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Introduction

In this thesis we study the existence of codimension-one symplectic foliations. Roughly speaking

these are decompositions of manifolds into hypersurfaces endowed with symplectic structures,

varying smoothly along the hypersurfaces. Proving the existence of these structures is far from

trivial. The main goal of this text is to reprove the following result:

Theorem ([Mit11]). There exists a codimension-one symplectic foliation on S5.

We will do so by proving a general theorem ensuring the existence of symplectic foliations on

certain manifolds, from which we obtain:

Theorem (5.2.5). There exists a codimension-one symplectic foliation on S5/Z3, and conse-

quently also on S5.

We begin with a small outline of the background and history of (symplectic) foliations.

History and background

A foliation on a manifold is a decomposition of that manifold into connected components of lower

dimension. The theory of foliations began in earnest when, in 1952, Georges Reeb constructed a

foliation on the three-dimensional sphere S3. Later, Lawson [Law71] used the theory of Milnor

fibrations to construct a foliation on S5 and later, on all spheres S2k+3, using so called open book

decompositions. Finally, Thurston [Thu76] answered the question of existence in full generality

by proving the following:

Theorem. A compact manifold admits a codimension-one foliation if and only if its Euler

characteristic vanishes.

Symplectic foliations arise from Poisson geometry as every Poisson manifold naturally carries a

(singular) symplectic foliation. Regular Poisson manifolds are in one-to-one correspondence with

symplectic foliations. The existence of these structures has turned out to be difficult to establish.

Even for the spheres there was no understanding until Mitsumatsu proved the existence of a

symplectic foliation on S5. In his PhD thesis [Tor15] Osorno Torres exhibited the proof of

Mitsumatsu and gave it a more geometric interpretation. His thesis served as a starting point

to this thesis.
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Structure of this thesis

Most of the theory in the first three chapters of this thesis can be found in some form in [Tor15].

In Chapter 1 we discuss the basic definitions regarding symplectic foliations and their rela-

tion to Poisson geometry.

In Chapter 2 we study how symplectic foliations behave under glueing. Most foliations on

closed manifolds are constructed by cutting the manifold into two pieces, foliating these pieces

separately and finally glueing the pieces together. To do as such we will need to define symplec-

tic foliations which have the property that they can be glued; these will be symplectic foliations

tame near the boundary. The main result of this chapter is:

Theorem (2.2.7). Let (Mi,Fi, ωi) be two manifolds with symplectic foliations tame near the

boundary such that the symplectic structures on the boundaries coincide. Then the symplectic

foliations F1 and F2 glue together to a symplectic foliation on M1 ∪M2.

In Chapter 3 we describe a method of constructing symplectic foliations which are tame near the

boundary. To do this we will study the behaviour of symplectic manifolds around their boundary.

We will be interested in two types of boundaries: cosymplectic type and contact type. Symplectic

structures of cosymplectic type at the boundary will induce cosymplectic structures on the

boundary. These cosymplectic structures are particularly well-behaved examples of symplectic

foliations. Symplectic structures of contact type at the boundary will induce contact structures

on the boundary. These are maximally non-integrable hyperplane distributions and can be

thought of as opposites of foliations. Using a local form of the symplectic structures near the

boundary we obtain the following result:

Theorem (3.4.7). Let (M,ω) be a symplectic manifold with boundary of cosymplectic type, then

M × S1 admits a codimension-one symplectic foliation which is tame near the boundary.

This theorem will be one of our main tools in constructing symplectic foliations. Finally we will

generalize this result to cosymplectic manifolds with boundary of s-type.

In Chapter 4 we discuss the definitions and constructions of open book decompositions. A

manifold with an open book decomposition will carry a foliation outside of a codimension-two

submanifold, this points towards a use of open books in constructing foliations. We describe how

to construct open book decompositions by interpreting them as generalized angular functions.

We also recall the definition of open book decompositions supporting a contact structure, which

are open books which behave nicely with respect to a contact structure on the manifold. These

open books have the property that they admit a symplectic foliation outside a codimension-two

submanifold and will be used extensively in proving our final result. The chapter ends with the

following result:
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Theorem (4.4.13). Let M be a principal S1-bundle over an integral symplectic manifold. Then

under certain conditions M admits an open book decomposition supporting a contact form.

We call the open book decompositions arising from this theorem Donaldson open book decom-

positions.

In Chapter 5 we will show that under certain extra conditions a Donaldson open book gives

rise to a codimension-one symplectic foliation. The further assumptions will be on properties of

the symplectic manifold, basically reducing the problem to a problem in symplectic geometry.

Finally we will use this result to prove the existence of a symplectic foliation on the lens space

S5/Z3 and consequently on S5.

In Chapter 6 we will move away from symplectic foliation and study complex foliations. These

are foliations together with a complex structure on each leaf, such that these structures vary

smoothly from leaf to leaf. We first discuss some of the background concerning constructing

complex foliations, namely describing them from an infintesimal point of view and glueing com-

plex foliations on manifolds with boundary. Then we will describe a plan for constructing a

complex foliation on S5, motivated by our results in earlier chapters.

In Chapter 7 we give an outlook on further research.

The following diagram gives an overview of the important ingredients of proving the existence

of a codimension-one symplectic foliation on S5.

Cor 5.2.5

Th 5.2.4

Th 5.1.1 Th 5.1.3 Th 4.4.16

Th 4.4.13

Prop 3.4.7 Th 4.4.4

Prop 3.2.6 Th 2.2.7 Lem 3.5.1 Th 4.1.12
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Chapter 1

Symplectic foliations

In this chapter we study the basic notions concerning symplectic foliations. In Section 1.1 we

recall the basic definitions from foliation theory. In Section 1.2 we give the definition of a

symplectic foliation. Finally, in Section 1.3 we recall the relation between Poisson geometry and

symplectic foliations.

1.1 Foliations

The main objects of interest in this thesis are foliations:

Definition 1.1.1. A foliation F of dimension k on a manifold Mn is a partition M = ∪xLx
into connected immersed submanifolds of dimension k. Furthermore, the partition is required

to satisfy the following local model: for every x ∈ M there is a neighbourhood U of x and

local coordinates (x1, . . . , xn) on U such that, for each element of the decomposition Ly, each

connected component of Ly ∩ U is described by the relations xk+1 = ck+1, . . . , xn = cn.

For every x ∈M , we call the submanifold which contains x the leaf though x, which we denote

by Lx. The codimension of a foliation is defined as n− k.

Definition 1.1.2. Let (Mi,Fi) be two foliated manifolds. An isomorphism of foliations

ϕ : (M1,F1)→ (M2,F2) is a diffeomorphism ϕ : M1 →M2, with the property that ϕ−1(F2) = F1.

Here ϕ−1(F2) is the foliation on M1 with leaves given by {ϕ−1(L) : L a leaf of F2}.

We define the tangent bundle of the foliation by TF =
⊔
x∈M TxLx. This forms a subbundle

of TM of rank k. We also define the normal bundle ν of the foliation as the vector bundle

(unique up to isomorphism) such that TM = TF ⊕ ν and the co-normal bundle as the dual

bundle ν∗.

5
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General foliations can be very wild, so we prefer to restrict ourselves to some special types:

Definition 1.1.3. A foliation F is called orientable if TF is an orientable vector bundle; it is

called co-orientable if the normal bundle of the foliation is orientable.

These two notions are equivalent on orientable manifolds:

Lemma 1.1.4. Let F be a foliation on an orientable manifold M . Then F is orientable if and

only if F is co-orientable.

Proof. Let k be the codimension of the foliation, and suppose that TF is oriented. Consider

any local frame X1, . . . , Xk of the normal bundle ν. We define an orientation on ν by declaring

this frame to be positive if and only if for every positive local frame Xk+1, . . . , Xn of TF the

local frame on M given by X1, . . . , Xn is positive. We thus conclude that the normal bundle is

orientable. The converse is proven similarly.

Distributions

The definition of a foliation as given in Definition 1.1.1 is very intuitive, but in practice it is not

very convenient. It turns out that it is much easier to consider foliations from an infinitesimal

point of view. For any foliation we can produce a subbundle of the tangent bundle, namely TF .

Subbundles of the tangent bundle are called distributions. To go back from distributions to

foliations we will need the following notion:

Definition 1.1.5. Let ξ ⊂ TM be a distribution on a smooth manifold M . A non-empty

immersed submanifold N ⊂ M is called an integral submanifold of ξ if TpN = ξp for every

p ∈ N . A distribution is called integrable if each point in M is contained in an integrable

submanifold.

By definition we have that TF is an integrable subbundle, hence we see that there is a one-to-

one correspondence between foliations and integrable distributions. Checking the integrability

condition is in general difficult to do directly, so we often use the following:

Theorem 1.1.6 (Frobenius). A distribution ξ ⊂ TM is integrable if and only if it is involutive,

that is, for any two sections X,Y ∈ Γ(ξ) we have [X,Y ] ∈ Γ(ξ).

This provides us with the following 1-1 correspondence:

{Foliations F on M} 1:1←→ {Involutive distribtions on M}.

We prefer to work with involutive distributions, hence from now on we will often identify folia-

tions with their corresponding distributions.
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Example 1.1.7. Let θ ∈ Ω1(M) be a nowhere vanishing closed one-form and consider the

distribution ker θ ⊂ TM . This distribution has corank one, and by an easy application of

Koszul’s formula we have that it is involutive. Hence we obtain a foliation of codimension one.

It is also co-orientable because θ gives a trivialization for the co-normal bundle. We will call

these foliations unimodular.

Example 1.1.8. (Products) The manifold M ×N carries two natural foliations both of which

we will call the product foliation.

Example 1.1.9. (Fibrations) Let π : M → B be a surjective submersion. Then the decompo-

sition of M in the fibres of π forms a foliation on M . Indeed by naturality of the Lie bracket it

follows that ker dπ is involutive.

Definition 1.1.10. The complex of foliated differential forms is defined as (Ω•(F), dF ) with

Ω•(F) := Γ(Λ•T ∗F),

and differential dF : Ω•(F) → Ω•+1(F), given by the Koszul formula: For α ∈ Ωk(F) and

X1, . . . , Xk+1 ∈ Γ(TF) we define

(dFα)(X1, . . . , Xk+1) =

k+1∑
i=1

(−1)i+1Xi(α(X1, . . . , X̂i, . . . , Xk+1))+∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

1.1.1 Codimension-one foliations

In this thesis we will only consider foliations of codimension one. The existence of these foliations

has been established in the following classical result:

Theorem 1.1.11 ([Thu76]). A compact manifold admits a codimension-one foliation if and

only if its Euler characteristic vanishes.

We are particular interested in codimension-one co-orientable foliations. Firstly because when

we consider manifolds with boundary we can study foliations for which the boundary is a leaf.

Secondly they are easy to describe, as is shown by the following proposition:

Proposition 1.1.12. There is a 1:1 correspondence between

• Codimension-one co-orientable foliations F on M .

• Equivalence classes of nowhere vanishing θ ∈ Ω1(M) satisfying θ ∧ dθ = 0.

Where two one-forms θ, θ′ ∈ Ω1(M) are equivalent if there exists a nowhere vanishing function

f such that θ = fθ′.



8 CHAPTER 1. SYMPLECTIC FOLIATIONS

Proof. Let θ ∈ Ω1(M) be such that θ ∧ dθ = 0. By Koszul’s formula we have that TF := ker(θ)

is involutive, hence by Frobenius’ theorem we obtain a foliation on M . We define φ : TM/TF →
M × R by φ(x, [v]) = (x, θx([v])). We easily check that this is well-defined and gives a trivi-

alization of the normal bundle. In particular ν is orientable and we thus conclude that F is

co-orientable.

Conversely, let F be a codimension-one co-orientable foliation. Because orientable line bundles

are trivial we have that ν is globally trivializable by some map ϕ : ν →M ×R. Define θ as the

composition:

θ : TF ⊕ ν −→ ν
ϕ−→M × R.

We see that θ is nowhere vanishing and as clearly TF ⊂ ker θ, we conclude that ker θ = TF .

We have that ker θ is involutive if and only if dθ|ker θ = 0 which implies that θ ∧ dθ = 0.

Definition 1.1.13. For a codimension-one co-orientable foliation F on M , we call a one-form

θ ∈ Ω1(M) such that ker θ = TF a form defining F .

Although codimension-one co-orientable foliations are quite abundant, unimodular foliations are

much rarer:

Theorem 1.1.14 (Tischler, [Tis70]). If a compact manifold admits a unimodular foliation, then

it fibres over S1.

Let dϕ denote the angular form on S1. For a fibration f : M → S1 we have that f∗(dϕ) defines

a unimodular foliation on M . However, not all unimodular foliations are of this form. Nonethe-

less, Tischler proves that any unimodular foliation can be approximated by these foliations.

Unimodular foliations therefore behave quite similar to foliations induced by circle fibrations.

1.2 Symplectic foliations

Now, we have recalled the definition of a foliation we are ready to give the definition of a

symplectic foliation. Intuitively, this should be a foliation together with a symplectic structure

on each leaf, such that the symplectic structure vary smoothly from leaf to leaf. This is made

precise in the following definition:

Definition 1.2.1. A symplectic foliation on a manifold M is a pair (F , ωF ), where F is a

foliation on M and ωF ∈ Ω2(F) is a foliated differential two-form for which dFωF = 0 and ωF

restricts to a non-degenerate form on each leaf.

An isomorphism of symplectic foliations (M1,F1, ω1) and (M2,F2, ω2) is a diffeomorphism

ϕ : M1 →M2 such that ϕ−1(F2) = F1 and ϕ∗(ω2) = ω1.
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Example 1.2.2. Let (ω, θ) with ω ∈ Ω2(M) and θ ∈ Ω1(M) be such that:

θ ∧ dθ = 0, dω ∧ θ = 0, ωn ∧ θ 6= 0.

Then (ker θ, ω|F ) defines a codimension-one symplectic foliation. Indeed the first condition

ensures involutivity of ker θ as before, the second closedness of ω|F and the third ensures that

the restriction of ω|F to each leaf is non-degenerate.

We note that the foliated form ωF of a symplectic foliation induces an orientation on TF . Hence

symplectic foliations are always oriented. If we assume that the symplectic foliation lives on an

oriented manifold, using Lemma 1.1.4 we have the following:

Proposition 1.2.3. Let (F , ω) be a codimension-one symplectic foliation on an orientable man-

ifold M . Then the foliation F is co-orientable.

This lemma shows that if we are looking for symplectic foliations on orientable manifolds, it is

no restriction to begin with co-orientable foliations.

Although the existence of codimension-one foliations on compact manifolds is completely solved

by Theorem 1.1.11, the corresponding problem for symplectic foliations is wide open. In this

thesis we will reprove the following result:

Theorem 1.2.4 ([Mit11]). There exists a codimension-one symplectic foliation on S5.

Our method will however deviate from Mitsumatsu’s. We will first establish the existence of a

symplectic foliation on the lens space S5/Z3 and then use this to obtain a symplectic foliation

on S5. This approach is different then Mitsumatsu’s who constructed the foliation directly on

S5.

1.3 Symplectic foliations as Poisson structures

In this section we will recall some basic definitions from Poisson geometry and consider its

relation with symplectic foliations. We will only give brief proofs and often refer to [FM15],

from which the contents of this section have been adapted. For completeness we will begin with

defining the correspondence between symplectic structures and Poisson structures. Then we will

generalise this to a correspondence between symplectic foliations and regular Poisson structures.

Basic definitions

We denote the set of all multivector fields on a smooth manifold M by Xk(M) := Γ(∧kTM).

Definition 1.3.1. Let ν ∈ Xk(M) and ζ ∈ Xl(M) be multivector fields. The Schouten-

Nijenhuis bracket of ν and ζ is the multivector field [ν, ζ] ∈ Xk+l−1(M) defined by:

[ν, ζ] = ν ◦ ζ − (−1)(k−1)(l−1)ζ ◦ ν,
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where we define for fi ∈ C∞(M):

ζ ◦ ν(df1, . . . , dfk+l−1) :=
∑
σ

(−1)σζ(d(ν(dfσ(1), . . . , dfσ(k))), dfσ(k+1), . . . , dfσ(k+l−1))

with sum taken over all (k, l − 1)-shuffles.

This definition might seem a bit peculiar, the following proposition however gives a more in-

sightful description of the Schouten-Nijenhuis bracket. For a proof we refer to [FM15].

Proposition 1.3.2. The Schouten-Nijenhuis bracket is the unique bilinear operation

[·, ·] : Xk(M)× Xl(M)→ Xk+l(M) that satisfies:

• For any X1, . . . , Xk, Y1, . . . , Yk ∈ X(M) we have:

[X1 ∧ · · · ∧Xk, Y1 ∧ · · ·Yl] =∑
i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl.

• For any multivector field V ∈ Xk(M) and any f ∈ C∞(M) we have:

[V, f ] = ιdfV.

Definition 1.3.3. A bivector field π ∈ X2(M) is called a Poisson structure if [π, π] = 0.

Definition 1.3.4. A Poisson bracket on a manifold M is a bilinear operation

C∞(M)× C∞(M)→ C∞(M), (f, g) 7→ {f, g}

satisfying:

• Skew-symmetry: {f, g} = −{g, f};

• Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

• Leibniz identity: {f, g · h} = g · {f, h}+ {f, g} · h.

The following is well-known:

Proposition 1.3.5. Let {·, ·} be a Poisson bracket on M . Define a Poisson structure π on M ,

by π(df, dg) := {f, g}. The assignment π → {·, ·} defines a 1:1 correspondence between Poisson

brackets and Poisson structures.

Poisson structures give rise to the following class of vector fields:

Definition 1.3.6. Let (M, {·, ·}) be a Poisson manifold. The Hamiltonian vector field of

H ∈ C∞(M) is the vector field XH ∈ X(M) defined by:

XH(f) := {H, f}, f ∈ C∞(M).
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Note that XH is a vector field precisely because {·, ·} satisfies the Leibniz identity. The proof

of the following fact follows directly from the definitions:

Lemma 1.3.7. Let f, g ∈ C∞(M), then

X{f,g} = [Xf , Xg].

Relation between Poisson and symplectic geometry

Recall that a two-form ω ∈ Ω2(M) is called non-degenerate if the map

ω[ : TxM → T ∗xM, v 7→ ιvω

is an isomorphism for all x ∈ M . If we think of two-forms as collections of skew-symmetric

linear maps

ωx : TxM × TxM → R,

we see that ω is non-degenerate if and only if the map ωx is non-degenerate for all x.

A bivector field π ∈ X2(M) induces a map

π] : Ω1(M)→ X1(M), α 7→ ιαπ

A bivector field π is called non-degenerate if the map π]x : T ∗xM → TxM is an isomoprhism

for all x ∈M . If we think of bivector fields as collections of skew-symmetric linear maps

πx : T ∗xM × T ∗xM → R,

then non-degeneracy of π is equivalent to πx being non-degenerate for all x ∈M .

Proposition 1.3.8. There is a 1 : 1 correspondence between non-degenerate two-forms and

non-degenerate bivector fields, given by:

ω[ = (π])−1, π] = (ω[)−1

Under this correspondence we have

[π, π](α, β, γ) = −dω(π](α), π](β), π](γ)). (1.1)

In particular we have a correspondence between symplectic forms and non-degenerate Poisson

structures.

Proof. Observing that π and ω are completely determined by π] and ω[, the first part of the

proposition is clear. We note that it suffices to prove (1.1) for exact one-forms. We use the

definition of the Schouten-Nijenhuis bracket to find for any f1, f2, f3 ∈ C∞(M) that

[π, π](df1, df2, df3) = 2 ({{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2}) .
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Applying Koszul’s formula, we find:

dω(π](df1), π](df2), π](df3)) = π](df1)ω(π](df2), π](df3)) + cycl. perm.

− ω([π](df1), π](df2)], π](df3))− cycl. perm.

We have

π](df1)ω(π](df2), π](df3)) = {f1, ω(π](df2), π](df3))}
= {f1, {f2, f3}}
= −{{f2, f3}, f1},

and

−ω([π](df1), π](df2)], π](df3)) = −ω(π](d{f1, f2}), π](df3))

= −{{f1, f2}, f3},

where we used Lemma 1.3.7. Combining the above we find

dω(π](df1), π](df2), π](df3)) = −2 ({{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2}) ,

which completes the proof.

Relation between Poisson geometry and symplectic foliations

The class of non-degenerate Poisson structures is relatively small. Therefore we consider the

following generalisation:

Definition 1.3.9. A Poisson structure π on M is called regular if the space π]x(T ∗xM) has the

same dimension for all x ∈M . This dimension is then called the rank of the Poisson structure.

Given a regular Poisson structure we see that F := π](T ∗M) forms a distribution on M , which

is smooth because it is spanned by vector fields of the form π](df). We will show that this

distribution is in fact involutive and can be given the structure of a symplectic foliation. To do

as such we will need the following result:

Theorem 1.3.10. Let (M,π) be a Poisson manifold. Given an immersed submanifold N ↪→M

there is at most one Poisson structure πN on N that makes N into a Poisson submanifold. This

structure exists if and only if

Im(πx)] ⊂ TxN, for all x ∈ N.

For a proof we again refer to [FM15]. Now we are ready to begin with constructing the corre-

spondence.
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Theorem 1.3.11. Let π ∈ X2(M) be a regular Poisson structure. Then the distribution

π](T ∗M) is integrable, and each leaf S of π](T ∗M) is a Poisson submanifold. Furthermore,

the induced Poisson structure πS ∈ X2(S) is non-degenerate.

Proof. We note that π](T ∗M) is spanned by the Hamiltonian vector fields. By Lemma 1.3.7 we

have that the Lie bracket of two Hamiltonian vector fields is again Hamiltonian, which shows

that π](T ∗M) is integrable.

Let S be a leaf such that TxS = Imπ]x for every x ∈ S. By Theorem 1.3.10 we have that S is a

Poisson submanifold. The induced Poisson structure satisfies

π](α) = π]S(α|S), for all α ∈ T ∗SM.

Because TxS = Imπ]x, we see that this implies that π]S is surjective. Hence πS is non-degenerate,

which finishes the proof.

We denote Fπ := π](T ∗M), and we define ωπ := (π|T ∗Fπ)−1. One easily verifies that dFπωπ = 0

if and only if [π, π]|T ∗F = 0, hence (Fπ, ωπ) is a symplectic foliation. In conclusion:

Proposition 1.3.12. The assignment π 7→ (Fπ, ωπ) gives a 1-1 correspondence between regular

Poisson structures and symplectic foliations.

Proof. Let (F , ωF ) be a symplectic foliation and let S be one of its leaves. Define πS = ω−1
S and

set π ∈ X2(M) to be

π(α, β)|S := πS(α|S , β|S).

We first remark that π has constant rank. Because [π, π]|S = [πS , πS ] for all leaves S, we

conclude that [π, π] = 0. Hence π is a regular Poisson structure. Clearly this procedure is

inverse to π 7→ (Fπ, ωπ), which finishes the proof.
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Chapter 2

Glueing symplectic foliations

Most foliations on closed manifolds are constructed in the following manner. Given a closed

manifold one first decomposes the manifold into two manifolds with boundary. Secondly, one

constructs a foliation on both manifolds with boundary and finally glues the foliations to obtain

a foliation on the original manifold. To this end one needs to ensure that the partition obtained

by glueing the two foliations is again a foliation. In this chapter we will study under which

conditions it is possible to glue (symplectic) foliations.

As before we will restrict ourselves to studying codimension-one foliations. The main reason for

this is that we can now consider foliations for which the boundary is a leaf. The class of (sym-

plectic) foliations for which we will show that they can be glued are the (symplectic) foliations

tame near the boundary. These are defined such that the (symplectic) foliations have a particular

local form near the boundary. This local form will be key in proving that these foliations can be

glued. In Section 2.1 we will introduce this notion for foliations and prove that foliations tame

near the boundary can be glued. In Section 2.2 we will introduce the corresponding notion for

symplectic foliations and prove that these can be glued.

2.1 Glueing foliations

In this section we will give the definition of foliations tame near the boundary, and prove that

any two of such foliations can be glued to obtain a new foliation. We will restrict ourselves

to the case of co-orientable foliations in this section. Although this assumption is not strictly

needed it will make the proofs somewhat easier. In particular because co-orientable foliations

are globally defined by a one-form, which allows to write global expressions. Because we are

interested in symplectic foliations, and by Proposition 1.2.3 symplectic foliations on orientable

manifolds are always co-orientable, we see that this assumption is not really a restriction.

15
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2.1.1 Foliations tame near the boundary

To glue foliations it is not sufficient that the foliations are tangent to the boundary, i.e. the

connected components of the boundary are leaves. We also need that the foliation can be

extended smoothly. To capture this property we first have to extend the manifold with boundary

to a manifold without boundary. We define

M∞ := ∂M × (−∞, 0] ∪∂M M.

To endowM∞ with a smooth structure we need to pick a collar neighbourhood k : ∂M × [0, 1)→ U

of the boundary. We then define a unique smooth structure on M∞, by requiring that the in-

clusion of IntM into M , as well as the map

k∞ : ∂M × (−∞, 1)→M∞, k∞(x, t) =

(x, t) if t ∈ (−∞, 0)

k(x, t) if t ∈ [0, 1)
(2.1)

are smooth and open embeddings. If we want to stress which smooth structure we use we denote

M∞ endowed by this smooth structure by Mk
∞.

