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1 Introduction

In this research, optimal stopping problems are investigated. We will briefly
and imprecisely introduce this subject here, for a formal introduction to opti-
mal stopping, see Section 3 and Section 4.

In optimal stopping, the objective is to find an optimal stopping time, that is
to say, the optimal strategy to stop a stochastic process. A stopping time is a
random variable, i.e. a function on Ω which for each “state of nature” ω ∈ Ω
has a value which is a point in time. Loosely speaking, a stopping time has to
satisfy that this time only depends on events that are observable at that time
and as such does not depend on future events. A stopping time may be required
to be smaller than a fixed and finite time, in which case we say we have a finite
horizon stopping problem. The stopping times are ranked by the expected value
of the stochastic process at the time the stopping time indicates. A stopping
time which maximises this expectation is called an optimal stopping time.

Another important concept in optimal stopping is the value function. For each
time, the value function is the function that maps a value of the stochastic
process to the expectation of the stochastic process started at this value and
stopped by the stopping time. This function is called the value function.

The theory of optimal stopping has many applications. In this research, we will
highlight one particular area of applications, which is that of demand-side man-
agement (DSM), which is defined as follows. DSM is the exertion of influence
on consumers of electrical power to change their demand. DSM is also called
energy demand management.

In any power grid, supply and demand of electrical power have to be well
matched. Otherwise, at the consumer level, appliances will not work correctly.
In addition, the capacity of power grids to act as a buffer is very limited, com-
plicating matters further. Traditionally the power suppliers have matched their
supply to the demand of consumers. However, as our economy and technol-
ogy changes, consumers may also get involved in the matching of supply and
demand. Depending on how much control the consumer retains over his con-
sumption, this is either called demand response or dynamic response.

One way to influence demand is to charge consumers variable electricity prices,
depending for example on supply. Certain loads can be shifted in time, which
allows a consumer to reduce the amount he has to pay for electricity, without
consuming less power. An example is that the washing machine of a residential
consumer can be turned on when the price is low. In certain scenarios, finding
the optimal time to consume can be formulated as an optimal stopping prob-
lem. The relevant problems in DSM, demand response and dynamic response,
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as well as their relation to the theory treated in this research will introduced in
Section 2.

The price process used to influence demand may have a complicated structure.
To an extent, we can only guess what the structure will be, because scenarios
in which consumers pay variable electricity prices are not widely adopted. We
see in current adoptions that the price can only change every 15 minutes or so.
This time span is not short enough to justify modelling the price process with
continuous time stochastic processes. Furthermore we see that the price can
take a large range of values. We conclude that it is justified to model the price
process with a continuous state stochastic process.

In Section 6, we introduce the discretization procedure. The input of this proce-
dure is data of a discrete time stochastic process and the output of the procedure
is a stopping strategy that is an approximation of the optimal stopping time of
stopping the stochastic process with a finite horizon. The reason we refer to it
as the discretization procedure is that it internally uses a stochastic model of
original process that generates the data and that this model has finitely many
states, i.e. it is discrete, while the process generating the data is not assumed
to be discrete. Next, Utilities are associated with each state of this model and
a policy is found that maximises the expected utility. This policy can be in-
terpreted as a stopping time for the original problem, which is main result or
output of this procedure.

We discussed that it is difficult to make a good model for the price process and
the discretization procedure makes very few assumptions about the process that
generates its input data. It turns out that a particular stochastic process is of-
ten used in literature to model the price process, which is the AR(1) process.
In [12], Löhndorf says: “In line with literature, we assume that the stochastic
processes of price and supply follow an Autoregressive (AR) process.” In [7],
Gonsch also takes the price process to be an AR(1) process. We can apply the
discretization procedure to this particular case and see how well it performs. If
it performs well for this case, the fact that the AR(1) is seen as a good model
in literature then gives us confidence that the discretization procedure will per-
form well for realistic models.

An AR(1) process (Xn)Nn=1 is a stochastic process that follows the equation

Xn+1 = bXn + εn (1.1)

Where the εn are i.i.d. In this research, we shall also assume that 0 < b < 1
and that E[εn] = 0.
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It turns out that under these assumptions, the optimal stopping strategy of
stopping the AR(1) process (Xn) has a simple structure. There exists a se-
quence (dn) such that at each time n, it is optimal to stop if Xn ≥ dn and to
continue otherwise. We say that the optimal stopping problem has a boundary
structure, which corresponds to our Definition 4.22. The fact that we have this
structure is the statement of Corollary 7.14.

Now suppose we let the input of our discretization procedure be data of an
AR(1) process. As we will see in Subsection 6.5, empirical evidence suggests
that as the size of our sample data goes to infinity, the probability that the
stopping time the discretization procedure finds has a boundary structure goes
to one. We consider the discretization procedure to “perform well” for the
AR(1) process if it approximates the optimal value functions and the boundary
well. Here we care most about consistency of the approximation.

1.1 Research questions

Broad question: “What problems exist in DSM that can be solved using the
theory of finite horizon discrete time optimal stopping, how can we reasonably
model the price process that a consumer faces who is charged variable prices for
electricity, how can we (approximately) solve the resulting finite horizon opti-
mal stopping problems and how can we evaluate the quality of an approximate
solution?”

Main research question: How well does the discretization procedure perform for
an AR(1) process?

Subquestion: What can we say about the structure of the value functions of an
AR(1) process?

1.2 Outline

Problems in demand-side management, demand response and dynamic response
that can be formulated as finite horizon optimal stopping problems are intro-
duced in Section 2. Section 3 provides formal definitions of optimal stopping in
discrete time, as well as a useful theorem. Section 4 provides definitions and a
theorem for the case where the process that we need to stop is a Markov Process.
Section 5 is an example of how the theory of Section 3 can be applied, in a way
that is similar to how we will apply the theory in later chapters. In Section 6,
we introduce the discretization procedure. In Section 7, first AR(1) processes
are introduced and basic properties of their value functions are derived. In
Subsection 7.1, structural properties of the value functions of AR(1) processes
are derived. In Subsection 7.3 a procedure is introduced that is tailored to the
case where the process to be stopped is an AR(1) process, to find approximate
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solutions for the problem of optimally stopping an AR(1) process with a finite
horizon. This procedure shall be referred to as the AR(1) approximation pro-
cedure. In Section 8 the results of the discretization procedure when applied
to data from an AR(1) process and the results of the AR(1) approximation
procedure are compared.
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2 Optimal Stopping in Demand-Side Management

One economical and technological change causing demand-side management
(DSM) to be more attractive is the shift towards renewable energy resources we
see today. Wind and solar electricity production are both volatile, in the sense
that it is hard to predict when and how much production will occur, which has a
negative effect on the balance of the network. The production of solar power is
concentrated around noon, whereas the production of wind power is spread out
over the day. In some sense, this makes solar power relatively more predictable
than wind power, but it also introduces a problem. Even if we would know
perfectly how much solar power production would occur, such a concentrated
peak of production around noon does not correspond to a peak in demand. It
is costly to make other power plants temporarily downscale their production to
compensate for this. Therefore, an increase in wind and solar power production
puts pressure on the network balance, so that it is natural to look to DSM as
an additional method of balancing the network.

Figure 1: Solar electricity production is volatile. It is hard to
predict when and how much production wil occur.

Another technological development causing DSM to be more feasible and en-
forceable is the development of the smart meter. The smart meter comprises
of a computer and a sensor capable of measuring electrical consumption of, for
example, a household in real time. This creates the possibility to provide con-
sumers with monetary incentives to change their demand. If such information
is available, an electricity supplier can charge different prices for electricity at
different moments. An alternative way to provide a monetary incentive is pro-
vided in [11], where software agents trade directly on a market for electricity
on behalf of the consumer.

Smart meters become more widely available at a fast rate, for example in Italy
about 85% of all households have one [6]. Furthermore, EU directives assume
that in 2020, 80% of all consumers will have a smart meter [4] [5].

It is common in the Netherlands for a residential consumer to have a contract
with an electricity supplier that is such that the prices for electricity are rela-
tively low in the evening and at night and high during the day. This can be
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Figure 2: The smart meter comprises of a computer and a sensor
for measuring electrical consumption.

seen as a first step towards more variable electricity prices.

2.1 Relevance of this research to DSM

The only cases in demand-side management that we are aware of in which con-
sumption problems that can neatly be formulated as optimal stopping problems
are cases in which the consumer is a residential consumer. The consumer ap-
pliance that we are most interested in is the washing machine. If a consumer
sees flexible energy prices, he will want to turn on his washing machine when
the price is low. The washing machine may be controlled by a computer to help
the consumer time his consumption. The consumer may instruct this com-
puter to finish washing before a certain time. In this research, we explore the
mathematical theory needed to design software that can perform this task.

Both the cases where the dynamics of the price process are known and unknown
are investigated. In the case where the dynamics of the price process are known,
we will focus on a very specific price process, which is the AR(1) process. A
procedure to handle the case where these dynamics are not known is introduced
in Section 6.
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3 Definitions and Basic Theory of Optimal stopping

In this section we will give a basic and detailed introduction to finite horizon
optimal stopping. Concepts from probability theory that are relevant and not
entirely basic are also included. The motivation for including this introduction
is that our research questions are formulated in terms optimal stopping times
and other concepts that will be properly introduced here. Not many examples
are provided, nor do we discuss the theory at length, as the theory is relatively
well known and there are many books in which the theory is treated, for example
[15]. We only consider optimal stopping problems where the horizon is finite
and time is discrete, as that is all we need in other sections.

3.0 Basic definitions

The content in this subsection corresponds to Chapter 9 in [21].

Recall that N0 = N ∪ {0} and let N0 = N0 ∪ {∞}.

Definition 3.1 (Stochastic process).
Let (Ω,F) and (E,E ) be measurable spaces. Let (Xn)∞n=0 be a sequence of
random elements on Ω with values in E. We say that (Xn) is a stochastic
process (on (Ω,F), with values in E).

Definition 3.2 (Filtration).
Let F be a σ-algebra. A filtration on F is sequence (Fk)∞k=0 of sub σ-algebras
of F , such that for all k, n ∈ N with k ≤ n, it holds that Fk ⊂ Fn.

Definition 3.3 (Filtered probability space).
Let (Ω,F ,P) be a probability space and let F = (Fn)∞n=0 be a filtration on F .
We say that (Ω,F , (Fn)∞n=0,P) is a filtered probability space.

Definition 3.4 (Adapted process).
Let (Xn)∞n=0 be a stochastic process on the probability space (Ω,F ,P). Let
(Fn)∞n=0 be a filtration on F . We say that (Xn) is an adapted process, if for all
n ∈ N0, Xn is Fn measurable.

Let (Ω,F , (Fn)∞n=0,P) be a filtered probability space. We define a stopping time
as follows.

Definition 3.5 (Stopping time).
τ : Ω→ N0 is a stopping time (w.r.t the filtration (Fn)∞n=0) iff

[τ ≤ n] ∈ Fn ∀n ∈ N0
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Let M be the set of all stopping times, i.e.

M = {τ : Ω→ N0 | ∀n ∈ N0 : [τ ≤ n] ∈ Fn}

Note that in the definitions above we use the notation [τ ≤ n] as the common
shorthand notation for {ω ∈ Ω | τ(ω) ≤ n}. Let us derive some basic facts about
sets like these. If τ is a stopping time, then because Fn is a σ-algebra we have

[τ > n] = [τ ≤ n]c ∈ Fn (3.1)

[τ = n] = [τ ≤ n] \ [τ ≤ n− 1] ∈ Fn (3.2)

We will also use the terminology that a particular property holds on a subset
of Ω. An example would be that on [τ ≥ n], we have τ ≥ n − 1. By this we
mean that for all ω ∈ [τ ≥ n], we have that τ(ω) ≥ n − 1, or more compactly,
that [τ ≥ n] ⊂ [τ ≥ n− 1].

Note that by the definition of a stopping time above, stopping times can assume
the value∞. From now on, however, we will focus on the case where we restrict
the stopping time to have a finite value. We shall have an N ∈ N, which we
shall call our horizon or deadline.

The following definition is a bit dry and formal and defines an object which
we call a stopping problem. The “problem” here is to find the value associated
with this object as defined later on in Definition 3.7 (and a stopping time that
attains the supremum in this definition).

Definition 3.6 (Finite horizon stopping problem).
Let (Ω,F , (Fn)∞n=0,P) be a filtered probability space, let N ∈ N and let (Gn)Nn=0

be a stochastic process that is adapted to this filtered probability space, that
satisfies

E[ sup
k∈{0,...,N}

|Gn| ] <∞ (3.3)

We say that the 6-tuple (Ω,F , (Fn)Nn=0,P, (Gn)Nn=0, N) is a (finite horizon) stop-
ping problem. The stochastic process G shall be referred to as the utility.

3.1 Finite horizon

In this subsection we will first lay out some general definitions corresponding
to the resource [[13]: Peskir and Shiryaev 2006]. The main result of this sub-
section is Theorem 3.10 which corresponds to Theorem 1.2 in [13]. The proof
we present here is also an adaptation of the proof in that resource.
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Throughout this subsection, let A = (Ω,F , (Fn)Nn=0,P, (Gn)Nn=0, N) be a finite
horizon stopping problem. For n ∈ {0, . . . , N} we define the following subsets
of M.

MN
n = {τ ∈M |n ≤ τ ≤ N} (3.4)

In this text we shall frequently encounter Gτ and other stochastic processes in-
dexed at a stopping time. For a stochastic process Y and a finite stopping time
τ ∈MN

0 , we define Yτ to be the function ω 7→ Yτ(ω)(ω). If Y is adapted, we find

that Yτ is FN measurable. To see this, write Yτ =
∑N

i=0 1[τ=i]Yi. Because the
underlying sets of the indicator functions are FN measurable by property (3.2),
all the functions that occur in this sum are FN measurable. FN measurability
of Yτ then follows by the fact that measurable functions for a vector space (i.e.
Proposition 3.5 (i) in [21]). Note that this also justifies calling this function a
random variable.

Suppose (Ω,F , (Fn)Nn=0,P, (Gn)Nn=0, N) is a stopping problem. We have, using
condition (3.3), that for all τ ∈MN

0

E[|Gτ |] = E[|
N∑

k=n−1

1{τ=k}Gk|] ≤ E[ sup
k∈{0,...,N}

|Gk|] <∞

This justifies making the following definition.

Definition 3.7 (Value of a stopping problem).
Let (Ω,F , (Fn)Nn=0,P, (Gn)Nn=0, N) be a finite horizon stopping problem. We
define the value WN of this problem to be

WN = sup
τ∈MN

0

E[Gτ ] = sup
τ∈MN

0

∫
Gτ(ω)(ω)P(dω) (3.5)

and we define the subproblem value sequence (WN
n )Nn=0 to be the sequence

defined by
WN
n = sup

τ∈MN
n

E[Gτ ] (3.6)

Definition 3.8 (Snell envelope).
Let A = (Ω,F , (Fn)Nn=0,P, (Gn)∞n=0, N) be a finite horizon stopping problem.
We define the Snell envelope of A to be the stochastic process (SNn )Nn=0 that
satisfies the following recursion

SNN = GN (3.7)

SNn = max(Gn,E[SNn+1|Fn]) (3.8)
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We see that (SNn ) is well defined as follows. Let (Ω,F , (Fn)Nn=0,P, (Gn)∞n=0, N)
be a finite horizon stopping problem and let (SNn )Nn=0 be the Snell envelope.
Then using condition (3.3), we see that E[|SNN |] = E[|GN |] <∞. Now suppose
that for some n ∈ {0, . . . , N − 1}, E[|SNn+1|] <∞. Then, again using condition
(3.3)

E[|SNn |] = E[|max(Gn,E[SNn+1|Fn])|]
≤ E[max(|Gn|, |E[SNn+1|Fn]|)]
≤ E[max(|Gn|,E[|SNn+1||Fn])] <∞

It follows by induction that that for all n ∈ {0, . . . , N}, E[|SNn |] <∞.

Throughout the rest of this section, let (WN
n )Nn=0 be the subproblem values

sequence of A and let (SNn )Nn=0 be the Snell envelope of A.

GN is FN measurable because G is adapted, so that SNN is FN measurable. Let
n ∈ {0, . . . , N − 1}, we have that Gn is Fn measurable and, by the definition of
conditional expectation (Definition 8.1 in [21]), E[SNn+1|Fn] is Fn measurable.
The maximum of two measurable functions is measurable (by Proposition 8.5
in [21]), so Sn is Fn measurable. We conclude that (SNn ) is an adapted process.

The name “earliest optimal stopping time sequence” in the definition below is
justified by Theorem 10.1.

Definition 3.9 (Earliest optimal stopping time sequence).
Let A = (Ω,F , (Fn)Nn=0,P, (Gn)Nn=0, N) be a finite horizon stopping problem.
We define the earliest optimal stopping time sequence of A to be the sequence
of stopping times (τNn ) ⊂MN

n that satisfies that for all n ∈ {0, . . . N}

τNn = inf{k ∈ {0, . . . , N} |SNk = Gk} (3.9)

We say that τN0 is the earliest optimal stopping time.

To see that τNn is well defined, note that SNN = GN , so that on all of Ω the set
inside the infimum has at least one element.

We shall now show that, for all n ∈ {0, . . . , N}, τNn is indeed a stopping time.
Let m ∈ N0 be arbitrary. We have

[τNn ≤ m] =

m⋃
l=0

[τNn = l] (3.10)

If l ∈ {0, . . . , n − 1} ∪ {N + 1 . . .m}, then [τNn = l] = ∅. By manipulating its
right hand side, the equation above then becomes
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[τNn ≤ m] =
m∧N⋃
l=n

[τNn = l]

=
m∧N⋃
l=n

[l = inf{n ≤ k ≤ N |Gk = SNk }]

=
m∧N⋃
l=n

([Gl = SNl ] ∩
l−1⋂
k=n

[Gk 6= SNk ])

Now let Zl = Gl − SNl . Because of Proposition 3.5 (i) of [21] and the fact that
(Gk) and (SNk ) are adapted, Zl is Fl measurable. The equation above becomes

[τNn ≤ m] =
m∧N⋃
l=n

(Z−1
l ({0}) ∩

l−1⋂
k=n

Z−1
k (R \ {0})) (3.11)

Because, for all l ∈ {n, . . . ,m ∨N}, Zl is Fm measurable and {0} ∈ B(R), we
have Z−1

l ({0}) ∈ Fm and, for all k ∈ {n, . . . , l−1}, Z−1
k (R\{0})) ∈ Fm. So the

right hand side of (3.11) is a union of intersections of elements of Fm, which
implies that it is itself an element of Fm. Therefore [τNn ≤ m] ∈ Fm, which
shows that τNn is indeed a stopping time.

We now present a theorem which corresponds to Theorem 1.2 in [13]. The proof
we present here is also an adaptation of the proof in that resource.

Theorem 3.10 (Finite horizon).
Let A = (Ω,F , (Fn)Nn=0,P, (Gn)Nn=0, N) be a finite horizon stopping problem.
Let (WN

n ) be the subproblem value sequence of A, let (SNn ) be the Snell envelope
of A and let (τNn ) be the earliest optimal stopping time sequence of A. We have,
for all n ∈ {0, . . . N}

SNn ≥ E[Gτ |Fn] ∀τ ∈MN
n (3.12)

SNn = E[GτNn |Fn] (3.13)

WN
n = E[GτNn ] (3.14)

Proof.
We will prove the equations (3.12) and (3.13), using two separate proofs by
induction on n. Equation (3.14) follows as a result.

First we present two equations that are used in both the proofs of (3.12) and
(3.13).
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We have SNN = GN by (3.7). Furthermore, for all τ ∈MN
N , τ = N . Lastly, we

have that GN = E[GN |FN ], because GN is FN measurable. Combining these
facts, we find that for all τ ∈MN

N , we have

SNN = GN = E[GN |FN ] = E[Gτ |FN ] (3.15)

To derive the second equation, let n ∈ {1, . . . , N} and let τ ∈MN
n−1. Note that,

because τ ≥ n− 1, we have

Gτ = 1[τ=n−1]Gn−1 + 1[τ≥n]Gτ

We then have (by Proposition 8.5 (iii) in [21])

E[Gτ |Fn−1] = E[1[τ=n−1]Gn−1|Fn−1] + E[1[τ≥n]Gτ |Fn−1] (3.16)

We write τ ∨ n = max(τ, n). Now note that on [τ ≥ n], we have Gτ = Gτ∨n,
which gives us that on all of Ω, we have 1[τ≥n]Gτ = 1[τ≥n]Gτ∨n. Using this,
the last expression (3.16) above becomes

E[Gτ |Fn−1] = E[1[τ=n−1]Gn−1|Fn−1] + E[1[τ≥n]Gτ∨n|Fn−1] (3.17)

Now note that the indicator functions in the equation above are Fn−1 measur-
able, because the underlying sets are Fn−1 measurable, because of results (3.1)
and (3.2). This gives us, by Theorem 8.7 (ii) in [21], that the last expression
above equals

E[Gτ |Fn−1] = 1[τ=n−1]E[Gn−1|Fn−1] + 1[τ≥n]E[Gτ∨n|Fn−1] (3.18)

Now, by the tower property, i.e. Theorem 8.7 (i) of [21], the last expression in
(3.18) above, equals

E[Gτ |Fn−1] = 1[τ=n−1]E[Gn−1|Fn−1] + 1[τ≥n]E[E[Gτ∨n|Fn] | Fn−1] (3.19)

This is the second equation we use in both proofs.

