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Abstract

This thesis was written by Merlijn Staps from April 2016 until March 2017 as part of the
master’s programme Mathematical Sciences at Utrecht University. The research was supervised
by dr. Tobias Müller. The second reader is prof. dr. Roberto Fernández.

We study the graph diameter in the KPKVB model, a recent model of random geometric graphs
in the hyperbolic plane that was introduced because it has properties reminiscent of complex net-
works: it has a power law degree distribution, local clustering and small graph theoretic distances.
After introducing the model, we show how it can be approximated by a random geometric graph
in the Euclidean plane that turns out to be easier to handle. We then use this approximation to
improve previous results on the diameter of KPKVB random graphs, by showing that with prob-
ability tending to 1 as N →∞, the maximum diameter of the components of the graph is at most
a constant times logN . Here N denotes the number of vertices. We also provide a logarithmic
lower bound for the diameter that holds with probability tending to 1. This lower bound was
already known in the literature. Together, this shows that, asymptotically, the graph diameter in
the KPKVB model is logarithmic in the number of vertices.
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Introduction

A graph is the mathematical formalization of a network. It consists of vertices (points) and edges
(lines) connecting those vertices. For example, a social network can be modeled as a graph in
which the vertices represent people and the edges connect people that are friends of each other. A
random graph is a graph that is constructed through some random process. Both the vertices and
the edges of a random graph can be random.

A simple random graph model is the Erdős-Renyi model. In this model, a graph is constructed
by starting with a fixed number of vertices and connecting each pair of vertices independently with
some fixed probability p. The structure of the resulting graph is usually studied asymptotically,
with the number of vertices tending to infinity.

The vertices of a random geometric graph are chosen randomly in some metric space. Edges
are then drawn between vertices that are close to each other in the ambient space. For example,
one could sample independent points from the unit square and then connect pairs of points with
distance at most some threshold d. Random geometric graphs behave differently from Erdős-
Renyi random graphs. Unlike Erdős-Renyi random graphs, they exhibit clustering: vertices with
a common neighbor have a higher probability of being neighbors as well (because they tend to
be close to each other in the ambient space). Furthermore, “not all vertices are the same”: the
properties of vertices may depend on where they land in space.

In this thesis we consider a random geometric graph that is not constructed in Euclidean
space, but in the hyperbolic plane. In particular, we consider a model for random hyperbolic
graphs introduced by Krioukov et al. [21] that turns out to have characteristics similar to those
of so-called complex networks. In this thesis we study the diameter in this random graph model.
The diameter of a graph is the minimal value of d such that between any two vertices between
which a path exists in the graph, there exists such a path consisting of at most d edges. In other
words, the diameter is the length of the longest shortest path in the graph.

In Chapter 1 we discuss some tools and concepts that we will need in the remainder of the
thesis. Section 1.1 provides a brief introduction to the concept of complex networks. In Section 1.2
we set up hyperbolic geometry and derive some of its properties. We also introduce the Poincaré
disk representation of the hyperbolic plane, which we will use when defining our random graph
model. In Section 1.3 we give a formal introduction into Poisson point processes. This framework
will be used later to handle random sets of points.

In Chapter 2 we introduce the KPKVB model [21], which is the random graph model that
we are concerned with in this thesis. After setting it up in Section 2.1 we give an overview of
the known results on this model. Section 2.2 contains some necessary calculations that will be
used to study the model. In Section 2.3 we introduce a second random geometric graph that was
introduced in [11] and can be used as an approximation for the KPKVB model.

In Chapter 3 we study the diameter of the KPKVB model. We start by presenting an asymp-
totic logarithmic lower bound for the diameter, which was proven in [19] and [12]. This logarithmic
lower bound is the topic of Section 3.1. In Section 3.2, we prove the original result of this the-
sis, which is a matching asymptotic logarithmic upper bound for the diameter that holds with
probability 1 as the number of vertices tends to infinity.
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Prerequisites

We assume that the reader is familiar with abstract measure theory and (measure theoretic
foundations of) probability theory. We also assume some familiarity with basic concepts from
graph theory. We do not assume previous experience with hyperbolic geometry and provide an
introduction to the hyperbolic plane in Section 1.2.

Notation

Since we study the asymptotic behavior of random graphs, we frequently make use of asymptotic
notation. We always take the limit N → ∞ (or, equivalently, R → ∞, see Section 2.1), where N
is the number of vertices. When f , g are real-valued functions of R with g nonnegative, we write

• f(R) = O(g(R)) if there exists a constant C > 0 such that for all sufficiently large R it holds
that 0 ≤ f(R) ≤ Cg(R);

• f(R) = Ω(g(R)) if there exists a constant C > 0 such that for all sufficiently large R it holds
that Cg(R) ≤ f(R);

• f(R) = o(g(R)) if we have limR→∞ f(R)/g(R) = 0;

• f(R) = Θ(g(R)) if both f(R) = O(g(R)) and f(R) = Ω(g(R)), that is, if there are positive
constants C1 and C2 such that C1g(R) ≤ f(R) ≤ C2g(R) for all sufficiently large R.

Formally, O(g(R)), Ω(g(R)), Θ(g(R)) and o(g(R)) should be seen as classes of functions (and it
would maybe be better to use an ∈ symbol instead of an = symbol). By O(g(R)) we can also
mean “some member of O(g(R))”, so when we write f(R) = 1 + O(R) we mean that f(R) − 1 is
a function that belongs to O(R).

