domain is represented by ε.

Having defined four ways in which we might construct new sort symbols
from a given signature, we are now almost ready to consider the definition of
T-Morita equivalence.
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Definition 4.2.13. Let Σ,Σ′ be signatures such that Σ ⊆ Σ′ and let T be a
theory, formulated in the signature Σ. A Morita extension of T to the signature
Σ′ is a Σ′-theory that is logically equivalent to

T ∪ {δs | s ∈ Σ′ \ Σ}, (4.38)

where δs is an explicit definition for each symbol s, such that (i) for any sort
symbol σ and any function symbol f occurring in the explicit definition of σ
we have δf = δσ, and (ii) for any admissibility condition αs associated to an
explicit definition δs, we have T |= αs.

Similarly to the definition of definitional equivalence, we now define T-Morita
equivalence as there existing a ‘common Morita extension’ for two theories.

Definition 4.2.14. Let T1 and T2 be theories over signatures Σ1 and Σ2 re-
spectively. Then T1 and T2 are T-Morita equivalent if there exist sequences of
theories T 1

1 , . . . , T
n
1 and T 1

2 , . . . , T
m
2 such that

(i) Each theory T i+1
1 is a Morita extension of T i1,

(ii) Each theory T j+1
2 is a Morita extension of T j2 ,

(iii) The theories Tn1 and Tm2 are logically equivalent theories in some signature
Σ containing both Σ1 and Σ2.

Comparing the definitions of definitional and T-Morita equivalence, we might
be struck by a discrepancy. Why is it that we require sequences of theories for T-
Morita equivalence, while not doing so for definitional equivalence? To answer
this question, we must look at the following theorem concerning definitional
equivalence.

Theorem 4.2.15. Let Σ be a signature, T be a Σ-theory and Σ′ be a signature
extending Σ. If T ′ is a definitional extension of T to Σ′, then for every Σ′-
formula ϕ(x1, . . . , xn) there exists a Σ-formula ϕ∗(x1, . . . , xn) such that

T ′ |= ∀σ1
x1 . . . ∀σnxn[ϕ(x1, . . . , xn)↔ ϕ∗(x1, . . . , xn)]. (4.39)

From this theorem, we can infer the following helpful corollary.

Corollary 4.2.16. If T ′ is a definitional extension of T from Σ to Σ′, and T ′′

is a definitional extension of T ′ from Σ′ to Σ′′, then T ′′ is also a definitional
extension of T from Σ to Σ′′.

Thus, by corollary 4.2.16, including sequences of definitional extensions in defi-
nition 4.2.7 would be superfluous. The same, however, does not hold for Morita
extensions, for which we have the following weaker analogue of theorem 4.2.15:

Theorem 4.2.17. Let Σ be a signature, T be a Σ-theory and Σ′ be a signature
extending Σ. If T ′ is a Morita extension of T to Σ′, then for every Σ′-sentence
ϕ there exists a Σ-formula ϕ∗ such that T ′ |= ϕ↔ ϕ∗.
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Consequently, we have to explicitly allow for sequences of theories in definition
of T-Morita equivalence.

Again, we would like to verify that the notion of equivalence we have ex-
pounded is more liberal than the one preceding it.

Theorem 4.2.18. If two theories are definitionally equivalent, then they are
T-Morita equivalent. The converse, however, does not generally hold true.

Proof. Clearly, any definitional extension of a theory is also a Morita extension.
Hence, if we have two definitionally equivalent theories T1, T2, we can simply se-
lect the definitional extensions T ′1, T

′
2 to serve as the required Morita extensions

and we are done.
To see that the converse implication does not hold, consider the signatures

Σ1 = {σ1, P,Q} and Σ2 = {σ2, σ3} and consider the Σ1-theory

T1 = {∃σ1
x[P (x)],∃σ1

x[Q(x)],

∀σ1
x[P (x) ∨Q(x)],

∀σ1
x[¬(P (x) ∧Q(x))]}cl,

and the Σ2-theory T2 = ∅cl. Both theories express the fact that we can partition
our domain of discourse into two, disjoint regions, T1 doing so by means of
two relation symbols and T2 doing so by means of two sort symbols. Thus,
intuitively, we might reasonably deem T1 and T2 to be equivalent theories.

Since these theories have different sort symbols, it immediately follows that
they are not definitionally equivalent. They do, however, meet the criteria for
T-Morita equivalence. To see this, consider the signature Σ = Σ1∪Σ2∪{i2, i3},
with i2 and i3 function symbols of arity σ2 → σ1 and σ3 → σ1 respectively.
We are going to construct three Morita extensions: one for T1, one for T2 and
one for the Morita extension of T2. This will then suffice to establish T-Morita
equivalence. Let us consider each extension in turn.

• Let the Σ-sentences δσ2
, δσ3

be the explicit definitions of σ2 and σ3 as
the subsort symbols of σ1 with respect to the function symbols i2 and i3
respectively. We then consider the Morita extension T 1

1 = T1 ∪ {δσ2
, δσ3
}

of T1 to Σ.

• Let δσ1
be the explicit definition of σ1 as the coproduct sort of σ2 and

σ3 with respect to the function symbols i2 and i3. Let us now define the
Morita extension T 1

2 = T2 ∪ {δσ1} of T2 to Σ2 ∪ {σ1, i2, i3}.

• Let δP and δQ be explicit definitions for P and Q given by

∀σ1
x[P (x)↔ ∃σ2

y[i2(y) = x]], ∀σ1
x[Q(x)↔ ∃σ3

y[i3(y) = x]]. (4.40)

and consider the Morita extension T 2
2 = T 1

2 ∪ {δP , δQ} of T 1
2 to Σ.

It is now straightforwardly verified that T 1
1 and T 2

2 are logically equivalent Σ-
theories. We can conclude that T1 and T2 are indeed T-Morita equivalent.

�
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Let us take a moment to reflect on our progress so far. We have climbed up
from logical equivalence, to definitional equivalence, to T-Morita equivalence.
In every step, it was argued that the preceding notion of equivalence provided us
with too strict a criterion for theoretical equivalence, by noting how it forced us
to differentiate between theories we would intuitively like to consider equivalent.
Now, however, we will need to proceed in the opposite direction: we need to
show (i) that we did not ‘overshoot’ when going from definitional equivalence
to T-Morita equivalence, i.e. that T-Morita equivalence still meets the basic
desiderata that we expect for theoretical equivalence; and (ii) that we cannot
‘go farther’ than T-Morita equivalence.

To establish point (i), Barrett and Halvorson note (2015, 11–5) how T-
Morita equivalence preserves, to a certain extent, a number of nice properties
of definitional equivalence. More specifically, consider the following theorem for
definitional extensions.

Theorem 4.2.19. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. If T ′ is a defini-
tional extension of T to Σ′ then every model M of T has, up to isomorphism,
a unique expansion M ′ that is a model of T ′.

In the terms of Barrett and Halvorson (2015, 7), this result shows us how a
definitional extension ‘says no more’ than the original theory from a semantic
point of view. Naturally, we would then like for this result to carry over to the
case of Morita extensions. Fortunately, we can indeed prove a result analogous
to theorem 4.2.19.

Theorem 4.2.20. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′. If T ′ is a Morita
extension of T to Σ′ then every model M of T has, up to isomorphism, a unique
expansion M ′ that is a model of T ′.

The similarity between theorems 4.2.19 and 4.2.20 is already a good indi-
cation that T-Morita equivalence is not too liberal a criterion for theoretical
equivalence. But we can do more. Consider the following:

Definition 4.2.21. Let Σ,Σ′ be signatures such that Σ ⊂ Σ′ and let T and
T ′ be a Σ-theory and Σ′-theory respectively. We say that T ′ is a conservative
extension of T if for every Σ-sentence ϕ it holds that

T |= ϕ if and only if T ′ |= ϕ. (4.41)

Theorem 4.2.22. If T ′ is a definitional extension of T , then T ′ is a conserva-
tive extension of T .

This provides us with another sense in which a definitional extension T ′ ‘says no
more’ than the original theory T , i.e. T ′ says no more than T with respect to the
original signature Σ. Once again, we might wonder whether this ‘nice’ property
of definitional extensions transfers cleanly to Morita extensions. Barrett and
Halvorson (2015, 14) answer in the affirmative:

Theorem 4.2.23. If T ′ is a Morita extension of T , then T ′ is a conservative
extension of T .
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Proof. For sake of contradiction, suppose T ′ is not a conservative extension of
T . Since T is contained in T ′, it is clear that T |= ϕ implies T ′ |= ϕ for every
Σ-sentence ϕ. Hence, it is the converse implication that must fail for some Σ-
sentence ϕ, i.e. we have T ′ |= ϕ but T 6|= ϕ. This, in turn, means there exists
some model M of T such that M |= ¬ϕ. By theorem 4.2.20, we know that this
model M must have a unique expansion M ′ that is a model of T ’. Then, since
T ′ |= ϕ, it holds that M ′ |= ϕ. However, since M ′ is an expansion of M , we
also have that M ′ |= ¬ϕ. We have arrived at the desired contradiction. �

We see that T-Morita equivalence preserves several nice features of defini-
tional equivalence. Thus, it seems reasonable to conclude that we have not
generalized excessively in moving from definitional to T-Morita equivalence.

Finally, we consider whether T-Morita equivalence truly is general enough.
To this end, we examine one final notion of equivalence, viz. categorical equiva-
lence, that is even more general than T-Morita equivalence and see why we may
deem it too general. As its name suggests, categorical equivalence is a notion
rooted in category theory. In what follows, we will rely heavily on material cov-
ered in appendix A. The reader without a reasonable background in category
theory is advised to consult this appendix before proceeding with the material
below. In particular, we require:

Proposition 4.2.24. A functor is an equivalence of categories if and only if it
is full, faithful and essentially surjective.

Definition 4.2.25. Two categories C and D are equivalent if there exists an
equivalence of categories between them.

Now, how are we to relate the above notion of equivalence to equivalence between
theories? From the previous section, we might recall there exist at least two
different ways of relating theories and categories: syntactic categories on the one
hand and semantic categories on the other. Barrett and Halvorson (2015, 18)
opt for the latter choice. In what follows, we shall take the strongest of the two
proposals for the notion of semantic category as our definition. That is, given
a first-order theory T , we let Mod(T ) := Mod2(T ) be its semantic category.14

In particular, this means that the morphisms in our semantic categories will be
given by elementary embeddings between models.

With the above provisions in place, we now have:

Definition 4.2.26. Two theories T1 and T2 are categorically equivalent if their
semantic categories Mod(T1), Mod(T2) are equivalent.

As before, we would like to show that this notion of equivalence is more
liberal than the one directly preceding it, i.e. T-Morita equivalence. This will,
however, require us to do some work. Fist, we need the following concept.

14The attentive reader may note that we had actually defined Mod2(T ) for coherent theories
only. However, it is clear that nothing in the given definition is contingent on the theory being
formulated in Lg

ωω and so we can readily generalize to the full first-order case.
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Definition 4.2.27. Let T ′ be a Morita extension of T . We then define the
projection functor Π : Mod(T ′)→ Mod(T ) to be the functor such that

• Π(M) = M |Σ for every object M in Mod(T ′);

• Π(h) = h|Σ for every morphism h : M → N in Mod(T ′).

Note that this definition does not require T ′ to be a Morita extension of T per
se. We might just as well have defined the projection functor for any other
type of extension. For our present purposes, however, it suffices to consider this
functor in relation to Morita extensions.

Proposition 4.2.28. If T ′ is a Moria extension of T , then the projection func-
tor Π : Mod(T ′)→ Mod(T ) is essentially surjective.

Proof. Recall theorem 4.2.20, which states that for every model M of T there
exists a unique expansion of M to a model M ′ of T ′. Hence, for any model M
in Mod(T), we have a model M ′ in Mod(T ′) such that Π(M ′) = M ′|Σ = M .
We conclude Π is essentially surjective. �

Proposition 4.2.29. If T ′ is a Moria extension of T , then the projection func-
tor Π : Mod(T ′)→ Mod(T ) is faithful.

Proof. Let h : M → N and g : M → N be morphisms in Mod(T ′) and suppose
that Π(h) = Π(g). This means that hσ = gσ for every σ ∈ Σ. To demonstrate
faithfulness, we now have to show that this identity also holds for the sort
symbols from Σ′ \ Σ.

Thus, let σ ∈ Σ′ \ Σ. Since T ′ is a Morita extension of T , we can obtain
σ from the sorts in Σ by a combination of the four operations on sort symbols
defined above.

Suppose T ′ defines σ as a coproduct sort with function symbols ρ1 and ρ2

with arities σ1 → σ and σ2 → σ respectively. First, note that, for i ∈ {1, 2},

hσ ◦ ρMi = ρNi ◦ hσi , (4.42)

which we can see by applying the fact h is an elementary embedding to the
formula ρi(x) = y. Next, observe that

ρNi ◦ hσi = ρNi ◦ gσi , (4.43)

since we know by assumption that hi = gi. Now, again using the fact that hσ
is an elementary embedding, we can infer

ρNi ◦ gσi = gσ ◦ ρMi . (4.44)

Successive application of equations (4.42)–(4.44) thus yields:

hσ ◦ ρM1 = gσ ◦ ρM1 and hσ ◦ ρM2 = gσ ◦ ρM2 . (4.45)
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Finally, recall that since T ′ defines σ as the coproduct sort of σ1 and σ2, it holds
that

M |= ∀σz[∃!σ1
x[ρ1(x) = z] ∨ ∃!σ2

y[ρ2(y) = z]]. (4.46)

So for any c ∈Mσ, we can either find a ∈M1 or b ∈M2 such that ρ1(a) = c or
ρ2(b) = c. Combining this observation with (4.45), we conclude that gσ = hσ,
as desired.

Next, consider the case where σ is defined as a quotient sort with function
symbol ε with arity σ1 → σ. Using the same reasoning as in the coproduct case,
we see that

hσ ◦ εM = gσ ◦ εM . (4.47)

Moreover, since T ′ defines σ as a quotient sort with respect to σ1, we know

M |= ∀σz∃σ1
x[ε(x) = z]. (4.48)

Combining (4.47) and (4.48), we may again conclude gσ = hσ.
The cases for product sorts and subsorts proceed in a similar fashion and

may be found in (Barrett & Halvorson 2015, 19–20). �

Finally, we have:

Proposition 4.2.30. If T ′ is a Moria extension of T , then the projection func-
tor Π : Mod(T ′)→ Mod(T ) is full.

We are now ready to state the relation between categorical equivalence and
T-Morita equivalence:

Theorem 4.2.31. If two theories are T-Morita equivalent, then they are cate-
gorically equivalent. The converse, however, does not generally hold true.

Proof. Suppose T1 and T2 are T-Morita equivalent. By definition, there then
exist sequences T 1

1 , . . . , T
n
1 and T 1

2 , . . . , T
m
2 of theories such that each successor

is a Morita extension of its predecessor and Tn1 and Tm2 are logically equivalent.
The latter, by definition, implies that the semantic categories Mod(Tn1 ) and
Mod(Tm2 ) are equivalent. The former, by propositions 4.2.28, 4.2.29 and 4.2.30,
implies that for each T i1, T

i+1
1 and T j2 , T

j+1
2 , the corresponding projection func-

tors are equivalences between categories. Using the transitivity of equivalences
of categories, we now obtain an equivalence of categories between T1 and Tn1 ,
and another one between T2 and Tm2 . Now, by the equivalence of Mod(Tn1 ) and
Mod(Tm2 ), we conclude that also Mod(T1) and Mod(T2) are equivalent. Hence,
T1 and T2 are categorically equivalent.

To see that the converse implication fails, consider the following example.
Let Σ1 = {σ1, P0, P1, . . .} and Σ2 = {σ2, Q0, Q1, . . .} be signatures with each
one sort symbol and countably many unary relation symbols. Next, let

T1 = {∃!σ1
x[x = x]}cl, (4.49)

T2 = {∃!σ2
y[y = y],∀σ2

y[Q0(y)→ Q1(y)],∀σ2
y[Q0(y)→ Q2(y)], . . .}cl, (4.50)

be theories over Σ1 and Σ2 respectively. Clearly, every model of either T1 or T2

will consist of a single element. This fact has two particular consequences:
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• Within Mod(T1) and Mod(T2), there exists at most one morphism from
any one object to another.

• For any two structures M,N in Mod(T1) or Mod(T2), we can easily in-
vert any elementary embedding from M to N . Thus, every morphism in
Mod(T1) and Mod(T2) will be an isomorphism.

By lemma A.2.11 from appendix A, the above two facts now imply that
Mod(T1) and Mod(T2) are discrete categories. This means that both Mod(T1)
and Mod(T2) are equivalent to categories whose only morphisms are identity
morphisms. Let us refer to these categories as S1 and S2 for Mod(T1) and
Mod(T2), respectively. Clearly, any bijection between the objects of S1 and
S2 would naturally induce an equivalence of categories between S1 and S2.
Invoking the transitivity of equivalences of categories, we could then conclude
that Mod(T1) and Mod(T2) are equivalent.

To see that we can indeed construct a bijection from ob(S1) to ob(S2), we
will show both to be equinumerous to the set of all infinite binary sequences.
First, we define a map f from ob(S1) to {0, 1}N as follows. Let a be an object in
S1, i.e. a is an isomorphism class of models of T1. Let M = ({m}, PM0 , PM1 , . . .)
be a model in a. Then, let f(a) be the sequence (αn)n∈N such that

αn =

{
0, if m 6∈ PMn ,

1, otherwise.

Since, by definition, every model in a is isomorphic to M , we see that this
definition does not depend on the choice of model M . It is now readily verified
that f is a bijection.

In a similar fashion, we define a map g from ob(S2) to {0, 1}N as follows.
Let b be an object in S2, i.e. b is an isomorphism class of models of T2. Let
K = ({k}, QK0 , QK1 , . . .) be a model in b. We define the map g as follows:

(i) If K is the structure ({k},∅, {k}, {k}, . . .), then g(b) = (0, 1, 1, . . .).

(ii) If K is the structure ({k}, {k}, {k}, {k}, . . .), then g(b) = (1, 1, 1, . . .).

(iii) If none of the above hold, then g(b) is defined to be the sequence (βn)n∈N
such that

βn =

{
0, if k 6∈ QKn+1,

1, otherwise.

Again, it is easily checked that this definition is well-defined and gives us a
bijection between ob(S2) and {0, 1}N. We conclude that ob(S1) and ob(S2) are
both of cardinality 2ℵ0 and, hence, that there exists a bijection between them.
Thus, we see that T1 and T2 are categorically equivalent.

Our next aim is now to show that the theories are not T-Morita equivalent.
For sake of contradiction, let us suppose that T1 and T2 in fact are T-Morita
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equivalent. Then there exists a common Morita extension T of T1 and T2 to
some signature Σ. Now, consider the Σ2-sentence ∀σ2yQ0(y). Trivially, it holds
that this is also a Σ-sentence. By theorem 4.2.17, this implies there exists a
Σ1-sentence ϕ such that

T |= ∀σ2
yQ0(y)↔ ϕ. (4.51)

We show that this bi-implication leads to absurdity. The idea here is that T2

permits a sentence that completely determines the structure of its models, viz.
the sentence ∀σ2

yQ0(y), while we do not have such a sentence for T1. That is
to say, the sentence ϕ as defined above cannot exist.