Now we will prove (3.12) by induction on n ∈ {0, . . . N}, starting with n = N
and letting n decrease. The induction hypothesis itself is (3.12). We see that
(3.12) holds for n = N , because of equation (3.15). Now we prove that if (3.12)
holds for one particular n ∈ {1, . . . N}, then it holds for n− 1.

Assume that (3.12) holds for n ∈ {1, . . . N}. We have, for any τ ∈MN
n−1,

SNn−1 = 1[τ=n−1]S
N
n−1 + 1[τ≥n]S

N
n−1

Now by the definition (3.8) of SNn , because the maximum of a set is at least as
large as each element, we obtain
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SNn−1 ≥ 1[τ=n−1]G
N
n−1 + 1[τ≥n]E[SNn |Fn−1]

Recall the Definition 3.5 of a stopping time. On all of Ω, we have that n ≤
τ ∨ n ≤ N . For k ≥ n, we have [τ ∨ n ≤ k] = [τ ≤ n] ∈ Fn. For k < n we have
[τ ∨ n ≤ k] = ∅ ∈ Fn. Therefore τ ∨ n ∈ MN

n . By the induction hypothesis
(3.12) and Proposition 8.5 (i) in [21] we then obtain

SNn−1 ≥ 1[τ=n−1]G
N
n−1 + 1[τ≥n]E[E[Gτ∨n|Fn]|Fn−1]

Now (3.19) gives us that the RHS above equals

SNn−1 ≥ E[Gτ |Fn−1]

This shows that (3.12) holds for n − 1. We conclude that (3.12) holds for all
n ∈ {0, . . . , N}.

We will now prove (3.13) in a similar fashion, by induction on n ∈ {0, . . . , N},
starting with n = N and letting n decrease. Again, the induction hypothesis
itself is (3.13). Again, we see that (3.13) holds for n = N , because of equation
(3.15). Now we prove that if (3.13) holds for one particular n ∈ {1, . . . , N},
then it holds for n− 1.

Assume that (3.13) holds for n ∈ {1, . . . , N}. We have

SNn−1 = 1[τNn−1=n−1]S
N
n−1 + 1[τNn−1≥n]S

N
n−1

By the definition (3.9) of τNn , we have on [τNn−1 = n − 1] that SNn−1 = Gn−1.
Similarly, on [τNn−1 ≥ n], we have SNn−1 6= Gn−1, so that here we have SNn−1 =
max(Gn−1,E[SNn |Fn−1]) = E[SNn |Fn−1]. This gives us that the last expression
above equals

SNn−1 = 1[τNn−1=n−1]G
N
n−1 + 1[τNn−1≥n]E[SNn |Fn−1]

By the induction hypothesis (3.13), this equals

SNn−1 = 1[τNn−1=n−1]G
N
n−1 + 1[τNn−1≥n]E[E[GτNn |Fn]|Fn−1]

We see that, because τNn−1 is a stopping time, [τNn−1 ≥ n] = [τNn−1 ≤ n − 1]c ∈
Fn−1. Therefore, 1[τNn−1≥n] is both Fn−1 and Fn measurable. We then have (by

Theorem 8.7 (ii) in [21]) that the RHS above equals

SNn−1 = 1[τNn−1≥n−1]G
N
n−1 + E[E[1[τNn−1≥n]GτNn |Fn]|Fn−1]
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We see that on [τNn−1 ≥ n], we have τNn = τNn−1 ∨ n, by the definition of τNn .
Therefore, on all of Ω, we have 1[τNn−1≥n]τ

N
n = 1[τNn−1≥n]τ

N
n−1 ∨ n. The RHS

above then equals (using Theorem 8.7 (ii) in [21] again)

SNn−1 = 1[τNn−1=n−1]G
N
n−1 + 1[τNn−1≥n]E[E[GτNn−1∨n

|Fn]|Fn−1]

Equation (3.19) now gives us, because τNn−1 ∈MN
n−1, that the RHS equals

SNn−1 = E[GτNn−1
|Fn−1]

This shows that (3.13) holds for n − 1. We conclude that (3.13) holds for all
n ∈ {0, . . . , N}.

Now we prove equation (3.14). For all n ∈ {0, . . . , N} and for all τ ∈ MN
n in-

equality (3.12) holds. We can take expectations on both sides and the inequality
will still hold, by Proposition 4.18 in [21], so that we obtain

E[SNn ] ≥ E[E[Gτ |Fn]]

By the tower property, this becomes

E[SNn ] ≥ E[Gτ ] (3.20)

We also have, that for all n ∈ {0, . . . , N} equation (3.13) holds. Taking expec-
tations and using the tower property again, we find that

E[SNn ] = E[GτNn ] (3.21)

Combining (3.20) and (3.21) we find that for all n ∈ {1, . . . , N} and for all
τ ∈MN

n

E[GτNn ] ≥ E[Gτ ] (3.22)

From this see that τNn attains the supremum below, as τNn ∈MN
n .

E[GτNn ] = sup
τ∈MN

n

E[Gτ ] (3.23)

This proves (3.14).
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4 Theory Markovian Case

This Section is based on Subsection 4.1 and Subsection 1.2 of [13].

The main result in this section, Theorem 4.18, corresponds to Theorem 1.7 of
[13]. The proof presented here follows the proof in [13] very closely, but provides
more details. We do not vouch for the “efficiency” of this proof and our proofs
of the details seem to lead to some “back and forth” between recursive equations
and properties of the Snell envelope. This may be an argument in favour of
using a direct approach which does not use a theorem like Theorem 3.10, like
the approach chosen in the proof of Theorem 1 of Section 2 of [19] .

Theorem 4.18 is only formulated for a special class of discrete time Markov
Processes, which are canonical Markov processes. However, the theorem can
be applied to general Markov processes, by converting the Markov process to a
canonical Markov process. Another reason why it can be natural to work with
canonical Markov processes, is that an initial distribution and a Markov kernel
generate a canonical homogeneous Markov process.

4.0 Basic results and definitions

Definition 4.1. We say that a measurable space (E,E ) is a phase space iff

∀e ∈ E : {e} ∈ E

Definition 4.2 (Cylinder σ-algebra).
Let (E,E ) be a measurable space. The cylinders of (E,E ) are the sets

C = {B0 ×B1 × · · · ×Bn × R∞ |n ∈ N,∀i ∈ {0, . . . , n} : Bi ∈ E } (4.1)

The cylinder σ-algebra is then σ(C).

To see that the following definition is correct in that the Xn are measurable, so
that (Xn) is indeed a stochastic process, see Lemma 4.4.

Definition 4.3 (Canonical process).
Let (E,E ) be a measurable space, let Ω = E∞ and let F be the cylinder σ-
algebra. We define the canonical process X on (E,E ) to be the sequence of
F/E random elements (Xn) defined by, for all n ∈ N0,

Xn : E∞ → E : Xn(ω) = ωn (4.2)

That is to say, Xn takes the n-th coordinate of any sequence ω.

Lemma 4.4. Let (E,E ) be a measurable space and let (Xn) be the canonical
process on (E,E ). We have that for all n ∈ N0, Xn is F/E measurable.
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Proof. Let B ∈ E

X−1
n (B) = {ω ∈ Ω |Xn(ω) ∈ B} = {ω ∈ Ω |ωn ∈ B}

= Rn−1 ×B × R∞
(4.3)

So X−1
n (B) is a cylinder and therefore X−1

n (B) ∈ F .

Below we define a discrete time Markov process. Equation (4.4) is called the
Markov property. Note that equivalent definitions exist, in particular defini-
tions that instead of (4.4) assume a so called generalized Markov property.

Definition 4.5 (Discrete Time Markov Process).

Let (Ω,F , (Fn)∞n=0,P) be a filtered probability space. We say that a discrete
time stochastic process X = (Xn)∞n=0 that is adapted to this filtration, is a
discrete time Markov process on (Fn)∞n=0 (on this filtered space), with values
in the phase space (E,E ), if the following property, which is called the Markov
Property, is satisfied for all B ∈ E

P[Xn+1 ∈ B|Fn] = P[Xn+1 ∈ B|Xn] (4.4)

Next we define a Markov kernel, which in a sense generalizes the concept of
transition probability matrix. A Markov kernel is also called a transition func-
tion, or probability kernel.

Definition 4.6 (Markov kernel).
A Markov kernel from a measurable space (Ω,F) to another measurable space
(E,E ) is a function κ : Ω× E → [0, 1] that satisfies

1. For all A ∈ E , the function κA : Ω → [0, 1] : x 7→ κ(x,A) is F/B([0, 1])
measurable.

2. For all x ∈ Ω, the function κx : E → [0, 1] : B 7→ κ(x,B) is a probability
measure.

With each finite Markov chain, we can associate a sequence of probability ma-
trices (Pn), such that Pn,i,j gives us the probability that the Markov chain
transitions from state i at time n to state j at time n + 1. The existence of
Markov kernels which play the same role for the (not necessarily discrete space)
discrete time Markov processes we consider here, is shown in Lemma 10.29. For
each n ∈ N0 this lemma gives us a Markov kernel Pn, such that for all B ∈ E ,
Pn(Xn, B) is a version of P[Xn+1 ∈ B|Xn]. Note that if (Xn) is canonical, then
Xn(Ω) = E ∈ E , so that this (perhaps somewhat peculiar) condition of Lemma
10.29 is satisfied.
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Definition 4.7 (Homogeneous discrete time Markov process).
Let (Ω,F , (Fn)∞n=0,P) be a filtered probability space and let (E,E ) be a phase
space. Let (Xn) be a discrete time Markov process on this filtered space with
values in (E,E ). We say that (Xn) is homogeneous if for all n ∈ N0 and for all
B ∈ E

P[Xn+1 ∈ B |Xn] = P[X1 ∈ B |X0] (4.5)

From this point onward, in particular in Subsection 4.1, we will only work
with Markov processes (Xn) that are homogeneous. In this case, we only
need to work with a single Markov kernel P , because for all n ∈ N0 and all
B ∈ E , if P (X0, B) is version of P[X1 ∈ B |X0], then it is also a version of
P[Xn+1 ∈ B |Xn].

Definition 4.8 (Markov kernel of a homogeneous Markov process).
Let (E,E ) be a phase space and let (Xn) be a discrete time canonical homo-
geneous Markov process on (E,E ). We say (Xn) has Markov kernel P , or that
P is a Markov kernel of (Xn) iff P is a Markov kernel such that for all B ∈ E ,
P (X0, B) is version of P[X1 ∈ B |X0].

Note that in a sense there are still many stochastic processes that form a Markov
process with a particular Markov kernel. We can make this class smaller by
specifying an initial distribution π, which is a measure on the phase space
(E,E ), so that we require of our process (Xn) that for all B ∈ E , P[X0 ∈
B] = π(B). It is stated in [13] that the initial distribution π on (E,E ) and
the Markov kernel P fix the entire distribution of the process (Xn) and we can
speak of a Markov process on (E,E ) generated by (π, P ). This is also stated
in Corollary 3.2.2 of [20], but because the Kolmogorov consistency theorem is
used, E needs to a Polish space.

4.1 Theorem for homogeneous Markov Processes

Throughout this subsection, let (E,E ) be a phase space. Let Ω = E∞ and let F
be the σ-algebra generated by the cylinders of E . Let P be a Markov kernel, let
X be the canonical process on (E,E ) and let (Fn)∞n=0 be the natural filtration
of X. Let P = {Px |x ∈ E} be a family of probability measures so that for all
x ∈ E, X is a homogeneous Markov process on (Ω,F ,Px) with Markov kernel
P and Px[X0 = x] = 1.

For random variables Y , we shall write Ex[Y ] =
∫
Y (ω)Px(dω) and we stress

that this makes an expression Ex[Y ] implicitly depend on Px. We let G : E → R
be a function that satisfies, for all x ∈ E and for all N ∈ N

Ex[ sup
k∈{0,...,N}

|G(Xk)|] <∞ (4.6)
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Definition 4.9. Recall Definition 3.6 of a finite horizon stopping problem. Let
x ∈ E and N ∈ N0. We define ANx , the finite horizon stopping problem of
starting at x with horizon N , to be

ANx = (Ω,F , (Fn)∞n=0,Px, (G(Xn))Nn=0, N) (4.7)

Definition 4.10 (Value function). Let N ∈ N0 and consider the family of
stopping problems (ANx )x∈E . We define that value function V N : E → R as
follows. For all x ∈ E, we set V N (x) to be the value of the stopping problem
ANx in the sense of Definition 3.7. We have, for all x ∈ E.

V N (x) = sup
0≤τ≤N

Ex[G(Xτ )] (4.8)

In the proof of the Theorem 4.18 and the statements of Lemma 4.12 and Lemma
4.13 we will use the shift operator θ, which is defined as follows.

Definition 4.11 (Shift operator). We define the shift operator θ to be the
function θ : Ω→ Ω satisfying

θ(ω0, ω1, . . . ) = (ω1, ω2, . . . ) (4.9)

Furthermore, we define θ0 to be the identity function on Ω, i.e. θ0 : Ω → Ω :
ω 7→ ω. For n ∈ N we define

θn = θn−1 ◦ θ (4.10)

The shift operator interacts nicely with our canonical process (Xn), as illus-
trated by the following lemma, which is really just remark about our notation.

Lemma 4.12. Let f be a function f : E → R and let k, n ∈ N0. We have

f ◦Xk ◦ θn = f(Xk+n) (4.11)

Proof. Let ω ∈ Ω. ω is just a sequence ω = (ω0, ω1, . . . ), with for all i ∈ N0,
ωi ∈ E. We have

f ◦Xk ◦ θn(ω) = f ◦Xk ◦ θn(ω0, ω1, . . . )

= f ◦Xk(ωn, ωn+1, . . . )

= f(Xk+n(ω0, ω1, . . . ))

(4.12)

It is convenient to define the following function h. We will later prove that for
all x ∈ E and N ∈ N0, hN (x) = V N (x). We define, for all x ∈ E and all n ∈ N0

h0(x) = G(x) (4.13)

hn+1(x) = max(G(x),

∫
hn(y)P (x, dy)) (4.14)
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Lemma 4.13. For all x ∈ E and N ∈ N, let (SN,xn )Nn=0 be the Snell Envelope
of ANx in the sense of Definition 3.8. We have, for all x ∈ E and N ∈ N0 and
k, n ∈ N0 with k + n ≤ N ,

SN−n,xk ◦ θn = SN,xn+k Px-a.s. (4.15)

For all x ∈ E and m,N ∈ N0 with m ≤ N we have

hN−m(Xm) = SN,xm Px-a.s. (4.16)

Proof. Let N ∈ N0. We have, for all n ∈ N, by Lemma 10.32, because (Xn) is
a Markov process under Px with Markov kernel P , we have Px almost surely
that

hN−n(Xn) = max(G(Xn),

∫
hN−n−1(y)P (Xn, dy))

= max(G(Xn),Ex[hN−n−1(Xn+1)|Xn]

= max(G(Xn),Ex[hN−(n+1)(Xn+1)|Fn]

(4.17)

Furthermore, we see that h0(XN ) = G(XN ) = SN,xN . So we see that hN−n(Xn)

follows the same recursion as SN,xn and by induction it follows that Px almost
surely hN−n(Xn) = SN,xn . Because N was arbitrary, it follows that for all x ∈ E,
N ∈ N0 and all n ∈ {0, . . . , N}

hN−n(Xn) = SN,xn Px-a.s. (4.18)

This gives us that for all k, n,N ∈ N0 with k + n ≤ N , we have (by Lemma
4.12)

SN−n,xk ◦ θn = hN−n−k(Xk) ◦ θn = hN−(n+k)(Xn+k)

= SN,xn+k

(4.19)

Lemma 4.13 justifies making the following definition.

Definition 4.14 (Universal Snell envelope).
Let N ∈ N0 and consider the family of stopping problems (ANx )x∈E . We define
the universal Snell envelope of this family to be the sequence (SNn )Nn=0 satisfying

SNn = hN−n(Xn) (4.20)

In the proof of the theorem, we use the following application of the generalized
Markov property, i.e. Proposition 10.31.

Lemma 4.15. Let N ∈ N0, let n ∈ {0, . . . , N} and let x ∈ E. Let τN−n,x0 be
the earliest optimal stopping time of AN−nx in the sense of Definition 3.9. We
have

Ex[G ◦X
τN−n,x
0

◦ θn|FXn ] = EXn [G ◦X
τN−n,x
0

] Px-a.s (4.21)
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Proof. maxk∈{0,...,N−n} |G(Xk)| is measurable and nonnegative. So we have

Ex[ max
k∈{0,...,N−n}

|G(Xk)| ◦ θn|FXn ] = EXn [ max
k∈{0,...,N−n}

|G(Xk)|] Px-a.s (4.22)

Let Z = maxk∈{0,...,N−n} |G(Xk)|−G◦XτN−n,x
0

≥ 0. Then Z is measurable and

nonnegative, so we have

Ex[Z ◦ θn|FXn ] = EXn [Z] Px-a.s (4.23)

For all ω ∈ Ω, assumption (4.6) gives us that EXn(ω)[maxk∈{0,...,N−n} |G(Xk)|] <
∞ and EXn(ω)[Z] <∞, we do not get ∞−∞ when considering
EXn(ω)[maxk∈{0,...,N−n} |G(Xk)|] − EXn(ω)[Z]. We get, using (4.22) and (4.23),
Px almost surely

Ex[G ◦X
τN−n,x
0

◦ θn|Fn] = Ex[( max
k∈{0,...,N−n}

|G(Xk)| − Z) ◦ θn|Fn]

= Ex[ max
k∈{0,...,N−n}

|G(Xk)| ◦ θn|Fn]− Ex[Z ◦ θn|Fn]

= EXn [ max
k∈{0,...,N−n}

|G(Xk)|]− EXn [Z]

= EXn [ max
k∈{0,...,N−n}

|G(Xk)|]− Z]

= EXn [G ◦X
τN−n,x
0

]

For all N ∈ N0 and n ∈ {0, . . . , N}, we define DN
n , which is sometimes called

the stopping domain in literature, as follows. The word optimal in this defini-
tion is justified by Remark 4.19.

Definition 4.16 (Preferred optimal stopping region). For all N ∈ N, we define

DN
n = {x ∈ R|V N−n(x) = G(x)} (4.24)

We write DN = DN
0 and we will refer to (DN )∞N=0 as the preferred optimal

stopping region.

The word optimal in the following definition is justified by (4.28) of Theorem
4.18 below.

Definition 4.17 (Preferred optimal stopping time). For all N ∈ N0 we define
τND , which plays a role in the theorem below, as follows

τND = inf{n ∈ {0, . . . , N}|Xn ∈ DN
n }

= inf{n ∈ {0, . . . , N}|Xn ∈ DN−n}
(4.25)
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Theorem 4.18.
Let N ∈ N0. Note that as an initial condition, we have V 0 = G. If condition
(4.6) holds, then for n ∈ {1, . . . , N}, the value function V n satisfies the Wald-
Bellman equations, i.e. for all x ∈ E

V n(x) = max(G(x),Ex[V n−1(X1)]) (4.26)

Let x ∈ E and let SN,xn be the Snell envelope of the stopping problem ANx . We
have, for n ∈ {0, . . . , N},

V N−n(Xn) = SN,xn Px-a.s. (4.27)

Let x ∈ E, let n ∈ {0, . . . , N} let τN,xn be the earliest optimal stopping time of
the stopping problem ANx . Then Px[τND = τN,xn ] = 1. In particular

V N (x) = Ex[G(XτND
)] (4.28)

Proof.
First we prove (4.27). For all x ∈ E and N ∈ N, let (SN,xn )Nn=0 be the Snell

Envelope of ANx and let (τN,xn )Nn=0 be the earliest optimal stopping time sequence
of ANx in the sense of Definition 3.9. Let x ∈ E, N ∈ N0 and let n ∈ {0, . . . , N},
we have that

τN,xn = inf{n ≤ k ≤ N |SN,xk = G(Xk)}

= inf{0 ≤ k − n ≤ N − n|SN,xk = G(Xk)}+ n

= inf{0 ≤ m ≤ N − n|SN,xn+m = G(Xn+m)}+ n

Now we use Lemma 4.13, which gives us that for all m ∈ {0, . . . , N−n}, SN,xn+m =

SN−n,xm ◦ θn, and Lemma 4.12, which gives us that G(Xn+m) = G ◦ Xm ◦ θn.
We obtain

τN,xn = inf{0 ≤ m ≤ N − n|SN−n,xm ◦ θn = G ◦Xm ◦ θn}+ n

Note that τN−n,x0 is the following function

τN−n,x0 : Ω→ N0 : ω 7→ inf{0 ≤ m ≤ N − n|SN−n,xm (ω) = G ◦Xm(ω)}

We then see that
τN,xn (ω) = τN−n,x0 ◦ θn(ω) + n (4.29)

Using (3.13) of Theorem 3.10, we have that

SN,xn = Ex[G(X
τN,x
n

)|Fn]

This then becomes, by the result (4.29) we just found

SN,xn = Ex[G(X
τN−n,x
0 ◦θn+n

)|Fn] (4.30)
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Now note that, for all ω ∈ Ω, (by Lemma 4.12)

X
n+τN−n,x

0 ◦θn(ω) = X
n+τN−n,x

0 ◦θn(ω)
(ω)

= X
τN−n,x
0 ◦θn(ω)

(θn(ω))

This gives us
X
n+τN−n,x

0 ◦θn = X
τN−n,x
0

◦ θn

We then see that (4.30) becomes

SN,xn = Ex[G ◦X
τN−n,x
0

◦ θn|Fn] (4.31)

Now, we use our application of the generalized Markov property, i.e. Lemma
4.15, noting that assumption (4.6) holds. Also note that x, N and n were
arbitrary, so we have for all x ∈ E, N ∈ N0 and n ∈ {0, . . . , N}

SN,xn = Ex[G ◦X
τN−n,x
0

◦ θn|FXn ] = EXn [G ◦X
τN−n,x
0

] Px − a.s. (4.32)

Because τN−n,x0 is optimal (recall (3.14) of Theorem 3.10), we have for all x ∈ E,
N ∈ N0 and n ∈ {0, . . . , N}

Ex[G ◦X
τN−n,x
0

] = sup
τ∈MN−n

0

Ex[G ◦Xτ ] = V N−n(x) (4.33)

Now let, for all N ∈ N0, (SNn )Nn=0 be the universal Snell envelope of the family
of stopping problems (ANx )x∈E in the sense of Definition 4.14. Furthermore, we
set, for all N ∈ N and n ∈ {0, . . . , N}

τNn = inf{k ∈ {n, . . . , N} |SNk = G(Xk)} (4.34)

Because Px almost surely SNn = SN,xn , we have that Px almost surely τN−n0 =

τN−n,x0 . So (4.33) gives us

V N−n(x) = Ex[G ◦X
τN−n,x
0

] = Ex[G ◦XτN−n
0

] (4.35)

Finally, we use (4.32) and fill in Xn in the equation above to find for all N ∈ N0

and n ∈ {0, . . . , N}

SN,xn = EXn [G ◦XτN−n
0

] = V N−n(Xn) Px-a.s. (4.36)

Which proves equation (4.27).

