
Recycling Techniques for Induced Dimension Reduction
Methods Used for Solving Large Sparse Non-Symmetric

Systems of Linear Equations

July 26, 2017

Master thesis, Mathematical Sciences, Utrecht University

Abstract

Induced Dimension Reduction (IDR) methods are among the most stable and effi-
cient iterative methods for solving large, sparse, non-symmetric systems of linear equa-
tions known today. However, the exact reasons for their effectiveness are only partially
understood. In recent work on recycling techniques for IDR it is shown that greater
efficiency than theoretically possible for a Krylov subspace-method can be achieved by
altering the auxiliary input of an IDR algorithm, perhaps turning the methods into a
class of their own. In this thesis a self-contained derivation of IDR(s) and IDR(s)Stab(`)
is presented, prior to an experiment driven investigation of the possibilities of recycling
techniques. Issues with the numerical stability of these techniques will be addressed
and theory is presented providing more insight in the matter. Moreover, an attempt is
made to apply theory on spectral aspects of IDR-methods to justify the effectiveness
of recycling, which also might be a starting point in gaining a further understanding
of the convergence behavior of IDR methods in general.

1

Acknowledgements

I would first of all like to thank Gerard Sleijpen for his supervision and guidance
throughout the process. This thesis would not have come to be without his
expertise in the field numerical linear algebra and our valuable discussions

(whatever the subject). One only needs to take a glimpse at the bibliography at
the end of this document to see how much this work, and that of many others, has
been influenced by his knowledge. I would also like to thank Tristan van Leeuwen

for acting as my co-supervisor. Furthermore I wish to thank E.J.M Beije, L.
Stronks, H.V. Koops and D. Speelman, as well as my parents and brother, Sjip, for

taking the time to teach me about thesis writing and prevent many errors from
seeing the light of day.

Contents

Contents 3

1 Introduction and Preliminaries 6
1.1 Elementary notions . 8
1.2 Computational notation . 10
1.3 Preliminaries on Krylov subspace methods . 11

Part I: IDR Methods 15

2 IDR(s) 15
2.1 Basic Definitions and Framework . 15
2.2 Efficient computation of an IDR cycle . 20

3 Implementation and Stability 22
3.1 Design Choices . 22
3.2 Pseudo-code of IDR(s) and first test results 24

4 IDRStab 29
4.1 Postponing Minimization . 29
4.2 Computation of the Dimension Reduction step 32
4.3 The Polynomial Step . 33
4.4 Implementation . 35

5 Additional remarks on IDR-methods 37

Part II: Recycling 43

6 Recycling Sonneveld Subspaces 44
6.1 SRIDR(s) . 44

7 Recyling of the Auxiliary Vectors 47
7.1 Miltenbergers Approach and RIDR(s) . 47
7.2 M-spaces and termination . 49
7.3 Termination in Practice . 52

8 Recalculating AŨ0 53

3

CONTENTS 4

9 Residual Growth in RIDR(s) 56
9.1 Growth and Relaxation Parameters . 56
9.2 Experimental verification . 57

10 The IDR Projection Theorem 61
10.1 Theory on Spectra . 61
10.2 The IDR Projection and RIDR(s) . 64

11 Discussion and Conclusions 71
11.1 Discussion . 71
11.2 Conclusions . 72

Bibliography 74

A Matlab Code 76

B Glossary of test matrices 81

CONTENTS 5

Glossary of Symbols

Symbol Description

N A capital letter N will denote a dimension
(for example, the dimension of the input problem)

N,N+ We distinguish between the set of natural numbers
including zero, N, and the strictly positive

N+ ≡ N \ {0}
A,V, ... Uppercase letters in bold denote matrices with columns in CN

I The uppercase I in bold is reserved for the identity matrix,
whose size may be dependent on the context

O The uppercase O in bold is reserved for the zero matrix, whose
size may be dependent on the context

A∗ A matrix super scripted with an asterisk will denote the
matrix’s conjugate transposed

x,y, ... Lowercase letters in bold denote vectors in CN
[x,y, ...] We may put vectors between square brackets to denote the

matrix with columns x,y,
xk, rk, ... We will index vectors do emphasize that they are the k-th iterates

in some iterative process
~γ, ~α... Greek symbols with an arrow op top denote vectors

of length smaller than N (Sometimes to denote a set of
coefficients, denoting their i-th entry by a subscript.)

(ω)k∈N+
, (µ)Jk=1, ... We use bracketed ω and µ to denote

sequences of scalars in C. Their elements are indexed
by a subscript, whose range is always denoted together with

the sequence. That is, we have (ω)k∈N+ ∈ CN, such
that ∀k∈Nωk ∈ C. Likewise we

have a finite sequence by writing (µ)Jk=1,
such that ∀k=1,...,Jµk ∈ C.

G,R⊥ Calligraphic uppercase letters will denote vector (sub)spaces
in CN . The ⊥ in superscript denotes the orthogonal complement

of the space
R ∈ G We will use ‘∈’ to denote that the columns of a matrix, R,

are elements of the vector space G
W⊥G We will use ‘⊥’ to denote that the columns of a matrix, W,

are orthogonal to the vector space G
Pm(ξ), Qn(ξ) Non-bold uppercase letters denote polynomials. We will always

accompany polynomials with a subscript denoting its degree.
For example we might have P3(ξ) = (1− α1ξ)(1− α2ξ)(1− α3ξ).

(for some coefficients α1, α2, α3). We will freely apply the
polynomial structure to either complex numbers or matrices.

Hence, Pk(A) will denote a matrix that is the result of evaluating
Pk in the matrix A.

dw2048, sherman4,. . . Terms in ‘small caption’ denote a coefficient matrix used as a
test problem. See Appendix B for a list of all the matrices

used in this wirh and some elementary properties
that may be relevant from a numerical perspective.

Chapter 1

Introduction and Preliminaries

One of the most common computations to be done in both scientific research and engineering
is the solving of linear systems. Typical contexts giving rise to such systems are applying
finite element methods to discretized differential equations, optimization in electronic circuit
board design and inverse problems in geo-sciences to name only a few. Also, the so-called
linearization of non-linear problems should not be overlooked when one tries to get a sense of
the importance of effectively solving linear systems. Over the years, the size of the systems
to be solved has grown rapidly, and systems consisting of well over a million equations are
no rarity at all. Although the availability of computational power has grown as well, the
development of increasingly efficient methods over the last few decades has enabled its users
to take a leap forward enabling better bridge designs, more accurate weather-forecasts, and
so on. In a sense, the availability of faster methods speeds up a significant part of research
in so many fields, that researchers will always be eager to obtain a better understanding of
the methods used hoping the be able to improve them even further. For an important class
of these linear systems, iterative Krylov subspace methods have shown to be unmatched. In
particular, we will be focusing systems in which x is to be solved from

Ax = b , with A ∈ CN×N and x,b ∈ CN ,

in which A is sparse, and possibly non-symmetric. That is, many (if not most) entries in
A are equal to zero, and A may have complex eigenvalues. For these systems, Krylov sub-
space methods have gained an increasing interest over the years as they have a natural way
of exploiting the sparsity, explaining their efficiency. The convergence speed and stability
of solving algorithms are strongly dependent on the input size, algebraic properties of A
and underlying method used. Well-known Kyrlov subspace-methods range from the simple
(modified) Richardson iteration ([10]) to the elegant, and very effective, Conjugate Gradient
([4]) for symmetric A, eventually resulting in the, more generally applicable, methods such
as Bi-Conjugate Gradient ([3]), Conjugate Gradient Squared ([22]) and Bi-Conjugate Gra-
dient Stabilized ([24]). Less well known was the method of Induced Dimension Reduction,
proposed by Sonneveld and introduced in [26] in 1980 , until it was revived as IDR(s) in a
paper by Sonneveld & Gijzen from 2008. It is this development that led to one of the most
robust and efficient methods for non-symmetric sytems known today called IDRStab ([16]).

After this introductory chapter motivating our research and acquainting the reader1 with

1Who, if already familiar with the subject of numerical linear algebra and Krylov subspace methods,
may very well skip the rest of this chapter.

6

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

the relevant elementary concepts, the work is split in to two parts: Part I is devoted to a
self-contained derivation of both IDR(s) and IDRStab. We will start from the underlying
theory and work our way up to actual implementations. We will briefly study some of the
design choices involved that are partly specific for IDR and set a standard for the rest of
the chapters. Part I is concluded with a chapter on additional remarks aimed at giving
the reader a better understanding of how IDR methods relate to other (Krylov subspace)
methods. In Part II, we will focus on techniques for IDR methods used to solve a sequence
of linear systems that share the coefficient matrix A in we attempt to recycle information
from one system and exploit it for the solving of the next. These sequences of systems shar-
ing the coefficient matrix A occur for example in the context of time-dependent problems,
optimization and inverse problems. Experiments have also shown the possible effective ap-
plication to shifted systems, in which A is replaced by A+σI for a multitude of values for
σ, arising for example when using Tikhonov regularization. Focusing on the method rather
than all its possible applications, we will see how these techniques might turn IDR into
what is ‘not really’ a Krylov subspace method. Not discouraged by this fact, experiments
giving plenty of motivation in terms of convergence speed, justifying the exploration of the
possibilities are presented. After that we will study two related variations, their advantages
and disadvantages in theory and practice. Peculiarities of one of these will be presented
and we will try to theoretically justify both welcome and unwelcome phenomena observed
in experiments. In both parts, algorithms are implemented in Matlab, and program code
of the two main algorithms used can be found in Appendix A. The code is written to be
readable, and is flexible in the sense that it allows easy experimentation in the way that is
done to write this thesis. In order to make replication of experiments easier, and for those
who wonder about the applicability of recycling IDR techniques, a glossary of test problems
used to obtain the bulk of the experimental results together with their elementary numerical
properties that might be of interest is included in Appendix B.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 8

1.1 Elementary notions

We fix the following notation for the elementary properties of some N × k-matrix A and
some vector space V ⊂ CN .

The determinant of A
Det(A)

The span of A
Span(A) ≡

{
A~α

∣∣ ~α ∈ Ck
}

The dimension of V

Dim(V) ≡ min
{
d ∈ N

∣∣ ∃V ∈ CN×d s.t. Span(V) = V
}

The null space (or kernel) of A

N (A) ≡
{
~α ∈ Cn

∣∣ A~α = 0
}

The rank of A

Rank(A) ≡ Dim(Span(A)) = n−Dim(N (A))

The spectrum of A ∈ CN×N

Λ(A) ≡
{
λ ∈ C

∣∣ ∃x s.t. x 6= 0,Ax = λx
}

The sum of two vector spaces V1,V2 ⊆ CN

V1 + V2 ≡
{
v1 + v2

∣∣ v1 ∈ V1,v2 ∈ V2

}
We call A sparse if most of its entries equal zero.

The number of non-zero entries of A will be denoted by nzA.

And we will use the following definitions of common concepts.

Definition 1.1. Krylov subspace
Define the k-th order Krylov subspace generated by a square matrix A and a vector of
appropriate size r by K0(A, r) ≡

{
0
}

, and

Kk(A, r) ≡ Span([r,Ar, ...,Ak−1r]),

or equivalently,

Kk(A, r) ≡
{ k∑
i=1

αiA
i−1r

∣∣ ~α ∈ Ck
}
.

By a power basis ofKk(A, r) we shall mean the set consisting of the vectors
{
r,Ar, . . . ,Ak−1r

}
.

Note that this set strictly may not form a basis as commonly defined in linear algebra, for the
vectors of the power basis might be dependent. For this reason, we also define an Arnoldi
basis to be a power basis that has been orthnormalized using the Gram-Schmidt process.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 9

We can generalize over definition 1.1 and define the block Krylov subspace:

Definition 1.2. Block Krylov Subspace
Let A and R be N ×N and N × s sized matrices respectively. Then define the k-th order
block Krylov subspace by K0(A,R) ≡

{
0
}

, and

Kk(A,R) ≡
{ k∑
i=1

Ai−1R ~αi
∣∣ ~αi ∈ Cs

}
.

Note that for s = 1 the definitions of the block Krylov subspace and regular Krylov
subspace coincide.

Definition 1.3. Condition number The condition number of a square, non-singular
matrix, C(A) will be defined as

C(A) ≡ ‖A‖2
∥∥A−1

∥∥
2
.

The condition number of a matrix A is used as a measure for how sensitive a system Ax =
b is to perturbations. A condition number equal to 1 makes for very stable computations
whereas high values for C(A) imply roughly that one should not expect a very accurate
solution. For a brief introduction to this matter, see [18], and for a more elaborate work see
[5]

Computational terminology

When studying the computational costs of iterative methods, it is common practice to
express these in terms of the following terminology.

FLOP - Floating point operation. We do now discriminate between addition, subtrac-
tion, multiplication and division of scalars (floating point numbers).

Vector updates are a crucial part of iterative methods, and a computation of the form
αx+y will be called an ‘AXPY’ (alpha x plus y). One AXPY accounts for 2N FLOP.

A dot-product like x∗x will be counted as a ‘DOT’. Similarly, for an N ×n-matrix V,
V∗x is equivalent to performing n DOT. One DOT accounts for 2N − 1 FLOP.

Usually, the most expensive part of the iterative methods are the multiplications
involving the input matrix A and some N -vector v or N × n-matrix V. We will
count the former multiplication as one ‘MV’, implying that the latter should be seen
as n MV. Since we are focusing on sparse systems, we differ from the usual N2 − N
FLOP for one MV, and use nzA ·N −N as an estimate. It should be noted though,
that when the system to be solved is preconditioned with a matrix B, this may no
longer be accurate, as BA need not be sparse.

Tables containing the costs in terms of the above mentioned units are presented along with
pseudo code of derived algorithms.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 10

1.2 Computational notation

In order to emphasize and convey certain computational aspects of the derivations found
in this work, we will employ a means of notation to distinguish between a mathematical
equivalence and, what should be thought of as, a variable assignment in the context of an
actual algorithm, involving quantities that are subject to rounding errors.

Variable assignment

When calculating a value, and assigning it to a variable (i.e. writing it to the memory of
the computer), we will use the symbol ’← [’. As an example we could write

a←[32 + 72

when we mean to compute the right-hand side and assign it to a variable ’a’.
When we would like to emphasize that, for example, a equals b2 + c2 with b = 3 and c = 7,
and we would like to compute it as such, we could write:

a = b2 + c2 ← [32 + 72.

This way we can mix mathematical derivations with an practically implementable computa-
tion. Using available quantities stored in memory As research in iterative methods is mostly
about achieving a higher efficiency, we would like to clearly distinguish, within calculations,
between quantities that need to be computed, and quantities that are readily available. In
order to do so, we will denote available vectors, matrices (or even products of these) by plac-
ing them inside a box, for example within a line expressing a variable assignment. That is, a
‘boxed’ term denotes a quantity stored in the computers memory, that has been obtained by
actual computation in finite arithmetic. Note that in terms of memory, it does not matter
whether we store a matrix A, or its conjugate transposed, A∗. For any calculations with
A∗ can be done by using the values of A, albeit using some internal re-indexing which, in
our case, is taken care of by Matlab. As an example, consider a situation in which we have
three matrix-valued variables A, B and C of appropriate sizes, and we have available in
memory the actual values of C, C2 and C3. When we wish to assign the result of C2 + C∗

to A, and subsequently assign the result of C3 + C2 + C∗ to B. We could write

A←[C2 + C∗

B = C3 + C2 + C∗ = C3 + A← [C3 + A

to emphasize the fact that there is no need to recalculate C2 + C∗ in order to compute B.

Inner products and MV’s

When applying the iterative methods considered in this work, the bulk of the computational
work in terms of FLOP can usually be largely attributed to the MV’s (multiplication of an
N×N -matrix with an N -vector) required to yield a certain result. It is therefore that we will
be focused in minimizing the required MV, since it is the goal to keep the computational costs
as low as possible. Also, as the theoretical effectiveness of a method is easily judged by the
number of MV required, we will, to avoid any confusion on this matter, distinguish between
an actual MV, and a matrix-vector multiplication involving a matrix that is significantly

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 11

smaller in size than N ×N . We will see, for example, matrix-vector multiplications of the
form V~a, with V an N × s-matrix with s� N , and ~a a vector of length s. When studying
the costs of an algorithm, one does not want to confuse a multiplication of the latter type,
which should rather be thought of as performing N dot-products, with an MV. Therefore
we will distinguish between the two by using an ’∗’ for a full (sparse2) MV, and a ’·’ for a
multiplication involving a significantly smaller matrix. Note that this notation also allows
us to easily distinguish between the quantity Ai+1x and its computation from, say, A and
Aix:

Ai+1x←[A ∗ Aix ,

which is a natural computation to be done in the context of Krylov subspace methods.

1.3 Preliminaries on Krylov subspace methods

As IDR(s) and IDRStab can be, under certain conditions, seen as Krylov Subspace methods,
it makes sense to do a short review of the basic concepts and associated terminology. Here we
will only very briefly cover the essential concepts and terminology needed for the upcoming
chapters. To obtain a thorough understanding of Krylov subspace methods we would like
to refer to [23] and [11], which are both works dedicated to the subject containing many
methods and their underlying theoretical foundations. To roughly define what a Krylov
subspace method is, consider some iterative process that tries to solve Ax = b step by step,
generating approximate solutions xk for increasing k with x0 being some initial guess.
We define the k-th residual, rk as

rk ≡ b−Axk.

The interest in Krylov subspaces in the context of solving linear systems is motivated by
the following theorem and its corollaries. We will omit the proof.

Theorem 1.1. The Cayley-Hamilton Theorem Let A ∈ CN×N such that Det(A) 6= 0
(i.e., A is non-singular), and let P (ξ) be its characteristic polynomial, i.e.,

P (ξ) ≡ Det(ξI−A).

Then P (A) = O.

Let P (ξ) be a polynomial such that P (A) = O. From theorem 1.1 it can be seen that
we can write

P (A) =

N∑
i=0

αiA
i = O,

or equivalently
N∑
i=1

αiA
i = −α0I.

2Concerning this matter, note that software packages like Matlab or BLAS enable the distinction between
a regular MV and a sparse MV and provide corresponding data structures for sparse matrices, significantly
cutting computational costs by disregarding multiplications with zero’s, etc.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 12

Assume that α0 6= 0, (note that if this is not the case, one could use the polynomial ξ−1P (ξ)
in the following observations.) multiplying both sides of the latter equation with A−1 and
dividing by −α0 yields

A−1 =
1

−α0

N∑
i=1

αiA
i−1.

In other words, we can express the inverse of A as a polynomial of degree m ≤ N − 1,
evaluated in A. And, in particular, we see that the exact solution, x of Ax = b it must
hold that x ∈ Km+1(A,b).

For the moment assuming that the initial guess x0 equals the zero-vector, 0, Krylov
methods generally construct xk (with their corresponding residuals) such that

xk ∈ Kk(A, r0)

This concept leaves a great amount of freedom as to what a method might precisely do in
order to achieve this, and over the years many methods meant for just as many specialized
purposes have been developed. Here, we will discuss the global workings of the Generalized
Minimal Residual method, albeit without going into the technicalities, as we will refer to it
as a benchmark in later chapters.