Sometimes we also use this notation in a non-asymptotic sense; in this case an expression like
f(a) = O(g(a)) just means that for some C > 0 we have 0 ≤ f(a) ≤ Cg(a) for all a. This use
should be clear from context. When X is some random variable defined on our random graph, we
will also encounter statements of the form P(X = O(R))→ 1, which is to be read as: there exists
a positive constant C such that P(0 ≤ X ≤ CR) has limit 1 for R→∞.

By |a− b|d we will mean the distance between two real numbers a and b, taken modulo d:

|a− b|d = min
k∈Z
|a− b+ kd|.

If we are given a sequence of probability spaces (Ωn,Fn,Pn)n≥1 and an event X that can be
defined on each of them, then we say that X happens asymptotically almost surely or a.a.s. if
Pn(X)→ 1 as n→∞.
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1

Preliminaries

This chapter consists of three independent sections. In Section 1.1 we give an introduction into
complex networks. In Section 1.2 we introduce the hyperbolic plane. In Section 1.3 we formally
introduce the Poisson point process.

1.1 Complex networks

The term complex network refers to real-world networks that share a number of graph-theoretic
characteristics despite arising in completely different contexts. The list of examples includes so-
cial networks, the internet, metabolic networks, protein interaction networks, neural networks,
collaboration networks of scientists and many more [2, 25, 28].

The common characteristics of complex networks include the following:

1. the network has a large number of nodes;

2. the network is sparse, which means that the number of connections is a small multiple of the
number of nodes. In other words, the average number of neighbors of a node is small;

3. the network exhibits local clustering , which means that nodes with a common neighbor have
a higher probability of being connected;

4. there are small distances, which means that there are short paths in the network between
most pairs of nodes;

5. the degree distribution follows a power law , which means that the number of nodes of degree
k is proportional to k−β for some exponent β ≥ 1. As a consequence, most nodes have very
small degree, but there are a few nodes (called “hubs”) with very large degree.

Properties 3 and 4 are together referred to as the “small-world phenomenon” [28]. The power
law degree distribution is sometimes also referred to as a “scale-free degree distribution” [2]. The
terms “small-world network” and “scale-free network” are also used to describe complex networks.

As an example, we consider the network with as nodes all people in The Netherlands, where two
people are connected by an edge if they know each other. This is an example of a social network.
Having millions of nodes, the network clearly satisfies 1. It can also be called sparse (property 2),
because most people in The Netherlands know only a very small fraction of fellow Dutchmen. The
clustering property (property 3) arises from the fact that common acquaintances of a person have
a higher probability of also knowing each other, because they may for instance all three live in the
same city or work at the same place. Small distances (property 4) in social networks were famously
demonstrated in experiments by Stanley Milgram in the United States [23]. The results of these
experiments have become known under the slogan “six degrees of separation”, which means that
most pairs of people are connected to each other via a sequence of at most six “friends of friends”.
Large social networks often do not have property 5 however, because the degree distribution in a
social network is typically Gaussian [25].

As a second example, we consider a network from logistics. The nodes of this network are all
airports in the world, and two airports are connected if there are regular flights between the two.
This network clearly has properties 1 and 2. Property 3 arises from the fact that airports from
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which flights exist to the same airport are generally close geographically. Property 4 translates to
the phenomenon that for most pairs of airports a short (in terms of number of flights) sequence of
flights can be taken from the one to the other. The airport network also has a power law degree
distribution [15]. Most airports will be local airports with a small number of connections, but
there are nodes with a very large degree: these are large international airports such as Schiphol
Airport.

Mathematical descriptions of complex networks characteristics

We now discuss how the properties described above can be translated into the language of graph
theory. The sparseness of a network can be measured by the average degree. If a random graph
model for complex networks has a variable number of vertices N , then the sparseness condition
could be that the average degree stays bounded for N →∞.

The clustering property is usually measured by the average clustering coefficient . Between
the neighbors of a node with degree k, there are

(
k
2

)
potential connections. The fraction of those

connections that are present in the network is called the clustering coefficient of the node. The
clustering coefficient of the network then is the average clustering coefficient over all nodes.

The distance between two nodes in the network can be measured by the number of edges in the
shortest path between the nodes (this distance may be infinite if no such path exists). To obtain a
parameter that describes the whole network, one can either take the average over all finite distances
between pairs of nodes (the “typical distance”) or the maximum distance (the diameter). For a
small-world network, the typical distance is on the order of logN or even log logN [26].

The power law condition was already formalized mathematically above; it is a condition on the
degree sequence of the graph.

Models of complex networks

An obvious question is why complex networks, despite coming from completely different areas
of science, share many characteristics. Network scientists have searched for a model of complex
networks that explains how these characteristics may arise.

The most natural random graph model, the Erdős-Renyi model, is certainly not a good model
for complex networks. Recall that in this model a graph is constructed on N vertices by drawing
each possible edge independently with probability p. Although N and p can be chosen such that
property 1 and 2 are satisfied, Erdős-Renyi graphs do not exhibit clustering or a power-law degree
distribution.