Now we prove the Wald-Bellman equations (4.26). LetN ∈ N0. We apply (4.36)
and the definition of SN,xn as the Snell envelope to find for all n ∈ {0, . . . , N}

V N−n(Xn) = max(G(Xn), Ex[V N−n−1(Xn+1)|Fn]) Px-a.s (4.37)
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Let ω ∈ {X0 = x} and note that Px[X0 = x] = 1. Using the case of n = 0 in
(4.37) above (and using Lemma 10.43), we find that

V N (x) = V N (X0(ω)) =

= max(G(X0(ω)),Ex[V N−1(X1) | F0](ω))

= max(G(x),Ex[V N−1(X1)])

(4.38)

This shows (4.26).

Let N ∈ N0 and x ∈ E. We show that Px[τND = τN,xn ] = 1 and (4.28) as follows.
Using (4.36), we have Px almost surely

τND = inf{n ∈ {0, . . . , N} |Xn ∈ DN
n }

= inf{n ∈ {0, . . . , N} |Xn ∈ {x ∈ E |V N−n(x) = G(x)}}

= inf{n ∈ {0, . . . , N} |SN,xk = G(Xn)}
= τN,xn

In particular, (recall Theorem 3.10)

V N (x) = Ex[G(X
τN,x
n

)] = Ex[G(XτD)]

Remark 4.19. The word optimal in “preferred optimal stopping region” in
Definition 4.16 is justified by considering that we might choose other sets
(Cn)∞n=0 in place of (DN )∞N=0 and construct a stopping time τNC in a simi-
lar way as we constructed τND in Definition 4.17. (DN )∞N=0 is optimal in the
sense that τND is optimal. We use the word preferred because other optimal
sequences of sets (Cn)∞n=0 may exist, but the defining property of DN is nice.

Lemma 4.20. For all N ∈ N0, we have DN+1 ⊆ DN .

Proof. By (4.8), because we take supremums over continually larger sets, we
have, for any x ∈ E

G(x) = V 0(x) ≤ V 1(x) ≤ · · · ≤ V N (x) (4.39)

This gives us that for all N ∈ N0.

∀x ∈ E : V N+1(x) = G(x) =⇒ V N (x) = G(x)

This gives us, for all for all N ∈ N0

DN+1 = {x ∈ E |V N+1(x) = G(x)} ⊆ {x ∈ E |V N (x) = G(x)} = DN (4.40)
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It is convenient to explicitly translate what action τD dictates us to take when
we observe a value x of the process at a specific time n. The concept of a policy
is borrowed from the theory of Markov Decision Processes.

Definition 4.21 (Preferred optimal stopping policy). For all N ∈ N0, x ∈ E,
we define

πND (x) =

{
STOP if x ∈ DN

CONT otherwise
(4.41)

This definition is justified as follows. For all ω ∈ Ω and all N ∈ N0 we have

τND (ω) = inf{n ∈ {0, . . . , N} |Xn(ω) ∈ DN−n}
= inf{n ∈ {0, . . . , N} |πN−nD (Xn(ω)) = STOP }

(4.42)

So πND (x) is optimal in a similar sense as DN (Remark preferred-remark).

Now we consider the special case where E = R. The following definition is anal-
ogous to the concept of “optimal stopping boundary” in the theory of optimal
stopping in continuous time.

Definition 4.22 (Boundary). We say that (dn)∞n=1 ⊂ R is the boundary of the
preferred optimal stopping region D = (DN )∞N=0 if for all n ∈ N, Dn = [dn,∞).

Lemma 4.23. If (Dn) has a boundary (dn), then (dn) is increasing.

Proof. This follows from Lemma 4.20.
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5 Sequences of i.i.d. Random Variables

This section serves mainly as an example to get some feeling for the material
of Section 3 and Section 4. In addition, we will see that when we consider in-
dependent normally distributed random variables, we cannot find a nice direct
formula for the expected payoff and we have to resort to doing a recursion. Fur-
thermore, the recursive function involves error functions. In Section 7, when
stopping AR(1) processes, which generalize the process under consideration
here, formulas in terms of error functions also show up. We also show the idea
of doing a Monte Carlo simulation to verify our results.

Let (Ω,F , (Fn)∞n=0,P) be a filtered probability space and let (Xi)
∞
i=0 be an i.i.d.

sequence of random variables on (Ω,F), with E[|X0|] <∞ and for all n ∈ N, let
Xn be Fn measurable and independent of Fn−1. In the special case where for
all n ∈ N0, Fn = σ(X0, . . . , Xn) note that Xn is Fn measurable by definition
and Xn is independent of Fn−1 by the assumption that the Xn are independent
(and by the Grouping Lemma, i.e. Lemma 4.4.1 in [15], which says that if
σ(Xn) is independent of σ(Xi) for all i < n, then σ(Xn) is also independent
of the “grouping” σ(X1, . . . , Xn−1)). Note that (Xn)∞n=0 is a stochastic process
adapted to (Fn). Recall Definitions 3.6, 3.7 and 3.9. For all N ∈ N0 let WN

be the value of the stopping problem (Ω,F , (Fn)∞n=0,P, (Xn)Nn=0, N) and let τN0
be its earliest optimal stopping time. We will find a recursive formula for WN

and we will show that for all N ∈ N0

τN0 = inf{k ∈ {0, . . . , N} |Xk ≥WN−k−1} (5.1)

We could put the problem in the context of Subsection 4.1, as a sequence of
i.i.d. random variables is a Markov process. However, we prefer using the sim-
pler theory of Section 3.

5.1 A recursion for i.i.d. sequences

To fully use the notation of Section 3, for all n ∈ N0, we set Gn = Xn. Recall
Definitions 3.7, 3.8 and 3.9. For all N ∈ N0, we let (WN

n )Nn=0 be the subproblem
value sequence, (SNn )Nn=0 be the snell envelope and (τNn )Nn=0 be the earliest
stopping time sequence of the stopping problem (Ω,F , (Fn)∞n=0,P, (Gn)Nn=0, N).

Let N ∈ N. We will first prove by induction that for all n ∈ {0, . . . , N − 1},

E[SNn+1 | Fn] = E[SNn+1] (5.2)

First we prove the case for n = N . By our assumptions, GN is independent of
FN−1. This gives us, by property (12) of paragraph 10.3 of [15], using the fact
that by (3.7) GN = SN , that

E[SN | FN−1] = E[SN ] (5.3)
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Now let n ∈ {1, . . . , N − 1} and assume that the induction hypothesis (5.2)
holds for n. Using the definition of (SNn ) (3.8), this gives us

SNn−1 = max(Gn−1,E[SNn | FNn−1]) = max(Gn−1,E[SNn ]) (5.4)

Because E[SNn ] is constant, this gives us that SNn−1 is σ(GNn−1) measurable, i.e.
σ(SNn−1) ⊂ σ(Gn−1). It then follows from the definition of independent σ-
algebras and the fact that σ(Gn−1) and Fn−2 are independent, that σ(SNn−1) is
independent of Fn−2. Using property (12) of paragraph 10.3 of [15] once again,
we obtain the induction hypthesis for n− 1, i.e. E[SNn−1 | Fn−2] = E[SNn−1]. By
induction, (5.2) then holds for all n ∈ {0, . . . , N − 1}.

Combining (3.13) and (3.14) of Theorem 3.10 and the tower property, we find
that for all n ∈ {0, . . . , N}

WN
n = E[GτNn ] = E[E[GτNn |Fn]] = E[SNn ] (5.5)

Using this and (5.2), we obtain, for all n ∈ {0, . . . , N − 1}

SNn = max(Gn,E[SNn+1 | Fn]) = max(Gn,E[SNn+1])

= max(Gn,W
N
n+1)

(5.6)

Taking expectations and using (5.5) again, this gives us that for all
n ∈ {0, . . . , N − 1},

WN
n = E[SNn ] = E[max(Gn,W

N
n+1)] (5.7)

Using the fact that the Gi are i.i.d., we obtain, for all n ∈ {0, . . . , N − 1},

WN
n = E[max(G0,W

N
n+1)] (5.8)

The initial condition for this recursion is the fact that WN
N = E[SNN ] = E[GN ] =

E[G0]. NoteN only has a trivial role in the recursion. We see that for allN ∈ N0

and all k ∈ {0, . . . , N},
WN = WN+k

k (5.9)

This corresponds to the general fact that we only need to use one index when
developing the theory for homogeneous Markov Processes in Subsection 4.1.
Our recursion is then

Wn = E[max(X0,W
n−1)] (5.10)

W 0 = E[X0] (5.11)
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We can express τNn in terms of WN
n in a simple way. From (5.6) we see that for

all n ∈ {0, . . . , N}

SNn = Gn ⇐⇒ Gn ≥WN
n+1 (5.12)

The definition (3.9) of τNn then gives us

τNn = inf{k ∈ {n, . . . , N} |Gk ≥WN
k+1}

= inf{k ∈ {n, . . . , N} |Xk ≥WN−k−1}
(5.13)

5.2 Sequences of i.i.d. normally distributed random variables

The computations in this section correspond to an analysis in [9]. The analysis
is the one done for f2 in [9] and the numerical results correspond to Table 2 in [9].

Consider the case where X0 ∼ N(0, 1). Let Φ be the distribution function of
the standard normal distribution. We have the following identity.

Identity 5.1. For X ∼ N(0, 1) and c ∈ R, we have

E[max(X, c)] =
e−

c2

2

√
2π

+ cΦ(c)

Proof. Let X ∼ N(0, 1) and let c ∈ R be arbitrary. We have

E[max(X, c)] = E[c1{X≤c} + 1{X>c}X]

= cP[X ≤ c] +

∫ ∞
−∞

1{x>c} x fX(x) dx

= cΦ(c) +

∫ ∞
c

1√
2π

x e−
1
2
x2 dx

= cΦ(c) +
1√
2π

[
−e−

1
2
x2
]∞
c

= cΦ(c) +
1√
2π
e−

1
2
c2

Writing Identity 5.1 in terms of the error function gives

E[max(X, c)] =
1√
2π
e−

1
2
c2 +

1

2
c

(
erf

(
c√
2

)
+ 1

)
(5.14)

Let f(c) = e−
c2

2√
2π

+ cΦ(c). We then have the following recursion for Wn.
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Wn = E[max(X,Wn−1)] = f(Wn−1)

The initial condition is
W 0 = E[X0] = 0

This gives us
Wn = f (n)(0)

Where f (n) = f ◦ f ◦ · · · ◦ f denotes the n-fold composition of f . A plot of Wn

as a function of n is shown in Figure 3.

20 40 60 80 100
n

0.5

1.0

1.5

2.0

Figure 3: Wn as a function of n for standard normally distributed
i.i.d. random variables.

We find W 1 = f (1)(0) = 1√
2π

= 0.398942. The number 0.39916388 from Table 2

of [9] corresponds to this. We have calculated 0.398942 in a few different ways.
Furthermore, we have verified it using a Monte Carlo simulation, as we will see
further on, so we suspect a numerical error has been made in the calculation of
0.39916388 in [9].

We have done a simulation, by executing our optimal stopping rule. We have
done this simulation ten million times, for N = 100. In Figure 4 we display
the relative frequency in this simulation of each moment the process can be
stopped, including the last moment N = 100 at which the only option is to
stop. The frequency of stopping at a particular time decreases as the time gets
closer to N . The relative frequency for the moments N − 1 = 99 and N = 100
almost identical. That they should be identical can be derived as follows. We
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have

P[XN−1 ≥WN
N ] = P[XN−1 ≥ 0] =

1

2
= P[XN−1 < WN

N ] (5.15)

Therefore we have, by independence of the Xi, by (5.13) and by (5.15)

P[τN0 = N − 1] = P[
N−2∧
k=0

Xk < WN
k+1]P[XN−1 ≥WN

N ]

= P[

N−2∧
k=0

Xk < WN
k+1]P[XN−1 < WN

N ]

= P[τN0 = N ]

(5.16)

20 40 60 80 100
n

0.007

0.008

0.009

0.010

0.011

Figure 4: A sequence of i.i.d. standard normal random variables is
stopped with N = 100 and the relative frequency that the process is
stopped at a particular time is displayed for each moment at which
the process can be stopped.

In Figure 5 we show a histogram of the realizations of XτN0
, i.e. payoffs.

The average payoff is 2.29274. This closely corresponds to W 100
0 = f (100)(0) =

2.29257.
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Figure 5: A histogram of the payoffs, i.e. realizations of XτN0
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6 The Discretization Procedure

Again our goal is to optimally stop the discrete time stochastic process (Xn)
on R. We include no utility function in our analysis, that is to say our utility
function is the identity G(x) = x. In the previous section, we assumed we knew
the probability law governing the process (Xn), which is something we will also
do in sections further on. In this section however, we will present a procedure
that does not assume that we know this law. Instead, we assume we are given
data of the process.

We will also assume that (Xn) is stationary. The assumption of stationarity is
required for the quantiles, probabilities etc defined in the following definitions
to converge to their true values. Rather than providing theoretical arguments,
we will provide numerical evidence in Subsections 6.5 and 8.2 to show that the
procedure described in this section works correctly.

The data we have of our process is, for someK ∈ N, a sequence Y = (yi)
K
i=1 ⊂ R.

First we shall use the data to make a discrete model of the dynamics of the
process. The result will be a Discrete Time Discrete State (DTDS) Markov
Chain.

6.1 Construction DTDS Markov Chain

Below, we shall make definitions that are needed to describe the process of dis-
cretization. The concepts of vector and sequence will be somewhat conflated.
This is because it is more natural to think about a sequence of digits, rather
than a vector of digits and we have defined a discrete time stochastic process
as a sequence. Further on in this section however, we will manipulate our data
in a way that is associated with vectors, e.g. by taking matrix-vector products.

For a sequence or vector of random variables X, we shall use the usual notation
X(i) to mean the i-th order statistic of X. In particular X(1) = miniXi and

X(N) = maxiXi. Here, N is the number of elements in the sequence (Xi)
N
i=1

or the vector (X1, . . . , XN ). Similarly, for a vector or sequence x that is the
realization of a random vector, we shall write x(i) for the i-th order statistic.

Definition 6.1.
Let, for some K ∈ N, A = (ai)

K
i=1 be a sequence of real numbers. Let (ci)

K
i=1

be the sequence satisfying, for all i ∈ {1, . . . ,K}, ci = a(i). For 0 < α < 1, we
define the α-quantile of this sequence to be the number cbαNc. In particular,
we shall write qα for the α-quantile of Y and we define q0 = −∞ and q1 =∞.

Definition 6.2.
Let i ∈ N0 and m ∈ N, with i ≤ m−1. We define the i/m-level (of Y ) to be the
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interval Lmi := [qi/m, q(i+1)/m). In addition, for a fixed m, we define the level
partition K := {Lmi | i ∈ {0, . . . ,m− 1}}.

In the procedure of discretising the process, we shall fix a parameter m which
we shall refer to as the fineness of the discretization. If we pick a fineness of
m, we work with m levels and “cut the process into m slices”. More precisely,
having fixed m, we will associate a level with every element yi in the realization,
using the level function defined below.

Definition 6.3.
Let m ∈ N. We define the level function ρ : R → N0 to be the function that
maps any x ∈ R to the unique level L ∈ K such that x ∈ L.

The result of our discretization will be a discrete state discrete time Markov
Chain Zi on S := {0, . . . ,m − 1}n . We define the state function as follows,
which coincides with ρ for n = 1.

Definition 6.4.
Let m ∈ N. We define the state function σ to be

σ : Rn → S : (x1, . . . , xn) 7→ (ρ(x1), . . . , ρ(xn))

Using the state function, we discretise our data.

Definition 6.5.
Letm,n ∈ N. We define the discretization (of Y) to be the sequence (ui)

K−n+1
i=1 ⊂

S satisfying, for all 1 ≤ i ≤ K − n+ 1

ui = σ(yi, yi+1, . . . , yi+n)

and we write U := (ui)
K−n−1
i

Definition 6.6.
Let i,m, n ∈ N, with i ≤ m. Let (ci)

K
i=1 be the sequence satisfying ci = y(i).

Let J = bK/mc. We define the i/m-slice to be the sequence Ri = (r
(i)
j )Jj=1 :=

(cj)
iJ
j=(i−1)J+1

With every two states s1, s2 ∈ S we will associate a probability. This idea is
captured by the empirical probability function p̄, defined below.
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Definition 6.7.
Let m,n ∈ N. We define the empirical probability function p̄ to be

p̄ : S ×S → [0, 1] : (s1, s2) 7→ |{i ∈ N |ui = s1 ∧ ui+1 = s2}|
|{i ∈ N |ui = s1}|

Note that p̄ must be 0 for many combinations s1, s2, as there are no transitions
from s1 to s2 if the last n− 1 coordinates of s1 are not equal to the first n− 1
coordinates of s2. Furthermore, if n = 1, |{i ∈ N |ui = s1}| ≈ K/m and p̄(i, j)
becomes proportional to the number of transitions from slice i to slice j.

With the states of Zi we shall associate values, which are the averages of the
slices.

Definition 6.8.
Letm,n ∈ N. We define the level utility function vector to be g := (R1, . . . , Rm),
where for a sequence A, A denotes its average. The utility function considered
here will be G(i1, i2, . . . , in) := gin+1.

In order to formally define a Markov Chain, we will order the state space,
so that each state can be associated with a row of the probability matrix. We
will do so by interpreting a vector s ∈ S as a decimal representation in base m.

Definition 6.9.
Let k,m, n ∈ N. We define the function ξ to be the function

ξ : S → {1, . . . ,mn} : (i1, i2, . . . , in) 7→ 1 +
n∑
j=1

ijm
n−j

ξ is a bijection and we define χ to its inverse function.

Now we will construct the matrix P by Pi,j = p̄(χ(i), χ(j)). P is a stochastic
matrix. At last we can define Zi to be the Markov Chain on S with transition
probability matrix P . The process Zi is in a sense a discretization of Xi, based
on Y . Note that U could be a realization of Zi.

6.2 Stopping the Markov Chain and the original process

Next, we will present a stopping rule for Xi based on the optimal stopping rule
of Zi.
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In order to do efficient calculations, we define P̂ , which is much like P , but
without the zeroes corresponding to infeasible transitions. We define p̂ by

p̂((i1, i2, . . . , in), j) = p̄((i1, . . . , in), (i2, . . . , in, j))

We then define the entries of P̂ by P̂i,j = p̂(χ(i), j).

To find the optimal stopping rule of Zn, note that it is a Markov Chain, so that
we can use the Wald-Bellman equations (4.26). Note that our utility function
is Ĝ(i1, i2, . . . , in) = gin . We define V̂ to be the value function of optimally
stopping Zn. From (4.26) we then obtain

V̂ k+1(s1, . . . sn) = max(gsn+1,

m−1∑
j=0

P̂ξ(s1,...,sn),j V̂
k(s2, . . . sn, j)) (6.1)

The initial condition is
V̂ 0(s1, . . . sn) = gsn+1 (6.2)

This recursion is straightforward to compute. A more detailed procedure for
resolving the recursion is provided in Subsection 6.4.

The preferred optimal stopping policy of this problem, in the sense of Definition
4.21 is

π̂k(s1, . . . , sn) =

{
STOP if gsn+1 = V̂ k(s1, . . . sn)

CONT otherwise
(6.3)

We can transform π̂ and V̂ into approximations of the optimal policy and value
function of stopping Xi. We shall call these π̄ and V̄ respectively and these
are the main outputs of the procedure. Recall Definition 6.4, which defines the
state function σ. We set, for x ∈ Rn

π̄k(x) = π̂k(σ(x)) (6.4)

V̄ k(x) = V̂ k(σ(x)) (6.5)

6.3 The Markovian case

Now consider the special case in which we know that (Xi) is a Markov process
and that in addition it is known that the preferred optimal stopping region
D of the original problem of stopping (Xi) must have boundary structure in
the sense of Definition 4.22. In this case, we set n = 1 in our discretization
procedure. Consider the following conjecture, which we state without proof.
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Conjecture 6.10. Let (Xi) be a stationary Markov process which satisfies
that its preferred optimal stopping region D has boundary structure. For each
K ∈ N, we apply the discretization procedure of Subsection 6.1 with n = 1 on
the sample (Xi)

K
i=1, resulting in a discrete time discrete state Markov Chain

(ZKi ). Then the probability that the problem of stopping (ZKi ) has boundary
structure goes to 1 as K goes to infinity.