Example: The Generalized Minimal Residual method

In the Generalized Minimal Residual method, or GMRES for short, every k-th iteration,
a basis for Kk(A, r0) is constructed. In fact, every, k-th step the readily available basis
is expanded with one basis vector vk that is obtained by multiplying A with the last
constructed basis vector vk−1, resulting in ṽk. This is followed by an orthonormalization of
ṽk against all previously obtained basis vectors vi with i ≤ k, the result of which forms vk.
GMRES differs a bit from most other Krylov subspace methods in that it does not explicitly
maintains a residual vector rk, and neither does it maintain an approximate solution xk.
However, by clever construction, it does calculate the residual norm ‖rk‖2, based on which
(comparison with some given tolerance) it may construct the actual approximation xk.What
sets GMRES apart from most practically used methods is firstly the fact that it maintains a
full orthonormal Krylov basis. This is costly in terms of memory usage and since every, in
every step, a new basis vector must be orthogonalized against all previous ones, the amount
of FLOP needed per iteration grows every step. The advantage of GMRES is, however, that
the maintenance of the full orthonormal basis enables the method to accurately minimize
the residual norm with respect to the full space Kk(A, r0). Hence yielding an ’optimal’
method in terms of residual norm in each step. It therefore also acts as a lower bound for
all Krylov subspace solvers in terms of how small the residual norm might be after a given
number of used MV. It is this property that makes it useful as a bench-marking method.

A short history of iterative Krylov subspace methods

The practical downside of GMRES are already mentioned; The memory and computational
requirements increase with every iteration. Therefore, so called short recurrence meth-
ods have gained most interest for practical applications, ’short recurrence’ meaning that in
every iteration, the recurrence relations for constructing a rk and xk consist of a (preferably
small,) fixed number of terms. A widely used short recurrence method for systems in which

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 13

A is (preferably) positive semi-definite (or at least hermitian) is Conjugate Gradient (CG),
in which recurrences of length two are used:

rk+1 = rk − αkAvk

xk+1 = xk + αkvk

vk+1 = rk + βkvk+1

for some (cleverly chosen) scalars αk, βk and some initial conditions. The catch of CG
is that one must make (symmetry) assumptions on the properties of A in order to prevent
the method from breaking down3. Later, Bi-CG was introduced as a short recurrence
method that does not need such properties on A, but instead performs explicit calculations
with A∗, which might very well not be available, or costly to use. Further research led
to CGS (CG Squared) that does not need multiplications with A∗, making it even more
universally applicable. In CGS, the explicit multiplication with A∗ is made redundant by
cleverly squaring a polynomial expression. It is therefore said to be transpose free, but
suffers from possibly very irregular convergence. Continuing in this line of work, Bi-CGStab
emerged, which is, generally applicable, more stable than CGS and transpose free whilst
still being a short recurrence method. Since short recurrence methods can not minimize
their residuals over an entire Krylov basis, concessions need to be made on the speed of
convergence. It is therefore that one of the major goals in research to iterative solvers is to
find a method having all the nice properties like Bi-CGStab, but with the convergence (per
MV) as much as possible as GMRES. In 1984, Faber&Mantueffel ([2]) proved that there
can not be a short recurrence method for general A.

Orthogonality Conditions

Generally speaking, the idea of Krylov subspace methods is to construct a basis of Kk(A, r0)
and extract an approximation xk that has favorable properties. For example, GMRES
constructs Kk(A, r0), and extracts xk from x0 + Kk(A, r0) such that ‖rk‖2 is as small
as possible with respect to this basis. Note that this amounts to rk having the following
property:

rk⊥AKk(A, r0).

Hence, orthogonality conditions arise in a natural way from optimality conditions on the
residuals or approximations. Iterative methods can, based on the properties of the residuals
they construct, roughly be divided in a few classes. GMRES is part of the Petrov-Galerkin
class of methods, in which a test space, L (the space to which the residuals should be
orthogonal), is used that is not equal to the search space (the space from which the
vector updates for xk are taken). For GMRES we have L = AKk(A, r0). We will see that
IDR-methods are also of the Petrov-Galerkin class.

3More specific, formally A would need to be positive semi-definite in order to guarantee an implicit
LU-decomposition from breaking down. In practice, a stable implementation may be successfully used on
A that is merely symmetric.

Part 1: IDR Methods

14

Chapter 2

IDR(s)

2.1 Basic Definitions and Framework

In this section we will discuss the theoretical foundations needed for the derivation of actual
IDR methods. The core of this foundation consists of what we will call the IDR Theorem
(as defined in [19]), which implicitly states a means of creating a sequence of subspaces, ever
shrinking in terms of inclusion, and thus, dimension.

Theorem 2.1. The IDR Theorem
Let A ∈ CN×N a matrix, G0 ⊆ CN a subspace that is invariant under multiplication by A,
(ω)k∈N+ ∈ CN a sequence of non-zero scalars and R⊥ = Span(R)⊥ for some R ∈ CN×s for
some s. Define a sequence of subspaces recursively by

G
′

k ≡ Gk ∩R⊥, Gk+1 ≡ (I− ωk+1A)G
′

k,

then we have
Gk+1 ⊆ Gk and AG

′

k ⊆ Gk.

If, additionally, we have that R⊥ does not contain a non-trivial invariant subspace of A,
we have

Gk+1 = Gk ⇔ Gk =
{
0
}
.

Proof. We first show that Gk+1 ⊂ Gk by induction. First, note that by assumption we have
AG0 ⊂ G0, hence AG′0 ⊂ G0, and thus for any scalar ω0 we have G1 ⊂ G0. Next, assume that
we have Gk ⊂ Gk−1 for some k, then if x ∈ Gk+1 then by definition we have x = (I−ωk+1A)y
for some y ∈ G′k = Gk ∩ R⊥. Since Gk ⊂ Gk−1 by our induction hypothesis, it follows that
y ∈ Gk−1 ∩R⊥, hence we have that (I− ωkA)y ∈ Gk. This implies that Ay ∈ Gk, and thus
ωk+1Ay ∈ Gk. Therefore we can conclude that x = (I− ωk+1A)y ∈ Gk. So Gk+1 ⊆ Gk.

Note that Gk+1 ⊂ Gk also implies the second result: Let y ∈ G′k. Then, since Gk+1 ⊆ Gk, we
have (I− ωk+1A)y ∈ Gk, hence Ay ∈ Gk.

Let us now assume that R⊥ does not contain an non-trivial invariant space under mul-
tiplication with A, and that we have Gk+1 = Gk for some k. Note that since Dim(Gk+1) =
Dim(Gk), we must have that Gk ∩R⊥ = Gk, and hence that Gk ⊆ R⊥. Because

Gk+1 = (I− ωk+1A)(Gk ∩R⊥) = (I− ωk+1A)Gk = Gk,

15

CHAPTER 2. IDR(S) 16

we must have that AGk ⊆ Gk, which, by our assumption, can only hold if Gk =
{
0
}

.

We will call the matrix R the test matrix (and its columns the test vectors). For com-
pleteness, we include the following statement on the reduced dimensions when transitioning
from Gk to Gk+1 which we will, in line with [21], call the ’Extended IDR Theorem’.

Theorem 2.2. Extended IDR Theorem
Define dk ≡ Dim(Gk) and assume (I − ωkA) to be non-singular. Then, for a choice of s
and R as defined above, with Rank(R) = s, the sequence of d0, d1, d2, ... is monotonically
non-decreasing and satisfies

0 ≤ dk − dk+1 ≤ dk−1 − dk ≤ s.

Proof. Let, again, for any k, G′k ≡ Gk ∩ R⊥, and let Gk be a matrix whose columns form
a basis for Gk. Let x ∈ Gk−1 and note that we have x = Gk−1v for some v. Now assume
that also x ∈ G′k−1, implying that we have that R∗Gk−1v = 0. We can therefore write

G
′

k−1 = Gk−1(N (R∗Gk−1)),

and hence
Gk = (I− ωk−1A)Gk−1(N (R∗Gk−1)).

Observe that, since we assumed the non-singularity of (I− ωk−1A), we have that

dk = Dim(Gk) = Dim(G
′

k−1).

Since R∗Gk−1 is an s× dk−1-matrix, it follows that

dk = Dim(N (R∗Gk−1)) = dk−1 −Rank(R∗Gk−1).

Note that we also have Rank(R∗Gk−1) = s−Dim(N (G∗k−1R)).
Next, set j = Dim(N (G∗k−1R)). We then have

dk = dk−1 −Rank(R∗Gk−1) = dk−1 − s+ j with 0 ≤ j ≤ s,

which we can equally state as
0 = dk−1 − dk − s+ j,

hence
0 ≤ dk−1 − dk ≤ s.

Next, suppose that v ∈ N (G∗k−1R) and v 6= 0, then Rv ∈ N (G∗k−1) and hence Rv⊥Gk−1.
Since Gk ⊂ Gk−1, we also have Rv⊥Gk, and hence v ∈ N (G∗kR). Therefore, N (G∗k−1R) ⊂
N (G∗kR). This yields us

Dim(G∗k+1R) ≤ Dim(N (G∗kR)),

from which it follows that, for j′ = Dim(N (G∗kR)),

dk+1 = dk − s+ j′ with j ≤ j′ ≤ s.

Therefore, we can indeed conclude that

0 ≤ dk − dk+1 ≤ dk−1 − dk ≤ s.

CHAPTER 2. IDR(S) 17

The Extended IDR Theorem, in conjunction with the IDR Theorem, basically states
that the dimension of Gk+1 will always be at least one smaller than the dimension of Gk,
unless they are both equal to

{
0
}

. However, in practice, a ’dimension reduction’ of less
than s is very rare. In a paper on the convergence of IDR methods by Sonneveld [20] it is
in fact proven that, for mild conditions on R, the probability of such an event equals zero.
Therefore, we may in general expect that the number of subsequent IDR spaces we ought
to generate before arriving at the zero-space is dd0s e, with d0 = Dim(G0).

Next, we introduce the concept of Sonneveld Subspaces as introduced in [16], which, in
the context of IDR-methods seems a more natural structure to work with than Krylov
subspaces.

Definition 2.1. Sonneveld subspace
Given a k-th order polynomial Pk(ξ), an N ×N matrix A, a N × s matrix R and G0 as in
the IDR theorem. Define the Sonneveld subspace generated hereby as

S(Pk,A,R) ≡
{
Pk(A)v

∣∣ v ∈ G0,v⊥Kk(A∗,R))
}
.

The following lemma states that the spaces mentioned in the IDR theorem are in fact
Sonneveld subspaces.

Lemma 2.1. Let A, S, G0 and ω ∈ CN be as described in the IDR theorem. Then, the
polynomial Pk(ξ) ≡

∏k
i=1(1− ωiξ), we have

Gk = S(Pk,A,R).

Proof. We proof the statement by induction. First note that we, indeed, have for P0(ξ) = α0

G0 =
{
α0v

∣∣ v ∈ G0 ∧ v⊥
{
0
}}

= S(P0,A,R).

Now assume that the statement holds for a k ∈ N, then for k + 1 we have

Gk+1 =
{

(I− ωk+1A)y
∣∣ y ∈ (Gk ∩R⊥)

}
,

which by our induction hypothesis equals

Gk+1 =
{

(I− ωk+1A)y
∣∣ y ∈ (S(Pk,A,R) ∩R⊥)

}
.

Using the definition of the Sonneveld subspace, we obtain, for

Pk(A)v⊥R⊥ ⇒ v⊥Kk+1(A∗,R)

(To see this, note that we can write Pk(A)
∑k
i=1 αiA

i, and moreover
that v⊥Kk(A∗,R)∀i=0,...,k−1R

∗Aiv = 0)
Hence,

Gk+1 =
{

(I− ωk+1A)Pk(A)v
∣∣ v ∈ KN (A,R),v⊥Kk+1(A∗,R)

}
.

Hence

Gk+1 =
{
Pk+1(A)v

∣∣ v ∈ KN (A∗,R),v⊥Kk+1(A,R)
}

= S(Pk+1,A,R)

as desired. This concludes the proof.

CHAPTER 2. IDR(S) 18

In IDR methods, the idea is to generate residuals rk in the shrinking sequence of Gk
rather than in a growing sequence of Krylov subspaces of the form Kk(A,R), as is the case
for most Krylov subspace type methods. An important observation to be made at this point
is that we have already proven the termination at a finite number of iterations of such a
method by the IDR- and Extended IDR Theorem (albeit in exact arithmetic). Hence, we
can now focus on constructing these residuals.

Given a residual rk ∈ Gk, the means to construct rk+1 ∈ Gk+1 will loosely be structured
as in the definition of Gk+1 in the IDR theorem. That is, we will first construct

r′k ∈ Gk ∩R⊥,

and subsequently ‘lift’ it into the next Sonneveld subspace by using

rk+1 ≡ (I− ωk+1A)r′k ∈ Gk+1.

For this approach, we will need a way of constructing r′k. Note that simply using orthogonal
projections like

r′k = (I−R(R∗R)−1R∗)rk

such that
R∗r′k = R∗rk −R∗R(R∗R)−1R∗rk = 0

won’t do the trick, for it would need that R ∈ Gk, which might, by the IDR theorem, ruin1

the shrinking property of the IDR spaces, Gk.
Therefore, we will use a set of vectors in Gk other than rk, that will lead us to the

following oblique projection. Assume we have Uk ∈ CN×s, such that AUk ∈ Gk. Then

r′k ≡ (I−AUk(R∗AUk)−1R∗)rk ∈ Gk ∩R⊥.

In line with common literature on IDR-methods, we will refer to the columns of Uk as a set
of auxiliary vectors, and as search matrix to the matrix as a whole. As we will make
extensive use of projections like these in IDR-methods, we define

σ ≡ R∗AUk,

and
Π1 ≡ I−AUkσ

−1R∗ , and Π0 ≡ I−Ukσ
−1R∗A.

the latter of which will find its use later in this chapter. Note that the three of these
(σ,Π1,Π0) are dependant on the iteration number k. We have chosen not to index the
projections, nor σ, with this parameter for readability reasons, as there will be a need for
more indexing in a later chapter. Also note that σ will need to be non-singular, we will
discuss this aspect later (see Section 3.1) in this work in the context of numerical stability.

The following properties of Π1 and Π0 can be easily verified by the reader.

R∗Π1 = 0 (or Span(Π1)⊥Span(R)), and Π1A = AΠ0 (2.1)

∀s ∈ Gk : Π1s ∈ Gk ∩R⊥. (2.2)

1To see this, note that if for some k we have R ∈ Gk, then R⊥G′k = Gk ∩ R⊥. In order to have
Dim(Gk+1) = Dim(Gk)− s we would need that R ∈ Gk+1. This would require the space spanned by R to

be reintroduced in the step Gk+1 = (I− ωk+1A)G′k, which is very unlikely.

CHAPTER 2. IDR(S) 19

Also note that the way in which we defined r′k, rk+1 and Π1, also makes for an easy way
to update xk to xk+1: let

x′k ≡ xk + Uk(R∗AUk)−1R∗rk,

and
xk+1 ≡ x′k + ωk+1r

′
k.

Note that we indeed have as desired: rk+1 = b−Axk+1 (also implying that r′k = b−Ax′k).
Since, if we would like to repeat this process in order to construct rk+2 ∈ Gk+2, we will be
needing a new Uk+1 ∈ Gk+1. The idea will be to construct the s columns of Uk+1 based on
the just obtained r′k that lies in Gk ∩R⊥.
We first note that multiplying a vector s ∈ Gk ∩R⊥ with Π1A yields

Π1As ∈ Gk ∩R⊥, (2.3)

by the IDR theorem and Property 2.2.
We will use this knowledge to first construct a matrix Vk such that if we put Uk+1 ≡
(I − ωkA)Vk, we have that AUk+1 ∈ Gk+1, as desired. (Note that we will be needing the
explicit availability of both Uk+1 and AUk+1 in order to project rk+1 and update xk+1 in
the same manner as above.)
To this end, we let Vk be a power basis of Ks(Π0A,Π0r

′
k):

Vk ≡ [Π0r
′
k, ..., (Π0A)s−1Π0r

′
k].

Observe that, applying Property 2.1 and 2.3

AVk = A[Π0r
′
k, ..., (Π0A)s−1Π0r

′
k] = [Π1Ar′k, ..., (Π1A)sr′k] ∈ Gk ∩R⊥,

such that, indeed,

AUk+1 = A(I− ωk+1A)Vk = (I− ωkA)AVk ∈ Gk+1.

With the main definitions of this chapter in place, we can now introduce terminology for
the transition from the quantities rk,AUk ∈ Gk and xk to rk+1,AUk+1 ∈ Gk+1 with xk+1,
which we will call an IDR cycle. Within this cycle we will further distinguish two sepa-
rate phases: The dimension reduction step, in which we construct r′k,x

′
k,Vk and AVk,

and the polynomial step, in which we lift our quantities into Gk+1 by multiplication with
(I − ωkA) and update xk to xk+1 accordingly. Note that this last step requires the deter-
mination of the scalar ωk, which will be our final point of attention before continuing to the
efficient computation of the IDR cycle.

In the original paper describing IDR(s) ([21]), the ωk are chosen to minimize the norm
of the next residual, similar to BiCGSTAB ([24]), i.e. given r′k

ωk+1 ≡ arg min
ωk+1

(‖rk+1‖2) = arg min
ωk+1

(‖r′k − ωk+1Ar′k‖2).

Note that this amounts to putting rk+1⊥Ar′k, and hence we can determine ωk+1 by using
the same technique as we would in case of an orthogonal projection:

ωk+1 ≡
(Ar′k)∗r′k

(Ar′k)∗(Ar′k)
.

CHAPTER 2. IDR(S) 20

2.2 Efficient computation of an IDR cycle

We will break down the computational aspects of the IDR cycle, in to the previously dis-
cussed separate steps.

Computation of the Dimension Reduction step

In this section we assume the iterative method to have completed the k-th IDR cycle for
some k ≥ 0, thus having available the vectors rk,xk and the matrices Uk and AUk. We
will here describe how to efficiently compute rk+1,xk+1 and Uk+1, AUk+1.

As discussed in previous section, we will first compute r′k using Π1. Since we do not
have Π1 available, we need to compute it (or actually its missing parts), by computing

σ = R∗AUk ←[R∗ · AUk ,

which allows us to compute

α ≡ σ−1R∗rk ← [σ −1
R∗ · rk .

Subsequently we can compute

r′k = Π1rk ← [rk − AUk · α

x′k ← [xk + Uk · α .

Next we would like to compute Vk, for which we will proceed per column q ≤ s. Since we
defined Vk as a power basis of Ks(Π0A,Π0r

′
k), we assign first

Ar′k ←[A ∗ r′k

(Using a full matrix-vector multiplication) which we will use to compute

β = σ−1R∗Ar′k ←[σ −1
R∗ · Ar′k .

Then the first columns of Vk and AVk will then be computable as

Vke1 ← [r′k − Uk · β

AVke1 ← [Ar′k − AUk · β .

We can now, using a for-loop, compute for q = 2, ..., s

A2Vkeq−1 ←[A ∗ AVkeq−1

β = σ−1R∗A2Vkeq−1 ← [σ −1
R∗ · A2Vkeq−1

Vkeq = Π0AVkeq−1 ← [AVkeq−1 − Uk · β

AVkeq = AΠ0AVkeq−1 ←[A2Vkeq−1 − AUk · β

The above is a complete description of the dimension reduction step, in which we have used
a total of s+ 1 MV’s.

CHAPTER 2. IDR(S) 21

Computation of the Polynomial Step

With the dimension reduction step completed, we have available r′k,Ar′k,x
′
k,Vk,AVk and

A2Vk. As mentioned in previous section, we can compute ωk+1 as the scalar that minimizes
‖rk+1‖2. We then want to compute:

rk+1 = (I− ωk+1A)r′k ← [r′k − ωk · Ar′k

xk+1 = x′k + ωk+1r
′
k ← [x′k + ωk · r′k

Uk+1 = (I− ωk+1A)Vk ←[Vk − ωk · AVk

AUk+1 = (I− ωk+1A)AVk ← [AVk − ωk · A2Vk

Note how the availability of A2Vk allows for completing the step by mere use of vector
updates and no matrix-vector products.