We demonstrate that ϕ has the following property. Let ψ be a Σ1-sentence
and suppose that T1 |= ψ → ϕ. Then, we have either T1 |= ¬ψ or T1 |= ϕ→ ψ.
This is sufficient to arrive at a contradiction, since we can then take

ψ := ϕ ∧ ∀σ1
xPi(x), (4.52)

where Pi is a relation symbol not occurring in ϕ, and observe that while obvi-
ously ψ → ϕ, we can ascertain neither T1 |= ¬ψ nor T1 |= ϕ→ ψ.

Let us now set about showing that ϕ indeed has the property stated above.
Let ψ∗ be the Σ2-sentence, obtained from theorem 4.2.17, such that

T |= ψ ↔ ψ∗. (4.53)

Combining bi-conditionals (4.51) and (4.53) with the fact that T |= ψ → ϕ,
we get that T |= ψ∗ → ∀σ2

yQ0(y). Moreover, since ψ∗ → ∀σ2
yQ0(y) is a

Σ2-sentence, we have, by theorem 4.2.23, that T2 |= ψ∗ → ∀σ2
yQ0(y). Now,

suppose T1 6|= ¬ψ, i.e. ψ holds in some model of T1. Then it is also the case that
ψ∗ holds in some model M of T2. We show this implies T2 |= ∀σ2yQ0(y)→ ψ∗.

Let M ′ be an arbitrary model of T2 and suppose M ′ |= ∀σ2yQ0(y). Inspect-
ing T2, we see that the sentence ∀σ2

yQ0(y) completely determines the structure
of the models of T2. Hence, the models M and M ′ will be isomorphic. Now,
by assumption, M |= ψ∗. Thus, we infer that also M ′ |= ψ∗. We conclude
T2 |= ∀σ2yQ0(y) → ψ∗. Translating back again to T1, this yields T1 |= ϕ → ψ,
which establishes that ϕ indeed has the above described property.

�

We see that categorical equivalence indeed provides us with a more liberal
criterion for theoretical equivalence than T-Morita equivalence. But should
we view this as a point in favor for T-Morita equivalence or, alternatively, as
an advantage of categorical equivalence? Barrett and Halvorson opt for the
former. As they point out (2015, 23), we could well argue that the theories T1

and T2 given in the proof of theorem 4.2.31 are sufficiently different so as to be
considered inequivalent. In particular, the theory T2 contains a unary relation
symbol Q0 that, if satisfied, complete determines the truth values of all the
other relation symbols Q1, Q2, . . . in the theory. The theory T1, by contrast,
contains no such ‘special’ relation symbol.
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It would thus seem that with T-Morita equivalence we have arrived at just
the right level of generality to capture equivalence between theories. Now, how-
ever, the following concern arises: how are we to incorporate the notion of
T-Morita equivalence in the program of the categorical school of metascience?
Indeed, we have started our discussion of the categorical approach by looking at
how to transform bare sets of sentences/models into nice, structured categories.
Yet, throughout our entire discussion of T-Morita equivalence, we have assumed
theories to be given by bare sets of first-order sentences. Moreover, the only
thread connecting our ruminations on theoretical equivalence with the categor-
ical view on theories/models, i.e. the the notion of categorical equivalence, has
been shot down as being too general for our purposes! So how exactly are we
supposed to bring T-Morita equivalence and the categorical research program
together in a single overarching view? We shall take up this matter in the
following subsection.

4.2.2 A Category of Theories

Let us forget for a moment the notion of T-Morita equivalence and return to the
fundamental concept of the categorical approach, i.e. the notion of a syntactic
category.15 Now, given that the categorical view prescribes that we formalize
theories by means of their respective syntactic categories, we might very well
expect that intertheory relations between theories are similarly explicated in
terms of syntactic categories. In particular, we would expect our notion of
theoretical equivalence to be defined as a relation holding between syntactic
categories. The most straightforward manner in which we could define a notion
of equivalence between theories would then be given by:

Definition 4.2.32. Let T1, T2 be coherent theories. T1 and T2 are said to be
equivalent if the syntactic categories CT1 and CT2 are equivalent in the category-
theoretic sense.

With this definition for theoretical equivalence in place, we could then take
our study of intertheory relations one step further by considering the category
of theories Th, with syntactic categories of coherent theories as objects and
morphisms determined by choosing the relation of category-theoretic equiva-
lence as the isomorphism relation within Th. In the literature, this category
is also known as the coherent category and denoted Coh. Thus, assuming our
notion of theoretical equivalence to be given by definition 4.2.32, the study of
intertheory relations reduces to the study of the properties of this particular
category Coh.

Halvorson and Tsementzis (2016) indeed consider Coh as a possible can-
didate for the category of theories. They note, however, that “for reasons too
detailed to go into here” (2016, 9) the corresponding notion of equivalence as
set out in definition 4.2.32 is too strict a notion of theoretical equivalence. To

15The inferiority of semantic categories relative to syntactic categories was already estab-
lished in subsection 4.1.2.
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remedy this situation, we might attempt to liberalize the criterion expressed in
definition 4.2.32 by demanding not the equivalence of the syntactic categories
of the theories in question, but requiring the equivalence of some more general
type of categories based on the theories. Here, by ‘more general’ I mean a
type of category that can be considered to contain less information about the
underlying theory T than contained in the corresponding syntactic category CT .

Indeed, it is exactly the above strategy we find implemented in (Halvorson &
Tsementzis 2016). More specially, Halvorson and Tsementzis (2016, 7) consider
two ways in which we can construct a new type of category from a given theory
in coherent logic. Namely:

(i) Given a coherent theory T , consider its associated classifying topos ET .

(ii) Given a coherent theory T , consider the pretopos completion P (CT ) of
the corresponding syntactic category CT .

Both of the above notions are rooted in the subfield of category theory known
as topos theory. Roughly speaking, topos theory may be construed as the study
of categories which behave similarly to the category of sets. Unfortunately, the
formal explication of the above concepts is a rather involved process and would
take us well beyond the scope of the present thesis. The interested reader is
invited to consult appendix B for an introduction to the field of topos theory.16

For our present purposes, it will suffice to sketch here the manner in which the
two topos-theoretic concepts formulated above can be connected to the notion
of T-Morita equivalence.

Now, let us consider the notion of theoretical equivalence obtained by re-
placing in definition 4.2.32 syntactic categories by either one of the objects
mentioned in (i) and (ii). Say we opt for the former choice. We then obtain a
notion of theoretical equivalence closely related to that of T-Morita equivalence.
More specifically:

Definition 4.2.33. Let T1, T2 be coherent theories. T1 and T2 are said to be
J-Morita equivalent if the classifying topoi ET1

and ET2
are equivalent in the

category-theoretic sense.17

As it turns out, the choice between options (i) and (ii) for defining J-Morita
equivalence was inessential, as expressed by the following proposition.

Proposition 4.2.34. Let T1, T2 be coherent theories. Then the classifying topoi
ET1

and ET2
are equivalent if and only if the pretopos completions P (CT1

) and
P (CT2

) are equivalent.

The above proposition thus provides us with the following, alternative charac-
terization of J-Morita equivalence.

16The concepts involved in the definition of the notion of a topos are of a more general
category-theoretic import and will also prove useful later on in the subsequent chapter.

17Henceforth, I shall omit this qualification.
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Corollary 4.2.35. Let T1, T2 be coherent theories. Then T1 and T2 are J-
Morita equivalent if and only if the pretopos completions P (CT1) and P (CT2)
are equivalent.

Now, let us finally return to the notion of T-Morita equivalence, as discussed
in the previous subsection. The link between the abstract, category-theoretic
notion of J-Morita equivalence and the more intuitive, syntactic notion of T-
Morita equivalence is established by Tsementzis (2015):

Theorem 4.2.36. Let T1, T2 be coherent theories. Then T1 and T2 are T-Morita
equivalent if and only if they are J-Morita equivalent.

Hence, we see that in the coherent fragment of first-order logic, the notion of
T-Morita equivalence, through its equivalence with J-Morita equivalence, gives
rise to a notion of equivalence defined on category-theoretic entities.

In the same manner as for definition 4.2.32, we see that a definition of
theoretical equivalence in terms of T-Morita equivalence now allows us to lift
the study of intertheory relations over to the category of theories Th. This
time, however, this category is not identical to the coherent category Coh.
In line with the differing notions of theoretical equivalence, we also obtain a
different category of theories, viz. the category Pretop consisting of objects
known as pretopoi. While we will not be examining the category Pretop in
further detail, let us note that it is this category of theories that Halvarson
and Tsementzis (2016, 17) consider to be the most suitable for the analysis of
intertheory relations. At this stage, we could revisit the doubts expressed in
section 4.1 concerning the applicability of notions grounded in coherent logic to
cases of actual, concrete scientific theories. For the moment, however , let us
conclude our discussion on the categorical school of metascience and redirect our
focus to expounding a new approach to logical metascience in the subsequent
chapter.
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Chapter 5

Second Wave of Logical
Abstractivism

In this final chapter, I draw the outline of a new methodology for the application
of abstract model theory to metascience. Motivating this revision, I begin by
arguing in section 5.1 that the first wave of logical abstractivism has failed to
bring together the abstract conception of logic with the study of metascience in
a convincing manner. To argue this point, I will present numerous different
aspects of the first wave which I believe make it ill-suited for metascientific
application. Next, I lay the groundwork for a new abstractivist approach to
metascience by considering two recent strands of research within abstract model
theory in section 5.2. Having completed the groundwork, I will finally theorize
how we can use these new frameworks to generate, what I hope will become, a
second wave of logical abstractivism in section 5.3.

5.1 The Failure of FWLA

In this section, I will argue that logical abstractivism is due for a renewal.
More specifically, I will contend that the first wave of logical abstractivism, as
expounded by Pearce and Rantala, does not provide us with a satisfactory com-
bination of metascience with the abstract conception of logic. This argument
will proceed in two stages. In subsection 5.1.1, I argue that the FWLA fails to
utilize the most prominent and conceptually interesting aspects of semi-abstract
model theory, thereby demonstrating the questionable methodological basis un-
derlying the approach. Next, I will contend that the FWLA also fails in the
execution of its methodology. More specifically, I show in subsection 5.1.2 how
the FWLA has done little to advance the structuralist program of metascience.

Below, I will frequently call upon the characteristic features (i)-(iv) of the
FWLA as discussed in subsection 3.2.3. Recall we had established there that
the FWLA may be construed as a flavor of logical abstractivism characterized
by a focus on (i) semi-abstract model theory, (ii) extensions of first-order logic,
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(iii) logical liberalization and (iv) the structuralist approach to metascience.
Of these, I consider (i) to be an inevitable result of the time period in which
the FWLA was expounded. Choice (ii), however, is of a quite restrictive and
contingent nature, shoehorning us into accepting (iii) and (iv) which, in turn,
further restrict the scope of the FWLA. In the following subsections, I will argue
that properties (i)-(iv) make the framework of the FWLA into one that fails to
fully utilize the potential of its employed formalism, viz. semi-abstract model
theory, and in addition does little to advance the framework of structuralism.
This, I hold, makes its failure complete and brings to the fore the need for a
new brand of logical abstractivism.

5.1.1 FWLA and Abstract Model Theory

To my knowledge, the premise of applying methods from semi-abstract model
theory to metascientific considerations is an idea wholly original to Pearce and
Rantala. Yet, a cursory view of their writings reveals only a modest utilization
of the formal machinery underlying this approach. Recall from section 3.1 that
semi-abstract model theory may be seen to be the culmination of three separate
strands of research within model theory during the 1950s and ’60s, viz. research
on cardinality quantifiers, infinitary logics and Lindström-style characterization
theorems. In subsection 3.1.2, we familiarized ourselves with the latter of these
research traditions, encountering the particularly general abstract maximality
theorem.1 This theorem, we may recall, served to characterize certain fragments
of first-order logic with, for any signature Σ, the class of Σ-models given by
a first-order ∆-elementary class. The abstract maximality theorem, in turn,
opened the door to the characterization of a variety of different, non-standard
logics, such as the logic of topological structures.

Consider, now, the exposition of the Pearce-Rantala approach offered in
section 3.2. Two aspects of its methodology stand out immediately. Namely,
within their approach, Pearce and Rantala opt to restrict the concept of abstract
logic to those and only those abstract logics whose classes of models consisted
of subclasses of first-order models and, most importantly, were extensions of
first-order logic. This decision, codified as point (ii) above, already seems to
cut off from us the level of generality provided by the abstract maximality
theorem. Non-standard logics which may prove to be of significant interest to
the formalization of scientific theories, such as topological logic, now become
much more difficult to include within the scope of our investigations.2

1While the choice to focus only on characterization theorems was, for the most part, one
of convenience, we may note there is also an intrinsic reason why this strand of research seems
more attractive to the aspiring metascientist than the preceding two. Whereas the research
on cardinality quantifiers and infinitary logics presupposes already that we are working with
a fixed, definite class of logics, usually a class of logics extending first-order logic, the work on
Lindström-style characterization results has in principle no such a priori restriction. In fact,
the abstract maximality theorem itself is a testament to the fact that the search for Lindström
theorems provides us with a most natural environment for considering a wide variety of logical
systems, not limited to first-order extensions.

2To be precise, it prevents us from including topological and other non-standard logics as
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Suppose, however, that we accept the restriction to extensions of first-order
logic as given. We find then in the FWLA yet another, non-trivial choice being
made that further constricts the manner in which we can involve semi-abstract
model theory into our metascientific frameworks. This is choice (iii), i.e. the
choice to employ abstract logics so as to promote logical liberalization, and it
may be considered as the defining characteristic of the FWLA. For sake of
clarity, let me make explicit here what it is I refer to exactly by this mantra.
Consider again the propositions offered by Pearce (1985) concerning the struc-
turalist concept of reduction, as described in subsection 3.2.2. We may note that,
for these propositions to hold, one only needs to find one particular abstract
logic satisfying the conditions stated in the propositions’ hypotheses. Most im-
portantly, note that the relation R between models need not necessarily be a
first-order definable relation.3 Instead, R is merely required to be definable rel-
ative to some suitable abstract logic L having a suitable compactness property
δ.4 Which abstract logic L this would then be, is irrelevant. What matters only
is the existence of such an abstract logic. The crux of the matter here is that
the Pearce-Rantala approach ‘liberates’ metascientific concepts and statements
from the yoke of a fixed, underlying logic such as Lωω. Thus, if a given logic
turns out to be too weak expressively to define, for instance, a relation R be-
tween models, we are free to move to a different logical system strong enough
to meet our requirements. With this, we have arrived at the essence of logical
liberalization as well as the FWLA in its entirety.

In what sense does adherence to logical liberalization represent a proper
restriction of the philosophy of logical abstractivism? As noted in subsection
3.2.3, logical abstractivism may be perceived as necessitating a commitment to
this modus operandi. After all, so the dilemma goes, we either have or have
not a system of logic that has an adequate combination of expressive power and
nice model-theoretic properties. If we have, we simply take that logic as the
logic underlying our metascientific frameworks. If we have not, we are left with
no choice but to pursue logical liberalization. Such a dilemma, however, would
presuppose an overly narrow view on the role of logic in the formalization of
scientific theories. This tunnel vision, I hold, can be attributed to adherence to
point (ii), i.e. the restriction of abstract logics to extensions of first-order logic.
Given this presupposition, logical liberalization seems to be the only plausible
way in which abstract logics might be brought into the study of metascience.
More specifically, while it is not strictly necessitated, adherence to point (ii) does
heavily suggest to us that the general role of logic in metascientific methodology
is similar to the role that has traditionally been assigned to first-order logic, i.e.
to represent the contents of scientific theories in a formal language as descrip-

they are construed in (Flum 1985), i.e. as particular fragments of first-order logic satisfying
some suitable invariance conditions.

3We call R first-order definable if its associated class of models R, defined by (A,B) ∈ R
if and only if R(A,B), is either an elementary or projective class in Lωω .

4We call R definable relative to some abstract logic L with compactness property δ if its
associated class of models R is δ-elementary or δ-projective in L.
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tively precise as possible.5 If this particular methodology is taken for granted
then we are automatically committing ourselves to a view on logics which exalts
expressive power as one of the most desirable features a logic may possess. With
this in mind, a natural question then presents itself: how strong of a logic can we
permit ourselves to work in without throwing away most of the useful results of
first-order model theory? Slightly rephrased, this becomes: does there exists a
logic having such and such model-theoretic properties that is also strong enough
to express such and such? This line of inquiry, however, leads the metascien-
tist seeking to import the tools of semi-abstract model theory straight to the
methodology of logical liberalization. Hence, we see that logical liberalization
is by no means necessitated by logical abstractivism and that adoption of this
methodology is in fact a contingency particular to the Pearce-Rantala approach,
stemming from its focus on extensions of first-order logic.6

Briefly reflecting on this subsection’s title reveals that besides semi-abstract
model theory there also exist other model-theoretic approaches to the abstract
study of logic, having both many similarities and deviations from the field
of semi-abstract model theory. In my usage, the term abstract model theory
will serve as an umbrella term meant to designate the entirety of such model-
theoretic approaches.7 Now, we might, in addition to the criticism expounded
above, also scrutinize the FWLA with respect to these alternative approaches.
Such an assessment, however, would necessarily be of an anachronistic nature.
For most of the second half of the twentieth, semi-abstract model theory stood
as the sole framework for model-theoretic investigations into universal logic.8

Hence, it seems hardly appropriate to assign blame to the FWLA for not fully
utilizing the potential of frameworks that had not even come into existence at
the time of its own genesis. This being said, the more recent frameworks do, in
fact, possess certain properties which would make them most suitable to serve
as the formal basis for a new, second wave of logical abstractivism. I shall return
to this point in section 5.2 and again in section 5.3. This should, however, be
interpreted strictly as an argument in favor of the second wave, rather than an
argument directed against the first wave.

5.1.2 FWLA and Structuralism

The last subsection makes clear there are some serious reservations to be had
about the manner in which the FWLA utilizes the resources of semi-abstract
model theory to the metascientific cause. However, given their particular method-
ology, how well do Pearce and Rantala succeed in revitalizing the metascience

5See (Montague 1974) for a paradigmatic example of this tradition.
6Recalling the terminology of first-order fixation from section 1.1, we might summarize

the preceding discussion by the mantra that the methodology of the FWLA fails to transcend
the bounds of first-order fixation.

7Usually, the term abstract model theory is used in a more narrow sense to refer to what I
call here semi-abstract model theory.

8Recall that universal logic serves as an umbrella term with which to designate all frame-
works seeking to understand logical systems from an abstract point of view, including but not
limited to model-theoretic vantage points.
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of old?9 By point (iv), we know that the Pearce-Rantala approach focuses
primarily on applying semi-abstract model theory to reinvent the framework
of structuralism. Thus, the question of how well the FWLA meshes with the
metascience of old can be seen to reduce to the query of how well it succeeds in
improving structuralism. Taking up this question, I shall confine my attention
to the work of Peace (1985) on the structuralist notion of reduction, as dis-
cussed in section 3.2, which appears to be the most formally elaborate entry in
the literary corpus of the FWLA as well as a reasonably representative member
of this body of work.

Inspecting the results set out in section 3.2, we may be left feeling somewhat
disappointed. The elaborate formal machinery of abstract semantic systems
and Feferman’s uniform reduction theorem, do not seem to pay off in terms of
mathematically interesting results. Looking at proposition 3.2.20, we see that it
manges only to characterize the notion of reduction in the sense that it provides
us with some sufficient conditions for Pearce’s model-theoretic notion of trans-
lation, as defined for theory-cores, to coincide with the structuralist concept of
reduction. This result thus seems to provide us with a rather lopsided character-
ization. Moreover, the sufficient conditions presented in this proposition are of
a rather specific and ad hoc nature, which contributes to an overall impression
of artificialness of the obtained result.