The Chung–Lu model for random graphs is a model that does give a power-law degree distri-
bution [7]. Contrary to the Erdős-Renyi model, this is an inhomogeneous random graph model in
the sense that the expected degree is not the same for each vertex. In the Chung–Lu model, each
of the N vertices v1, . . . , vN comes with a weight wi. The connection probability of vertices vi
and vj is now proportional to wiwj . The weights can be chosen in such a way that the resulting
random graph has a power law degree distribution.

Barabási and Albert [2] suggested that complex networks may arise through a process called
preferential attachment . This process describes the evolution of a graph through the following two
mechanisms: (i) vertices are added one by one and (ii) once a new vertex is added, it is connected
to some of the already existing vertices with a preference for vertices that already have many
connections. Like the Chung–Lu model, the preferential attachment model can also give rise to a
power-law degree distribution.

Krioukov et al. [21] suggested that complex networks may have a hidden underlying hyperbolic
geometry and introduced a random geometric graph model in the hyperbolic plane that exhibits
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the characteristics described above. The random graph model they introduced is the subject of
this thesis. We introduce their model in Chapter 2.

1.2 Hyperbolic geometry

In this section we set up the hyperbolic plane and discuss a few basic properties of it. Most
of the results and statements of this chapter are from lecture notes by Walkden [27]. A more
historical introduction to the topic of hyperbolic geometry can be found in the book by Stillwell
[24].

The hyperbolic plane is a surface of constant negative curvature −1. In contrast, the Euclidean
plane is a surface of zero curvature and the sphere is a surface of constant curvature 1. A classical
result by Hilbert [16] is that there is no complete analytic regular surface in 3-dimensional Euclidean
space R3 of constant negative curvature. Consequently, there is no isometric embedding of class C∞
of the hyperbolic plane into R3. There are however many equivalent models of the hyperbolic plane
as subsets of Euclidean spaces, each of which emphasizes some of its properties. The model we will
most frequently make use of is the Poincaré disk model, which is a representation of the hyperbolic
plane inside the unit disk in the Euclidean plane. The model we will start from, however, is the
Poincaré half plane model, which represents the hyperbolic plane as the upper (Euclidean) half
plane.

In Section 2.1 we will construct a random graph on a disk in the hyperbolic plane. The
critical property of hyperbolic geometry that we will use is that the perimeter of such a disk
grows exponentially with the radius (see Lemma 1.2.11 below). This means that if points are
distributed uniformly over the disk, most points will end up close to the boundary. If points at
close hyperbolic distance are connected by an edge, points close to the center will typically have a
high degree, whereas points close to the boundary will have a low degree (close to the boundary
distances are “larger” because perimeter increases exponentially). As a consequence, one ends up
with a graph where most vertices have small degree, whereas a few vertices have large degree.
Furthermore, the graph naturally exhibits local clustering. This is in a nutshell the idea behind
modeling complex networks with hyperbolic random graphs [21].

Hyperbolic distances in the upper half-plane

A model for the hyperbolic plane is obtained when the upper half plane H = {z ∈ C : Im z > 0}
is equipped with the metric defined by the differential form ds = dz/ Im z. This means that the
hyperbolic length `H(γ) of a (continuous) path γ : [0, 1]→ H is obtained by integrating the function
1/(Im z) along γ:

`H(γ) =

∫
γ

1

Im z
dγ =

∫ 1

0

|γ′(t)|
Im γ(t)

dt.

The hyperbolic distance dH(z1, z2) between two points z1, z2 ∈ H is now naturally defined as the
infimum over the hyperbolic lengths of all possible continuous paths from z1 to z2.

Our first task is to find the path of shortest length between two arbitrary points z1, z2 ∈ H.
Such a path is called a geodesic. We first show that for two points z1 = ia, z2 = ib (where b > a),
the geodesic is given by the vertical line segment from z1 to z2.

Lemma 1.2.1 ([27], Proposition 4.2.1). Let a < b. The geodesic between z1 = ia and z2 = ib is
given by the imaginary axis. The hyperbolic distance between z1 and z2 is log(b/a).

Proof. First consider the path γ : [a, b] → H from z1 to z2 given by γ : t 7→ it. The hyperbolic

length of this path is given by `H(γ) =
∫ b
a

1
Im γ(t) dt =

∫ b
a

1
t dt = log(b/a). It remains to show that
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no other path from z1 to z2 has smaller length. Consider any path γ : [0, 1] → H with γ(0) = z1

and γ(1) = z2. Write γ(t) = x(t) + iy(t). The length of the path is now given by

`H(γ) =

∫ 1

0

√
x′(t)2 + y′(t)2

y(t)
dt ≥

∫ 1

0

√
y′(t)2

y(t)
dt

=

∫ 1

0

|y′(t)|
y(t)

dt ≥
∫ 1

0

y′(t)

y(t)
dt = log(b)− log(a) = log(b/a),

as required. Equality holds provided that y′(t) is nonnegative and x′(t) = 0, which means that the
path should follow the vertical axis.

We have now found the geodesic between points on the imaginary axis. We claim that the
geodesic between two arbitrary points is either a vertical line or a circle orthogonal to the horizontal
axis.

By a Möbius transformation of H we mean a fractional transformation of the form f(z) = az+b
cz+d ,

where a, b, c, d are real numbers such that ad− bc is nonzero. We call ad− bc the determinant of
the transformation. If the determinant is positive, f is a bijective transformation of H onto itself.
It is easy to check that the Möbius transformations with positive determinant form a group under
composition of functions.