Termination

Note that in the above scheme we have used only s+ 1 MV’s per IDR cycle. In conjunction
with previously made comment on the convergence of the IDR spaces to

{
0
}

in at most
Dim(G0)

s steps, we have, assuming that Dim(G0) = N , that in exact arithmetic the above
described IDR method’s residual r equals zero after at most

Dim(G0)

s
(s+ 1) =

s+ 1

s
N MV.

We will see, for example in Figure 3.1 (Section 3.2), that this upper-bound is usually rather
pessimistic in practice. Similar to, for example, GMRES, theoretically needing N iterations
(and thus MV) for a general A in order to terminate, this upper-bound is sharp only on rare
occasions. In many cases in fact, the excellent performance of Krylov Subspace methods is
not well understood.

Chapter 3

Implementation and Stability

The algorithm presented in previous chapter is merely an illustration of how to globally
implement an IDR method as described in the theory and is often not suited for practical
use yet. It is already numerically unstable for s > 3 and there are still choices to make
regarding the first set of auxiliary vectors. In this section we discuss several different aspects
of the implementation that influence the efficiency of the method and fix what we will be
using in most experiments. We will refer to this version as standard IDR(s)1.

3.1 Design Choices

Enhancing stability

The method as described in previous chapter will loose numerical accuracy quickly for s > 1
because σ will usually become ill-conditioned or even singular. This is due to the fact that we
are constructing Vk as a power basis of Ks(Π0A,Π0r

′
k). As is the case with all power bases,

repeated multiplication with the same linear operator (in this case Π0A) results in vectors
that increasingly point in the direction of the dominant eigenvector, exactly as exploited in
the power method for finding such eigenvectors. The result of which is a set of vectors that
is increasingly linearly dependant, implying that the solving of the s× s systems

σ~α = R∗rk and σ~β = R∗Ar′k

for ~α and ~β will be unstable, introducing errors in the residual and auxiliary vectors.
There are several ways known for dealing with this problem, the easiest of which being
the use of an orthonormalization scheme for Vk. Note that if we have C(Vk) = 1, we
will also have bounded C(σ) = C(R∗A(I− ωk+1)Vk). This scheme should be applied after
each change made to the columns of V, and one should note that, in order to maintain the
relations

AV ≈ A ∗ V and AAV ≈ A ∗ A ∗ V ,

the values of AV and AAV should be altered as well. Although different schemes
may be used, in this thesis we will stick with Arnoldi’s approach to orthonormalization by
intermediately applying modified Gram-Schmidt, as it is stable enough for our intentions
using only moderate values for s. An other option is to use repeated Gram-Schmidt, which

1This naming is specific for this work, as our approach differs from most found in common literature.

22

CHAPTER 3. IMPLEMENTATION AND STABILITY 23

is know to achieve a higher numerical accuracy. In [25] a method of bi-orthogonalization
is presented that is in several respects superior to our rather simplistic approach, which is
therefore better suited for practical use.

Choosing the first set of Auxiliary vectors

Up till now, we have only assumed the first set of auxiliary vectors (the columns of U0)
to lie in G0 = KN (A, r0), the full Krylov subspace of A and r0. However, we have not
given a specific way of generating these vectors. To our best knowledge, there are no clear
theoretical results that predict the effectiveness of a particular choice, whereas the choice
does certainly has its influence as we will see in later chapters. As stated in the original paper
describing IDR(s) [21], choosing the columns of U0 to be an Arnoldi basis of Ks(A,Ar0)
generally yields fine results. This in contrast to, for example a random choice, or a choice
for differently structured sets, for which the convergence behavior turned out the be less
prosperous. The initial auxiliary vectors will be the subject of Part II of this work. For now,
we continue in the line of [21], and by default set U0 to be an orthonormalized power basis
of Ks(A, r0). In Part II we shall also prove that this choice is an example for which the here
described IDR-method is in fact a Krylov subspace method, for this is not necessarily the
case. See Figure 3.2 for a comparison in convergence behaviour between our default choice
for U0 and a randomly generated (and also orthonormalized) U0.

The relaxation parameters ωk

The sequence of relaxation parameters ω is not governed by the IDR theorem, and we are free
to choose them to our liking in any way. The choice to select a ωk that minimizes ‖rk+1‖2
will be our default choice throughout this work. However some comments should be made.
Firstly, the ωk only perform a local minimization, not giving any guaranty of leading to the
fastest possible convergence, as is the case in GMRES. In fact, in some cases, fixing all ωk
to some value may yield significantly faster convergence than our default choice, see Figure
3.3. Another criticism on this choice is that in the case of A being skew-symmetric, we will
have2 ∀k∈Nωk = 0.As we will see next chapter, we can adapt IDR(s) to select ωk+1, . . . , ωk+`

such that they perform a minimization of residual norm over ` dimension reduction steps,
leading to IDRStab ([16]), which yields a clear improvement. Yet another way of exploiting
the freedom of ω is discussed in [12], where the the field of values of A to choose relaxation
parameters. The underlying theory to the observations made in [12] can be found in [14].
In Part II we will discuss other effects that are the result of the chosen ωk, we will see that
they will actually influence the convergence behavior on a global scale.

The test vectors

An other freedom left to (possibly) exploit by the designer of an IDR-method lies in the
choice of the test vectors, i.e. the columns of R. In [20] it is proven that if we choose R to
be (directionally) random, the probability of R⊥ containing a non-trivial invariant subspace
w.r.t. A is zero. In our standard IDR(s) implementation we choose the columns of R entry-
wise random3, and subsequently orthonormalize them for the sake of stable computations.
In case of an input problem with coefficient matrix A that has complex entries, it should

2To see this: Note that if A is skew symmetric, we have: (Ar′k)∗r′k = −r′k
∗(Ar′k), implying that if r′

and A are both non-zero, we have (Ar′)∗r′ = 0, and hence ωk+1 = 0.
3That is, random from a uniform distribution of the interval [−1, 1].

CHAPTER 3. IMPLEMENTATION AND STABILITY 24

be considered to choose the test vectors complex as well, as it increases the effectiveness of
orthogonalization steps ([21]).

3.2 Pseudo-code of IDR(s) and first test results

Below we present IDR(s) in pseudo-code, heavily based on the above described theory.
Although the code would yield a fine running algorithm for many inputs, it is mainly written
with educational purposes and readability in mind, and is not optimized in terms of stability
or computational costs. It has been however, the main algorithm for our experiments, as it
stable enough for modest input sizes.
Remark on notation: with α ← [σ \ v with σ a matrix and v a vector of appropriate sizes,
we denote that α is computed to be the approximate solution of the system

σα = v.

We use the Matlab-style ’\’-notation to emphasize that we do not explicitly calculate inverses
(although Matlab may do so for modest values of s.).

CHAPTER 3. IMPLEMENTATION AND STABILITY 25

function idrs(A,b,x0,U,R, tol,maxit, s)
k = 0
x←[x0

r0 ←[b−A ∗ x0

AU← [A ∗U

while (‖rk‖2 > tol) ∧ (k < maxit) do
%Dimension reduction step
σ ← [R∗ ·AU
α← [σ \ (R∗ · r)
r′ ←[r−AU · α
x′ ← [x−U · α
Ar′ ← [A ∗ r′

β ← [σ \ (R∗ ·Ar′)
Ve1 ← [r′ −U · β
AVe1 ← [Ar′ −AU · β
AAVe1 ← [A ∗AVe1

Orth(V,AV,AAV, 1)

for q = 2 . . . (s− 1) do
β ← [σ \ (R∗ ·AAVeq−1)
Veq ← [AVeq−1 −U · β
AVeq ← [AAVeq−1 −AU · β
AAVeq ← [A ∗AVeq
Orth(V,AV,AAV, q)

end for
%Polynomial step

ω ← [(Ar′)∗·r′
(Ar′)∗·Ar′

r← [r′ − ω ·Ar′

x←[x′ + ω · r′
U← [V − ω ·AU
AU←[AV − ω ·AAV

end while
end function

Algorithm 1: A straight forward implementation of IDR(s) based on the theory of Chapter 1 using
local residual minimization. Note the added orthonormalization steps in gray for V, which changes
AV and AAV accordingly. Any orthonormalizing subroutine could be used here but we have added
an example in Algorithm 2.

CHAPTER 3. IMPLEMENTATION AND STABILITY 26

1: function Orth(V,AV,AAV, q)
2:

3: if q > 1 then
4: ~µ←[V∗(:,1:q−1) ·V(:,q)

5: V(:,q) ←[V(:,q) −V(:,1:q−1) · ~µ
6: AV(:,q) ←[AV(:,q) −AV(:,1:q−1) · ~µ
7: AAV(:,q) ←[AAV(:,q) −AAV(:,1:q−1) · ~µ
8: end if
9:

10: ρ←[
√

V∗(:,q) ·V(:,q)

11: V(:,q) ←[V(:,q)/ρ
12: AV(:,q) ←[AV(:,q)/ρ
13: AAV(:,q) ←[AAV(:,q)/ρ
14: end function

Algorithm 2: Example of an Orthonormalization Subroutine, in this case Arnoldi’s approach using
modified Gram-Schmidt, which we will use in standard IDR(s).

Algorithm 1 in conjunction with Algorithm 2 lead to the computational costs as sum-
marized in Table 3.1. It should be noted that costs for the initialization are subject to
change when one chooses U0 differently, so the focus should be on the IDR cycle. It should
be mentioned that in [25] an IDR method is presented that is both more stable and more
efficient in terms of required DOT and AXPY per cycle.

AXPY DOT MV

Initialization 5 0 s+ 1
Dimension Reduction Step (2s+ 2)(s+ 1) 2s2 + s s+ 1
Polynomial Step 2s+ 2 2 0
IDR Cycle total (2s + 2)(s + 2) 2s2 + s + 2 s + 1

Orthonormalization 3(s
2+s
2) s2+s

2 0

Table 3.1: Computational costs of standard IDR(s) per iteration phase. Note that after initial-
ization is done, the costs per iteration equal the total costs for an IDR-cycle, plus the costs for
orthonormalization during the IDR-cycle, for which one might want to use a different orthonormal-
ization scheme.

To explore the practical usability on the theory on the termination of IDR(s) and the
comments made on the implementation choices, the results of three experiments are shown
below.

Termination

To give the reader an idea of the effect of increasing s in practice, Figure 3.1 shows the
results of of an experiment on two different problems for increasing values of s.

CHAPTER 3. IMPLEMENTATION AND STABILITY 27

0 50 100 150 200 250
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

MV

||
r
k
||
2

GMRES (0.16 sec)

IDR(1) (0.03 sec)

IDR(2) (0.04 sec)

IDR(4) (0.06 sec)

IDR(8) (0.08 sec)

IDR(16) (0.08 sec)

0 1000 2000 3000 4000 5000 6000 7000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

MV

||
r
k
||
2

GMRES (31.95 sec)

IDR(1) (2.14 sec)

IDR(2) (1.65 sec)

IDR(4) (1.72 sec)

IDR(8) (1.58 sec)

IDR(16) (2.64 sec)

Figure 3.1: Residual norm history for different values of s on the sherman4 (N = 1104, left)
sherman5 (N = 3312, right) test matrices. We can see how on sherman4 the number of required
MV indeed seems to converge to the GMRES curve for increasing s. On sherman5 this effect is
far less apparent.

Random search matrix

The only structured choice for U0 that consistently leads to fine convergence results is the
choice of U0 being a power basis of Ks(A, r0). In Figure 3.2 we see a typical improvement
over running IDR(s) with a randomly generated U0.

0 200 400 600 800 1000 1200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

IDR-cycles

||
r
k
||
2

Standard IDR(4)
IDR(4) with U

0
 random

Figure 3.2: Comparison of residual norm history for standard IDR(4) and IDR(4) with U0 random
and orthonormalized on meier01.

CHAPTER 3. IMPLEMENTATION AND STABILITY 28

Optimality of the relaxation parameters

The relaxation parameters in standard IDR(s) are merely a local ’best choice’. In some cases,
simply fixing a hand-picked value for all ωk clearly outperforms our standard approach, as
is shown in Figure 3.3; apparently there is plenty of room for improvement.

0 20 40 60 80 100 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

IDR Cycles

||
r
k
||
2

Standard IDR(4)
IDR(4) with ω

k
 = 0.05 for all k

IDR(4) with BiCGSTAB strategy

Figure 3.3: Comparison using meier01 of standard IDR(8), IDR(8) with (ω)k∈N =
(0.05, 0.05, 0.05, . . .) and IDR(8) using the ω selection technique as used in BiCGSTAB (see also
[14]). Standard IDR(8) is clearly outperformed.

Chapter 4

IDRStab

In the IDR algorithm as derived in previous chapters, we used the freedom offered by the
IDR framework to choose our values for (ω)k∈N+

such that ωk+1 minimizes ‖rk+1‖2 =
‖r′ − ωk+1vAr′‖2. Since this minimization is local (i.e., it only considers the current next
residual), this does not guarantee optimal convergence. IDRStab, first presented in [16],
very much like BiCGStab(`) (see [13]), postpones the polynomial step of the algorithm for a
given number of iterations, `, and then calculates the values for ωk+1, ..., ωk+` by minimizing
the residual norm over all these iterations. (Actually, BiCGStab(`) is a bit more refined,
and cleverly averages between minimizing polynomials and orthogonalizing polynomials to
achieve even faster convergence.) In order to do so we will be needing a scheme that repeats
the dimension reduction step an additional ` − 1 times over the original, without the need
of the values of the relaxation parameters. For each j-th dimension reduction step, with
j = 1...`, we will generalize first our definitions and provide lemma’s that indeed show that
this postponing of the polynomial step is possible.

4.1 Postponing Minimization

Let k again be the iteration number, we then perform ` dimension reduction steps during
this iteration, for which we will define the oblique projections for j = 1, ..., ` and i = 0, ..., j

Πj
i ≡ I−AiVj−1σ

−1
j R∗Aj−i with V0 ≡ Uk and σj ≡ R∗AjVj−1

We will later define the Vj for j = 1...` by recursion. Note that Π1
1 and Π1

0 are equivalent to
the projections Π1 and Π0 defined earlier. Moreover, we have similar properties as before:

R∗AiΠj
j−i = 0 (i ≤ j) and Πj

i+1A = AΠj
i (i ≤ j − 1). (4.1)

We will, for the remainder of this chapter, suppose that we have fixed values for s and `,
and that the algorithm has arrived at iteration k, thus has obtained rk, xk and Uk. We
define for the entire dimension reduction step

r′0 ≡ rk and x′0 ≡ xk,

and for j = 1, ..., `
r′j ≡ Πj

1r
′
j−1

x′j ≡ x′j−1 + Aj−1Vj−1σ
−1
j R∗r′j .

29

CHAPTER 4. IDRSTAB 30

Note that the structure of the definitions reflect the fact that that we are repeatedly pro-
jecting the r′j orthogonal to the space spanned by (A∗)j−1R, and updating x′j accordingly
as was the case in regular IDR. As we will see later, a similar statement will hold for the
columns of the Vj , which we define as an Krylov basis of Ks(Πj

0A,Π
j
0r
′
j):

Vj ≡ [Πj
0r
′
j , ..., (Π

j
0A)s−1Πj

0r
′
j].

Note that this implies that AVj is a basis of Ks(Πj
1A,Π

j
1Ar′j):

AVj = A[Πj
0r
′
j , ..., (Π

j
0A)s−1Πj

0r
′
j] = [Πj

1Ar′j , ..., (Π
j
1A)sr′j].

The intuition backing these definition is that we want to end up with an r′` and AV` that
we can easily lift into Gk+` by mere multiplication with a matrix polynomial Q`(A) in such
a way that enables us to perform residual minimization over all the intermediate residuals.

We now give give some lemma’s that form the theoretical basis which allows IDRStab
to indeed postpone the polynomial step by giving the following lemma’s, each one being
applied applied in the proof of the next.

Lemma 4.1. Retaining orthogonality
Assume that AVj ∈ Gk ∩ Kj(A∗,R)⊥, and let s ∈ Gk ∩ Kj+1(A∗,R)⊥, then Πj+1

1 As ∈
Gk ∩ Kj+1(A∗,R)⊥.

Proof. Note that s ∈ Gk implies (by the definition of the Sonneveld subspace) that for some
polynomial Pk and w⊥Kk+(j+1)(A

∗,R) we have s = Pk(A)w. Hence,

As = APk(A)w = Pk(A)Aw with Aw⊥Kk+j(A
∗,R).

Applying Πj+1
1 then yields

Πj+1
1 As = As−AVj(R

∗Aj+1Vj)
−1R∗Ajs ∈ Gk ∩ Kj(A∗,R)⊥,

for As,AVj ∈ Gk ∩ Kj(A∗,R)⊥.

Moreover, we have by the properties mentioned in 4.1

R∗AjΠj+1
1 As = 0,

and hence
Πj+1

1 As ∈ Gk ∩ Kj+1(A∗,R)⊥.

The next lemma shows that we are repeatedly orthogonalizing our vectors, in preparation
of the polynomial step.

Lemma 4.2. Postponing Polynomial step 1
Given rk,Uk,AUk, then we have

∀j ∈ N : AVj , r
′
j ∈ Gk ∩ Kj(A∗,R)⊥

CHAPTER 4. IDRSTAB 31

Proof. We give a proof by induction. Note that, by definition, we have for j = 0

AV0(= AUk), r′0(= rk) ∈ Gk = Gk ∩ K0(A∗,R)⊥.

Now assume that the statement is proven for some j ≥ 0. We have, again by definition,

r′j+1 = Πj+1
1 r′j = r′j −AVj(R

∗Aj+1Vj)
−1R∗Ajr′j

Now note that since we have assumed that AVj , r
′
j ∈ Gk ∩ Kj(A∗,R)⊥, we have

r′j+1 ∈ Gk ∩ Kj(A∗,R)⊥.

Moreover, we have

R∗Ajr′j+1 = R∗Ajr′j −R∗Aj+1Vj(R
∗Aj+1Vj)

−1R∗Ajr′j = 0,

hence r′j+1⊥(A∗)jR, and hence

r′j+1 ∈ Gk ∩ Kj+1(A∗,R)⊥.

In order to yield the same result for the columns of AVj+1, we utilize the earlier made
observation that

AVj+1 = [Πj+1
1 Ar′j+1, ..., (Π

j+1
1 A)sr′j+1],

apply Lemma 4.1 inductively with with

s = r′j+1,Π
j+1
1 Ar′j+1, ..., (Π

j+1
1 A)s−1r′j+1

indeed yielding
AVj+1 ∈ Gk ∩ Kj+1(A∗,R)⊥.

This completes the proof.

Lemma 4.3. Postponing Polynomial step 2
Let, for any j, Gk+j = S(QjPk,A,R) for some determined polynomials Qj , Pk of degrees j
and k respectively. Then for rk,AUk ∈ Gk, we have

Qj(A)r′j , Qj(A)AVj ∈ Gk+j .

Proof. Assume we indeed have polynomials Qj , Pk and rk,AUk ∈ Gk. Then, by Lemma 4.2
and the definition of Sonneveld subspaces we have r′j ,AVj ∈ Gk ∩ Kj+1(A∗,R)⊥, so that
we can write

r′j = Pk(A)w with w⊥Kk+j(A
∗,R),

and similarly we have

AVj = Pk(A)W with W⊥Kk+j(A
∗,R).