Putting to the side the above ‘internal’ criticism of the Pearce-Rantala ap-
proach, we might next ask to what extent the development of structuralism
has been impacted concretely by the revisions proposed in the FWLA. For an
answer, we can turn to the discussion presented in section VI.7 of (Balzer et
al. 1987), which is one of the few occasions where the structuralists explicitly
consider the potential role of language in their framework. Accordingly, it is
also in this place that Bazler et al. reflect on the possible value of logic and the
FWLA for the explication of structuralism.10 More specifically, they consider
three aspects of their concept of reduction which may stand to benefit from the
introduction of language. Of these, the first two points relate directly to the
FWLA, while the third one seems to be of a more general nature. I shall thus
confine my discussion here to the first two points pertaining to the interplay of
language and reduction.11

First, we can note that Balzer et al. (1987, 308) acknowledge one point of
criticism set forth by Pearce (1985, 135–40), which pertains to a paraphrasing
of condition (ii) of definition 2.4.27. This condition, as we may recall, required

9That is, how well do they succeed in revitalizing the metascientific frameworks existing
concurrently with their own approach?

10To be precise, the bibliography following chapter VI contains two references to works
falling within the FWLA. Of these, one paper can be seen to coincide approximately with the
material of (Pearce 1985) as discussed in section 3.2.

11The third point taken up by Balzer et al. (1987 313–20) pertains to the philosophically
significant notion of incommensurability. Indeed, this notion has also been at the center of a
fair number of treatises within the FWLA. Nevertheless, I have opted to omit the discussion
of this notion from this thesis, as it would bring with it a host of tangential philosophical
issues. The discussion of incommensurability in (Balzer et al. 1987), moreover, does not seem
to be informed to any significant extent by the FWLA.
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that

for all x′ ∈M ′p: if x′ ∈M ′ and (x′, x) ∈ ρ, then x ∈M .

As remarked in subsection 2.4.2, Balzer et al. motivate this requirement by the
informal reading that the ‘laws’ of theory-element T can be ‘derived’ from the
‘laws’ in theory-element T ′. Pearce, however, notes the problematic nature of
such a characterization in the absence of any language within the structuralist
account. For without language, the argument goes, any analogy employing
the concepts of law and derivability can only be considered disingenuous. In
response, Balzer et al. essentially subscribe to Pearce’s proposed manner of
introducing language into their framework and note that such a treatment is
indeed beneficial in elucidating the nature of the employed paraphrasing.

A second aspect of (Pearce 1985) discussed by Balzer et al. (1987, 311–3)
is the content of proposition 3.2.20. In this instance, however, the judgment
of the structuralists is more reserved. More specifically, they note the transla-
tion produced by this proposition, through the formal machinery of the uniform
reduction theorem, fails in some crucial regards to qualify as a proper type
of translation. More specifically, it is argued that the notion of translation as
employed in the Pearce-Rantala approach, inadequately reflects those aspects
of translation pertaining to ‘preservation of meaning’ of terms in scientific lan-
guages and hence can not be considered a ‘proper translation’. As a result,
Balzer et al. do not subscribe to the view that reduction implies translation, as
stated in proposition 3.2.20. Thus, in contrast to the previous point, Balzer et
al. do not consider proposition 3.2.20 as providing us with a natural incentive
for introducing language into the structuralist framework.

Taking stock, we see that the impact of the FWLA on the program of struc-
turalism, as explicated in (Balzer et al. 1987), is limited to the justification
of a particular paraphrasing of condition (ii) in the structuralists’ definition of
direct reduction. In no essential way does language, let alone abstract logics,
enter into their account. In practical terms, it thus seems that the influence of
the FWLA on the structuralist approach to metascience, and by extension to
the entire metascience of old, can be considered negligible.

5.2 New Formalisms

In the preceding section, it was noted how new developments within the field of
abstract model theory can help us transcend some of the perceived drawbacks
of the FWLA and be of much value in erecting a new methodology for logical
abstractivism. The present section is therefore devoted to the exploration of
these new formalism, in much the same way section 3.1 was devoted to obtaining
an overview of semi-abstract model theory. The frameworks in question are two
in number. The first falls squarely within the scope of semi-abstract model
theory; the study of abstract modal logics is an extension of the methods
for obtaining Lindström-style characterization theorems to the domain of modal
logic. By contrast, the second framework we will be taking up represents an
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entirely new direction in the study of abstract model theory. Institution-
independent model theory, or institutional model theory for short, presents
us with a formalization of the concept of logical system that may be labeled
fully abstract, in contrast to the semi-abstract treatments we have encountered
up until this point.

Having completed our survey tour, we will in section 5.3 be concerned with
the application of the above frameworks, as well as ‘old’ results of semi-abstract
model theory, to the metascientific enterprise. It shall then become clear just
how much the first-order fixation of both the old and new approaches to meta-
science, as well as the FWLA itself, has constrained the application of logic to
the formal analysis of science.

5.2.1 Abstract Modal Logics

The field of modal logic is one of myriad mathematical and philosophical appli-
cations.12 For our present purposes, we may think of ‘a modal logic’ as a logic
(propositional, first-order, etc.) whose syntax is augmented by the presence of
some additional, unary connective symbols ♦1, . . . ,♦n called modal operators.13

Of particular fundamentality is the logical system of basic modal logic, symbol-
ically: BML. Notions such as formula, model and truth are defined for BML
in much the same way as they were in the first-order case, modulo a number
of characteristic differences. Throughout this subsection, it will be assumed we
are working with a fixed number of modal operators ♦1, . . . ,♦n for all modal
logics under consideration. As is customary in modal logic, we define a dual
operator �i := ¬♦i¬ for every 1 ≤ i ≤ n.

Definition 5.2.1. A propositional letter P is a meaningless, syntactic symbol.
It is assumed we have a countably infinite supply of propositional letters.

Definition 5.2.2. A signature Σ for BML is a set of propositional letters.

Definition 5.2.3. Let Σ be a signature. Then the set of Σ-sentences for BML
is the smallest set containing every P ∈ Σ that is closed under ∧,∨,→,¬ and
the modal operators ♦1, . . . ,♦n.

Definition 5.2.4. A frame F is a tuple (WF , RF1 , . . . , R
F
n ) where WF is a set,

the elements of which are referred to as nodes, and RFi is a binary relation on
WF for every 1 ≤ i ≤ n.

Definition 5.2.5. Let Σ be a signature. Then a Σ-model for BML consists of
a frame (W,RM1 , . . . , RMn ) together with a mapping VM : WM × Σ → {0, 1}.
The mapping VM is referred to as the valuation mapping of the model.

Definition 5.2.6. Let Σ be a signature. Then a pointed Σ-model is a pair
(M,u) where M is a Σ-model and u ∈W .

12Small portions of this subsection, such as definition 5.2.9 and the statements of theorems
5.2.11, 5.2.12 and 5.2.13, also occur in (Vos 2016).

13Though less common, it is also possible for modal operators to be k-ary, for arbitrary
k ∈ N. In this subsection, we will be concerned only with the unary variety.
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Definition 5.2.7. Let Σ be a signature. Then the relation |= between pointed
Σ-models and Σ-sentences is defined inductively as follows:

• (M,u) |= P iff VM (P, u) = 1 for every P ∈ Σ,

• (M,u) |= ¬ϕ iff not (M,u) |= ϕ,

• (M,u) |= ϕ ∨ ψ iff (M,u) |= ϕ or (M,u) |= ψ,

• (M,u) |= ϕ ∧ ψ iff (M,u) |= ϕ and (M,u) |= ψ,

• (M,u) |= ϕ→ ψ iff (M,u) |= ϕ implies (M,u) |= ψ,

• (M,u) |= ♦iϕ iff there exists some u′ ∈ WM such that we have uRMi u
′

and (M,u′) |= ϕ for every 1 ≤ i ≤ n.

If (M,u) |= ϕ, we say (M,u) satisfies or makes true ϕ. If Γ is a set of sentences
then we say (M,u) satisfies or makes true Γ, and write (M,u) |= Γ, if (M,u)
satisfies every sentence ϕ ∈ Γ.

These definitions complete the specifications of the system of basic modal
logic. It is not my intent to dwell on the independent import of this logical
system or to motivate thoroughly the above definitions. The reader wishing for
an accessible introduction to this topic may consult (Van Benthem 2010). In
our present discussion, we will be interested in Lindström-style characterizations
for certain modal logics, BML included. In particular, it is of great interest to
determine whether we can formulate a theorem for modal logics comparable the
abstract maximality theorem in terms of generality.

A natural course of action might now seem to take the definition of abstract
logic as presented in subsection 3.1.1 and see how basic modal logic fits within
it. Note, however, that definition 3.1.3 tacitly that any abstract logics, by and
large, behave as predicate logics. For instance, the functions L1 and L2 of some
abstract logic L are both defined on the domain Sig of first-order signatures.
Accordingly, the closure conditions of definition 3.1.3 presuppose a syntax that
behaves roughly like that of predicate, requiring L to be closed under existential
quantification. It is thus necessary to revisit the notion of an abstract logic and
determine how we can apply it to the family of modal logics.14 To this end, we
introduce the notion of an abstract modal logic.

Definition 5.2.8. An abstract modal logic is a triple (L, SentL, |=L), consisting
of a map L : Sig → P(SentL) sending each modal signature Σ to a set of objects
called the Σ-sentences for L and |=L is a relation between pointed models and
sentences of L, such that we have

14Note that modal logics come both in a propositional variety, BML being the prime
example, as well as in a predicate variety, such as first-order modal logic. At any rate, even
if we are concerned with characterizing some system of predicate modal logic, we still require
a notion of abstract logic that includes the propositional case as well. After all, we would
like to characterize such a predicate modal logic relative to the class of all modal logics, both
predicate and propositional.
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(i) For any pointed model (M,u) and ϕ ∈ SentL: if (M,u) |=L ϕ then
ϕ ∈ L(ΣM ), where ΣM is a signature of cardinality equal to the number
of binary relations of M .

(ii) Monotonicity Property. For any two signatures Σ,Σ′: if Σ ⊆ Σ′, then
L(Σ) ⊆ L(Σ′).

(iii) Finite Occurrence Property. For any signature Σ and ϕ ∈ L(Σ), there
exists a smallest, finite signature Σϕ ⊆ Σ such that ϕ ∈ L(Σϕ).

(iv) Isomorphism Property. For any signature Σ, pointed Σ-models (M,u), (N, v)
and Σ-sentence ϕ, if it holds that (M,u) |= ϕ and (M,u) |=L ϕ then
(N, v) |=L ϕ.

(v) Reduct Property. For any signature Σ, pointed model (M,u) and ϕ ∈
SentL: if ϕ ∈ L(Σ) and Σ ⊆ ΣM then (M,u) |=L ϕ if and only if
(M,u)|Σ |=L ϕ, where (M,u)|Σ is the pointed model identical to (M,u)
except in that its valuation map has been restricted to the domain Σ×WM .

(vi) Renaming Property. For any two signatures Σ,Σ′, injection ρ : Σ → Σ′

and ϕ ∈ SentL: if ϕ ∈ L(Σ), then there exists ϕρ ∈ L(Σ′) such that for
all Σ-models A we have A |=L ϕ if and only if Aρ |=L ϕ

ρ.

(vii) Closure Properties. For any signature Σ, the set L(Σ) is closed under
Boolean connectives and modal operators.

As we can see, definitions 3.1.3 and 5.2.8 are largely identical, with minor mod-
ifications to account for the fact that we are now working with propositional
signatures and pointed models instead of their first-order equivalents. The most
significant alteration is that the we no longer require closure under existential
quantification, since this condition is no longer always meaningful. Rather, we
now require closure under modal operators.15

Notions such as extensions and equivalence for abstract modal logics are
defined in complete analogon with those for abstract logics and will thus not be
repeated here. Quintessential to all modal-logical investigations is the following
preliminary:

Definition 5.2.9. Let Σ be a modal signature and let (M,u), (N, v) be pointed
Σ-models. Then a bisimulation Z between (M,u) and (N, v) is binary relation
Z ⊆WM ×WN such that

• uZv,

• for all P ∈ Σ, we have u0Zv0 implies VM (P, u0) = 1 iff V N (P, v0) = 1,

15Most definitions of abstract modal logics do not require the full range of properties (i)-
(vii) I have included in definition 5.2.8. For instance, Enqvist (2013, 235) omits the finite
occurrence and isomorphism properties because these are not required for the results he goes
on to derive. Nevertheless, it seems to me prudent to adhere to the more stringent definition
above, since otherwise we might open the door the unwanted ‘counterexamples’ to the notion
of abstract modal logic, e.g. a system of ‘logic’ which fails to be invariant under isomorphism.
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• for any 1 ≤ i ≤ n, it holds that if u0Zv0 and u0R
M
i u1 then there exists v1

such that v0R
N
i v1 and u1Zv1 (forth condition),

• for any 1 ≤ i ≤ n, it holds that if u0Zv0 and v0R
N
i v1 then there exists u1

such that u0R
M
i u1 and u1Zv1 (back condition).

Definition 5.2.10. Let Σ be a modal signature and let (M,u), (N, v) be pointed
Σ-models. Then (M,u) and (N, v) are called bisimilar, symbolically (M,u) ∼
(N, v), if there exists a bisimulation between (M,u) and (N, v).

The abstract study of modal logics can be said to have originated with De
Rijke (1995), who proved the following Lindström theorem:

Theorem 5.2.11. Let L be an abstract modal logic extending BML. If L has
a notion of finite rank and is invariant under bisimulations then L is equivalent
to BML.

For a proof, along with the definition of a notion of finite rank, see (Vos 2016).
In a bid to transform De Rijke’s result into a more traditional format, Van

Benthem (2007) demonstrated how compactness and bisimulation invariance
for an abstract modal logic L lead L having a notion of finite rank, thereby
establishing:

Theorem 5.2.12. Let L be an abstract modal logic extending BML. If L
has the compactness property and is invariant under bisimulations then L is
equivalent to BML.16

The form of theorem 5.2.12 is indeed extremely reminiscent of the abstract
maximality theorem, characterizing a logic in terms of compactness and an
invariance property. It is, however, not evident how we are to merge the different
scopes involved in both theorems: one ranges over a class of compact abstract
logics satisfying some invariance property while the other ranges over a class of
compact abstract modal logics satisfying a certain invariance condition. While
it would be of much interest to investigate the compatibility of these two results
in more detail, we shall presently turn out attention to another type of general
Lindström theorem aimed specifically at modal logics.

The basis for this result is formed by a third modal Lindström theorem,
formulated Otto and Piro (2008), characterizing basic modal logic augmented
by the global modality BML[∀].

Theorem 5.2.13. Let L be an abstract modal logic extending BML[∀]. If L
has the compactness property, the Tarski union property and is invariant under
global bisimulations then L is equivalent to BML[∀].

For our present purposes, the precise definitions of the global modality and
global bisimulations are unimportant. What is crucial here, is the inclusion of

16In proving this statement, Van Benthem presupposes an extended definition of abstract
modal logics that includes, in addition to conditions (i)–(vii) above, an extra property called
the relativization property.
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the Tarski union property. We may recall that, intuitively, the Tarski union
property expresses that the union of any elementary chain is an elementary
extension of each model in the chain relative to an abstract logic L, cf. the
definitions given in subsection 3.1.2. These definitions can now be carried over
to the case of abstract modal logics in a straightforward manner. In particular,
consider:

Definition 5.2.14. Let L be an abstract modal logic. Then L is said to have
the Tarski union property if for every elementary chain relative to L it holds
that

Mk �L
⋃
m∈N

Mm (5.1)

for every k ∈ N, where the model⋃
m∈N

Mm = (WM , RM1 , . . . , RMn , V
M ) (5.2)

is defined by setting

• WM = ∪m∈NWMm ,

• RMi = ∪m∈NRMm
i for each 1 ≤ i ≤ n,

• VM (P,w) = 1 iff VMm(P,w) = 1 for all m ∈ N.

Now, generalizing the methods involved in the proof of theorem 5.2.13, En-
qvist (2013) has formulated a general Lindström theorem for BML. The gen-
eralization here lies in the fact we obtain a characterization for BML relative
to a given class of frames satisfying certain general constraints. To understand
what it means for an abstract modal logic to be characterized relative to some
class of frames C, consider the following.

Definition 5.2.15. Let C be a class of frames. Then we say that a pointed
model (M,u) is in C if it based on a frame in C.

Definition 5.2.16. Let C be a class of frames and X a class of pointed models
in C. Then we say X is L-definable over C if X = E ∩ C for some elementary
class E in L.

Definition 5.2.17. Let L,L′ be abstract modal logics and C be a class of
frames. Then we say L and L′ are equivalent over C if for every subclass
C0 ⊆ C and every class X of pointed models in C0, we have: X is L-definable
over C if and only if X is L′-definable over C.

Similarly, we can also define model-theoretic properties of some abstract modal
logic relative to a given class of frames C.

Definition 5.2.18. Let L be an abstract modal logic. Then we say L has the
compactness property over C, if for every signature Σ and set of Σ-sentences Γ
we have: if every finite subset of Γ is satisfied by some pointed model in C then
Γ itself is satisfied by some pointed model in C.
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Definition 5.2.19. Let L be an abstract modal logic. Then we say L is bisimu-
lation invariant over C, if for any signature Σ, pointed Σ-models (M,u), (N, v)
in C and Σ-sentence ϕ, if it holds that (M,u) |= ϕ and (M,u) |=L ϕ then
(N, v) |=L ϕ.

Definition 5.2.20. Let L be an abstract modal logic. Then we say L has the
Tarski union property over C, if for every elementary chain (Mm)m∈N contained
in C such that ∪m∈NMm is in C as well we have:

Mk �L
⋃
m∈N

Mm (5.3)

for every k ∈ N.

Why would we be in interested in Lindström theorems relativized to some
class of frames? First, we may note that is part and parcel of modal logical
practice to consider logics defined for particular frames. Consider:

Example 5.2.21. Consider the system of modal logic obtained from BML
by letting the corresponding frames contain a single binary relation. That is,
consider all frames of form (W,R). Then we obtain:

• If no constraints are placed on R, the modal logic K.

• If R is reflexive, the modal logic known as T.

• If R is a preorder, the modal logic called S4.

• If R is an equivalence relation, the modal logic S5.

Of particular interest is the fact that the frame classes for T, S4 and S5 can all
be specified by means of first-order sentences.

• The class of frames for the modal logic T is given by the class
C = {(W,R) : (W,R) |= ∀x[xRx]}.

• The class of frames for the modal logic S4 is given by the class
C ′ = {(W,R) : (W,R) |= ∀x∀y∀z[xRy ∧ yRz → xRz]} ∩ C.

• The class of frames for the modal logic S5 is given by the class
C ′′ = {(W,R) : (W,R) |= ∀x∀y[xRy → yRx]} ∩ C ′.

Here, |= denotes the first-order satisfaction relation and frames (W,R) are con-
strued as first-order models.

In each of the above examples, the frame class under consideration can be
specified by a particular first-order sentence. More specifically, the frame classes
are definable by what is known as a strict universal Horn formula.

Definition 5.2.22. A first-order sentence is called a strict universal Horn for-
mula if it is of the form ∀~x[ϕ1∧ . . .∧ϕk → ψ] for atomic formulas ϕ1, . . . , ϕk, ψ.
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Setting k = 0 in the above definition, we see that sentences of the form ∀~xψ,
for atomic ψ, constitute strict universal Horn formulas as well.