Lemma 1.2.2 ([27], Proposition 4.1.1). Möbius transformations preserve hyperbolic distances: if
f is a Möbius transformation with positive determinant, then dH(z1, z2) = dH(f(z1), f(z2)).

Proof. It suffices to prove that f preserves the length of any path in H from z1 to z2. Consider
such a path γ : [0, 1]→ H where γ(0) = z1 and γ(1) = z2. Then

`H(γ) =

∫ 1

0

|γ′(t)|
Im γ(t)

dt.

We now compute the length of the path f(γ) (because f has positive determinant, this also is a
path in H). Notice that

`H(f(γ)) =

∫ 1

0

|(f ◦ γ)′(t)|
Im f(γ(t))

dt =

∫ 1

0

|f ′(γ(t))||γ′(t)|
Im f(γ(t))

dt.

Write f(z) = az+b
cz+d . Then we have

f ′(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

ad− bc
(cz + d)2

and

Im f(z) = Im

(
az + b

cz + d

)
=

1

|cz + d|2
Im ((az + b)(cz + d)) =

ad− bc
|cz + d|2

Im z.

Therefore, from `H(f(γ)) =
∫ 1

0
|f ′(γ(t))||γ′(t)|

Im f(γ(t)) dt and the fact that ad− bc > 0, it follows that

`H(f(γ)) =

∫ 1

0

ad− bc
|d+ cγ(t)|2

· |γ′(t)| · |d+ cγ(t)|2

(ad− bc) · Im γ(t)
dt =

∫ 1

0

|γ′(t)|
Im γ(t)

dt = `H(γ),

as desired.

Lemma 1.2.3 ([27], Lemma 5.2.1). Let z1, z2 ∈ H be distinct. Then there exists a Möbius
transformation f with positive determinant that maps z1 to i and z2 to a point on the imaginary
axis that lies above i.
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Proof. Note that horizontal translations and dilations centred at the origin are Möbius transfor-
mations. It follows that there exists a Möbius transformation that maps z1 to i. Therefore, we
may assume that z1 = i and show that there exists a Möbius transformation that leaves i fixed
and maps z2 to a point on the imaginary axis. Write w = z2. Note that the quadratic polynomial

Q(T ) = T 2 Rew + T (1− |w|2)− Rew

has nonnegative discriminant (1− |w|2)2 + (2 Rew)2. Therefore, Q has some real zero T = a. We
claim that the Möbius transformation f(z) = az+1

−z+a has the required property that f(w) lies on

the imaginary axis. Note that this Möbius transformation has positive determinant a2 + 1 and
that f(i) = ai+1

a−i = i. It remains to compute the real part of f(w) to show that f(w) lies on the
imaginary axis. We have

f(w) =
aw + 1

a− w
=
aw + 1

a− w
· a− w
a− w

=
(aw + 1) · (a− w)

|a− w|2
.

We have (aw+ 1) · (a− w) = a2w− a|w|2 + a−w with real part a2 Re(w) + a(1− |w|2)−Rew = 0
by the choice of a. Thus f(z2) = f(w) lies on the imaginary axis. If f(w) lies above i, we are
done. If f(w) lies below i, we next apply the Möbius transformation z 7→ −1

z with determinant 1.
This transformation leaves i fixed and sends f(w) to a point on the imaginary axis that lies above
i.

Theorem 1.2.4 ([27], Theorem 5.2.2). Let z1, z2 ∈ H. The unique geodesic in H connecting z1

and z2 is either a vertical line or a semicircle orthogonal to the horizontal axis.

Proof. By Lemma 1.2.3, there exists a Möbius transformation f such that f(z1) = i and f(z2) = ti
for some positive t. By Lemma 1.2.1, the vertical axis is the unique geodesic through z1 and z2.
Applying f−1, we see by using Lemma 1.2.2 that the unique geodesic between z1 and z2 is the
image of the vertical axis under the Möbius transformation f−1. Write f−1(z) = az+b

cz+d . If c = 0 or

d = 0 then the image of the imaginary axis under f−1 is another vertical line. If cd 6= 0 we claim
that the image of the imaginary axis under f−1 is a semicircle centred at ad+bc

2cd . Indeed, if z lies
on the imaginary axis then

az + b

cz + d
− ad+ bc

2cd
=

2cd(az + b)− (cz + d)(ad+ bc)

2cd(cz + d)

=
(ad− bc)(cz − d)

2cd(cz + d)
=
ad− bc

2cd
· cz − d
cz + d

which has absolute value ad−bc
2cd since z lies on the imaginary axis. So the distance from f−1(z) to

the point ad+bc
2cd on the real axis is independent of z, which means that f−1 maps the imaginary

axis to a semicircle centred at ad+bc
2cd . This semicircle is orthogonal to the real axis.

We will also refer to the geodesics as hyperbolic lines. Having found the geodesics, we can
compute the hyperbolic distance between any two points.

Theorem 1.2.5. The hyperbolic distance between z1, z2 ∈ H satisfies

cosh dH(z1, z2) = 1 +
|z1 − z2|2

2(Im z1)(Im z2)
.