Now multiplying with Qj(A) and again applying the definition of the Sonneveld subspace
yields the result:

Qj(A)r′j = Qj(A)Pk(A)w ∈ Gk+j ,

Qj(A)AVj = Qj(A)Pk(A)W ∈ Gk+j .

CHAPTER 4. IDRSTAB 32

The lemma’s express the fact that we can postpone the polynomial step in our algorithm,
enabling IDRStab to first obtain r′` and V`, and after that determine scalars ωk, ..., ωk+`

that define the polynomial

Qj(ξ) ≡
∏

i=1,...,`

(1− ωk+iξ)

enabling us to define

rk+` ≡ Qj(A)r′` and Uk+` ≡ Qj(A)V`,

such that, using Lemma 4.3, we have, as desired:

rk+`,AUk+` ∈ Gk+`.

IDRStab will, at the end of every j-th dimension reduction step have available the
following quantities:

x′j ,A
ir′j (i = 0...j) and AiVj (i = 0...j + 1).

Note that this will, in terms of computation, reduce the multiplication with Q`(A) to mere
vector updates, rather than matrix-vector multiplications. The efficient computation of
these quantities will be the subject of the next part of this chapter.

4.2 Computation of the Dimension Reduction step

Next, we will focus on setting up a setting up a efficient computational scheme, after which,
the polynomial step will turn out to be straight forward. Per dimension reduction step we
can distinguish two parts: The calculation of x′j and Air′j being the first part, and the

calculation of AiVj being the second.

Recall that at the start of each j-th step, we have available Air′j−1 and AiVj−1. Using
these quantities, we can calculate

α ≡ σ−1
j (R∗Aj−1r′j−1)← [σj

−1
R∗ · Aj−1r′j−1 ,

enabling the calculation of Air′j(i = 0, ..., j − 1) by computing, without any matrix-vector
products:

Air′j = Πj
i+1(Air′j−1) = Air′j−1 −Ai+1Vj−1α← [Air′j−1 − Ai+1Vj−1 · α .

We will use an explicit matrix-vector product to compute the final Ajr′j :

Ajr′j ←[A ∗ Aj−1r′j

The vector x′j can be yielded by using α again:

x′j ←[x′j−1 + Vj−1 · α .

CHAPTER 4. IDRSTAB 33

This concludes the calculations for this part, having used one matrx-vector product in total.
Continuing with the second part, we proceed per column q = 1, ..., s of the AiVj . Recall

that we defined Vj as an Arnoldi basis of Ks(Πj
0A,Π

j
0r
′
j), hence the first column of AiVj

is computable setting

β ← [σj
−1

R∗ · Ajr′j

and then putting

AiVje1 = AiΠj
0r
′
j = Air′j −AiVj−1σ

−1
j R∗Ajr′j ←[Air′j − AiVj−1 · β ,

which again takes no matrix-vector multiplications. To compute Aj+1Vj in order to meet
the requirements for the j + 1-th dimension reduction step however, it does:

Aj+1Vje1 ←[A ∗ AjVje1 .

For the next columns, let q > 1,we wish to calculate Vjeq = Πj
0AVjeq−1, so we set

β ←[σj
−1

R∗ · Aj+1Vjeq−1 ,

and calculate

AiVjeq = AiΠj
0AVjeq−1 ←[Ai+1Vjeq−1 − AiVj−1 · β .

We then use a matrix-vector multiplication to calculate the remaining Aj+1Vjeq which will
be needed for the next column:

Aj+1Vjeq ←[A ∗ AjVjeq .

The above is a complete description of how to efficiently compute Air′` (i ≤ `) and AiV`

(i ≤ `+ 1). We now only need to determine the scalars which will define the polynomial Qj

in order tot lift the results into Gk+`.

4.3 The Polynomial Step

Assuming that we want to minimize ‖rk+`‖2, we can state the problem as follows. Find
~γ ∈ C` such that

‖rk+`‖2 =
∥∥r′` − γ1Ar′` − · · · − γ`A`r′`

∥∥
2

(4.2)

is minimal. Similarly to the case in standard IDR(s), this problem can be reformulated as
the problem to find ~γ ∈ C`, such that

∀i ∈ {1, ..., `} : rk+`⊥Air′`. (4.3)

Define
B ≡ [Ar′`, ...,A

`r′`].

Now note that solving to following `× `-system for ~γ

B∗B~γ = B∗r′`

CHAPTER 4. IDRSTAB 34

yields us ~γ such that

B∗rk+` = B∗(r′` −
∑

i=1,...,`

γiA
ir′`) = B∗(r′` −B~γ) = 0.

Hence, for this ~γ, we indeed have 4.3, and thus minimized 4.2. Since, once arrived at the
polynomial step, we have already obtained Air′` (i ≤ `) and AiV` (i ≤ ` + 1), we can
compute the polynomial multiplication without matrix-vector multiplications, like so:

γ ← [R∗ · R \ R∗ · r′`

rk+` ← [r′` − γ1 · A1r′` − γ2 · A2r′` − ...− γ` · A`r′`

xk+` ← [x′` + γ1 · r′` + γ2 · A1r′` + ...+ γ` · A`−1r′`

Uk+` ← [V` − γ1 · A1V` − γ2 · A2V` − ...− γ` · A`V`

AUk+` ← [AV` − γ1 · A2V` − γ2 · A3V` − ...− γ` · A`+1V`

CHAPTER 4. IDRSTAB 35

4.4 Implementation

As with the derivation with IDR(s), we can now, with all computational steps covered, set
up a basic implementation of IDRStab. Again, the pseudocode presented in this section
(Algorithm 3) is mainly written with readability in mind. A few words on notation are in
place here: we have chosen to put the vectors Air′j with i = 0, . . . , j all stacked in what one

might think of as a ’vector array’ called r′. The same goes for AiVj with i = 0, . . . , j + 1.
During iteration k, and dimension reduction step j, we refer to Air′j by r′i, and likewise,

to AiVj by Vi. Figure 4.1 shows the performance for different values of `, and since
IDR(s)Stab(1) is equal to IDR(s), compares it to IDR(s). It should be noted that this
implementation of IDRStab is rather slow in terms of CPU-time. Table 4.1 summarizes
again the costs, as we did for standard IDR(s). Note that there is some overhead caused by
the higher order minimization as compared to IDR(s).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

MV

||
r
k
||
2

GMRES (12.47 sec)

IDR(8)Stab(1) (2.12 sec)

IDR(8)Stab(2) (1.88 sec)

IDR(8)Stab(4) (1.98 sec)

Figure 4.1: Residual norm history for different values of ` in IDRStab on the dw2048 matrix
(N = 3312). We can see the increased performance per MV as ` increases.

AXPY DOT MV

Initialization 5 0 s+ 1

Dimension Reduction Step (`
2+`
2)(s2 + 2s+ 1) + ` `(2s2 + s) `(s+ 1)

Polynomial Step (`+ 1)(2 + 2s) 2` 0

IDR Cycle total (`
2+`
2)(s2 + 2s + 1) + (`+ 1)(2 + 2s) + ` `(2s2 + s + 2) s + 1

Orthonormalization (`
2+`
2 + 2`) s

2+s
2 ` s

2+s
2 0

Table 4.1: Computational costs of standard IDRStab per iteration. We can distinguish some
overhead compared to IDR(s), but in theory get a better converging method in return.

CHAPTER 4. IDRSTAB 36

1: function idrstab(A,b,x0,U,R, tol,maxit, s, `)
2: k = 0
3: x← [x0

4: r0 ← [b−A ∗ x0

5: AU← [A ∗U
6: while (‖r‖2 > tol) ∧ (k < maxit) do

7: Ṽ←[[U; AU], r̃←[r
8: x′ ← [x
9: %Dimension Reduction Step

10: for j = 1, . . . , ` do
11: σ ←[R∗ · Ṽj

12: Part I
13: α←[σ \R∗ · r̃j−1

14: r′ ← [r̃− Ṽ(1:j) · α
15: r′ ← [[r′; A ∗ r′j]

16: x′ ← [x′ + Ṽ0 · α
17: Part II
18: β ← [σ \R∗ · r′j
19: Ve1 ←[r′ − Ṽ · β
20: Ve1 ←[[Ve1; A ∗Vje1]
21: Ve1 ←[Orth(V,1)
22: for q = 2, . . . , s do
23: β ← [σ \R∗ ·Vj+1eq−1

24: V(0:j)eq ← [V(1:j+1)eq−1 − Ṽ · β
25: Veq ← [[V; A ∗Vjeq]
26: Veq ← [Orth(V,q)
27: end for
28: Ṽ← [V, r̃← [r′
29: end for
30: % Polynomial Step
31: B← [[Ar′`, . . . ,A

`r′`]
32: ~γ ←[(B∗ ·B)−1B∗ · r′`
33: r←[r′` −B · ~γ
34: for i = 0, . . . , ` do
35: x← [x′ + ~γi · r′i
36: U← [V0 − ~γi ·Vi

37: AU← [V1 − ~γi ·Vi+1

38: end for
39: k ←[k + 1
40: end while
41: end function

Algorithm 3: An implementation of IDR(s)Stab(`) based on the theory of Chapter 4, using altered
notation as compared to the previous algorithms. Again, note the added orthonormalization steps
in gray for Vj, which which should alter AiVj accordingly.

Chapter 5

Additional remarks on IDR-methods

For completeness and to provide possible extra insight, we conclude this part with making
some additional notes on the IDR-methods derived in previous chapters.

Basic properties

Note that the recurrence relations for computing rk, xk, Uk and AUk do not grow in
length during the iterative process. We may therefore conclude that IDR is a short re-
currence method, using s-term recurrences to be precise. Moreover note that there is no
need for explicit computation with A∗, making it a transpose-free method, generalizing its
applicability. Finally, we have not made any assumptions on the algbraic properties of A,
making IDR theoretically very generally applicable.

IDR(1) and Bi-CGSTAB

In [17], the mathematical equivalence between IDR(1) and Bi-CGSTAB is proven, on its turn
implying the the equivalence between IDR(1)Stab(`) and BiCGStab(`). This relationship
could be of interest in doing further research concerning the (experimental) results that
we will see in Part II. It might also provide insight in the convergence properties of IDR-
methods, as they are then proven to have their roots in CG, for which convergence bounds
based on spectral properties of A are available.1

Standard IDR(s) and IDRStab are Krylov subspace-methods

As experimental results from previous part have shown, the initial choice of the auxiliary
vectors are one of the key factors in making the most of IDR-methods. The results stated
below provide some insight in the influence of these vectors on the spaces in which the rk
and the columns of Uk will reside in future iterations.

Lemma 5.1. Involved Spaces
Let rk and Uk be as defined in the derivation of IDR(s), and let S,L ⊂ CN be linear
subspaces. Assume rk ∈ S,Uk ∈ L, then

rk+1 ∈ S + AS + AL+ A2L,
1See, for example [?].

37

CHAPTER 5. ADDITIONAL REMARKS ON IDR-METHODS 38

and

Uk+1 ∈
(s+1∑
i=0

AiL
)

+ As−1S + AsS.

Proof. Assume rk ∈ S,Uk ∈ L. We will follow the construction of rk+1 and Uk+1 to obtain
the desired result. By definition we have

r′k = Π1rk = rk −AUσ−1R∗rk ∈ S + AL,

and hence
rk+1 = (I− ωk+1A)r′k ∈ S + AS + AL+ A2L.

Next, we inspect Vke1;

Vke1 = Π0r
′
k = r′k −Ukσ

−1R∗Ar′k ∈ S + L+ AL,

since Span(Uk) ⊆ L. Note that when we repeatedly apply the operator Π0A in order to
construct Vke2, . . . ,Vkes, the space in which the columns of these matrices reside is, from
a Kyrlov subspace perspective, mainly determined by the intermediate multiplications by
A and the I-term in Π0. That is, for any 1 < q ≤ s we have

Vkeq = Π0AVkeq−1 = AVkeq−1 −Ukσ
−1R∗A2Vkeq−1 ∈ AQ+ L

with Q the space in which Vkeq−1 lies. Applying this observation inductively on the result
for Vke1 yields

Vkeq ∈
(q∑
i=0

AiL
)

+ Aq−1S, hence, Vk ∈
(s∑
i=0

AiL
)

+ As−1S

This indeed implies that we have

Uk+1 = (I− ωk+1A)Vk ∈
(s+1∑
i=0

AiL
)

+ As−1S + AsS.

Now as this lemma on itself seems not very informative, we will apply it to the standard
case, in which we have r0 ∈ K1(A, r0),U0 ∈ Ks(A, r0), to show its use.

Corollary 5.1. Standard IDR(s) is a Krylov-subspace method
With r0 ∈ K1(A, r0),U0 ∈ Ks(A, r0), the IDR(s) method as defined this work yields

rk ∈ Kk(s+1)+1(A, r0),

and
AUk ∈ K(k+1)(s+1)(A, r0).

Proof. Note that for k = 0 we indeed have

r0 ∈ Kk(s+1)+1(A, r0), and AU0 ∈ K(k+1)(s+1)(A, r0).

CHAPTER 5. ADDITIONAL REMARKS ON IDR-METHODS 39

We proceed by induction and assume that for some k the statement holds. Note this implies
that Uk ∈ K(k+1)(s+1)−1(A, r0). For the rest of the proof, we will omit the generators of the
involved Kyrlov subspaces for readability reasons as they do not change during the proof,
i.e., we write Kk instead of Kk(A, r0). We have, by applying Lemma 5.1,

rk+1 ∈ Kk(s+1)+1 + AKk(s+1)+1 + AK(k+1)(s+1)−1 + A2K(k+1)(s+1)−1.

Which, for AKk ⊂ Kk+1, simplifies to

rk+1 ∈ Kk(s+1)+2 +K(k+1)(s+1)+1 = K(k+1)(s+1)+1

for all s ≥ 1. Hence,

Uk+1 ∈
(s+1∑
i=0

AiK(k+1)(s+1)−1

)
+ As−1Kk(s+1)+1 + AsKk(s+1)+1.

This, on its turn, simplifies to

Uk+1 ∈ K(k+1)(s+1)+s +Kk(s+1)+s+1 = K(k+1)(s+1)+s.

Thus implying
AUk+1 ∈ K(k+1)(s+1)+s+1 = K(k+2)(s+1).

The assurance of standard IDR(s) being an Krylov subspace method basically implies
two things:

Firstly, we may rely on theorem 1.1 (the Cayley-Hamilton theorem) in that the exact
solution will be an element of the involved spaces for some k.

Secondly, the convergence of the residual rk per MV is bounded from below by GMRES
applied to the same problem.

Sonneveld actually gives a proof of IDR(s) being equal to GMRES in terms of convergence
for s → ∞. Note, on the other hand, that if we would choose our initial set of auxiliary
vectors differently, we may lose the Krylov subspace properties of the method, but at the
same time it would (theoretically) enable convergence per MV faster than GMRES. We
will see some examples of this in later chapters, as well as references to work that actually
predicts this behaviour.

IDR(s) and IDRStab are Petrov-Galerkin methods

In order to position standard IDR(s) and IDRStab in the landscape of Krylov subspace-
methods, we prove, based on [12], that they are of the Petrov-Galerkin type. Basically
meaning that although the residuals in IDR(s) and IDR(s)Stab are elements of a shrinking
sequence of IDR spaces, they are at the same time orthogonal to a growing sequence of
Krylov subspaces.

Lemma 5.2. Sonneveld spaces and orthogonality
For Sonneveld spaces we have the following equivalence2:

S(A, Pk,R) = (Kk(A∗, P̄k(A∗)−1R))⊥.

2Here, for a polynomial Pk(ξ) =
∏k

i=1(1 +ωiξ), we mean with P̄k(ξ) the polynomial P̄k(ξ) =
∏k

i=1(1 +
ω̄iξ), where the bar denotes complex conjugation.

CHAPTER 5. ADDITIONAL REMARKS ON IDR-METHODS 40

Proof. Let y ∈ S(A, Pk,R), then by definition there exists an v such that

y = Pk(A)v with v⊥Kk(A∗,R).

In particular, we have
∀i=1,...,k−1R

∗Aiv = 0.

Now note that we also have, as Pk(A) and A commute with eachother, that for i = 1, . . . , k−
1,

R∗Pk(A)−1AiPk(A)v = R∗Pk(A)−1Pk(A)Aiv = R∗Aiv = 0

Conversely, let y⊥Kk(A∗, (̄P)k(A∗)−1R). Then, it follows that

∀i=1,...,k−1R
∗Pk(A)−1Aiy = 0.

Again, this time exploiting the commutativity of Pk(A)−1 and A, we have

∀i=1,...,k−1R
∗AiPk(A)−1y = 0.

The non-singularity now implies that indeed, there exists v⊥Kk(A∗,R) such that y =
Pk(A)v, hence

y ∈ S(A, Pk,R).

It is a matter of recalling that in IDR-methods, we have rk ∈ Gk = S(A, Pk,R), to
observe that they are indeed of the Petrov-Galerkin type Krylov subspace-methods.

Residual norm reduction

In standard IDR(s), we choose our the relaxation parameters to minimize the next residual
norm. It is, however, usually not this minimization that may take for account the bulk of
the residual norm reduction in an IDR-cycle. More specifically, the convergence properties
of IDR-methods are thought to be mainly dominated by the dimension reduction, occurring
when constructing r′k = Π1rk. Figure 5.1 shows the convergence history of both rk and r′k
of the same experiment.

CHAPTER 5. ADDITIONAL REMARKS ON IDR-METHODS 41

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

IDR−cycles

||rk+1||2
||r′

k
||2

Figure 5.1: Comparison of the norms of rk+1 and r′k using sherman4. Typically, they do not
differ much, as shown here. We can infer from this observation that the minimizing property of
the relaxation parameters are not the main reason for the fine convergence properties of standard
IDR(s). They do however play an important role in terms of stability, as not having this minimiza-
tion property will lead to a loss of numerical accuracy (see Section 6.1).

Part II: Recycling

42

CHAPTER 5. ADDITIONAL REMARKS ON IDR-METHODS 43

Introduction

Now we have introduced two IDR-methods, this part will be devoted to a technique that
we will call recycling that may yield significant convergence speed-up in cases in which
multiple systems using the same coefficient matrix A are to be solved. We will focus on
only two such systems, but the results in this chapter will naturally translate to sequences
of more systems. We will speak of a seed system, referring to the system

Ax = b,

from which we will fetch quantities to recycle. And use the term recycling system for the
system

Ax̃ = b̃,

in which we will try to make good use of these quantities. Moreover, in the solving of the
recycling system, we will distinguish between quantities that are specific to this run, by
placing a tilde above it. For example, the residual appearing in the k-th iteration of solving
the recycling system will be denoted by r̃k. In particular, we will sometimes omit this tilde
to emphasize that both the seed as the recycling run are using the very same quantity.

Chapter 6

Recycling Sonneveld Subspaces

By definition, the used Sonneveld subspaces used in our IDR-methods are not dependent on
the right-hand side vector b of the input problem. This suggests that the used G0, . . . ,Gk
may be used as well for the solving of the recycling system with the same A and R, but
different right-hand side, b̃. In this chapter we will show a intuitive approach to restrict the
residuals r̃k of the alternative system to the J-th Sonneveld space from the seed system.