The conjecture can be seen as consisting of two parts. Firstly, the quantiles,
levels, transition probabilities etc all have theoretical analogues, corresponding
to expected values rather than approximations by data. This leads to a the-
oretical discretization of (Zi) of (Xi). The first part of the conjecture is then
that this theoretical discretization (Zi) has boundary structure whenever (Xi)
does.

The second part of the conjecture is that as our sample size K grows larger,
(ZKi ) becomes sufficiently similar to (Zi) for the problem of stopping (ZKi ) to
also have boundary structure. We argue that the assumption of stationarity
of (Xi) is needed for the convergence in the second part, but it is outside the
scope of this research to provide a proof.

Now we assume that Conjecture 6.10 is true and let N ∈ N. We then have
that there exists an i∗ ∈ {0, . . . ,m − 1} such that for all i ∈ {i∗, . . . ,m − 1},
we have π̂N (i) = STOP. This gives us a direct way to approximate dN . Recall
Definition 6.1 which defines qα to be the α-quantile of our input data Y . We
have

dN = inf{x ∈ R |πN (x) = STOP}
≈ inf{x ∈ R | π̂N (σ(x)) = STOP}

= inf
⋃
{Li | i ∈ {1, . . . ,m− 1}, π̂N (i) = STOP}

= inf
⋃
{Li | i ∈ {i∗, . . . ,m− 1}}

= inf Li∗

= qi∗/m

(6.6)

6.4 Procedure in terms of matrices and vectors

For any fixed k, we wish to calculate the right hand side of (6.1) for all
s = (s1, . . . , sn). Calculating the right hand side directly is straightforward,
but regardless we present here a so called vectorized approach, that is to say
we make use of array programming. The benefit of such an approach is that it
may be more efficient and more elegant. We find a procedure for resolving this
expression, involving a matrix-vector product. Apart from a step of taking a
pairwise maximum and a step in which matrix vector products are taken, all
the steps in the procedure are rearrangements of data structures. All rearrange-
ments can be thought of as combinations of splitting or gluing-together rows or
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columns, or taking the transpose of a matrix, where a matrix may have vectors
as its entries (i.e. it is an order 3 tensor).

In order to express the rearrangements, we make the following definitions

φ : N→ N : i 7→ (i− 1 mod m) + 1

ψ : N→ N : i 7→ b i− 1

mn−1
c+ 1

ζ : N→ N : i 7→ (i− 1 mod mn−1) + 1

In addition, for a matrix A, we shall write Ai for the i-th row of A and likewise,
for a vector v we shall write vi for its i-th entry. If an index was already present,
we shall use an extra pair of parenthesis, so that the i-th entry of w(k) will be
written as (w(k))i.

Let, for all 1 ≤ k ≤ N , w(k) be the vector satisfying, that its i-th entry (w(k))i
for all i ∈ {1, . . . ,mn} satisfies

(w(k))i = V̂ (k)(χ(i)) (6.7)

We can retrieve the value function V̂ (k) from w(k) in a straightforward way as
follows

V̂ (k)(s1, s2, . . . , sn) = (w(k))ξ(s1,s2,...,sn) (6.8)

So we only need to find all the w(k) to know the value functions V (k). Therefore
this procedure will recursively find the w(k).

As an initialization for the recursion, for j ∈ {1, . . . ,mn−1}, let Lj be the
m×m matrix, that satisfies that for each i ∈ {1, . . . ,m}, the i-th row (Lj)i of
Lj satisfies

(Lj)i = P̂(i−1)∗mn−1+j

The recursive procedure is then as follows. Given, for a fixed k, a vector w(k), we
construct the mn−1×m matrix B(k) from w(k) by the following rearrangement.
We set B(k) to be the mn−1 × m matrix whose entries (B(k))i,j satisfy, for
i ∈ {1, . . . ,mn−1}, j ∈ {1, . . . ,m}

(B(k))i,j = (w(k))(i−1)m+j

We let M (k) be the m×m matrix which satisfies that its i-th row (M (k))i, for
i ∈ {1, . . . ,mn−1}, satisfies

(M (k))i = Li · (B(k))i (6.9)
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and let q(k+1) be the vector, satisfying, for i ∈ {1, . . . ,mn}

(q(k+1))i = (M (k))ζ(i),ψ(i) (6.10)

We then set w(k+1) as follows, which is justified by Lemma 6.11. We then
obtain, for i ∈ {1, . . . ,mn}

(w(k+1))i = max(gφ(i), (q
(k+1))i) (6.11)

This concludes the procedure.

Lemma 6.11.
The procedure sets w(k+1) correctly.

Proof. First note that, for all i ∈ {1, . . . ,mn}

(ψ(i)− 1)mn−1 + ζ(i) = b i− 1

mn−1
c+ (i− 1 mod mn−1) + 1

= i
(6.12)

Now let i ∈ {1, . . . ,mn} and let (si) be such that ξ(s1, . . . , sn) = i. We have

(i− 1 mod mn−1) = (

n∑
j=1

sim
n−j mod mn−1) =

n∑
j=2

sim
n−j (6.13)

This gives us, for all k ∈ {1, . . . ,m}

ξ(s2, . . . sn, k − 1) = k +

n−1∑
j=1

sj+1m
n−j

= k +m
n∑
j=2

sjm
n−j

= k +m (i− 1 mod mn−1)

= k +m (ζ(i)− 1)

(6.14)

This gives us

q
(k+1)
i = (M (k))ζ(i),ψ(i)

= (Lζ(i) · (B(k))ζ(i))ψ(i)

= (Lζ(i))ψ(i) · (B(k))ζ(i)

= P̂(ψ(i)−1)mn−1+ζ(i) · (w
(k)
(ζ(i)−1)m+j)

m
j=1

(6.15)

Now we use the equations (6.12) and (6.14) above to find

q
(k+1)
i = P̂i · (w(k)

ξ(s2,...,sn,j−1))
m
j=1

=

m−1∑
j=0

P̂ξ(s1,...,sn),j (V̂ (k)(s2, . . . , sn, j))
(6.16)
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Because w
(k+1)
i is simply the maximum of q

(k+1)
i and gφ(i), we see that this

corresponds to the Wald Bellman equations (6.1).

6.5 Example

We present an example where n = 1, so that our discrete model is a proper
Markov Chain in the sense that we do not care about the history of the process
beyond one value (for larger n we also construct a Markov chain, but we have
to include “history” in the state). The process used to generate the data is an
AR(1) process with regression parameter b = 1

2 , which is a Markov process,
so that n = 1 is a good choice. We generate K = 106 data points using this
process. We distinguish m = 10 levels and the horizon is N = 11. We have run
the procedure, including the generation of the data 20 times.

The quantiles the discretization procedure finds in each of the 20 runs corre-
sponds closely to quantiles of the stationary distribution, which has a normal
distribution with mean 0 and standard deviation 2√

3
. The quantiles found by

our procedure in the last run are listed below, with the theoretical quantiles
found by using the stationary distribution alongside them.

Algorithm Theoretical

-1.490 -1.480

-0.977 -0.972

-0.607 -0.606

-0.295 -0.293

-0.003 0.000

0.289 0.293

0.601 0.606

0.969 0.972

1.480 1.480

Figure 6: Quantiles found by the discretization procedure com-
pared with the theoretical quantiles of the stationary distribution.

The quantiles the procedure finds are associated with levels in the sense of Def-
inition 6.2. The procedure distinguishes m = 10 levels, which are the intervals
L10

0 = (−∞,−1.49), L10
1 = [−1.49,−0.98), L10

2 = [−0.98,−0.61) and so on,
with the last level L10

10 = [1.48,∞).

Because n = 1, the level function ρ of Definition 6.3 coincides with the state
function σ of Definition 6.4. As described in Subsection 6.1, using this function
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transitions between levels are tallied and probabilities are associated with each
pair of states. Because n = 1, the matrix P and the matrix P̂ again coincide.
By this process, we construct the stochastic matrix shown in Figure 7.

0.32 0.19 0.14 0.10 0.08 0.06 0.04 0.03 0.02 0.01
0.19 0.17 0.14 0.12 0.10 0.09 0.07 0.05 0.04 0.02
0.14 0.14 0.14 0.12 0.11 0.10 0.09 0.07 0.06 0.03
0.11 0.12 0.12 0.12 0.12 0.11 0.10 0.09 0.07 0.04
0.08 0.10 0.11 0.12 0.12 0.11 0.11 0.10 0.09 0.06
0.06 0.09 0.10 0.11 0.11 0.12 0.12 0.11 0.10 0.08
0.04 0.07 0.09 0.10 0.11 0.11 0.12 0.12 0.12 0.11
0.03 0.06 0.07 0.09 0.10 0.11 0.12 0.14 0.14 0.14
0.02 0.04 0.06 0.07 0.09 0.10 0.12 0.14 0.17 0.19
0.01 0.02 0.03 0.05 0.06 0.08 0.10 0.14 0.19 0.32

Figure 7: Stochastic matrix P found by the discretization ap-
proach

In the matrix shown in Figure 8, a 1 represents the decision to continue and a
0 represents the decision to stop. The matrix is (π̂k(i))k,i, where each column
corresponds to a state i with the first column corresponding to a state associated
with the lowest values. Each row corresponds essentially to how much time is
left before the deadline and with the top row corresponding to the maximum
amount of time left. In this way, the last row corresponds to the last decision,
which is taken at time N − 1. If at this time we do not decide to stop and
obtain XN−1, we will always get XN , so that there is no decision at time N .

1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0

Figure 8: Matrix of decisions for each state as we approach the
deadline

As described in Subsection 6.2, using the function π̂k which is completely de-
termined by the matrix above, we can find a policy π̄ which is a stopping policy
for the original problem.

We see that all the zeroes appear to the right of the ones. This corresponds to
a policy that stops whenever the observed value of the process is higher than
a fixed value, depending on the time left until the deadline. We will show the
optimal stopping policy of an AR(1) process has boundary structure in Section
7.1, in Proposition 7.13. So this is a case where the original preferred optimal
stopping region (Dn) of the original Markov process has boundary structure in
the sense of Definition 4.22 and the corresponding discretization has this same
structure. This supports our Conjecture 6.10.
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The fact that the zeroes only appear below ones is a consequence of (4.40).
It immediately follows that the “boundary sequence” (dk) of our discrete time
discrete state Markov Chain is increasing (as stated in Lemma 4.23), which can
be seen in our matrix from the fact that as we go down the rows, the column
number of the leftmost zero is decreasing.
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7 AR(1) Processes

7.0 Basic results and definitions

Let (Xn)Nn=1 be an AR(1) process. That is, Xn follows the equation

Xn+1 = bXn + εn (7.1)

Here the εn are i.i.d. and are called innovations. Various distributions of εn
are of interest, but the most usual distribution it has in models is a normal
distribution. In [8], Grunwald et al. give an overview of what distributions
of innovations are generally used in models. We will assume that εn has zero
mean. In addition we assume that 0 < b < 1. We shall consider the problem of
optimally stopping such a process before a finite horizon N , when the distribu-
tion of ε and the value of b are known.

Here by optimally stopping a process, we mean that we consider the utility func-
tion G of Subsection 4.1 to be the identity G(x) = x and we try to optimise
the supremum in (4.8). The infinite horizon case, where payoffs are discounted
so they do not grow to infinity, bears some similarity to the finite horizon case
and is treated in [3] and [2].

The fact that 0 < b < 1 implies that the process is stationary. Note that the
process becomes a Martingale for b = 1. In this case, Theorem 9.15 of [21]
then tells us, because τ is bounded, that our expected payoff is always X0. It
is therefore natural to dismiss this case.

For all 1 ≤ n ≤ N we define the value of continuing, Qn, to be the following
function

Qn : R→ R : x 7→ Ex[V n−1(X1)]

This function is analogous to the Q function in the theory of Markov Decision
Processes, which maps pairs (s, a) of a state and an action to a real number,
which is the expected reward. We can then think of Qn as Qn(x) = Qn(x, c),
where c is the name of the action “continue”.

In our notation, the Wald-Bellman equations (4.26) are, for n ∈ N

V n(x) = max(x,Qn(x)) (7.2)

We know by the definition (4.8) of V , that

V 0(x) = sup
0≤τ≤0

Ex[G(Xτ )] = Ex[X0] = x
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Therefore we see that, because the εn are assumed to have zero mean,

Q1(x) = Ex[V 0(X1)] = Ex[bX0 + ε0] = bx

Because of our assumption that 0 < b < 1, we find

D1 = {x ≥ Q1(x)} = {x ≥ bx} = [0,∞) (7.3)

Therefore we also find d1 = inf D1 = 0.

Note that d1 is the unique solution of x = Q1(x). It will be proven later that
for each 1 ≤ n ≤ N , dn is the unique solution of Qn(dn) = dn and that D has
a boundary in the sense of Definition 4.22. It is then useful to find these dn
because we then have

τD = inf {n ∈ {0, . . . , N} |Xn ∈ DN−n}
= inf {n ∈ {0, . . . , N} |Xn ≥ dN−n}

(7.4)

So that in this case this optimal stopping strategy takes a simple form. The dn
are the points at which we are indifferent between continuing or stopping.

For n = 1 we find by (7.2)

V 1(x) = max(x,Q1(x)) =

{
x x ≥ 0

b x x < 0

For higher n, Qn(x), V n(x) and dn will depend on the distribution of ε1. The
derivations above hint at a way to use (4.26) to recursively find V n(x), Qn(x)
and dn. In this way, for the distributions we consider here, we can find some
expression for Qn(x) and V n(x) for n = 2, although for the normal distribution
Q2(x) will be expressed in terms of the error function.

After doing a few steps of the recursion, it becomes impossible to compute the
expectations exactly, for any distribution of the innovations of interest. We list
some value functions for various distributions here, to convince the reader that
these integrals can become quite difficult.

Let erf be the error function.

For εi ∼ N [0, 1], we have

Q2
N (x) =

(1− b)e−
1
2
b2x2

√
2π

+
1

2
bx

(
(1− b)erf

(
bx√

2

)
+ b+ 1

)
(7.5)
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For εi ∼ U [−1, 1], we have

Q2
U (x) =


b2x b x ≤ −1
1
4(1 + b(−1 + x(2 + b(2 + x− b x)))) −1 < bx ≤ 1

b x 1 < bx

7.1 Structure of Qn

In this subsection, we shall prove lemmas about the structure of Qn and V n

and Dn. We shall show that Qn has linear asymptotes, provide conditions for
Qn to be differentiable and strictly convex and show that Dn has “boundary
structure” in the sense of Definition 4.22.

Throughout this subsection, we shall let Z be a random variable that has the
same distribution as the innovations εi of our AR(1) process. We let F be the
distribution function of Z and µ the measure to which F corresponds (in the
sense of Theorem 1 of §2 of Chapter II of [18], µ is also called the law of Z).
Recall that we made following two assumptions

(E[Z] =)

∫
y µ(dy) = 0 (7.6)

0 < b < 1 (7.7)

We collect here some lemmas that are needed to prove that the value functions
have a certain structure.

Throughout this subsection, let l
(1)
n and l

(2)
n be the functions

l(1)
n : R→ R : x 7→ bnx

l(2)
n : R→ R : x 7→ bx.

Definition 7.1 (Asymptote).
A linear function l is an asymptote of f if for some T ∈ {−∞,∞}

lim
x→T

f(x)− l(x) = 0

If T = −∞ we call l a left asymptote and if T =∞ we call it a right asymptote.

Definition 7.2 (Convex function). A function f : R → R is called convex if
for all x, y ∈ R and for all λ ∈ [0, 1]

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) (7.8)
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Definition 7.3 (Contraction Mapping). A function f : R→ R is a contraction
mapping if there exists a constant k ∈ [0, 1) such that for all x, y ∈ R

|f(y)− f(x)| ≤ k|y − x| (7.9)

Consider the following assertion. We will indirectly show that if Z admits a
density, the assertion holds for all n ∈ {1, . . . , N}, but the purpose of including
the assertion is only to enable compact formulations of the lemmas that follow,
so that a proof is contained in the proofs of those lemmas.

Assertion 7.4. Let n ∈ {1, . . . , N}. l(1)
n is a left asymptote of Qn, l

(2)
n is a right

asymptote of Qn. Furthermore, there exists a unique solution of Qn(x) = x,
called dn and Dn = [dn,∞).

Lemma 7.5. Assertion 7.4 holds for n = 1, Q1 is differentiable and convex and
Q1 is a contraction mapping.

Proof. We have

Q1(x) = l
(1)
1 (x) = l

(2)
1 (x) = bx

So that indeed l
(1)
1 is a left asymptote of Q1, l

(2)
1 is a right asymptote, Q1 is

differentiable and Q1 is convex. Q1 is a contraction mapping for k = 1
2(b+ 1).

There exists a unique solution d1 = 0 of Q1(x) = x. Lastly, we have

D1 = {x ∈ R|V 1(x) = x} = {x ∈ R|1x≥d1x+ 1x<d1bx = x} = [d1,∞)

Lemma 7.6. Assume Assertion 7.4 holds and Qn is convex. Then V n has left
asymptote l(1) and right asymptote l : x 7→ x and V n is convex. Furthermore

V n(x) =

{
x x ≥ dn
Qn(x) x < dn

(7.10)

Proof. Note that V n(x) = max(x,Qn(x)), which are our Wald-Bellman equa-
tions (7.2). Equation (7.10) follows directly from the fact that Dn = [dn,∞).

To see that V n is convex, note that by assumption, Qn has right asymptote bx.
So we have, by Lemma 10.12, that for all x < z

Qn(z)−Qn(x)

z − x
≤ b (7.11)

This gives us

sup
x∈(−∞,dn)

Qn(dn)−Qn(x)

dn − x
≤ b < 1 = inf

x∈(dn,∞)

x− dn
x− dn

(7.12)
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Also note that by assumption, Qn(dn) = dn. Lemma 10.15 then gives us that
V n is convex.

The fact that fact that V n has l(1) and l as asymptotes follows directly from
(7.10) and the fact that Qn has l(1) a left asymptote.

Lemma 7.7. Assume Assertion 7.4 holds. Let x ∈ R. Then V n(bx + Z) ∈
L1(µ).

Proof. For all y ∈ R, we have V n(y) ≤ max(dN−n, y). Therefore, for a fixed x,
because Z ∈ L1, we have

E[(V n(bx+ Z))+] ≤ E[max(dN−n, bx+ Z)] <∞ (7.13)

Furthermore, we have that bnx is a left asymptote of V n, so that bnx is a lower
bound of V n, which gives us that (bnx)− is an upper bound of (V n)−,

E[(V n(bx+ Z))−] ≤ E[(bn(bx+ Z))−] ≤ E[(bx+ Z)−]

≤ E[(bx)− + (Z)−] <∞

Using the notation of this subsection, we have, for all x ∈ R,

Qn+1(x) = Ex[V n(X1)]

= Ex[V n(bX0 + ε1)]

=

∫
V n(bx+ y)µ(dy)

(7.14)

Lemma 7.8. Assume Assertion 7.4 holds and that Qn is convex. Then Qn+1

is convex.

Proof. Consider h(x, y) = V n(bx + y). Because the composition of convex
functions is convex (i.e. Lemma 10.10), for all y ∈ R, x 7→ h(x, y) is convex.
By Lemma 7.7, for all x ∈ R,

∫
|h(x, y)|µ(dy) < ∞. It follows from Lemma

10.21 that x 7→
∫
h(x, y)µ(dy) is convex, that is Qn+1(x) =

∫
V n(bx+ y)µ(dy)

is convex.

Lemma 7.9. Let n ∈ {1, . . . , N}. If Assertion 7.4 holds for n and Qn is

convex, then Qn+1 has left asymptote l
(1)
n : x 7→ bn+1x and right asymptote

l
(2)
n : x 7→ bx.

Proof. Let

θ(x) =

{
bx x ≥ 0

bn+1x x < 0
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Let y ∈ R be arbitrary. Because bnx is a left asymptote of V n, it follows from
Lemma 10.24 that bn(bx+ y) is a left asymptote of x 7→ V n(bx+ y). Similarly,
x 7→ bx+y is a right asymptote of x 7→ V n(bx+y). Indeed we have the following
limits

lim
x→−∞

V n(bx+ y)− θ(x) = bny (7.15)

lim
x→∞

V n(bx+ y)− θ(x) = y (7.16)

Because by assumption Assertion 7.4 holds for n and Qn is convex, it follows
from Lemma 7.6 that V n is convex. Because V n is convex, we have by Lemma
10.10, that x 7→ V n(bx+ y) is convex. Because a convex function lies above its
asymptotes (by Lemma 10.14), we have for x < 0,

V n(bx+ y)− θ(x) ≥ bn+1x+ bny − bn+1x ≥ −|y|
For x ≥ 0, we have

V n(bx+ y)− θ(x) ≥ bx+ y − bx ≥ −|y|

So for all x ∈ R, we have

V n(bx+ y)− θ(x) ≥ −|y| (7.17)

Now we shall show that V n(bx+ y)− θ(x) attains a maximum V n(y) at x = 0.
Let x < z ≤ 0. Because x 7→ V n(bx+y) is convex with left asymptote bn(bx+y),
we have, by Lemma 10.13,

V n(bz + y)− V n(bx+ y)

z − x
≥ bn+1 (7.18)

This gives us

V n(bz + y)− θ(z)− (V n(bx+ y)− θ(x))

=V n(bz + y)− V n(bx+ y)− (θ(z)− θ(x))

≥ (z − x)bn+1 − (bn+1z − bn+1x)

= 0

(7.19)

So that on (−∞, 0], x 7→ V n(bx+ y)− θ(x) is increasing. Similarly, on [0,∞),
x 7→ V n(bx+ y)− θ(x) is decreasing.