Definition 2.1.1. Let F be a codimension-one foliation which is tangent to the boundary, i.e.

every connected component of the boundary is a leaf. We extend F to a partition on F∞ by

taking as leaves ∂M × {t} in ∂M × (−∞, 0]. We call this the trivial extension of F to M∞.

Definition 2.1.2. Let F be a foliation on a manifold with boundary. We then call F tame

near the boundary if:

• The foliation F is tangent to the boundary, i.e. the connected components of the boundary

are leaves.

• For some collar neighbourhood k of ∂M the trivial extension of F to Mk
∞ is a smooth

foliation.

Normal forms

We will show that foliations tame near the boundary admit a normal form near the boundary.

Lemma 2.1.3. Let F be a codimension-one co-orientable foliation on a manifold M with com-

pact boundary, and let α ∈ Ω1(M) be a one-form defining the foliation. Then F is tame near

the boundary if and only if there exists a collar neighbourhood k : ∂M × [0, 1)→ U such that

k∗(α|U ) = ζt + dt,

with ζt ∈ Ω1(∂M) which varies smoothly with t and vanishes up to infinite order at t = 0. We

will call such a collar neighbourhood adapted to F .
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Proof. “⇐”: Let k : ∂M × [0, 1)→ U be a collar neighbourhood adapted to F . Because ζ0 = 0

we see that the connected components of the boundary are leaves of the foliation. Define a

one-form on Mk
∞ by

β :=

α on M \ U

ζt + dt on ∂M × (−∞, 1)

where we extended ζt by zero for t < 0. Because U is adapted to α and ζt vanishes up to infinite

order at t = 0 we see that this form is smooth. We notice that ker(β) = F∞|∂M×(−∞,1). We

conclude that F∞ is smooth which proves that the foliation F is tame near the boundary.

“⇒”: Now we assume that F is tame near the boundary. Let k : ∂M × [0, 1)→ U be the collar

neighbourhood from the definition of tameness. We have

k∗(α) = ζt + fdt, for suibtable ζt ∈ Ω1(∂M), f ∈ C∞(∂M × [0, 1))

Because the foliation is tame near the boundary we have that k∗(α) can be extended smoothly

to a form on Mk
∞ given by

θ =

ζt + fdt on U,

dt on ∂M × (−∞, 0).

Hence ζt must vanish up to infinite order at t = 0. Due to the fact that the foliation is tame

near the boundary we have f |∂M×{0} 6= 0. By continuity of f , and compactness of the boundary,

we find an ε > 0 such that f |∂M×[0,ε) 6= 0. Let f̃ ∈ C∞(U) be a nowhere vanishing function

with the property that f̃ ◦ k = f on ∂M × [0, ε). Because f̃ is nowhere vanishing we see that

α′ := 1

εf̃
α defines F . Now define a new collar neighbourhood k̃ : ∂M × [0, ε)→ U , by restricting

k to ∂M × [0, ε). By construction we have

k̃∗(α′) =
1

εf̃ ◦ k
(ζt + fdt),

=
1

εf
ζt +

1

ε
dt.

After rescaling k̃ we see that we have obtained the required collar neighbourhood.

One disadvantage of the definition of foliations tame near the boundary is that it makes reference

to a particular collar neighbourhood. The following lemma gives a more intrinsic way of checking

whether a foliation is tame near the boundary.

Lemma 2.1.4. Let F be a codimension-one co-orientable foliation on a manifold with compact

boundary, such that F is tangent to the boundary. Then F is tame near the boundary if and only

if there exists a one-form α ∈ Ω1(M) defining the foliation, with the property that dα vanishes

up to infinite order at the boundary.
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Proof. If F is tame near the boundary, the form α from Lemma 2.1.3 has the property that

k∗(dα) = dζt. Because ζt vanishes up to infinite order at the boundary, so does k∗(dα), and thus

dα vanishes up to infinite order at the boundary.

Now assume that there exists a one-form α defining the foliation such that dα vanishes up to

infinite order at the boundary. By assumption F is tangent to the boundary, hence we can

find a vector field near the boundary, transverse to the boundary satisfying α(X) = 1. Let

k : ∂M × [0, 1)→ U be the collar neighbourhood induced by X. Because α(X) = 1 we have

k∗(α|U ) = ζt + dt, for some ζt ∈ Ω1(∂M),

k∗(dα) = d∂ζt +
d

dt
ζt ∧ dt.

Because dα vanishes up to infinite order at ∂M , the above shows that d
dtζt vanishes up to infinite

order at t = 0. Since ζ0 = 0 as F is tangent to the boundary, we conclude that ζt vanishes up

to infinite order at the boundary. Hence the collar neighbourhood k is adapted to the foliation

and we can apply Lemma 2.1.3 to finish the proof.

Glueing foliations

We can use the normal form of foliations introduced in Lemma 2.1.3 to prove the foliations

tame near the boundary can be glued. First, let M1,M2 be two smooth manifolds and let

ϕ : ∂M1 → ∂M2 a diffeomorphism of the boundaries. Consider the glued space M := M1∪ϕM2,

and endow it with a smooth structure in the following way. Given two collar neighbourhoods

k1 : ∂M1 × [0, 1)→M1, k2 : ∂M2 × (−1, 0]→M2,

we can define a smooth structure on M1 ∪ϕM2 by requiring the inclusions Mi ↪→M as well as

k : ∂M1 × (−1, 1)→M, (x, t) 7→

k1(x, t) if t ≥ 0

k2(ϕ(x), t) if t < 0,
(2.2)

to be smooth open embeddings. Now if Mi admits a foliation Fi tangent to the boundary, we

can take the union of F1 and F2 to obtain a partition F1 ∪ϕ F2 of M1 ∪ϕ M2. The following

theorem ensures that this partition is smooth provided that the foliations are tame near the

boundary.

Theorem 2.1.5. Let (M1,F1), (M2,F2) be two manifolds with compact boundary endowed with

codimension-one co-orientable foliations which are tame near the boundary. Furthermore, let

ϕ : ∂M1 → ∂M2 be a diffeomorphism. Then M1 ∪ϕ M2 admits a smooth structure such that

F1 ∪ϕ F2 is a smooth foliation. Moreover, the inclusions Mi ↪→ M are embeddings, such that

(F1 ∪ϕ F2)|Mi = Fi.
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Proof. Let αi be defining forms for Fi and choose collar neighbourhoods ki : ∂Mi × [0, 1)→ Ui

to be adapted to Fi in the sense of Lemma 2.1.3. Then

k∗i (αi) = ζit + dt,

with ζit ∈ Ω1(∂Mi) vanishing up to infinite order at t = 0. Define a one-form α ∈ Ω1(M)

by α|Mi = αi for i = 1, 2. We check that this form is smooth. Let k be as in (2.2). Then

k∗(α) = ζt + dt with

ζt =

ζ1
t 0 ≤ t ≤ 1

ϕ∗(ζ2
t ) −1 ≤ t ≤ 0.

Because ζit vanishes up to infinite order at t = 0, we deduce that ζt is smooth and hence that α

is smooth. Furthermore, as αi ∧ dαi = 0 we find that α ∧ dα = 0, which shows that α defines a

foliation. Since by construction ker(α) = F1 ∪ϕ F2 we have shown what was required.

Glueing hyperplane distributions

For future use we generalise Theorem 2.1.5 to the case of hyperplane distributions.

Definition 2.1.6. Let H be a hyperplane distribution on a manifold M with boundary. We

then call H tame near the boundary if:

• The hyperplane distribution H is tangent to the boundary, i.e. the tangent spaces of the

connected components of the boundary are elements of H.

• For some collar neighbourhood k of ∂M the trivial extension of H to Mk
∞, defined just as

in Definition 2.1.1, is smooth.

Just as with foliations, we say that a hyperplane distribution H ⊂ TM is orientable if H
is an orientable vector bundle; we say that H is co-orientable if the normal bundle of H is

orientable. As in Lemma 1.1.4 one can prove that for co-orientable H there exists some globally

defined one-form θ ∈ Ω1(M) such that H = ker θ. This observation gives rise to the following

generalisation of Theorem 2.1.5.

Theorem 2.1.7. Let (M1,H1), (M2,H2) be two manifolds with compact boundary endowed

with co-orientable hyperplane distributions which are tame near the boundary. Furthermore,

let ϕ : ∂M1 → ∂M2 be a diffeomorphism. Then M1 ∪ϕM2 admits a smooth structure such that

H1∪ϕH2 is a smooth distribution. Moreover, the inclusions Mi ↪→M are embeddings, such that

(H1 ∪ϕ H2)|Mi = Hi.

Proof. Inspecting the proof of Lemma 2.1.3, we see that we have not used the integrability of

the form α. So we see that Lemma 2.1.3 also holds in the more general setting of co-orientable

hyperplane distributions. Now the proof carries over from the proof of Theorem 2.1.7.
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2.2 Glueing symplectic foliations

In this section we will extend the notion of foliations tame near the boundary to symplectic

foliations and give a version of Theorem 2.1.5 for symplectic foliations tame near the boundary.

For simplicity we will always assume that all manifolds have connected boundary.

2.2.1 Leafwise symplectic structures tame near the boundary

Intuitively a symplectic foliation which is tame near the boundary is a foliation such that the

symplectic structure does not vary to much near the boundary. Just as with foliations we want

our definition to imply a particular local form of the symplectic structure.

Definition 2.2.1. Let (F , ω) be a symplectic foliation on M which is tangent to the boundary.

The leafwise symplectic form ω is called M-tame near the boundary if there exists a collar

neighbourhood k : ∂M × [0, 1)→ U of the boundary such that

ωL|L∩U = (k−1)∗(ω∂M )|L∩U ,

for any leaf L of F .

We note that the above definition in particular gives that there exists a closed extension near

the boundary of the foliated differential form. This motivates the following definition:

Definition 2.2.2. Let (F , ω) be a symplectic foliation on M which is tangent to the boundary.

The leafwise symplectic form ω is called tame near the boundary if there exists a neigh-

bourhood U of ∂M and a closed form ω̃ ∈ Ω2(U) such that ω̃|L∩U = ωL|L∩U for all leaves L of

F .

Although the first definition is stronger than the second, in the codimension-one case they

coincide.

Proposition 2.2.3. Let M be a manifold with compact boundary and let (F , ω) be a codimension-

one symplectic foliation which is tangent to the boundary. Then ω is M-tame near the boundary

if and only if it is tame near the boundary.

Proof. Let ω be tame near the boundary. Let ω̃ be a closed extension of ω to some neighbourhood

U around ∂M . Because ω̃|F is non-degenerate we have

TM |U = TF|U ⊕ ker ω̃,

hence ker ω̃ can be identified with the normal bundle of F . Because M is orientable and F is

orientable we have by Lemma 1.1.4 that F is co-orientable. Because ker ω̃ is a line bundle we

thus find that it is trivialisable. We let X ∈ Γ(ker ω̃) be a nowhere vanishing section, which

we interpret as a vector field on M . Because ∂M is a leaf and ω̃|∂M is non-degenerate we have
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that X is transverse to the boundary. So, if we ensure that X points inwards we have that the

flow of X exists on some neighbourhood V ⊂ ∂M × R of ∂M × {0}. We now consider the map

induced by the flow of X:

k : ∂M × [0, ε)→ k(V ) : (x, t) 7→ ϕtX(x).

One easily shows that (dk)(x,0)(Y + ∂t) = X + Y , hence k is a local diffeomorphism around

(x, 0). We can thus shrink V such that k becomes a diffeomorphism onto its image, and is thus

a collar neighbourhood. We will now show that it has the required properties. On this collar

neighbourhood we write

ω̃ = ηt + θt ∧ dt, for some ηt ∈ Ω2(∂M), θt ∈ Ω1(∂M)

By definition, we have X ∈ Γ(ker ω̃), hence ιX ω̃ = 0. As X takes the form ∂t on k(V ) we find

ι∂tk
∗(ω̃) = 0, hence θt = 0. Let d∂ denote the differential on ∂M . Because k∗(ω̃) is closed we

have

0 = d∂ηt +

(
d

dt
ηt

)
∧ dt,

hence d
dtηt = 0. We conclude that k∗(ω̃) = η0. Hence this finishes the proof that ω is M -tame

near the boundary.

Remark 2.2.4. The definition of tame near the boundary for a foliated symplectic form can

also be adapted to leaves on the interior of M . To do as such one has to replace all collar

neighbourhoods in the above with tubular neighbourhoods. This then gives a definition for a

foliated symplectic form to be (M-)tame around a leaf L. The proof of Proposition 2.2.3 in this

setting is almost identical to the above.

2.2.2 Symplectic foliations tame near the boundary

We now combine the two notions of tameness in the following definition:

Definition 2.2.5. We call a symplectic foliation (F , ω) on M tame near the boundary if

• The foliation F is tame near the boundary.

• The leafwise symplectic form ω is tame near the boundary.

Because the leafwise symplectic form is tame near the boundary, by Proposition 2.2.3 we have

that there exists a preferred collar neighbourhood on which ω becomes constant. We now adapt

this collar neighbourhood further, giving the required local normal form of symplectic foliations:



22 CHAPTER 2. GLUEING SYMPLECTIC FOLIATIONS

Proposition 2.2.6. Let M be an orientable manifold with compact boundary and let (F , ω) be a

codimension-one symplectic foliation on M which is tame near the boundary. Then there exists

a collar neighbourhood k : ∂M × [0, 1)→ U such that:

• k is adapted to F ,

• there exists a closed extension ω̃ ∈ Ω2(U) of ω such that k∗(ω̃) = ω|∂M .

We call a collar neighbourhood with these properties adapted to (F , ω).

Proof. We basically have to combine the proofs of Proposition 2.2.3 and Lemma 2.1.3. Let α be

a one-form defining the foliation coming from Lemma 2.1.3. As in the proof of Proposition 2.2.3

we let ω̃ be a closed extension of ω, and note that ker(ω̃) is trivialisable. We let X ∈ Γ(ker(ω̃))

be a trivialising section such that α(X) = 1, and let ε > 0 be the time for which the flow exists.

We consider the collar neighbourhood induced by this vector field. Continuing along the same

lines as in the proof of Proposition 2.2.3 we find k∗(ω̃) = ω|∂M . Since α(X) = 1, we have

k∗α = ζt + dt, for some ζt ∈ Ω1(∂M).

Just as in the proof of Lemma 2.1.3 we conclude that ζt vanishes up to infinite order at t = 0.

Hence after rescaling k and α we obtain the required collar neighbourhood.

Now we can use the obtained local form to glue symplectic foliations. If (F1, ω1) and (F2, ω2)

are two symplectic foliations tangent to the boundary, and if ϕ is a symplectomorphism of the

boundaries we let ω1 ∪ϕ ω2 denote the union of the collection of leafwise differential forms. The

question is whether this is a smooth form, which is answered by the following:

Theorem 2.2.7. Let (M1,F1, ω1) and (M2,F2, ω2) be two orientable manifolds with compact

boundaries endowed with codimension-one symplectic foliations tame near the boundary and let

ϕ : (∂M1, ω1|∂M1)→ (∂M2, ω2|∂M2)

be a symplectomorphism. Then M := M1 ∪ϕM2 admits a smooth structure such that

(F , ω) := (F1 ∪ϕ F2, ω1 ∪ϕ ω2)

is a codimension-one symplectic foliation on M1 ∪ϕM2. Moreover, the inclusions Mi ↪→M are

embeddings, satisfying (F , ω)|Mi = (Fi, ωi).

Proof. Let ki be collar neighbourhoods adapted to (Fi, ωi), and endowM1∪ϕM2 with the smooth

structure induced by these collar neighbourhoods. By Theorem 2.1.5 we know that F1 ∪ϕ F2 is

smooth, so we are left to check the smoothness of ω1 ∪ϕ ω2. Let k : ∂M1× (−1, 1)→M be as in

(2.2), then k∗(ω1∪ϕ ω2) = pr∗1(ω1|∂M1), where pr1 : ∂M1× (−1, 1)→ ∂M1 is given by projection

onto the first factor. This shows that ω1 ∪ϕ ω2 is smooth concludes the proof.



Chapter 3

Symplectic turbulisation

In the previous chapter we saw how symplectic foliations which are tame near the boundary

can be glued to obtain symplectic foliations on closed manifolds. This chapter is devoted to

studying a technique to construct symplectic foliations which are tame near the boundary. This

technique is called symplectic turbulisation and will change symplectic foliations with certain

properties into symplectic foliations that are tame near the boundary. The symplectic foliations

which we start with will arise from cosymplectic structures.

In Section 3.1 we will define cosymplectic as well as contact structures. Both of these structures

arise naturally when studying symplectic manifolds with certain behaviour near the boundary.

Studying how cosymplectic and contact structures are induced on the boundary is the object

of study in Section 3.2. In Section 3.3 we will consider a generalisation of cosymplectic struc-

tures, as well as corresponding Poisson structures. In Section 3.4 we will study turbulisation on

manifolds of the form M × S1, with M symplectic. In Section 3.5 we will give the definition of

cosymplectic structures with boundary of s-type, which is inspired by the results in Section 3.4.

We will then prove the symplectic turbulisation theorem, which will be our main tool in creating

symplectic foliations tame near the boundary.

3.1 Presymplectic structures

When studying symplectic manifolds with boundary it is natural to ask what structure the

symplectic form induces on the boundary. The restriction of the symplectic form to the boundary

is no longer non-degenerate, however its kernel is only one-dimensional. Differential two-forms

for which the kernel is one-dimensional are called presymplectic forms. If the symplectic structure

satisfies particular behaviour near the boundary, the structure on the boundary can be more then

only a presymplectic structure. We will consider two cases, symplectic structures of cosymplectic

type and contact type at the boundary. In these cases we get a cosymplectic respectively contact

structure induced at the boundary. Finally we will study the normal form around the boundary

23
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of symplectic manifolds with boundary of cosymplectic type. This will be key in proving the

symplectic turbulisation theorem in later sections.

Definition 3.1.1. Let N2n+1 be a smooth manifold. A presymplectic structure η ∈ Ω2(N)

on N is a closed two-form of maximal rank, i.e. ηn 6= 0. We call a pair (N, η) a presymplectic

manifold.

Remark 3.1.2. Somewhat trivially, we define a presymplectic form on a one-dimensional man-

ifold to be the zero-form.

On symplectic manifolds the symplectic form induces a natural volume form, however to obtain

a volume form on a presymplectic manifold we need more data then just the presymplectic form

itself.

Definition 3.1.3. Let η be a presymplectic structure on N . A one-form θ ∈ Ω1(N) is called

admissible for η if ηn ∧ θ 6= 0. If N is oriented, it is called +-admissable if ηn ∧ θ > 0.

Remark 3.1.4. For a one-dimensional presymplectic manifold (N, 0) we define an admissible

form to be any nowhere vanishing one-form.

The following lemma ensures the existence of admissible forms, and studies their uniqueness.

The proof of the following lemma has been suggested to the author by B. Janssen.

Lemma 3.1.5. Let η be a presymplectic form on an orientable manifold N2n+1. Then

i. There exist +-admissible forms for η.

ii. If θ is an admissible form, then so is fθ + ιXη for all f ∈ C∞(N) nowhere zero, and

X ∈ X(N).

iii. If θ and β are two admissible forms for η, then there exists f ∈ C∞(N) nowhere zero,

X ∈ X(N) such that β = fθ + ιXη.

Proof. i): Let (v1, . . . , v2n+1) be local frame for T ∗N , and let ν be a volume form on N . For

every x ∈ N we define the map (ηn)x ∧ · : T ∗xN → R, where we identified νx · R with R. We

see that there must exists a covector v ∈ T ∗xN such that (ηn)x ∧ v > 0. Indeed if not, then

ηnx would be zero when restricted to ker(v), for any v ∈ T ∗N , implying that ηnx = 0. Without

loss of generality assume that (v1)x = v, then there exists a neighbourhood U of x such that

ηn ∧ v > 0. The statement now follows from a partition of unity argument.

ii): Clearly if θ is admissible, then so is fθ. Using the fact that interior multiplication is an

anti-deriviation we have that

0 = ιX(ηn+1) = (n+ 1)(ιXη ∧ ηn),

from which the result follows.

iii): Let ν be a volume form on N . We define h, g ∈ C∞(N) by hν = ηn ∧ β, gν = ηn ∧ θ Then
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if we define f = h/g, we see that ηn∧ (fθ−β) = 0. So we are left to show that for any one-form

γ such that ηn ∧ γ = 0, there exists X ∈ X(N) such that γ = ιXη. We once again consider the

linear map (ηn)x ∧ · : T ∗xN → R induced by ν. As there exists at least one admissible one-form,

the kernel of this map is 2n-dimensional. The rank of η2n is 2n, hence there exists local sections

X1, . . . , X2n such that the ιXiη’s are all linearly independent. This proves that any one-form

for which the wedge product with ηn vanishes, must be of the form ιXη. Hence fθ − β = ιXη,

which finishes the proof.

The following lemma will be used tacitly in the below:

Lemma 3.1.6. Let N ⊂Mn be a hypersurface and consider a volume form γ ∈ Ωn(M). Then

for X ∈ X(M) we have that ιXγ|N is a volume form on N if and only if X transverse to N .

Proof. Assume that X is transverse to N . Because γ is a volume form and X is transverse to

N , for every x ∈ N we can find linearly independent vectors X1, . . . , Xn−1 ∈ TxN such that

γx(X,X1, . . . , Xn−1) 6= 0. This proves that ιXγ is a volume form on N . Now assume that ιXγ

is a volume form on N . Then there exists linearly independent vectors Y1, . . . , Yn−1 ∈ TxN such

that (ιXγ)x(Y1, . . . , Yn−1) 6= 0. Hence X,Y1, . . . , Yn−1 are linearly independent, from which we

conclude that X is transverse to N .

Presymplectic structures naturally arise from restricting symplectic structures to hypersurfaces:

Lemma 3.1.7. Let N ⊂M2n be a hypersurface in a symplectic manifold (M,ω). Then

i. The restriction η := ω|N is a presymplectic structure on N .

ii. Furthermore, assume that N is orientable and embedded. For any vector field X ∈ X(M)

transverse to N , (ιXω)|N is an admissible form for η. Conversely any admissible form is

of this form.

Proof. It is clear that η is a presymplectic structure. By Lemma 3.1.6 we have that ιXω
n|N is

a volume form. Since (ιXω)n|N = nιXω|N ∧ ωn−1|N 6= 0, we see that ιXω|N is an admissible

form for ω|N . Now let any admissible form θ be given. Because N is an orientable submanifold

of an orientable manifold, we have by an argument similar to Lemma 1.1.4 that the normal

bundle of N is orientable. Because this is a line bundle, there thus exists a nowhere vanishing

section. Because N is embedded we can extend this section to a vector field on M , which we

denote by X, and we observe that X is transverse to N . By Lemma 3.1.5 we then have that

θ = f(ιXω)|N + (ιY ω|N ), for some f ∈ C∞(N) and Y ∈ X(N). Now because N is embedded

there exists extensions f̃ , Ỹ of f and Y to M . Now we see that

θ = (ι
f̃X+Ỹ

ω)|N .

Because f̃ is non-zero at N and X is transverse to N we have that f̃X + Ỹ is transverse to

N .
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Although for presymplectic forms there always exist admissible forms, the existence of closed

admissible forms is non-trivial.

Definition 3.1.8. A presymplectic form η ∈ Ω2(N) is called cosymplectic if it admits a closed

admissible form. A pair (η, θ) ∈ Ω2(N) × Ω1(N) is called a cosymplectic structure if η is a

cosymplectic form and θ is a closed admissible one-form.

The following proposition, which follows directly from the definition, shows that cosymplectic

structures can be seen as very well-behaved symplectic foliations.

Proposition 3.1.9. Let (M,η, θ) be a cosymplectic manifold, then (ker θ, η|ker θ) defines a sym-

plectic foliation.

Somewhat opposite to cosymplectic structures are contact forms.

Definition 3.1.10. A contact structure on a manifold M2n+1 is a codimension-one maximally

non-integrable distribution ξ on M , that is, a distribution locally given by the kernel of a one-

form α satisfying α∧(dα)n 6= 0. The contact structure is said to be co-orientable if the normal

bundle of the distribution is trivial.

Recall that in Proposition 1.1.12 we have proven that co-orientable codimension-one foliations

are defined by the kernel of a global one-form. Completely similar one can prove that co-

orientable contact structures are globally defined by the kernel of a one-form α ∈ Ω1(M) satis-

fying α ∧ (dα)n 6= 0. We call such a globally defined one-form a contact form.

Remark 3.1.11. Somewhat trivially we define a contact structure on a one-dimensional mani-

fold to be the zero-distribution and a contact form to be a nowhere-vanishing one-form.

Let H ⊂ TM be a hyperplane distribution and consider the map

ϕ : Γ(H)× Γ(H)→ Γ(TM/H)

(X,Y ) 7→ [X,Y ] mod H.