6.1 SRIDR(s)

In work by Neuenhofen [8], a method is presented that is called ’SRIDR(s)’, an acronym
for Short Recurrence IDR(s). Recall that in IDR(s), we use a matrix of the form AUk

whose columns lie in Gk. The purpose of its column vectors is to restrict rk to Gk ∩R⊥ by
projection with Π1. By the nesting property of Sonneveld subspaces, one can derive that
(for some J ∈ N) AUJ , we have ∀k≤JAUJ ∈ Gk. This implies that using UJ for all the
projections Π1 up to the J-th iteration, will yield us an operator

Π1 : ∀k≤J Gk 7→ Gk ∩R⊥.

Hence, if we manage to obtain a residual r̃k ∈ Gk, this Π1 meets all the requirements.

Next, note that if we assume that in the recycling run, r̃0 ∈ G̃0 ⊂ G0, and in addition,
set (ω̃k)Jk=1 = (ωk)Jk=1, we have

Π1r̃0 = r̃0 −AUJ(R∗AUJ)−1R∗r̃0 ∈ G̃0 ∩R⊥ ⊂ G0 ∩R⊥,

and hence
r̃1 = (I− ω̃1A)Π1r̃0 ∈ G̃1 ⊂ G1.

Similarly, by induction, we have

∀k≤J r̃k ∈ G̃k ⊂ Gk,

proving that, at least in exact arithmetic, by saving UJ and (ωk)Jk=1, we can indeed restrict
the first J residuals of the alternative run to the first J Sonneveld spaces of the seed run. Also
note that this approach may use ∀k≤JŨk = UJ , eliminating the need for these iterations
to construct a new search matrix. This saves s MV and one DOT per IDR-cycle, excluding

44

CHAPTER 6. RECYCLING SONNEVELD SUBSPACES 45

AXPY, resulting in a computationally very cheap method. Simply put, SRIDR(s) is equal
to IDR(s), but is applied to the recycling system and uses ∀k≤J :

Ũk = UJ

AŨk = AUJ

ω̃k = ωk ,

and will perform regular IDR-cycles for k > J .

As a severe drawback, this method does no longer have the freedom to choose any (ω̃k)Jk=1,
as the sequence is now already fixed. Therefore, we lose the assurance that ω̃k+1 minimizes
‖r̃k+1‖2.

Presented in Figure 6.1 are the results of two experiments in which UJ ,AUJ and (ω)Jk=0

with from the seed run are recycled. The left plot shows an speed-up in terms of MV,
recalculating based on the number of IDR-cycles for the right hand side plot reveals that
this does not need to be the case. We can clearly see growth rather than convergence of the
residual norm in the first J IDR-cycles, which can be accounted for by the non-minimizing
nature of (ω̃)Jk=1.

0 20 40 60 80 100 120 140 160 180
10

−10

10
−5

10
0

10
5

10
10

10
15

MV

||
r
k
||
2

IDR(4) (seed)

SRIDR(4) (J=15)

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

IDR-cycles

||
r
k
||
2

IDR(4) (seed)

SRIDR(4) (J=25)

Figure 6.1: Running SRIDR(s) on sherman4 (left, J = 15) and dw2048, J = 25 (right) recycling
UJ ,AUJ and (ω)Jk=1. On the left we see that an actual speed-up is achieved in terms of MV. On
the right the reader should focus on the residual growth; the spike of residual growth in the first J
iterations can be accounted for by the fact that the values of ω̃k+1 are not chosen as minimizers of
‖r̃k+1‖2.

An important observation concerning the growth of the residual to be made is that it,
in finite arithmetic, leads to a loss of accuracy. Assume the algorithm is running on a
computer using 16-decimal arithmetic (Matlab standard), in which the entries of r̃0 are
represented. If after, say J , iterations the individual entries of r̃J have increased in absolute
value with a factor 10m, the last m decimals of r̃0 can not be represented anymore. This
implies that we may expect a loss of accuracy of the same factor per entry that is very likely
to persist throughout the entire process. Below we see a plot containing the true residuals
of the same experiments. Notice in Figure 6.2 how the ’convergence’ of the true residuals

CHAPTER 6. RECYCLING SONNEVELD SUBSPACES 46

in SRDIR(s) stagnate at approximately 6 · 103, while the difference between residual and
true residual is much smaller before the stagnation occurs. This can be explained by the
difference between regular, recursively computed residuals, and the directly computed true
residual; The regular residuals rk are not influenced by approximate solutions xk, whereas
the true residuals, b−Axk, are. This mechanism is also studied in [15].

0 100 200 300 400 500 600
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

IDR-cycles

||
b
−

A
r
k
||
2

IDR(4) (seed)

SRIDR(4) (J=25)

Figure 6.2: The true residuals reveal the problem with radical growth of residuals when using finite
precision arithmetic: The convergence of the true residual norm stagnates as the loss of accuracy
in the first J iterations can not be reversed.

This observation on residual growth will be a topic that we will elaborate on in Section
9.1, when we will be studying a different recycling technique in which we will try to prevent
this growth from occurring.

Chapter 7

Recyling of the Auxiliary Vectors

7.1 Miltenbergers Approach and RIDR(s)

Although the recycling of Sonneveld spaces has some clear intuitive advantage, the results of
SRIDR(s) are usually very disappointing due to the residual growth in the first J iterations.
However, the technique gives rise to an even simpler approach, i.e.: Why not only use UJ

as the initial search matrix of the alternative run(s) so that the minimizing property is still
kept intact? This leads us to what we will call ‘RIDR(s)’, for Recycling IDR(s).

It should also be mentioned that this approach is not new, as it is also studied in [7], by
Miltenberger, hence we might also refer to it, in line with [9] as ‘Miltenbergers approach’. In

our experiments we mainly use a slight variation on this, in which we recycle UJ as Ũ0 ,

and calculate AŨ0 as A ∗ UJ , rather than recycling both quantities, for stability reasons.

Note that the intuitive justification of re-using (relatively low-dimensional) Sonneveld spaces
does not seem to apply here, hence we will first motivate our investigations to this approach
by presenting some numerical results.

Outperforming GMRES

When regarding this recycling technique purely as IDR(s) with a rather specific choice for
its initial set of auxiliary vectors in KJ(s+1)+1(A, r0), we see by Lemma 5.1 that r̃k need
not be an element of a Krylov subspace brought forth by A and r0, just as much as it
does not strictly needs to be an element of the Krylov subspace brought forth by A and
r̃0. This observation implies that the convergence is not necessarily bounded per MV by
GMRES. The following results presented in Figure 7.1 confirm this. Note that as IDR(s)
is a short-recurrence method, we also expect that the recycling runs will be outperforming
GMRES even more than already is the case with the seed run in terms of CPU-time and
memory requirements, but this is not the point here.

47

CHAPTER 7. RECYLING OF THE AUXILIARY VECTORS 48

0 5 10 15 20 25 30 35 40 45 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

MV

||
r k
||
2
/|
|r

0
||
2

GMRES

IDR(4)

RIDR(4)

0 20 40 60 80 100 120 140 160 180
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

MV

||
r k
||
2
/|
|r

0
||
2

GMRES

IDR(4)

RIDR(4)

Figure 7.1: On the left: An experiment showing the result of recycling U10 on the 35×35 diagonal
matrix (A = diag([0.1 : 0.1 : 23 : 17]), which isMatlab notation for the diagonal matrix with
diagonal elements 0.1 up to 2 with step size 0.1, followed by the values 3 up to 17 with step size 1)
compared to GMRES. On the right: The same experiment on sherman4 and J = 34.

Increasing s

As IDR(1) is equivalent to Bi-CGSTAB, one might wonder whether the possible speed-up
is IDR(s) specific or not. The following plot shows the effect of increasing the number of
test vectors, s. We can see that for s = 1, hardly, if any, any speed-up takes place, whereas
for moderate values it occurs with increasing intensity. It might be due to stability issues
that for higher s the speed-up is degraded again.

0 2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

Value for s

(#
id

r−
c
y
c
le

s
 s

e
e
d
)/

(#
id

r−
c
y
c
le

s
 r

e
c
)

pde900

sherman4

dw2048

rdb1250

Figure 7.2: Improvement ratios for different problems. We can witness how increasing s in general
increases the positive (a higher ratio corresponds to a greater speed-up) effect of using RIDR(s).

Varying the fetching point, J

In order to investigate whether the speed-up in the recycling run increases with J , an
experiment in which, for equal conditions, multiple search matrices UJ1 , . . . ,UJp are fetched,

CHAPTER 7. RECYLING OF THE AUXILIARY VECTORS 49

and used for several runs of RIDR(s) on the recycling system. Intuitively, one might argue
that higher values for J should result in more speed-up, more and more information from
the previous system will be contained in UJ (whatever this may be exactly). However, as
is pointed out in [9], in exact arithmetic, we expect AUJ ∈ Span(0) for some J . Hence,
using values for J that are close to the total number of IDR-cycles used in the seed run
might actually result in recycling merely round-off errors, rather than valuable directions
corresponding to GJ .

0 50 100 150 200 250
10

−10

10
−5

10
0

10
5

10
10

IDR−cycles

||
r k
||
2
/|
|r

0
||
2

IDR(8) (seed)

RIDR(8) (J=25)

RIDR(8) (J=50)

RIDR(8) (J=75)

RIDR(8) (J=100)

RIDR(8) (J=125)

RIDR(8) (J=150)

RIDR(8) (J=175)

RIDR(8) (J=200)

RIDR(8) (J=222)

Figure 7.3: An experiment on dw2048 in which the fetching point J is varied. We can see how
the convergence of the residual norm speeds up as J increases.

Figure 7.3 shows that for this problem, we need not worry about the fetching point.
Other experiments seems to confirm that this is usually the case; recycling the very last
search matrix from the seed run usually yields the best results.

7.2 M-spaces and termination

Recycling merely auxiliary vectors rather than Sonneveld subspaces by not recycling (ω)Jk=1,
may result in residuals residing in spaces that need not be subspaces of GJ . Therefore, we can
not apply the already derived results on termination from Part I to explain the convergence
behavior of RIDR(s). In order to justify the performance of RIDR(s), theory has been
developed by Neuenhofen, presented in [9], giving theoretical bounds on the number of
iterations needed for termination of Miltenbergers approach, and thus the mathematically
equivalent RIDR(s). We will summarize the most important aspects in this section.

Definition 7.1. M-spaces
Let A ∈ CN×N , (ωk)k∈N ∈ CN \ {0} and let (Q)k∈N, (P)k∈N be sequences of subspaces of
CN , with ∀kQk+1 ⊆ Qk,Pk ⊆ Pk+1, M0 ≡ CN , and recursively

Mk+1 ≡ (I− ωk+1A) · (Mk ∩ P⊥k) +Qk.

CHAPTER 7. RECYLING OF THE AUXILIARY VECTORS 50

We call the Mk M-spaces, the Qk add spaces, and the Pk test spaces.

One can readily see similarities between Sonneveld spaces and M-spaces, and the intu-
ition is that we will be usingM-spaces as Sonneveld to which we have added some directions.
Observe that for Q1 = {0}, and ∀k∈N : P⊥k = R⊥, the M-spaces generated by these se-
quences are in fact Sonneveld subspaces. Just like for Sonneveld spaces, one can prove
the nestedness of a sequence of M-spaces. We will state a more general result here whilst
omitting the proof for it is mainly straight-forward, and can be found in [9].

Theorem 7.1. Nestedness of M-spaces
Let (Q1

k)k∈N, (Q2)k∈N and (P1)k∈N, (P
2)k∈N be two sequences of add- and test spaces respec-

tively, with Q1
k ⊆ Q2

k and P2
k ⊆ P1

k for all k ∈ N. LetMi
k be the k-thM-space corresponding

to (Qi)k∈N, (Pi)k∈N, i = 1, 2.
Then

∀k∈NMi
k+1 ⊆Mi

k.

Moreover, we have
∀k∈NM1

k ⊆M2
k.

With this theorem in place, we may regard the seed run using IDR(s) as usingM-spaces,
M1

k, equal to the Gk by setting Q1
1 = {0}, and ∀k∈N : P1⊥

k = R⊥. Hence, when fetching the
auxiliary vectors after J iterations, we have AUJ ∈M1

J = GJ . Now, consider the following
sequence of M-spaces, (M2)k∈N, generated by

Q2
k =

{
{r̃0} if k ≤ J
{0} otherwise,

∀k∈N(P2
k)⊥ = R⊥ and (ω)Jk=1 the sequence of relaxation parameters from the seed run. Note

that with these conditions, we have by construction of M-spaces

Air̃0 ∈M2
J with i = 0, . . . , J,

and by Theorem 7.1, it also holds that

GJ =M1
J ⊆M2

J ,

and hence
AUJ ∈M2

J .

Observe furthermore that the construction of M-spaces allow the already derived IDR-
algorithms to be used to restrict residuals to the shrinking sequences of M-spaces. In
particular, since AUJ , r̃0 ∈M2

J , we may assume that the recycling run (RIDR(s)) actually
starts its first IDR-cycle in M2

J , generating a residual r̃1 and new auxiliary vectors in
M2

J+1, etc. From this point of view, it makes sense to analyze the dimension of the involved
M-spaces. For any sequence of M-spaces have:

Dim(Mk+1) ≤ max(0,Dim(Mk)−Dim(Pk))−Dim(Qk).

With this bound, we can already see that, in general, if for some k ≤ N
s , Qk = {0},

we will need an equal amount of IDR-cycles as with our Sonneveld-based IDR-methods in
order to arrive at a residual contained in the null-space. But, with analysis of the recycling

CHAPTER 7. RECYLING OF THE AUXILIARY VECTORS 51

run in terms of M-spaces, this also gives us an upper-bound at which the recycling run
should terminate; If we fetch UJ and AUJ , RIDR(s) will start atM2

J , which, assuming the
canonical case, has dimension

Dim(M2
J) ≤ N − J · s+ J = Dim(GJ) + J,

form which point on, the algorithm will start reducing the dimension with s, every IDR-cycle.
Note how, for s = 1, this would imply that RIDR(s) actually starts with Dim(M2

J) ≤ N ,
and how the effect of the recycling of auxiliary vectors, dimension wise, should increase with
if s does.

M(s)Stab(`)

Neuenhofen proposes to use IDRStab, rather than IDR(s) for the recycling runs. In the
context of the above presented theory the method should then be called M(s)Stab(`). It
has the advantages over RIDR(s) on might expect from the higher order minimization. We,
however, will mainly use RIDR(s) for our experiments as the difference in performance
between M(s)Stab(`) is not ground breaking on the small test matrices used in this thesis,
as can be seen in Figure 7.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−5

10
0

10
5

10
10

MV

||
r
k
||
2

IDR(8) (seed)

RIDR(8)

M(8)Stab(4)

Figure 7.4: A comparison of RIDR(s) and M(s)Stab(`) on dw2048. The advantage in conver-
gence per MV in does not differ much on this test problem.

CHAPTER 7. RECYLING OF THE AUXILIARY VECTORS 52

7.3 Termination in Practice

Although the above theory in which RIDR(s) is, theoretically, building upon the dimension
reduction from the seed run, there are many cases in which other aspects seem to dominate
the convergence. In particular, the relaxation parameters seem to have a influential role. As
an example, consider the following experimental results in which we compare three restarts
on the same problem, each resulting from seed runs using different relaxation parameters.
We set J = 30, and fetch U1

30 from a regular seed run, in which the parameters are chosen
to minimize ‖rk+1‖2 as usual. For comparison, we fetch U2

30 and U3
30 from a seed run in

which we have, quite arbitrarily, chosen to set ωk = k and ωk = 1
1000+k respectively. The

results are shown in Figure 7.5.

0 50 100 150 200 250
10

−10

10
−5

10
0

10
5

10
10

10
15

MV

||
r
k
||
2

IDR(4)
RIDR(4) using U

1
30

RIDR(4) using U
2
30

RIDR(4) using U
3
30

Figure 7.5: Experiment in which different seeds are used for RIDR(4) on sherman4. Clearly, the
convergence of residual norm is influences by the choices of the relaxation parameters in the seed
run.

In the runs using U2
30 and U3

30, we can firstly see how the convergence is less prosperous
compared to the seed run. Secondly we can distinguish a case of noteworthy growth in the
first iteration, which we will study in Chapter 9.

Chapter 8

Recalculating AŨ0

The IDR(s) methods as derived in Part I rely on matrices of the form AUk. However, in
finite precision arithmetic, we may only hope that

A ∗ Uk ≈ AUk

with some error as small as possible. If the values of A ∗ Uk and AUk differ much,

the values of r̃1 and b̃ − Ax̃1 will too, for the simple reason that r̃1 is calculated using

AUJ only whereas x̃1 is calculated by also using UJ . If the deficiency between AUk and

A ∗ Uk introduces a residual gap, defined as the difference between the recursively
computed residual and the true residual, of some order 10m between r̃1 and x̃1, we do not
expect this initial error to get corrected during the process, as the recursive residual updates

are independent of xk. Although it seems advisable in general to recalculate AŨ0 ← [

A ∗ UJ , experiments show that somehow the residual gap norm in the first iterations
might shrink during the process, which is surprising, as it is common to assume that this
gap is unstructured. Interestingly, this effect seems to increase with increasing s, hinting on
it being an IDR(s)-specific phenomenon.

0 500 1000 1500 2000 2500
10

−15

10
−10

10
−5

10
0

10
5

||
r
k
−

(b
−

A
r
k
)|
| 2

seed

U

U and AU

0 500 1000 1500 2000 2500
10

−10

10
−5

10
0

10
5

10
10

IDR-cycles

seed ||rk||2
seed ||b− Axk||2
U ||rk||2
U ||b− Axk||2
U and AU ||rk||2
U and AU ||b− Axk||2

Figure 8.1: Comparison of recycling only UJ vs both UJ and AUJ . On the left the history of
the residual graphs is shown. They correspond nicely to the stagnation levels of the true residuals
shown together with the recursively computed residuals in the plot on the right.

53

CHAPTER 8. RECALCULATING AŨ0 54

To show the immediate influence of the deficiency between UJ and AUJ , we give
the following derivation showing the structure of the first residual gap, g1. Denote the
residuals, σ and approximate solution of the run recycling both UJ and AUJ by r̂k, σ̂ and
x̂k respectively. We have

r̂1 = r̂0 + N̂0r̂0

with
N̂0 = − AUJ σ̂

−1R∗ − ωk+1A + ωk+1A AUJ σ̂
−1R∗

and similarly
x̂1 = x̂0 + M̂0r̂0

with
M̂0 = UJ σ̂

−1R∗ + ωk+I− ωk+1 AUJ σ̂
−1R∗,

such that we have for the first residual gap,

g1 ≡ r̂1 − (b̃−Ax̂1) = b̃ + N̂0b̃− (b̃−A(x̂0 + M̂0b̃)),

which equals, using that x̂0 = 0, r̂0 = b̃,

g1 = b̃ + N̂0b̃− (b̃−A(x̂0 + M̂0b̃)) = (N̂0 + AM̂0)b̃.

Hence, if we define E ≡ A ∗ UJ − AUJ

g1 = Eσ̂−1R∗b̃.

Figure 8.2 shows the result of an experiment in which several runs of RIDR(s) versus the
variant also recycling AUJ for several s. Per variant, the runs shared the initial columns of
UJ , AUJ and R, but used only the first s columns of 12 in total, to keep the error-matrix E
as constant as possible to make a fair comparison. We can see how in normal RIDR(s), the
residual gap increases with the iteration number. For the runs recycling AUJ however, we
see the residual gap decreasing before stagnation. In particular, the effect seems to be more
apparent for higher values of s. For s = 1 the curve is increasing, as one would normally
expect, although these results are chosen because they seem to be a good representation, a
decreasing residual gap for s = 1 has also been witnessed.