Because V n is convex, it is continuous. θ is continuous, so V n(bx + y) − θ(x)
is also continuous in x. Note that V n(y) = V n(b 0 + y) − θ(0), We have (by
Theorem 3.27 of [1])

V n(y) = sup{V n(bx+ y)− θ(x) |x < 0} (7.20)
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Similarly V n(y) = sup{V n(bx + y) − θ(x) |x > 0}. So indeed we have shown
that V n(y) is the maximum, i.e. we have for all x ∈ R,

V n(bx+ y)− θ(x) ≤ V n(y) (7.21)

Let w(y) = max(|y|, |V n(y)|). Combining (7.21) with (7.17), we obtain, for all
x ∈ R,

|V n(bx+ y)− θ(x)| ≤ w(y) (7.22)

Because of our assumption (7.6), (and part (iii) of Theorem 10.3 from [16]), we
have

∫
|y|µ(dy) < ∞. By Lemma 7.7, we have

∫
V n(y)µ(dy) < ∞. Therefore

(by part (iii) of Theorem 10.4 from [16]), we have∫
w(y)µ(dy) <∞ (7.23)

Now consider Lemma 10.7 with its named conditions A, B, and C. Because A
follows Lemma 7.7, and B is (7.15), and C follows from (7.23) and (7.22), it
follows from Lemma 10.7, that

lim
x→−∞

∫
V n(bx+ y)− θ(x)µ(dy) =

∫
lim

x→−∞
V n(bx+ y)− θ(x)µ(dy) (7.24)

Similarly it follows from Lemma 10.7, because B is (7.16) that

lim
x→∞

∫
V n(bx+ y)− θ(x)µ(dy) =

∫
lim
x→∞

V n(bx+ y)− θ(x)µ(dy) (7.25)

By (7.24) and (7.15), we get

lim
x→−∞

Qn+1(x)− bn+1x = lim
x→−∞

∫
V n+1(bx+ y)− θ(x)µ(dy)

=

∫
lim

x→−∞
V n(bx+ y)− θ(x)µ(dy)

=

∫
bny µ(dy) = 0

Similarly, by (7.25) and (7.16), we get

lim
x→−∞

Qn+1(x)− bx = lim
x→∞

∫
V n+1(bx+ y)− θ(x)µ(dy)

=

∫
lim
x→∞

V n(bx+ y)− θ(x)µ(dy)

=

∫
byµ(dy) = 0
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Lemma 7.10. Let n ∈ {1, . . . , N}. If Assertion 7.4 holds for n and Qn is
convex, then Qn+1 is a contraction mapping and Qn+1 is strictly increasing.
Qn+1(x) = x has dn+1 as its unique solution and Dn+1 = [dn+1,∞).

Proof. It follows from Lemma 7.9 that Qn+1 has bn+1x as a left asymptote and
bx as a right asymptote and it follows from Lemma 7.8 that Qn+1 is convex.
The fact that Qn+1 is a contraction mapping then follows from the fact that
−1 < bn+1 and b < 1 and Lemma 10.22. The fact that Qn+1 is strictly increas-
ing follows from 0 < bn+1 and Lemma 10.23. Because Qn+1 is a contraction
mapping, it follows from Theorem 10.26 that Qn+1(x) = x has a unique solu-
tion γ. x 7→ Qn+1(x) − x has right asymptote x 7→ −bx and it follows from
−b < 0 and Lemma 10.23 that x 7→ Qn+1(x) − x is strictly decreasing. So for
all x ∈ [γ,∞) we have Qn+1(x) ≤ x, so that

Dn+1 = {x ∈ R |V n+1(x) = x} = {x ∈ R |Qn+1(x) ≤ x} = [γ,∞) (7.26)

We then have dn+1 = inf Dn+1 = γ, so that dn+1 is the unique solution of
Q(x) = x and Dn+1 = [dn+1,∞).

The following Lemma is almost an application of Theorem 11.5 in [16] and the
proof of this lemma is similar to the proof of this theorem.

Lemma 7.11. Assume that Assertion 7.4 holds and that Qn is convex and
differentiable. Furthermore, assume that µ is absolutely continuous w.r.t λ,
with density f = dµ

dλ and distribution function F . Then Qn+1 is differentiable
with derivative

Q̇n+1(x) = b

∫
R\{dn−bx}

V̇ n(bx+ y)µ(dy)

=b(1− F (dn − bx) +

∫
(−∞,dn−bx)

Q̇n(bx+ y)f(y)λ(dy))

(7.27)

Proof. Consider Qx = R\{dn−bx} and let µ∗x be the restriction of µ to Qx. We
have (by the remarks at the start of Subsection 4.3 in [21]) that (Qx,B(Qx), µ∗x)
is a probability space. Let, for all x, y ∈ R, φ(x, y) = V n(bx+ y). Let x ∈ R be
arbitrary and let, for all z 6= x

ρx(z) =
Qn+1(z)−Qn+1(x)

z − x
(7.28)

We have

52



ρx(z) =
Qn+1(z)−Qn+1(x)

z − x

=

∫
φ(z, y)µ(dy)−

∫
φ(x, y)µ(dy)

z − x

=

∫
φ(z, y)− φ(x, y)

z − x
µ(dy)

Now because µ is absolutely continuous w.r.t. λ and λ({dn− bx}) = 0, we have
that µ({dn− bx}) = 0, so that (by Proposition 4.9 and Proposition 4.21 in [21])

ρx(z) =

∫
1Qx(y)

φ(z, y)− φ(x, y)

z − x
µ(dy)

=

∫
φ(z, y)− φ(x, y)

z − x
µ∗x(dy)

(7.29)

We therefore have, if the limit exists

Q̇n+1(x) = lim
z→x

ρx(z)

= lim
z→x

∫
φ(z, y)− φ(x, y)

z − x
µ∗x(dy)

(7.30)

We shall show that the limit exists and show that the limit and the integral
can be interchanged. We will apply Theorem 10.2 so that we can apply the
Lebesgue Dominated Convergence theorem to the resulting sequences.

Let, for all x, y ∈ R, σy(x) = φ(x, y) = V n(bx + y). Let y ∈ R be arbitrary.
Again, because x 7→ bnx is a left asymptote of V n, it follows from Lemma 10.24
that bn(bx + y) is a left asymptote of σy. Similarly, x 7→ bx + y is a right
asymptote of σy. Because σy is the composition of two convex functions, it
follows from Lemma 10.10 that σy is convex. Lemma 10.12 gives us, that for
all x, z ∈ R with x < z, we have

bn ≤ σy(z)− σy(x)

z − x
≤ b (7.31)

This gives us, for all x, z ∈ R with x 6= z

|φ(z, y)− φ(x, y)

z − x
= |σy(z)− σy(x)

z − x
| ≤ b (7.32)

Recall the piecewise structure of V n found in Lemma 7.6. Because Qn is dif-
ferentiable, we have, for all x ∈ (−∞, dn−yb )

d

dx
σy(x) =

d

dx
Qn(bx+ y) = bQ̇n(bx+ y) (7.33)
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For all x ∈ (dn−yb ,∞), we have

d

dx
σy(x) =

d

dx
bx+ y = b (7.34)

Now let x ∈ R be arbitrary. We have, because of (7.33), for all y ∈ (−∞, dn−bx)

lim
z→x

σy(z)− σy(x)

z − x
= bQ̇n(bx+ y) (7.35)

Similarly, for all y ∈ (dn − bx,∞), we have

lim
z→x

σy(z)− σy(x)

z − x
= b (7.36)

Now let (aj) be a sequence with limj→∞ aj = x and aj 6= x and let, for all
y ∈ Qx

uj,x(y) =
φ(aj , y)− φ(x, y)

aj − x
=
σy(aj)− σy(x)

aj − x
(7.37)

We have, by Theorem 10.2 and (7.35), for all y ∈ (−∞, dn − bx)

lim
j→∞

uj,x(y) = lim
z→x

σy(z)− σy(x)

z − x
= bQ̇n(bx+ y) (7.38)

Similarly, for all y ∈ (dN−n − bx,∞)

lim
j→∞

uj,x(y) = b (7.39)

So,
∀y ∈ Qx : lim

j→∞
uj,x(y) ∈ R (7.40)

Furthermore, by a triangle inequality and Lemma 7.7, we have∫
|uj,x(y)|µ∗x(dy) =

∫
|uj,x(y)|µ∗x(dy)

= | 1

aj − x
|
∫
|φ(aj , y)− φ(x, y)|µ∗x(dy)

≤ | 1

aj − x
|(
∫
|φ(aj , y)|µ∗x(dy) +

∫
|φ(x, y)|µ∗x(dy))

= | 1

aj − x
|(
∫
|V n(ajx+ y)|µ(dy) +

∫
|V n(bx+ y)|µ(dy))

<∞

(7.41)

So we have that uj,x ∈ L1(Qx,B(Qx), µ∗x). Now let w(y) = b, we have, by (7.32)

|uj,x(y)| = |φ(aj , y)− φ(x, y)

aj − x
| ≤ b = w(y) (7.42)
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Lastly, we have ∫
|w(y)|µ∗x(dy) =

∫
bµ∗x(dy) = b (7.43)

It now follows by the Lebesgue Dominated Convergence theorem, i.e. Theorem
11.2 in [16], using (7.40), (7.41), (7.42) and (7.43), that

lim
j→∞

∫
φ(aj , y)− φ(x, y)

aj − x
µ∗x(dy) = lim

j→∞

∫
uj,x(y)µ∗x(dy)

=

∫
lim
j→∞

uj,x(y)µ∗x(dy) =

∫
lim
j→∞

φ(aj , y)− φ(x, y)

aj − x
µ∗x(dy)

(7.44)

Because (aj) was an arbitrary sequence with limj→∞ aj = x and ∀j ∈ N :
aj 6= x, the equation above holds for all such sequences. It then follows from
Theorem 10.2 that

lim
z→x

∫
φ(z, y)− φ(x, y)

z − x
µ∗x(dy) =

∫
lim
z→x

φ(z, y)− φ(x, y)

z − x
µ∗x(dy) (7.45)

Note that x ∈ R was arbitrary, so the equation above holds for all x ∈ R. So
indeed the limit in (7.30) exists and the limit and integral can be interchanged.
We find for all x ∈ R

Q̇n+1(x) =

∫
lim
z→x

φ(z, y)− φ(x, y)

z − x
µ∗x(dy)

= b

∫
R\{dn−bx}

V̇ n(bx+ y)µ(dy)

We find, for all x ∈ R

Q̇n+1(x) = b

∫
(−∞,dn−bx)

Q̇n(bx+ y)µ(dy)

+ b

∫
(dn−bx,∞)

1µ(dy)

= b µ(dn − bx,∞) + b

∫
(−∞,dn−bx)

Q̇n(bx+ y)µ(dy)

Writing this in terms of the density function and the distribution function gives
the result, i.e. for all x ∈ R

Q̇n+1(x) = b(1− F (dN−n − bx) +

∫
(−∞,dn−bx)

Q̇n(bx+ y)f(y)λ(dy)) (7.46)
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Lemma 7.12. Let n ∈ {1, . . . , N}. If Assertion 7.4 holds for n and Qn is
differentiable and convex and µ is absolutely continuous w.r.t λ, then Qn+1 is
strictly convex.

Proof. Let x, z ∈ R, z > x. We have, by Lemma 7.11 and the fact that for all
y ∈ R, µ({y}) = 0,

Q̇n+1(z)− Q̇n+1(x)

= b

∫
R\{dn−bz}

V̇ n(bz + y)µ(dy)− b
∫
R\{dn−bx}

V̇ n(bx+ y)µ(dy)

= b

∫
R\{dn−bx, dn−bz}

V̇ n(bz + y)− V̇ n(bx+ y)µ(dy)

Because, by Lemma 7.6, V n is convex, so that V̇ n is increasing, which gives us
that for all y /∈ {dn − bx, dn − bz}, V̇ n(bz + y) − V̇ n(bx + y) ≥ 0. Therefore,
because the right hand side above is greater than or equal to the right hand
side below, we obtain

Q̇n+1(z)− Q̇n+1(x) ≥

b

∫
(dn−bz,dn−bx)

V̇ n(bz + y)− V̇ n(bx+ y)µ(dy) (7.47)

For y ∈ (dn − bz, dn − bx), we have bz + y > dn and therefore V̇ n(bz + y) = 1.
Furthermore bx + y < dn, so V̇ n(bx + y) = Q̇n(bx + y). Because Qn is convex
with right asymptote l(2)(x) = bx, we have, by Lemma 10.13, Q̇n ≤ b < 1, so
that 1− Q̇n(bx+ y) > 0 . Therefore

Q̇n+1(z)− Q̇n+1(x) ≥ b
∫

(dn−bz,dn−bx)
1− Q̇n(bx+ y)µ(dy)

> 0

This shows that Q̇n+1 is strictly increasing, so that Qn+1 is strictly convex.

Proposition 7.13. Assertion 7.4 holds for all n ∈ N. For all n ∈ N, Qn is
convex and strictly increasing and Qn is a contraction mapping.

Proof. Assertion 7.4 holds for n = 1 by Lemma 7.5 and by the same lemma Q1

is convex and a contraction mapping. It follows from Lemma 7.8, Lemma 7.9
and Lemma 7.10 by induction that for all n ∈ N Assertion 7.4 holds and that
Qn is convex and strictly increasing and Qn is a contraction mapping.
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Corollary 7.14. The sequence stopping of stopping regions (Dn) has a bound-
ary in the sense of Definition 4.22.

Proof. This follows directly from Proposition 7.13, as it this states that for all
n ∈ N Assertion 7.4 holds.

Proposition 7.15. If µ is absolutely continuous w.r.t. λ, then for all n ∈
{2, . . . }, Qn is strictly convex and differentiable.

Proof. This follows from Proposition 7.13, Lemma 7.11 Lemma 7.12 and by
induction.

7.2 More calculations for normal innovations

First we formally derive the formula found for Q2
N , which is equation (7.5). Let

µ ∈ R. Let fN be the density function of the standard normal distribution.
Then

∫ ∞
−∞

V 1(µ+ y)fN (y)dy =∫ −µ
−∞

b(µ+ y)fN (y)dy +

∫ ∞
−µ

(µ+ y)fN (y)dy =

bµ

∫ −µ
−∞

fN (y)dy + b

∫ −µ
−∞

yfN (y)dy+

µ

∫ ∞
−µ

fN (y)dy +

∫ ∞
−µ

yfN (y)dy =

µ(bΦ(−bx) + 1− Φ(−µ)) + (b− 1)

∫ −µ
−∞

yfN (y)dy =

µ(1 + (b− 1)Φ(−µ)) + (b− 1)[− 1√
2π
e−

1
2
y2 ]−µ−∞ =

µ+ µ(b− 1)Φ(−µ) + (1− b) 1√
2π
e−

1
2
µ2

This gives us

Q2
N (x) =

∫ ∞
−∞

V 1(bx+ y)fN (y)dy

= bx+ bx(b− 1)Φ(−bx) + (1− b) 1√
2π
e−

1
2
b2x2

(7.48)

From this, (7.5), which is the representation preferred by Mathematica, follows
by using erf(x) = −erf(−x) and the identity

Φ(x) =
1

2
(1 + erf(

x√
2

))
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We see that if we set b = 0 in (7.48) we obtain the constant function Q2
N (x) =

1√
2π

. This corresponds to W 1 = 1√
2π

in Subsection 5.2, because for b = 0, the

AR process becomes a sequence of independent standard normally distributed
random variables.

For normally distributed innovations, for n ≥ 2, we cannot find an exact ex-
pression for dn. For n = 2 we can exploit the fact that Q2

N is a contraction
mapping that has d2 as its fixed point. Given any starting point x0 ∈ R, a
fixed point iteration then converges relatively quickly to d2, for example we can
easily get the first 20 digits.

d2 ≈ 0.32331501349170887327

The formula for Q2
N found in Section 7 is relatively well suited for numerical

integration, as it is an exact formula which allows us to calculate a reasonable
number of digits per second. Using numerical integration, we can estimate
values of Q3

N . Therefore, to estimate d3 we can resort to a combination of
numerical integration and fixed point iteration. We can again find the first 20
digits relatively easily

d3 ≈ 0.54397956922321062520

Note that the formula of Q2
N contains an error function, which is defined as an

integral. Numerical integration may not be the most efficient way to calculate
values of the error function, but it should be clear that having an expression that
requires numerical integration to evaluate as the integrand of another numerical
integration is not necessarily a problem. However, it already takes us 80 seconds
to approximate a single value ofQ3

N to a precision of 10 in this way. This justifies
approximating dn and values of QnN in a different way, for example using the
approach in Subsection 7.3.

7.3 Description of the AR(1) approximation procedure

In this section we present a procedure that solves the Wald-Bellman equations
(4.26) approximately, by means of numerical integration and interpolation.

Here we will first describe the procedure. The inputs of the procedure are the
distribution of Z and a parameter k that indicates how precisely we will work.
The procedure computes functions Q n which are approximations of Qn. It also
computes d n which are approximations of the dn. Combining Q n and d n in a
direct way gives us an approximation of V n, V n. With the fact that V n can
be reconstructed in mind, the outputs of the procedure will be the functions
Q n and the d

n
.
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We will now define V n and Hn+1 in terms of Q n and d n. Note that this leads
to an implicit dependency of V n and Hn+1 on Q n and d n.

Let, for all n ≥ 1, Q n : R→ R be a contraction mapping with the same asymp-
totes as Qn, that is left asymptote bnx and right asymptote bx. Let d n ∈ R
and suppose that Z admits a density f .

For all n ≥ 1, we define V n as

V n(x) :=

{
x if x ≥ d n

Q n(x) otherwise
(7.49)

We have the relation

Ex[V̄ n−1(X1)] = Ex[V̄ n−1(bX0 + ε)] =

∫ ∞
∞

V̄ n−1(bx+ y)f(y)dy (7.50)

We shall now define Hn to be an approximation of Qn based on (7.50). That
is, for all n ≥ 2 we define Hn as

Hn(x) :=

∫ ∞
∞

V̄ n−1(bx+ y)f(y)dy (7.51)

To see that Hn is well defined note that Q n−1 was assumed to be a contrac-
tion mapping, which is continuous, and was assumed to have linear asymptotes
bn−1x and bx, so that integrability follows from Lemma 10.27. In our procedure
we will need a subroutine to numerically approximate values of Hn.

By Lemma 10.28, Hn is a contraction mapping. This guarantees the uniqueness
of the fixed point in step S2 of the procedure below.

We now show the pseudocode for the AR(1) approximation procedure. The
pseudocode contains very few details, but details are provided below the pseu-
docode.

Pseudocode.

Subroutine (R1)

Calculates values of Hn approximately.

Initialization
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For n = 1, set

Q 1(x) = bx

d 1 = 0

Recursion

For n = 2, . . . , N

Step 1 (S1)

Set Q n to be a function that is an approximation of Hn. Use R1 to approxi-
mate the values of Hn needed to construct Q n.

Step 2 (S2)

Set d n to be a numerical approximation of the unique solution of Hn(x) = x.
Use R1 to compute values of Hn.

We can specify more details for R1, S1 and S2. In S1, for example, we can use a
piecewise linear approximation. Figure 9 is a plot of what the approximations
Q n of Hn might look like.

-10 -8 -6 -4 -2 0

0.8

1.0

1.2

1.4

Value function estimate

Interpolation

Tangents

Figure 9: The value function estimate Hn and two functions that
approximate it, one by linear interpolation and one by using tan-
gents.

Typically we will use interpolation with polynomials of order greater than one
in S1. In such cases, even though the function we are interpolating is convex,
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the interpolation function may not be convex. There is then also no guarantee
that integrating the interpolation function will yield a convex function. The
property of Qn that it is a contraction mapping is easier to preserve than its
convexity and it is more relevant because it guarantees the existence of a unique
fixed point.

We have to make sure we deal with asymptotes of Q̄n and V̄ n correctly. Because
we know from our analysis in Subsection 7.1 what the asymptotes have to be,
we can glue together these asymptotes with an interpolation to construct an
approximation Q̄n of Hn on all of R is step S1.

In step S2 we will use fixed point iteration. Theorem 10.26 tells us that a fixed
point iteration converges quickly, i.e. it is typically much faster than other
numerical equation solving techniques like Newton’s method and it does not
require computation of derivatives.

In the subroutine R1 we will use numerical integration. We have chosen to do
some special handling of the asymptotes and the routine is aware of the bounds
of the interval on which our interpolation is valid.
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8 Results

We have implemented both the AR(1) approximation procedure of Subsection
7.3 and the vectorized version of the discretization procedure of Subsection 6.4
in Mathematica.

8.1 Testing the AR(1) approximation procedure

In order to test the AR(1) approximation procedure using interpolation, nu-
merical integration and fixed point iteration, we focus on a relatively easy case.
That is, we estimate d3 for normally distributed innovations and b = 1/2, which
we also approximated in a slightly different way in Subsection 7.2, which was
more efficient because we can efficiently get digits of Q2(x) using the formula
given there. Because we know many digits of d3, we say which of the digits the
AR(1) approximation procedure are correct.