For a foliation F we have H = TF and see that this map vanishes identically. The following

lemma states that for contact structures this is precisely the opposite. This fact illustrates that

foliations and contact structures are, in some sense, opposites of each other.

Lemma 3.1.12. A hyperplane distribution H is contact if and only if ϕ is non-degenerate.

Proof. When H is a contact structure defined locally by kerα we have that dα|H is non-

degenerate. Hence for every X ∈ H non-zero, there exists Y ∈ H such that (dα)(X,Y ) 6= 0.

Applying the Koszul formula we find that (dα)(X,Y ) = −α([X,Y ]) 6= 0. This shows that

[X,Y ] 6∈ H, hence ϕ is non-degenerate. The converse is proven in a similar manner.

Because dα is non-degenerate on a distribution of codimension one, its kernel is one-dimensional

and thus spanned by a single vector field.



3.2. SYMPLECTIC STRUCTURES NEAR THE BOUNDARY 27

Definition 3.1.13. Let α ∈ Ω1(M) be a contact form. The Reeb vector field of α is defined

to be the unique vector field R ∈ X(M) satisfying

ιRα = 1, ιRdα = 0.

The existence and uniqueness of the Reeb vector field is easily established, see for instance

[Gei08].

3.2 Symplectic structures near the boundary

In the end, we are interested in obtaining symplectic foliations from glueing manifolds with

boundary. In the construction of these symplectic foliations we will make extensive use of normal

forms around boundaries. It is thus interesting to have a general normal form for symplectic

structures near the boundary.

Proposition 3.2.1. Let (M,ω) be a symplectic manifold with compact boundary. Let η := ω|∂M
and let θ ∈ Ω1(∂M) be any +-admissible form for η. Then there exists a neighbourhood U of

the boundary and a diffeomorphism ϕ : ∂M × [0, c)→ U such that

ϕ∗(ω|U ) = η − d(tθ),

for some c ∈ [0, 1), where t denotes the coordinate in [0, c).

The proof of this proposition uses a Moser type argument. We will however only need the state-

ment in a more specialized setting in which another proof can be given, this will be addressed

in Proposition 3.2.6

One way to obtain contact and cosymplectic structures is from symplectic manifolds with certain

behaviour near the boundary:

Definition 3.2.2. Let (M,ω) be a symplectic manifold with boundary. Then ∂M is called of:

• Cosymplectic type if there exists a vector field X t ∂M near the boundary such that

(LXω)|∂M = 0.

• Contact type if there exists a vector field X t ∂M near the boundary such that

(LXω)|∂M = ω|∂M .

As claimed these structures induce cosymplectic and contact structures on the boundary.

Lemma 3.2.3. Let (M,ω) be a symplectic manifold with boundary of contact type, and let X

be a vector field transverse to the boundary such that (LXω)|∂M = ω|∂M . Then (ιXω)|∂M is a

contact form on ∂M .
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Proof. By Cartan’s formula we have (dιXω)|∂M = ω|∂M . Hence we find (dιXω)|n∂M = (ω|∂M )n.

By Lemma 3.1.7 we have that ω|∂M is presymplectic with admissible form ιXω|∂M . From this

we conclude that (ιXω)|∂M is a contact form.

Lemma 3.2.4. Let (M,ω) be a symplectic manifold with boundary of cosymplectic type and let

X be a vector field transverse to the boundary such that LXω|∂M = 0. Then (ω|∂M , (ιXω)|∂M )

is a cosymplectic structure.

Proof. By Lemma 3.1.7 we have that (ιXω)|∂M is admissible for ω|∂M . We can apply Cartan’s

formula to conclude that (ιXω)|∂M is closed. This finishes the proof.

Remark 3.2.5. We remark that the cosymplectic and contact structures induced on the bound-

aries depend on the choice of vector field. Nevertheless we will call the cosymplectic/contact

structures defined in the above lemmata a cosymplectic/contact structure induced by ω.

We can characterise symplectic manifolds with boundary of cosymplectic type in different ways:

Proposition 3.2.6. Let (M,ω) be a symplectic manifold with compact boundary. The following

are equivalent:

i. The form ω|∂M is a cosymplectic form on ∂M .

ii. The boundary of M is of cosymplectic type, i.e. there exists a vector field X near the

boundary on M transverse to ∂M for which LXω|∂M = 0.

iii. There exists a vector field X on a neighbourhood U of ∂M , transverse to ∂M for which

LXω|U = 0.

iv. In a collar neighbourhood U of the boundary ω has the following local form:

ω|U = ω|∂M + θ ∧ dr,

where θ is a closed one-form admissible for ω|∂M .

Proof. The implication iii)⇒ ii) is trivial, and ii)⇒ i) is proven in Lemma 3.2.4.

i) ⇒ ii): Let θ ∈ Ω1(∂M) be a closed admissible form for ω|∂M . By Lemma 3.1.7 there exists a

vector field X near the boundary, transverse to the boundary such that θ = (ιXω)|∂M . Because

θ is closed, we find that (dιXω)|∂M = 0, hence we conclude that (LXω)|∂M = 0, which finishes

the proof.

ii) ⇒ iii): Let γ ∈ Ω1(U) be a closed extension of (ιXω)|∂M . Then by non-degeneracy of ω

there exists Y ∈ X(U) such that γ = ιY ω|U . Hence by closedness of γ we see that LY ω|U = 0.



3.2. SYMPLECTIC STRUCTURES NEAR THE BOUNDARY 29

We are thus left to prove that Y is transverse to ∂M . Because X is transverse to ∂M we have

that (ιXω
n)|∂M is a volume form. We have

(ιXω
n)|∂M = nιX |∂M ∧ ωn−1|∂M

= nιY |∂M ∧ ωn−1|∂M
= (ιY ω

n)|∂M ,

and so (ιY ω
n)|∂M is a volume form. We conclude that Y is transverse to ∂M as required.

iii) ⇔ iv): Let X be a vector field defined on a neighbourhood U of the boundary, which

is transverse to the boundary, such that LXω|U = 0. Consider the collar neighbourhood

p : ∂M × [0, 1)→ V defined by the flow of this vector field. Let t denote the second coordi-

nate, then on this neighbourhood we can write

ω|V = ωt + θt ∧ dt,

with ωt ∈ Ω2(∂M) and θt ∈ Ω1(∂M). On V we have that X takes the form ∂t. Hence

LXω|V = dθt = 0. Let d∂ denote the differential along the boundary. Because dθt = 0, we find

that

d∂θt +
d

dt
θt ∧ dt = 0.

Hence d
dtθt = 0 and thus θt = θ0 := θ, and also d∂θ = 0. Now because dω = 0 we find

d∂ωt +
d

dt
ωt ∧ dt = 0,

and as before we find ωt = ω0 and d∂ω0 = 0. Because ω|∂M = ω0, we thus conclude that

ω|V = ω|∂M + θ ∧ dt.

Finally,

ω|nV = ω|n−1
∂M ∧ θ ∧ dt

6= 0,

hence θ is indeed a closed admissible one-form for ω|∂M , which finishes the proof. For the

converse one simply takes the vector field ∂t on the collar neighbourhood.

In the below we will encounter exact symplectic structures ω = dα on manifolds with boundary

M , with the property that α|∂M is contact.

Lemma 3.2.7. Let ω = dα be a symplectic structure on a manifold with boundary M . When

α|∂M is a contact form, we have that ∂M is of contact type.

Proof. Because α|∂M is contact we have that dα|n∂M ∧ α|∂M 6= 0, i.e. α|∂M is an admissable

form for the presymplectic structure dα|∂M . Hence by Lemma 3.1.7 there exists a vector field

X transverse to ∂M , such that ιX(dα)|∂M = α|∂M . Using Cartan’s formula we find dα|∂M =

(LXdα)|∂M which proves that ω is of contact type at the boundary.
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3.3 Generalised cosymplectic structures

Presymplectic forms are defined to have maximal rank. One could weaken this assumption,

by assuming that they only have constant rank. We will define such generalised cosymplectic

structures and study some of their properties. Most notably we will show that these structures

can be inverted to particular types of Poisson structures, just as symplectic forms can be inverted

to non-degenerate Poisson structures. We begin with defining the almost versions:

Definition 3.3.1. An almost k-cosymplectic structure on Mn is a tuple (ω, θ1, . . . , θk)

where ω is a two-form of constant rank 2l and θ1, . . . , θk are one-forms such that

ωl ∧ θ1 ∧ · · · ∧ θk 6= 0.

Here n− k = 2l.

Definition 3.3.2. An almost k-Poisson structure on Mn is a tuple (π,X1, . . . , Xk) where

π is a bivector of constant rank 2l and X1, . . . , Xk are vector fields such that

πl ∧X1 ∧ · · · ∧Xk 6= 0.

Here n− k = 2l.

We first invert these almost versions into each other.

Lemma 3.3.3. There is a 1:1 correspondence between almost k-cosymplectic structures and

almost k-Poisson structures.

Proof. Let (ω, θ1, . . . , θk) be an almost k-cosymplectic structure. Because ωl ∧ θ1 ∧ . . .∧ θk 6= 0,

we have that ωl|∩i ker θi 6= 0. This implies that we can split the tangent bundle in the following

way: TM = kerω ⊕ ∩i ker θi. We define vector fields Xi, in the following way: Xi(θj) = δij ,

and Xi is defined to be zero on the complement of span θi. This gives a decomposition of the

co-tangent bundle T ∗M = span θi ⊕ ∩i kerXi. Now we consider ω[ : TM → T ∗M , and we

restrict to ∩i ker θi. Let any element of ω[(∩i ker θi) be given, say ω(V, ·). As Xi ∈ kerω by

the decomposition of the tangent space we find ω(V,Xi) = −ω(Xi, V ) = 0. Hence we conclude

that ω[(∩i ker θi) ⊂ ∩i kerXi. Because ω has maximal rank on ∩i ker θi, its image must have

dimension 2l, hence ω[(∩i ker θi) = ∩i kerXi. So we conclude that the map

ω[ : ∩i ker θi → ∩i kerXi

is an isomorphism. We invert ω[ and define π on ∩i kerXi by this inverse and 0 on span θi.

Because πl|∩i kerXi = (ω[)−1 we have that πl|∩i kerXi 6= 0. This implies that πl∧X1∧ . . .∧Xk 6= 0

which shows that (π,X1, . . . , Xl) is an almost k-Poisson structure. The other direction of the

correspondence is defined completely analogous.
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Definition 3.3.4. A k-cosymplectic structure on Mn is an almost k-cosymplectic structure

(η, θ1, . . . , θk) for which all forms are closed.

Definition 3.3.5. A k-Poisson structure onMn is an almost k-Poisson structure (π,X1, . . . , Xk)

for which π is Poisson and X1, . . . , Xk commute pairwise.

Example 3.3.6. A zero-cosymplectic structure is simply a symplectic structure. A one-cosymplectic

structure is a cosymplectic structure.

Just as in the almost case we have a 1:1 correspondence:

Proposition 3.3.7. There is a 1:1 correspondence between k-cosymplectic structures and k-

Poisson structures.

Proof. Let (ω, θ1, . . . , θk) be an almost k-cosymplectic structure on Mn and let (π,X1, . . . , Xk)

be the corresponding almost k-Poisson structure. We define

Ω = ω +

k∑
i=1

θi ∧ dti ∈ Ω2(M × Rk).

Note that dim(M × Rk) = n+ k = (n− k + 2k) = 2(l + k). We have

Ωl+k = Cωl ∧

(
k∑
i=1

θi ∧ dti

)k
= C̃ωl ∧ θ1 ∧ · · · ∧ θl ∧ dt1 ∧ . . . dtk
6= 0,

with C and C̃ some combinatorial factors. Hence we can consider Π = Ω−1 ∈ X2(M ×Rk), this

element is given by:

Π = π +

k∑
i=1

∂ti ∧Xi.

Recall that Π is Poisson if and only if Ω is closed. Because

dΩ = dω +

k∑
i=1

dθi ∧ dti ∈ Ω2(M × Rk),

we have that Ω is closed if and only if ω, θ1, . . . , θk are closed. Hence we conclude that Ω is

closed if and only if (ω, θ1, . . . , θk) is k-cosymplectic. On the other hand, a straightforward but

tedious calculation yields that:

[Π,Π] = [π, π] +
∑
i>j

(−1)n(i,j)∂ti ∧ ∂tj ∧ [Xi, Xj ], for some n(i, j) ∈ N

It follows that Π is Poisson if and only if [π, π] = 0 and [Xi, Xj ] = 0 for all i, j. We conclude that

Π is Poisson if and only if (π,X1, . . . , Xk) is a k-Poisson structure. This shows that (ω, θ1, . . . , θk)

is a k-cosymplectic structure if and only if (π,X1, . . . , Xk) is a k-Poisson structure.
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Definition 3.3.8. Let (η, θ) be a cosymplectic structure and let (π,X) be the corresponding

1-Poisson structure. We will call X the Reeb vector field of (η, θ).

Remark 3.3.9. Recall from Secion 1.3 that symplectic foliations can be inverted into Poisson

structures. So given a cosymplectic structure (η, θ) we could invert the corresponding symplectic

foliation into a Poisson structure. However, there exist several cosymplectic structures which

give rise to the same Poisson structure. Indeed the Poisson structure only depends on the

foliation, and not on the defining one-form. The above proposition can be seen as a refinement

of this procedure.

3.4 Symplectic turbulisation: M × S1

Let f : C → S1 be a fibration on a manifold with boundary. The fibres of f induce a folia-

tion on C. However this foliation is not tame near the boundary. There is a procedure called

turbulisation to change the foliation into a foliation which is tame near the boundary. We will

first recall this procedure, first for the case of trivial circle fibrations, then for the locally trivial

case. Afterwards we will construct a leafwise symplectic structure on the turbulised foliation,

such that the resulting symplectic foliation becomes tame near the boundary. We will first do

this for the trivial case and in the next section in more generality.

For notational purposes we introduce the following notion:

Definition 3.4.1. Let f, g : [0, 1] → [0, 1] be smooth functions. We say that (f, g) is a good

pair if

• f(0) = g(1) = 0,

• f(1) = g(0) = 1,

• f ′ and g′ vanish up to infinite order at 0 and 1.

Lemma 3.4.2 (Turbulisation). Let M be a manifold with compact boundary. Then M × S1

admits a codimension-one co-orientable foliation tame near the boundary.

Proof. Consider a collar neighbourhood k : ∂M × [0, 1) → U of the boundary of M . Let (f, g)

be a good pair of functions such that f(x) > 0 for all x ∈ (0, 1). Consider the following form on

M :

α =

dϕ on (M \ U)× S1,

f(t)dϕ+ g(t)dt on U × S1.

By choice of f and g this form is smooth. Also α∧ dα = 0, and α thus defines a foliation on M .

Because on U × S1 we have dα = f ′(t)dt ∧ dϕ, and f ′(t) vanishes up to infinite order at t = 0

we have by Lemma 2.1.4 that the foliation is tame near the boundary.
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In Figure 3.1 we will give a visualisation of the above procedure. But first we study how the

leaves of the new foliation relate to the old one.

Lemma 3.4.3. Let F be the foliation from Lemma 3.4.2. The restriction of F to IntM × S1

is diffeomorphic to the product foliation.

Proof. Define the function h̃ : (0,∞)→ R by the initial value problem

d

dt
h̃(t) =

g

f
, h̃(1) = 0,

where f and g are as in the proof of Lemma 3.4.2. Define h : IntM → R by

h(z) =

h̃(t) if z = (x, t) ∈ U,

0 otherwise.

Because dh = g
f dt, we find that α = f(dϕ + dh). Because f > 0 on S1 × (0, 1) we see that

kerα = ker(dϕ+ dh). Consider

ψ̃ : IntM × R→ IntM × R, (x, t) 7→ (x, t− h(x)),

and let ψ : IntM × S1 → IntM × S1 denote the induced map on the quotient. Because

ψ̃∗(dt + dh) = dt − dh + dh = dt we find that ψ∗(dh + dϕ) = dϕ. We see that ψ gives the

required diffeomoprhism.

Remark 3.4.4. We can describe the leaves of the foliation obtained in Lemma 3.4.2 in the

following way. Let h : IntM → R be as in the proof Lemma 3.4.3. We consider the map

ϕ : IntM × R → R, given by ϕ(x, t) = h(x) + t. We see that the fibers of this map form a

foliation given by ker(dt+ dh). Hence the foliation on IntM ×S1 can be viewed as the quotient

of this foliation. Morally speaking we see that as h(x)
x→∂M−→ ∞, that the leaves of the foliation

are turning around faster and faster as the foliation approaches the boundary. This is visualized

in Picture 3.1.

Locally trivial case

A natural generalisation of Lemma 3.4.2 is to work with S1-fibrations.

Lemma 3.4.5 ([Law71]). Let M be a manifold with compact boundary. Let π : M → S1

be a smooth submersion with the property that π|∂M is also a submersion. Then M admits a

codimension-one co-orientable foliation tame near the boundary.

Proof. By Lemma A.2.4 there exists a collar neighbourhood U ' ∂M × [0, 1) with the property

that the following diagram commutes
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Figure 3.1: A visualisation of the turbulisation procedure. The cylinder S1 × [1,∞) has been

visualized as a subset of the plane, which is given as the complement of the compact set bounded

by the circle. Of the product foliation on S1 × [1,∞) there is one leaf drawn on the left and

next to it a resulting leaf after turbulisation.

∂M × [0, 1) U

S1 × [0, 1) S1

'

π|∂M×id π

pr1

To construct the foliation we can now proceed completely analogous to the trivial case. We

define

α :=

π∗dϕ on M \ U,

f(t)π∗dϕ+ g(t)dt on U,

with f and g as in Lemma 3.4.2. It is easily verified that α∧ dα = 0. By the local form of π on

U we see that α|U = f(t)π|∗∂Mdϕ+ g(t)dt. Thus dα|U = f ′(t)π|∗∂Mdϕ ∧ dt. Because f ′ vanishes

up to infinite order at t = 0 we see by Lemma 2.1.4 that the foliation is tame near the boundary,

which finishes the proof.

Again we study how the turbulised foliation relates to the old one. The proof is almost identical

to that of the trivial case.

Lemma 3.4.6. Let F be the foliation obtained in Lemma 3.4.5, then the foliation F|IntM is

diffeomorphic to the foliation defined by the fibers of π.

Proof. Let h : Int M → R be as defined in the proof of Lemma 3.4.3. Let N = π−1([0]), and let
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ϕ : N → N be a monodromy of π : M → S1 (see Theorem A.2.6). Define

ψ̃ : IntN × R→ IntN × R,

(x, t) 7→ (ϕ(x), t− h(x)).

It is easily verified that ψ̃ is equivariant with respect to the action defined in Theorem A.2.6. It

thus induces a diffeomorphism ψ : IntM → IntM . We have ψ̃∗dt = dt− dh, and ψ̃∗dh = ϕ∗dh.

Because h depends only on the t-coordinate of the tubular neighbourhood, and is defined to be

zero outside the tubular neighbourhood, we see that ϕ∗dh = dh. In conclusion ψ̃∗(dt+dh) = dt.

Let q : N × R → M denote the composition of the quotient map and the diffeomorphism

M ' N ×Z R. By definition we have that the diagram,

M N × R

S1 N ×Z R

π '
q

π′

with π′([x, t]) = [t], commutes. Hence q∗(π∗dϕ) = dt, and from combining this with ψ̃∗(dt+dh) =

dt it follows that ψ∗(π∗dϕ+ dh) = π∗dϕ. This finishes the proof.

Leafwise symplectic structure

Given a symplectic manifold M with boundary we see that M ×S1 admits a sympletic foliation.

We would like to modify the symplectic structure such that the foliation obtained in Lemma

3.4.2 can be endowed with a leafwise symplectic form tame near the boundary. We do however

have to impose some extra conditions on the symplectic manifold.

Proposition 3.4.7. Let (M2n, ω) be a symplectic manifold with compact boundary of cosym-

plectic type. Then the foliation on M × S1 as constructed in Lemma 3.4.2 admits a leafwise

symplectic structure tame near the boundary. The symplectic structure on the boundary leaf is

given by

ω|∂M×S1 = η − θ ∧ dϕ,

where (η, θ) is a cosymplectic structure on ∂M induced by ω.

Proof. Let (f, g) be the pair of good functions from the proof of Lemma 3.4.2, and recall form

defining the foliation

α =

dϕ on (M \ U)× S1,

f(t)dϕ+ g(t)dt on U × S1.
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Because ω is of cosymplectic type at the boundary, by Proposition 3.2.6 there exists a collar

neighbourhood, U , of the boundary on which ω takes the following form:

ω|U = η + θ ∧ dt, where η = ω|∂M , and θ is admissible for η.

Let (a, b) be a good pair of functions satisfying the following assumptions:

• a and b are constant near 0,

• af + bg > 0.

Define

Ω =

ω on (M \ U)× S1,

η − bθ ∧ dϕ+ aθ ∧ dr on U × S1.

We have

dΩ =

dω on (M \ U)× S1,

−db ∧ θ ∧ dϕ on U × S1,

hence dΩ ∧ α = 0. Also

Ωn =

ωn on (M \ U)× S1,

(n− 1)ηn−1 ∧ (aθ ∧ dt− bθ ∧ dϕ) on U × S1,

hence

Ωn ∧ α =

ωn ∧ dϕ on (M \ U)× S1,

(n− 1)(af + bg)ηn−1 ∧ θ ∧ dt ∧ dϕ on U × S1.

Because af + bg > 0 we find that Ω is a leafwise symplectic form on M × S1. Because we have

chosen a and b constant near 0, we get that Ω is constant near the boundary. We conclude that

Ω is a symplectic form tame near the boundary, which finishes the proof.

Using this procedure we can construct the famous Reeb foliation:

Example 3.4.8. Consider the following decomposition of S3,

S3 = D2
1 × S1

1 ∪T 2,flip D
2
2 × S1

2 ,

where the glueing is done by identifying ∂D2
1 with S1

2 and ∂D2
2 with S1

1 . We now apply the

turbulisation procedure to D2
1 × S1

1 and D2
2 × S1

2 . This will result in a foliation where the torus

is a leaf and, using Lemma 3.4.3, with leaves in the interior diffeomorphic to R2. This foliation

is called the Reeb foliation.
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For the symplectic structure we note that the (signed) standard area form ωi := (−1)i+1ridϕi ∧
dri on D2

i is cosymplectic at the boundary. Indeed the standard angular forms dθi ∈ Ω1(S1
i ) form

admissible forms. Hence we can apply Proposition 3.4.7 to obtain a leafwise symplectic structure

on both D2
1 × S1

1 and D2
2 × S1

2 . The symplectic structures at the boundary leaves are given by

dϕ1 ∧ dθ1 and −dϕ2 ∧ dθ2. The diffeomorphism of the boundaries is a symplectomorphism with

respect to these structures hence we can apply Theorem 2.2.7 to obtain a symplectic foliation

on S3.

Example 3.4.9. Because S2 is symplectic, the manifold S2×S1 admits a symplectic foliation.

We will use these techniques to obtain a non-trivial symplectic foliation on S2 × S1. Consider

the decomposition of S2 × S1

S2 × S1 = D2 × S1 ∪T 2,id D
2 × S1,

where the glueing is now done via the identity map. We now proceed as in the previous example,

but now we turbulise both tori in the same direction.

3.5 Turbulisation: general case

In the previous section we constructed a leafwise symplectic structure on the foliation obtained

by applying the turbulisation procedure to a trivial fibration. A natural way to continue would

be to endow the foliation obtained in Lemma 3.4.5 with a leafwise symplectic form. However

we are going to do something more general.

Recall that Tischler’s theorem states that a manifold admitting a unimodular foliation fibres

over S1. Because cosymplectic manifolds admit a natural unimodular foliation, they also admit

a circle fibration. So instead of generalising the turbulisation procedure to locally trivial fibra-

tions, we will proceed to cosymplectic manifolds. We will define a certain class of cosymplectic

manifolds with boundary, and then prove that we can produce symplectic foliations tame near

the boundary on these manifolds. First we will consider manifolds B ×D2, where B is cosym-

plectic. These are the manifolds in which we are mainly interested, and act as a motivating

example.

3.5.1 Turbulisation B ×D2

When (B, η, θ) is a cosymplectic manifold, then (B×D2, η+ωD2 , θ) is a cosymplectic manifold

with boundary. Here ωD2 = rdϕ ∧ dr denotes the standard area form on D2. As before the

induced symplectic foliation on B×D2 is not tame near the boundary, so we are going to modify

it.
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Lemma 3.5.1. Let (B, η, θ) be a cosympletic manifold without boundary. Then the manifold

B ×D2 admits a codimension-one symplectic foliation tame near the boundary, with symplectic

structure on the boundary leaf given by

η − θ ∧ dϕ.

Proof. Let (f, g) and (a, b) be good pairs of functions satisfying:

• f(t) > 0 for all t ∈ (0, 1),

• a, b are constant near 1,

• af + bg > 0.