CHAPTER 8. RECALCULATING AŨ0 55

0 20 40 60 80 100 120 140
10

−10

10
−5

10
0

(a)

IDR-cycle

‖
r
k
−

(b̃
−

A
x
k
)‖

2

0 20 40 60 80 100 120 140

10
−5

10
0

(b)

IDR-cycle

‖
r
k
−

(b̃
−

A
x
k
)‖

2

s = 1

s = 2

s = 4

s = 8

s = 12

s = 1

s = 2

s = 4

s = 8

s = 12

Figure 8.2: Comparison of recycling only UJ vs both UJ and AUJ for different values of s. Plot
a) shows the results for only recycling UJ , b) for AUJ . Note that the residual gap in plot b) is
decreasing before is stagnates for most values of s.

Chapter 9

Residual Growth in RIDR(s)

When recycling auxiliary vectors, we will usually have that ‖r̃1‖2 ≈ 10m · ‖r̃0‖2 for some
m rather large, even for small input problems, leading to a loss of accuracy as mentioned
in Chapter 5. By inspection of involved quantities, we usually find that in those cases,∥∥∥R∗AŨ0

∥∥∥
2

= ‖σ̃‖2 ≈ 10−m. This implies that, roughly, AŨ0⊥R. To justify the occurrence

of this growth we conjecture the following.

9.1 Growth and Relaxation Parameters

Let J ∈ N be some iteration number at which we have fetched UJ from the seed system.
Assuming that we are working in exact arithmetic for the moment, this would imply that
AUJ ∈ GJ . Hence, using the definition of Sonneveld subspaces, we can write

AUJ = PJ(A)W with W⊥KJ(A∗,R).

Let q ∈ {1, . . . , s}, and let wq ≡Weq. Now note that, since wq⊥KJ(A∗,R) we have

∀i<(J−1)R
∗Awq = 0.

Hence, if we write PJ(A) =
∑J
i=0 αiA

i, with coefficients αi ∈ C, we yield

R∗PJ(A)wq =

J∑
i=0

αiR
∗Aiwq = αJR∗AJwq.

First, observe that we have

αJ =

J∏
i=1

ωi.

and second that if we, for simplicity, assume that{
yi
∣∣ i = 1, . . . , N,yi ∈ CN , ‖yi‖2 = 1,Ayi = λiyi, |λi| ≥ |λi+1|

}
forms a basis of eigenvectors of A spanning CN , we can write

wq =

N∑
i=1

βiyi with coefficients βi ∈ C,

56

CHAPTER 9. RESIDUAL GROWTH IN RIDR(S) 57

we, for a sufficiently high value of J , have, assuming β1 6= 0

AJwq ≈ β1λ
J
1 y1,

as repeated multiplication of A with any vector will ultimately result in a vector pointing in
the direction of the eigenvector component present with largest absolute eigenvalue. Now,
when we assume that ∀i≤J |ωi| < 1

|λ1| , we see that ‖R∗PJ(A)wq‖2 will be very small for all

1 ≤ q ≤ s. Hence, the norm of R∗AUJ we will be very small, thus the norm of σ−1 will be
very large.

From this rough analysis we can see that the balance between the values of (ω)k∈N and
the eigenvalues of A will ultimately govern the growth in the first iteration of the recycling
run. A natural question that arises would then be why do we not have this problem in
every iteration of the seed run? The answer in this particular theory would be that the
problematic factor αJ is exactly cancelled out when the k-th Π1 is applied to a vector that
is an element of Gk, which is the case in IDR(s): We have, in iteration k,

r′k = Π1rk = rk −AUkσ
−1R∗rk.

Write
AUk = PJ(A)W, rk = PJ(A)vk with W,vk⊥Kk(A∗,R).

Now, by the same reasoning as above we have, with PJ(A) =
∑k
i=0 αiA

i,

R∗rk = αkR
∗Akvk.

Note also that we have
σ = αkR

∗AkW,

hence
σ−1 = α−1

k (R∗AkW)−1.

Therefore, we can derive that

r′k = PJ(A)vk − PJ(A)W(α−1
k (R∗AkW)−1)αkR

∗Akvk =

PJ(A)vk − PJ(A)W(R∗AW)−1R∗Akvk.

Ultimately yielding, if you will,

r′k = PJ(A)(I−W(R∗AkW)−1R∗Ak)vk.

From the but last expression we can see that the mechanism causing the growth in the
recycling run, no longer plays its role. Furthermore, in terms of norm-wise growth, we may
hope that the higher powers of A are compensated for by higher powers of A−1.

9.2 Experimental verification

In order to verify the above theory, we present below the results of two experiments. Both
have the same set-up, but use a different problem as input. We will be inspecting the
2-norms of three quantities, after J iterations. That is (using the theory presented above):

CHAPTER 9. RESIDUAL GROWTH IN RIDR(S) 58

1) σ−1 = (R∗AUJ)−1 = (αJR∗AJW)−1 = 1
αJ

(R∗AJW)−1. We expect that the factor
1
αJ

plays an important role in the norm of this quantity, as well as in ‖r̃1‖2.

2) r̃1, the first residual (after r̃0) of the recycling run.

3) R∗r̂J = αJR∗AJ v̂k, with r̂J ≡ rJ
‖rJ‖2

.

Now, in the first experiment, we will perform IDR(s) with the following inputs

A =


1 1

1 1 0
. . .

. . .

0 1
1

 ∈ C20×20.

We choose b and b̃ random but normalized, x0 = 0. Note that as ‖r̂J‖2 = ‖r̃0‖2 = 1, we
may hope to see a clear distinction between the effect of r̂J ∈ GJ and r̃0 /∈ GJ We set s = 1

and R =
~1

‖~1‖
2

. This last choice is made to ensure that left-multiplication with R∗ does not

annihilate values in the quantities to be measured, as could be the case with a randomly
chosen R. Now, for J = 5, we perform J iterations of IDR(s) in which we do not choose
ωk to be minimizing the norm of rk+1, but rather set them to fixed values, and fetch UJ .
We let (ωk)Jk=1 vary from 102 down to 10−3 with step size −0.2 in the exponent, resulting
in values for αJ varying from 1010 down to 10−15.
Now note that the eigenvalues of A are all equal to 1, which makes the terms containing
higher powers of A a bit more controllable, norm-wise. This, in conjunction with b and
b̃ (and hence r̃)) being vectors of unity, makes that we may expect the following for the
quantities to be measured:

1)
∥∥σ−1

∥∥
2
≈ αJ .

2) ‖r̃1‖2 ≈ αJ .

3) ‖R∗r̂J‖2 ≈
1
αJ

.

Figure 9.1 summarizes the results and verifies the expectations for the cases in which
|ωk| < |λ1| = 1, as the graph of

∥∥σ−1
∥∥

2
and ‖r̃1‖2 nicely coincide for these values for ωk,

and the graph of ‖R∗r̂5‖2 showing the inverse movement as expected.

CHAPTER 9. RESIDUAL GROWTH IN RIDR(S) 59

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

α5(=
∏5

i=1 ωi)

||σ−1||2
||r̃1||2
||R∗

r̂5||2

Figure 9.1: The measured history of the quantities from a run on a 20 × 20 bi-diagonal matrix.
We can observe that using small values for the relaxation parameters indeed causes growth in the
first residual in the recycling run as predicted.

Repeating the same experiment for sherman4 shows the same pattern, as shown in
Figure 9.2

10
−60

10
−40

10
−20

10
0

10
20

10
40

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

α15(=
∏15

i=1 ωi)

||σ−1||2
||r̃1||2
||R∗

r̂15||2

Figure 9.2: The same experiment as shown in Figure 9.1, but using sherman4 as a test problem.
Again, notice the growth for smaller values for the relaxation parameters.

Note that both graphs also show growth of ‖r̃1‖2 for large values of αJ , and thus ωi.
This can be justified by realizing that the algorithm uses multiple multiplications with

CHAPTER 9. RESIDUAL GROWTH IN RIDR(S) 60

(I− ωk+1A) to construct r̃k+1. In particular, we have that

UJ = (I− ωkA)V with V orthonormal,

hence ‖V‖2 = 1. Now, numerical inspection of the spectrum of sherman4 yields us that
Λ(A) ⊂ [1, 67], hence we may expect that ‖wiA‖2 ≈ ωi · 67. Now focusing on the r̃1;

r̃1 = (I− ω̃1A)(r̃0 −A(I− ωJA)Vσ−1R∗r̃0),

and noting that we have used ω̃1 = ωJ , simply calculating norms of the individual terms
yield us results that are indeed of the same order as shown in the graphs. Hence, choosing
ωk very large, blows up the residual norms, as there is a lack of compensation from σ−1.
Finally, note that the effect on sherman4 is most evident for αJ < 10−20, meaning that
the values for ωi used were smaller than

15
√

10−20 ≈ 1
22 . This value could be explained

by the fact that its inverse is lies in [1, 67] ⊂ R, and therefore it could very well be that it
corresponds to a combination of eigenvalues of A that correspond to the eigenvectors making
up W, similar to our analysis using the eigenvectors with largest (absolute) eigenvalue.
We conclude this chapter with a second experiment in which we compare two recycled runs
on the same bi-diagonal matrix of previous experiments., each recycling a different search
matrix; a regular one, and one resulting from a run with fixed, and constant values for ωk,
that we will call the special seed. We can observe that the run recycling the special search
matrix does not exhibit growth in the first iteration. Of course, this example is rather
clinical, and this result does not easily apply to larger matrices with more daunting spectra,
which would make the results much harder to interpret correctly.

0 5 10 15 20 25 30 35 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

MV

||
r
k
||
2

Regular seed

Seed with ωk = 1

Regular recycling

Recycling special seed

Figure 9.3: The theory in action on a 20x20 bi-diagonal matrix. We can witness the lack of growth
in the first iteration of the run recycling the special seed, which can be explained by having αJ = 1.
We may for this reason expect a more accurate result from the special recycling run, even if the
convergence takes equally many IDR cycles.

Chapter 10

The IDR Projection Theorem

The theory on termination developed by Neuenhofen (Section 7.2) gives us theoretical upper-
bounds, but does not provide much insight into the mechanisms and numerical aspects
the make RIDR(s) fail in some cases and show convergence much faster than predicted in
other cases. In this chapter we will try to apply theory on spectra of involved matrices to
explain the prosperous convergence results, leading to perhaps an plausible theory, that,
unfortunately, seems to be contradicted by numerical experiments.

10.1 Theory on Spectra

In a paper by Collignon, Sleijpen and Van Gijzen ([1]) theory is presented in which an
IDR-cycle is interpreted as a single step of what is called Richardson iteration on a pre-
conditioned system. Richardson iteration is a simple recursive scheme resulting in a Krylov
subspace-method, that is summarized by the following equations.

rk+1 = rk −Ark = (I−A)rk

xk+1 = xk + rk.

We can see that when all eigenvalues of I−A are strictly smaller than 1 in absolute value,
the residual norm will gradually shrink to 0, at which point the method has found the
exact solution x. Since we may not expect from a problem in general that I − A meets
this requirement, a common technique1 known as deflation is used which consists of pre-
conditioning the problem with a matrix P such that PA does have a spectrum with the
desired property as much as possible. Now, pre-conditioning is a field of research on its
own that is beyond the scope of this thesis, but we will summarize the aspects that are
important for this chapter. Restricting ourselves to this particular situation, we will regard
an IDR-cycle as a Richardson step applied to the system

PAx = Pb,

in which P is a deflation type pre-conditioner, meaning that (part of) its purpose is to
remove certain unwanted eigenvalues from the spectrum of A. Usually, in the context of
Krylov subspace methods, one tries to cluster the eigenvalues of A away from zero, as

1which is not exclusive to Richardson iteration but is commonly used within the context of Krylov
subspace methods

61

CHAPTER 10. THE IDR PROJECTION THEOREM 62

small eigenvalues hamper the convergence in CG-type methods. We will first show that
the structure of a Richardson step applied to a deflated system is indeed equivalent to an
IDR-cycle, before shifting our attention to the spectrum of this deflated A.

IDR-cycle as Richardson step

First, we re-write some quantities to make the Richardson structure more apparent. Define

Qk ≡ Uk(R∗AUk)−1R∗, and Pk ≡ ωk+1Π1 + Qk,

we then have

rk+1 = (I− ωk+1A)Π1rk = rk −AQkrk − ωk+1Ark + ωk+1A
2Qkrk = rk −APkrk,

and
xk+1 = xk + Pk(b−Axk).

Without elaborating too much on the details here (they are all explained in [1]), Pk can be
seen as a variable deflation-type pre-conditioner. Variable, in the sense that Pk is dependent
on the IDR-cycle or iteration number k. Interestingly, it turns out that, in IDR(s), we can
influence the spectrum of PkA during the iterative process. In particular, it turns out that
Λ(PkA) is related to Λ(Pk+1A). We will continue by stating the theorem that is central
in this chapter, followed by its implications and numerical experiments based on which we
will conjecture the positive influence of these mechanisms in the case of RIDR(s).

Spectral aspects

To ease notation, define for the remainder of this chapter

µi ≡
1

ωi
,

for the sequence of relaxation parameters (ω)k∈N+
used in IDR(s). We start by restating a

theorem which can be found in [1].

Theorem 10.1. The IDR Projection Theorem
Let k ∈ N, then for some n× s-matrix W⊥Kk(A∗,R) and P̃k(ξ) ≡

∏k
i=1(µi − ξ), we have

Λ(Π1A) =
{

0
}
∪
{
λ
∣∣ P̃k(λ) = 0

}
∪
{
λ
∣∣ Det(R∗(A− λI)−1W) = 0

}
.

In particular, the zero eigenvalue, and the zeros of P̃k have geometric multiplicity s.

Proof. (We will prove the part of the IDR-theorem that we will use in the remainder of this
chapter. That is: We omit the prove of

{
λ
∣∣ Det(R∗(A − λI)−1W) = 0

}
⊂ Λ(PkA) (It

can be found in [1]), and prove only that
{

0
}
∪
{
λ
∣∣ P̃k(λ) = 0

}
⊂ Λ(Π1A), and that the

elements in these subsets have geometric multiplicity s.)
Firstly, by definition of Π1 we have

Π1AUk = AUk −AUk(R∗AUk)−1R∗AUk = AUk −AUk = O,

CHAPTER 10. THE IDR PROJECTION THEOREM 63

hence the columns of Uk form s independent eigenvectors of Π1A with eigenvalue 0. Note
that AUk ∈ Gk implies that for any iteration k we have, by the definition of Sonneveld
subspaces,

AUk = PkW with W⊥Kk(A∗,R),

Through re-scaling with a factor
(∏k

i=1
1
ωi

)
, can thus also state that

AUk = P̃kW̃ with W̃⊥Kk(A∗,R),

and hence, for any ν ∈
{
µ1, . . . , µk

}
(the zeros of P̃),

AUk = (νI−A)W′ with W′⊥R⊥,

and

W′ ≡ (νI−A)−1P̃kW̃.

(Note that linear factors (µiI−A) commute with each other.)
We now have

(νI−ΠkA)W′ = (νI−A)W′ + AQkAW′ =

(νI−A)W′ + AUk(R∗AUk)−1R∗AW′ =

(νI−A)W′(I + (R∗AUk)−1R∗AW′).

Next, note that R∗AUk = R∗(νI −A)W′ = νR∗W′ −R∗AW′, and since W′⊥R⊥, this
equals −R∗AW′. Hence

(νI−ΠkA)W′ = (νI−A)W′(I− (R∗AW′)−1R∗AW′) = O.

We may conclude that W′ is in the kernel of (νI − Π1A), hence the columns of W′ are
eigenvectors with eigenvalue ν. Therefore ν is an eigenvalue of Π1A with geometric multi-
plicity s.

Summarizing, IDR Projection theorem relates all the chosen ωk (and hence µk) to the
eigenvalues of Π1A. In particular, we see that there is a build up of clusters of size s of
eigenvalues in Λ(Π1A) as more IDR-cycles are performed. The reason why we might be
interested in these eigenvalues starts with the following lemma.

Lemma 10.1. For all IDR-cycles we have

Λ(Π1A) =
{

0
}
∪
{
λs+1, . . . , λN

}
⇒

Λ((Π1 + Qk)A) =
{

1
}
∪
{
λs+1, . . . , λN

}
where the eigenvalues 0 and 1 both have multiplicity s.

CHAPTER 10. THE IDR PROJECTION THEOREM 64

Proof. Note that for Ukei with i = 1, . . . , s, we have (Π1 + Qk)AUk = Uk, and, as men-
tioned in the proof of theorem 10.1, Π1AUk = O. Hence the eigenvectors of Π1A cor-
responding to zero are the same eigenvectors of (Πk + Qk)A that correspond to 1. For
i = s + 1, . . . , N , let (vi, λi) be an eigenpair such that Π1AΠ0vi = λiΠ0vi. (Recall that
Π1A = (Π1)2A = Π1AΠ0.) Then, since

QkAΠ0 = O,

we have
(Π1 + Qk)AΠ0vi = Π1AΠ0vi + QkAΠ0vi = λiΠ0vi.

Hence, excluding the zeros that are replaced by ones, the eigenvalues of (Πk+Qk)A are the
same as the eigenvalues of Π1A with eigenvectors Πkvi.

Having this lemma in place, we can describe the spectrum of PkA, which is of direct
influence in the ’Richardson step’

rk+1 = (I−PkA)rk.

Corollary 10.1. Spectrum of PkA
For k ∈ N we have

Λ(PkA) =
{

1
}
∪
{
ωk+1 · µi

∣∣ i = 1, . . . , k
}
∪
{
ωk+1 · λ

∣∣ Det(R∗(A− λI)−1W) = 0
}
.

Proof. Let k ∈ N and let(λ,v) be an eigenpair of ΠkA. Then

PkAv = (ωk+1Πk+Qk)Av = ((ωk+1+1−1)Πk+Qk)Av = ωk+1ΠkAv+(Πk+Qk)Av−ΠkAv.

Now by lemma 10.1 and theorem 10.1 it follows that if λ = 0, PkAv = v, and if λ 6= 0,
PkAv = ωk+1λv.

We may thus conclude that, in IDR, the spectrum of PkAv is related to the sequence
ω. Note that the corollary actually states that the eigenvalues of PkA will get increasingly
clustered during the process. Since the above mentioned spectra are fully governed by the
auxiliary vectors Uk, the coefficient matrix A, and the test vectors R, we may suspect these
results to be related to the convergence of a run of RIDR(s). By this we mean, while we do
not explicitly reuse (ω)Ji=1, the sequence already had its spectral impact on P̃1A and hence
P̃kA, for any k. We will see that we can not simply extend the proof of the IDR projection
theorem to apply to RIDR(s) in a sense that the spectrum corresponding to the seed run
will be retained, although experimental results seem to suggest exactly that. After that, we
will try to understand why this clustering might be beneficial.