It turns out that frame classes definable by strict universal Horn formulas
are of special interest when it comes to Lindström theorems for BML. More
precisely, Enqvist (2013) provides us the following characterization result:

Theorem 5.2.23. Let L be an abstract modal logic extending BML and C be
a class of frames definable by a set of strict universal Horn formulas. Suppose
L has the compactness property over C, the Tarski union property over C and
is bisimulation invariant over C. Then L is equivalent to BML over C.

As noted previously, the proof of theorem 5.2.23 relies to a large extent on
a generalization of techniques employed in the proof of theorem 5.2.13. The
starting point is provided by the following observations.

Lemma 5.2.24. Let L be an abstract modal logic extending BML, C be a
class of frames, Γ a set of basic modal sentences and ϕ be a sentence in L.
Suppose there exists no basic modal sentence ψ such that any pointed model in
C satisfying Γ satisfies ϕ↔ ψ as well. Then for any basic modal sentence α, the
same holds for either Γ∪{α} or Γ∪{¬α}. That is, either Γ∪{α} or Γ∪{¬α}
preserves the inexpressibility of ϕ.

Proof. Suppose neither set preserves the inexpressibility of ϕ, i.e. there exist
basic modal ψ,ψ′ such that any pointed model in C satisfying Γ ∪ {α} will
satisfy ϕ↔ ψ and any pointed model in C satisfying Γ∪{¬α} satisfies ϕ↔ ψ′.
Then it also holds that any pointed model in C satisfying Γ will satisfy ϕ ↔
(α ∧ ψ) ∨ (¬α ∧ ψ′) as well. But this contradicts our original assumption on Γ,
since the right side of this equivalence is a basic modal formula. �

Proposition 5.2.25. Let L be an abstract modal logic extending BML and C
be class of frames. Suppose that L has the compactness property over C and that
L is not equivalent to BML over C. Then there exist pointed models (M,u),
(N, v) and a sentence ϕ in L such that (M,u) and (N, v) agree on all basic
modal sentences, but do not agree on ϕ. That is, (M,u) |= ψ iff (N, v) |= ψ for
all basic modal ψ, but (M,u) |=L ϕ and (N, v) 6|=L ϕ.

Proof. Since L and BML are not equivalent over C, we know there exists some
subclass C0 ⊆ C such the class X of pointed models in C0 is definable over
C relative to either L or BML but not definable over C relative to the other.
Now, since L is assumed to extend BML, we know that any class EC in BML
is EC in L as well. Hence, it is impossible for X to be definable over C relative
to BML but not relative to L. Thus, it must be the case that X is L-definable
over C, but not BML-definable over C. This, in turn, implies there exists some
L-sentence ϕ such that there exists no basic modal sentence ψ for which

X = {(M,u) : (M,u) |=L ϕ} ∩ C = {(M,u) : (M,u) |= ψ} ∩ C. (5.4)

Using the fact that (5.4) does not hold for any basic modal ψ, we see that
the hypothesis on Γ from lemma 5.2.24 is satisfied for ϕ if we set Γ = ∅. Hence,
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iteratively applying lemma 5.2.24 on the empty set, we obtain a chain of sets
of basic modal sentences ∅ ⊆ {ψ0} ⊆ {ψ0, ψ1} ⊆ . . ., for an appropriate choice
of ψ0, ψ1, . . ., every set of which preserves the inexpressibility of ϕ. Since L
has the compactness property over C, the union of any such chain will also
preserve the inexpressibility of ϕ. Invoking a well-known mathematical result
known as Zorn’s lemma, the closure under unions of any chain preserving the
inexpressibility of ϕ, implies the existence of a maximal set (relative to set
inclusion) of basic modal sentences preserving the inexpressibility of ϕ. This
maximal set is readily seen to be a complete theory T for BML.

Next, consider the set T ∪{ϕ}. We would like to show now that this set has
a pointed model in C. For sake of contradiction, suppose it does not. Then for
any pointed model in C satisfying T , we have that this pointed model satisfies
ϕ ↔⊥. But this is a contradiction, since ⊥ is a basic modal sentence. Hence,
T ∪{ϕ} has a pointed model (M,u) in C. In the same vein, we see that T ∪{¬ϕ}
has a pointed model (N, v) in C, since otherwise ϕ would be equivalent to >.
Clearly, (M,u) and (N, v) both satisfy the theory T . And since T is complete,
(M,u) and (N, v) agree on all basic modal sentences as a result. Moreover, we
also have (M,u) |=L ϕ and (N, v) |=L ¬ϕ, concluding the proof.

�

The crux of the proof of theorem 5.2.23 consists of the observation that for
any abstract modal logic L extending BML that the three properties and is
non-equivalent to BML over C, we can transform the pointed models (M,u)
and (N, v) from proposition 5.2.25 in such a manner that they retain the pro-
perties expressed in that proposition but simultaneously are made to agree on
all sentences in L. The first step of this transformation consists of ‘unraveling’
of (M,u) and (N, v). The so-called unraveling technique was put to prominent
use by Sahlqvist (1975) and is rather well-known among modal logicians. A
description of the technique, for frames with relations of arbitrary arity, may
be found in (Vos 2016, 12–3) and will not be repeated here. For our present
purposes, the following two properties of the unraveling (MU

u , u) of a pointed
model (M,u) will suffice.

Proposition 5.2.26. For any pointed model (M,u), it holds that (M,u) is
bisimilar to (MU

u , u).

Proposition 5.2.27. For any pointed model (M,u) it holds that the frame MU
u

is free in the class of frames.

Understanding the second proposition requires the following definitions:

Definition 5.2.28. Let Σ be a signature and M and N be Σ-models and let
h : M → N be mapping. Then h is called a homomorphism if we have:

• wRMi w′ implies h(w)RNi h(w′) for all w,w′ ∈WM and 1 ≤ i ≤ n,

• VM (P,w) = 1 if and only if V N (P, h(w)) for all w ∈WM and P ∈ Σ.
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Definition 5.2.29. Let M , N be models and Z ⊆ WM × WN be a binary
relation. Then Z is called a simulation if it satisfies the conditions for a bisim-
ulation17 except possibly the back condition. Furthermore, Z is said to be total
if for every w ∈WM there exists some w′ ∈WN such that wZw′.

Definition 5.2.30. Let C be class of frames. Then a model M in C is said to
be free in C if for every model N in C and total simulation Z from M to N ,
there exists a homomorphism h : M → N such that wZh(w) for all w ∈WM .

Enqvist (2013, 242) explains the intuition underlying the notion of a free
model as being that the model in question has ‘many’ homomorphisms, in the
sense that every total simulation from the model ‘contains’ a homomorphism.

The next step in the transformation process of the models (M,u) and (N, v)
of proposition 5.2.25 will be to apply some transformation map F , satisfying
a number of nice properties, to their respective unravelings. More precisely,
we will be considering a transformation F on the class of all frames. Such
a transformation will then naturally induce a transformation F ′ on the class
of all models, obtained by setting F ′(M) = (F (WM , RM1 , . . . , RMn ), V ). For
convenience, let us henceforth simply write F (M) to denote the model F ′(M).
Let us consider some of ‘nice’ properties such a transformation F may possess.

Definition 5.2.31. Let Σ be a signature and M , N be Σ-models. Then N is
staid to be an expansion of M if WM = WN , VM = V N and RMi ⊆ RNi for all
1 ≤ i ≤ n.18

Definition 5.2.32. Let F be a transformation on the class of all frames. Then
F is said to be expansive if for every model M it holds that F (M) is an expansion
of M . If, in addition, for every homomorphism h : M → N it holds that the
mapping h : F (M) → F (N) is a homomorphism as well, we say F preserves
homomorphisms.

Definition 5.2.33. Let F be a transformation on the class of all frames. Then
F is called idempotent if for every model M it hold that F (F (M)) = F (M).

The desirability of the above properties is made clear by the subsequent
lemmas. Fist, define:

Definition 5.2.34. Let F be a transformation on the class of all frames.
Then CF denotes the class of frames invariant under F , i.e. the class of frames
(W,R1, . . . , Rn) for which F (W,R1, . . . , Rn) = (W,R1, . . . , Rn).

Now, let us note proposition 5.2.26 allows us to derive the following lemma.

Lemma 5.2.35. Let F be a transformation on the class of all frames and
suppose F preserves homomorphisms. Then for any model M in CF and node
u ∈WM , it holds that (F (MU

u ), u) ∼ (M,u).

17Note that bisimulations are defined for pointed models. However, since only the first
condition in definition 5.2.9 depends on the choice of u and v, the definition is easily lifted
from pointed models to models proper.

18Here, the term expansion should not be construed as the inverse of the term reduct, as
defined for models of BML.
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Furthermore, we have:

Lemma 5.2.36. Let F be a transformation on the class of all frames and
suppose F preserves homomorphisms. Then for any pointed model (M,u) it
holds that the model F (MU

u ) is free in CF .

Proof. Let N be an arbitrary model in CF and suppose we have total simulation
Z from F (MU

u ) to N . Since F is expansive, it is readily verified that Z is a
total simulation from MU

u to N as well. By proposition 5.2.27, we know that
MU
u is free in the class of all models. Hence, there exists a homomorphism

h : MU
u → N such that wZh(w) for all w. Applying the fact that F preserves

homomorphisms, we infer the map h : F (MU
u )→ F (N) is also a homomorphism

with wZh(w) for all w. Now, since N is in CF , we know that F (N) = N .
Thus, we see that we have a homomorphism h : F (MU

u )→ N with the desired
property, concluding the proof. �

Definition 5.2.37. Let Σ be a signature and M be a Σ-model. Let Σ∗ be
signature obtained by adding to Σ a fresh propositional letter Pw for each w ∈
WM . Then M∗ is the Σ∗-model obtained by setting WM∗ = WM , RM

∗

i = RMi ,
for every 1 ≤ i ≤ n, and defining VM

∗
to be the map identical to VM on

Σ×WM and letting VM
∗
(Pw, w

′) = 1 iff w = w′ for all w,w′ ∈WM .

Lemma 5.2.38. Let L be an abstract modal logic extending BML, F be an
idempotent mapping on the class of all frames that preserves homomorphisms,
(M,u) be a pointed model in CF and (N, v) be a pointed model in CF with the
same signature as (F (MU

u )∗, u). Suppose (F (MU
u )∗, u) and (N, v) agree on all

sentences in L. Furthermore, define the binary relation Z between F (MU
u )∗ and

N as follows. Let v be the only node in N such that uZv. For any other node u′

in F (MU
u )∗ we let u′Zv′ for any v′ such that V N (Pu′ , v

′) = 1 and v′ is finitely
reachable from v.19 Then, Z is total simulation from (F (MU

u )∗, u) to (N, v).

Proof. First, observe we have trivially that uZv. Next, let u′, v′ be two nodes in
F (MU

u )∗ and N respective and let P be an a propositional letter in the signature
of F (MU

u )∗. Suppose that u′Zv′. Our goal is then to ascertain that V ∗(P, u′) =
1 iff V N (P, v′) = 1, where V ∗ denotes the valuation mapping of F (MU

u )∗. Let us
consider here the if-direction, the converse implication proceeding analogously.
Hence, suppose that V ∗(P, u′) = 1. In case u′ = u and v′ = v it follows
immediately that V N (P, v′) = 1 as well, since (F (MU

u )∗, u) and (N, v) agree
on all L-sentences. Thus, suppose u′ 6= u and v′ 6= v. Then, by definition
of Z, we know that v′ is a node such that V N (Au′ , v

′) = 1 and v′ is finitely
reachable from v. From this, we know there exist some appropriate choice of
i1, . . . , ik such that (N, v) |=L ♦i1 . . .♦ikAu′ . Consequently, we then also have
(F (MU

u )∗, u) |=L ♦i1 . . .♦ikAu′ , which means there exists some u′′ reachable
from u such that V ∗(Au′ , u

′′). But this, in turn, implies that u′′ = u′. So we
see that u′ is finitely reachable through the same sequence of binary relations

19To be finitely reachable means there exist finite sequences RN
i1
, . . . , RN

ik
of binary relations

in N and w1, . . . , wk of nodes in N such that vRN
i1
w1, w1RN

i2
w2 . . . wkR

N
ik
v′.
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as v′. Now, since V ∗(P, u′) = 1 holds by hypothesis and u′ is the unique node
in F (MU

u )∗ making true Au′ , we see that

(F (MU
u )∗, u) |=L �i1 . . .�ik(Au′ → P ) (5.5)

and consequently also that

(N, v) |=L �i1 . . .�ik(Au′ → P ). (5.6)

From 5.6, we can infer now that V N (P, v′) = 1, as desired.
To establish the forth condition, let us u0, u1, v0 be nodes such that u0Zv0

and u0R
∗
i u1, for some binary relation R∗i of F (MU

u )∗, and assume u0 and v0 are
finitely reachable by binary relations labeled by i1, . . . , ik. Our task is then to
prove the existence of some node v1 such that v0R

N
i v1 and u1Zv1. This can be

accomplished swiftly by noting that

(F (MU
u )∗, u) |=L �i1 . . .�ik(Au0 → ♦iAu1) (5.7)

and hence that
(N, v) |=L �i1 . . .�ik(Au0

→ ♦iAu1
). (5.8)

Thus, we see that for every node v′ in N reachable by a path labeled by i1, . . . , ik
for which V N (Au0

, v′) = 1 there exists a nodev′′ such that v′RNi v
′′. So, in

particular, there exists such a node v1 for v0, establishing the forth condition.
The proof that Z is total relies on the observation that MU

u is an unraveling
of the underlying model M . In brief: in unraveling a model we, among other
things, delete any nodes of the original model that are not finite reachable. And
since the mapping F is expansive and the operation ∗ only affects the valuation
mapping, the model F (MU

u )∗ will contain no unreachable nodes. Thus, for any
node u′ in F (MU

u )∗ we find a path to u′ from u by a sequence of binary relations
with labels i1, . . . , ik and accordingly

(F (MU
u )∗, u) |=L ♦i1 . . .♦ikAu′ , (5.9)

from which it follows that

(N, v) |=L ♦i1 . . .♦ikAu′ . (5.10)

It thus holds that u′Zv′ for some v′ in N . We conclude Z is indeed a total
simulation from (F (MU

u )∗, u) to (N, v).
�

For the next lemma, we require an extension of the concept of elementary em-
bedding to the case of abstract modal logics.

Definition 5.2.39. Let L be an abstract modal logic and (M,u), (N, v) be
pointed models. Then a function f : (M,u)→ (N, v) is called an L-elementary
embedding if f is an injective homomorphism such that

• f(u) = v,
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• for all nodes u0, u1 it holds that f(u0)RNi f(u1) implies u0R
M
i u1,

• for every node u′ the pointed models (M,u′) and (N, f(u′)) agree on all
sentences in L.

Lemma 5.2.40. Let L be an abstract modal logic extending BML, F be an
idempotent mapping on the class of all frames that preserves homomorphisms,
(M,u) be a pointed model in CF and (N, v) be a pointed model in CF with the
same signature as (F (MU

u )∗, u). Suppose (F (MU
u )∗, u) and (N, v) agree on all

sentences in L. Then there exists an L-elementary embedding

f : (F (MU
u )∗, u)→ (N, v).

Proof. Let Z be the total simulation as defined in lemma 5.2.38. We will show
how to obtain an L-elementary embedding f from Z. Now, it is straightfor-
wardly verified that Z is also a total simulation from F (MU

u )∗ to the reduct N ′

of N to the signature of F (MU
u ). By lemma 5.2.36,we have that F (MU

u ) is free
in CF . Hence, there exists a homomorphism f from F (MU

u ) to N ′ such that
u′Zf(u′) for any node u′ in F (MU

u ).
By an argument similar to those in the proof of lemma 5.2.38, it now fol-

lows for every u in F (MU
u )∗ that (F (MU

u )∗, u′) and (N, f(u′)) agree on all
L-sentences. This observation, in turn, can be used to ascertain the other
properties of elementary embeddings. First, note that f is injective. For if
u0 6= u1 then (F (MU

u )∗, u0) |=L Au0 and (F (MU
u )∗, u1) 6|=L Au0 and thus

also (N, f(u0)) |=L Au0 and (N, f(u1)) |=L Au0 . Consequently, we see that
f(u0) 6= f(u1). All that is remains is to verify that f(u0)RNi f(u1) implies
u0R

∗
i u1 for every 1 ≤ i ≤ n. Hence, suppose that f(u0)RNi f(u1). Then we

know (N, f(u0)) |=L ♦iAu1
and thus (F (MU

u )∗, u0) |=L ♦iAu1
. So there exists

some node u′ such that we have u0R
∗
i u
′ and (F (MU

u )∗, u′) |=L Au1 . Now, the
latter fact implies that u′ = u1 and hence u0R

∗
i u1. Thus, we see that f is indeed

an L-elementary embedding. �

Finally, we require:

Definition 5.2.41. Let T be a theory in basic modal logic, M be a model
and w a node in M . Then, for every 1 ≤ i ≤ n, the theory T is said to be
satisfiable among RMi -successors of w, if there exists a node w′ in M such that
wRMi w

′ and (M,w′) |= T . In a similar vein, the theory T is called finitely
satisfiable among RMi -successors of w if every finite subset of T is satisfiable
among RMi -successors of w.

Definition 5.2.42. Let M be some model. Then we say M is modally saturated
if for every node w in M , every basic modal theory T and every 1 ≤ i ≤ n we
have: if T is finitely satisfiable among RMi -successors of w then T is satisfiable
among RMi -successors of w.

It may now noted that the class of modally saturated models has the so-called
Hennessy-Milner property. That is:
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Proposition 5.2.43. Let (M,u) and (N, v) be pointed models. Suppose (M,u)
and (N, v) are modally saturated and agree on all basic modal sentences. Then
it holds that (M,u) ∼ (N, v).

We are now ready to consider the crucial lemma for the proof of theorem 5.2.23.

Lemma 5.2.44. Let L be an abstract modal logic and F be a transformation
on the class of all frames. Suppose that the following holds:

• L has the compactness property, the Tarski union property and is bisimu-
lation invariant over CF .

• F is idempotent and preserves homomorphisms,

• CF is closed under union of elementary chains relative to L.

Then L is equivalent to BML over CF .

Proof. Let Σ be a signature and let (M,u), (N, v) be two arbitrary pointed Σ-
models in CF . By proposition 5.2.25, it is sufficient to show that if (M,u) and
(N, v) agree on all basic modal sentences then they agree on all L-sentences as
well. For this, in turn, it suffices to prove that there exist modally saturated
models (Ms, u) and (Ns, u) which agree on all L-sentences with (M,u) and
(N, v) respectively: the result then follows from proposition 5.2.43 and the
observation that L is bisimulation invariant relative to CF . We proceed by
constructing modally saturated L-elementary extensions of F (MU

u ) and F (NU
v )

in CF . This will conclude the proof, since we know by lemma 5.2.35 that
(M,u) ∼ (F (MU

u ), u) and (N, v) ∼ (F (NU
v ), v). Below, I sketch how to obtain

such an extension for F (MU
u ), with the construction for F (NU

v ) proceeding in
a completely analogous manner.