We denote C = B × D2 and consider the tubular neighbourhood U of ∂C induced by V =

−1
r
∂
∂r . On U we have that ωD2 |U = dt ∧ dϕ, where t denotes the coordinate on the tubular

neighbourhood. We define

θ′ =

θ on C \ U,

fθ + gdt on U,
η′ =

η + ωD2 on C \ U

η + adt ∧ dϕ+ bdϕ ∧ θ on U

By the choice of the functions we see that these forms are smooth. It is now easy to verify that

θ′ ∧ dθ′ = 0, dη′ ∧ θ = 0. Finally

(η′)n+1 ∧ θ′ =

nηn ∧ ωD2 ∧ θ on C \ U,

n(afr + gb)ηn ∧ dt ∧ dϕ ∧ θ on U,

which is nowhere vanishing. Hence (η′, θ′) defines a symplectic foliation. Because f and g are

chosen to vanish up to infinite order at t = 0, we have by Lemma 2.1.4 that the foliation is tame

near the boundary. Because a and b are chosen to be constant near t = 0, we see that η′ is

closed near the boundary. We conclude that the symplectic foliation is tame near the boundary

which finishes the proof.

We note that the cosymplectic manifold (B×D2, η+ωD2 , θ) has the property that on the tubular

neighbourhood defined by V = −1
r∂r, the cosymplectic structure takes the form (η−dϕ∧dt, θ).

In the following we will study cosymplectic manifolds which admit similar normal forms around

the boundary.

3.5.2 Cosymplectic manifolds with boundary of s-type

The following definition is somewhat similar to the definition of symplectic manifolds with

boundary of cosymplectic type.
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Definition 3.5.2. Let (C2n+1, η, θ) be a cosymplectic manifold with boundary. We say that C

has boundary of s-type if there exists a nowhere vanishing vector field V in a neighbourhood,

U , of the boundary such that:

• V is transverse to the boundary,

• LV (η|U ) = 0,

• LV (θ|U ) = 0,

• η|∂C is nowhere symplectic, that is η|n∂C = 0.

Remark 3.5.3. We first give an interpretation for the requirement η|n∂C = 0. Because ηn∧θ 6= 0,

we have that η is non-degenerate along the leaves of the foliation defined by θ. By requiring the

assumption η|n∂C = 0, we see that the leaves of ker θ and the boundary of C are transverse.

Example 3.5.4. Let (M,ω) be a symplectic manifold with boundary of cosymplectic type, then

(M × S1, ω, dϕ) is a cosymplectic manifold with boundary of s-type. Indeed the required vector

field V is obtained from Proposition 3.2.6.

The following lemma gives an alternative description of the fourth assumption of Definition

3.5.2.

Lemma 3.5.5. Let (C, η, θ) be a cosymplectic manifold which satisfies the first three assumptions

of Definition 3.5.2 and let (π,X) be the corresponding one-Poisson structure from Proposition

3.3.7. Then η|∂C is nowhere symplectic if and only if X is tangent to the boundary.

Proof. Let U be a collar neighbourhood of ∂C and write

θ|U = αt + ftdt, η|U = βt ∧ dt+ γt, X|U = Zt + gt∂t,

for some Zt ∈ X(∂C), αt, βt ∈ Ω1(∂C), γt ∈ Ω2(∂C) and ft, gt ∈ C∞(∂C). Recall that X is

defined by the equations ιXη = 0 and ιXθ = 1, which on ∂C give

ιZ0γ0 = g0β0, ιZ0α0 + f0g0 = 1.

We have to prove that γn = 0 if and only if X is tangent to the boundary which happens

precisely when g0 = 0:

“⇒”: If g0 = 0, then X|∂C = Z0. Because ιXθ = 1 we must have that Z0 is nowhere vanishing.

But as ιZ0γ0 = 0 we see that γ0 has non-trivial kernel and we conclude that γn0 = 0.

“⇐”: Because LV η|U = 0 and V |U = ∂t we find d(ι∂tβt∧dt) = −dβt = 0. Then d∂βt+
d
dtβt∧dt =

0 which implies that βt = β0. Using the fact that η is closed, a similar argument shows that

γt = γ0. As γn0 = 0 we have,

(ηn ∧ θ)|U = nγn−1
0 ∧ βt ∧ dt ∧ αt 6= 0,



40 CHAPTER 3. SYMPLECTIC TURBULISATION

also

0 = ιZ0(γn0 ∧ αt) = ng0β0 ∧ γn−1
0 ∧ α0.

Combining this gives g0 = 0, which finishes the proof.

We are now ready to produce the required local form corresponding to the definition of boundary

of s-type.

Proposition 3.5.6. Let (C2n+1, η, θ) be a cosymplectic manifold. Then the following are equiv-

alent:

i. C has boundary of s-type.

ii. There exits a nowhere vanishing vector field V in a neighbourhood U of the boundary such

that

• V is transverse to the boundary,

• (LV η)|U = 0,

• (ιV θ)|U = 0,

• η|∂C is nowhere symplectic.

iii. The tuple (γ, β, α) := (η|∂C , (ιV η)|∂C , θ|∂C) on is a two-cosymplectic structure on ∂C, such

that on a collar neighbourhood U we have:

θ|U = α, η|U = β ∧ dt+ γ

Proof. i) ⇔ ii): The implication ii)⇒ i) is trivial so we are left to prove the other implication.

Let W be the vector field from the definition of boundary of s-type, and let (π,X) be the one-

Poisson structure corresponding to (η, θ). By Lemma 3.5.5 we have that X is tangent to the

boundary, hence the vector field V = W − θ(W )X is transverse to the boundary. By definition

we have that ιXθ = 1, hence ιV θ|U = θ(W ) − θ(W ) = 0. Also by definition we have ιXη = 0,

hence LV η|U = 0.

iii) ⇒ ii): Let t denote the coordinate on the collar neighbourhood, and define V = ∂t. We

have ιV θ|U = 0 and LV η|U = dιV η|U = 0. Because (γ, β, α) is a two-cosymplectic structure and

γ = η|∂M we have that η|∂M is nowhere symplectic.

ii) ⇒ iii): Let V be the vector field of ii), which we assume to point inwards. And let U be

the the collar neighbourhood defined by the flow of this vector field. We decompose the forms

θ and η on this neighbourhood as

θ|U = αt + fdt, η|U = βt ∧ dt+ γt,

for some forms αt, βt ∈ Ω1(∂C), γt ∈ Ω2(∂C) depending smoothly on t and a smooth function f

on U . Now as ιV (θ|U ) = 0, and V has the form ∂t on U we see that f = 0. Furthermore, as θ|U
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is closed and dθ|U = d∂αt + d
dtαt ∧ dt we see that d

dtαt = 0, hence αt = α0. Similarly because

LV η = 0, we have that d(ι∂tη) = 0. Hence dβt = 0, which shows that βt = β0 and d∂β0 = 0.

Using the fact that η is closed, we find dγt = 0. Therefore γt = γ0 and d∂γ0 = 0. We note that

γ0 = η|∂C and hence γn0 = 0. Because (η, θ) is cosymplectic we thus have γn−1
0 ∧ β ∧ α ∧ dt 6= 0.

This shows that (γ0, α0, β0) is a two-cosymplectic structure and thus finishes the proof.

We are now ready to state the main theorem of this chapter. The local form we have obtained

in the previous proposition will allow us to mimic the proofs in the previous section.

Theorem 3.5.7. Let (C, η, θ) be a cosymplectic manifold with boundary of s-type. Then there

exists a symplectic foliation (F , ω) on C which is tame near the boundary. Let V be a vector

field which satisfies the assumptions in Proposition 3.5.6.ii), then the symplectic structure at the

boundary leaf is given by:

ω|∂C = η|∂C + (ιV η)|∂C ∧ θ|∂C .

Proof. Let U be the collar neighbourhood from Proposition 3.5.6.iii), and let (γ, α, β) be the cor-

responding two-cosymplectic structure. Let (f, g) and (a, b) be good pairs of functions satisfying

the following properties:

• f(t) > 0 for all t ∈ (0, 1),

• a, b are constant near 0,

• af + bg > 0.

Define

θ′ =

θ on C \ U,

fα− gdt on U,
η′ =

η on C \ U,

γ + β ∧ (adt+ bα) on U.

Note that these forms are smooth because of the local form of (η, θ) on U . We have

θ′ ∧ dθ′ =

θ ∧ dθ on C \ U,

(fα+ gdt) ∧ (df ∧ α+ fdα+ dg ∧ dt) on U,

which vanishes identically. Similarly dη′|U = β ∧ db ∧ α, hence

dη′ ∧ θ′ =

dη ∧ θ on C \ U,

β ∧ db ∧ α ∧ (fα− gdt) on U,

also vanishes. Finally because γn = 0 we have

η′n ∧ θ′ =

ηn ∧ θ on C \ U,

−(n− 1)(af + bg)γn−1 ∧ β ∧ α ∧ dt on U,
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which is nowhere vanishing because (γ, α, β) is a two-cosymplectic structure and by choice of

a, b, f and g. Hence (η′, θ′) defines a codimension-one symplectic foliation. Because f and g are

chosen to vanish up to infinite order at t = 0, we have by Lemma 2.1.4 that the foliation is tame

near the boundary. Because a and b are chosen to be constant near t = 0, we see that η′ is

closed near the boundary. We conclude that the symplectic foliation is tame near the boundary

which finishes the proof.

Remark 3.5.8. When the cosymplectic structure (η, θ) is such that θ = f∗dϕ for some fibration

f : C → S1, we see that the foliation constructed in Theorem 3.5.7, using (η,−f∗dϕ), coincides

with the foliation constructed in Lemma 3.4.5. Hence the leaves in the interior are diffeomorphic

to the leaves of the fibration.

Using Theorem 3.5.7 we are able to reprove Lemma 3.5.1:

Proof of 3.5.1 using Theorem 3.5.7. We show that B×D2 admits a cosymplectic structure with

boundary of s-type. Consider ωD2 = rdϕ∧dr and the vector field V , defined on a neighbourhood

U of the boundary, given by V = −(1/r)∂r. Then we have ιV ωD2 = dϕ. Extend V trivially to a

vector field V ′ on B × U . Now we extend η and θ trivially to B ×D2 to obtain a cosymplectic

structure (η + ωD2 , θ). We check that this boundary is of s-type.

Because V is nowhere vanishing, so if V ′. Because V is clearly transverse to ∂D2 we also have

that V ′ is transverse to B × ∂D2. Clearly ιV ′θ = 0, and LV ′(η + ωD2 |B×U ) = LV ωD2 |U = 0.

Finally because of dimension reasons η + ωD2 |M×∂D2 is nowhere symplectic. We conclude that

(η + ωD2 , θ) has boundary of s-type, hence we apply symplectic turbulization to obtain the

required foliation.

S-type at the boundary

For symplectic manifolds with boundary (M,ω) we saw in Proposition 3.5.6 that the existence

of a vector field X, defined near the boundary, which satisfies LXω|∂M = 0 implied the existence

of another vector field Y ∈ X(U) satisfying LY ω|U = 0 on some collar neighbourhood U of the

boundary. For cosymplectic manifolds we can ask a similar question, however it does not suffice

to impose conditions only at the boundary. We will need the following definition:

Definition 3.5.9. Let R ∈ X(M), we define the complex of R-basic differential forms

Ω•R−bas(M) := {α ∈ Ω•(M) : ιRα = 0,LRα = 0}.

The R-basic cohomology H•R−bas(M) is defined as the cohomology of this complex.

Lemma 3.5.10. Let (C2n+1, η, θ) be a cosymplectic manifold for which η|∂C is nowhere sym-

plectic. Let R be the Reeb vector field of (η, θ) (i.e. ιRθ = 1, ιRη = 0), and let ι : ∂C → U denote

the inclusion map. Then the following are equivalent:



3.5. TURBULISATION: GENERAL CASE 43

• There exits a nowhere vanishing vector field V in a neighbourhood of the boundary U such

that

– V is transverse to the boundary,

– (LV η)|U = 0,

– (ιV θ)|U = 0.

• There exits a nowhere vanishing vector field W in a neighbourhood of the boundary U such

that

– W is transverse to the boundary,

– (LW η)|∂C = 0,

– (ιW θ)|∂C = 0,

– ι∗ : H1
R−bas(U)→ H1

R|∂C−bas(∂C) is surjective.

Proof. We first note that as η|∂C is nowhere symplectic, R is tangent to ∂C and we can consider

R|∂C ∈ X(∂C).

“⇐”: We observe that [(ιV η)|∂C ] ∈ H1
R|∂C−bas(∂C). Hence there exists [γ′] ∈ H1

R−bas(U) such

that (ιV η)|∂C − γ′|∂C = df for some f ∈ C∞(∂C). Using the identification U ' ∂C × [0, 1), we

define an extension f̃ ∈ C∞(U) of f by f̃(x, t) = (1 − t)f(x). We observe that (df̃)(R) = 0,

hence γ(R) = 0. By non-degeneracy of η|ker θ we can find W ∈ ker θ such that γ|ker θ = ιW η.

Because γ(R) = 0 we thus conclude that γ = ιW η. By definition of W we have (ιW θ)|U = 0 and

as γ is closed we find that (LW η)|U = 0. We are thus left to show that W is transverse to the

boundary. As V is transverse to ∂C we have that (ιV (ηn ∧ θ))|∂C is a volume form. Because

(ιV η)|∂C = (ιW η)|∂C a direct computation shows that (ιV (ηn ∧ θ))|∂C = (ιW (ηn ∧ θ))|∂C , which

implies that W is transverse to ∂C.

“⇒”: On U we can write R|U = R|∂C + f ∂
∂t , for some f ∈ C∞(U). Using the local form of η on

U as in Proposition 3.2.6 we see that ιR|U η|U = fβ = 0. Because β 6= 0 we conclude that f = 0,

hence R|U = R|∂C . Now let [α] ∈ H1
R|∂C−bas(∂C), then [pr∗1α] ∈ H1

R−bas(U) and ι∗[pr∗1α] = [α].

This finishes the proof that ι∗ is surjective.
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Chapter 4

Open book decompositions

In this chapter we study open book decompositions. In the previous chapters we discussed how

symplecitic foliations arise from glueing symplectic foliations which are tame near the boundary.

For instance in Example 3.4.8 we have constructed the Reeb foliation on S3 using a decompo-

sition of S3. Open book decompositions will generalise this decomposition. These open books

will be one of our main tools in constructing symplectic foliations in the next chapter.

In Section 4.1 we will recall the basic definitions of open book decomposition. Furthermore,

we will describe a procedure which constructs open books from certain complex valued func-

tions. In Section 4.2 we will consider the interplay between open books and contact geometry.

In Section 4.3 we will describe one possible way to obtain symplectic foliations from open book

decompositions. In Section 4.4 we will describe a method of constructing open book decom-

positions from complex line bundles which admit sections transverse to the zero-section. After

this we will specialize to complex line bundles arising from integral symplectic manifolds. We

will call the open books which we obtain in this manner Donaldson open books, and these open

books will be used in the next chapter to construct symplectic foliations.

Orientations: The convention for orientations induced on the boundary, will be “inward nor-

mal first”. That is, for an oriented manifold M we say that a frame {X1, . . . , Xn} on ∂M is

positively oriented if {Y,X1, . . . , Xn} is a positively oriented frame on M . Here Y denotes the

inward pointing normal vector.

4.1 Definitions and constructions of open book decompositions

In this section we recall the definition of an open book decomposition of a manifold. These

decompositions will carry a natural foliation outside of a codimension-two submanifold, pointing

towards their use in constructing foliations.

45
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4.1.1 Basics of open book decompositions

Definition 4.1.1. An open book decomposition of a manifold M consists of:

• A codimension-two embedded submanifold B with trivial normal bundle.

• A submersion π : M \B → S1.

Furthermore, B admits a tubular neighbourhood τ(B) together with a diffeomorphism ψ : τ(B)→ B ×D2

such that the following diagram commutes:

τ(B) \B B × (D2 \ {0})

S1

'

π Ang

Here, Ang : D2 \ {0} → S1, z 7→ z
|z| denotes the angular function. We use the following

terminology:

• The submanifold B is called the binding of the open book.

• P := π−1(1) is called the (open) page of the open book.

• A tubular neighbourhood satisfying the above properties is called adapted. Note that

the tubular neighbourhood is not part of the data of an open book decomposition.

We furthermore use the following notation:

• τε(B) = B × {x ∈ D2 : ‖x‖ ≤ ε} ⊂ τ(B),

• Cε = M \ τε(B),

• πε := π|Cε ,

• The ε-page: Pε := π−1
ε ({1}).

The local form of π around the binding gives the following result:

Proposition 4.1.2. Both P and Pε are manifolds with boundary, with boundary diffeomorphic

to B. Furthermore, P and Pε are diffeomorphic.

Example 4.1.3. The motivating example for the name ‘open book’ is the following decom-

position of R3. As a binding B we choose the z-axis, and we define π : R3 \ B → S1 by

π(x, y, z) = (x, y)/ |(x, y)|. Clearly the z-axis has trivial normal bundle and π is a submersion.

Let τ(B) = {(x, y, z) : |x|2 + |y|2 ≤ 1} = B×D2 which is clearly a tubular neighbourhood of B,

on which π satisfies the required local form. This decomposition is visualized in Figure 4.1.

Example 4.1.4. An even simpler example is the open book decomposition of C. As binding

we choose the origin, and we let πst : C∗ → S1 be the angle function. We will call this open

book the standard open book decomposition of C, and we will show in Section 4.1.2 that

any open book decomposition can be realized from this one.
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Figure 4.1: A visualisation of the open book decomposition of R3. The binding is the z-axis,

and the pages are the planes of constant cylindrical coordinate.

Foliations from open books

If a manifold admits an open book decomposition under one additional assumption it admits a

foliation:

Theorem 4.1.5 ([Law71]). Let π : M \ B → S1 be an open book decomposition on a compact

manifold. If the binding B admits an S1-fibration, then M admits a codimension-one foliation.

Proof. Decompose M = τ(B)∪C, with C = M \ τ(B). We have that C admits a circle fibration,

and by the local form of π around B, we see that π|∂C : ∂C → S1 is a submersion. Hence we can

apply Lemma 3.4.5 to obtain a foliation tame near the boundary on C. Because B fibres over

S1 so does τ(B) ' B×D2. This fibration clearly satisfies the assumption that the restriction to

the boundary is a submersion. Hence we can apply Lemma 3.4.5 again, and glue the resulting

foliation to the foliation on C. We conclude that M admits a codimension-one foliation.

Monodromies

An open book decomposition gives the means to decompose a manifold as M = τ(B) ∪∂C C,

where C is the closure of the complement of τ(B). Now M can be studied by studying both

components separately. By assumption τ(B) ' B ×D2, the other component also has a good

description in terms of monodromies:

Definition 4.1.6. A diffeomorphism ϕ : P → P is called a monodromy of the open book

π : M \B → S1 if P ×Z R, is diffeomorphic to M \B. Here the Z-action on P ×R is defined by

n · (p, t) = (ϕn(p), t− n).

A monodromy is called adapted if is the identity on a neighbrouhood of the boundary of the

closed page.
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Proposition 4.1.7. Every open book decomposition π : M \ B → S1 on a compact manifold

admits an adapted monodromy.

Proof. Let X ∈ X(M \B) be a vector field such that π∗X = ∂
∂ϕ , where ∂

∂ϕ denotes the angular

vector field. Because of the local form of π, we can take X such that on an adapted tubular

neighbourhood τ(B) we have Φ∗(X) = ∂
∂ϕ , where Φ denotes the diffeomorphism τ(B) \ B '

B × (D2 \ {0}). Hence the time-one-flow, ϕ1
X , is the identity on τ(B) \ B. The proof that ϕ1

X

gives a monodromy goes along the same lines as the proof of Proposition A.2.5.

We will now give an alternative description of open book decompositions:

Definition 4.1.8. An abstract open book is a pair (Q,Φ), where

• Q is a compact manifold with boundary ∂Q,

• Φ : Q→ Q is a diffeomorphism which is the identity around ∂Q.

Because Φ is the identity near the boundary, we have that the mapping torus of (Q,Φ) has

boundary given by

∂(Q×Z R) = ∂Q× S1.

This allows us to define the following manifold:

M(Q,Φ) := (Q×Z R) ∪∂Q×S1 ∂Q×D2.

The following is proven easily:

Proposition 4.1.9. Let B := ∂Q× {0}, and define π : M(Q,Φ) \B → S1 by

π|(Q×ZR)\B([q, t]) = [t]

π|(∂Q×D2)\B(q, (r, θ)) = θ.

Then π defines an open book decomposition of M(Q,Φ).

The following proposition shows that we can also reverse this process.

Proposition 4.1.10. Let π : M \B → S1 be an open book decomposition on a compact manifold,

and let ϕ be an adapted monodromy. Then M 'M(Q,Φ) with

Q = Pε, Φ = ϕ|Pε ,

for ε > 0 small enough.

Proof. By definition P ×ZR 'M \B. Because ϕ is the identity near the boundary, we see that

Pε ×Z R ' Cε. Hence M(Pε, ϕ|Pε) ' Cε ∪ τε(B) = M .

The last proposition gives us a good description of the outside component of the open book.

Combining this with the form of the tubular neighbourhood we obtain the following:

M ' (B ×D2) ∪ Pε ×Z R.
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4.1.2 Pullback open books

In this section we will give an alternative description of open book decompositions, making use

of the standard open book decomposition of C as in Example 4.1.4.

Definition 4.1.11. We say that a function f : M → N is transverse to an open book

decomposition π : N \B → S1 if:

• f is surjective,

• f is transverse to B,

• f is transverse to every page.

The next theorem shows that one can obtain open book decompositions using the standard open

book decomposition of C.

Theorem 4.1.12. Let M be a compact manifold and let f : M → C be transverse to πst : C∗ →
S1. Define B := f−1({0}), and π : M \B → S1 by

π(z) =
f(z)

|f(z)|
.

Then π : M \B → S1 is an open book decomposition of M .

Proof. B submanifold: Because f is transverse to {0} this is immediate.

π submersion: Because f is transverse to the page we have for any ϕ ∈ S1 and all x ∈
f−1(π−1

st ({ϕ})) that

Tf(x)C = dfx(TxM)⊕ Tf(x)π
−1
st ({ϕ}).

As πst is a submersion the above proves that f∗πst is a submersion.

Tubular neighbourhood: We note that the normal bundle to a regular level set always has

trivial normal bundle. Let U be any tubular neighbourhood of B and let q : U → B denote the

retraction. We define

ϕ : U → B × C, ϕ(z) = (q(z), f(z)).

Let z ∈ B, then (dϕ)z decomposes as

dqz ⊕ dfz : TzB ⊕ TzN (B)→ TzB ⊕ Tf(z)C.

As z is a regular value of f and TzB = ker df , we find that dfz : TzN (B)→ Tf(z)C is surjective.

Because q is the identity on B we conclude that (dϕ)z is an isomorphism for all z ∈ B.

By the inverse function theorem, there exists a neighbourhood of every y ∈ B such that ϕ
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restricted to this neighbourhood is a diffeomorphism. By taking the union of all these neigh-

bourhoods, and taking the intersection with U , we get an open neighbourhood Ũ ⊂ U such that

ϕ|Ũ is a diffeomorphism onto its image. Clearly we have that B × {0} is in this image. For all

z ∈ B we have that there is an open Uz and εz > 0 such that Uz ×Dεz ⊂ ϕ(Ũ). This collection

forms a cover of B and by compactness of B we can take a finite subcover, {Uk×Dεk}. Now we

have that Uk ×Dmink εk is a subset of ∩kUk ×Dεk . We thus conclude that B ×Dmink εk ⊂ ϕ(Ũ)

and we can define an open neighbourhood τ(B) := ϕ−1(B ×Dmink εk) ∩ U . Finally we see that

ϕ|τ(B) is a diffeomorphism onto B ×Dmink εk . By the explicit form of ϕ we directly have that π

has the required local form on τ(B).

It turns out that any open book decomposition can be obtained by the previous construction.

Theorem 4.1.13. Let M be a compact manifold. There is a 1:1 correspondence:{
Open book decompositions

π : M \B → S1

}
1:1←→

{
Functions f : M → C

transverse to πst : C∗ → S1

}/
∼

where f ∼ g if f−1({0}) = g−1({0}) and there exists ρ : M \B → R>0 such that f = ρg.

Proof. Given an open book decomposition π : M \ B → S1 we will define f : M → C in the

following manner. Define f |B = 0 and write

f = fre
ifθ , fr, fθ : M → R.

We define fθ by fθ|π−1({ϕ}) = ϕ. Consider ρ : D2 → R≥0 such that

ρ(ϕ, r) =

r, if r ≤ ε,

1, if r > 1− ε.

Now we define

fr(z) =

ρ(r) on τ(B) with z = (b, r)

1 on M \ τ(B).

To see that f defined in this way is smooth, we note that on a smaller tubular neighbourhood

τε(B) ⊂ τ(B), f coincides with ϕ∗pr2, where pr2 : B × D2 → D2 denotes the projection onto

the second factor. By construction we have

f(z)

|f(z)|
= eifθ(z)

= π(z).

so f is smooth. We now have to show that f is transverse to πst : C∗ → S1. To show that 0

is a regular value of f we note that on τε(B) the function f coincides with ϕ∗pr2. As pr2 is a
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submersion this shows that 0 is a regular value of f .