Proof. If Re z1 = Re z2 the geodesic between z1 and z2 is a vertical line and by a similar argument
as in the proof of Lemma 1.2.1 we find that dH(z1, z2) = log(Im z1/ Im z2) (where we assume
Im z1 ≥ Im z2). We find

cosh dH(z1, z2) =
(Im z1)2 + (Im z2)2

2(Im z1)(Im z2)
= 1 +

|z1 − z2|2

2(Im z1)(Im z2)
.
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If Re z1 6= Re z2 the geodesic connecting z1 and z2 is a semicircle orthogonal to the real axis centered
at a certain point p ∈ R. Write zk = p + reϕki for k = 1, 2 and define the path γ : [ϕ1, ϕ2] → H
given by t 7→ p+reti (we may assume 0 < ϕ1 ≤ ϕ2 < π). This path satisfies γ(ϕ1) = z1, γ(ϕ2) = z2

and follows the geodesic between z1 and z2, so we obtain

dH(z1, z2) = `H(γ) =

∫ ϕ2

ϕ1

|γ′(t)|
Im γ(t)

dt

=

∫ ϕ2

ϕ1

√
r2 sin2 t+ r2 cos2 t

r sin t
dt

=

∫ ϕ2

ϕ1

1

sin t
dt

= log

(
sinϕ2

1 + cosϕ2

)
− log

(
sinϕ1

1 + cosϕ1

)
= log

(
sinϕ2(1 + cosϕ1)

sinϕ1(1 + cosϕ2)

)
because x 7→ log( sinx

1+cosx) is an antiderivative of x 7→ 1
sinx . Indeed,

d

dx
log

(
sinx

1 + cosx

)
=

1 + cosx

sinx
· (1 + cosx) cosx+ sin2 x

(1 + cosx)2
=

1

sinx
.

It follows that

cosh dH(z1, z2) = cosh

(
log

(
sinϕ2(1 + cosϕ1)

sinϕ1(1 + cosϕ2)

))
=

sinϕ2(1 + cosϕ1)

2 sinϕ1(1 + cosϕ2)
+

sinϕ1(1 + cosϕ2)

2 sinϕ2(1 + cosϕ1)

=
(1− cosϕ2)(1 + cosϕ1)

2 sinϕ1 sinϕ2
+

(1− cosϕ1)(1 + cosϕ2)

2 sinϕ2 sinϕ1

= 1 +
(cosϕ1 − cosϕ2)2 + (sinϕ1 − sinϕ2)2

2 sinϕ1 sinϕ2

= 1 +
|z1 − z2|2

2(Im z1)(Im z2)
,

as desired. In the third step we used that sinx
1+cosx = 1−cosx

sinx .

Hyperbolic triangles

In this paragraph we derive some hyperbolic triangle geometry and trigonometry. We define
the (hyperbolic) angle between two paths that meet at z ∈ H to be the (Euclidean) angle between
their tangent vectors. A very important point is that Möbius transformations are conformal , i.e.
they preserve angles. This is a consequence of the fact that any complex differentiable function is
conformal [22, p. 35].

Consider a right-angled triangle with vertices A, B, C ∈ H with a right angle at C. By Lemma
1.2.3, there exist a Möbius transformation that maps C to i and A to a point ki on the imaginary
axis. Because there is a right angle at C and the Möbius transformation is conformal, the point
B = s+ ti now lies on the unit circle (Figure 1.1).

Lemma 1.2.6 (Hyperbolic Pythagoras). If a hyperbolic triangle ABC has a right angle at C we
have cosh c = cosh a cosh b.

Here a, b and c denote the lengths of the sides opposite A, B and C, respectively.
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α

α

a

c
b

0

C = i

A = ki

B = s+ ti
−x

Figure 1.1: A right-angled triangle ABC in the hyperbolic plane. Applying a Möbius transforma-
tion, we may assume that C = i, A = ki (k > 1) and that B = s + ti lies on the unit circle. The
side lengths of triangle ABC are called a, b and c and α is the hyperbolic angle at vertex A. The
points 0 and −x are used in the proof of Lemma 1.2.7.

Proof. We may assume that C = i, A = ki and B = s+ ti with k > 1 and s2 + t2 = 1 (Figure 1.1).

Using Theorem 1.2.5 we find cosh b = 1 + (k−1)2

2k = 1+k2

2k , cosh a = 1 + s2+(t−1)2

2t = 1 + 2−2t
2t = 1

t
and therefore

cosh c = 1 +
s2 + (t− k)2

2tk
= 1 +

1− 2tk + k2

2tk
=
k2 + 1

2tk
= cosh a cosh b,

as required.

Lemma 1.2.7 (Hyperbolic trigonometry). If a hyperbolic triangle ABC has a right angle at C
and angle α at A we have

sinα =
sinh a

sinh c
, cosα =

tanh b

tanh c
and tanα =

tanh a

sinh b
.