We wish to do only a single iteration of the procedure to give as much insight
into how much accuracy is lost in each step as possible. However, the inter-
polation constructed for iteration n of the procedure is only used in iteration
n+ 1. In order to do a representative calculation, we do the interpolation (S1)
for n = 2 by directly setting Q̄2 to be an interpolation of Q2, where instead of
using R1 to compute values, we use the formula of Q2 found in Subsection 7.2.
Then, for n = 3, we use numerical integration in R1 to approximate values of
H3 while doing a fixed point iteration to approximate the unique solution of
H3(x) = x, which is our estimate d̄3 of d3.

Below is a table of the accuracy to which we estimate d3 for normally distributed
innovations and b = 1/2. k is the number of points we sample using the
formula for Q2 to create our interpolation and m is the order of the interpolating
polynomials that we use.

k / m

Figure 10: Table of Accuracies of estimations of d3

Now use the AR(1) approximation procedure described in Section 7 to approx-
imate the optimal thresholds (dn) for b = 1/2 for three different distributions
of innovations. The distributions used for the innovations are 2(B − 1) where
B is a beta distribution with parameters α = 2 and β = 2, so that we have
shifted and stretched B to have support [−1, 1]. The second distribution is the
uniform distribution on [−1, 1] and the third is the standard normal distribu-
tion. Again we vary the number k of points at which we sample Hn in each
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iteration. For our finite horizon N , we choose N = 10. We use quadratic in-
terpolating polynomials. We test the resulting threshold policy using a Monte
Carlo simulation.

In Figure 11, we have listed our estimated d10 for each of see that a Monte Carlo
simulation agrees with our estimations of the boundaries. Our estimates also
seem to converge, which also gives us confidence that we can get more correct
digits.

k / Distribution
Beta Uniform Normal

10 0.57410534 0.74212773 1.262234
20 0.57423373 0.74221178 1.268813
30 0.57424418 0.74221982 1.269742
40 0.57424674 0.74222116 1.269998
50 0.57424780 0.74222168 1.270097
60 0.57424828 0.74222188 1.270143
70 0.57424851 0.74222202 1.270167
80 0.57424864 0.74222209 1.270182
90 0.57424875 0.74222213 1.270190
100 0.57424879 0.74222216 1.270195

Monte Carlo 0.57429818 0.74227152 1.270566

Figure 11: Table showing the convergence of the AR(1) approx-
imation procedure and a Monte Carlo estimations to validate the
results.

8.2 Comparing the procedures

We compare the AR(1) approximation procedure with the discretization proce-
dure. We compare both the estimates of the value function and the estimates
of the (dn).

We consider innovations following a standard normal distribution and regres-
sion parameter b = 1/2 and we consider a horizon of N = 4. We approximate
V N using both the discretization procedure and the AR(1) approximation pro-
cedure. For the discretization procedure we use K = 107 data points, m = 100
levels and we choose n = 1 because we are modelling a Markov process. For
the AR(1) approximation procedure, for each i ∈ {2, . . . , 4} in Step 1 of the
procedure, we approximately sample H i using numerical integration 60 times
and we use interpolating polynomials of order 4.

The discretization procedure gives us an estimate of V k by (6.5). The function
x 7→ V̂ k(σ(x)) is a step function, which is constant on each level (see Definition
6.2). In Figure 12, we have plotted this function in red dots with the label
discretization estimate. We do not show the entire step function, but instead
for each i ∈ {0, . . . ,m − 1} we only show V̂ k(σ(x)) for x = gi+1 ∈ Li so that
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we draw a red dot at (gi+1, V̂
k(gi+1)), see Definition 6.8. In a sense gi+1 is

the most representative element of Li and this representation makes the plot
less cluttered, while at the same time highlighting that the gi+1 are the points
where the two estimates of the value function are closest.

-10 -8 -6 -4 -2 2
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asymptotes

AR(1) approximation estimate

discretization estimate

Figure 12: Comparison of the value functions for N = 4

In the figure (Figure 12), the green line labeled “AR(1) approximation estimate”
represents the approximation Q̄k of Qk found by the AR(1) approximation
procedure. The approximate location of the intersection of Q̄k with the line
x 7→ x would be the approximation of dk by this procedure. The approximation
of the value function V k by this procedure, defined by (7.49), coincides with
the the green line to the left of the intersection and with the blue line to its
right.

Considering these remarks about the approximation V̄ k of the value function
V k by the AR(1) approximation procedure, we see in the figure (Figure 12) that
the red dots lie on V̄ k. As discussed in Subsection 6.3, we conjectured that the
probability is high that the discretization has boundary structure in the sense
of Definition 4.22. In the realisation corresponding to this figure, this is indeed
the case, as was it the case in 50 other experiments. The estimation of dk by the
discretization procedure is then the quantile qi∗/m, where i∗ ∈ {1, . . . ,m− 1} is

smallest i such that the red dot at (gi∗+1, V̂
k(gi∗+1))) lies exactly on the blue

line. We see that the point (qi∗/m, qi∗/m) lies close to the intersection of the
green and the blue line, so that qi∗/m is close the approximation of dk by the
AR(1) approximation procedure.

Figure 13 shows the same plot, but for horizon N = 16, so that it is much
harder to generate. The left asymptote is less clear here, as the slope of the
asymptote is (1/2)16.

In Figure 14 we show the estimates of the (dk) found by both procedures in the
same experiment.
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Figure 13: Comparison of the value functions for N = 16
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Figure 14: Comparison of estimates of the (dk) found by the
procedures
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9 Conclusions and Future Work

9.1 Answers to research questions

Our first research question is: How well does the discretization procedure per-
form for an AR(1) process?

We have found empirical evidence that the discretization procedure is consis-
tent. We conclude this because for large input data, the output of the discretiza-
tion procedure coincides with the AR(1) approximation procedure of Subsection
7.3, as evidenced by Figure 12. It must be said that the discretization needs to
be set increasingly “fine”, i.e. the number of levels in the sense of Definition 6.2
also needs to go to infinity as the length of our data goes to infinity, in order
to really have convergence.

The correctness of the AR(1) approximation procedure of Subsection 7.3 was
itself tested by doing a Monte Carlo simulation, establishing its correctness.

Secondly, we asked: What can we say about the structure of the value functions
of an AR(1) process?

The results about the structure of the value functions we have found are sum-
marised in Proposition 7.13 and Proposition 7.15.

9.2 Future work

There is a number of directions this research can take from here. These di-
rections encompass both methods to assess the procedure’s performance more
accurately and ways to extend it.

For example, one way to further investigate the performance of the discretiza-
tion procedure is to test it on smaller amounts of data. So far, our discretization
procedure has only been tested on large amounts of data. It would be very use-
ful to see how our procedure compares to other procedures for different amounts
of data. Furthermore it would be interesting to see how well the discretization
procedure performs for processes that are not Markov processes. It would be
interesting to look at higher order Markov processes, for example ARMA pro-
cesses, as the procedure is capable of approximating the process from which it
has data by a higher order Markov chain of order n and this research we have
only considered the case where n = 1.

Moreover, a possible extension of the discretization procedure could be to inte-
grate factors like time of day and weather data. This will make the procedure
more suitable for the demand-side management use-case. Despite the fact that
it is often suggested that the price process of electricity should follow an AR(1)
process, we believe that assuming that price process has a richer structure, that
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factors in weather conditions and time of day, can be beneficial. In this case it
can be considered to discretise the state space of the weather conditions as well
as the values of the price process.
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10 Appendix

10.1 Complete statement of the finite horizon theorem

We present here Theorem 1.2 of [13], of which Theorem 3.10 in the current
text is only the first half. We also present proofs here of the statements that
comprise the second half. The proofs follow the proofs in [13] very closely, but
more details are provided.

Let, for some index set M ⊂ N0, (Xk)k∈M and (Yk)k∈M be two stochastic pro-
cesses on the same probability space (Ω,F ,P) with values in R. We say that
(Xk) dominates (Yk), if, for all k ∈M , Xk ≥ Yk almost surely.

The statement (10.5) below asserts that SNk is the smallest supermartingale
satisfying some property. By this we mean that this process is the smallest
in the sense of domination, so that any other process satisfying the property
dominates SNk .

Theorem 10.1 (Finite horizon complete).
Suppose condition (3.3) holds. We then have, for all n ∈ {0, . . . , N}

SNn ≥ E[Gτ |Fn] ∀τ ∈MN
n (10.1)

SNn = E[GτNn |Fn] (10.2)

WN
n = E[GτNn ] (10.3)

E[Gτ ] = WN
n =⇒ P[τNn ≤ τ ] = 1 ∀τ ∈MN

n (10.4)

The sequence (SNk )n≤k≤N is the smallest supermartingale which domi-
nates (Gk)n≤k≤N .

(10.5)

The stopped sequence (SN
k∧τNn

)n≤k≤N is a martingale.

(10.6)

Proof. For a proof of the first three statements, see the proof of Theorem 3.10
of the current text. We will prove the rest of the statements here.

First we we will prove (10.5). By (3.8) we find that, for all n ∈ {0, . . . , N}

SNn ≥ E[SNn−1|Fn−1] (10.7)

This shows that (Sk) is a supermartingale. From (3.7) and (3.8) we see that,
for all k ∈ {0, . . . , N}, Sk ≥ Gk almost surely, so that (SNk ) dominates (Gk).
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Now let (S̃k) be another supermartingale that dominates (Gk). We will show
that (S̃k) also dominates (SNk ). We will prove this by induction on k ∈
{n, . . . , N}. The induction hypothesis is that SNk ≤ S̃k almost surely. We
will show that the induction hypothesis holds for k = N and then prove that if
it holds for k ∈ {n+ 1, . . . , N}, then it holds for k − 1.

We see that the induction hypothesis holds for k = N , by (3.7), as SNN =
GN ≤ S̃N . Now suppose that the induction hypothesis holds for a certain
k ∈ {n+ 1, . . . , N}. We have, by the definition (3.8) of SNk and by Proposition
8.5 in [21], that

SNk−1 = max(Gk−1,E[SNk |Fk−1]) ≤ max(Gk−1,E[S̃k|Fk−1]) a.s. (10.8)

Now, because (S̃k) dominates (Gk) and S̃ is a supermartingale, we find that

max(Gk−1,E[S̃k|Fk−1]) ≤ S̃k−1 a.s. (10.9)

Combining the two inequalities above, we find that SNk−1 ≤ S̃k−1, which is the
induction hypothesis for k − 1.

So indeed (S̃k) also dominates (SNk ), so that we have proven (10.5).

Now we shall prove (10.4). Let n ∈ {0, . . . , N} and suppose that τ∗ ∈ MN
n is

such that

E[Gτ∗ ] = WN
n (10.10)

For all k ∈ {n, . . . , N}, by the definition (3.8) of SNn , we have Gk ≤ SNk .
Therefore, we have

Gτ∗ =
N∑
k=n

1[τ∗=k]Gk ≤
N∑
k=n

1[τ∗=k]Sk = Sτ∗ (10.11)

We then have, by Proposition 4.7 of [21], that

E[Gτ∗ ] ≤ E[SNτ∗ ] (10.12)

By Theorem 9.15 in [21], which is an optimal stopping theorem, because (Sn)
is a supermartingale, which we have shown in the proof of (10.5), and because
τ∗ is a stopping time with τ∗ ≥ n and because τ∗ is bounded so that condition
(ii) of the Theorem is satisfied, we obtain

E[SNτ∗ ] ≤ E[SNn ] (10.13)
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Furthermore, (10.2), Proposition 8.5 (ii) in [21] and (10.3) give us

E[SNn ] = E[E[GτNn |Fn]] = E[GτNn ] = WN
n (10.14)

Combining (10.10), (10.12), (10.13) and (10.14), we obtain

WN
n = E[Gτ∗ ] ≤ E[SNτ∗ ] ≤ E[SNn ] = WN

n (10.15)

We conclude that

E[Gτ∗ ] = E[SNτ∗ ] (10.16)

Now let Z = SNτ∗ − Gτ∗ . We see by (10.11) that Z ≥ 0 and by the equation
above that E[Z] = 0. We then have, by Lemma 4.11 in [21], that SNτ∗ −Gτ∗ = 0
almost surely, i.e. SNτ∗ = Gτ∗ almost surely.

Let F ⊂ F be such that P(F ) = 1 and such on F it holds that SNτ∗ = Gτ∗ .
Let ω ∈ F be arbitrary and let m := τ∗(ω), so that n ≤ m ≤ N and Sm(ω) =
Gm(ω). By the definition (3.9) of τNn and because the infimum is a lower bound,
we have that

τNn (ω) = inf{n ≤ k ≤ N |Sk(ω) = Gk(ω)} ≤ m = τ∗(ω) (10.17)

So we have that τNn (ω) ≤ τ∗(ω) almost surely, which proves (10.4).

Now we shall prove (10.6). We have

E[SNk+1∧τNn
|Fk] = E[1[τNn ≤k]S

N
k+1∧τNn

|Fk] + E[1[τNn ≥k+1]S
N
k+1∧τNn

|Fk] (10.18)

On [τNn ≤ k], k + 1 ∧ τNn = k ∧ τNn and on [τNn ≥ k + 1], k + 1 ∧ τNn = k + 1, so
this becomes

E[SNk+1∧τNn
|Fk] = E[1[τNn ≤k]S

N
k∧τNn

|Fk] + E[1[τNn ≥k+1]S
N
k+1|Fk] (10.19)

We have 1[τNn ≤k]S
N
k∧τNn

=
∑k

m=0 1[τNn =m]S
N
m . As we have seen in Subsection 3.1,

Sm is Fm measurable. Because τNn is a stopping time, each indicator function
1[τNn =m] is Fm measurable. Because (Fk) is a filtration and because we always
had m ≤ k, all these functions are also Fk measurable. Proposition 3.5 (i) in [21]
now gives us that

∑k
m=0 1[τNn =m]S

N
m is Fk measurable. So 1[τNn ≤k]S

N
k∧τNn

∈ Fk.
This gives us that

E[1[τNn ≤k]S
N
k∧τNn

|Fk] = 1[τNn ≤k]S
N
k∧τNn

(10.20)
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Because τNn is a stopping time, 1[τNn ≥k+1] is Fk measurable. By Proposition 8.5
(iii) of [21] and the equation above, by transforming its right hand side, we see
that (10.19) becomes

E[SNk+1∧τNn
|Fk] = 1[τNn ≤k]S

N
k∧τNn

+ 1[τNn ≥k+1]E[SNk+1|Fk] (10.21)

On [τNn ≥ k+1] we have that SNk = E[SNk+1|Fk], so the equation above becomes

E[SNk+1∧τNn
|Fk] = 1[τNn ≤k]S

N
k∧τNn

+ 1[τNn ≥k+1]S
N
k

= 1[τNn ≤k]S
N
k∧τNn

+ 1[τNn ≥k+1]S
N
k∧τNn

= SNk∧τNn

(10.22)

This proves (10.6).

10.2 Lebesgue Dominated Convergence and limits in R̄

The following theorem is a minor reformulation of Theorem 4.1.1. of [22], see
also [22] for a proof.

Theorem 10.2 (Sequential Criterion for the Limit of a Function). Let D ⊆ R,
let y ∈ R be a limit point of D and let f : D → R be a function. Then
limx→y f(x) exists and is finite iff for every sequence (xi)

∞
i=1 ⊆ D \ {y} that

converges to y, (f(xi))
∞
i=0 converges. If either of the statements of this equiva-

lence holds, then the limit limx→y f(x) and the sequential limits limi→∞ f(xi)
are all equal.

We wish to extend Theorem 10.2 to cases where y = ±∞ and to cases where the
limit exists but is infinite. To do so, we need the following theorem, which is an
adaptation of Theorem 4.15 of [1], called the substitution theorem, including
Remark 4.16.

Theorem 10.3. Let c ∈ R̄ and z ∈ R. Let V ⊆ R and let f : V → R be a
function, with

lim
x→c

f(x) = z (10.23)

Let r ∈ R, D ⊂ R, (z − r, z + r) \ {z} ⊆ D and let g : D → R be a function, so
that g defined on a neighbourhood of z, except possibly at the point z. If any
of the following conditions holds

a g is continuous at z.

b There exists a neighbourhood Ic of c such that for all x ∈ Ic\{c}, f(x) 6= z
and the limit limy→z g(y) exists

Then
lim
x→∞

g(f(x)) = lim
y→z

g(y) (10.24)

The purpose of the following lemma is to extend Theorem 10.2 to cases where
y = ±∞.
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Lemma 10.4. Let s > 0 and let h : (s,∞)→ R. Let L ∈ R. We have

lim
x→∞

h(x) = L⇔

For all sequences (an) ⊂ R : lim
n→∞

an =∞ =⇒ lim
n→∞

h(an) = L

Proof.
⇒) Let ε > 0. Let N be such that ∀x > N : |h(x)− L| < ε and let M be such
that ∀n > M : an > N . Then ∀n > M : |h(an)− L| < ε.

⇐) Let f(x) = | 1x | and let

g : (−1

s
,
1

s
)→ R : x 7→

{
h(f(x)) x 6= 0

L x = 0

Let (bn) be any sequence in (−1
s ,

1
s ) \ {0} that satisfies limn→∞ bn = 0. We

construct the sequence (an) with an = f(bn). It follows that limn→∞ an = ∞.
By assumption limn→∞ h(an) = L. Therefore

lim
n→∞

g(bn) = lim
n→∞

h(f(cn)) = lim
n→∞

h(an) = L

We now have by Theorem 10.2, that

lim
x→0

g(x) = L

In the notation of Theorem 10.3 (the substitution theorem), we have limx→∞ f(x) =
0 = z. g is defined in a neighbourhood of 0 and g is continuous at 0, so the
conditions of the theorem are satisfied. We conclude that

lim
x→∞

g(f(x)) = g(0) = L

We therefore have

lim
x→∞

h(x) = lim
x→∞

h(f(f(x))) = lim
x→∞

g(f(x)) = L

The purpose of the following lemma is to extend Theorem 10.2 to cases where
the limit is infinite.

Lemma 10.5. Let s > 0 and let h : (s,∞)→ R. We have

lim
x→∞

h(x) =∞⇔

For all sequences (an) ⊂ R : lim
n→∞

an =∞ =⇒ lim
n→∞

h(an) =∞
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Proof.
⇒) Let K > 0. Let N ∈ N be such that ∀x > N : h(x) > K and let M ∈ N be
such that ∀n > M : an > N . Then ∀n > M : h(an) > K.

⇐)

Let g(x) = | 1x | and let

f : (s,∞)→ R : x 7→ g(h(x))

Let (an) be any sequence with limn→∞ an = ∞. We have limn→∞ h(an) = ∞
so that

lim
n→∞

f(an) = lim
n→∞

g(h(an)) = 0 (10.25)

Because (an) was an arbitrary sequence with limn→∞ an = ∞, we find by
Lemma 10.4 that

lim
x→∞

f(x) = 0 (10.26)

It then follows from Theorem 10.3 (the substitution theorem), because g is
defined on (−1, 1) \ {0} and (s,∞) is a neighbourhood of ∞ on which f does
not equal 0 and limy→0 g(x) =∞ exists, we get

lim
x→∞

g(f(x)) = lim
y→0

g(y) =∞

We conclude that
lim
x→∞

h(x) = lim
x→∞

g(f(x)) =∞ (10.27)

The extended version of Theorem 10.2 is then the following, where we consider
a topology on R̄ that makes it homeomorphic to [−1, 1], so that e.g. ∞ is a
limit point of R.

Theorem 10.6. Let D ⊆ R, let y ∈ R̄ be a limit point of D in R̄ and let
f : D → R be a function. limx→y f(x) exists iff for every sequence (xi)

∞
i=1 ⊆

D \ {y} with limi→∞ xi = y, limi→∞ f(xi) exists. If either of the statements
of this equivalence holds, then the limit limx→y f(x) and the sequential limits
limi→∞ f(xi) are all equal.

Proof. This follows from Theorem 10.2, Lemma 10.4 and Lemma 10.5.

Lemma 10.7. Let (X,F , µ) be a measure space, let s ∈ R and u : (s,∞)×X →
R. If

A : For every t ∈ (s,∞), ht : x 7→ u(t, x) has ht ∈ L1

(10.28)

B : For any x ∈ X, limt→∞ u(t, x) = L exists and L ∈ R
(10.29)

C : For some w ∈ L1, for all (t, x) ∈ (s,∞)×X, |u(t, x)| ≤ w(x)
(10.30)
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Then

lim
t→∞

∫
u(t, x)µ(dx) =

∫
lim
t→∞

u(t, x)µ(dx) (10.31)

Proof. By dominated convergence, we have that for any sequence (tj) ⊂ (s,∞)
with limj→∞ tj =∞, we have

lim
j→∞

∫
u(tj , x)µ(dx) =

∫
lim
j→∞

u(tj , x)µ(dx) (10.32)

The result now follows from Theorem 10.6.

10.3 Convex functions

We collect here some lemmas that are needed to prove statements about the
structure of V n and Qn in Subsection 7.1.

Lemma 10.8. Let r1, r2, r3 ∈ R and α, β ∈ [0, 1] with α + β = 1 and r2 =
αr1 + βr2. Then we have the following equivalence

r1 ≤ r2 ⇐⇒ r2 ≤ r3 ⇐⇒ r1 ≤ r3 (10.33)

Proof.
r1 ≤ r2 ⇐⇒ r1 ≤ αr1 + βr3 ⇐⇒

βr1 ≤ βr3 ⇐⇒ r1 ≤ r3 ⇐⇒
αr1 ≤ αr3 ⇐⇒ αr1 + βr3 ≤ r3 ⇐⇒
r2 ≤ r3

(10.34)

The following well known proposition and its proof are an adaptation of the
following web page [14].

Proposition 10.9. For a function f : R → R and an interval I, the following
definitions of a convex function are equivalent to Definition 7.2.