Because π is a submersion and π = f∗πst we have that dfz is surjective onto the complement of

ker(dzπst). Because ker(dzπst) is precisely the page though z, we conclude that f is transverse

to πst.

To finish the proof we have to show that given π : M \ B → S1 such that π = f/ |f | = g/ |g|,
there exists ρ : M \ B → R>0 such that f = ρg. One easily checks that fr/gr satisfies these

properties.

Remark 4.1.14. The above correspondence gives another interpretation of open book decom-

positions. Because πst : C∗ → S1 is precisely the angular function, an open book decomposition

can be seen as some sort of angular function on the manifold. Now the role of the origin is

played by a codimension-two submanifold, and the rays in C∗ are replaced by the pages of the

open book.

4.2 Open books and contact geometry

Open book decompositions are used widely in both foliation theory and contact geometry. For

instance the construction of a contact structure on T 2n+1 [Bou02] made use of open book de-

compositions. The following definition gives the open books which are most natural to use in

contact geometry.

Definition 4.2.1. An open book decomposition π : M \B → S1 is said to support a contact

form α ∈ Ω1(M) if the following conditions are satisfied:

i. The form αB := α|B is a contact form.

ii. The restriction of dα to every open page is symplectic, that is dα|π−1({ϕ}) is symplectic for

all ϕ ∈ S1.

iii. The following two orientations on B coincide: The orientation induced by αB, and the

orientation induced by viewing B as the boundary of Pε, where Pε is oriented by dα|Pε .

Remark 4.2.2. It might seem more natural to ask in (iii) in the above definition that B is

oriented as the boundary of P . However one must be careful here. Although P and Pε are

diffeomorphic, dα|P is not symplectic. Indeed as the Reeb vector field of α is tangent to B it is

also tangent to P . Hence dα|P has a non-trivial kernel.

Remark 4.2.3. Open book decompositions are useful for constructing foliations because they

carry a foliation outside of a codimension-two submanifold. When an open book decompositions

supports a contact form, assumption ii) in Definition 4.2.1 ensures that this foliation is in fact

symplectic. This motivates that to construct symplectic foliations it is useful to start with open

books supporting a contact form.
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Remark 4.2.4. In this setting, all pieces of the open book carry canonical orientations. We have

that B caries the orientation induced by αB and P the orientation induced by (dα)|P . When

considering tubular neighbourhoods around the binding it is useful to consider those open books

which are also adapted to these orientations. That is, tubular neighbourhoods τ(B) such that

the orientation on τ(B) coincides with the product orientation on B×D2, where D2 is endowed

with the standard orientation. We will call these tubular neighbourhoods oriented adapted

neighbourhoods. Note that if an adapted neighbourhood is not oriented one can simply apply

an orientation reversing diffeomorphism of D2 to make it so.

We will now give an alternative description of the second and third property in Definition 4.2.1.

Lemma 4.2.5. Let π : M \ B → S1 be an open book decomposition and α ∈ Ω1(M) a contact

form. Then (ii) and (iii) from Definition 4.2.1 are equivalent to the following: There exists a

smooth positive function fπ,α on M such that

(dπ)(Rα) = fπ,α
∂

∂ϕ
, (4.1)

where Rα denotes the Reeb vector field of α.

Proof. (ii): We will first show that (ii) is equivalent to the existence of a nowhere-vanishing

function satisfying (4.1). The Reeb vector field of α spans the kernel of dα. Hence we see that

for any ϕ ∈ S1 the restriction dα|π−1({ϕ}) is symplectic if and only if

TxM = Tx(π−1({ϕ}))⊕ R · (Rα)x for all x ∈ f−1({ϕ}).

Or more concisely, by seeing the pages as a foliation F on M \B we have

T (M \B) = TF ⊕ R ·Rα,

because TF is precisely ker(dπ). In turn this is equivalent to the fact that

(dπ)(Rα) = fπ,α
∂

∂ϕ
,

for some non-vanishing smooth function fπ,α on M .

(iii): We will now show that fπ,α is positive is and only if (iii) is satisfied. Let 2n+ 1 = dim M .

We work on an adapted oriented tubular neighbourhood. Let Y1, . . . , Y2n−1 ∈ X(B0) be a local

frame on B, where B is viewed as ∂P and we thus denoted it as B0. Now transport this local

frame to a local frame Ỹ1, . . . , Ỹ2n−1 ∈ X(Bε) on B, but now with B viewed as ∂Pε and we thus

denoted it as Bε. We can pick a normal vector for B0 ⊂ P , such that its corresponding normal

vector for Bε ⊂ ∂Pε is precisely ∂r. Hence the original frame is positively oriented if and only if

Ỹ1, . . . , Ỹ2n−1, ∂r ∈ X(P ) is positively oriented. Because ιR(α ∧ (dα)n) = (dα)n we see that this
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is the case if and only if R, Ỹ1, . . . , Ỹ2n−1, ∂r ∈ X(M) is positively oriented.

By (dπ)(R) = fπ,α∂ϕ, and the local form of π on the tubular neighbourhood, we have that

on B × D2 the Reeb vector fields takes the form R = RB + fπ,α∂ϕ. Because the tubular

neighbourhood is oriented, we see that Ỹ1, . . . , Ỹ2n−1 is positively oriented with respect to αB

if and only if Ỹ1, . . . , Ỹ2n−1, ∂r, ∂ϕ is positively oriented on τ(B). Because fπ,α 6= 0 we see that

this is the case if and only if Ỹ1, . . . , Ỹ2n−1, ∂r, sgn(fπ,α)R is positively oriented on τ(B). This is

the case if and only if sgn(fπ,α)R, Ỹ1, . . . , Ỹ2n−1, ∂r is positively oriented. This proves that the

orientations on B induced by P and αB coincide if and only if fπ,α > 0.

Remark 4.2.6. Note that the above does not imply that Rα is π-projectible to a vector field

on S1. The lemma shows that property (ii) and (iii) in Definition 4.2.1 can be considered as

follows. Property (ii) ensures that the Reeb vector field is transverse to the pages, and property

(iii) ensures that the Reeb vector field points in the “counter-clockwise direction”.

Starting with a contact structure, we can always find an open book supporting it:

Theorem 4.2.7 ([Gir02]). To any contact structure ξ on a closed manifold M of dimension at

least equal to three there exists an open book decomposition (B, π) supporting ξ.

Conversely if we start with an open book decomposition, under some conditions we can find a

contact form which is supported by it:

Theorem 4.2.8 (Thm 7.3.3, [Gei08]). Let (Q,Φ) be an abstract open book with the following

properties:

• Q admits an exact symplectic form ω = dβ.

• The vector field Y defined by ιY ω = β is transverse to ∂Q, pointing outwards.

• The monodromy Φ is a symplectomorphism of (Q,ω).

Then M = M(Q,Φ) admits a contact structure supported by the open book decomposition

π : M \B → S1.

An open book supporting a contact structure admits natural monodromies:

Proposition 4.2.9. Let π : M \B → S1 be an open book decomposition on a compact manifold

which supports a contact form α ∈ Ω1(M). Then the flow of a suitable scaled version of the Reeb

vector field induces a monodromy of π, which preserves the symplectic structure on the page.

Proof. By Remark 4.2.5 we have that (dπ)(Rα) = fπ,α
∂
∂ϕ , with fπ,α a positive function on M .

Now define

X =
1

fπ,α
Rα.
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This vector field satisfies π∗X = ∂
∂ϕ . As in Proposition 4.1.7 we get that the time-one-flow of X

gives a monodromy of the open book.

Note that dιRαdα = 0, hence by the Cartan’s formula we have LRα(dα) = 0. This shows that

(ϕtX)∗(dα) is constant. Hence we find that (ϕ1
X)∗(dα) = dα, which finishes the proof.

Remark 4.2.10. We note that the monodromy of the previous proposition is never adapted.

Indeed as the binding is a contact submanifold, around the binding the Reeb vector field Rα

always has a component in the direction of it.

4.3 Symplectic foliations from open books

In this section we will prove a theorem similar to Theorem 4.2.8, but now for symplectic foli-

ations. Continuing the general motto of obtaining symplectic foliations via decompositions of

manifolds, the natural question is what further assumptions we need for a manifold which admits

an open book decomposition to admit a symplectic foliation. One answer to this question is the

following:

Theorem 4.3.1. Let M2n+1 be a compact manifold. Assume that we have the following:

• An open book decomposition π : M \B → S1.

• A symplectic form ω ∈ Ω2(P ) which is of cosymplectic type at the boundary.

• An adapted monodromy ϕ : P → P of the open book which satisfies ϕ∗ω = ω.

Then M admits a codimension-one symplectic foliation.

Remark 4.3.2. The disadvantage of this theorem is that it is rather difficult to apply in

examples. The main reason for this is the existence of adapted symplectic monodromies. It is

always possible to perturb a monodromy to one that is adapted, but by doing so it is hard to

keep the monodromy symplectic. Therefore we will not make use of the above theorem in our

constructing of a symplectic foliation on S5 and we will proceed differently. Still this theorem

is the natural generalisation of Theorem 4.1.5

Proof of Theorem 4.3.1. Recall that M admits the following decomposition:

M ' (P ×Z R) ∪∂P×S1 (∂P ×D2),

where ∂(P ×Z R) ' ∂P × S1 because ϕ is the identity near the boundary (here we used the

diffeomorphism between P and Pε given by Proposition 4.1.2). We will construct symplectic

foliations tame near the boundary on ∂P ×D2 and P ×Z R for which the symplectic structures

on the boundary leaves coincide. Then by glueing the foliations together we obtain a symplectic

foliation on M . Let X be a vector field on U ⊂ P transverse to ∂P such that LXωU = 0.
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Step 1: Foliation on ∂P × D2: By Lemma 3.2.4 the pair (ω|∂P , (ιXω)|∂P ) =: (η, θ) is a

cosymplectic structure on ∂P . We now apply Lemma 3.5.1 to (η,−θ) obtain a symplectic

foliation on ∂P ×D2, tame near the boundary. The symplectic structure on the boundary leaf

is given by

η + θ ∧ dϕ.

Step 2: Obtaining a cosymplectic structure on P × R: Consider pr∗1ω ∈ Ω2(P × R). Let

ψ : P × R → P × R denote the action defining P × R. Because ϕ∗ω = ω we also have that

ψ∗pr∗1ω = pr∗1ω, hence there exists a form Ω ∈ Ω2(P ×Z R) such that p∗Ω = pr∗1ω. Where

p : P × R → P ×Z R denotes the quotient map. A similar argument for pr∗2dt yields a form

ζ ∈ Ω1(P ×Z R) such that p∗ζ = pr∗2dt. Because p∗ is injective and clearly ωn ∧ dt 6= 0 (we drop

the projections from the notation) we see that p∗(ωn ∧ dt) = Ωn ∧ ζ 6= 0. This shows that (Ω, ζ)

is a cosymplectic structure on P × R.

Step 3: (P ×R,Ω, ζ) has boundary of s-type: We shrink the neighbourhood U , if necessary,

such that ϕ|U = idU . Furthermore, we shrink U such that p(U ×R) is a collar neighbourhood of

∂(P×ZR). We now extend X trivially to a vector field on U×R, we then have that (ϕ|U )∗X = X,

hence X descends to a vector field V on p(U × R), which satisfies Vp(x) = (dp)x(Xx) for all

x ∈ U × R.

We will now show that the vector field V satisfies the assumptions of boundary of s-type.

Because V = p∗X it directly follows that ιV θ = ιXdt = 0. Similarly ιV Ω = p∗(ιXω), hence

LV Ω = p∗(LXω) = 0. Hence V satisfies the assumptions of Proposition 3.2.6.ii), provided that

it is transverse to the boundary. To show this we note that Ωn ∧ ζ is a volume form on P ×Z R,

hence it suffices to show that (ιV (Ωn ∧ ζ))|∂(P×ZR) is a volume form. We compute

ιV (Ωn ∧ ζ) = n(ιV Ω) ∧ Ωn−1 ∧ ζ
= np∗(ιXω) ∧ p∗ωn−1 ∧ p∗dt
= np∗(ιXω

n ∧ dt).

Because X is transverse to ∂P , we see that (ιXω
n)|∂P 6= 0. Using the above computation and

the fact that p(∂P ×R) = ∂(P ×ZR), we conclude that (ιX(Ωn ∧ ζ))|∂(P×ZR) 6= 0, which finishes

the proof that (P ×Z R,Ω, ζ) has boundary of s-type.

Step 4: Conclusion: We can now apply Theorem 3.5.7 to obtain a symplectic foliation, with

symplectic structure on the boundary leaf given by:

Ω|∂(P×ZR) + ιV (Ω|∂(P×ZR)) ∧ ζ|∂(P×ZR).

To finish we have to show that ∂(P ×Z R) is symplectomorphic to ∂(B × D2). To do as such

consider the diffeomorphism

ρ : ∂P × S1 → ∂(P ×Z R)

(x, [t]) 7→ [(x, t)].
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We have that the following diagram commutes:

∂P × R ∂(P × R)

∂P × S1 ∂(P ×Z R)

id

id×q p|∂(P×R)

ρ

Using the commutativity of this diagram we have that

ρ∗Ω|∂(P×ZR) = (id× q)∗(p|∗∂(P×R)
Ω|∂(P×R))

= (id× q)∗ω|∂P×R
= ω|∂P×S1

= η.

Similarly we have

ρ∗ζ|∂(P×ZR) = (id× q)∗(p|∗∂(P×R)
ζ|∂(P×ZR))

= (id× q)∗(dt|∂P×R)

= dϕ.

As before we have that p∗ιV Ω = ιXω, hence

ρ∗(ιV (Ω|∂(P×ZR))) = θ.

Combining the above we see that

ρ∗(Ω|∂(P×ZR) + ιV (Ω|∂(P×ZR)) ∧ ζ|∂(P×ZR)) = η + θ ∧ dϕ.

We can thus glue this foliation with the foliation obtained in step 1 to obtain a codimension one

symplectic foliation on M .

4.4 Open books from complex line bundles

In this section we associate to any complex line bundle which admits a transverse section, an open

book decomposition on the associated principal S1-bundle. Furthermore, when this complex

line bundle arises from a symplectic manifold, we will show that this open book decomposition

supports a certain contact form. The constructions in this section are inspired by the Hopf

fibration. We will conclude this section by applying our general theory to the Hopf fibration to

obtain the open book we will use to prove the existence of a symplectic foliation on S5.
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4.4.1 Principal bundles and vector bundles

We recall some of the basic relations between principal bundles and vector bundles.

Proposition 4.4.1. There is a 1:1 correspondence between:{
Isomorphism classes of

complex line bundles

}
1:1←→

{
Isomorphism classes of

principal S1 − bundles

}

Where the map from the right to left is taking the S1-bundle with respect to some Riemannian

metric, and the map from left to right is taking the vector bundle associated to the representation

ρ : S1 → GL(C)

ρ(λ)v = λv.

We denote by E(M,C) the vector bundle under this correspondence.

Under this correspondence we can relate sections of the line bundle to certain functions on the

principal bundle.

Lemma 4.4.2 ([Cra16]). Let h : M → S be a principal G-bundle, and let ρ : G→ GL(V ) be a

representation of G. Then there is a 1:1 correspondence between Γ(E(M,V )) and G-equivariant

functions, C∞(M,V )G. Given f ∈ C∞(M,V )G, σf ∈ Γ(E(M,V )) is induced by the map

M →M × V, x 7→ (x, f(x)).

Lemma 4.4.3. Let f ∈ C∞(M,V )G, and let σf be the corresponding section of h′ : E(M,V )→
S. Then 0 is a regular value of f if and only if σf is transverse to the zero-section.

Proof. Choose U ⊂ S such that M |h−1(U) ' U × G and E|h′−1(U) ' U × V . Inspecting the

definition of σf , we see that locally σf takes the following form:

σf : U → E|h′−1(U) x 7→ (x, f(x)).

Hence locally dσf = id⊕df , from which it directly follows that σf is transverse to the zero-section

if and only if 0 is a regular value of f .

4.4.2 Open books on principal S1-bundles associated to complex line bundles

Given a section of a complex line bundle, we can consider the corresponding equivariant function

on the S1-bundle. The idea is to apply Theorem 4.1.12 to obtain an open book decomposition

on this S1-bundle.

Theorem 4.4.4. Let L→ S be a complex line bundle over a compact manifold, and let σ ∈ Γ(L)

be a section which is transverse to the zero-section. Let M = P (L) be the principal S1-bundle
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corresponding to L, and let fσ ∈ C∞(M,C)S
1

be the equivariant function corresponding to σ.

Define N := σ−1({0}), and B := h−1(N). Then

π : M \B → S1, π(z) =
fσ(z)

|fσ(z)|

defines an open book decomposition of M . Furthermore, this open book decompositions admits

S1-invariant adapted tubular neighbourhoods together with S1-equivariant trivializations.

Proof. Because σ is transverse to the zero-section we have by Lemma 4.4.3 that 0 is a regular

value of fσ. Because fσ is equivariant, we have for all p ∈M \B that df(Vp) = ( ∂
∂ϕ)f(p), where V

is the infinitesimal generator of the S1-action. This shows that f is transverse to πst : C∗ → S1.

We can thus apply Theorem 4.1.12 to obtain an open book decomposition on M . To construct

invariant tubular neighbourhoods we can start with an invariant tubular neighbourhood with

equivariant retraction, which exists by Theorem A.3.1. The tubular neighbourhood we then

obtain will be invariant and as in the proof of Theorem 4.1.12

ϕ : U → B × C, ϕ(z) = (q(z), f(z)).

will induce equivariant trivialisations.

The main advantage of these open books is the following fact:

Lemma 4.4.5. The monodromy of an open book constructed using Theorem 4.4.4 is trivial.

Proof. Let V ∈ X(M \ B) be the infinitesimal generator of the action. Because the binding is

invariant under the action we have that V is tangent to B. Let π : M \B → S1 denote the open

book decomposition. We have

(dπ)p(Vp) =
d

dt

∣∣∣∣
t=0

π(e2πit · p)

=
d

dt

∣∣∣∣
t=0

f(e2πit · p)
|f(p)|

=
d

dt

∣∣∣∣
t=0

e2πit f(p)

|f(p)|

=

(
∂

∂ϕ

)
f(p)/|f(p)|

,

hence the time-one-flow of V generates a monodromy for the open book. Because the time-one-

flow of V is the identity we conclude the statement.

One often encounters sections of complex line bundles which are tensor products of some other

line bundle. We can relate the corresponding principal bundles in the following way:

Lemma 4.4.6. Let L be a complex line bundle, and let Zk act on P (L) via the k-th roots of

unity. Then P (L)/Zk ' P (Lk).
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Proof. Let g be a Riemannian metric on L, and let gk denote the induced metric on Lk. That

is, for all vi, wi ∈ TxM

gkx(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk) =
1

k2

k∑
i,j=1

gx(vi, vj).

Define ϕ̃ : P (L)→ P (Lk) fiberwise by

ϕ̃x : P (L)x → P (Lk)x, v 7→ v ⊗ · · · ⊗ v.

By choice of metric on Lk we see that ϕ̃ indeed maps into P (Lk). We also see ϕ̃ is Zk-invariant

and thus induces a map ϕ : P (L)/Zk → P (Lk). Let v1⊗· · ·⊗vk ∈ P (Lk)x, and let g2, . . . , gk ∈ S1

be such that givi = v1. Then the map ψ : P (Lk)→ P (L)/Zk, defined fiberwise by

ψx : v1 ⊗ · · · ⊗ vk 7→ [(g2 · · · gk)1/kv1],

gives an inverse for ϕ.

Suppose that we are given a complex line bundle L→ S, and a section of Lk which is transverse

to the zero-section. By Theorem 4.4.4 we obtain an open book decomposition on P (Lk). The

following lemma gives rise to an open book decomposition on P (L).

Lemma 4.4.7. Let L → S be a complex line bundle and let σ ∈ Γ(Lk) be transverse to the

zero-section. Let π : P (Lk) \ B → S1 be the open book decomposition from Theorem 4.4.4. Let

ζ : P (L)→ P (Lk) denote the composition of the quotient map and the diffeomorphism of Lemma

4.4.6. Define B̃ = ζ−1(B), then

π̃ := ζ∗π : P (L) \ B̃ → S1

forms an open book decomposition of P (L). Moreover, the monodromy of this open book has

order k.

Proof. Let fσ : M → C be the equivariant function corresponding to σ. The fact that π̃ defines

an open book decomposition follows from Theorem 4.1.12 applied to ζ∗fσ. Let V, Ṽ denote the

infinitesimal generators on P (Lk), P (L) respectively. Then ζ∗Ṽ = V and by naturality of the

flow we have

ζ(ϕ1
Ṽ

(x)) = ϕ1
V (ζ(x)) = ζ(x).

Hence ϕ1
Ṽ

(x) = ωi · x, for some k-th root of unity ωi. We thus conclude that the monodromy

has order k.

4.4.3 Donaldson open books

We will now endow the open books arising from Theorem 4.4.4 with a contact form which is

supported by the open book. First we recall some basic definitions concerning principal bundles.
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Basic forms

Let M → S be a principal G-bundle, the infinitesimal action a : g→ X(M) is given by:

a(v)p :=
d

dt

∣∣∣∣
t=0

p · exp(tv)

Definition 4.4.8. A connection one-form on a principal G-bundle M → S is a one-form

α ∈ Ω1(M, g)

which is G-invariant and satisfies α(a(X)) = X for all X ∈ g. A basic form α ∈ Ωk
bas(P, V ) is

a form which is invariant and satisfies ιa(X)α = 0 for all X ∈ g.

Remark 4.4.9. Throughout this section we are only considering principal S1-bundles. Because

the Lie algebra of S1 is trivial, we will not distinguish between elements of Ω1(M,Lie(S1)) and

elements of Ω1(M).

Recall the following fact:

Theorem 4.4.10 ([Cra16]). Let h : M → S be a principal G-bundle. And let ρ : G→ Gl(V ) be

a representation. Let E = E(S, V ) be the corresponding vector bundle, then

h∗ : Ωk(S,E)→ Ωk
bas(M,V ),

is an isomorphism.

Recall that a cohomology class a ∈ Hn(M) is called integral if under the De-Rham isomorphism

Hn(M) ' Hn(M,R), a can be considered as an element of Hn(M,Z). We say that a closed

differential form is integral if its cohomology class is integral. This definition is useful because

of the following:

Lemma 4.4.11. Let a ∈ H2(M) be integral, then there exists a vector bundle L, unique up to

isomorphism, with c1(L) = a.

Proof. Let E denote the sheaf of smooth complex-valued functions on M . Consider the expo-

nential sequence

0→ Z→ E → E∗ → 0.

The first Chern-class can be defined as the connecting morphism in the induced long exact

sequence:

H1(X, E) −→ H1(X, E∗) c1−→ H2(X,Z) −→ H2(X, E).

Because the sheaf E is fine we see that c1 is an isomorphism. Because a can be represented as

an element in H2(X,Z) this concludes the proof.
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The following theorem will give the contact form which will be supported by the open books

which we will construct.

Theorem 4.4.12 (Boothby-Wang - First Part, [Gei08]). Let (S, ω) be a closed integral sym-

plectic manifold. Let L be the complex line bundle with c1(L) = [ωS ], and let h : M → S be

the corresponding principal S1-bundle. Then there exists connection one-form α on M whose

curvature is ω (i.e. dα = h∗ω). Moreover any such α is a contact form whose Reeb vector field,

R, coincides with the infinitesimal generator of the S1-action.

Proof. We claim the following:

Claim 1. For any connection one-form α′ ∈ Ω1(M) on M there exists a unique closed two-form

ω′ ∈ Ω2(S) satisfying dα′ = π∗ω′.

Claim 2. Let α, α′ ∈ Ω1(M) be two connection one-forms on M , and let ω, ω′ ∈ Ω2(S) be such

that dα′ = h∗ω′, dα = h∗ω. Then [ω] = [ω′].

We will postpone the proofs of the claims, and first use them to prove the theorem. Let α′ ∈
Ω1(M) be any connection one-form and consider ω′ ∈ Ω2(S) such that dα′ = h∗ω′. By the

second claim we have [ω] = [ω′]. Let β be such that ω − ω′ = dβ. We have that α := α′ + h∗β

satisfies dα = h∗ω. The form α is a connection one-form satisfying α∧(dα)n = α∧h∗ωn. Hence:

ιR(α ∧ (dα)n) = h∗ωn 6= 0.

Thus α is a contact form. Now as (ϕtR)∗α = α, we get that LR(α) = 0, and using Cartan’s

formula we see that ιR(dα) = 0. Because α is a connection one-form ιRα = 1 and we conclude

that R is indeed the Reeb vector field of α. To prove the theorem we are thus left to prove the

claims.

Proof of Claim 1. Consider E(M,R), the vector bundle associate to the trivial representation

of S1 in R. Because α′ is invariant, we have that LRα′ = 0. By Cartan’s formula,

LRα′ = dιRα
′ + ιRdα

′

= d(1) + ιR(dα′),

hence ιR(dα′) = 0. Furthermore, as α′ is S1-invariant, so is dα′. We conclude that dα′ is a basic

form. Hence there exists a unique ω′ ∈ Ω2(S) such that dα′ = h∗ω′. We directly see that ω′ is

closed.