Proof. As in the proof of Lemma 1.2.6, we assume that C = i, A = ki and B = s+ ti with k > 1
and s2 + t2 = 1. We assume the triangle to be non-degenerate, which implies s 6= 0. Without loss
of generality we assume that s is positive. The geodesic through A and B is a semicircle centered
at a point −x at the real axis (again see Figure 1.1). Because −x is equidistant from A and B we

have k2 + x2 = t2 + (s+ x)2 or x = k2−1
2s . From k > 1 and s > 0 it follows that x is positive. The

points X = −x, A = ki and O = 0 form a triangle in the Euclidean plane that has a right angle
at O. Because the half-plane model of the hyperbolic plane is conformal (hyperbolic angles are
Euclidean angles), α is equal to the angle between the line OA and the perpendicular to AX at A.
Because OX is perpendicular to AO, it follows that the angle at X in triangle OXA is also equal
to α. It follows that tanα = k

x . Note that cosh a = 1
t as in the proof of Lemma 1.2.6. Because a

is positive, we have

sinh a =
√

cosh2 a− 1 =

√
1− t2
t2

=
s

t
,

whence tanh a = sinh a
cosh a = s/t

1/t = s. Similarly, from cosh b = 1+k2

2k we have

sinh b =

√(
1 + k2

2k

)2

− 1 =
k2 − 1

2k
.

Because x = k2−1
2s , it follows that

tanh a

sinh b
=

2ks

k2 − 1
=

2ks

2sx
=
k

x
= tanα,
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which proves the third equality. We now simultaneously prove the first and second equality. Let
A = sinh a

sinh c and B = tanh b
tanh c . Note that A > 0. We also have sinα > 0 because α < π

2 . We have

A

B
=

sinh a tanh c

sinh c tanh b
=

sinh a cosh b

cosh c sinh b
=

sinh a cosh b

cosh a cosh b sinh b
=

tanh a

sinh b
= tanα,

by Lemma 1.2.6 and the equality tanh a
sinh b = tanα which we already deduced above. Note that

sinh2 c = cosh2 c− 1 = (k
2+1
2tk )2− 1, because from the proof of Lemma 1.2.6 we have cosh c = k2+1

2tk .

Furthermore, we have sinh2 a = s2

t2
= 1−t2

t2
and tanh2 b = sinh2 b

cosh2 b
= (k2−1)2

(k2+1)2
. We obtain

A2 +B2 =
sinh2 a

sinh2 c
+

tanh2 b

tanh2 c
=

sinh2 a+ cosh2 c tanh2 b

sinh2 c

=

1−t2
t2

+
(
k2+1
2tk

)2
· (k2−1)2

(k2+1)2(
k2+1
2tk

)2
− 1

=
4k2(1− t2) + (k2 − 1)2

(1 + k2)2 − 4k2t2
= 1.

We now have A2 +B2 = 1 = sin2 α+ cos2 α and A/B = tanα = sinα/ cosα. Because A and sinα
also have the same sign, this leads to the conclusion (A,B) = (sinα, cosα), which proves the first
and second equality.

Lemma 1.2.8. Let ` be a hyperbolic line and let P ∈ H be a point. Then there exists a hyperbolic
line `′ containing P that is perpendicular to P .

Proof. By Lemma 1.2.3, there is a Möbius transformation f with positive determinant that maps
` to the vertical axis. Let P ′ = f(P ). The semicircle centered at the origin through P ′ is perpen-
dicular to the vertical axis. The image of this semicircle under f−1 is the desired hyperbolic line
`′ (we use again that Möbius transformations are conformal).

D

A

B

C

γ

c

b1

b2

a

h

Figure 1.2: Proving the hyperbolic cosine rule. The point D lies on AC such that the hyperbolic
lines BD and AC are perpendicular, forming two hyperbolic right triangles ABD and BCD.

Theorem 1.2.9 (Hyperbolic Cosine Rule). Let ABC be a triangle in H with angle γ at C. Then
we have

cosh c = cosh a cosh b− sinh a sinh b cos γ.

Proof. By Lemma 1.2.8, the hyperbolic line AC contains a point D such that the hyperbolic line
BD is perpendicular to the hyperbolic line AC (Figure 1.2). Let b1 be the hyperbolic distance
between A and D and let b2 be the hyperbolic distance between C and D. We assume that D lies
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in between A and C. Then we have b = b1 + b2. Let h be the hyperbolic distance between B and
D. By Lemma 1.2.6, we have

cosh c = coshh cosh b1 = coshh cosh(b− b2)

= coshh (cosh b cosh b2 − sinh b sinh b2) .

Since cosh a = coshh cosh b2, we obtain

cosh c = cosh b cosh a− sinh b cosh a tanh b2

= cosh b cosh a− sinh a sinh b · tanh b2
tanh a

= cosh b cosh c− sinh b sinh c cos γ

where we used Lemma 1.2.7 for the final step.
If A lies between C and D then we have b1 = b2 − b. Because cosh(b2 − b) = cosh(b− b2) the

proof is exactly the same.
Finally, if C lies between A and D we have b1 = b+ b2. Following the same line of reasoning,

we then find

cosh c = cosh b cosh a+ sinh a sinh b · tanh b2
tanh a

.

We now note that BCD is a hyperbolic triangle with a right angle at D and angle π − γ at C.
It follows from Lemma 1.2.7 that − cos γ = cos(π − γ) = tanh b2

tanh a , so also in this case we obtain
cosh b cosh c− sinh b sinh c cos γ. The proof is complete.

The Poincaré disk model

Starting from the Poincaré half plane model set up above, we will now construct a model for
the hyperbolic plane in the (open) unit disk {z ∈ C : |z| < 1}.