Let T denote the theory of (F (MU
u )∗, u) and denote by FinSat(w, i) the set

of all basic modal theories that are finitely satisfiable among the R∗i -successors
of w. Next, we define for every 1 ≤ i ≤ n, node w in (F (MU

u )∗ and Φ in
FinSat(w, i) a propositional letter PwΦ,i and let ΓwΦ,i denote the set consisting of
all sentences either of the form

�i1 . . .�ik(Aw → ♦iPwΦ,i) (5.11)

or of the form
�i1 . . .�ik(PwΦ,i → ϕ), (5.12)

with i1, . . . , ik ∈ {1, . . . , n} and ϕ ∈ Φ. Now, consider the theory

T ′ := T ∪ {ΓwΦ,i : w ∈ F (MU
u ), 1 ≤ i ≤ n, Φ ∈ FinSat(w, i)}cl. (5.13)

By extending the valuation mapping (F (MU
u )∗, u) to the propositional letters

PwΦ,i in an appropriate manner, we can find a model for any finite subset of
the theory T ′. Using the fact that basic modal logic satisfies the compactness
property, we thus obtain a model (M ′, u′) of the entire theory T ′. By the
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bisimulation invariance of basic modal logic, we may assume this model to be
unraveled. From the idempotence of F , it follows that F (M ′) is a model in
CF . Moreover, by lemma 5.2.40, we know that there exists an L-elementary
embedding of (F (MU

u , u) into (F (M ′), u′). Hence, we see that F (M ′) is an
L-elementary extension of F (MU

u ).
Applying the same procedure as above now to F (M ′) to construct an L-

elementary extension F (M ′′) of F (M ′) and continuing in this manner ad infini-
tum, we obtain an L-elementary chain

F (MU
u ) �L M ′ �L M ′′ �L . . . (5.14)

Let M∞ denote the union of this chain. Now, we know that M∞ is a model
in CF , since CF is assumed to be closed under unions of L-elementary chains.
Moreover, since L has the Tarski union property over CF , it follows that M∞

is an L-elementary extension. Finally, although we do not go into the details
here, it can be checked that M∞ is modally saturated. Hence, we see that M∞

is the desired extension of F (MU
u ), concluding the proof. �

To now arrive at theorem 5.2.23 from lemma 5.2.44, all that is left is to relate
transformations F to classes of frames definable by means of strict universal
Horn sentences in some meaningful manner. This is accomplished as follows.

Definition 5.2.45. Let M be some model and let ϕ be a strict universal Horn
sentence of the form ∀~x[α(~x)→ yRiz], where y, z are included in the tuple ~x and
Ri is the relation symbol corresponding to RMi , and let ~a be a tuple of elements
in M in which we denote the elements corresponding to to the variables y, z as
v, w respectively. Then we say ~a forces the the pair (v, w) with respect to the
operator ♦j and formula ϕ if i = j and M |= α[~a].20 By extension, we say for
an arbitrary set of strict universal Horn sentences Γ that ~a forces (v, w) with
respect to ♦j and Γ if for some ψ ∈ Γ we have that ~a forces (v, w) with respect
to ♦j and ψ.

Definition 5.2.46. Let Γ be some set of strict universal Horn sentences. Then
we define FΓ to be the transformation21 sending each model M to the model
FΓ(M) with identical domain WM and valuation mapping VM and, for every
1 ≤ i ≤ n, its i-th binary relation RΓ

i defined by

RMi ∪ {(v, w) : ~a forces (v, w) w.r.t. ♦i and Γ for some ~a in M}. (5.15)

Intuitively, we can view Γ as prescribing a number of conditions and the
transformation FΓ as adding to any model M all additional links between nodes
which satisfy one of these conditions. Naturally, the addition of more links by
the application might result in more of the conditions in Γ being met by the
obtained model. Once more applying the transformation might then lead to
a new model containing even more links between nodes than its predecessor.
Building on this observation, we have:

20Here, we write ‘|=’ for the satisfaction relation in Lωω .
21As before, we do not distinguish notionally between a transformation on the class of all

models and the corresponding transformation on the class of all underlying frames.
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Definition 5.2.47. Let Γ be a set of strict universal Horn sentences. Denote
by FnΓ the n-th iteration of the transformation FΓ. Then, for any model M ,
define

FωΓ =
⋃
n∈N

FnΓ (M). (5.16)

The significance of this construction is now displayed in the following lemma:

Lemma 5.2.48. Let Γ be a set of strict universal Horn sentences. Then a
model M satisfies Γ if and only if M is invariant under FωΓ .

Proof. For the if-direction, note that it can be facilely verified that any model
M such that M |= Γ will be invariant under FΓ and hence under FωΓ as well.
For the converse implication, suppose M is invariant under FωΓ . Now, if there
were to exist some ∀~x[α(~x)→ yRiz] ∈ Γ not satisfied by M then we would have
a sequence ~a such that M |= α[~a] and M 6|= yRiz[~a]. Then, since ~a forces the
pair (v, w) corresponding to y and z, we see that vRΓ

i w but not vRMi w. That
is, FΓ(M) 6= M . Since FΓ is expansive, it then also follows that FωΓ (M) 6= M .
This, however, contradicts our assumption that M is invariant under FωΓ . �

Theorem 5.2.23 is now readily obtained from the following lemmas:

Lemma 5.2.49. For any set of strict universal Horn sentences Γ, the trans-
formation FωΓ is idempotent and preserves homomorphisms.

Lemma 5.2.50. Let L be an abstract modal logic and C be a class of frames
definable by a set of strict universal Horn sentences. Then C is closed under
unions of elementary chains relative to L.

Reflecting on theorem 5.2.23, we see once again the potential considering
logics for non-standard classes of models. As noted in subsection 3.1.2, one of
the two significant ways in which the abstract maximality theorem for abstract
logics generalizes typical Lindström theorems is that is provides us with a char-
acterization result for logics formulated over different classes of models than the
usual class of first-order models. In the same vein, Enqvist’s general Lindström
theorem shows us there is also much to be gained in the study of abstract modal
logics by considering certain specialized classes of frames. What value does this
hold for the metascientific enterprise and, indeed, the creation of a SWLA? We
will return to this point in section 5.3. Before this, however, there is another
recent framework within abstract model theory that awaits our attention.

5.2.2 Institutional Model Theory

There is no doubt that the framework of semi-abstract model theory provides us
with a valuable methodology for the analysis of logical systems from a general
point of view. The notion of abstract logic, as well as the more recent notion of
abstract modal logic, can be seen to provide us with generalizations of the notions
of sentence, model and truth. Indeed, almost all of the usual components of first-
order logic/basic modal logic find a generalization in the realm of semi-abstract
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model theory. In one aspect, however, abstract (modal) logics remain yoked
to standard logical practice, viz. through their reliance on the usual notion of
signature. For example, we may note in definition 3.1.3, the map L is defined
on the set of all first-order signatures. Similarly, we see in definition 5.2.8 that
the otherwise abstract maps L1, L2 take as domain the set of all propositional
signatures. Hence, we might observe that the level of generality offered by semi-
abstract model theory is still one step short of a truly general approach to logic.
In fact, it is for this reason that I have followed Diaconescu (2008, 3) in referring
to the framework covered in section 3.1 as half- or semi-abstract model theory.

To fill the void of a fully abstract abstract approach to the model-theoretic
study of logics, a select group of researchers have taken it upon themselves to
develop the framework of institutional model theory. Within this framework, the
informal concept of a logic is formalized by the formal notion of an institution.

Definition 5.2.51. An institution is a tuple I = (SigI ,SenI ,ModI , {|=I
σ}σ∈SigI ),

where

• SigI is a category, the objects of which are called signatures,

• SenI : SigI → Set is a functor, giving for each signature Σ a set whose
elements are called sentences over Σ,

• ModI : (SigI)op → Cat is a functor, giving for each signature Σ a category
whose objects are called Σ-models and whose arrows are called Σ-(model)
homomorphisms,

• for each signature Σ, |=I
Σ is a subset of |ModI(Σ)| × SenI(Σ), called Σ-

satisfaction, such that for each morphism ρ : Σ→ Σ′ in SigI the satisfac-
tion condition

M ′ |=I
Σ′ SenI(ρ)(ϕ) if and only if ModI(ρ)(M ′) |=I

Σ ϕ

holds for each M ′ ∈ |ModI(Σ′)| and ϕ ∈ SenI(Σ).

As is evident from the above definition, a fundamental aspect of the method-
ology employed in institutional model theory is the usage of category-theoretic
notions.22 Institutional model theory finds its origins in computer science, being
first developed by computer scientists Joseph Goguen and Rod Burstall. Dia-
conescu (2008, 2) provides with an apt description of the motivation underlying
the development of the framework:

“The notion of institution was introduced by Goguen and Burstall
in the late 1970s . . . in response to the population explosion of speci-
fication logics with the original intention of providing a proper ab-
stract framework for specification of, and reasoning about, software
systems.”

22It should be noted that semi-abstract model theory has, in fact, also received a categorical
formulation at the hands of Barwise (1974). In this context, however, category theory is
employed only at superficial level as a convenient language for showcasing the most important
definitions. As evidenced by (Barwise & Feferman 1985), we can just as well do semi-abstract
model theory in entirely non-categorical terms.
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Chronologically, this would place the genesis of institution model theory in
the same period of time as that of the FWLA. It should be noted, however,
that major interest and developments in the institutional model theory did
not seem to take off until the publication of (Burstall & Goguen 1992). The
most comprehensive treatment of the field, including some of its more recent
developments, is given by Diaconescu (2008). For a primer on the aims and
methods employed in the study of institutions, see (Diaconescu, Mossakowski
& Tarlecki 2014). It is from these latter two sources that the material of the
current subsection has been drawn.

To illustrate the potential for abstraction innate in the institutional approach
to abstract model theory, let us consider here how one particularly well-known
model-theoretic property of first-order logic can be generalized to the setting of
institutions. More specifically, recall from section 3.2 the interpolation property
as defined for abstract logics. For the case of single-sorted first-order logic, the
interpolation property can be restated in the following, better known format:

Theorem 5.2.52. Let Σ1,Σ2 be signatures and let ϕ,ψ be sentences over Σ1,Σ2

respectively. Suppose that for the (Σ1 ∪Σ2)-sentence ϕ→ ψ we have |= ϕ→ ψ.
Then there exists a (Σ1 ∩ Σ2)-sentence χ such that |= ϕ→ χ and |= χ→ ψ.

This result is widely known as the Craig interpolation theorem, named for its
progenitor. Intuitively, it expresses the fact that the only non-logical symbols
relevant to the derivation of ψ from ϕ are those non-logical symbols occurring
in both ϕ and ψ.

Now, suppose we are interested in lifting theorem 5.2.52 to the institutional
setting. One problem immediately presents itself: with ‘signatures’ now being
objects of any arbitrary category SigI , it is not obvious what the generalized
counterparts of the objects Σ1∪Σ2 and Σ1∩Σ2 ought to be. It turns out, how-
ever, that we can readily generalize these set-theoretic constructs by, in typical
category-theoretic fashion, formulating their properties in terms of morphisms.
To this end, let us first note that the relation between the different signatures
in theorem 5.2.52 can be represented pictorially as follows:

Σ1 ∩ Σ2 Σ1

Σ2 Σ1 ∪ Σ2

ρ1

ρ2 ζ1

ζ2

(5.17)

Here, ρ1, ρ2, ζ1, ζ2 denote the obvious inclusion maps. Now, what can we say
about the objects Σ1 ∪ Σ2 and Σ1 ∩ Σ2 in terms of the above diagram? By
the nature of unions, we find that if we take any other signature Σ such that
Σ1,Σ2 ⊆ Σ, with inclusion maps i1 : Σ1 → Σ and i2 : Σ2 → Σ, then there must
also exist a corresponding inclusion map ζ : Σ1 ∪ Σ2 → Σ. Moreover, for this
and only this inclusion map ζ, we see that we have the identities i1 = ζ ◦ ζ1 and
i2 = ζ ◦ ζ2. In this sense, the signature Σ with maps i1, i2 can be said to ‘factor’
through the signature Σ1 ∪ Σ2.
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It turns out that the square (5.17) has almost all of the properties of a so-
called pullback square, as defined in appendix B. In fact, (5.17) is an instance of
what is known as a pushout square, the dual construction of a pullback square.
Moving to an arbitrary institution I, we see that in the hypothesis of theorem
5.2.52, we can replace the signatures Σ1,Σ2,Σ1∩Σ2,Σ1∪Σ2 by any four objects
Σ1,Σ2,Σ,Σ

′ in SigI such that the commutative diagram

Σ′ Σ1

Σ2 Σ

ρ1

ρ2 ζ1

ζ2

(5.18)

is a pushout square.
An obvious generalization of the interpolation property to arbitrary institu-

tions now presents itself. That is, we might venture to say that an institution I
has the interpolation property if for any pushout square, as given by (5.18), we
have: for any sentences ϕ,ψ, if SenI(ζ1)(ϕ) |=Σ SenI(ζ2)(ψ) then there exists
some χ in SenI(Σ′) such that ϕ |=Σ1

SenI(ρ1)(χ) and SenI(ρ2)(χ) |=Σ2
ψ. This

proposal, however, turns out to be overly restrictive. For example, the system
of logic known as equational logic23, and hence also its corresponding institu-
tion, would fail the criteria of the interpolation as proposed here. Yet, there is
a distinct sense in which equational logic does exhibit interpolation. Namely,
by replacing in the above proposal the sentence χ by a finite set of sentences
Γ, equational logic would in fact meet the requirements of the interpolation
property. The crux of matter now is that while for first-order logic, as well as
many other traditional systems of logic, the conjunction property guarantees
that we can identify single sentences with finite sets of sentences, this does not
necessarily hold true in a generalized setting. Thus, by adhering to the afore-
mentioned proposal for the generalized interpolation property, without noticing
the implicit assumptions based on first-order logic still present within it, we run
the risk of putting forth an unduly restrictive generalization.24

To ensure we achieve a proper level of generality, let us replace the sentences
ϕ,ψ, χ in theorem 5.2.52 by arbitrary sets of sentences and introduce:

Definition 5.2.53. Let I be an institution, Σ1,Σ2,Σ,Σ
′ be objects in SigI and

23Equational logic, as the term is used here, refers to the logic obtained from first-order
logic by restricting the class of signatures to only those signatures containing no relation
symbols, making ‘=’ the only relation symbol in the language, and furthermore restricting
the syntax by only allowing sentences having the form of a universally quantified equation.
Notably, this logic does not have the conjunction property, as defined for abstract logics,
since the conjunction of two universally quantified equations is not necessarily equivalent to
a universally quantified equation.

24Incidentally, we might note that this presents us with a superb example of the debilitating
influence of first-order fixation within the field of logic itself.
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ρ1, ρ2, ζ1, ζ2 be morphism in SigI . Suppose

Σ′ Σ1

Σ2 Σ

ρ1

ρ2 ζ1

ζ2

(5.19)

is a commutative diagram. Then this diagram is said to be an interpolation
square if for all sets of sentences Γ1,Γ2 we have: if

SenI(ζ1)(Γ1) |=Σ SenI(ζ2)(Γ2) (5.20)

then there exists some set Γ of sentences in SenI(Σ′) such that

Γ1 |=Σ1
SenI(ρ1)(Γ) and SenI(ρ2)(Γ) |=Σ2

Γ2, (5.21)

where expressions of the form SenI(ρ1)(Γ) denote the set of sentences resulting
from applying the morphism ρ1 to every sentence in Γ.

This now suggests the following definition:

Definition 5.2.54. Let I be an institution. Then I is said to have the inter-
polation property if it holds that every pushout square of signatures is also an
interpolation square.

The above definition goes a long way in providing us with a proper gen-
eralization of the interpolation property for arbitrary institutions. Yet, it still
proves to be overly restrictive for a number of significant cases. In particular,
many-sorted first order logic only satisfies the conditions for interpolation if
we allow for the additional relaxation that in definition 5.2.54 we only consider
those pushout squares in which either the morphism ρ1 or ρ2 is an injection when
restricted to the sort symbols in Σ′. This gives rise to the final liberalization of
the notion of interpolation within the context of institutions:

Definition 5.2.55. Let I be an institution and L,R be classes of signature
morphisms. Then I is said to have the (L,R)-interpolation property if it holds
that every pushout square of signatures such that ρ1 ∈ L and ρ2 ∈ R is also an
interpolation square.

Let us conclude here this brief exposition of the theory of institutions. It
is clear that institution-independent model theory presents with avenues of ab-
straction unparalleled by even the more abstract regions of semi-abstract model
theory. To contrast the two formalisms, we can thus refer to the institutional
framework as being a fully abstract model theory. The crucial point to keep
in mind is that by generalizing the notion of signature we are longer bound to
consider only signatures consisting of meaningless, syntactic objects. This, in
turn, greatly enhances the potential of logic as a tool of formalization. Hence,
any new attempt at developing a framework for logical abstractivism should un-
doubtedly place the study of institutions at the center of its attention. We shall
return to this observation in the subsequent section, in which a new approach
to logical abstractivism will be given shape.
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5.3 Making a Second Wave

In this section, I bring together all our prior considerations and outline a new
way of combining abstract model theory with the field of metascience, which is
to form the basis of a second wave of logical abstractivism. Similarly to how
the first wave could be typified by means of four characteristic features, so too
will I present a general program for model-theoretic metascience based around
four alternative central tenets. The most significant aspect of this new program
consists of moving away from logical liberalization as our central methodolog-
ical principle and adopting a new modus operandi in its stead. Sketching this
general program will be the focus of subsection 5.3.1. Following this, we will
briefly return to the ruminations set out in the preceding chapter in subsection
5.3.2. That is, we will consider how well and to what extent the newly proposed
program for logical abstractivism is compatible with the categorical approach to
metascience. Finally, I take up the question of what a second wave of logical ab-
stractivism might hope to achieve within a more general metascientific context.
To this end, I introduce in subsection 5.3.3 a number of problems pertaining
to the contemporary philosophy-of-science literature and argue that the SWLA
puts us in a favorable position to resolve these issues.

5.3.1 A General Program

Throughout the preceding text, I have foreshadowed on numerous occasions the
manner in which I conceive a more successful flavor of logical abstractivism
may be given shape. Expounding these arguments now in systematic fashion,
let us consider what such a second wave of logical abstractivism would look
like on the whole. To showcase the differences between the FWLA and the
prospective SWLA, let us take up each of the former’s central tenets in turn
and consider how it relates to a corresponding feature of the latter. Proceeding
in this way, we find counterparts (i’)–(iv’) of the characteristics (i)–(iv) of the
Pearce-Rantala approach, which then provide us with a programmatic outline
of the novel framework.

We commence by reconsidering characteristic feature (i) of the FWLA, i.e.

(i) The usage of semi-abstract model theory as formalism of choice.

As noted in section 3.2.3, semi-abstract model theory represented the only sub-
stantial model-theoretic approach to the abstract study of logics at the time
Pearce and Rantala first developed their account. Nowadays, however, we have
available to us a somewhat wider array of model-theoretic frameworks, making
an a priori adherence to point (i) less forgivable.

Which alternatives now suggest themselves? A glance at the preceding sub-
section may make the answer to this query seem of a trivial nature. We must
take note, however, that adherence to logical abstractivism does not entail a
commitment to the usage of model-theoretic methods per se. Rather, logical
abstractivism espouses the notion that the abstract study of logics in general is
of value to the study of metascience. This leaves open the question of whether
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such frameworks are of a model-theoretic, proof-theoretic, algebraic or other
kind of nature. Recalling the fact that universal logic serves as an umbrella
term for abstract approaches to logic, logical abstractivism thus boils down to
the conviction that universal logic, not abstract model theory exclusively,25 is of
value to metascience.