Proof of Claim 2.

We note that (α − α′)(R) = 0, hence α − α′ is a basic form. There thus exists β ∈ Ω1(S) such

that α− α′ = h∗β. We find that h∗(ω − ω′) = h∗dβ. By injectivity of h∗, we have ω − ω′ = dβ

which finishes the proof of the claim.
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Now we endow the open book we obtained in Theorem 4.4.12 with a contact form. The following

theorem states when this contact form is supported.

Theorem 4.4.13. Let (S, ω) be a compact integral symplectic manifold, and let L → S be

the complex line bundle with c1(L) = [ω]. Let h : M → S denote the principal S1-bundle

corresponding to L. Furthermore, let σ ∈ Γ(L) be a section transverse to the zero-section, and

endow M with the open book arising from Theorem 4.4.4:

B := f−1
σ ({0}), π : M \B → S1, π(z) =

fσ(z)

|fσ(z)|
.

Furthermore, endow M with α, the contact form arising from Theorem 4.4.12. Then

i. The binding B is a contact submanifold of M if and only if N = h(B) is a symplectic

submanifold of S.

ii. If N is a symplectic submanifold, then the open book decomposition supports α.

Proof. i): Because B is invariant under the S1-action, and V is the infinitesimal generator of the

action, V is tangent to B. Hence we can restrict V to a vector field VB on B. Because Theorem

4.4.12 ensures that V coincides with the Reeb vector field of α it directly follows that αB(VB) =

α(V ) = 1, where αB = α|B. Completely analogously it follows that ιVB (dαB) = ιV (dα) = 0.

Now we find:

(αB ∧ (dαB)n−1)(VB, ·) = (dαB)n−1

= h∗(ω|n−1
N ).

We conclude that B is a contact submanifold if and only if N is a symplectic submanifold.

ii): By construction we have that the Reeb vector field of α coincides with the infintisemal

generator of the action. In the proof of Lemma 4.4.5 we have shown that (dπ)(V ) = ∂
∂ϕ . Hence

after applying Lemma 4.2.5 we conclude that the open book decomposition supports α.

Definition 4.4.14. We call any open book decomposition arising from Theorem 4.4.13 a Don-

aldson open book. More precisely a Donaldon open book consists of the data π : M \B → S1,

h : (M,α)→ (S, ω).

One of the advantages of Donaldson open books is that the symplectic structure on the page

can be related to the symplectic structure on the base manifold:

Lemma 4.4.15. Let π : M \ B → S1, h : M → S be a Donaldson open book. The inclusion

P ↪→M \B induces a symplectomorphism

ψ : (P, (dα)|P )→ (S \N,ω|S\N )
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Proof. To prove that the inclusion induces a diffeomorphism, we show that every S1-orbit inter-

sects P precisely once. Let z ∈ M \ B, and write f(z) = eiθ |f(z)|, for some θ ∈ [0, 2π). Then

w = e−iθ ·z ∈ P . Hence for every S1-orbit in M \B, there is at least one point which is in P . Be-

cause f(λ · z) = λf(z) we see that this point is unique. The fact that ψ is a symplectomorphism

follows directly from h∗ω = dα.

Hopf-fibration

We will now apply this general procedure to the Hopf-fibration.

Theorem 4.4.16. Let Z3 act on S5 by the third-roots of unity. We have that S5/Z3 admits

a Donaldson open book. The binding of the open book decomposition is an S1-bundle over a

symplectic torus.

Proof. Consider O(1)→ CP 2. It is well-known that P (O(1)) is isomorphic to the Hopf-fibration

h̃ : S5 → CP 2. Define L := O(3). By Remark 4.4.7 we have that P (L) is diffeomorphic to

h : S5/Z3 → CP 2. Let f ∈ C∞(S5/Z3,C)S
1

be given by

[(z1, z2, z3)] 7→ z3
1 + z3

2 + z3
3 .

Define σf ∈ Γ(L) to be the section corresponding to f . Then as f is a submersion by Lemma

4.4.3 we have that σf is transverse to the zero-section. Furthermore, as c1(O(1)) = [ωFS ], we

have that c1(L) = 3[ωFS ]. Lastly we note that h(f−1({0})) is a complex submanifold of a

Kähler manifold, and hence is a symplectic submanifold. We can thus apply Theorem 4.4.13 to

O(3)→ (CP 2, 3ωFS) and σf , to obtain a Donaldson open book decomposition on S5/Z3.

We can describe the symplectic submanifold using the degree formula for the genus of a smooth

algebraic curve in CP 2 [GJ94]. This formula states that the genus of a complex curve in CP 2

defined as the zero set of an irreducible homogeneous polynomial of degree d is given by

g =
(d− 1)(d− 2)

2
.

In our case d = 3, hence g = 1. We thus conclude that the symplectic submanifold N is

diffeomoprhic to a torus.

Remark 4.4.17. We use a degree three homogenous polynomial in the above proof because of

the following. For different degrees, the corresponding symplectic submanifold will be a surface

with genus different from one. It is well-known that the only orientable surface which fibers over

S1 is the torus. Hence if we choose d = 3, we can apply Theorem 4.1.5 to obtain a foliation on

S5/Z3.
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Chapter 5

Symplectic foliations from

Donaldson open books

In this chapter we will study the existence of codimension-one symplectic foliations on mani-

folds with an open book decomposition with trivial monodromy. If M admits an open book

decomposition with trivial monodromy we can write

M ' (B ×D2) ∪B×S1 Pε × S1.

Now for a Donaldson open book Pε already admits a symplectic structure, hence the outside

component will admits a symplectic foliation. However the symplectic structure on Pε will not

be of cosymplectic type at the boundary, and we will need to adapt it before we can apply the

symplectic turbulisation theorem.

In Section 5.1 we will prove that an open book decomposition with trivial monodromy which

admits a symplectic structure of cosymplectic type at Pε gives rise to a symplectic foliation.

Then we will study the existence of such a symplectic structure on Pε. In Section 5.2 we will

specialize to Donaldson open books, and summarise our results in Theorem 5.2.4. Using this

theorem we will construct a codimension-one symplectic foliation on S5/Z3. We then directly

obtain a symplectic foliation on S5, recovering Mitsumatsu’s result.

Difference with Osorno Torres’ proof

We first comment on the difference between our construction of a symplectic foliation on S5 and

Osorno Torres’. The main difference is that Osorno Torres directly constructs the foliation on

S5, whereas we will proceed via S5/Z3. Osorno Torres makes use of an open book decomposition

supporting a contact form and the general symplectic turbulisation theorem to foliate the outside

component of this open book. We will first construct a symplectic foliation on S5/Z3 using an

open book decomposition with trivial monodromy. Because the monodromy of the open book

65
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is trivial we can make use of the trivial symplectic turbulisation theorem to foliate the outside

component. Using the trivial turbulisation instead of the general one makes it much easier to

keep track of the symplectic structures on the boundary leaves of the foliation. This has the

advantage that all computations simplify considerably.

5.1 Symplectic foliations on open books with trivial monodromy

Using the diffeomorphism between P and Pε the following theorem can be seen as a special case

of Theorem 4.3.1. The proof in this setting is however much easier and thus included.

Theorem 5.1.1. Let M be a compact manifold and π : M \ B → S1 be an open book decom-

position with trivial monodromy. Suppose that Pε admits a symplectic structure of cosymplectic

type at the boundary. Then M admits a codimension-one symplectic foliation.

Proof. Let ω ∈ Ω2(Pε) denote the symplectic structure with boundary of cosymplectic type, and

(η, θ) a cosymplectic structure induced at the boundary. We decompose M by M = τε(B)∪Cε,
and foliate both parts separately. Because the monodromy of the open book is the trivial

Cε ' Pε × S1. We now apply Theorem 3.4.7 to obtain a symplectic foliation on Cε which is

tame near the boundary, and with symplectic structure on the boundary leaf given by:

η − θ ∧ dϕ.

Similarly we apply Lemma 3.5.1 to (B, η, θ) to obtain a symplectic foliation tame near the

boundary on B ×D2 ' τε(B) for which the symplectic structure at the boundary leaf coincides

with that of the foliation on Cε. Using Theorem 2.2.7 we glue the two foliations along the

boundary to obtain a codimension-one symplectic foliation on M .

Symplectic structure of cosymplectic type at the boundary

We will now study when we can adapt a given symplectic structure on a manifold to one which

is of cosymplectic type at the boundary. We will need to extend forms defined on the boundary

to globally defined closed forms. The following lemma states that an extension in cohomology

gives rise to an extension of forms.

Lemma 5.1.2. Let N ⊂ M be an embedded submanifold. If η ∈ Ωk(N) is a closed form which

cohomology class is in the image of the restriction map ι∗ : Hk(M)→ Hk(N), then there exists

a closed form κ ∈ Ωk(M) such that κ|N = η.

Proof. Let κ′ ∈ Ωk(M) be such that ι∗[κ′] = η. Let ξ ∈ Ωk−1(N), be such that ι∗κ′ − η = dξ.

Now we extend ξ to a globally defined form. Let E → N be a tubular neighbourhood of N and

let x 7→ |x| be a metric on E. Let h : E → R be a smooth function such that h(x) = 1 for

|x| < 1 and h(x) = 0 for |x| > 2. Then the form d(hξ) ∈ Ωk(E) coincides with dξ on N and can
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be extend smoothly to a form ρ ∈ Ωk(M) which is zero outside of E. We define κ := κ′ − ρ,

which satisfies ι∗κ = η.

Proposition 5.1.3. Let (M,ω) be a compact symplectic manifold with boundary, together with

a cosymplectic structure (η, θ) on ∂M such that:

• [η] ∈ H2(∂M) is in the image of the restriction map H2(M)→ H2(∂M),

• ω|∂M ∧ θ = 0.

Then there exists a symplectic structure ω′ ∈ Ω2(M) of cosymplectic type at the boundary.

Proof. Because [η] is in the image of the restriction map we can use Lemma 5.1.2 to find a closed

form κ ∈ Ω2(M) for which κ|∂M = η. Now as M is compact we can chose δ small enough such

that ω′ := ω+ δκ is still symplectic. Because ω|∂M ∧ θ = 0, we see that θ is an admissable form

for ω|∂M + δη, hence ω′ is of cosymplectic type at the boundary.

5.2 Symplectic foliations on Donaldson open books

Normal forms

We wish to describe the symplectic structure of the symplectic manifold around the symplectic

submanifold which is part of the data of a Donalson open book. To be complete we will recall

precisely what we mean with this. Let L → (S, ω) be a complex line bundle over an integral

symplectic manifold with c1(L) = [ω]. Let σ ∈ Γ(L) be transverse to the zero-section and

assume that N := σ−1(0) is a symplectic submanifold. Let h : M → S be the principal S1-

bundle associated to L and define B := h−1(N). Furthermore, we have a connection one-form

α ∈ Ω1(M) such that the following diagram commutes:

(M,dα) (S, ω)

(B, dαB) (N,ωN )

h

hB

Endow B × C with the diagonal S1-action, and define the form

Ω± = d((1∓ r2)α+ r2dϕ) ∈ Ω2(B × C).

Lemma 5.2.1. Orient N (N) as the symplectic normal bundle of N , and endow L|N by the

orientation induced by its complex structure. The form Ω± defined above descends to a form

Ω± ∈ Ω2(B ×S1 C). There exists a tubular neighbourhood U ⊂ S of N together with a symplec-

tomorphism:

(U , ω) ' (B ×S1 D2
ε ,Ω±)

With plus-sign, respectively minus-sign if dvσ : N (N)→ L|N is orientation preservering respec-

tively orientation reversing.
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Proof. We will apply Theorem A.1.5 and use the notation introduced there. Although B is

precisely the principal S1-bundles associated to L|N one should be careful that the complex

structure on L|N and the complex structure on N (N) which is compatible with the symplectic

structure need not coincide. The two are isomorphic as real vector bundles however, with

isomorphism given by the vertical derivative of σ. When dvσ is orientation preserving the vector

bundles are isomorphic as complex vector bundles. In this case we are precisely in the setting

of Theorem A.1.5 with B′ = B, α′ = αB, σ = ωN and consequently Ω+ = Ω. When dvσ is

orientation reversing, then L|N and N (N) are isomorphic as complex vector bundles. Now the

actions on B′ and B are precisely conjugate, which we denote by B′ = B. Also α′ = −αB and

σ = −ωN . Studying the expression for Ω in Theorem A.1.5 we see that it coincides precisely

with Ω−, which finishes the proof.

We can describe boundary of this tubular neighbourhood as follows:

Lemma 5.2.2. The map ψ̃ : B × ∂D2
ε → B, (b, λ) 7→ ( λ

|λ|)
−1b induces a diffeomorphism

ψ : B ×S1 ∂D2
ε → B.

Let Φ : U → B ×S1 D2
ε denote the diffeomorphism from Lemma 5.2.1, then:

ω|∂U = (ψ ◦ Φ|∂M )∗((1∓ ε2)dαB).

With minus-sign, respectively plus-sign if dvσ : N (N)→ L|N is orientation preservering respec-

tively orientation reversing.

Proof. The fact that ψ is a diffeomorphism is verified easily. Let q : B×∂D2
ε → B×S1∂D2

ε denote

the quotient map. Define α′B ∈ Ω1(B ×S1 ∂D2
ε) by α′B := ψ∗αB. We have q∗αB = ψ̃∗αB = αB,

because αB is S1-invariant. Because

q∗Ω|B×S1∂D2
ε

= Ω|B×∂D2
ε

= (1− ε2)dαB,

and q∗ is injective we conclude that

Ω±|B×S1∂D2
ε

= (1∓ ε2)dα′B.

Hence ω|∂U = Φ|∗∂U ((1∓ ε2)dα′B), and thus ω|∂U = (ψ ◦Φ|∂M )∗((1∓ ε2)dαB), which finishes the

proof.

Conclusion

Let π : M \ B → S1, h : M → S be a Donaldson open book. Let τε(B) denote a tubular

neighbourhood adapted to π. Recall that such a tubular neighbourhood admitted S1-equivariant

trivialisations, so have that h(τε(B)) ' B ×S1 D2
ε . In conclusion we can pick τε(B) such that

h(τε(B)) coincides with U from Lemma 5.2.1. We denote Cε = M \ τε(B) and Sε = S \ U .

The following lemma allows us to use Pε and Sε interchangeably:
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Lemma 5.2.3. Let h : M → S be a Donaldson open book. The inclusion Pε ↪→ Cε induces a

symplectomorphism

(Pε, (dα)|Pε)→ (Sε, ω|Sε).

Proof. The argument is completely analogous as for Lemma 4.4.15, using the fact that the

tubular neighbourhood τε(B) is S1-invariant.

We are now ready to prove the main theorem of this thesis.

Theorem 5.2.4. Let h : M → S be a Donaldson open book, and let (η, θ) be a cosymplectic

structure on the binding B. Using the notation of Lemma 5.2.2, assume that

• [(ψ ◦ Φ|∂U )∗η] is in the image of the pull-back of the inclusion H2(Sε)→ H2(∂Sε),

• dαB ∧ θ = 0.

Then M admits a codimension-one symplectic foliation.

Proof. Consider the cosymplectic structure on ∂Sε given by ((ψ◦Φ|∂U )∗η, (ψ◦Φ|∂U )∗θ). Because

dαB ∧ θ = 0 Lemma 5.2.1 implies that ω|∂U ∧ (ψ ◦Φ|∂M )∗θ = 0. Therefore we apply Proposition

5.1.3 to obtain a symplectic structure of cosymplectic type at the boundary on Sε. Because

Sε ' Pε we can now apply Theorem 5.1.1 to conclude the statement.

Application to S5

Using the previous theorem it is now relatively easy to obtain a symplectic foliation on S5,

recovering Mitsumatsu’s result [Mit11] as well as a symplectic foliation on S5/Z3.

Corollary 5.2.5. The lens space S5/Z3 and S5 admit a codimension-one symplectic foliation.

Proof. Recall the Donaldson open book constructed for h : (S5/Z3, dα)→ (CP 2, ω) constructed

in Theorem 4.4.16. We will show that it satisfies the assumptions of Theorem 5.2.4.

Surjectivity of pullback: We consider the Mayer-Vietoris sequence for S := CP 2 using the

decomposition S = τ(N) ∪ (S \N), with τ(N) = h(τε(B)) where τε(B) is as before:

· · · → H2(S)→ H2(S \N)⊕H2(τ(N))→ H2(τ(N) \N)→ H3(S)

Observe that N ↪→ τ(N), Sε = S \ τ(N) ↪→ S \N , and ∂Sε ↪→ τ(N) \N all induce homotopy

equivalences. Combining this with the fact that H3(S) = {0} we obtain the following exact

sequence

· · · → H2(S)→ H2(Sε)⊕H2(N)
ι∗−j∗→ H2(∂Sε)→ 0,

with ι : ∂Sε ↪→ Sε. Because H2(S) is generated by [ω] we can apply Lemma 5.2.3 to find that

H2(S) → H2(Sε) is trivial. Because N is a two-dimensional symplectic submanifold we find
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that H2(S) → H2(N) is an isomorphism. Because the sequence is exact we find that j∗ = 0,

and thus that ι∗ is surjective.

Cosymplectic structure: Because h(B) ' T 2, we can pick a global closed coframe θ1, θ2 ∈
Ω1(h(B)). Let hB := h|B, αB = α|B and define

(η, θ) := (h∗Bθ2 ∧ αB, h∗Bθ1).

Recall that dα = h∗(ω), hence dαB = h∗B(ω|h(B)). Because both θ1 ∧ θ2 and ω|h(B) are volume

forms we find that

dαB = (h∗Bf)h∗Bθ1 ∧ h∗Bθ2,

for some nowhere vanishing function f on h(B). The fact that αB is contact now directly

implies that (η, θ) is a cosymplectic structure. We also have that dαB ∧ h∗Bθ1 = 0. We thus

apply Theorem 5.2.4 to obtain a symplectic foliation on S5/Z3, and by pulling the foliation back

we obtain a symplectic foliation on S5.

Remark 5.2.6. In the proof that the pull-back of the inclusion induces a surjective map in

cohomology we have only used the facts that the symplectic manifold S is four-dimensional and

compact, H2(S) is one-dimensional, and H3(S) = {0}.

Remark 5.2.7. We motivate that the assumptions in Theorem 5.2.4 can be thought of purely

as assumptions on the symplectic geometry involved. Firstly, Donaldson open books arises from

integral symplectic manifolds with particular symplectic submanifolds. Secondly, the existence of

a cosymplectic structure on the binding can be viewed as a requirement on the symplectic normal

bundle of the symplectic submanifold. We thus see that constructing symplectic manifolds using

Theorem 5.2.4 boils down to finding particular symplectic submanifolds in integral symplectic

manifolds.

We can also apply Theorem 5.2.4 to obtain the symplectic foliation on S3.

Corollary 5.2.8. The manifold S3 admits a symplectic foliation.

Proof. Consider the complex line bundle O(1)→ CP 1. We have that P (O(1)) is isomorphic to

the Hopf-fibration h : S3 → CP 1. Consider the function

f : S3 → C, (z1, z2) 7→ z1 + z2,

which is readily seen to be a submersion, and S1-equivariant if we endow C with the standard

S1-action. Hence the corresponding section σf ∈ Γ(O(1)) is transverse to the zero-section. Fur-

thermore, c1(O(1)) = [ωFS ], and h(f−1({0})) is trivially a symplectic submanifold. Hence we

can apply Theorem 4.4.13 to O(1) → (CP 1, ωFS) to obtain a Donaldson open book decom-

position on S3. The assumptions from Theorem 5.2.4 are trivially satisfied, so we obtain a

codimension-one symplectic foliation on S3.
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Properties of the foliation

We now study some properties of the symplectic foliation constructed in Corollary 5.2.5.

Lemma 5.2.9. The leaves of the foliation on S5/Z3 as constructed in Corollary 5.2.5 are:

• Diffeomorphic to T 2 × R2 in the interior component.

• Diffeomorphic to CP 2 \N in the outside component.

• One compact leaf, diffeomorphic to B × S1, seperating the two components.

Proof. The foliation is obtained using the decomposition S5/Z3 ' B ×D2 ∪ Pε × S1, hence the

leaf seperating the two components is diffeomorphic to B × S1.

Outside component: The leaves in the outside component are obtained by applying the

turublisation procedure to S1 × Pε. Hence by Lemma 3.4.3 we have that the leaves of the

foliation are diffeomorphic to Int Pε, which is diffeomorphic to CP 2 \N .

Inside component: Inspecting the proof we see that the cosymplectic structure on B is of the

form (η, f∗dϕ), with f : B → S1. Now the leaves of the foliation are obtained by an applictaction

of Lemma 3.5.1. This lemma can be seen as an application of the general symplectic turbulisation

theorem to a cosymplectic structure of the form (η′,pr∗1f
∗dϕ), where pr∗1 : B ×D2 → B is the

projection onto the first factor. We thus have by Remark 3.5.8 that the leaves of the turbulised

foliation on B × IntD2 are diffeomorphic to the leaves of the foliation defined by pr∗1f
∗dϕ.

To finish the proof we are left to show that the leaves of this foliation are diffeomorphic to

T 2 × IntD2.

Fibers: For all ϕ ∈ S1 we have f−1({ϕ}) = h−1
B (S1 × {λ}), hence the fibers of f can be

seen as two-dimensional manifolds, which fibre over S1. Because (η, f∗dϕ) is a cosymplectic

structure, we have that the fibers of f are symplectic manifolds. Hence, they are orientable

sufraces and thus diffeomorphic to tori. We thus see that the foliation defined by f∗dϕ has

leaves diffeomorphic to tori, and thus pr∗1f
∗dϕ has leaves diffeomorphic to T 2 × IntD2, which

finishes the proof.

Lemma 5.2.10. The foliation on S5 as constructed in Corollary 5.2.5 coincides with Lawson’s

foliation. Hence the leaves of the foliation on S5 are:

• Diffeomorphic to T 2 × R2 in the interior component.

• Diffeomorphic to three-covers of CP 2 \N in the outside component.

• One compact leaf, diffeomorphic to B̃ × S1, seperating the two components.

where B̃ = S5 ∩ f−1({0}), with f : C3 → C the polynomial f(z) = z3
1 + z3

2 + z3
3.
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Proof. Coincide with Lawson: Lawson’s foliation is obtained using the open book decompo-

sition of S5 and applying the turbulisation procedure to both components of the decomposition.

We note that we can choose adapted tubular neighbourhoods τ(B), τ(B̃) such that the following

diagrams commute.

τ(B̃) τ(B)

S1

ζ
S5 \ B̃ (S5/Z3) \B

S1

ζ

π̃
π

Let C denote the complement of a tubular neighbourhood of B in S5/Z3, and C̃ denote the

complement of a tubular neighbourhood of B̃ in S5. Recall that the foliation tame near the

boundary on C is defined by

α :=

π∗dϕ on C \ U

f(t)π∗dϕ+ g(t)dt on U.

The foliation on C̃ obtained using the turbulisation procedure is defined by

α̃ :=

π̃∗dϕ on C̃ \ U

f(t)π̃∗dϕ+ g(t)dt on U.

By commutativity of the diagram we see that ζ∗α = α̃, which proves that the foliation on C̃

obtained by turbulising and the foliation obtained by taking the pull-back of the foliation on

C coincide. A similar argument holds for the inside component. Hence we conclude that the

foliation constructed in Corollary 5.2.5 coincides with Lawson’s foliation. We will finish the

proof by describing the leaves of Lawson’s foliation.

Outside: The foliation on the outside component is diffeomorphic to the foliation given by the

pages of the open book. Hence the leaves in the outside component of the foliation on S5 are

diffeomorphic to three-covers of CP 2 \N .

Inside: The foliation on B̃×D2 is diffeomorphic to the foliation given by the fibres of B̃×D2 →
S1. Completely analogous to the case of S5/Z3 one can prove that these are diffeomorphic to

T 2 × R2. Hence we conclude that the leaves on τ(B̃) are diffeomorphic to T 2 × R2.

Remark 5.2.11 (Relating foliations). The argument in Lemma 5.2.10 can also be used to

relate foliations obtained from Theorem 5.1.1 to foliation obtained from Theorem 4.1.5. Let

π : M \B → S1 be an open book deocomposition with trivial monodromy for which Pε admits a

symplectic structure of cosymplectic type. Because ∂Pε ' B inherits a cosymplectic structure,

we have by Tischler’s theorem that B fibres over S1. Inspecting the proof of Theorem 5.1.1 one

finds that the underlying foliation coincides with the one constructed in Theorem 4.1.5. Hence

Theorem 5.1.1 can be seen as an extension of Theorem 4.1.5 to the symplectic setting.
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Remark 5.2.12 (S7). The previous remark also suggests that it is not viable that one can

produce a symplectic foliation on S7 using our methods. Lawson uses the polynomials p(z) =

z2
0 + · · · + z2

n to obtain open book decompositions on the spheres S2k+3. He then constructs

foliations on these spheres using Theorem 4.1.5. However the compact leaf of the resulting

foliations turns out to be diffeomorphic to SO(n+ 1)/SO(n− 1) (see for instance [Law71]). It

can be shown ([Tor15]) that SO(n+1)/SO(n−1) does not admit a symplectic structure. Hence

Lawson’s foliation on the higher dimensional spheres does not admit a symplectic structure.