H

1−1

−i
C

P

P ′

ψ(P )

Re

Im

Figure 1.3: Construction of the Poincaré disk model. The map ψ is the composition of inversion
in the circle C centered at −i with radius

√
2 and reflection in the real axis. Under inversion in C

the real axis maps to the unit circle. The point P ∈ H has inverse P ′ in C and image ψ(P ) under
ψ. We have ψ(P ) ∈ D, where D is the open unit disk.

Let C denote the circle with center −i that passes through 1 and −1 (Figure 1.3). The radius
of C is

√
2. Let ψ denote the composition of inversion in C followed by reflection in the real axis.
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Because the image of the real axis under inversion in C is the unit circle, the upper half plane H
is mapped bijectively to the open unit disk D = {z ∈ C : |z| < 1} by ψ (Figure 1.3). An explicit
formula for ψ is given by ψ(z) = iz+1

z+i . Using ψ, we obtain a model for the hyperbolic plane in
the unit disk. This model is called the Poincaré disk model. The hyperbolic distance between two
points a, b ∈ D is defined as the hyperbolic distance between their preimages ψ−1(a), ψ−1(b) ∈ H.

Inversion maps circles and lines to circles and lines [8]. In particular, vertical lines in H are
mapped to circle arcs in D. Because vertical lines in H are perpendicular to the real axis (which
is mapped to the boundary of D under the inversion) and inversion is angle-preserving [8], these
circle arcs are perpendicular to the boundary of D. The same holds for half circles in H centered
at the real axis. We conclude that ψ maps hyperbolic lines to circle arcs in D perpendicular to the
boundary of the disk. We have now found the geodesics in the Poincaré disk model.

Since inversion is angle-preserving, the hyperbolic trigonometric results from the previous sec-
tion are still valid in this model of the hyperbolic plane. The inverse of ψ is given by ψ−1 : z 7→
−iz+1
z−i . Therefore, we can naturally define the hyperbolic length of a path γ : [0, 1]→ D as

`H(ψ−1 ◦ γ) =

∫ 1

0

|(ψ−1 ◦ γ)′(t)|
Imψ−1 ◦ γ(t)

dt =

∫ 1

0

|(ψ−1)′(γ(t))||γ′(t)|
Imψ−1 ◦ γ(t)

dt.

Since

(ψ−1)′(w) =
−2

(w − i)2
and Imψ−1(w) =

1− |w|2

|i− w|2
,

we find

`H(ψ−1 ◦ γ) =

∫ 1

0

|(ψ−1)′(γ(t))||γ′(t)|
Imψ−1 ◦ γ(t)

dt =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt.

We see that to compute distances in D we have to integrate 2
1−|z|2 instead of 1

Im z along a path.

We conclude that the metric on D induced by ψ is the metric induced by the differential form
ds = 2 dz

1−|z|2 .

Lemma 1.2.10. Let 0 ≤ x < 1. The point x in the Poincaré disk model lies at hyperbolic distance
log(1+x

1−x) from the origin.

Proof. Integrating over the path γ : t 7→ xt we find

dD(0, x) =

∫ 1

0

2x

1− x2t2
dt = 2 arctanh(x) = 2 log

(
1 + x

1− x

)
,

as required.

The metric on D also allows us to define hyperbolic areas. We can define the hyperbolic area
of a region A ⊂ D to be ∫

A
ds2 =

∫
A

(2 dz)2

(1− |z|2)2
.

The proof of Lemma 1.2.11 shows how this formula can be used in computations.

Lemma 1.2.11. A disk with hyperbolic radius r centered at the origin has circumference 2π sinh(r)
and area 2π(cosh(r)− 1).

Proof. A hyperbolic radius r corresponds to a Euclidean radius of R = er−1
er+1 by Lemma 1.2.10. We

use the path γ : t 7→ Re2πti and obtain

`D(γ) = 2

∫ 1

0

2πR

1−R2
dt =

4πR

1−R2
=

4π
(
er−1
er+1

)
1−

(
er−1
er+1

)2 = 2π sinh(r)
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for the circumference of the disk. For the area calculation, we first calculate the area of the disk
with radius r intersected with the first quadrant. We call this region A, so A = {(Ru,Rv) : 0 ≤
u, 0 ≤ v, u2 + v2 ≤ 1}. The area of A is given by

[A] =

∫
A

( dz)2

(1− |z|2)2
=

∫
A

dx dy

(1− x2 − y2)2

=

∫ 1

0

∫ √1−u2

0

4R2

(1− (Ru)2 − (Rv)2)2
dv du =

πR2

(R2 − 1)
.

We now substitute R = er−1
er+1 to obtain

[A] =
πR2

(R2 − 1)
=

π
(
er−1
er+1

)2

(
er−1
er+1

)2
− 1

=
π(cosh(r)− 1)

2
.

This means that the area of the complete disk is given by 2π(cosh(r)− 1), as required.

1.3 Poisson point processes

In this section we develop some theory about Poisson point processes. For a more elaborate
introduction, see the book by Kingman [18]. We restrict ourselves to finite measure spaces (i.e.
measure spaces with finite total measure), because this is all we need for our applications. The
extension to σ-finite measure spaces is straightforward.