Alternative definition: f is convex on I, iff for all x1, x2, x3 ∈ I with x1 < x2 <
x3

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
(10.35)

Alternative definition: f is convex iff for all x1, x2, x3 ∈ I with x1 < x2 < x3

f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
(10.36)

Alternative definition: f is convex iff for all x1, x2, x3 ∈ I with x1 < x2 < x3

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
(10.37)
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Proof. For all x1, x2, x3 ∈ I, with x1 < x2 < x3 we have

f(x3)− f(x1)

x3 − x1

=
f(x2)− f(x1)

x3 − x1
+
f(x3)− f(x2)

x3 − x1

=
x2 − x1

x3 − x1

f(x2)− f(x1)

x2 − x1
+
x3 − x2

x3 − x1

f(x3)− f(x2)

x3 − x2

(10.38)

Using Lemma 10.8, this gives us the following equivalence. For all x1, x2, x3 ∈ I,
with x1 < x2 < x3

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
⇐⇒

f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
⇐⇒

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
⇐⇒

(10.39)

The equivalence of Definition (10.35), Definition (10.36) and Definition (10.37)
follows directly from (10.39).

Because it simplifies our notation and our argument, in this proof we consider
yet another equivalent definition of a convex function.

Alternative definition: f is convex on I, iff for all x1, x3 ∈ I with x1 < x3 and
any α, β ∈ [0, 1] with α+ β = 1

f(αx1 + βx3) ≤ αf(x1) + βf(x3) (10.40)

To see that this definition is equivalent to Definition 7.2, note that the case
of x = y holds for any function f . In the case x 6= y, we see that the defini-
tions are equivalent by identifying x1 = min(x, y), x3 = max(x, y), α = λ and
β = (1− λ).

Let

S = {(x1, x2, x3,
x3 − x2

x3 − x1
,
x2 − x1

x3 − x1
) |x1, x2, x3 ∈ I : x1 < x2 < x3} (10.41)

We show that for any x1, x3 ∈ I with x1 < x3 and any α, β ∈ [0, 1] with
α + β = 1, we can find an x2 such that (x1, x2, x3, α, β) ∈ S, by showing that
x2 = αx1 +βx3 satisfies the requirements. Clearly x1 < x2 < x3 so that x2 ∈ I.
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Furthermore, we have

x3 − x2

x3 − x1
=
x3 − (αx1 + βx3)

x3 − x1
=
x3 − (αx1 + (1− α)x3)

x3 − x1

=
(1− (1− α))x3 − αx1

x3 − x1
= α

x3 − x1

x3 − x1

= α

(10.42)

Likewise, for this choice of x2, we have

x2 − x1

x3 − x1
=

(1− β)x1 + βx3 − x1

x3 − x1
=
βx3 − βx1

x3 − x1

= β

(10.43)

For all (x1, x2, x3, α, β) ∈ S, we have the following equivalence

f(αx1 + βx3) ≤ αf(x1) + βf(x3)⇐⇒

f(x2) ≤ x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3)⇐⇒

(x3 − x1)f(x2) ≤ (x3 − x2)f(x1) + (x2 − x1)f(x3)⇐⇒
(x3 − x1)f(x2) ≤ (x3 − x1 + x1 − x2)f(x1) + (x2 − x1)f(x3)⇐⇒

(x3 − x1)(f(x2)− f(x1)) ≤ (x2 − x1)(f(x3)− f(x1))⇐⇒
f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
(10.44)

Now suppose that on I, f satisfies Definition (10.35) of a convex function. Then
for all x1, x3 ∈ I with x1 < x3 and any α, β ∈ [0, 1] with α + β = 1, we can
again set x2 = αx1 + βx3. Equivalence (10.44) then gives us

f(αx1 + βx3) ≤ αf(x1) + βf(x3)

Therefore Definition (10.40) is satisfied. Conversely, suppose that Definition
(10.40) holds. Then for any x1, x2, x3 ∈ I with x1 < x2 < x3, we can set
α = x2−x1

x3−x1 and β = x3−x2
x3−x1 , so that (x1, x2, x3, α, β) ∈ S. Using equivalence

(10.44) we see that Definition (10.35) is satisfied. We conclude that Definition
(10.35) and (10.40) are equivalent.

We saw that Definition (10.35), Definition (10.36) and Definition (10.37) are
equivalent, that Definition (10.40) and Definition 7.2 are equivalent and that
Definition (10.40) and Definition (10.35) are equivalent. So the definitions are
all equivalent.

Lemma 10.10. The composition of two convex functions f : R → R and
g : R→ R is convex.
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Proof. Let 0 < λ < 1, x, y ∈ R. We have

λf(g(x)) + (1− λ)f(g(y))

= f(λg(x) + (1− λ)g(y))

= f(g(λx+ (1− λ)y))

The following Lemma is the first equation in (5.14) in [1].

Lemma 10.11. Let a function f have asymptote l(x) = rx+ q. Then

lim
x→∞

f(x)/x = r (10.45)

Proof. This follows from

0 = lim
x→∞

f(x)− rx− q
x

= lim
x→∞

f(x)/x− r

Lemma 10.12. Let f be a convex function and let l(x) = q + rx be a right
asymptote of f . Then for all x ∈ R, we have

lim
y→∞

f(y)− f(x)

y − x
= sup

y∈(x,∞)

f(y)− f(x)

y − x
= r (10.46)

Proof. Let

ρ(y) =
f(y)− f(x)

y − x

By Proposition 10.9, ρ is increasing, so limy→∞ ρ(y) exists and the limit equals
the supremum. We have (by Corollary 5.6 in [1]) that

lim
y→∞

ρ(y) = lim
y→∞

f(y)

y
(10.47)

Lemma 10.11 then gives us
lim
y→∞

ρ(y) = r (10.48)

Lemma 10.13. If f is differentiable and convex and l(x) = rx + q is a right
asymptote of f . We have

lim
y→∞

f ′(y) = sup
y∈R

f ′(y) = r (10.49)
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Proof. By Theorem 6.37 in [1], f ′ is increasing, so that the limit equals the
supremum. We have, by Lemma 10.12 and the fact that suprema can be inter-
changed,

sup
y∈R

f ′(y) = sup
y∈R

sup
x∈(−∞,y)

f(y)− f(x)

y − x

= sup
x∈R

sup
y∈(x,∞)

f(y)− f(x)

y − x
= sup

x∈R
r

= r

(10.50)

Lemma 10.14. Let f be a convex function that has a linear right asymptote
l. Then f ≥ l.

Proof. Let r, q ∈ R be such that l(x) = rx + q. The proof will be done by
contradiction. Assume that at x̄ ∈ R we have f(x̄) < l(x̄). Let x ∈ R with x >
x̄. Because f is convex, we have by Lemma 10.12 that f(x) ≤ f(x̄) + (x− x̄)r.
So

l(x)− f(x) ≥ l(x̄) + (x− x̄)r − (f(x̄) + (x− x̄)r) = l(x̄)− f(x̄) (10.51)

So for ε = l(x̄)−f(x̄) > 0 it is not true that for x large enough |l(x)−f(x)| < ε.
We conclude that limx→∞ f(x)− l(x) 6= 0, which contradicts the fact that l is a
right asymptote of f . We conclude that such a x̄ does not exist and the result
follows.

Lemma 10.15. Let f1 be convex on (−∞, d] and let f2 be convex on [d,∞)
and f1(d) = f2(d). Let

g(x) =

{
f2(x) x ≥ d
f1(x) x < d

(10.52)

Then g is convex iff

sup
x∈(−∞,d)

f1(d)− f1(x)

d− x
≤ inf

y∈(d,∞)

f2(y)− f2(d)

y − d
(10.53)

Proof. ⇒) Assume g is convex. Let x ∈ (−∞, d) and y ∈ (d,∞), then

f1(d)− f1(x)

d− x
=
g(d)− g(x)

d− x
≤ g(y)− g(d)

y − d
=
f2(y)− f2(d)

y − d
(10.54)

So for all x ∈ (−∞, d), f1(d)−f1(x)
d−x is a lower bound for {f2(y)−f2(d)

y−d | y ∈ (d,∞)}.
Because the infimum is the largest lower bound, it follows that for all x ∈
(−∞, d),

f1(d)− f1(x)

d− x
≤ inf

y∈(d,∞)

f2(y)− f2(d)

y − d
(10.55)

Because this infimum is an upper bound for the expression on the LHS and the
supremum is the smallest upper bound, (10.53) follows.
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⇐) Assume that (10.53) holds. We shall show that g satisfies the equivalent
definition (10.37) of a convex function, by showing that the inequality (10.37)
holds in each of five cases. First we derive an inequality that will be useful in
cases 3 and 4.

Let u < d < v. We have

g(v)− g(u)

v − u
=
d− u
v − u

g(d)− g(u)

d− u
+
v − d
v − u

g(v)− g(d)

v − u
(10.56)

We see from (10.53) that for all x ∈ (−∞, d) and y ∈ (d,∞) (10.54) holds. By
applying this to the right hand side of the equation above, we obtain

g(v)− g(u)

v − u
≤ d− u
v − u

g(v)− g(d)

v − d
+
v − d
v − u

g(v)− g(d)

v − d

=
g(v)− g(d)

v − d

(10.57)

Case 1: Let x < y < z ≤ d, we have, because g(x) = f1(x), g(y) = f1(y) and
g(z) = f1(z) and f1 is convex that (10.37) is satisfied.

Case 2: Let d ≤ x < y < z, then (10.37) is again satisfied because g coincides
with f2.

Case 3: Let x < d < y < z. We have, using (10.57), (10.37) and (10.35)
respectively,

g(y)− g(x)

y − x
≤ g(y)− g(d)

y − d
≤ g(z)− g(d)

z − d

≤ g(z)− g(y)

y − d

(10.58)

Case 4: Let x < d < y < z. Similarly to Case 3, we find using (10.57),

g(y)− g(x)

y − x
≤ g(d)− g(x)

d− x
≤ g(d)− g(y)

d− y

≤ g(z)− g(y)

y − d

(10.59)

Case 5: Let x < d = y < z. Because of the assumption (10.37), (10.53) follows
directly.
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Lemma 10.16. Let f be convex and differentiable and r, d ∈ R. Let

g(x) =

{
r(x− d) + f(d) x ≥ d
f(x) x < d

(10.60)

Then g is convex iff r ≥ f ′(d).

Proof. This follows directly from Lemma 10.15.

Lemma 10.17. Let a, b, c ∈ R with a < c < b and let f be a convex function
on (a, b) that is differentiable on (a, b) \ {c}. Then

lim
x↑c

f ′(x) = f ′−(c) ≤ f ′+(c) = lim
x↓c

f ′(x) (10.61)

and for every x, y ∈ (a, b) \ {c}, x < y =⇒ f ′(x) ≤ f ′(y).

Proof. By Theorem 6.37 of [1], because f is convex, we have that f ′ is increasing
on both (a, c) and (c, b). Using this and the fact that difference quotients of a
convex function are increasing, we have

f ′−(c) = lim
x↑c

f(c)− f(x)

c− x

= sup
a<x<c

f(c)− f(x)

c− x

= sup
a<x<c

sup
a<y<c

f(y)− f(x)

y − x

= sup
a<y<c

sup
a<x<c

f(y)− f(x)

y − x
= sup

a<y<c
f ′(y)

= lim
y↑c

f ′(y)

(10.62)

Similarly,
f ′+(c) = lim

y↓c
f ′(y) (10.63)

Again because the difference quotients of a convex function are increasing, we
have for all a < x < c < y < b,

f(c)− f(x)

c− x
≤ f(y)− f(c)

y − c
(10.64)

So that

f ′−(c) = lim
x↑c

f(c)− f(x)

c− x
≤ lim

y↓c

f(y)− f(c)

y − c
= f ′+(c) (10.65)
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Equations (10.65), (10.62) and (10.63) show (10.61). Now because f ′ is increas-
ing on both (a, c) and (c, b), we have that for every x, y ∈ (a, b) \ {c}

f ′(x) ≤ f ′−(c) ≤ f ′+(c) ≤ f(y) (10.66)

Lemma 10.18. Let c, r, q ∈ R. If f : R → R is differentiable on R \ {c} and
f is convex and f has right asymptote x 7→ rx + q, then for all x ∈ R \ {c},
f ′(x) ≤ r.

Proof. This follows from Lemma 10.17 and Lemma 10.13.

The lemma below is taken from [10].

Lemma 10.19. Let f be a continuously differentiable function on an open
convex set C ⊆ Rn. Then f is convex if and only if for any two vectors x, x̄

∇f(x)T (x̄− x) ≤ f(x̄)− f(x) ≤ ∇f(x̄)T (x̄− x) (10.67)

Proof. For a proof, see Lemma 1.49 of [10]

Corollary 10.20. A convex continuously differentiable function lies above all
its tangents.

Proof. This follow from (10.67).

Lemma 10.21. Let Z be a random variable. Let h : R×R→ R be any function
that satisfies that for all y ∈ R the function hy : x 7→ h(x, y) is convex and for
all x ∈ R, h(x, Z) ∈ L1. Let g be the function g : R → R : x 7→ E[h(x, Z)].
Then g is convex.

Proof. Let 0 ≤ λ ≤ 1 and x1, x2 ∈ R with x1 ≤ x2. We have

λg(x1) + (1− λ)g(x2)

=λE[h(x1, Z)] + (1− λ)E[h(x2, Z)]

=E[λh(x1, Z) + (1− λ)h(x2, Z)]

≥E[h(λx1 + (1− λ)x2, Z)]

= g(λx1 + (1− λ)x2)

Lemma 10.22. Let f be a convex function that has left asymptote rx+a and
right asymptote tx+ b. If −1 < r and t < 1, then f is a contraction mapping.
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Proof. By Lemma 10.12, we have, for x, y ∈ R with x < y

r ≤ f(y)− f(x)

y − x
≤ t (10.68)

So that indeed max(|r|, |t|) < 1 and

|f(y)− f(x)| ≤ max(|r|, |t|) |y − x| (10.69)

Lemma 10.23. Let f be a convex function that has left asymptote rx+ a. If
0 < r then f is strictly increasing.

Proof. Let x, y ∈ R with x < y. We have, by Lemma 10.12

r ≤ f(y)− f(x)

y − x
(10.70)

So
f(y)− f(x) ≥ r(y − x) > 0 (10.71)

10.4 Results from analysis

Lemma 10.24. Let f have right asymptote r1 +q1 and let g have right asymp-
tote r2x+ q2. Then g ◦ f has right asymptote r2(r1x+ q1) + q2.

Proof. We have
lim
x→∞

f(x)− r1x = q1

and (by Theorem 4.15 in [1], i.e. the substitution theorem)

lim
x→∞

g(f(x))− r2f(x) = q2

Combining these two equations gives

lim
x→∞

g(f(x))− r1r2x = lim
x→∞

g(f(x))− r2f(x) + r2f(x)− r1r2x

= q2 + r2q1

(10.72)

It follows that
lim
x→∞

g(f(x))− (r2(r1x+ q1) + q2) =

lim
x→∞

g(f(x))− (r1r2x+ q2 + r2q1) = 0
(10.73)
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Definition 10.25. Let f be a contraction mapping on R. The best Lipschitz
constant of f is the smallest k ∈ (0, 1) such that for all x, y ∈ R

d(f(x), f(y)) ≤ kd(x, y) (10.74)

Theorem 10.26 (Banach fixed point theorem).
Let f : R→ R be a contraction mapping and let f (n) denote the n-fold compo-
sition of f . Let r be the best Lipschitz constant of f . We have that f(x) = x
has a unique solution d, for all x ∈ R, limn→∞ f

(n)(x) = d and for all x ∈ R
there is a c ∈ R such that |f (n)(x)− d| ≤ crn.

Proof. See Paragraph 9.3.4 of [22].

Lemma 10.27. Let h be continuous on R and let r, t ∈ R be such that h has
left asymptote rx and right asymptote tx. Let µ be a probability measure on
R with

∫
|y|µ(dy) <∞. We have that∫

|h(y)|µ(dy) <∞ (10.75)

Proof. There are y1, y2 ∈ R, so that for all y ∈ (y1,∞), |h(y)| < |y| and for all
y ∈ (−∞, y2), |h(y)| < |y|. Furthermore, because h is continuous it assumes a
maximum M on [x1, x2]. Let

w(y) =

{
M if y ∈ [x1, x2]

|y| otherwise
(10.76)

We have, for all y ∈ R, h(y) ≤ w(y). So∫
|h(y)|µ(dy) ≤

∫
w(y)µ(dy) ≤

∫
|y|µ(dy) +

∫
Mµ(dy) <∞ (10.77)

Lemma 10.28. Let µ be a probability measure on R and let h : R × R → R
be a function that satisfies that for all y ∈ R, hy : x 7→ h(x, y) is a contraction
mapping with best Lipschitz constant ky and κ supy∈R ky ∈ (0, 1). Furthermore
let h satisfy for all x ∈ R,

∫
|h(x, y)|µ(dy) < ∞. Let g be the function defined

by

g : x 7→
∫
h(x, y)µ(dy) (10.78)

We have that g is a contraction mapping.

Proof. Let x1, x2 ∈ R with x1 < x2. We have

|g(x2 − g(x1)

x2 − x1
| = |

∫
h(x2, y)− h(x1, y)

x2 − x1
µ(dy)|

≤
∫
|h(x2, y)− h(x1, y)

x2 − x1
|µ(dy) ≤

∫
κµ(dy)

= κ

(10.79)
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10.5 Discrete time Markov processes

This subsection is based on Subsection 3.1 of [20] and provides more details
for some results in that subsection for the special case of discrete time Markov
processes. A difference with [20] is that we shall consider nonnegative mea-
surable functions f is results known as generalised Markov properties, while in
[20] bounded functions are considered. Another difference is that we shall use
compositions of Markov kernels, like in Chapter 3 and Chapter 9 of [17].

Throughout this subsection, let (Ω,F , (Fn)∞n=0,P) be a filtered probability space,
let (E,E ) be a phase space and let (Xn) be a discrete time Markov process on
(Fn), with values in (E,E ).

With each finite Markov chain (i.e. E is finite), we can associate a sequence
of probability matrices (Pn), such that Pn,i,j gives us the probability that the
Markov chain transitions from state i at time n to state j at time n + 1. An
analogue for the more general discrete time Markov processes is given by the
following lemma.

Lemma 10.29. Suppose that the Markov process (Xn) satisfies for all n ∈ N,
Xn(Ω) ∈ E . For every n ∈ N, there exists a Markov kernel Pn that satisfies

∀B ∈ E : Pn(Xn, B) = P[Xn+1 ∈ B|Xn] a.s. (10.80)

Proof.
Let n ∈ N. Theorem 4 of §7 of Chapter II of [18] gives us that there exists a
regular conditional distribution Q of Xn w.r.t. σ(Xn−1). That is, there exists a
function Q : Ω×E → [0, 1], that satisfies that for all ω ∈ Ω, Q(ω, ·) is a probabil-
ity measure on (E,E ) and for all B ∈ E , Q(·, B) is a version of P[Xn+1 ∈ B|Xn].

Let B ∈ E . Consider the function ηB = Q(·, B). Because ηB is a version of
P[Xn+1 ∈ B|Xn], ηB is σ(Xn) measurable. Now Theorem 3 of §4 of Chapter
II of [18] gives us that there exists a E /B([0, 1]) measurable function φB such
that ηB = φB ◦Xn. We remark that φB is in fact the conditional probability
φB = P[Xn+1 ∈ B|Xn = ·].

Because we can construct such a φB for any B ∈ E , we define φB accordingly,
and for any B ∈ E , we define P̃ to be the function P̃ : E × E : (e,B) 7→ φB(e).
Then P̃ (·, B) = φB is F/B([0, 1]) measurable and P̃ satisfies that for all B ∈ E
and for all ω ∈ Ω,

P̃ (Xn(ω), B) = φB ◦Xn(ω) = ηB(ω) = Q(ω,B) (10.81)

Let e ∈ E be fixed and let δe be Dirac measure. Now let P be the following
function
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P : E × E → [0, 1] : (x,B) 7→

{
P̃ (x,B) if x ∈ Xn(Ω)

δx(B) otherwise

By construction, for all x ∈ Xn(Ω)c, P (x, ·) = δx is a measure. If x ∈ Xn(Ω),
there is an ω ∈ Ω such that Xn(ω) = x. For this ω we have that P̃ (x, ·) =
P̃ (Xn(ω), ·) = Q(ω, ·). By the definition of a regular conditional distribution,
Q(ω, ·) is a measure, so that P̃ (x, ·) is a measure.

Let B ∈ E and let A ∈ B([0, 1]) and let PB = P (·, B). Furthermore, let

BA,0 =

{
Bc if 0 ∈ A
∅ otherwise

BA,1 =

{
B if 1 ∈ A
∅ otherwise

(10.82)

We have

P−1
B (A) = {x ∈ Xn(Ω) | P̃ (x,B) ∈ A} ∪ {x ∈ Xn(Ω)c | δx(B) ∈ A}

= Xn(Ω) ∩ φ−1
B (A) ∪Xn(Ω)c ∩BA,0 ∩BA,1

(10.83)

By our assumption that Xn(Ω) ∈ E and the fact that φB is measurable, we see
that in each of the cases {0, 1} ∩ A = {1}, {0}, {0, 1}, ∅, we have P−1

B (A) ∈ E .
So PB is E /B([0, 1]) measurable.

Because P is E /B([0, 1]) measurable in its first argument and a measure in its
second argument, P is a Markov kernel. Furthermore we have, for all ω ∈ Ω

∀B ∈ E : P (Xn(ω), B) = Q(ω,B) (10.84)

For all B ∈ E , Q(·, B) is a version of P[Xn+1 ∈ B|Xn], so for all B ∈ E ,
P (Xn, B) is a version of P[Xn+1 ∈ B|Xn], i.e. (10.80) holds.