Tameness

Recall that we called a foliated differential form ωF tame around a leaf L, if there exists a closed

extension of ωL to an open around L. We say that a foliated differential form ωF ∈ Ω2(F) is

tame, if there exists a closed differential form ω̃ ∈ Ω2(M) such that ω̃|F = ωF .

Lemma 5.2.13. The symplectic foliations of Corollary 5.2.5 are not tame.

Proof. The proof is identical for S5 and S5/Z3. Let ωF denote the foliated form and assume to

the contrary that there exists ω̃ ∈ Ω2(S5) satisfying ω̃|F = ωF . Observe that H2(S5) = {0},
hence there exists θ ∈ Ω1(S5) such that ω̃ = dθ. By the previous remark we have that the

foliation has a compact leaf, which we denote by L. We see that ωL = d(θ|L), hence ωL is an

exact symplectic structure on a compact manifold, which is a contradiction.

Remark 5.2.14. In the previous lemma we only used that the foliation has a compact leaf and

that H2(S5) = {0}. Foliations obtained using Theorem 4.1.5 always come with compact leaves.

We thus see that on manifolds with H2(M) = {0}, these foliations never admit a tame leafwise

symplectic structure. It is still an open question whether S5 admits a tame symplectic foliation,

although it is conjectured that this is not the case. In three-dimensions there exists the Novikov’s

compact leaf theorem, which states that a codimension-one foliation on any three-dimensional

manifold for which the universal cover is contractible admits a compact leaf. This in particular

shows that S5 does not admit a tame foliation. Unfortunately, in general Novikov’s theorem is

false in higher dimensions; there exists foliations on S5 with only non-compact leaves [Mei12].
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Chapter 6

Complex foliations

In this chapter we study the existence of complex foliations. Just as for symplectic foliations

this has proven to be a rather difficult problem. In 2002 Meersseman and Verjovsky claimed to

have constructed a complex foliation on the five-sphere [MV02]. However, it turned out that

they made a mistake, and the complex foliation did not live on the five-sphere but on a different

five-dimensional manifold [MV11]. So the question whether S5 admits a complex foliation is

still open and we aim to make some progress towards an answer. In this chapter we outline a

possible way to approach the existence of a complex foliation on S5, motivated by our results in

the previous chapters.

Complex foliations are, just like symplectic foliations, most easily described from an infinitesimal

point of view. The infinitesimal analogue of a complex foliation is a CR-structure. In Section

6.1 we give the definition of CR-structures and complex foliations and describe their relation.

Just as presymplectic structures arise from symplectic manifolds with boundary we will see that

CR-structures arise from complex manifolds with boundary. In Section 6.2 we will summarize

our construction of a symplectic foliation on S5, and describe a plan to construct a complex

foliation on S5. In the subsequent sections we will carry out some of the described steps in this

plan. In Section 6.6 we will use what we have learned in the preceding sections to revise our

plan of constructing a complex foliation on S5.

6.1 CR-structures

Intuitively, a complex foliation is a foliation for which each of the leaves carries the structure of

a complex manifold, such that these structures vary smoothly from leaf to leaf. The following

definition makes this precise:

Definition 6.1.1. A foliation F on a smooth manifold M2p+q is said to be a complex foliation

if there exists a (maximal) smooth foliation atlas (ϕi : Ui → Cp×Rq)i∈I , for which the transition

75
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functions

ϕij(x, y) = (gij(x, y), hij(y)), (x, y) ∈ Cp × Rq

are such that gij(·, y) is holomorphic for every y ∈ Rq.

Because the transition functions gij(·, y) are holomorphic, we can endow every leaf of the foliation

with the structure of a complex manifold.

Just as complex manifolds can be described using almost complex structures, complex foliations

can also be considered from an infinitesimal point of view. Given a complex foliation F one can

define an almost complex structure J on TF by setting J |L to be the almost complex structure

corresponding to the complex structure on L. Because the charts used to define the complex

structure on each leaf L come from a foliation atlas we see that J is smooth. The pair (TF , J)

is an example of a CR-structure.

Definition 6.1.2. Let N be a smooth (2n + 1)-dimensional manifold. An almost CR-

structure1 on N is a pair (H, J), with H a codimension-one distribution on N , and J : H → H
an almost complex structure, i.e. J is a bundle map and J2 = −id.

We first collect some definitions concerning almost CR-structures and then study their integra-

bility.

Definition 6.1.3. Let (H, J) and (H′, J ′) be two CR-structures on manifolds N,N ′ respectively.

A CR-map between (H, J) and (H′, J ′) is a smooth map f : N → N ′ such that df ◦J = J ′ ◦df .

We consider the complex linear extension of J to HC := H⊗C, which we still denote by J . The

complexified bundle admits the decomposition

HC := H(1,0) ⊕H(0,1),

where H(1,0),H(0,1) are the +i, respectively −i-eigenspaces of J .

Definition 6.1.4. We say that an almost CR-structure (H, J) is integrable if

[Γ(H(0,1)),Γ(H(0,1))] ⊂ Γ(H(0,1)).

We will also call an integrable almost CR-structure simply a CR-structure.

Using the fact that conjugation induces an isomorphism between H(1,0) and H(0,1), we readily

see that integrability is equivalent to

[Γ(H(1,0)),Γ(H(1,0))] ⊂ Γ(H(1,0)).

1CR either stands for Caucy-Riemann or for Complex-Real
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Definition 6.1.5. We say that an almost CR-structure (H, J) is Levi-flat if

[Γ(H),Γ(H)] ⊂ Γ(H),

i.e. H is an involutive distribution.

Definition 6.1.6. We say that an almost CR-structure (H, J) is Levi-non-degenerate if the

map

Γ(H)× Γ(H)→ Γ(TM/H), (X,Y ) 7→ [X,Y ] mod H

is non-degenerate, i.e. H is a contact distribution.

Now we return to the question of integrability of CR-structures. Given a Levi-flat almost CR-

structure (H, J) we have by Frobenius’ theorem that H integrates to a foliation. Moreover, if

(H, J) is integrable, we have by the Newlander-Nirenberg theorem that every leaf admits the

structure of a complex manifold. In fact the Newlander-Nirenberg theorem holds parametrically,

hence the defined complex charts on the leaves will combine into a foliation atlas. In conclusion

we have:

Proposition 6.1.7. There is a 1:1 correspondence

{Complex foliations} 1:1←→ {Levi-flat, integrable almost CR-structures}.

Nijenhuis tensor

Recall that for a (1, 1)-tensor A : TM → TM , we can define its Nijenhuis tensor by

NA(X,Y ) = −A2[X,Y ] +A([AX,Y ] + [X,AY ])− [AX,AY ].

The following is well-known:

Theorem 6.1.8 (Newlander-Nirenberg). An almost complex structure J : TM → TM is inte-

grable if and only if NJ = 0.

However, if we want to define a Nijenhuis tensor for an almost CR-structure, a small subtlety

arises. Because the almost CR-structure is only defined on the distribution H, the formula

for the Nijenhuis tensor is a priori not well-defined. Therefore we have to impose an extra

condition before we can define it. So suppose that (H, J) is an almost CR-structure such that

[JX, Y ] + [X, JY ] ∈ Γ(H) for all X,Y ∈ Γ(H), then we define NJ : Γ(H)× Γ(H)→ Γ(TN) by

the above formula.

Proposition 6.1.9. An almost CR-structure (H, J) is integrable if and only if

[JX, Y ] + [X, JY ] ∈ Γ(H) for all X,Y ∈ Γ(H)

and NJ = 0.
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Proof. “⇐”: Let X,Y ∈ Γ(H(0,1)), then NJ(X,Y ) = 2[X,Y ] − 2iJ [X,Y ]. Hence J [X,Y ] =

−i[X,Y ], from which we conclude that (H, J) is integrable.

“⇒”: Let X,Y ∈ Γ(H), and write X = X1 + X2, Y = Y1 + Y2, with X1, Y1 ∈ Γ(H(1,0)) and

X2, Y2 ∈ Γ(H(0,1)). We have

[JX, Y ] = [iX1 − iX2, Y ]

[X, JY ] = [X, iY1 − iY2].

Hence

[JX, Y ] + [X,JY ] = i[X1, Y1] + i[X1, Y2]− i[X2, Y1]− [iX2, Y2]

+ i[X1, Y1]− i[X1, Y2] + i[X2, Y1]− i[X2, Y2]

= i[X1, Y1]− i[X2, Y2].

From which it follows that [JX, Y ] + [X, JY ] ∈ Γ(H). The proof that the Nijenhuis-tensor

vanishes is just as in the complex case.

We note that the almost complex structure of an almost CR-structure induces an orientation on

the hyperplane distribution. Just as with foliations we have that on orientable manifolds this

implies that the hyperplane distribution is co-orientable. In conclusion:

Proposition 6.1.10. Let M be an orientable manifold together with an almost CR-structure

(H, J). Then H is co-orientable.

6.1.1 Complex manifolds with boundary

One way to obtain CR-structures is from complex manifolds with boundary. Let (M,J) be an

almost complex manifold with boundary and let N := ∂M . Then J |N , does not map TN to

itself and we thus study H := TN ∩ J(TN).

Lemma 6.1.11. Let (M,J) be an almost complex manifold with boundary and let N := ∂M .

Then (H, JH) := (TN ∩ J(TN), J |H) defines an almost CR-structure.

Proof. Clearly H is a distribution on N , and JH is an almost complex structure. What remains

to be shown is that the codimension of H is one. Because J(TN) cannot be contained in TN ,

otherwise N would carry an almost complex structure, we have TN + J(TN) = TM |N . Hence

as both TN and J(TN) are codimension-one subbundles of TM |N , we have that the intersection

TN ∩ J(TN) is a codimension-one distribution on N .

To check the integrability of this CR-structure we need the following:

Lemma 6.1.12. Let (M,J) be an almost complex manifold with boundary, and let (H, JH)

denote the induced almost CR-structure on the boundary. For any vector field Y defined near

∂M for which both Y and JY are tangent to ∂M , we have Y |∂M ∈ Γ(H).
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Proof. Because Y |∂M = −JH((JY )|∂M ), this is immediate.

Lemma 6.1.13. Let (M,J) be a complex manifold with boundary and let N := ∂M . Then

(H, JH) := (TN ∩ J(TN), J |H) defines an integrable almost CR-structure.

Proof. Let X0, Y0 ∈ Γ(H), and consider extensions X,Y ∈ X(M). Because NJ = 0, we have

J([JX, Y ] + [X, JY ])) = [JX, JY ]− [X,Y ].

Because the right-hand side of this equation is tangent to ∂M , so is the left-hand side. Because

[JX, Y ] + [X,JY ] is tangent to ∂M , we can use Lemma 6.1.12 to find ([JX, Y ] + [X,JY ])|∂M ∈
H. Because (JX)|∂M = JHX0 and similarly for Y we find [JHX0, Y0] + [X0, JHY0] ∈ H. Finally

we remark that NJH(X0, Y0) = NJ(X,Y )|∂M = 0, which finishes the proof.

6.2 Strategy of constructing a complex foliation on S5

6.2.1 Review of symplectic foliation on S5

We quickly recall the main ingredients of our construction of a symplectic foliation on S5.

Open books with trivial monodromy: Instead of constructing the symplectic foliation on

S5 we decided to make a detour and construct first a symplectic foliation on S5/Z3. We did so

because S5/Z3 admits an open book decomposition with trivial monodromy, hence we had the

decomposition:

S5/Z3 = B ×D2 ∪ Pε × S1.

We then proceeded by constructing symplectic foliations on both components and glueing them

together.

Glueing symplectic foliations: To glue symplectic foliations we introduced the notion of a

symplectic foliation tame near the boundary, and proved in Theorem 2.2.7 that it is possible to

glue this.

Symplectic foliation on M × S1: For a symplectic manifold of cosymplectic type near the

boundary we constructed a symplectic foliation tame near the boundary on M×S1 (Proposition

3.4.7). We did so by making use of the normal form around the boundary of symplectic manifolds

with boundary of cosymplectic type.

Symplectic foliation on B×D2: For a cosymplectic manifold B we constructed a symplectic

foliation tame near the boundary on B × D2 (Lemma 3.5.1). The proof of this fact that only

used the local form of the symplectic structure on D2 around the boundary.

Conclusion: Finally we constructed a symplectic structure of cosymplectic type on Pε using

a Donaldson open book decomposition. Afterwards we used the above to obtain a symplectic

foliation on S5/Z3 and hence on S5.
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6.2.2 Plan for constructing a complex foliation on S5

To construct a complex foliation on S5 one could proceed by using the same decomposition of

S5/Z3. Now we describe some further steps one could take.

Glueing complex foliations: Just as in the symplectic case we need to be able to glue complex

foliations. To this end one should define an appropriate notion of complex foliation tame near

the boundary and prove that these can be glued. In Section 6.3 we will do precisely this.

Local form: If we want to proceed using turbulisation we first need to define a local model of

complex manifolds around the boundary. In the symplectic setting the local form arose from

properties of symplectic manifolds with boundary of cosymplectic type. So one should first find

a class of complex manifolds which plays the role of symplectic manifolds with boundary of

cosymplectic type. For purpose of exposition call such a class “complex manifolds with nice

boundary”. The definition of symplectic manifolds with boundary of cosymplectic type was

somewhat intrinsic. We can however cheat a bit and simply define a complex manifold with nice

boundary to be a complex manifold which satisfies a particular local form around the boundary.

Turbulisation, M×S1: Using this local form, one could try to mimic the proof of turbulisation.

In Section 6.4 we will first define a local model and study some of its properties. Then we will

give an attempt on proving a turbulisation theorem for complex manifolds with nice boundary.

However our attempt fails, and we will make some comments on why we think it does. We

will however be able to prove the existence of a complex foliation tame near the boundary on

D2n×S1. This will provide us with some insight into how one might proceed in a general setting.

Complex foliation on B×D2: The other ingredient for the proof is the existence of a complex

foliation tame near the boundary on manifolds of the form B ×D2. In the symplectic setting

we studied the case where B is a cosymplectic manifold. In the complex case, we will thus need

to define an analogue of cosymplectic manifolds. These should be CR-manifolds with certain

properties. We remark that the proof in the symplectic case only used the local form of the

symplectic structure on D2. We will show that the complex structure on D2 also admits a

local form around the boundary. So if one can find the right class of CR-manifolds, obtaining a

complex foliation tame near the boundary on B ×D2 might be doable.

6.3 Glueing complex foliations

Just as for the symplectic foliations we will construct complex foliations by glueing two foliations

on manifolds with boundary. The question is again when this is possible. Recall the extended

space M∞ as defined at the beginning of Section 2.1.

Definition 6.3.1. Let (H, J) be an almost CR-structure on a manifold with boundary such

that the almost CR-structure is tangent to the boundary. We extend the almost CR-structure

to a hyperplane distribution (H∞, J∞) on M∞, by taking as hyperplanes ∂M × {t}, and as

almost complex structure the structure induced by ∂M . We call this the trivial extension of
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(H, J) to M∞.

Definition 6.3.2 ([MV02]). Let (H, J) be an almost CR-structure on a manifold with boundary.

We call (H, J) tame near the boundary if

• (H, J) is tangent to the boundary, i.e. the tangent spaces of the connected components of

∂M are elements of the hyperplane distribution.

• There exists a collar neighbourhood k of ∂M such that the trivial extension (H∞, J∞) is

smooth.

Lemma 6.3.3 (Lemma 1, [MV02]). Let N1, N2 be two orientable manifolds endowed with almost

CR-structures (H1, J1) and (H2, J2) which are tame near the boundary. Assume that there exists

a diffeomorphism ϕ : ∂N1 → ∂N2 preserving the induced almost complex structures. Then there

exists an almost CR-structure on the glued space M := N1 ∪ϕN2, which restricts to the original

almost CR-structures on N1 and N2. The almost CR-structure is integrable if and only if the

CR-structures on N1 and N2 are integrable. It is Levi-flat if and only if the CR-structures on

N1 and N2 are Levi-flat.

Proof. To glue the hyperplane distributions we note that they are co-orientable by Proposition

6.1.10 and evoke Theorem 2.1.7. We define an operator J : H1 ∪ H2 → H1 ∪ H2, by J1 on H1

and J2 on H2. A priori this operator is only continuous on M , and smooth on M \ ∂N1. We

will now show that it is in fact smooth on the entirety of M . Pick x ∈ ∂N1 and consider local

coordinates {(x, t)} on U adapted to ∂N1, that is locally ∂N1 is given by t = 0. Identify J on

U with a map

ϕ : U → Gl(R2n) ⊂ RN , (x, t) 7→ J(x, t).

Identifying U with an open in Rn we can talk of the partial derivatives of this map. Be-

cause the almost CR-structures on N1 and N2 are tame near the boundary we have that

limt↗0(∂i2)ϕ(x, t) = 0 and limt↘0(∂i2)ϕ(x, t) = 0. Hence all partial derivatives of J are con-

tinuous, and we conclude that J is smooth. This shows that the almost CR-structure is in

fact smooth on the entirety of M , hence we conclude the statement. The relation between

the integrability and Levi-flatness of the glued CR-structure and the original CR-structures is

clear.

6.4 Towards turbulisation

The symplectic turbulisation theorem was proved using a local form of symplectic manifolds

near their boundary. In this section we will construct a local model for complex manifolds near

the boundary. Although we are unable to prove a normal form theorem in general, we will show

that the complex structure on D2n around its boundary does satisfy this local model. We will

then try to prove a turbulisation theorem for manifolds which satisfy this local model. However

this will not work and we will give some thoughts on why it does not.
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6.4.1 Local model

Let (H, J) be a co-orientable almost CR-structure on N . Because the CR-structure is co-

orientable there exists a globally defined vector field W0 ∈ X(N) transverse to H. We consider

M := N × R, and define

J̃ : TM → TM,


X 7→ J(X) if X ∈ H,

W0 7→ ∂
∂t ,

∂
∂t 7→ −W0.

This clearly defines an almost complex structure on M , the question is whether it is integrable.

Lemma 6.4.1. Let (H, J) be a co-orientable integrable almost CR-structure. The almost com-

plex structure J̃ as defined above is integrable if and only if [X,W0] ∈ H and J [X,W0] = [J(X),W0]

for all X ∈ H.

Proof. It is easily verified that the vanishing of the Nijenhuis-tensor is equivalent to

[X,W0] + J̃([J̃X,W0]) = 0, X ∈ Γ(H).

Which is in turn equivalent to the relation:

J̃ [X,W0] = [JX,W0].

Because the right-hand side is an element of Γ(TN), so must the left-hand side. This results in

the condition that [X,W0] ∈ Γ(H) for all X ∈ Γ(H). In conclusion we have that J̃ is integrable

if and only if [W0, X] ∈ H and J [X,W0] = [J(X),W0] for all X ∈ H.

Lemma 6.4.2. The conditions in Lemma 6.4.1 are equivalent to the following:

[W0,Γ(H(1,0))] ⊂ Γ(H(1,0)), [W0,Γ(H(0,1))] ⊂ Γ(H(0,1)) (6.1)

Proof. If the conditions of Lemma 6.4.1 are satisfied then it follows directly that (6.1) is satisfied,

so we are left to show the converse. Let X ∈ Γ(H) and write X = X1 + X2 for some X1 ∈
Γ(H(1,0)) and X2 ∈ Γ(H(0,1)). Then [X,W0] = [X1,W0] + [X2,W0], and thus [X,W0] ∈ Γ(HC).

Because [X,W0] is clearly real we conclude [X,W0] ∈ Γ(H). Now

J [X1 +X2,W0] = J [X1,W0] + J [X2,W0]

= i[X1,W0]− i[X2,W0]

= [JX1,W0] + [JX2,W0]

= [JX,W0],

which finishes the proof.
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We introduce the notation

W0 ∨
∂

∂t
: TM → TM,


X 7→ 0 if X ∈ H,

W0 7→ ∂
∂t ,

∂
∂t 7→ −W0.

Taking into account the splitting TM = H ⊕ R ·W0 ⊕ R · ∂∂t we write J̃ = J + W0 ∨ ∂
∂t . The

same formula for the almost complex structure from Lemma 6.4.1 can be used to endow N ×S1

with an integrable almost complex structure; with ∂
∂t replaced by ∂

∂ϕ . Using the above notation

this is given by J +W0 ∨ ∂
∂ϕ .

Finding a vector field which satisfies the first condition in Lemma 6.4.1 is not difficult:

Lemma 6.4.3. Let (H, J) be a co-orientable integrable almost CR-structure on N . There exists

W0 ∈ X(N) transverse to H satisfying [W0,Γ(H)] ⊂ Γ(H) in any of the following cases:

i. The distribution H is a unimodular foliation.

ii. The distribution H is a contact distribution.

Proof. i): Suppose that H = ker θ and chose W0 ∈ X(N) such that θ(W0) = 1. We have, for

X ∈ Γ(H),

0 = dθ(X,W0) = X(θ(W0))−W0(θ(X))− θ([X,W0])

= −θ([X,W0]),

hence [X,W0] ∈ Γ(H).

ii): Suppose that H = kerα, and let W0 ∈ X(N) be the Reeb vector field of α. We have, for

X ∈ Γ(H),

0 = dα(X,W0) = X(α(W0))−W0(α(X))− α([X,W0])

= −α([X,W0])

hence [X,W0] ∈ Γ(H).

Remark 6.4.4. This local model resembles the general local model for symplectic manifolds

near their boundary, as given in Proposition 3.2.1. Now the role of the admissible form θ is

played by the vector field W0, this also illustrated by the proof of the previous lemma.

For a symplectic structure of cosymplectic type at the boundary, ω, there exist a vector field X

near the boundary, transverse to the boundary such that LXω|U = 0. For complex manifolds

we would like to have something similar. The following lemma gives a condition on a complex

manifold with boundary such that there exists enough data to construct a local model around

the boundary. It does however not ensure that the complex structure satisfies this local model.
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Lemma 6.4.5. Let (M, J̃) be a complex manifold, and suppose that there exists a vector field

W near the boundary, tangent to and non-vanishing on the boundary such that

LW (J̃)(X) := [J̃X,W ]− J̃ [X,W ] = 0

for all X near the boundary. Then W0 := W |∂M satisfies the assumptions of Lemma 6.4.1 for

the CR-structure induced on the boundary.

Proof. Let X ∈ Γ(H), and let X̃ be an extension of X. We note that J̃X̃|∂M = JX, hence

[J̃X̃,W ] is tangent to the boundary. Because [J̃X̃,W ] = J̃ [X̃,W ], we thus also have that

J̃ [X̃,W ] is tangent to the boundary. Hence by Lemma 6.1.12 we find that [X̃,W ]|∂M = [X,W0] ∈
Γ(H). Restricting the equality [J̃X̃,W ] = J̃ [X̃,W ] to the boundary yields, [JX,W0] = J [X,W0].

This finishes the proof.

Remark 6.4.6. For symplectic manifolds of cosymplectic type near the boundary, the vector

field transverse to the boundary satisfying LXω|U = 0 gave rise to a collar neighbourhood on

which the symplectic structure takes a particular form. The vector field W of the above lemma is

however tangent to the boundary and cannot be used to build a collar neighbourhood. However

the vector field J̃W is transverse to the boundary, so perhaps this vector field can be used to

construct a normal form for the complex structure.

Example 6.4.7 (D2n). Consider S2n−1 ⊂ D2n, and the integrable CR-structure (H, J) on

S2n−1 induced by the complex structure J0 on D2n. Let r =
√∑n

i=1 x
2
i + y2

i and define

W =
1

r

n∑
i=1

xi
∂

∂yi
− yi ∂

∂xi
∈ X(D2n \ {0}).

A direct computation shows that LW (J0) = 0, hence by Lemma 6.4.5 we have that the complex

structure defined in Lemma 6.4.1 is integrable. We have that

J̃W =
1

r

n∑
i=1

xi
∂

∂xi
+ yi

∂

∂yi

is a normal vector for ∂D2. Consider the collar neighbourhood k : ∂M × [0, 1)→ U defined by

the flow of this vector field. Because k∗(W0) = W , wee see that on U the complex structures J̃

and J0 coincide.

6.4.2 Turbulisation, failed attempt

Let M be a complex manifold with boundary, then M × S1 carries a natural complex foliation.

However, this complex foliation is not tame near the boundary. We will assume that M has the

local normal form described in Lemma 6.4.1 and try to adapt the foliation on M × S1 into one

which is tame near the boundary.
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Let ω be a symplectic structure of cosymplectic type at the boundary, and let (η, θ) be a

cosymplectic structure induced on the boundary. In the turbulisation we interpolated between

the local form, η + θ ∧ dt, and the desired form, η − θ ∧ dϕ. If we want to continue analogously

for the complex case we should deform J −W0 ∨ ∂
∂t into J −W0 ∨ ∂

∂ϕ . Naively one would define:

J̃ = J − aW0 ∨
∂

∂t
− bW0 ∨

∂

∂ϕ
.