There is thus no a priori imperative which states that a new approach to
logical abstractivism should employ a framework of a model-theoretic nature. In
section 3.2.3, the choice to expound logical abstractivism in a model-theoretic
setting was defended by noting that other abstract frameworks at the time
usually only allowed us to study the features of propositional logics, thus being
too impoverished to be of much use in the formal analysis of science. To what
extent does this defense still hold up today? Without entering into too much
details, it may be noted that the field of algebraic logic has started to see an
increasing number of metascientific applications.26

It is not the case that I believe a model-theoretic approach to be inherently
superior to an algebraically inspired approach. A comprehensive argument for
one approach over the other would require a deeper investigation of both frame-
works and will not be taken up here. I do hold, however, that there is good
reason to believe that the new model-theoretic approach as outlined in this sub-
section can be combined nicely with at least some aspects of algebraic logic.
Incidentally, this would constitute an additional advantage the SWLA would
have over the FWLA. We shall return to this point below. For now, let us
simply accept that abstract model theory provides us with the desirable back-
drop for logical abstractivism. The revised version of characteristic (i) is then
evident. Namely, we should adopt a methodology based around

(i’) The usage of fully abstract model theory as formalism of choice.

More precisely, I use here the designation fully abstract to refer to the frame-
works of

• semi-abstract model theory, where we allow our abstract logics to have a
class of models ModL different from the usual class of first-order models;

• semi-abstract model theory, where we expand its definition to include the
study of abstract modal logics as well as the study of abstract logics;

• institution-independent model theory.

25To make it absolutely clear, let us note once more that, just as I employ universal logic as
an umbrella term for any framework for the abstract study of logics, I use abstract model theory
as an umbrella term for any model-theoretic approach to universal logic. Consequently, both
semi-abstract model theory and institution-independent model theory are considered special
cases of abstract model theory. This is contrary to common usage, in which abstract model
theory is identified with semi-abstract model theory.

26Cf. (Dewar 2017). It may also be noted that the categorical view of scientific theories, as
observed in chapter 4, has some significant connections to algebraic logic through its reliance
on notions as the syntactic category and the field of topos theory.
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Let us leave open here the exact manner in which these three are to be combined.
If desired, we could view semi-abstract model theory as being a special case of
institutional model theory, though such a reduction would fail to do justice to
the different methodologies underlying each framework. At any rate, we see
that tenet (i’) provides us with a strictly more general formal toolbox than the
one employed by Pearce and Rantala.

With this increase in generality, we can now also reconsider central charac-
teristic (ii), which prescribes:

(ii) A focus on extensions of first-order logic.

While semi-abstract model theory already provided us with the tools to analyze
the properties of non-standard logics, i.e. logics that are not some extension of
first-order logic such as probabilistic logic or logics for topological structures,
the inclusion of institutional model theory increases our ability to include such
non-standard logics into our framework exponentially. After all, we only need
to take any category SigI different from a conventional category of signatures
to arrive at an instance of non-standard logic. Thus, we are free to put forward
an alternative tenet for the SWLA, namely:

(ii’) A focus on non-standard logics.

From such a myriad of possibilities, selecting the most suitable type of logic
to employ in the analysis of science is no straightforward task and will require
careful considerations and scrutiny. Below, I make some tentative suggestions
as to the general direction in which we should search for an appropriate type of
logic for metascientific applications.

We are now well-poised to consider the revision of the most significant aspect
of the FWLA:

(iii) A focus on logical liberalization.

Recall, now, the dilemma we faced when trying to dispel this tenet from our list
of necessary conditions for logical abstractivism. “If we have a logical system
of adequate expressive power and nice model-theoretic properties, we use this
logic for our metascience. If we do not have such a logic, we are left with
no option but to purse logical liberalization.” As noted in subsection 5.1.1
above, the dilemma dissolves when we let go our traditional view of logic in
the analysis of science. If taken for granted that the only use of logic in the
study of metascience is to codify in a formal language the statements of some
scientific theory, such as quantum mechanics, then it is implicit that we evaluate
the usefulness of logics by their expressive capabilities. However, once we free
ourselves from the restrictions placed on us by tenet (ii) of the FWLA and with
it the traditional view on the role of logic in metascience, an easy way out of
the dilemma presents itself: use a logic which does not have adequate expressive
power or necessarily has nice model-theoretic properties. Take, for instance, a
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fragment of first-order logic, e.g. basic modal logic, and determine how we may
use it to formalize certain aspects of science.27

This strategy might puzzle the traditionalist: for how could we possibly hope
to encode even the simplest of scientific statements in a logic that is expressively
weaker than first-order logic? The answer lies in the observation that we are
no longer interested solely in encoding statements from a particular scientific
theory in the language of the logic under consideration. Instead, we use the
structure of the logical system to formalize the structure of some corresponding
scientific theory. Of course, there are many different scientific theories, which
means that our metascience would involve a multitude of logical systems as well.
Relations between different theories can be formulated as relations between the
corresponding systems of logic. This is, of course, extremely reminiscent of the
modus operandi encountered in abstract model theory and, indeed, universal
logic as a whole. This methodology, which I refer to as logical pluralization,
thus represents an approach to metascience that is much closer to the spirit of
abstract model theory than the logical liberalization employed in the FWLA.

As an added bonus, the method of logical pluralization enables us to present
the traditionalist with a more nuanced answer to their above inquiry. For if we
decide to use a plurality of logics with which to model different areas of science
then, in particular, we can use logics with non-standard classes of models. Now,
by defining a logic with respect to some fixed class of models, thereby removing
any unwanted or meaningless models from our discourse, it is quite conceivable
that we can positively impact the expressive power of the underlying system of
logic. The usefulness of Enqvist’s theorem for abstract modal logics relativized
to particular classes of frames now also comes to the fore, since it demonstrates
how we can we restrict a well-known system of logic to a more limited class of
models while retaining a number of powerful model-theoretic properties.28

Summing up the above considerations, we can discard tenet (iii) of the
FWLA in favor of

(iii’) A focus on logical pluralization.

Finally, consider the fourth tenet of the Pearce-Rantala approach. That is:

(iv) A focus on improving the structuralist approach to scientific theories.

Now, while I do not believe that (iv) by itself is necessarily incompatible with
tenets (i’)–(iii’) established above, I do hold that another approach to scientific
theory-structure, viz. the state-space approach, connects to these revisions in a
much more natural fashion. This is based on the straightforward observation

27The connection between tenet (ii) and the traditional view on the role of logic in meta-
science now also becomes more apparent. While tenet (ii) strictly speaking does not force us
to adhere to the traditional view, a focus on extensions of first-order logic still brings with it
implicitly a conception that it is expressive power that is the most important feature a logic
can possess for the metascientific enterprise.

28We shall presently return to this observation in explicating the fourth central tenet of the
SWLA.
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that the state-space approach includes sentences (in the form of elementary
statements)29 as well as models interpreting these sentences (in the form of state
spaces) and hence already has all of the fundamental ingredients required for it
to be linked with the model-theoretic study of logics. Moreover, as witnessed
in section 2.3, the usage of state spaces naturally gives rise to a certain modal-
logical structure in the formalization of scientific theories.

An extremely natural and elegant way of combining the state-space approach
with the study of abstract modal logics now presents itself. Consider an abstract
modal logic L identical to basic modal logic except in that we restrict its class
of frames to consist of only state spaces. In a very definite sense, the logic L
would then represent the ‘logic of classical physics’. Investigating the properties
of L would then simultaneously reveal to us corresponding properties of the
knowledge-system of classical physics itself. If we are feeling particularly bold,
we might even attempt to formulate a Lindström theorem for this logic L, pro-
viding us with nothing less than a model-theoretic characterization of classical
physics. This is but one of many possible examples. Replacing the state spaces
of classical physics by their quantum counterparts, i.e. Hilbert spaces, we might
venture to characterize quantum physics. Or, if we wish to consider disciplines
outside of physics, we might turn to Llyod (1994) and Thompson (1989) and see
how we can apply the state-space approach to the field of evolutionary biology.

Enqvist’s (2013) treatment of abstract modal logics now becomes of great
interest. It shows us how to obtain a Lindström-style characterization theorem
for basic modal logic relative to particular classes of frames. The question of
whether we could formulate a similar theorem when taking, instead of frame
classes definable by Horn sentences, frame classes consisting of state spaces now
thus very naturally presents itself. Of course, it is by no means certain that the
methods employed in the proof of Enqvist’s theorem would be transferable to a
characterization result relative to classes of state spaces. The theorem, however,
does provide us with a valuable starting point in the search for metascientifi-
cally relevant characterization results by showcasing the general methodology
involved in relativizing abstract modal logics to specific frame classes.

An additional point in favor of the state-space approach is that it provides
us with a natural interface between model-theoretic and algebraic approaches
to logical metascience. Without entering into details, let us note that algebraic
logic can be seen as the study of logics by means of a specific type of mathe-
matical structure known as a lattice. Classical propositional logic, for instance,
can be associated with the structure known as a Boolean lattice. The crucial
observation here is that in some instances, there exists a connection between
lattices on the one hand and state spaces on the other. For example, by consid-
ering the set of all subsets of a given state space for classical physics, we arrive
at a Boolean lattice and the corresponding logic that is classical propositional
logic. In the same vein, we can associate to a state space for quantum physics,
i.e. a Hilbert space, a special kind of lattice to which we may then associate a

29Note that this applies only to the early incarnation of the state-space approach, as pre-
sented in (Van Fraassen 1970).
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logical system known as quantum logic. Further investigation into the general
correspondence between state spaces and lattices might thus reasonably be ex-
pected to yield some results on the interrelations between model-theoretic and
algebraic approaches to the logical analysis of science.

Taking stock, we see that there are ample reasons to prefer the state-space
approach over the structuralist framework in setting up a new wave of logical
abstractivism. Hence, we conclude our revisionary efforts by propounding:

(iv’) A focus on improving the state-space approach to scientific theories.

Putting together the above observations, we now arrive at a foundation for
a second wave of logical abstract abstractivism. That is, the SWLA should be
expounded around the following four central tenets:

(i’) The usage of fully abstract model theory.

(ii’) A focus on non-standard logics.

(iii’) A focus on logical pluralization.

(iv’) A focus on improving the state-space approach.

Of course, tenets (i’)–(iv’) still leave us with much freedom in specifying the
exact framework of the envisioned second wave of logical abstractivism. The
next step in explicating this framework would be to settle on a precise definition
of the class of logics we would like to employ in our metascientific investigations.
It seems reasonable to suppose that this prospective family of logics would
sit somewhere between the notions of abstract (modal) logic and institution
in its level of generality. Let us refer to this new species of logical systems
as systems of scientific knowledge, or knowledge-systems for short, to
reflect its intended aim of formalizing the structure of scientific knowledge. To
make this notion of knowledge-system somewhat more tangible, let us briefly
consider its four constituents and the manner in which these can reflect salient
properties of a given body of knowledge:

• Vocabulary. That is, the set/category of signatures of the underlying
logic. Whereas signatures were traditionally taken to consist of purely
syntactic, meaningless objects, this restriction no longer exists in our gen-
eralized setting. Intuitively, we can think of this component as represent-
ing the core concepts with which a knowledge-system is concerned. This
could be some collection of mathematical quantities, such as position and
momentum, or some other, more loosely defined set of objects.

• Syntax. That is, the map sending each signature to a class of statements.
This tells us how the practitioners of a given knowledge-system, given
their core concepts, use these concepts to make statements about their
subject matter. In classical physics, a given set of position and momentum
variables is ‘processed’ through the language of calculus so as to result in
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differential equations of real-valued functions together with some initial
conditions. In quantum physics, statements are formed in largely the
same manner with the exception that real-valued functions are replaced
by self-adjoint operators.

• Semantics. That is, the class of models associated to each signature
which serves to provide an interpretation of the statements corresponding
to that signature. This component of a knowledge-system reflects the
portion of the empirical world with which it is concerned.

• Satisfaction conditions. That is, the model-theoretic satisfaction con-
dition we define for our given system of knowledge. This captures the
criteria employed by the practitioners of a knowledge-system to determine
whether a given statement concerning a relevant portion of the empirical
world is satisfactory. For contemporary natural science, for instance, such
satisfaction conditions would undoubtedly involve some criteria pertaining
to issues of scientific experimentation.

As already noted in the discussion of tenet (iv’), systems of knowledge would
most likely have a certain modal-logical structure, with the class of models of any
given knowledge-system consisting of a particular variety of state spaces. As the
vocabulary and syntax of knowledge-systems are concerned, it is apparent from
the above descriptions that these will differ wildly from their counterparts in
traditional logic. The crucial point here is that since institutional model theory
allows us to take any arbitrary category to serve as a ‘category of signatures’
we are, by extension, also free to consider any set of objects defined over these
signatures to serve as a set of ‘sentences’.

In particular, we might employ a logic of which the sentences are given
not by merely syntactic expressions, as usual, but already have some (mathe-
matical) information imbued in them. As noted above, we might employ a
category in which ‘signatures’ are given by a particular set of variables rep-
resenting some physical quantities and the ‘sentences’ over this signature are
given by all possible differential equations over this set of variables. Regardless
of the exact implementation, we may note already that explicating the concept
of knowledge-system gives rise to a potentially beautiful interplay between the
study of abstract modal logics, institutional model theory and the state-space
approach to scientific theories. Moreover, it is entirely conceivable that the
semi-abstract approach to logics such as topological and probabilistic logic may
be of great assistance in developing a ‘logic’ for state spaces.

The further explication of the above four components and, subsequently,
a rigorous formulation of the notion of knowledge-system should be the first
priority of any future research on the SWLA. In subsection 5.3.3, we will con-
sider how already at this stage of development the SWLA can be seen to hold
much potential for resolving several outstanding issues with extant approaches
to metascience. In the process, some additional manners in which the above four
components can be used to represent certain aspects of scientific knowledge will
be addressed. Before this, however, let us reflect on the role the proposed SWLA
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would play in the contemporary scene of metascientific research. That is, let us
reflect on the relation between the SWLA, as well as logical abstractivism more
generally construed, and the categorical school of metascience encountered in
the previous chapter.

5.3.2 Categorical Compatibility

Any new research program for metascience would do well to take note of the
contemporary research being done within the field. Such comparative studies,
not only valuable for providing new vantage points upon one’s own framework,
also have a very practical dimension: if one wishes to get one’s fledgling new
framework to become widely accepted within a certain field of study, it seems
advisable to connect this framework, for better or worse, to the most recent
developments within that field. Of course, this situation is no different for the
SWLA. Thus, let us consider how it relates to the only contemporary school
of metascience currently under active development: the categorical approach to
scientific theories.

On first sight, there would appear to exist a rather large gap between the two
approaches. In particular, the methodology employed by the east-coast brand of
categorical metascience seems to go against the basic tenets of the SWLA in the
following sense. As noted several times in chapter 4, this categorical account of
scientific theory-structure appears to be limited to the analysis of ‘toy theories’
formulated within either first-order logic or its coherent fragment. Consequently,
one’s adherence to this style of categorical metascience is hinged almost entirely
on one’s conviction that the analyses of such ‘toy theories’ can reasonably be
extended to include cases of actual, concrete scientific theories. And indeed,
Halvorson and Tsementzis (2016, 14) make it no secret they subscribe to this
conviction:

“[W]hat we are claiming here clearly amounts to a methodology
based on an analogy between the categorical metamathematics of
first-order theories and the philosophy of scientific theories. Is there
any reason to believe in the fruitfulness of this analogy? We be-
lieve so. Category theory brings to the table new constructions and
concepts with which to study the metamathematics of first-order
theories. And the metamathematics of first-order theories – if any-
thing – is rich in concepts (“theory”, “axioms”, “interpretations”
etc.) that are used heavily in the philosophy of scientific theories.
So as long one is not a complete skeptic with respect to the use of
logical methods to come up with idealized versions of scientific theo-
ries, there is every reason – it seems to us – to take seriously the
analogy on which our method relies.”

In the final sentence of this quotation, it seems to me that Halvorson and Tse-
mentzis fall prey to the fiend of first-order fixation: the very preconception
against which logical abstractivism is directed. A tentative conclusion might
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thus be that the categorical approach to metascience and the second wave of
logical abstractivism represent two radically different viewpoints on the method-
ology for logical metascience.

Reviewing once more the methods of the categorical approach, one might
object to the above polarization. After all, was it not tenet (ii’) of the SWLA
which stated that we should look for metascientific applications of non-standard
logics, including fragments of first-order logic? And does the categorical school
not employ one particular fragment, viz. the coherent fragment of first-order
logic, in an essential way in explicating its metascientific concepts? While we
might indeed recognize in this description some superficial degree of similarity
between both frameworks, we quickly find a fundamental discrepancy when tak-
ing the usage of this fragment of first-order logic into account. Recall that the
characteristic feature of the SWLA is the usage of the properties of logics to
reflect certain properties of scientific knowledge. By contrast, the role of coher-
ent logic within the categorical approach still fits largely within the traditional
view of logical metascience, in which logic serves to translate the statements of a
scientific theory into a formal language as accurately as possible. Indeed, one of
the attractive features of coherent logic, as cited by Halvorson and Tsementzis
(2016, 3), was that it was roughly as descriptively powerful as first-order logic
(as could be seen through the process of Morleyization).

While the differences between the SWLA and the categorical approach seem
to run deep and we may not reasonably expect much meaningful interactions to
occur between them in their early stages of development, it is still conceivable
that the approaches might one day enter into a symbiotic relationship. This is
especially true for the west-coast style of categorical metascience, which until
this point has been left unmentioned. As noted in chapter 4, the west-coast style
may be distinguished from its east-coast counterpart in that the former employs
categories of structures, which usually do not and cannot serve as the categories
of models of some coherent or first-order theories. One of the advantages of the
abstract approach to logic, however, was exactly the fact that it allowed us to
freely specify what kind of mathematical structures we wanted to serve as the
models of the logic under consideration. Moreover, the freedom granted to us by
institution-independent model theory in defining classes of sentences may very
well enable us to define an appropriate sentential counterpart of the categories
of structures considered in the west-coast framework.

In addition, recent work by Teh and Tsementzis (2015) falling within the
east-coast approach has demonstrated potential for fruitful interrelations with
the SWLA. More specially, Teh and Tsementzis (2015, 14) expound an analogy
between signatures and theories on the one hand, and (co)tangent bundles of
configuration spaces and hyperregular Hamiltonians/Lagrangians on these bun-
dles on the other. Without entering into details, we may note that institutional
model theory, with its extreme generalization of the notion of signature, pro-
vides us with an interesting vantage point for the further study of the analogy
proposed by Teh and Tsementzis. More generally, the fact that institutional
model theory offers us a truly category-theoretic framework for abstract model
theory bodes well for its compatibility with the categorical approach.
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In sum, we might conclude that a combination of the categorical school of
metascience with the proposed second wave of logical abstractivism is by no
means evident. Closer inspection, however, reveals that a proper hybridization
of particular components of both approaches might lead to interesting new ave-
nues of research that may be beneficial to the categorical framework as well as
the SWLA. Of course, whether this potential can truly be actualized depends
heavily on the future development of both strands of metascience.

5.3.3 Applications

Up until this point, the focus has been mainly on arguing for the superiority of
the SWLA over the FWLA. We may note, however, that such argumentation
holds little value for the metascientist without a prior commitment to the ideo-
logy of logical abstractivism. To demonstrate the value of the proposed SWLA
on more independent grounds, let us consider in which ways it can be of service
to the metascientific enterprise generally construed. To this end, let us consider
three problems which I perceive to exist within the field of metascience as well
as the manner in which I believe the SWLA can help remedy these deficiencies.
Taking up each problem in turn, we have:

The Problem of Lost Beings

When asked to identify the objects of scientific inquiry, broadly conceived, the
answer would typically require little deep thought: science is concerned with
understanding the behavior of beings in the empirical world. Yet, when reflecting
on the hitherto encountered frameworks of metascience, we see that the relation
between science and the world, any by extension beings in the world, in these
frameworks is often elusive at best. Following Muller (2011, 97–8), I refer to
this as the problem of lost beings. Briefly reviewing, we have:

• Syntactic approach: In the positivist framework, beings serve as inter-
pretations of the observational terms in our logical language. How this
process proceeds exactly, however, is left to the imagination: at no point
are the beings that science is about formally introduced into the account.