10.2 The IDR Projection and RIDR(s)

Note that in the proof of the IDR Projection Theorem, we have repeatedly used that AUk ∈
Gk by stating that AUk = Q(A)W for some polynomial Q and some n× s-matrix W with
some orthogonality properties. Now note that when performing a restart, we need not have
r̃0 ∈ GJ . That is, the first residual of the restarted run, does not need to be an element of
the Sonneveld space from which we have fetched our auxiliary vectors. Now, using Lemma
5.1, it follows that if we try to express AŨ1 in terms of GJ , we are forced to include the
space spanned by r̃0, as was exactly the use of theM-spaces. This eliminates the possibility

CHAPTER 10. THE IDR PROJECTION THEOREM 65

to express AŨ1 as some polynomial of the form P̃1PJ with PJ the stabilization polynomial
of the seed-run up to the J-th iteration.
It is unfortunate that we can not (and have not succeeded in) extend(ing) the scope of the
IDR projection theorem to a run of RIDR(s), as we will see in experiments that there is a
clear indication that much of the spectral structure of PJA is preserved in the beginning
phase of the recycling run, which could possibly be related to the speed-up in convergence.

Numerical results hinting on preservation of spectral structure in RIDR(s)

Although we hare lacking in a theoretical ground to expect Λ(P̃A) to be related to ω (the
relaxation parameters from the seed run). We can, by performing experiments and numer-
ically inspecting Λ(P̃A), see why the IDR Projection Theorem seems like a nice starting
point in explaining the, sometimes impressive, convergence behaviour of RIDR(s). Below
the results of two similar experiments are shown, in which we compare the spectra at dif-
ferent iterations in a seed-run with a corresponding restarted run on the same problem but
with a different right-hand side, b̃.
The experiments shown were set-up as follows. For some coefficient matrix A, two orthog-
onal right-hand side vectors , b and b̃, were generated. These right-hand side vectors are
chosen to be orthogonal to each other, to emphasize that the vectors may have as little as
possible to do with each other. We choose test vectors random and orthonormalize R as
we always do in standard IDR(s). Then, first a regular run of IDR up to some iteration J
is done, and for several i ∈ N we fetch Uk for k = 1, . . . , i, J − i, . . . , J . With these Uk, we
construct the corresponding Π1 and PkA, of which Matlab’s ’eig’ function is used to obtain
approximations to all the eigenvalues of PkA. We define Ek to be the array of eigenvalues
returned by eig(PkA). This gives us an overview of the spectra in both the starting and
ending fase of the seed run. Next, we perform a restarted run using Ũ0 = UJ , and for the
same i, fetch the Ũk for k = 1, . . . , i. We construct P̃kA and obtain arrays Ẽk containing
approximations to its eigenvalues. Next, to account for the effects of working in finite arith-
metic, we set some cluster criterion κ ∈ R that will act as the maximum Euclidean distance
that two eigenvalues of the same operator may have in order to regard them as being in the
same cluster. Using this criterion, we let an algorithm loop over Ek and Ẽk for each k and
construct a list of clusters and their size by letting an eigenvalue that is not already in a
cluster (i.e. has Euclidean distance greater than κ to all already known cluster centers) be
a new cluster of size 1. And, if the eigenvalue has Euclidean distance to a cluster smaller
than κ, the size of this cluster is incremented by 1.

Experiment 1: A diagonal

The following table summarizes the results for the experiment performed on a 35 × 35
diagonal matrix A = diag([0.1 : 0.1 : 2 3 : 17])2 that we have used before. The small
size should keep round-off error to a minimum enhancing the visibility of the effect. Here
κ = 0.001, s = 6, i = 3, and J = 7 are used, hence we should see the formation of clusters of
size 6. Note that we can clearly see the build-up of clusters in the first 7 iterations, and how
the structure of the spectrum of PJA is still visible in the spectrum of P̃kA for k = 1, 2, 3.

2Matlab notation for the diagonal matrix with diagonal elements 0.1 up to 2 with step size 0.1, followed
by the values 3 up to 17 with step size 1

CHAPTER 10. THE IDR PROJECTION THEOREM 66

Table 10.1: Part of the spectral history of the seed and recycling run on a 35×35 diagonal matrix.
In the columns showing the eigenvalue clusters of P̃kA, the seemingly retained clustered structure
of the spectrum of PJA are encircled.

Eig(P1A) Size Eig(P2A) Size Eig(P3A) Size
1.000 + 0.000i 6 1.000− 0.000i 6 1.000 + 0.000i 6
0.009 + 0.000i 1 2.492 + 0.000i 6 1.228 + 0.000i 6
0.019− 0.003i 1 0.025 + 0.000i 1 3.061− 0.000i 6
0.019 + 0.003i 1 0.054− 0.010i 1 0.057 + 0.000i 1
0.037− 0.002i 1 0.054 + 0.010i 1 0.096− 0.009i 1
0.037 + 0.002i 1 0.082 + 0.000i 1 0.096 + 0.009i 1
0.046 + 0.000i 1 0.101 + 0.000i 1 0.126 + 0.000i 1
0.053 + 0.000i 1 0.118 + 0.000i 1 0.164 + 0.000i 1
0.067 + 0.000i 1 0.134 + 0.000i 1 0.204− 0.011i 1
0.072 + 0.000i 1 0.165 + 0.000i 1 0.204 + 0.011i 1
0.079 + 0.000i 1 0.179 + 0.000i 1 0.249 + 0.000i 1
0.086 + 0.000i 1 0.198 + 0.000i 1 0.258 + 0.000i 1
0.093 + 0.000i 1 0.213 + 0.000i 1 0.257− 0.088i 1
0.075− 0.064i 1 0.233 + 0.000i 1 0.257 + 0.088i 1
0.075 + 0.064i 1 0.263 + 0.000i 1 0.306 + 0.000i 1
0.106 + 0.000i 1 0.271 + 0.000i 1 0.323 + 0.000i 1
0.110 + 0.000i 1 0.296 + 0.000i 1 0.360− 0.005i 1
0.120 + 0.000i 1 0.324 + 0.000i 1 0.360 + 0.005i 1
0.131− 0.009i 1 0.366 + 0.000i 1 0.757 + 0.000i 1
0.131 + 0.009i 1 0.672 + 0.000i 1 1.968 + 0.000i 1
0.228 + 0.000i 1 0.853 + 0.000i 1 - -
0.336 + 0.000i 1 1.190 + 0.000i 1 - -
0.422 + 0.000i 1 1.633 + 0.000i 1 - -
0.571− 0.059i 1 2.078 + 0.000i 1 - -
0.571 + 0.059i 1 2.257 + 0.000i 1 - -
0.652 + 0.000i 1 - - - -
0.837 + 0.000i 1 - - - -
0.886 + 0.000i 1 - - - -
1.006 + 0.000i 1 - - - -
2.022 + 0.000i 1 - - - -

Eig(P5A) Size Eig(P6A) Size Eig(P7A) Size
1.000 + 0.000i 6 1.000 + 0.000i 6 1.000 + 0.000i 6
0.504− 0.000i 6 0.592 + 0.000i 6 0.918 + 0.000i 6
0.620 + 0.000i 6 5.138 + 0.000i 6 0.512 + 0.000i 5
0.086 + 0.000i 6 3.476 + 0.000i 5 4.444 + 0.000i 5
1.544 + 0.000i 5 4.269 + 0.000i 5 3.006 + 0.000i 4
0.083 + 0.000i 1 10.640 + 0.000i 4 3.692 + 0.000i 4
0.110− 0.014i 1 0.831 + 0.000i 1 9.202 + 0.000i 3
0.110 + 0.014i 1 1.177 + 0.000i 1 0.500 + 0.000i 1
0.126 + 0.000i 1 4.739 + 0.000i 1 1.345 + 0.000i 1
0.163 + 0.000i 1 - - - -
−0.601 + 0.000i 1 - - - -

Eig(P̃1A) Size Eig(P̃2A) Size Eig(P̃3A) Size
1.000 + 0.000i 6 1.000− 0.000i 6 1.000 + 0.000i 6

0.210 + 0.000i 6 2.331− 0.000i 6 0.593 + 0.000i 6

0.108 + 0.000i 5 0.495 + 0.000i 5 0.161 + 0.000i 6

0.182 + 0.000i 5 0.255 + 0.000i 5 0.126 + 0.000i 4

1.253 + 0.000i 4 0.428 + 0.000i 4 0.065 + 0.000i 4

0.632 + 0.000i 3 2.952 + 0.000i 3 0.109 + 0.000i 3

0.776 + 0.000i 3 1.489 + 0.000i 3 0.751 + 0.000i 3
1.934 + 0.000i 2 1.829 + 0.000i 2 0.085 + 0.000i 2
0.189 + 0.000i 1 0.260 + 0.000i 1 0.120− 0.012i 1

CHAPTER 10. THE IDR PROJECTION THEOREM 67

Experiment 2: A is a 225× 225 matrix from a discretized pde problem

To show the effect for a slightly more realistic matrix, we repeat the same experiment on a
225× 225 matrix called pde225 originating from a discretized partial differential equation.
For the experiment we use i = 3 and κ = 0.0001 as in the previous one but we choose
s = 8, J = 9.
In the tables we can clearly see how the clustered structure of Λ(PJA) is initially preserved
into Λ(P̃1A) and gradually broken off to form a similar structure during the first J IDR-
cycles of the experiments.

CHAPTER 10. THE IDR PROJECTION THEOREM 68

Table 10.2: We repeat the experiment on a more realistic problem, and can observe the same
effect.

Eig(P1A) Size Eig(P2A) Size Eig(P3A) Size
1.000 + 0.000i 8 1.000 + 0.000i 8 1.000 + 0.000i 8
0.098 + 0.000i 1 0.849− 0.000i 8 1.091 + 0.000i 8
0.057− 0.083i 1 −0.025 + 0.000i 1 1.285 + 0.000i 8
0.057 + 0.083i 1 0.087 + 0.000i 1 0.108 + 0.000i 1
0.150 + 0.000i 1 0.134 + 0.000i 1 0.164 + 0.000i 1
0.084− 0.187i 1 0.183− 0.005i 1 0.230− 0.007i 1
0.084 + 0.187i 1 0.183 + 0.005i 1 0.230 + 0.007i 1
0.207− 0.008i 1 0.212 + 0.000i 1 0.272 + 0.000i 1
0.207 + 0.008i 1 0.143− 0.159i 1 0.280− 0.059i 1
0.249 + 0.000i 1 0.143 + 0.159i 1 0.280 + 0.059i 1
0.257− 0.053i 1 0.218− 0.048i 1 0.168− 0.245i 1
0.257 + 0.053i 1 0.218 + 0.048i 1 0.168 + 0.245i 1
0.284 + 0.000i 1 −0.027− 0.227i 1 0.299 + 0.000i 1
0.288− 0.043i 1 −0.027 + 0.227i 1 0.294− 0.126i 1
0.288 + 0.043i 1 0.237 + 0.000i 1 0.294 + 0.126i 1

Eig(P7A) Size Eig(P8A) Size Eig(P9A) Size
1.000 + 0.000i 8 1.000 + 0.000i 8 1.000− 0.000i 8
0.986 + 0.000i 8 0.908 + 0.000i 8 1.513 + 0.000i 8
0.867 + 0.000i 8 1.033− 0.000i 8 1.374 + 0.000i 7
1.409 + 0.000i 8 1.047 + 0.000i 8 1.563 + 0.000i 7
1.152 + 0.000i 7 1.476 + 0.000i 8 1.585 + 0.000i 7
1.292 + 0.000i 7 1.738 + 0.000i 8 2.234− 0.000i 7
1.659 + 0.000i 7 1.206− 0.000i 7 2.630− 0.000i 7
0.293 + 0.000i 1 1.352 + 0.000i 7 1.825 + 0.000i 6
0.349− 0.008i 1 0.203 + 0.000i 1 2.047 + 0.000i 6
0.349 + 0.008i 1 0.240 + 0.000i 1 0.314 + 0.000i 1
0.358− 0.077i 1 0.364 + 0.000i 1 0.533− 0.126i 1
0.358 + 0.077i 1 0.375 + 0.000i 1 0.533 + 0.126i 1
0.373− 0.169i 1 0.372− 0.090i 1 0.554 + 0.000i 1
0.373 + 0.169i 1 0.372 + 0.090i 1 0.604− 0.102i 1
0.411− 0.028i 1 0.437− 0.026i 1 0.604 + 0.102i 1

Eig(P̃1A) Size Eig(P̃2A) Size Eig(P̃3A) Size
1.000 + 0.000i 8 1.000 + 0.000i 8 1.000 + 0.000i 8

0.691 + 0.000i 8 1.540− 0.000i 8 1.250 + 0.000i 8

1.124 + 0.000i 8 0.737− 0.000i 7 1.831 + 0.000i 8

0.503− 0.001i 7 1.012 + 0.000i 7 0.876 + 0.000i 7

1.000 + 0.001i 7 1.645 + 0.000i 7 1.203 + 0.000i 7

1.030− 0.000i 7 1.344 + 0.000i 6 1.955 + 0.000i 7

1.323 + 0.000i 7 1.937− 0.000i 6 1.599− 0.000i 6

0.762− 0.000i 6 1.115− 0.000i 5 1.792− 0.000i 6

0.786 + 0.000i 6 1.151 + 0.000i 5 2.303 + 0.000i 6

0.797− 0.000i 6 1.167 + 0.000i 5 1.325 + 0.000i 5

0.919 + 0.000i 6 1.508 + 0.000i 5 1.369 + 0.000i 4
0.166 + 0.000i 1 0.189− 0.059i 1 1.388 + 0.000i 4
0.000− 0.182i 1 0.189 + 0.059i 1 0.209 + 0.000i 1
0.000 + 0.182i 1 0.059− 0.226i 1 0.459− 0.161i 1
0.279 + 0.000i 1 0.059 + 0.226i 1 0.459 + 0.161i 1

CHAPTER 10. THE IDR PROJECTION THEOREM 69

Why convergence might benefit from spectral clustering of PkA

Let us recall the single step of Richardson iteration that was proven to be equivalent to the
k − th IDR-cycle:

rk+1 = rk −APkrk,

and assume that APk admits a basis of eigenvectors. Note that in the k-th iteration,
we may assume without loss of generalization that Λ(APk) consists of m clusters of size

at least 1, valued λ̂1, . . . , λ̂m, and define si to be the geometric multiplicity of eigenvalue
λ̂i. We also may assume the eigenvectors of APk that form a basis to be ordered in sets
νi ≡ {vi1, . . . ,visi} such that ∀q≤siAPkv

i
q = λ̂iv

i
q. By our assumption of the existence of a

basis of eigenvectors, we may write

rk =

m∑
i=1

(si∑
q

αiqv
i
q

)
, with scalars ∀i≤m∀q≤siαiq ∈ C.

Now, since in our implementations of IDR, we choose ωk such that

ωk = arg min
ω

‖(I− ωA)Π1rk‖2 = arg min
ω

‖rk −APkrk‖2 ,

from which it can be seen that, for any i ≤ m, ωk can be chosen such that the entire
component

∑si
q=1 α

i
qv

i
q is removed from rk, by setting ωk = 1

λ̂i
. Now since this will also

introduce new components in rk+1 corresponding to all other sets of eigenvectors, this
will most often not be the case. It should, however, be noted that the minimization of
‖rk+1‖2 will be hampered by outliers in Λ(APk) that have a large absolute value. I.e.,
when attempting to remove as many components from rk as possible, ωk must be correcting
for the components that might be introduced by the eigenvectors corresponding to these
outliers. Since by the IDR Projection Theorem we know that the spectrum of Π1 + Qk

will get increasingly clustered with every IDR-cycle, it will be beneficial for the spectrum of
APk to select ωk that on one hand acts as a minimizer (recall that a small value for ωk will
reduce the absolute value of the eigenvalues of APk, and at the same time should minimize
‖rk+1‖2), and on the other hand should not be too small so that it does not introduces
eigenvalue of large (µk+1 = 1

ωk+1
) absolute value and of geometric multiplicity s that might

hamper the minimization in the future.
Since the ωk are chosen to be locally optimal, we conjecture that the increased clustering
of Λ(APk) per IDR-cycle gradually removes outliers, increasing the effectiveness of the
polynomial step. In order to substantiate this conjecture, we make the following observation;
Assume that for some iteration number k, we have rk ∈ C such that

rk = inf
{
r
∣∣ r ∈ C ∧ ∀λ∈Λ(PkA) ‖λ‖2 ≤ r

}
.

That is, we know the radius of the smallest complex disk in which the spectrum of PkA
is fully contained. Then, any choice for ωk > r will be likely to be locally sub-optimal,
as it will always leave components in rk+1 of the eigenvectors corresponding to µi with
i ≤ k. This prevents very small eigenvalues, µk+1, from entering the spectrum of Pk+1A.
On the other hand, choosing ωk+1 very small will not be very effective, unless very small
eigenvalues are already in Λ(PkA). Therefore, it seems reasonable to assume that rk+1 ≤ rk,
which in conjunction with some lower bound, would imply that Λ(PkA) not only becomes
increasingly made up out of clusters, but the clusters themselves will be increasingly grouped

CHAPTER 10. THE IDR PROJECTION THEOREM 70

together. Note that this also would imply that C(Pk+1A) ≤ C(PkA). In particular, when
performing a recycling run, the already clustered spectrum makes for a faster decreasing
residual norm, as it is more likely that outliers have already been removed in the seed-run,
and the freedom in choosing ω̃k can be exploited more effectively. Note also that increasing
s would, according to this theory, be likely to lead to a increased effect, justifying results
presented in chapter 7.

Experimental falsification

We can simply check the validity of the above by comparing norm ratios
r′k

rk+1
and

r̃′k
r̃k+1

per

iteration between the seed run and the recycling run. Figure 10.1 below shows a typical
result. We can witness that there is no improvement to be seen in this ratio in the recycling
run, suggesting that the benefits of recycling are to be found in the projections Π1, as
this implies that, just like in regular IDR(s), the gross of the norm-reduction occurs when
constructing r′k.

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

IDR-cycles

||
r k

+
1
||
2
/|
|r

′ k
||
2

IDR(8) seed (average: 0.9254)

RIDR(8) (average: 0.9336)

Figure 10.1: An numerical experiment on dw2048: we do not see a significant lower value for
the ratio

r̃k+1

r̃′
k

. In fact, in this case, we see the contrary of what we might have hoped.

In Figure 10.1 we can firstly see no average decrease of
∥∥∥ rk+1

r′k

∥∥∥
2

as the iteration number

increases. Secondly, we can see that the average ratio in the recycling run is in this case
greater (and in most cases not significantly lower) than the average ratio in the seed run. As
dw2048 is a typical matrix on which using RIDR(s) has a large positive effect, this result
could be taken to be a serious counter-example to the above sketched theory.

Chapter 11

Discussion and Conclusions

Before drawing conclusions, we should elaborate somewhat on aspects that might have
influenced the results shown in this thesis. Starting off with the theoretical results from
Chapters 9 and 10, I will also comment on the experimental results from Chapter 7 and the
algorithms derived in Part I.

11.1 Discussion

Growth

it should firstly be noted that the theory on residual norm growth in IDR may only justify
the behavior for linear systems that are ‘nice’. That is, when dealing with truly large
matrices having a spectrum containing very diverse eigenvalues, the theory can only be part
of the story in finite arithmetic. In trying to counter the growth in experiments using, for
example, sherman5, using all ones for the relaxation parameters, the seed may not even
converge, and large errors caused by round-off always tend to make theory aimed at exact
arithmetic less applicable.

Applicability of IDR Projection Theorem

In Chapter 10 we have seen an attempt at justifying the success of recycling auxiliary vectors
which should also hint on the convergence of IDR methods in general. Besides from the
theory not seeming to hold, one could argue that a lot of extra work is to be done if it is
supposed to lead to theory with any predictive power. That is, we should for example have
knowledge of the entire spectrum of PkA, for usually, since the seed run is supposed to
terminate for k � N (this is what makes Krylov subspace methods successfully), only a
fraction of Λ(PkA) will consist out of the mentioned clusters. This would also imply the
need for much greater understanding of the relation with the auxiliary vectors. It should
be noted that a theory like this will be much more complicated than the known bounds for
CG based on the spectrum of A.