X 7→ J(X), X ∈ H

W0 7→ −a ∂∂t − b
∂
∂ϕ

∂
∂t 7→ aW0

∂
∂ϕ 7→ bW0

for some good pair of functions (a, b). We compute

J̃2 :


X 7→ −X, X ∈ H

W0 7→ −(a2 + b2)W0

∂
∂t 7→ −a

2 ∂
∂t − ab

∂
∂ϕ

∂
∂ϕ 7→ −ab

∂
∂t − b

2 ∂
∂ϕ

Recall that the turbulised foliation is defined by θ = fdϕ + gdt, where (f, g) is a good pair of

functions. So for J̃ to restrict to an almost complex structure on the leaves of the foliation we

need to ensure J̃2(X) = −X for all X ∈ ker θ. This results in the following equations for the

functions:

a2 + b2 = 1

a2 − abf
g

= 1

b2 − ab g
f

= 1

One easily verifies that this set of equations does not have a solution within the non-negative

functions, which shows that J̃ cannot restrict to an almost complex structure on ker θ.

Remark 6.4.8. Intuitively it seems more difficult to turbulise complex structures than sym-

plectic structures because of the following. The set of complex structures forms a closed subset

of the bundle-automorphisms on a manifold, the set of symplectic structures however forms an

open subset of the closed two-forms. Whilst turbulising symplectic structures we had to en-

sure that the two-form remained non-degenerate along the leaves, i.e. we had to maintain an

inequality. However, when we try to turbulise complex structures we have to makes sure that

the bundle automorphism squares to minus the identity, i.e. we had to maintain an equality.
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6.5 Complex foliation on D2n × S1

Although we are unable to prove a turbulisation theorem in general we will show the existence

of a complex foliation tame near the boundary on the solid torus. Using this we will show that

S2n × S1 admits a complex foliation.

Lemma 6.5.1 (Lemma 2.bis,[MV02]). There exists a complex foliation tame near the boundary

on D2n × S1.

Proof. Let d : R → R be a diffeomorphism satisfying d′(t) > 1 for all t > 0 and d(t) = t for all

t ≤ 0. For instance we could pick d(t) = t+ e−1/t. We define M = (Cn × [0,∞)) \ {(0, 0)}, and

consider the Z-action generated by

g : (w, t) 7→ (2w, d(t)).

In Lemma 6.5.2 below we will prove that the Z-action is properly discontinuous and M/Z is a

smooth manifold diffeomorphic to D2n × S1.

Obtaining foliation: Endow M with the product foliation. We note that the action identifies

points on the leaf Cn × {t} with points on the leaf Cn × {d(t)}, but no two points in the same

leaf. Thus the images of the leaves under the projection map form a partition of IntD2n×S1 into

subspaces biholomorphic to Cn. Furthermore, as the projection map is a local diffeomorphism

the foliation charts on M induce foliation charts on IntD2n × S1. So the interior of the solid

torus is endowed with a complex foliation. The action on M preserves the boundary, hence

∂M = Cn \ {0} gets mapped diffeomorphically onto S2n−1 × S1 via the quotient map. It is

endowed with a complex structure, because it is the discrete quotient of a complex manifold2.

In conclusion the complex foliation on M descends to a complex foliation on D2n × S1 which is

tangent to the boundary.

Tame near boundary: We will now show that this foliation is in fact tame near the boundary.

We remark that the Z-action on M can be extended to a properly discontinuous action on

X := C × R \ ({0} × (−∞, 0]). The action on Cn \ {0} × {t} ⊂ X for t ≤ 0, gives as quotient

S2n−1×S1. In conclusion the space X/Z is given by (S2n−1×S1)× (−∞, 0]∪D2n×S1. We also

see that the product foliation on X descends to a complex foliation on X/Z. Now this foliation

is precisely the trivial extension of the complex foliation on (S2n−1× S1)× (−∞, 0]∪D2n× S1.

Hence we see that the complex foliation on D2n × S1 is tame near the boundary, which finishes

the proof.

Lemma 6.5.2. The Z-action defined in the above proof is properly discontinuous, and the man-

ifold M/Z is diffeomorphic to D2n × S1.

Proof. Given any diffeomorphism d : R → R such that |d′(t)| > 1 for all t > 0, we can con-

sider the Z-action as defined in the above proof. We will prove that this action is properly

2For more details on this see [Huy05], this manifold is an example of a Hopf manifold.
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discontinuous. We note that |g(z, t)| > |(z, t)|, hence for small enough ε the set

U = {(z, t) ∈M : |(z0, t0)− (z, t)| < ε}

is such that its images under the Z-action are all disjoint. Because the action is clearly smooth

we conclude that M/Z is a smooth manifold.

Compactness: We will show that the set

V = {(z, t) : |(z, t)| ≤ 1,
∣∣g−1(z, t)

∣∣ ≤ 1}

gives a fundamental domain for the action. Because |g(z, t)| > (z, t) one can apply g−1 often

enough such that (z, t) is equivalent to an element in V . By construction of V we see that no two

points in its interior are identified. Thus M/Z is obtained by identifying points in the boundary

of V . Because V is compact, we thus conclude that M/Z is compact.

Independent of choice: Instead of proving directly that M/Z is diffeomorphic to D2n × S1,

we will proceed via a detour. Now for any diffeomorphism d : R → R such that |d′(t)| > 1 for

all t > 0 we denote Md := M/Z, where the Z-action is defined using d. We will show that the

for different choices of d the manifolds Md are all diffeomorphic.

Let f : R→ R be a smooth function such that f(s) = 0 for all s ≤ 0 and f(s) ≥ 1 for all s ≥ 1.

For d, d̃ : R→ R such that |d′(t)| > 1 for all t > 0 we define a family of diffeomorphisms

ds(t) = f(s)d(t) + (1− f(s))d̃(t).

We define a Z-action on M × R by

((x, t), s) 7→ ((2x, ds(t)), s)

Because |d′s(t)| > 1 we see that the quotient is a manifold, which we denote by M̃ . We also

note that M̃ admits a natural fibration over R, which has as fibres Mds . Because the fibres are

compact, we see that the fibration is proper. We can thus apply Ehresmann’s theorem (A.2.2)

to see that the fibration is locally trivial. Because R is connected we thus conclude that all

fibres of M̃ → R are diffeomorphic. In particular we have Md 'Md̃
. Now take d as in the proof

of the above lemma, and define d̃(t) = 2t. To finish the proof we are thus left to prove that

M
d̃
' D2n × S1. For the Z-action associated to d̃ the fundamental domain is given by:

V = {(z, t) ∈M : 1 ≤ |(z, t)| ≤ 2} = [1, 2]×D2n.

Now M
d̃

is obtained from this by glueing {1} × D2n with {2} × D2n via the identity map. In

conclusion M
d̃
' D2n × S1, which finishes the proof.

Example 6.5.3 ([MV02]). We have

S2n × S1 = D2n × S1 ∪id D
2n × S1,

hence by applying the Lemma 6.5.1 twice, together with Lemma 6.3.3, we obtain a complex

foliation on S2n × S1.
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Remark 6.5.4. It is interesting to note that although the above ensures the existence of a

complex foliation on S2n×S1, the existence of a symplectic foliation is still an open problem for

n ≥ 3. For S4× S1 the existence is known ([Tor15]). The underlying foliation of the symplectic

foliation on S4 × S1 however differs from the above. In fact the foliation constructed in the

above example cannot be symplectic, because the compact leaf of the foliation is diffeomorphic

to S2n−1 × S1 and H2(S2n−1 × S1) = {0} for n ≥ 2.

6.6 Concluding remarks

We finish this chapter by reviewing our plan for constructing a complex foliation on S5, using

what we have learned from our attempts in the previous sections.

Remark 6.6.1 (Turbulisation). One key property of complex manifolds that was used in Lemma

6.5.1, is the fact that quotients of complex manifolds are again complex manifolds (Proposition

2.1.13, [Huy05]). A similar result does not hold in general for symplectic manifolds. Instead of

constructing complex foliations on manifolds using some variant of a turbulisation procedure,

one could try to construct complex foliations out of quotients of foliated manifolds. Turbulisation

used the strength of symplectic structures; namely that small perturbations by closed forms keep

the structures symplectic. In the complex case it might thus be better to use the strength of

complex structures and proceed via taking quotients.

Remark 6.6.2 (Meersseman and Verjovsky’s attempt). Although [MV02] contained a mistake,

perhaps there are still things to learn from it. Meersseman and Verjovsky explain in [MV11] the

mistake in their proof, which we summarize here. In the construction they decompose S5 into

two components. At first they believed that this decomposition was precisely as in the standard

open book decomposition on S5, but this turned out to be wrong. The inside component was,

instead of being diffeomorphic to B × D2 diffeomorphic to some other manifold. However,

the boundary of this manifold was still diffeomorphic to B × S1, so glueing it to the outside

component of the open book of S5 still results in a smooth manifold. This manifold however

has a non-trivial fundamental group, so cannot be diffeomorphic to S5.

So although the proof in the inside component fails, the proof for the outside component seems

correct. Studying this will perhaps provide some more insight into the construction of complex

foliations.

Remark 6.6.3 (Lawson’s foliation). Also interesting to note is that Meersseman and Verjovsky

claimed to have proven that Lawson’s foliation does not admit a leafwise complex structure

[MV07]. This pre-print has appeared between the first paper with the mistake and the correction

to it, so the author is not certain whether the proof is entirely correct. Although the author

hasn’t been able to take a thorough look on the paper, the proof of the non-existence of a leafwise

complex structure on Lawson’s foliation does appear to be independent of the previous paper.



Chapter 7

Outlook

In this final chapter we give an outlook on possible further research.

7.1 Other examples of symplectic foliations

So far, Theorem 5.2.4 produced only one example of a symplectic foliation. It would be interest-

ing to find other cases in which this theorem can be applied. We elaborate on two possibilities

in the below.

7.1.1 S4 × S1

The existence of a symplectic foliation on S4×S1 has been established in different ways. Osorno

Torres constructs a symplectic foliation on S4 × S1 using an achiral Lefschetz fibration on S4

[Tor15]. Mori also proves the existence using an open book decomposition [Mor15]. The fact

that Mori uses an open book decomposition in his proof leads to the following:

Question 1. Can one construct a symplectic foliation on S4 × S1 using Theorem 5.2.4 or by

similar means?

7.1.2 Other lens spaces

The following idea has been suggested to the author by J. Stienstra. The open book decomposi-

tion on S5 was constructed using a degree three homogeneous polynomial. We used a polynomial

of degree three because the genus-degree formula for a curve in CP 2 ensured that the binding

of the open book fibres over S1. This resulted in the fact that S5/Z3 admitted a Donaldson

open book decomposition, and consequently a symplectic foliation. There exists modifications of

projective space in algebraic geometry, called weighted projective spaces. For these spaces there

also exists genus-degree formulae for curves which differ from the one in CP 2 [Hos16]. Although

these weighted projective spaces are not smooth in general, they are in some instances. The
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actions used to define general lens spaces and weighted projective spaces are quite similar. This

leads to the following:

Question 2. Can certain lens spaces be realized as principal S1-bundles over (smooth) weighted

projective spaces? If so, can one use Theorem 5.2.4 or similar arguments to construct symplectic

foliations on these spaces?

7.2 Contact geometry v.s. symplectic foliations

In this thesis we saw that contact geometry played an important role in constructing symplectic

foliations. The main ingredient for constructing a symplectic foliation on S5 was the existence

of an open book decomposition supporting a contact form. This hints at a possible relation

between these two structures. In this section we state a conjecture regarding this relation.

7.2.1 A conjecture

Foliations and contact structures can be seen as opposites of each other. Still there are relations

between these structures. In 1998, Eliashberg and Thurston found a way to deform contact

structures on three-dimensional manifolds into foliations [Eli98]. To do this, they invented

confoliations, hyperplane distributions which capture both foliations and contact structures. It

is not clear whether a relation between foliations and contact structures can be found in higher

dimensions. We believe that there exist deformations in dimension three because foliations on

three-dimensional manifolds are always symplectic. Therefore, we believe that a relation between

symplectic foliations and contact structures is more viable. The following conjecture is, in our

opinion, the right generalization of the work of Eliashberg and Thurston:

Conjecture 1. Symplectic foliations and contact structures are, in an appropriate sense, de-

formations of each other.

Below, we will motivate why this conjecture could hold and what its applications are. Further-

more, we will go into the statement in more detail, and describe specific methods to approach

the conjecture.

Motivation

Another hint that there is a relation between contact structures and symplectic foliations is the

fact that they both carry the same topological data, often called the almost structure. This is

a hyperplane distribution defined by the kernel of a one-form, together with a non-degenerate

two-form along the distribution. Recently, Borman, Eliashberg and Murphy established an

h-principle for contact structures [BEM15]. An h-principle is, loosely speaking, a manner of

deforming an almost structure into a classical one. Given a symplectic foliation, one can forget

the differentiable structure and then use the h-principle to deform it into a contact structure.



7.2. CONTACT GEOMETRY V.S. SYMPLECTIC FOLIATIONS 91

This is a partial answer to Conjecture 1, but has the problem that the deformation does not

take in account the differentiable structure.

Applications

A fruitful use of the conjecture is to transport statements about contact geometry to statements

about symplectic foliations and vice versa. Some statements for contact structures tend to be

more difficult to prove than the corresponding statement for symplectic foliations, and vice versa.

For instance, the existence of a symplectic foliation on T 2n+1 is trivial, whereas the existence of

a contact structure on T 2n+1 was only proven recently [Bou02]. On the other hand we have seen

in this thesis that the existence of a symplectic foliation on S2n+1 is a very difficult problem,

whereas there exists a canonical contact structure on S2n+1.

7.2.2 The five-sphere

Through the work of Osorno Torres and this thesis we now have a good understanding of the

symplectic foliation on S5. It is thus natural to study Conjecture 1 first in this specific case. Mori

has found a way to deform the symplectic foliation on S5 into the standard contact structure

[Mor15]. He gives one possible extension of Eliashberg and Thurston’s confoliations to higher

dimensions called ετ -confoliations. He proves that the contact structure on S5 can be deformed

into the symplectic foliation via these ετ -confoliations. His methods are however very technical

in nature, and we therefore ask the following:

Question 3. Is there a more geometrical way of deforming the contact structure on S5 to the

symplectic foliation?
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Appendix A

Appendix

A.1 Symplectic normal forms

Here we collect some results concerning local forms of symplectic manifolds around symplectic

submanifolds. Let N ⊂ M be a symplectic submanifold. Then the tangent bundle admits the

decomposition TM |N = TN ⊕ TNω. We see that TNω defines a normal bundle for N ⊂ M .

We in fact have that TNω inherits the structure of a symplectic vector bundle:

Definition A.1.1. Let M2n be a smooth manifold. A symplectic vector bundle is a pair

(E,ω), where E → M is a real vector bundle of rank 2n, and ω ∈ Γ(Λ2E∗) is such that ωx is

symplectic for every x ∈M .

An isomorphism of symplectic vector bundles (E,ω), (E′, ω′) is a bundle isomorphism

Φ : E → E′ which satisfies Φ∗ω′ = ω.

Definition A.1.2. A complex structure J on a symplectic vector bundle (E,ω) is said to be

compatible with ω if g ∈ Γ(Sym2T ∗M) defined by

g(u, v) := ω(u, Jv), for all u, v ∈ Γ(TM)

defines a fibrewise metric on E.

Theorem A.1.3 ([Can05]). For any symplectic vector bundle (E,ω), there exists a complex

structure on E which is compatible with ω. For any two such complex structures J, J ′ the

resulting complex vector bundles (E, J), (E, J ′) are isomorphic as complex vector bundles.

Two symplectic vector bundles are isomorphic if and only if the corresponding complex vector

bundles are isomorphic.

It turns out that the symplectic normal bundle TNω fully characterizes the behaviour of the

symplectic form around the neighbourhood:

Theorem A.1.4 ([Can05]). Let (M0, ω0) and (M1, ω1) be symplectic manifolds with diffeomor-

phic compact symplectic submanifolds X0 respectively X1. Suppose that there is an isomorphism
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ϕ : N (X0)→ N (X1) of the corresponding symplectic normal bundles covering a symplectomor-

phism ϕ : (X0, ω0|X0) → (X1, ω1|X1). Then there exist tubular neighbourhoods U0 ⊂ M0 and

U1 ⊂M1 of X0 respectively X1 and a symplectomorphism ϕ : U0 → U1.

Let (N,ωN ) ⊂ (S, ω) be a codimension-two symplectic submanifold. Consider the normal bun-

dle N (N) of N in S. Because N is a codimension-two submanifold, the normal bundle is a

two-dimensional real symplectic vector bundle. Now we endow N (N) with a complex struc-

ture compatible with the fiberwise symplectic form (see Theorem A.1.3). Now we consider the

induced principal S1-bundle which we denote by h : B′ → N . Endow B′ with a connection

one-form α′ ∈ Ω1(B′) and let σ ∈ Ω2(N) denote the induced curvature (i.e. h∗σ = dα′). Endow

B′ × C with the diagonal S1-action, and define the form

Ω = d((1− r2)α′ + r2dϕ) ∈ Ω2(B′ × C).

Theorem A.1.5. The form Ω as defined above descends to a form Ω ∈ Ω2(B′×S1 C). Further-

more, there exists a tubular neighbourhood U of N ⊂ S which is symplectomorphic to

(U , ω) ' (B′ ×S1 D2
ε ,Ω

′ := ωN − σ + Ω).

Proof. Ω descends: To prove that Ω descends to a form on B′ ×S1 C, we will first show that

B′ ×C→ B′ ×S1 C is a principal bundle. Because the S1-action on B′ is free, we have that the

S1-action on B′×C is free as well. Because the S1-actions on B′ and C are proper, we also have

that the action on B′×C is proper. We remark that the infinitesimal generator of the S1-action

is given by X = Rα′ + ∂θ. Using Cartan’s formula we have

ιXΩ = −d(ιX((1− r2)α′ + r2dϕ)) + LX((1− r2)α′ + r2dϕ)

= −d(1)

= 0.

We conclude that Ω is a basic form, hence it descends to a form Ω ∈ Ω2(B′ ×S1 C).

Symplectomorphism: To prove that there exists a symplectomorphism we will use Theorem

A.1.4. We first note that h(B′) is a submanifold of B′ ×S1 C diffeomorphic to N , we denote

h(B′) = N ′. We have

h∗((ωN − σ + Ω)|N ′) = (h∗ωN − dα′ + d((1− r2)α′ + r2dϕ))|B′

= (h∗ωN )|B′

We thus find that Ω′|N ′ = ωN . To finish the proof we are left to show that the symplectic

normal bundles N (N) and N (N ′) are isomorphic as symplectic vector bundles. To do as such

we recall from Theorem A.1.3 that two symplectic vector bundles are isomorphic if and only
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if the associated complex vector bundles are isomorphic. Because d(r2dϕ) is compatible with

the standard complex structure on C we observe that the symplectic normal bundle N (N ′) is

precisely (B′ ×S1 C,Ω′). Recall that B′ was constructed as the principal S1-bundle associated

to the complex vector bundle N (N), hence B′ ×S1 C and N (N) are isomorphic as complex line

bundles. This proves that N (N) and N (N ′) are isomorphic as symplectic vector bundles, which

finishes the proof.

A.2 (Locally trivial) fibrations

We recall some results on the behaviour of (locally trivial) fibrations.

Definition A.2.1. A smooth map π : M → N is called locally trivial if for every x ∈ M ,

there exists an open neighbourhood U of π(x) together with a diffeomorphism ϕ : π−1(U) →
U × π−1({π(x)}) such that the following diagram commutes:

π−1(U) U × π−1({π(x)})

U

ϕ

π
pr1

Theorem A.2.2 (Ehresmann). Let M and N be smooth manifolds and let π : M → N be a

proper surjective submersion. Then π is a locally trivial fibration.

There is also a version for manifolds with boundary, but now we need to impose an extra

condition on the boundary.

Theorem A.2.3 (Ehresmann with boundary). Let M and N be smooth manifolds, and assume

that M has a boundary. Let π : M → N be a proper surjective submersion, such that π|∂M is

also as submersion. Then π is a locally trivial fibration.

The following lemma will give a normal form for fibrations near the boundary.

Lemma A.2.4. Let M and N be smooth manifolds, and assume that M has compact boundary.

Let π : M → N be a proper surjective submersion, such that π|∂M is also as submersion. Then

there exists a collar neighbourhood of the boundary U such that the following diagram commutes:

∂M × [0, 1) U

S1 × [0, 1) S1

'

π|∂M×id π

pr1

Claim 1. The fibers of π are transverse to the boundary.
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Proof. Denote m = dimM and n = dimN . Let x ∈ ∂M , and p = π(x). By assumption we have

that

(dπ|∂M )x : Tx∂M → TpN

is surjective. Hence the null-space of (dπ|∂M )x is at most (m − 1 − n)-dimensional. Now

Tx(π−1(p)) = ker(dπ)x, hence dimTx(π−1(b)) ≥ m − n. Because of dimension reasons we thus

see that Tx(π−1(p)) cannot be completely contained in Tx∂M . Hence Tx∂M+Txπ
−1(p) = TxM ,

which shows that the fibres of π are transverse to the boundary.

Claim 2. There exists a vector field X near the boundary which is tangent to the fibers of π

and points inwards.

We will postpone the proof of this claim, and use it to prove the theorem. Because ∂M is

compact and X points inwards we have that the flow of X exists for some finite time, which we

take equal to 1. We consider the collar neighbourhood U ' ∂M × [0, 1) defined by the flow of

this vector field. Because X is taken such that dπ(X) = 0, we have that π|U is constant in the

second variable. Because the fibers of π are transverse to the boundary, so is X and thus we

have for x ∈ ∂M that π(x, 0) = π|∂M (x). We conclude that the diagram commutes. To finish

the proof we are left to prove the claim.

Proof of Claim 2:

Let U ' ∂M × [0, 1) be any collar neighbourhood of the boundary. Consider an extension of

the collar neighbourhood Ũ = ∂M × (−δ, 1), and π̃ : Ũ → B an extension of π. Clearly π̃ is

still submersive at points in the boundary, hence for all z ∈ ∂M there exists a neighbourhood

V of (z, 0) such that π̃ is a submersion on V . On V we can thus use local coordinates on which

π becomes a projection. Using this local form and the fact that the fibres of π are transverse

to ∂M , we see that we can find a vector field X ′ on V such that dπ̃(X ′) = 0 and dt(X ′) > 0.

Using compactness of ∂M and a partition of unity argument we can find a vector field X on an

open neighbourhood of the boundary with the required properties.

A.2.1 Mapping Tori

Here we recall how circle fibrations can be viewed as mapping tori.

Theorem A.2.5. Let M be a compact manifold and let π : M → S1 be a submersion. Let X ∈
X(M) be such that π∗(X) = ∂

∂ϕ . Let ϕ denote the time-one-flow of X and denote N = π−1([0]).

Then there exists a diffeomorphism of N such that M ' N ×Z R. Here the action is generated

by (x, t) 7→ (ϕ(x), t− 1).

Proof. Consider the flow ϕtX : M →M of this vector field, which as M is compact exists for all

t ∈ R. Consider

ϕtX |M[0]
: M[0] →M[t].
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Claim 1. ϕtX |M[0]
is well-defined and a diffeomorphism.

Proof. By naturality of the flow, we have that

π(ϕtX(x)) = ϕtπ∗X(π(x))

= ϕt∂
∂ϕ

([0])

= [t],

which shows that the target is indeed M[t]. Now the map is smooth as the fibers of π are

submanifolds, and its inverse is given by ϕ−tX .

Now consider the map

ψ̃ : N × R→M

(x, t) 7→ ϕtX(x).

Clearly this map is constant on the fibers of the action of Z on N × R, and thus descends to a

smooth map ψ : N ×Z R→ M . By the previous claim we have that this map is bijective. Also

as ψ̃ is a local diffeomorphism, so is ψ. We conclude that ψ is a diffeomorphism which finishes

the proof.

Note that using a connection on M one can always find a vector field as described in the above

lemma.

Theorem A.2.6. Let M be a compact manifold with boundary and let π : M → S1 be a

submersion, such that π|∂M is also a submersion. Denote N = π−1([0]), then there exists a

diffeomorphism of N such that M ' N ×ZR, where the action is generated by the time-one-flow

of X.

Proof. Pick a vector field X ∈ X(M), which satisfies π∗X = ∂
∂ϕ and is tangent to the boundary

and points inward. Such a vector can be found using Lemma A.2.4. Now the proof goes exactly

the same as for the case without boundary.

A.3 Invariant tubular neighbourhoods

We recall the existence of invariant tubular neighbourhoods:

Theorem A.3.1 ([Kan07]). Let G be a Lie group and let M be a principal G-bundle. Let N be

a closed G-invariant submanifold of M . Then there exists a G-invariant tubular neighbourhood

of N in M together with a G-equivariant retraction.
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