• State-space approach: The physical system modeled by the state space
H was given in this account by the object X. We may recall, however,
that this object X only served to fix the initial state in H trough the
‘location map’ loc. No additional structure is imposed on X, effectively
making it a meaningless object.

• Structuralist approach: Here, the empirical world enters into the mix
through the inclusion of the set I of intended applications in the pair
T = (K, I) representing a scientific theory. Now, since I ⊆ Mpp, we
see that beings in the structuralist account are effectively represented by
partial potential models. The link between theories and the world is then
accounted for by the empirical claim of a theory-element (cf. definition
2.4.21) that I ∈ Cn.
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• Categorical approach: While the categorical view of scientific theories
assigns much value to the explication of relations between individual theo-
ries, the relation of these theories to beings in the world as of yet remains
completely unspecified.

Indeed, we see that the role of beings and the theory-world relation remain
sorely underdeveloped in the syntactic and state-space approaches to scientific
theories, while they are entirely absent in the categorical approach. The only
framework which seems to impose a non-trivial amount of structure on beings is
that of the structuralists. Ultimately, however, the structuralist formalization
proves to be equally unsatisfactory.

To see this, it is sufficient to exclaim the following, obvious observation:
empirical beings are different from their formal representation in theories, de-
scribing these beings. To name but one salient aspect in which beings differ
from mathematical entities found in scientific theories, we might note that be-
ings in the empirical world are ‘infinitely complex’ as opposed to the more
self-contained, idealized entities produced by mathematical abstraction. For
example, while we may ascribe infinitely many properties to a ball, e.g. shape,
size, color, material, year of production, number of goals scored with it, while in
the theory of classical mechanics this list is reduced to a few variables pertaining
to its motion. Without wishing to get involved here in the elaborate discussions
concerning the nature of scientific representation, modeling, abstraction and
idealization, the banal point I wish to emphasize is that differences between be-
ings and their formal representations exist and should be reflected accordingly
in any adequate account of metascience.

In this sense, the structuralist framework fares no better than its competi-
tors. By representing beings by means of partial potential models, objects which
simultaneously represent internal components of scientific theories, the struc-
turalist fail to account for the differences that exist between beings existing in
the empirical world and formal entities in abstract, mathematical realms. We
can thus conclude that no approach to metascience, past or present, provides
us with a satisfying account of the role of beings in the scientific endeavor.

How can the SWLA be service here? This may be seen by first drawing
a parallel with the field of metamathematics. Moving down one rung on the
ladder of abstraction, we see that just we can use mathematical entities to
talk about and formalize empirical beings, so too can we analyze mathematical
beings by means of logical, syntactic sentences. But this, we may note, is
exactly the aim of model theory, a formalism with which we have at this stage
become quite acquainted. In analogy with model theory, the appropriate place
for beings in metascientific frameworks thus seems to be at the place of models
providing empirical meaning to abstract, mathematical statements of scientific
theories. With this goal in mind, the potential of the SWLA for retrieving the
lost beings now becomes apparent. Making full use of the freedom offered to us
by the abstract model-theoretic view of logic, we can simply define a logic the
sentences of which are given by abstract, mathematical statements and whose
class of models consists of structures which, in one way or another, represent

126



beings from the empirical world.
The exact manner in which this vision can be brought to fruition will require

further investigation. In particular, the precise way in which the representation
of beings at the level of models is to be combined with the focus of the SWLA
on the state-space approach to theories, in which the role of models is seemingly
played by the mathematical structures of state spaces, warrants additional con-
sideration. It is conceivable, however, that we can modify the state spaces of the
Beth-Van Fraassen framework in such a manner that they reflect the infinitely
complex nature of the empirical world. The ‘mathematical’ state spaces would
then still appear in the model class of the abstract logic as special, simplified
instances of the more complicated models. Another point worth mentioning is
that the above discussion for a large part presupposes a physics-centered view
of science, as reflected in the branding of scientific statements as being abstract
and mathematical in nature. How these considerations are to be extended to
different, less mathematized areas of science, such as the field of biology, will
need to be examined at a later stage.

The Problem of Historical Myopia

Norwood Russell Hanson famously remarked that ‘history of science without
philosophy of science is blind’ and ‘philosophy of science without history of
science is empty’ (1962, 580).30 Over half a century later, we see Hanson’s
statement has not fallen on deaf ears. In recent times, the field of integrated
history and philosophy of science has made much headway and seems to have
gained significant support within the relevant academic circles.31 Replacing,
however, philosophy of science with formal philosophy of science in Hanson’s
credo and our outlook becomes a lot less rose-colored.32 Indeed, it can be noted
that, on the whole, formal philosophers of science have been blind to historical
considerations. Notable exceptions here are the structuralist, who devote a
significant portion of their works to the study of ‘theory dynamics’.33, as well
as Pearce and Rantala (1983b). To my knowledge, however, there exists as of
yet no formal analysis of any scientific theory predating the sixteenth century.

Why should we be interested in formalizing the science from this span of
history? After all, it may be argued that science, as we know it, did not take
form until the sixteenth or perhaps even seventeenth century. It is, however,
precisely this fact that makes this historical period so appealing. Looking at, for
instance, the ‘science’ of the medieval period or classical antiquity, the great con-
ceptual disparity with the modern-day approach to science immediately stands
out. Hence, any metascientist wishing to understanding the formal structure of
science at the most general level possible would do well to include these time
periods within the scope of their investigations.

Naturally, the task of constructing a historically all-encompassing framework

30The statement is sometimes attributed to Lakatos, who expressed it in his (1970).
31As evidenced by the &HPS series of biannual conferences dedicated to the subject.
32Let us, for present purposes, equate formal philosophy of science with metascience.
33See, in particular, Stegmüller (1976).
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for the study of metascience is one of gargantuan proportions and I do not
mean to suggest that metascience should necessarily concern itself with the
formalization of each and every scientific concoction history has to offer. Rather,
I merely put forth the claim that a moderate increase in historical diversity
can be of great assistance in dispelling any modern preconceptions we might
have regarding the nature of science. A poignant example here is the relation
between physics and mathematics. A widely held perception is that the latter
is indispensable for the former. But what becomes of this conviction when we
consider one of the most influential systems of physics in all of history, viz.
Aristotelian physics? While the presence of mathematics in our theories of
physics is often taken for granted in modern times, Aristotle’s physics of the
sublunar realm was known for being explicitly anti-mathematical.

The methodology of the SWLA, I hold, is well-suited to accommodate a
more historically diverse metascience. The crucial observation here is that by
adopting the tenet of logical pluralization, we have available to us a great many
more components with which to formalize different aspect of a given system of
science than we would have by employing logic in the traditional manner. Take,
for instance, the theories of Aristotelian, Newontian and Lagrangian mechanics.
Clearly, the latter two are much more closely related to one another than they are
to the former. In the traditional approach to logical metascience, however, we
are forced to formalize these scientific theories as theories in the same underlying
logic, be it first-order logic or some extension thereof. As a result, we are
relegated to differentiating between the three theories only by comparing the
different content of the statements making up their logical theories.

In the SWLA, by contrast, the choice of logic, or knowledge-system as I
referred to it in the previous subsection, will now also be representative of the
type of scientific theory we are attempting to formalize. Hence, the choice of
what kind of objects we employ as our signatures, which type of syntax we use
to form classes of sentences from these signatures and what sort of models we
allow in our knowledge-system can all be used to reflect some salient aspects
of the scientific theory under consideration, allowing us to differentiate between
theories in a much more fine-grained manner.

To give but one example of how this might proceed, let us return to the
example of the science-mathematics relation. To formalize this difference using
traditional methodology, i.e. working in some fixed logical system, we would
most likely be required to formulate in our logical theories a host of auxiliary
assumptions which express that some terms occurring in our language are to be
deemed as quantitative or mathematical, while some other are to be considered
qualitative or non-mathematical. In our new approach, however, we can do away
which such ‘clutter’ altogether, by simply formulating the theory of Aristotelian
mechanics relative to a knowledge-system of which the syntax sends any sig-
nature to an appropriately chosen set of non-mathematical statements, while
the knowledge-system underlying Newtonian and Lagrangian mechanics would
employ a syntax sending each signature to a set of mathematical statements in
the language of calculus.

Naturally, the formal concept of knowledge-system will need to be developed
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in greater detail before we can accurately determine its usefulness to historical
considerations. At the same time, we can employ widespread historical appli-
cability as one of our desiderata when explicating the exact definitions of the
different components of the knowledge-system concept. It seems reasonable to
assume, however, that the great freedom associated to logical pluralization can
assist to at least some extent in correcting historical myopia.

The Problem of Theory-Centrism

In section 1.2 it was noted how, for lack of diversity, we could identify the
formal analysis of the structure of science, i.e. metascience, with the formal
analysis of the structure of scientific theories. Now, while it must be noted that
formal methods have been applied to some other areas within philosophy of
science, the discourse on theory-structure remains the only field which comes
close to providing us with a formalized, big picture of science. Let us refer to
this preoccupation with the notion of scientific theory as theory-centrism. It
is my conviction, then, that theory-centrism has hampered the development of
metascience. More specifically, I hold that theory-centrism has made it so that
our metascientific formalisms are unable to produce a truly unified analysis of
the structure of the scientific enterprise.

Why would theory-centrism inhibit the unifying power of a metascientific
framework? Surely, there is no denying that theories are crucial in the scientific
endeavor. However, by insisting that any approach to metascience be theory-
centric, we are unknowingly making this account unable to cope with several
other salient aspects of science. A case in point here is the relation between
physics and mathematics. The nature of this relation has seen much debate both
inside and outside the philosophy of science. Yet, no account of scientific theory-
structure has been able to incorporate the relation in its framework, for the
simple reason that being mathematical is not a property of individual physical
theories, but of modern-day physics as a whole. Phrased differently: it is a
property of the system of knowledge that is modern physics. This observation
is crucial. Instead of a theory-centric metascience, we should aim to establish a
systems-based metascience, i.e. an account of metascience whose primary unit
of analysis consists of systems of knowledge or knowledge-systems.

Of course, since we noted already at the end of subsection 5.3.1 that by using
abstract model theory we can arrive at a new type of logic for metascientific
research similarly referred to as knowledge-system, the connection between the
SWLA and systems-based metascience is now clear: by specializing the concept
of institution in a metascientifically relevant manner, with appropriate inspira-
tion provided by study of abstract (modal) logics, we obtain a formal notion
of knowledge-system, which can then be used to serve as the foundation for
a systems-based approach to metascience. Such a metascience would, in turn,
enable us to formulate a uniform framework to discuss a number of hitherto
disjointed subfields of the philosophy of science, each concerned with a different
scientific concept.

As an example, let us consider once more the science-mathematics relation.
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Within the philosophy of science, we find devoted literature on the topics of
the ‘applicability of mathematics’ (Pincock 2001), (Rizza 2013), the ‘explana-
tory role of mathematics in the empirical sciences’ (Batterman 2010), (Bueno
& French 2012) and the ‘indispensability of mathematics’ to science (Colyvan
2001). None of these debates, however, have been connected to the philosophical
literature on scientific theories. Meanwhile, the process of mathematization has
received no significant philosophical discussion whatsoever and have remained
exclusively within the purview of the history of science. There is a clear role
to be played by knowledge-systems, since the adoption of a ‘mathematical lan-
guage’ of a particular system of science can essentially be formalized as the
choice of a knowledge-system with a certain kind of syntax. The challenge for
the metascientist then becomes to model in logical terms what it means for
syntax to constitute as either mathematical or non-mathematical.

Another salient example can be found in the concept of scientific explana-
tion. This concept, we may note, is a controversial one that has seen at least
as much debate as the notion of theory. In contrast to the previous example,
however, there actually have been some limited attempts at extending accounts
of scientific theory-structure to include the notion of explanation. Hempel and
Oppenheim (1948) famously developed the deductive-nomological model for ex-
planation against the backdrop of their syntactic view on theories. Less well-
known are attempts by Sneed (1994) and Suppe (1989, 152–201) to incorporate
scientific explanation within the structuralist and state-space frameworks re-
spectively. It may be noted, however, that all of these are accounts of theoretical
explanation, i.e. the manner in which scientific theories are used in explaining
empirical phenomena. This identification of scientific explanation with theoret-
ical explanation may be viewed as a prime example of the negative influence of
theory-centrism on metascience. After all, some instances of explanation are in-
herent not to individual theories, but to systems of knowledge in their entirety,
e.g. teleological explanations in Aristotelian physics. While it is by no means
a straightforward task to explicate the notion of explanation in model-theoretic
terms, the knowledge-system concept as obtained from the SWLA provides us
with a natural environment within which to take up these considerations.

It may be noted that the above examples both involve historical considera-
tions to some degree. We can thus view the problem of theory-centrism as being
intimately connected with the problem of historical myopia. This should not
be entirely surprising: the further back we go in history, the more ‘high-level’
the differences with modern science become and, consequently, the greater the
odds will be of these differences being more than simple disparities between
different scientific theories. In addition, we see that the manner of representing
beings in the empirical world and relating these to scientific statements is also
definitely an aspect of science transcending the properties of individual theories.
Hence, we see that the introduction of knowledge-systems can have a positive
impact on the problem of lost beings as well. In sum, we can conclude that a
systems-based metascience constructed around the central tenets of the SWLA
contains much potential for resolving some of the key issues plaguing the current
metascientific enterprise.
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Epilegomena

Let us, for the moment, conclude our ruminations on metascience, abstract
model theory and the interface between the two. We have encountered a variety
of approaches to the metatheoretical study of science, ranging from the syntactic
framework of the positivists, to the different flavors of the structural approach,
to modern-day category-theoretic explorations. In tandem, we were introduced
to a number of different model-theoretic methodologies for the abstract study of
logics. Each of these frameworks were seen to include many different concepts
and technical results of great interest within their scopes, with the abstract max-
imality theorem for abstract logics and Enqvist’s theorem for abstract modal
logics standing out in particular.

Another theorem, viz. the uniform reduction theorem, was seen to form
the central point of departure for Pearce and Rantala’s attempt at infusing
metascience with the methods of abstract model theory. This first wave of
logical abstractivism, however, was observed to be of only marginal success. We
identified several deficiencies to which we could ascribe this lack of fruitfulness,
most poignantly an adherence to a methodology that fails to utilize the full
potential of abstract model theory and in a definite sense remains bound to the
methodological restrictions of first-order fixation.

In wake of the apparent failure of the FWLA, a different proposal for a
logically abstractivist metascience was put forward. In contrast to its predeces-
sor, this new approach would proceed in such a manner that makes use of the
full capacities of the traditional framework of abstract model theory and also
connects to more recent developments within the field. More specially, it was
argued that a combination of institution-independent model theory, the study
of abstract modal logics and the more abstract components of semi-abstract
model theory together form a fruitful backdrop against which a metascientific
framework may be developed, centered around the state-space approach.

This prospective second wave of logical abstractivism, I argued, could be of
great assistance in resolving a number of exigent issues in the philosophy-of-
science literature. In particular, we have seen how the SWLA can be used to
combat the alarming trend of theory-centrism within the philosophy of science
and allows us to move to what I have termed a systems-based metasience. Re-
latedly, the SWLA was argued to be of much effect in remedying the problems
of lost beings and historical myopia. In this context, the SWLA could be con-
strued as a setup for a logico-historical approach to metascience, filling the void
between formal and historical approaches to philosophy of science.

At this stage, I hope the reader finds themselves convinced of the viability
and desirability of the SWLA and, most importantly, of the ideology of logical
abstractivsm in general. It seems to me a lamentable state-of-affairs that logi-
cal abstractivism, over three decades after its inception at the hands of Pearce
and Rantala, remains known to a select few researchers in what can already be
considered an academic niche. At the same time, we might note that neither
abstract model theory, nor any other framework falling within the umbrella of
universal logic, are particularly well-known among logicians in general, making
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it all the more difficult for such formalism to be fruitfully exported to other
disciplines such as metascience. This is in firm contrast with fields as homotopy
type theory and topos theory which, high levels of abstraction notwithstanding,
seem to enjoy great popularity among practitioners of logic, mathematics, as
well as philosophy of science. Indeed, it is not in spite of high levels of abstrac-
tion that these formalisms have seen significant uptake, but exactly because of
their great degrees of generality. This observation, however, makes the ‘passing
over’ of abstract model theory, or any framework within universal logic for that
matter, by such a large portion of the relevant academic communities all the
more regrettable.

There is room, however, for reserved optimism. While, to my knowledge,
abstract model theory remains known to only a small number of mathematical
and philosophical logicians, the wider field of universal logic seems to be gain-
ing in popularity and recognition. The last decade has seen the founding of a
dedicated journal Logica Universalis as well as the organization of the UniLog
series of conferences. The time, it seems, is ripe for philosophical application
of universal logic. Whether it is abstract model theory that will emerge as the
formalism of choice for metascience or it is some different framework, e.g. alge-
braic logic, that will be bestowed this role, I hope this thesis has demonstrated
the great potential of logical abstractivism for the metascientific enterprise.

The clichéd observation, endemic to many a concluding remark, that much
work still needs to be done holds true for the present thesis as well. The main
order business constitutes the rigorous explication of a notion of knowledge-
system, similar to that of abstract (modal) logic and institution, adequate for
metascientific considerations. En passant, this will lead us to consider the prob-
lems of lost beings, historical myopia and theory-centrism, each of which has
to be carefully analyzed and (partially) resolved before we can arrive at a truly
satisfactory notion of knowledge-system.

The epitome of abstract model theory for logical metascience would un-
doubtedly be the formulation of Lindström-style characterization theorems for
particular systems of knowledge, such as classical and quantum physics. More-
over, by noting that such a Lindström theorem would reveal the inherent limi-
tations of the knowledge-system under consideration, we see that this opens up
another natural avenue through which the history of science might enter into
our logico-philosophical mixture. It is in this manner that I hope to one day
arrive at a fully integrated history, philosophy and logic of science. To be sure,
there is no shortage of grand ambitions relating to the future development of
the SWLA. For the moment, however, let us put such grandiose dreams on hold
and conclude here the cerebrations of this master’s thesis.
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Appendix A

Category Theory

In this appendix, I reiterate some basic facts from category theory, which we
require at several different points in the thesis.

A.1 Basic Definitions

We start by considering some basic definitions to lay the groundwork for the
subsequent sections.

Definition A.1.1. A category C consists of the following three components:

• A class ob(C) of objects, sometimes also denoted as |C|.

• A class hom(C) of morphisms, such that each morphism f has a source
object dom(f) and target object cod(f). A morphism f with source object
a and target object b is denoted as f : a → b. We say that a morphism
f : a → b is a morphism from a to b. The class of all morphism from an
object a to an object b in the category C is denoted as homC(a, b).

• For every three objects a, b, c, a binary operation

◦ : homC(a, b)× homC(b, c)→ homC(a, c)

called the composition of morphisms. If we have the morphisms f : a→ b
and g : b→ c, we denote the composition of f and g as g ◦ f : a→ c.

Furthermore, we require C to satisfy the following axioms:

• Associativity. For any three morphisms f : a → b, g : b → c, h : c → d,
(h ◦ g) ◦ f = h ◦ (g ◦ f).