For the rest of this subsection, we shall only consider homogeneous Markov
processes (Xn).

Definition 10.30 (Power of a Markov kernel).
Let P be a Markov kernel. We set P 1 = P and for k ∈ N with k ≥ 2, we set
P k to be the function

P k : (x,B) 7→
∫
P k−1(y,B)P (x, dy) (10.85)

85



We claim without proof that for any k ∈ N, P k is a Markov kernel. The fol-
lowing lemma is only interesting as a tool to prove other lemmas, as we will see
further on that the condition always holds, so that the conclusion also always
holds.

Lemma 10.31. Let (Xn) be a homogeneous Markov process with Markov
kernel P . For all k ∈ N, n ∈ N0, we have that if for all B ∈ E

P k(Xn, B) = P[Xn+k ∈ B|Fn] a.s. (10.86)

then for all nonnegative E /B(R) measurable functions f , we have∫
f(x)P k(Xn, dx) = E[f(Xn+k)|Fn] a.s. (10.87)

Proof. We use the standard machine. Let B ∈ F and let u = 1B. Then by
(10.86),

E[u(Xn+k) | FXn ] = E[1B(Xn+k) | FXn ] = P[Xn+k ∈ B | FXn ]

= P k(Xn, B) =

∫
1B(x)P k(Xn, dx)

=

∫
u(x)P k(Xn, dx)

(10.88)

Let u be a nonnegative simple function with standard representation
u =

∑n
i=0 bi1Ai(Xn). Then

E[u(Xn+k) | FXn ] =

m∑
i=0

biE[1Ai(Xnk
) | FXn ] (10.89)

Using (10.88), we get

E[u(Xn+k) | FXn ] =

m∑
i=0

bi

∫
1Ai(x)P (Xn+k, dx)

=

∫ m∑
i=0

bi1Ai(x)P k(Xn, dx)

=

∫
u(x)P k(Xn, dx)

(10.90)

Let u be a nonnegative E /B(R) measurable function and let um be an increasing
sequence of nonnegative simple functions so that u = limm→∞ um. We have, by
Theorem 2 of §7 of Chapter II of [18] (i.e. monotone convergence for conditional
expectations) and by (10.90),

E[u(Xn+k) | FXn ] = lim
m→∞

E[um(Xn+k) | FXn ]

= lim
m→∞

∫
um(x)P k(Xn, dx)

=

∫
u(x)P k(Xn, dx)

(10.91)
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Lemma 10.32. Let X be a homogeneous discrete time Markov process with
Markov kernel P and let f be a nonnegative E /B(R) measurable function. Then
for all n ∈ N0 ∫

f(x)P (Xn, dx) = E[f(Xn+1)|FXn ] a.s. (10.92)

Proof. This follows from Lemma 10.31 with k = 1, as for k = 1 the condition
(10.86) is the equation (10.80) and by definition P is a kernel that satisfies this
equation.

Lemma 10.33. Let X be a homogeneous discrete time Markov process with
Markov kernel P . For all n ∈ N0 and k ∈ N and for all B ∈ E , we have

P k(Xn, B) = P[Xn+k ∈ B|Fn] a.s. (10.93)

Proof. We prove this by induction. Our induction hypothesis is that for some
k ∈ N, we have that for all m ∈ N0 and for all B ∈ E

P[Xm+k ∈ B | Fm] = P k(Xm, B) (10.94)

We will now show that this yields the same statement for k+ 1. Let n ∈ N, we
have

P[Xn+k+1 ∈ B | Fn] = E[E[1B(X(n+1)+k) | Fn+1] | Fn] (10.95)

By equation (10.94), where we consider m = n+ 1, this is

P[Xn+k+1 ∈ B | Fn] = E[P k(Xn+1, B) | Fn] (10.96)

Now by Lemma 10.32, this is

P[Xn+k+1 ∈ B | Fn] =

∫
P k(x,B)P (Xn, dx)

= P k+1(Xn, B)

(10.97)

Because n ∈ N0 was arbitrary, we have indeed proven that the statement of
the induction hypothesis holds for k+ 1. The statement holds for k = 1 by the
definition of P as a Markov kernel satisfying this relation. So the result follows
from the principle of induction.

Lemma 10.34. Let X be a discrete time homogeneous Markov process with
Markov kernel P and let f be a nonnegative E /B(R) measurable function. For
all k ∈ N, n ∈ N0, we have

E[f(Xn+k)|FXn ] =

∫
f(x)P k(Xn, dx) a.s. (10.98)

Proof. This follows from Lemma 10.33 and Lemma 10.31.

87



The following definition corresponds to the definition of compositions of Markov
kernels in [17], though here we define the composition for a smaller class of pairs
of Markov kernels. The more general definition is somewhat less direct for this
simple subset of pairs of Markov kernels, which is why I have introduced this
equivalent definition and called this the simple composition of Markov kernels.

Definition 10.35 (Simple composition of Markov kernels).

Let κ1 be a kernel from (Ξ,X ) to (Υ,Y) and κ2 a kernel from (Υ,Y) to (Γ,Z).
Then we define κ1 ⊗ κ2 to be the function with domain (Ξ,Y × Z) and range
B([0, 1]), that maps elements in the following way

(x,A) 7→
∫
1A(y, z)κ1(x, dy)

∫
κ2(y, dz) (10.99)

Let κi be a sequence of Markov kernels. We shall also write

n⊗
i=1

κi = κ1 ⊗ · · · ⊗ κn

Let µ be a measure and ρ a Markov kernel. We can construct another kernel
κµ by letting, for all x and B, κµ(x,B) = µ(B). We then define

µ⊗ ρ = κµ ⊗ ρ

Lemma 10.36 and Lemma 10.37 below are claimed to hold without proof. Note
that Lemma 10.37 justifies the notation

⊗n
i=1 κi.

Lemma 10.36. Let κ1 be a kernel from (Ξ,X ) to (Υ,Y) and κ2 a kernel from
(Ξ×Υ,X × Y) to (Γ,Z). Then their simple composition κ1 ⊗ κ2 is a Markov
kernel.

Lemma 10.37. The simple composition of Markov kernels is associative.

Lemma 10.38. Let (Ξ, χ), (Υ,Y) and (Γ,Z) be measurable spaces. Let f :
Υ×Γ→ R be bounded and measurable. Let κ be a Markov kernel from (Ξ, χ)
to (Υ,Y) and ρ be a Markov kernel from (Υ,Y) to (Γ,Z). For all x ∈ Ξ∫

f(u)(κ⊗ ρ)(x, du) =

∫ ∫
f(y, z)ρ(y, dz)κ(x, dy) (10.100)

Proof. Let x ∈ Ξ and A ∈ Y ⊗ Z. We consider the equality for 1A. We have∫
1A(u)(κ⊗ ρ)(x, du) = (κ⊗ ρ)(x,A)

=

∫ ∫
1A(x, y)ρ(y, dz)κ(x, dy)

(10.101)
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Now let (Ai)
n
i=0 ⊂ Y ⊗Z and let (bi)

n
i=0 ⊂ R. We consider the simple function∑n

i=1 bi1Ai . We have, by (10.101)∫ n∑
i=1

bi1Ai(u)(κ⊗ ρ)(x, du) =
n∑
i=1

bi

∫
1Ai(u)(κ⊗ ρ)(x, du)

=
n∑
i=1

bi

∫ ∫
1Ai(x, y)ρ(y, dz)κ(x, dy)

=

∫ ∫ n∑
i=1

bi1Ai(x, y)ρ(y, dz)κ(x, dy)

(10.102)

Now we consider a nonnegative measurable bounded function g. We know
that we can find an increasing sequence (gk)

∞
k=0 of simple functions such that

g = limk→∞ gk. We have, by monotone convergence

∫
lim
k→∞

gk(u)(κ⊗ ρ)(x, du) = lim
k→∞

∫
gk(u)(κ⊗ ρ)(x, du) (10.103)

By (10.102), this is∫
lim
k→∞

gk(u)(κ⊗ ρ)(x, du) = lim
k→∞

∫ ∫
gk(x, y)ρ(y, dz)κ(x, dy) (10.104)

Now, because its integrand is increasing,
∫
gk(x, y)ρ(y, dz) is increasing in k.

Applying monotone convergence twice, we find∫
lim
k→∞

gk(u)(κ⊗ ρ)(x, du) =

∫ ∫
lim
k→∞

gk(x, y)ρ(y, dz)κ(x, dy) (10.105)

Finally, we have that f = f+ − f−. This gives us, by (10.105),∫
f(u)(κ⊗ ρ)(x, du)∫
f+(u)(κ⊗ ρ)(x, du)−

∫
f−(u)(κ⊗ ρ)(x, du)

=

∫ ∫
f+(x, y)ρ(y, dz)κ(x, dy)−

∫ ∫
f−(x, y)ρ(y, dz)κ(x, dy)

=

∫ ∫
f(x, y)ρ(y, dz)κ(x, dy)

(10.106)

Lemma 10.39. Let (Xn) be a discrete time homogeneous Markov process with
Markov kernel P . Let m ∈ N and let for all i ∈ {1, . . . ,m}, gi be a nonnegative
E /B(R) measurable function. Let k ∈ N0, let (ni)

m
i=0 ⊂ N be strictly increasing

with n0 = 0 and n1 ≥ k. We have, almost surely,

E[

m∏
j=1

gj(Xnj+k)|Fk] =

∫ m∏
j=1

gj(xj)

m⊗
i=1

Pni−ni−1(Xk, (dx1, . . . dxm)) (10.107)
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Proof. We prove this by induction. For m = 1 this holds by Lemma 10.34. Our
induction hypothesis is that (10.107) holds for m− 1. We have

E[

m∏
j=1

gj(Xnj+k)|Fk] = E[g1(Xn1+k)E[

m∏
j=2

gj(Xnj+k)|Fn1 ]|Fk] (10.108)

By the induction hypothesis, we have that this is

E[
m∏
i=j

gj(Xnj )|Fk] =

E[g1(Xn1+k)

∫ m∏
j=2

gj(xj)
m⊗
i=2

Pni−ni−1(Xn1+k, (dx2, . . . dxm))|Fk] (10.109)

Again by Lemma 10.34, this is, almost surely

E[
m∏
j=1

gj(Xnj+k)|Fk]

=

∫
g1(x1)

∫ m∏
j=2

gj(xj)

m⊗
i=2

Pni−ni−1(x1, (dx2, . . . dxm))Pn1(Xk, dx1)

=

∫ ∫ m∏
j=1

gj(xj)

m⊗
i=2

Pni−ni−1(x1, (dx2, . . . dxm))Pn1(Xk, dx1)

It now follows from Lemma 10.38 that this is, almost surely

E[

m∏
j=1

gj(Xni+k)|Fk]

=

∫ m∏
j=1

gj(xj)(P
n1−0 ⊗

m⊗
i=2

Pni−ni−1)(Xk, (dx1, dx2, . . . dxm))

=

∫ m∏
j=1

gj(xj)
m⊗
i=1

Pni−ni−1(Xk, (dx1, dx2, . . . dxm))

So we have proven that if (10.107) holds for m − 1, then it holds for m. We
also saw that (10.107) holds for m = 1, so the result follows by induction.

Corollary 10.40. Let (Xn) be a discrete time homogeneous Markov process
with Markov kernel P . Let m ∈ N and let for all i ∈ {1, . . . ,m}, Bi ∈ E . Let
k ∈ N0, let (ni)

m
i=0 ⊂ N be strictly increasing with n0 = 0 and n1 ≥ k. We have,

almost surely

P[

m∧
i=1

Xni+k ∈ Bi |Xk] =

m⊗
i=1

Pni−ni−1(Xk, B1 × · · · ×Bm)
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Proof.

P[
m∧
i=1

Xni+k ∈ B |Xk]

=E[1B1×···×Bm(Xn1+k . . . Xnm+k) |Xk]

=

∫
1B1×···×Bm(u)

m⊗
i=1

Pni−ni−1(Xk, du)

=
m⊗
i=1

Pni−ni−1(Xk, B1 × · · · ×Bm)

(10.110)

10.6 Generalized Markov property

Here we prove a discrete time version of Theorem 3.2.4 of [20].

Throughout this subsection, let (E,E ) be a phase space, let Ω = EN0 , let F
be the cylinder σ-algebra on Ω generated by (E,E ) and let X be the canon-
ical process on (E,E ) and let (Fn)∞n=0 be the natural filtration of X. Let
P = {Px |x ∈ E} be a family of probability measures so that for all x ∈ E,
X is a homogeneous Markov process on (Ω,F ,Px) with Markov kernel P and
Px[X0 = x] = 1.

Lemma 10.41. Let f be a nonnegative E /B(R) measurable function. For all
x ∈ E, k ∈ N0, n ∈ N0, we have that

EXn [f(Xk)] =

∫
f(y)P k(Xn, dy) (10.111)

Proof. Let k ∈ N0. It follows from Lemma 10.34 that for all x ∈ E, we have

Ex[f(Xk)] = Ex[Ex[f(Xk) |X0]] = Ex[

∫
f(y)P k(X0, dy)]

=

∫
f(y)P k(x, dy)

(10.112)

For all x ∈ E and for all ω ∈ Ω we have, substituting x = Xn(ω) in (10.112)

EXn(ω)[f(Xk)] =

∫
f(y)P k(Xn(ω), dy) (10.113)

Combining Lemma 10.41 with Lemma 10.34, we find

EXn [f(Xk)] = Ex[f(Xn+k) | Fn] Px-a.s. (10.114)

Note that to arrive at (10.114) we did not have to use compositions of Markov
kernels. Using compositions of Markov kernels however, we can generalize this
statement to the following Proposition, which is a generalized Markov property.
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Proposition 10.42.
For all x ∈ E and n ∈ N and all nonnegative F measurable random variables
H, we have

Ex[H ◦ θn | Fn] = EXn [H] Px-a.s. (10.115)

Proof.
We will use the standard machine, where by far the most work is in proving
that the result holds for indicator functions. We first show that the result holds
for indicator functions. Let

S = {B ∈ F |Ex[1B ◦ θn | Fn] = EXn [1B] Px-a.s.} (10.116)

We show that S is a Dynkin system.

i) Note that 1Ω = 1 so that 1Ω ◦ θn = 1, so that

Ex[1Ω ◦ θn | Fn] = 1 = EXn [1Ω] (10.117)

We also see that Ω ∈ FX∞, so Ω ∈ S.

ii) Let B ∈ S. We have that B ∈ FX∞ and

Ex[1B ◦ θn | Fn] = EXn [1B] (10.118)

Because FX∞ is a σ-algebra, we have that Bc ∈ FX∞. We have

Ex[1Bc ◦ θn | Fn] = Ex[1θ−1
n (Ω\B) | Fn]

= Ex[1Ω\θ−1
n (B) | Fn]

= 1− Ex[1θ−1
n (B) | Fn]

= 1− Ex[θn ◦ 1B | Fn]

(10.119)

This gives us, by using (10.118) on the right hand side

Ex[1Bc ◦ θn | Fn] = 1− EXn [1B]

= EXn [1Bc ]
(10.120)

iii) Let (Bi)i∈N ⊂ S be a disjoint sequence. We have for all i ∈ N

Ex[1Bi ◦ θn | Fn] = EXn [1Bi ] (10.121)

We have, by monotone convergence for conditional expectations

Ex[1⋃
i∈NBi

◦ θn | Fn] = Ex[1⋃
i∈N θ

−1
n (Bi)

| Fn]

= Ex[
∑
i∈N

1θ−1
n (Bi)

| Fn]

=
∑
i∈N

Ex[1θ−1
n (Bi)

| Fn]

=
∑
i∈N

Ex[1Bi ◦ θn | Fn]

(10.122)
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This gives us, by using (10.121) on the right hand side

Ex[1⋃
i∈NBi

◦ θn | Fn] =
∑
i∈N

EXn [1Bi ] (10.123)

Indeed i), ii) and iii) are satisfied, so that S is a Dynkin system.

We define the set of rectangles C to be the following

C = {C ∈ FX∞ | (si)mi=0 ⊂ Nm0 , (Ci)
m
i=0 ⊂ E , C = {Xs0 ∈ C0, . . . Xsm ∈ Cm}}

We consider C because it is a π-system generating FX∞. Note that restricting the
(si) to be strictly increasing yields the same set. Let C ∈ C and let (si)

m
i=0 ⊂ N0

be strictly increasing with s0 = 0 and let (Ci)
m
i=1 ⊂ E be such that

C = {Xs1 ∈ C1, . . . Xsm ∈ Cm} (10.124)

We have

Ex[1C ◦ θn | Fn] = Ex[1{Xs1∈C1,...Xsm∈Cm} ◦ θn | Fn]

= Ex[1{Xs1+n∈C1,...Xsm+n∈Cm} | Fn]

Ex[
m∏
i=2

1Ci(Xsi) | Fn]

By Lemma 10.39, this is, Px almost surely,

Ex[1C ◦ θn | Fn] =

∫ m∏
i=1

1Ci(xi)

m⊗
i=1

P si−si−1(Xn, dx1, x2, . . . xn)

=

∫
1C1(x1)

m∏
i=2

1Ci(xi)(P
s1 ⊗

m⊗
i=2

P ti−ti−1)(Xn, dx1, x2, . . . xn)

By Lemma 10.38, this is, Px almost surely

Ex[1C ◦ θn | Fn] =

∫
1C1(y)

∫ m∏
i=2

1Ci(xi)
m⊗
i=2

P si−si−1(y, dx2, . . . dxm)P s1(Xn, dy)

By Lemma 10.41, this is, Px almost surely

Ex[1C ◦ θn | Fn]

=EXn [1C1(Xs1)

∫ m∏
i=2

1Ci(xi)

m⊗
i=2

P si−si−1(Xs1 , dx2, . . . dxm)]

=EXn [1C1(Xs1)

∫ m∏
i=2

1Ci(xi)

m⊗
i=2

P (si−s1)−(si−1−s1)(Xs1 , dx2, . . . dxm)]
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Lemma 10.39 holds for any P ∈ {Px |x ∈ E}, so for every ω ∈ Ω, it holds for
PXn , so we get, Px almost surely

Ex[1C ◦ θn | Fn] = EXn [1C1(Xs1)EXn [
m∏
i=2

1Ci(Xsi) |Xs1 ]]

= EXn [EXn [1C1×···×Cm(Xs1 , . . . , Xsm) |Xs1 ]]

= EXn [1C1×···×Cm(Xs1 , . . . , Xsm)]

= EXn [1C ]

So we have for all C ∈ C that C ∈ S, i.e. C ⊂ S. We know that σ(C) = F and
by its definition S ⊂ F , so by the π-λ theorem, i.e. Theorem 5.5 in [16], we
have that S = F . So the result holds for indicator functions, that is to say, for
all B ∈ F

Ex[1B ◦ θn | Fn] = EXn [1B] Px-a.s. (10.125)

Now u be a simple function and let m ∈ N, (ci)
m
i=0 ⊂ R, (Bi)

m
i=0 ⊂ E be such

that u =
∑m

i=0 1Bici. We have Px almost surely

Ex[u ◦ θn | Fn] =

m∑
i=0

ciEx[1Bi ◦ θn | Fn]

=

m∑
i=0

ciEXn [1Bi ]

= EXn [u]

(10.126)

This shows that the result holds for simple functions. Now let u be a nonnega-
tive measurable function and let (uk)

∞
k=0 be a sequence of simple functions such

that u = limk→∞ uk. We have, applying monotone convergence and the usual
monotone convergence, Px almost surely

Ex[u ◦ θn | Fn] = lim
k→∞

Ex[uk ◦ θn | Fn]

= lim
k→∞

EXn [uk]

= EXn [u]

(10.127)

10.7 Other

Lemma 10.43. Let (E,E ) be a measure space, let x ∈ E, let X be a random
element with values in (E,E ) and Y ∈ L1, let F = {X = x} and suppose that
P[F ] = 1. Let ξ be any version of E[Y |X]. We have, for all ω ∈ F

E[Y ] = ξ(ω) (10.128)

So we write that we have, for all ω ∈ F

E[Y ] = E[Y |X](ω) (10.129)
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In particular E[Y ] is a version of E[Y |X], which we write as

E[Y ] = E[Y |X] a.s. (10.130)

Proof. Let ξ be any version of E[Y |X]. ξ is σ(X)/B(R) measurable, so Theorem
3 of §4 of Chapter II of [18] gives us that that there exists a E /B(R) measurable
function φ such that ξ = φ(X). The fact that P[F ] = 1 and the tower property
then give us, for all ω ∈ F

E[Y ] = E[ξ] = E[φ(X)] = φ(x) = φ(X(ω)) = ξ(ω) (10.131)

Note that this means that E[Y ] = ξ almost surely. One way we can then see
that E[Y ] is a version of E[Y |X] is to use that the versions of E[Y |X] form an
equivalence class of L1(P) under the equivalence relation ≈ given by Z1 ≈ Z2

iff Z1 = Z2 a.s. Alternatively, one can directly show that the definition of a
version holds as follows, using the fact that ξ is a version. For any G ∈ σ(X),
we have

E[1GE[Y ]] = E[1Gξ] = E[1GY ] (10.132)

Note that in the proof of Lemma 10.43, the function y 7→ E[Y |X = y] is such
a function φ, so we could also have written, that for all ω ∈ F

E[Y ] = E[E[Y |X]] = E[Y |X = x]

= E[Y |X = X(ω)] = E[Y |X](ω)
(10.133)

This is however slightly harder to justify.
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