Experimental results using RIDR(s)

In this thesis results of spectacular speed-up when using RIDR(s) or similar method are
presented. It should be emphasized though that there is a vast amount of input problems for
which recycling does not yield such nice results. Although many ‘well behaved’ matrices have

71

CHAPTER 11. DISCUSSION AND CONCLUSIONS 72

shown to be very well suited for these methods, one might want (or not) to experiment with
different problems found in the Matrix Market [6], for many of them will make RIDR(s) fail.
It could be argued though that the matrices from Matrix Market are meant to be pathological
examples of linear systems, and that one should focus on more practical examples that are
known to work well with Krylov subspace-like methods.

The implementations used

As stated before, the used implementations (which can be found in Appendix A) are by
no means the most stable, or efficient, but are mainly written for educational purposes
and to have the flexibility/easy of editing to be suited for the experiments done for this
thesis. Apart from, for example IDRStab being very slow (CPU-time wise, not MV-wise,
these short comings may have had serious influence on experimental results when it comes
to stability. Again, in particular our implementation of IDRStab gets unstable for ` > 4,
which would be totally unacceptable in any setting other than this one.

11.2 Conclusions

In this work we have made plausible the effectiveness of recycling auxiliary vectors in IDR-
methods, and that it is actually superior to explicitly recycling more information like re-
laxation parameters. In fact, we have shown that the relaxation parameters will influence
the recycling run, without being recycled. We have elaborated on the issue of residual
growth in RIDR(s) and presented a plausible theory on the cause thereof, giving a concrete
starting point of how to counter this problem in order to increase the numerical stability
of the method. Substantiating the possibilities, an experiment has been presented in which
the growth was countered by altering the seed run. It should be noted that once a stable
seed run has been done with favourable relaxation paramters, recycling its auxiliary vectors
in order to solve a larger sequence of linear systems get increasingly efficient. We have
presented experimental results hinting on a (perhaps only partially) structured deficiency

between the quantities A ∗ Uk and AUk , which on one hand might lead to insight in
the robustness of IDR-methods, and on the other hand may spark further improvements of
IDR-methods in general. These results are, to my best knowledge, new, and should certainly
be investigated further. Using IDR-specific spectral theory an attempt was made to justify
further the excellent convergence properties of IDR(s) and IDRStab, which at the same time
would naturally extend to the recycling variant, RIDR(s). The approach turned out to be
not consistent with the outcome experiments, but has the advantage of being perhaps more
of a problem-specific bottom-up approach to termination as opposed to the more common
perspectives on the matter for IDR-methods (based on dimension reduction of Sonneveld-
and/orM-spaces) and most Krylov subspace-methods (based on the Cayley-Hamilton the-
orem), which both tend to be overly pessimistic for many practical situations.

Recommendations concerning further research

Concerning further research it would be advisable to prioritize the gaining of more theoretical
insight in the role of both search matrices and relaxation parameters, and in particular
their effect on the iteration process as a whole rather than a single step. They may very
well be the key to the development of memory-efficient short-recurrence methods exhibiting
convergence behaviour similar or better than GMRES. I believe the IDR-projection theorem

CHAPTER 11. DISCUSSION AND CONCLUSIONS 73

might still lead to such insights, but different approaches of how to apply the theorem should
be thoroughly explored. It should be emphasized that the choice of AU0 being a Arnoldi
basis of AKs(A, r0) is still the only structured choice yielding fine results known, without
any concrete justifying theory other than that is makes IDR(s) a Krylov subspace method.
I believe IDR methods does not need this Krylov subspace framework, or, at least not in
this way. (IDR(s) constructs Krylov like structures, as can be seen in Lemma 5.1.)
We have seen the possibilities of introducing new frameworks in terms of search spaces and
the like (Krylov subspaces, Sonneveld subspaces, M-spaces). Searching for more refined
structures that apply to existing methods like the ones discussed in this work might as well
lead to a better understanding of the underlying mechanisms of convergence, and perhaps a
proper extension of the IDR-theorem to the setting of RIDR(s). In particular, the sequences
of shrinking spaces that we have seen in this thesis have the advantage of enabling theories
on termination other than the classical Cayley-Hamilton and Krylov subspace approach,
which has clear short comings in predictive power in most practical situations.

That was it!

Thank you very much for taking the time to read my thesis.

Bibliography

[1] T. Collignon, G.L.G. Sleijpen, and M.B. van Gijzen. Interpreting IDR(s) as a deflation
method. Reports of the Department of Applied Mathematical Analysis, 10-21, 2010.

[2] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of
a conjugate gradient method. SIAM Journal on Numerical Analysis, 21(2):352–362,
1984.

[3] Roger Fletcher. Conjugate gradient methods for indefinite systems. Numerical analysis,
pages 73–89, 1976.

[4] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for
solving linear systems, volume 49. NBS, 1952.

[5] N.J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[6] Matrix Market. Available on www at url http://math. nist. gov. Matrix-Market, 2007.

[7] M. Miltenberger. Die IDR(s)-Methode zur Lösung von parametrisierten Gleichungssys-
temen. PhD thesis, Diploma Thesis, TU Berlin, 2009.

[8] M.P. Neuenhofen. Short-recurrence and-storage recycling of large krylov-subspaces
for sequences of linear systems with changing right-hand-sides. arXiv preprint
arXiv:1512.05101, 2015.

[9] M.P. Neuenhofen. M(s)stab(l): A generalization of IDR(s)stab(L) for sequences of
linear systems. arXiv preprint arXiv:1604.06043, 2016.

[10] Lewis Fry Richardson. The approximate arithmetical solution by finite differences of
physical problems involving differential equations, with an application to the stresses
in a masonry dam. Philosophical Transactions of the Royal Society of London. Series
A, Containing Papers of a Mathematical or Physical Character, 210:307–357, 1911.

[11] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[12] V. Simoncini and D.B. Szyld. Interpreting IDR as a Petrov-Galerkin method. SIAM
Journal on Scientific Computing, 32(4):1898–1912, 2010.

[13] Gerard LG Sleijpen and Diederik R Fokkema. Bicgstab (l) for linear equations involving
unsymmetric matrices with complex spectrum. Electronic Transactions on Numerical
Analysis, 1(11):2000, 1993.

74

BIBLIOGRAPHY 75

[14] Gerard LG Sleijpen and Henk A Van der Vorst. Maintaining convergence properties of
bicgstab methods in finite precision arithmetic. Numerical algorithms, 10(2):203–223,
1995.

[15] Gerard LG Sleijpen, Henk A Van der Vorst, and Diederik R Fokkema. Bicgstab (l) and
other hybrid bi-cg methods. Numerical Algorithms, 7(1):75–109, 1994.

[16] Gerard LG Sleijpen and Martin B Van Gijzen. Exploiting bicgstab(`) strategies to
induce dimension reduction. SIAM journal on scientific computing, 32(5):2687–2709,
2010.

[17] G.L.G. Sleijpen, P. Sonneveld, and M.B. van Gijzen. Bi-CGSTAB as an induced di-
mension reduction method. Applied Numerical Mathematics, 60(11):1100–1114, 2010.

[18] G.L.G. Sleijpen and M.B. van Gijzen. Numer-
ical linear algebra - course material, chapter 1.
http://www.staff.science.uu.nl/ sleij101/Opgaven/NumLinAlg/Assignments/Theory1.pdf.

[19] G.L.G. Sleijpen and M.B. van Gijzen. Numer-
ical linear algebra - course material, chapter 11.
http://www.staff.science.uu.nl/ sleij101/Opgaven/NumLinAlg/Assignments/Theory11.pdf.

[20] P. Sonneveld. On the convergence behaviour of IDR(s). Reports of the Department of
Applied Mathematical Analysis, 10-08, 2010.

[21] P. Sonneveld and M.B. van Gijzen. IDR(s): A family of simple and fast algorithms for
solving large nonsymmetric systems of linear equations. SIAM Journal on Scientific
Computing, 31(2):1035–1062, 2008.

[22] Peter Sonneveld. Cgs, a fast lanczos-type solver for nonsymmetric linear systems. SIAM
journal on scientific and statistical computing, 10(1):36–52, 1989.

[23] H.A. van der Vorst. Iterative Krylov methods for large linear systems, volume 13.
Cambridge University Press, 2003.

[24] Henk A Van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for
the solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical
Computing, 13(2):631–644, 1992.

[25] M.B. van Gijzen and P. Sonneveld. Algorithm 913: An elegant IDR(s) variant that ef-
ficiently exploits biorthogonality properties. ACM Transactions on Mathematical Soft-
ware (TOMS), 38(1):5, 2011.

[26] P. Wesseling and P. Sonneveld. Numerical experiments with a multiple grid and a pre-
conditioned lanczos type method. Approximation methods for Navier-Stokes problems,
pages 543–562, 1980.

Appendix A

Matlab Code

IDR(s)

1

2 %˜˜˜
3 %
4 % Implementation o f IDR(s)
5 % Usage :
6 % [x , r log , mvlog , t log , t ,U,W] = i d r (A, b , x ,R, to l , maxit ,U, c a l c t r u e)
7 % x : approx . s o l u t i o n (output)
8 x : i n i t i a l x (input)
9 % r l o g : r e s i d u a l norm h i s t o r y

10 % mvlog : t o t a l MV usage per i t e r a t i o n
11 % t l o g : t rue r e s i d u a l norm h i s t o r y (s e t c a l c t r u e > 0)
12 % t : e lapsed time
13 % U: l a s t s e t o f aux . v e c t o r s
14 % W: sequence o f r e l a x a t i o n parameters
15 %˜˜˜
16

17 f unc t i on [x , r log , mvlog , t log , t ,U,AU,W] = i d r (A, b , x ,R, to l , maxit ,U, c a l c t r u e)
18 % i n i t i a l i z a t i o n
19 [N, s] = s i z e (R) ;
20 AU = A∗U;
21 r = b − A∗x ;
22 r l o g = norm(r) ;
23 t l o g = r l o g ;
24 mvlog = [0] ;
25 W = [] ;
26 k = 0 ;
27 t = −1;
28 i f ˜ c a l c t r u e
29 t i c ;
30 end
31 % main loop
32 whi le (r l o g (end) > t o l && k < maxit)
33 % ∗∗∗Dimension reduct i on step ∗∗∗
34 % Calcu la t i on o f rp , xp
35 s i g = R’∗AU;
36 alpha = s i g \(R’∗ r) ;
37

38 rp = r − AU∗ alpha ;
39 Arp = A∗ rp ;
40 xp = x + U∗ alpha ;

76

APPENDIX A. MATLAB CODE 77

41

42 % Calcu la t i on o f Ve1 (f i r s t column)
43 beta = s i g \(R’∗Arp) ;
44 V(: , 1) = rp − U∗beta ;
45 AV(: , 1) = Arp − AU∗beta ;
46 AAV(: , 1) = A∗AV(: , 1) ;
47 % Cal l o r thonormal i z ing subrout ine
48 [V(: , 1) ,AV(: , 1) ,AAV(: , 1)] = orth (V,AV,AAV, 1) ;
49

50 % Calcu la t i on o f r e s t o f V, AV, AAV
51 f o r q = 2 : s
52 beta = s i g \(R’∗AAV(: , q−1)) ;
53 V(: , q) = AV(: , q−1) − U∗beta ;
54 AV(: , q) = AAV(: , q−1) − AU∗beta ;
55 AAV(: , q) = A∗AV(: , q) ;
56

57 % Cal l o r thonormal i z ing subrout ine
58 [V(: , q) ,AV(: , q) ,AAV(: , q)] = orth (V,AV,AAV, q) ;
59

60 end
61 % ∗∗∗Polynomial s tep ∗∗∗
62 % Calcu la t i on o f omega
63 w = Arp ’∗ rp /(Arp ’∗Arp) ;
64 W = [W; w] ;
65

66 % Update to next r , x (now us ing r e l i a b l e updates !)
67 x = xp + w∗ rp ;
68 r = rp − w∗Arp ;
69

70 r l o g = [r l o g ; norm(r)] ;
71

72 % Update to U, AU
73 U = V − w∗AV;
74 AU = AV − w∗AAV;
75 % Book keeping
76 k = k+1;
77 mvlog = [mvlog k∗(s+1)] ;
78 i f (c a l c t r u e)
79 t l o g = [t l o g norm(b−A∗x)] ;
80 end
81 end
82 i f (˜ c a l c t r u e)
83 t = toc ;
84 end ;
85 end
86

87 f unc t i on [Vq,AVq,AAVq] = orth (V,AV,AAV, q)
88

89 i f (q>1)
90 % Orthogona l i za t i on (o f V) (Modif ied Gram−Schmidt)
91 mu = V(: , 1 : q−1) ’∗V(: , q) ;
92 Vq = V(: , q) − V(: , 1 : q−1)∗mu;
93 AVq = AV(: , q) − AV(: , 1 : q−1)∗mu;
94 AAVq = AAV(: , q) − AAV(: , 1 : q−1)∗mu;
95 % Normal izat ion (o f V)
96 nV = norm(Vq) ;
97 Vq = Vq/nV;
98 AVq = AVq/nV;
99 AAVq = AAVq/nV;

100 e l s e

APPENDIX A. MATLAB CODE 78

101 nV = norm(V(: , 1)) ;
102 Vq = V(: , 1) /nV;
103 AVq = AV(: , 1) /nV;
104 AAVq = AAV(: , 1) /nV;
105 end
106

107 end

APPENDIX A. MATLAB CODE 79

IDR(s)Stab(`)

1 %
2 % Implementation o f IDR(s) Stab (e l)
3 % Usage : [x , r log , mvlog , xlog , t ,U,AU] = i d r s t a b (A, b , x ,R, to l , maxit ,U, e l l ,

c a l c e r r o r)
4 %
5 f unc t i on [x , r log , mvlog , xlog , t ,U,AU] = i d r s t a b (A, b , x ,R, to l , maxit ,U, e l l ,

c a l c e r r o r)
6

7 g l o b a l n ; %Globa l i z e n f o r usage with index ing func t i on J
8

9 %i n i t i a l i z a t i o n
10 k = 0 ;
11 mvs = 0 ;
12 [n , s] = s i z e (R) ;
13 r = [b − A∗x] ;
14 r l o g = [norm(r)] ;
15 xlog = [r l o g (1)] ;
16 mvlog = [0] ;
17 U = [U;A∗U] ;
18 t = −1;
19 i f (˜ c a l c e r r o r)
20 t i c ;
21 end
22

23 whi le ((r l o g (end) > t o l) && (k < maxit))
24 xp = x ;
25 %Dimension Reduction Step
26 f o r j = 1 : e l l
27 % Part I
28 s i g = R’∗U(J (j) , :) ;
29 alpha = s i g \(R’∗ r (J (j−1))) ;
30

31 rp = r − U(n+1:end , :) ∗ alpha ;
32 rp = [rp ;A∗ rp (J (j−1))] ;
33 xp = xp + U(J (0) , :) ∗ alpha ;
34

35 % Part I I
36 beta = s i g \(R’∗ rp (J (j))) ;
37 V = rp − U∗beta ;
38 V = [V(: , 1) ;A∗V(J (j) , 1)] ;
39 V = orth (V, 1 , j) ;
40 f o r q = 2 : s
41 V(: , q) = ze ro s ((j +2)∗n , 1) ;
42 beta = s i g \(R’∗V(J (j +1) ,q

−1)) ;
43 V(1 : (j ∗n+n) , q) = V((n+1) : end , q−1) − U∗beta ;
44 V(: , q) = [V(1 : j ∗n+n , q) ;A∗V(J

(j) , q)] ;
45 V = orth (V, q , j)

;
46 end
47 i f (j<e l l)
48 U = V;
49 r = rp ;
50 e l s e
51 U = [V(J (0) , :) ;V(J (1) , :)] ;
52 r = rp (J (0)) ;
53 end

APPENDIX A. MATLAB CODE 80

54 end
55

56 % Polynomial Step
57 B = ze ro s (n , e l l) ;
58 f o r i = 1 : e l l
59 B(: , i) = rp (J (i)) ;
60 end
61

62 gamma = (B’∗B) \(B’∗ rp (J (0))) ;
63

64 r = r − B∗gamma;
65 x = xp ;
66 f o r i =1: e l l
67 x = x + gamma(i) ∗ rp (J (i −1)) ;
68 U(J (0) , :) = U(J (0) , :) − gamma(i) ∗V(J (i) , :) ;
69 U(J (1) , :) = U(J (1) , :) − gamma(i) ∗V(J (i +1) , :) ;
70 end
71 k = k+1;
72 r l o g = [r l o g ; norm(r)] ;
73 i f (c a l c e r r o r)
74 xlog = [x log ; norm(b−A∗x)] ;
75 end
76 mvlog = [mvlog ; mvlog (end)+e l l ∗ s+e l l] ;
77 end
78 i f (˜ c a l c e r r o r)
79 t = toc ;
80 end
81 AU = U(J (1) , :) ;
82 U = U(J (0) , :) ;
83 end
84

85 % Indexing func t i on
86 f unc t i on I = J (i)
87 g l o b a l n ;
88 I = [n∗ i +1:n∗ i+n] ;
89 end
90

91 % Orthonormal iz ing subrout ine (Modif ied Gram−Schmidt)
92 f unc t i on V = orth (V, q , j)
93 g l o b a l n ;
94 f o r i =1:q
95 i f (i==q)
96 V(: , q) = V(: , q) /norm(V(J (j) , q)) ;
97 e l s e
98 mu = V(J (j) , i) ’∗V(J (j) , q) ;
99 V(: , q) = V(: , q) − mu∗V(: , i) ;

100 end
101 end
102 end

Appendix B

Glossary of test matrices

sherman4, N = 1104, C(A) ≈ 2.3 · 103, Source: MatrixMarket, [6]

0 500 1000

0

200

400

600

800

1000

nz = 3786

Non−zero structure (3786 out of 1218816)

0 20 40 60 80
−1

−0.5

0

0.5

1
Scatter plot of Spectrum

sherman5, N = 3312, C(A) ≈ 1.9 · 105, Source: MatrixMarket, [6]

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

nz = 20793

Non−zero structure (20793 out of 10969344)

−200 0 200 400 600
−0.04

−0.02

0

0.02

0.04
Scatter plot of Spectrum

81

APPENDIX B. GLOSSARY OF TEST MATRICES 82

dw2048, N = 1000, C(A) ≈ 2.1 · 103

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 10114

Non−zero structure (10114 out of 4194304)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
x 10

−3Scatter plot of Spectrum

meier01, N = 1000, C(A) ≈ 7.4

0 500 1000

0

200

400

600

800

1000

nz = 6400

Non−zero structure (6400 out of 1000000)

0 0.5 1
−8

−6

−4

−2

0

2

4

6

8
Scatter plot of Spectrum

pde225, N = 225, C(A) ≈ 39.1

0 50 100 150 200

0

50

100

150

200

nz = 1065

Non−zero structure (1065 out of 50625)

0 5 10
−4

−2

0

2

4
Scatter plot of Spectrum

APPENDIX B. GLOSSARY OF TEST MATRICES 83

pde900, N = 900,C(A) ≈ 292.9

0 200 400 600 800

0

200

400

600

800

nz = 4380

Non−zero structure (4380 out of 810000)

0 5 10
−2

−1

0

1

2
Scatter plot of Spectrum