• Identity. For every object x, there exists a morphism Idx :→ x→ x, called
the identity morphism for x, such that for every morphism f : a→ x and
g : x→ b, we have Idx ◦ f = f and g ◦ Idx = g.
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Definition A.1.2. Let C and D be categories. A functor F from C to D is a
mapping that

• sends each object in x in C to an object F (x) in D,

• sends each morphism f : a → b to a morphism F (f) : F (a) → F (b) in D
such that

– F (Idx) = IdF (x) for every object x in C,

– F (g ◦ f) = F (g) ◦ F (f) for all f : a→ b and g : b→ c in C.

There are myriad examples of categories which may be cited to further illustrate
the notion. Two examples that are particularly salient are the following.

Example A.1.3. The category of sets, denoted Set, having sets as objects,
functions between sets as morphisms and the usual composition of functions as
morphism composition.

Example A.1.4. The category of categories, denoted Cat, having categories
as objects, functors between categories as morphisms and functor composition
as morphism composition.

Definition A.1.5. Let C be a category. A subcategory S of C is a category
such that

• ob(S) is a subclass of ob(C),

• hom(S) is a subclass of hom(C),

and it holds that

• for every object x in C, the identity morphism Idx is a morphism in S,

• for every morphism f : a→ b, the source object a and target object b are
in S,

• for every pair of morphisms f : a → b, g : b → c in S, the composite
morphism g ◦ f is in S.

Definition A.1.6. Let C be a category and let f : a → b be a morphism in
C. We say that f is invertible if there exists a morphism f−1 : b→ a such that
f−1 ◦ f = Ida and f ◦ f−1 = Idb. We call f−1 the inverse of f . It is easily
checked that every morphism has a unique inverse.

Definition A.1.7. An isomorphism is an invertible morphism. Two objects in
a category are called isomorphic if there exists an isomorphism between them.

Definition A.1.8. A category C is called skeletal if for every pair of objects
a, b in C: a and b are isomorphic if and only if they are equal.
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Definition A.1.9. Let C and D be categories and let F,G : C → D be functors.
A natural transformation from F to G, denoted α : F ⇒ G, is a function sending
every object x in C to a morphism αx : F (x)→ G(x) in D, which is called the
component of α in x, such that for any morphism f : a→ b in C, the following
diagram commutes:

F (a) F (b)

G(a) G(b)

F (f)

αa αy

G(f)

Definition A.1.10. Let C and D be categories, let F,G : C → D be functors
and let α : F → G be natural transformation. We call α a natural isomorphism
if, for every object x in C, the component of α in x is an isomorphism.

The employed terminology compels us to inquire about the relation between
isomorphisms as pertaining to objects in categories and natural isomorphisms
as pertaining to functors between categories. Fittingly, the two notions coincide
within the appropriate category:

Definition A.1.11. Let C and D be categories. The functor category [C,D]
is defined to be the category whose

• objects are the functors from C to D,

• morphisms are the natural transformations between these functors.

Proposition A.1.12. For any categories C,D, functors F,G : C → D and
natural transformation α : F ⇒ G, it holds that α is a natural isomorphism if
and only if α is an isomorphism in [C,D].

A.2 Equivalence

With all preliminaries in place, we now turn to the question of how to define
a useful notion of equivalence between categories. Let us begin by considering
the obvious candidate.

Definition A.2.1. Let C and D be categories and let F : C → D be a functor.
F is called invertible if there exists another functor F−1 : D → C such that
F−1 ◦ F = IdC and F ◦ F−1 = IdD. Here, IdC and IdD denote the identity
functors for C and D respectively and ◦ refers to the composition of functors in
the obvious way.

Definition A.2.2. Let C and D be categories and let F : C → D be a functor.
F is called an isomorphism of categories if F is invertible. If there exists an
isomorphism of categories between C and D, the two categories are said to be
isomorphic.
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Note that this definition of isomorphism aligns perfectly with definition A.1.7
when applied to the category of categories Cat, having categories as objects and
functors as morphisms.

Isomorphism, as it turns out, does not provide us with a satisfactory notion
of equivalence. To see this, consider the following example.

Example A.2.3. Consider the category • consisting of only a single object to-
gether with its identity morphism. Next, consider the category •� • consisting
of two objects along with their two identity morphisms, a morphism from one
object to the other and the inverse of this morphism. Clearly, the two objects
in the latter category are isomorphic. For all intents and purposes, we can thus
consider the category • � • to consist of only a single object, which, in turn,
allows us to consider • and • � • as essentially the same category. However,
a brief survey of all possible functors between the two categories reveals there
can exist no isomorphism of categories between them.

Rather than isomorphism, we are interested in a less fine grained definition of
equivalence. The following definition, as it turns out, is just right:

Definition A.2.4. Let C and D be categories. An equivalence of categories
between C and D is a functor F : C → D for which there exists a functor
G : D → C such that there exist natural isomorphisms α : G ◦ F ⇒ IdC and
β : F ◦G⇒ IdD.

Definition A.2.5. Two categories are said to be equivalent if there exists an
equivalence of categories between them.

The crucial point here is that, using this definition of equivalence, we no longer
demand the compositions of the functors F and G be equal to the identity
functors, but we only require their compositions to be naturally isomorphic to
the identity functors. This liberalization allows us to circumvent the problems
typically associated with isomorphisms of categories.

While the above definition provides us with a satisfactory notion of equiva-
lence, in category theory it is often useful to employ an alternative characteri-
zation of equivalence of categories. Consider the following properties.

Definition A.2.6. Let C and D be categories and let F : C → D be a functor.
We say that

• the functor F is full if for every two objects c1, c2 in C and every morphism
g : F (c1) → F (c2) in D, there exists a morphism f : c1 → c2 in C such
that F (f) = g.

• the functor F is faithful if F (f) = F (g) implies f = g for all morphisms
f, g in C.

• the functor F is essentially surjective if for every object d in D, there
exists an object c in C such that F (c) is isomorphic to d.
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This provides us with the following alternative characterization of equivalence
between categories:

Proposition A.2.7. A functor is an equivalence of categories if and only if it
is full, faithful and essentially surjective.

Armed with our notion of equivalence, we are free to define a host of new,
important category-theoretic concepts. One such concept is the following.

Definition A.2.8. Let C be a category. A skeleton of C is a skeletal subcate-
gory of C that is equivalent to C.

Significantly, we have:

Proposition A.2.9. Any category has a skeleton.

Thus, whenever we are studying the properties of a particular class of categories
we can, by proposition A.2.9, restrict our attention to the skeletons of these
categories, at least as properties up to equivalence are concerned. One type of
category for which this strategy proves to be convenient is the following.

Definition A.2.10. A category is discrete if it is equivalent to a category whose
only morphisms are identity morphisms.

Lemma A.2.11. Let C be a category. If every morphism in C is an isomor-
phism and there is at most one morphism from any one object to another, then
C is a discrete category.

Proof. By proposition A.2.9, we know that C has a skeleton S. Let a, b be
objects and in S let f : a→ b be a morphism in S. By assumption, we have that
f is an isomorphism between a and b. Furthermore, we know S, by definition,
is skeletal and thus we must have a = b. So f is a morphism from a to a. But
we also know, again by assumption, that there is at most one morphism from
any one object to another. This implies that f is the identity morphism from a
to a. We infer that S contains only identity morphisms. Finally, note that, by
definition, S is equivalent to C. Hence, C is a discrete category. �
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Appendix B

Topos Theory

The present appendix serves to present the reader with a brief introduction to
the theory of topoi. In short, a topos refers to particular kind of category having
certain ‘nice’ features which ensures the categories in question behave like the
category of sets. Topos theory is of deep, fundamental importance in many
different ways to many different researchers and is being applied in fields as
diverse as logic, algebraic geometry, quantum physics and philosophy of science.
The material covered in this appendix is based almost entirely on the excellent
introductory text by Goldblatt (1984).

B.1 Preliminary Notions

To establish what exactly is the notion of a topos, we first require several pre-
liminary definitions. The general strategy will be to look at properties holding
for the category Set and see how these may be lifted to an arbitrary category.
First, we require a generalized notion of injective and surjective functions.

Definition B.1.1. Let C be a category and f : a → b a morphism in C. We
say f is monic if for any object c and morphisms g, h : c → a in C, we have
f ◦ g = f ◦ h implies g = h. We denote the fact that f is monic by writing
f : a� b.

Definition B.1.2. Let C be a category and f : a→ b a morphism in C. We say
f is epic if for any object c and morphisms g, h : b→ c in C, we have g◦f = h◦f
implies g = h. We denote the fact that f is epic by writing f : a� b.

It is straightforwardly verified that monic and epic morphisms in Set coincide
with injective and surjective functions respectively. Next, we want categorical
equivalents of the empty set and the singleton sets in Set.

Definition B.1.3. An object 0 in a category C is initial if for every object a
in C, there is one and only one morphism from 0 to a in C.
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Definition B.1.4. An object 1 in a category C is terminal if for every object
a in C, there is one and only one morphism from a to 1 in C.

Again, it is easily seen that the empty set and the singleton take on th role of
initial object and terminal objects in Set.

Our next order of business is to define the notions of limit and co-limit.
Unlike the preceding definitions, the intuitive interpretation of these concepts
in terms of the category of sets is not immediately clear. Let us thus motivate
the definitions that are to come by considering two examples: the categorical
counterparts of the product set construction and the co-product construction.

Definition B.1.5. Let C be a category and let a, b be objects in C. A product of
a and b in C is taken to be an object a×b with a pair of morphisms πa : a×b→ a,
πb : a× b→ b in C such that for any object c and any two morphisms f : c→ a
and g : c→ b in C there exists exactly one morphism (f, g) : c→ a× b making
the following diagram commute:

c

a a× b b

f
(f,g)

g

πa πb

(B.1)

A point of notation: the dashed arrow for the morphism (f, g) : c → a × b in
the above diagrams indicates that this is the only morphism that can make this
diagram commute.

The co-product construction can be generalized to arbitrary categories in a
similar fashion.

Definition B.1.6. Let C be a category and let a, b be objects in C. A co-
product of a and b in C is taken to be an object a+ b with a pair of morphisms
ia : a → a + b, ib : b → a + b in C such that for any object c and any two
morphisms f : a → c and g : b → c in C there exists exactly one morphism
[f, g] : a+ b→ c making the following diagram commute:

a a+ b b

c

f

ia

[f,g] g

ib

(B.2)

There is now an extremely important point to be made concerning these
two constructions. First, let me introduce some terminology. We start by
considering the notion of diagram. A completely rigorous explication of this
concept is somewhat cumbersome. For present purposes, the following, more
informal definition suffices.
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Definition B.1.7. A diagram D in a category C is a collection of some objects
di, dj , . . . in C, where we allow the same object to appear more than once,
together with some morphisms g : di → dj in C between some of the objects in
the diagram, where we allow the same morphism to appear more than once.

Building on the notion of diagram, we now have:

Definition B.1.8. Let C be a category and D a diagram in C. A cone for D
consists of an object c in C with morphisms fi : c → d in C for every d in the
diagram D such that for every di, dj and g : di → dj in D the following diagram
commutes:

di dj

c

g

fi fj

(B.3)

Definition B.1.9. Let C be a category and D a diagram in C. A co-cone for
D consists of an object c in C with morphisms fi : d→ c in C for every d in the
diagram D such that for every di, dj and g : di → dj in D the following diagram
commutes:

di dj

c

fi

g

fj

(B.4)

While these definitions may seem rather ad hoc at first glance, they actually
enable us to characterize the notions of product and co-product in an effective
manner. To see this, let C be an arbitrary category and consider the diagram D
consisting of only two C-objects a and b and no morphisms. For each C-object
c, we have a cone for this diagram of the form:

a b

c

f1 f2

(B.5)

So, in particular, for the C-object a × b and C-morphisms πa : a × b → a,
πb : a× b→ b, we have the cone:

a b

a× b

πa πb
(B.6)

But this cone is not just any cone! By definition of the production construction,
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we know that, for any C-object c, the diagrams

a

a× b c

πa f1

(f,g)

b

a× b c

πb f2

(f,g)

(B.7)

commute. That is to say, every other cone for diagram D factors uniquely
through the cone B.6. In fact, we might just as well say that the product of the
objects a and b is exactly the cone for D such that any other cone for D factors
uniquely through it. This property turns out to be of such significance that it
has been awarded a special name.

Definition B.1.10. Let C be a category and let D a diagram in C. A cone for
D is called a limiting cone or simply a limit, if any cone for D factors uniquely
through it.

The notion of limit brings with it a tremendous unifying power. Many other
category-theoretic constructions can be characterized as being the limit for the
appropriate choice of diagram. An easy example is the case of an empty diagram
for any category C. For an empty diagram, a cone is simply given by any object
in C, without morphisms. Thus, a limit for an empty diagram, is simply a
C-object c such that for any other C-object c′, we have that c′ factors uniquely
through c, i.e. there exists exactly one morphism f such that f : c′ 99K c. This
is, however, precisely the requirement for c to be a terminal object in C. Hence,
we can view the terminal object construction for a category as simply being the
limit for the empty diagram in that category.

By a similar line of reasoning, we can also link together the co-product
construction with the notion of a co-cone and, subsequently, the notion of a
co-limit. We see, for a given category C and diagram D consisting of the C-
objects a and b, that the co-product a + b with morphisms ia : a → a + b and
ib : b → a + b is exactly the co-cone for D which factors uniquely through any
other co-cone for D. Thus, we have

Definition B.1.11. Let C be a category and let D a diagram in C. A co-cone
for D is called a co-limiting co-cone or simply a co-limit, if it factors uniquely
through any co-cone for D.

Analogously with the exposition for limits, we can look at the co-limit for
the empty diagram of a given category C. A co-cone for this diagram will
then be given by any object in C. Now, if the C-object c is a co-limit for the
empty diagram, then we have, for any other C-object c′, that c factors uniquely
through c′, i.e. there exists exactly one morphism f : c 99K c′. As we may have
expected, this is precisely the definition of an initial object in the category C.
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B.2 Defining Topoi

With the above preliminaries in place, we are now poised to formulate two of
the defining properties of topoi.

Definition B.2.1. Let C be a category. We say C is finitely complete if it has
a limit for every finite diagram in C. Similarly, we say C is finitely co-complete
if it has a co-limit for every finite diagram in C.

The above definition is readily generalized to give us the notions of completeness
and co-completeness by dropping the restriction to finite diagrams. However,
we will not be requiring these two stronger concepts for our present purposes.

Besides finite completeness and finite co-completeness, there are two addi-
tional properties a category should satisfy for it to be a topos. First, we want
to define a notion of exponential object. Intuitively, this notion can be thought
to generalize the construction in Set where we take two sets A and B and with
these form the set BA of functions from A to B. Before we can categorically
define this construction, we require a preliminary.

Definition B.2.2. Let C be a category and let f : a → b and g : c → d be
morphisms in C. We define the product morphism f × g : a × c → b × d to be
the unique C-morphism making the following diagram commute:

c d

a× c b× d

a b

g
πc

πa

f×g

πd

πd

f

(B.8)

Now, we can define the concept of an exponential object as follows.

Definition B.2.3. Let C be a category such that for any two C-objects, C
contains the product of these objects. Furthermore, let a, b be objects in C.
An exponential object for a and b is a C-object ba together with a C-morphism
ev : ba × a → b, called an evaluation morphism, such that for any C-object
c there exists a unique morphism ĝ : c → ba making the following diagram
commute:

ba × a

b

c× a

ev

g

ĝ×Ida (B.9)

For a motivation of the above definition, consult (Goldblatt 1984, 70–4). Now,
the third condition we impose on categories in our definition of topos reads as
follows.

142



Definition B.2.4. Let C be a category such that for any two C-objects, C
contains the product of these objects. We say C has exponentiation, if for any
two C-objects, C contains the exponential object of these objects.

Let us now turn to the final property we need to understand in order to
state in order to define topoi. This time, the property of Set that we will aim
to emulate is the existence of a characteristic function χA for any given set
A. Once again, this calls for several preliminary definitions. To gain a better
understanding of the upcoming construction, let us first consider the situation
in Set. Say we have been given a set S, a subset A ⊆ S and a function f .
Suppose we want to represent the fact that f is the characteristic function of A
in a categorical fashion. A necessary condition is given by the demand that the
diagram

A {1}

S {0, 1}

iA

1

i1

f

(B.10)

commutes, where 1 denotes the constant function from A onto {1} and iA, i1
denote the inclusion maps from A and {1} into S and {0, 1} respectively. This
leaves open, however, the possibility of f being a function that sends some
proper superset of A to 1 and the rest of S to 0. We then have A ⊆ f−1({1}),
while what we want is the identity A = f−1({1}). We must thus look for some
categorical criterion with which to enforce the latter.

Let X = f−1({1}) and consider the diagram

X {1}

S {0, 1}

iX

1

i1

f

(B.11)

What is the relation between diagrams B.10 and B.11? Since A ⊆ X, we have
an inclusion map jA : A→ X. Now, note that this inclusion map is the unique
morphism in Set such that the diagrams

S

X A

iX iA

jA

{1}

X A

1 1

jA

(B.12)

commute. This should seem familiar. Indeed, it is turns out we can characterize
B.11 and, hence, the concept of characteristic function as giving us the limit of
the diagram
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{1}

S {0, 1}

i1

f

(B.13)

in the category Set. Limits for this type of diagram occur in many different
places in category theory and are referred to as pullbacks and the resulting
diagrams such as B.11 are known as pullback squares. With this, we can now
characterize in a purely categorical fashion the notion of a characteristic function
in Set. To be precise, the characteristic function χA for some A ⊆ S is the
unique morphism in Set such that

This characterization is now readily extended to arbitrary categories. The
inclusion maps can simply be generalized to monic morphisms, the set {0, 1}
can be replaced by an arbitrary object and the role of {1} can be played by any
terminal object. All that is left is for us to state the definition of a pullback in
its full generality:

Definition B.2.5. Let C be a category and let f : a→ c, g : b→ c be a pair of
C-morphisms with a common codomain. A pullback for f and g is then a limit
g′ : d→ a, f ′ : d→ b for the diagram

b

a c

g

f

(B.14)

The diagram

d b

a c

f ′

g′ g

f

(B.15)

is then referred to as the pullback square of the given pullback.

We now formulate what it means for a category to permit constructions
that emulate characteristic functions. In the vernacular of category theory,
such constructions are referred to as subobject classifiers.

Definition B.2.6. Let C be a category with at least one terminal object 1. A
subobject classifier for C is a C-object Ω together with a C-morphism true :
1 → Ω such that for any monic morphisms f : a � d there exists exactly one
C-morphism χf : d→ Ω making the diagram

144



a d

1 Ω

f

! χf

true

(B.16)

a pullback square. Here, we write ‘!’ for the unique morphism from a to 1.

At long last, we are now able to give the definition of a topos. Since there ex-
ist two differing, widespread usages of the term topos, we will restrict ourselves,
for the moment, to what are known as elementary topoi.

Definition B.2.7. A category is an elementary topos if it is finitely complete,
finitely co-complete, has exponentiation and has a subject classifier.

Of course, there exists many other, equivalent definitions of the concept of
elementary topos, the consideration of which would take us well beyond the
scope of the present appendix.

With the concept of topos now defined, we are well-poised to consider more
complicated topos-theoretic constructs such as the notions of classifying topos
and pretopos completion. The explication of such notions, however, would re-
quire us to once again consider a host of prerequisite definitions and construc-
tions, which could easily fill a score of additional pages. Therefore, let us be con-
tent here with the exposition presented above. Readers wishing to delve deeper
into the trenches of topos theory may consult one of the several introductory
works dedicated to the subject. For a particularly accessible introduction to the
field of topos theory, see (Goldblatt 1984).
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