Let (S,Σ) be a measurable space and assume that the diagonal ∆S = {(s, s) : s ∈ S} is a
measurable subset of S×S (endowed with the product measure). This assumption will allow us to
distinguish individual points. For example, S might be a Borel measurable subset of d-dimensional
Euclidean space Rd and Σ might consist of the Borel measurable subsets of S. In this case, it is
easy to see that the diagonal is measurable.

Recall that if a random variable X follows a Poisson distribution with mean µ ∈ [0,∞), then
X takes nonnegative integer values and it holds that P(X = k) = e−µµk/k! for all k ∈ Z≥0.

Definition 1.3.1 (Poisson process). A Poisson process on S is a random countable subset P of
S that has the following two properties:

(i) if A1, . . . , An are disjoint measurable subsets of S, the random variables |P∩A1|, . . . , |P∩An|
are independent;

(ii) there exists a function µ : Σ→ [0,∞) such that if A is a measurable subset of S, then |P ∩A|
follows a Poisson distribution with mean µ(A).

Lemma 1.3.2. The function µ : Σ → [0,∞) in Definition 1.3.1 is a measure on S, called the
mean measure of P.

Proof. First note that µ(∅) = 0, because |P ∩∅| follows a Poisson distribution with mean 0 (this is
the distribution concentrated on 0). If A1, A2, . . . ∈ Σ are disjoint measurable subsets of S then

∑
n≥1

µ(An) =
∑
n≥1

E[|P ∩An|] = E

∑
n≥1

|P ∩An|

 = E

∣∣∣∣∣∣P ∩
⋃
n≥1

An

∣∣∣∣∣∣
 = µ

⋃
n≥1

An


so µ is countably additive. We conclude that µ is a measure.
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If S ⊂ Rd is a Borel measurable set and µ(A) =
∫
A fdλ for all measurable A ⊂ S (where λ

denotes Lebesgue measure), then we call f the intensity function of the Poisson process.
From Definition 1.3.1(i) we have that the random variables |P ∩A| and |P ∩B| are independent

if A and B are disjoint. This is a special case of the following lemma.

Lemma 1.3.3. Let P be a Poisson process on S with mean measure µ and let A,B ⊂ S be
measurable sets. Then Cov(|P ∩A|, |P ∩B|) = µ(A ∩B).

Proof. Note that |P ∩A| = |P ∩ (A ∩B)|+ |P ∩ (A \B)| and similarly |P ∩B| = |P ∩ (A ∩B)|+
|P ∩ (B \A)|. By bilinearity of covariance we find

Cov(|P ∩A|, |P ∩B|) = Cov(|P ∩ (A ∩B)|, |P ∩ (A ∩B)|) + Cov(|P ∩ (A \B)|, |P ∩ (A ∩B)|)
+ Cov(|P ∩ (A ∩B)|, |P ∩ (B \A)|) + Cov(|P ∩ (A \B)|, |P ∩ (B \A)|).

By independence, all terms except the first are nonzero. The first term equals Var(|P ∩(A∩B)|) =
µ(A ∩B) because |P ∩ (A ∩B)| follows a Poisson distribution with mean µ(A ∩B).

We next establish that for many finite measures µ on S there exists a Poisson process with
mean measure µ. (Recall that a measure µ is called finite if µ(S) < ∞.) A sufficient condition
for the existence of the Poisson process turns out to be that µ is non-atomic in the sense that all
singletons have measure 0, or, equivalently, that the diagonal has zero measure.

Lemma 1.3.4. Let (S,Σ, µ) be a finite measure space (i.e. µ(S) <∞) such that ∆S is measurable
in S × S. Then all singletons are measurable in S, and µ× µ(∆S) = 0 if and only if all singletons
have measure 0.

Proof. For any s ∈ S the embedding fs : S → S × S, x 7→ (s, x) is measurable. It follows that
{s} = f−1

s (∆S) is measurable. Suppose all singletons have measure 0. By Fubini’s theorem, we
then have

µ× µ(∆S) =

∫
S

∫
S

1∆S
(x, y) dµ(x) dµ(y).

The inner integral equals µ({y}) = 0, so µ × µ(∆S) = 0. If conversely µ × µ(∆S) = 0, then we
have µ({s})2 = µ× µ({(s, s)}) ≤ µ× µ(∆S) = 0 for all s ∈ S.

In the case that S ⊂ Rd is Borel measurable and Σ is the corresponding Borel σ-algebra,
this assumption will for example be satisfied if µ admits a density with respect to the Lebesgue
measure. We now derive the existence of the Poisson process under the condition of Lemma 1.3.4.

Theorem 1.3.5 (Existence Theorem). Let µ be a finite measure on S (i.e. µ(S) <∞) such that
µ× µ(∆S) = 0. Then there exists a Poisson process on S with µ as its mean measure.

Proof. This is clear if µ(S) = 0, so suppose µ(S) > 0. Note that p(A) = µ(A)/µ(S) defines a
probability measure on S. We now endow the product SN of (countably) infinitely many copies of
(S,Σ, p) with the corresponding product measure pN to make it into a probability space. An element
of SN has the form (s1, s2, . . .) where the si are points in S. We claim that with probability 1 all the
si are distinct. From the assumption µ× µ(∆S) = 0 it follows that pN({si = sj}) = 0 for any two
distinct indices i and j. Taking the countable union over all pairs i, j of distinct indices, we indeed
find the desired result that with probability 1 all the si are distinct. We now define P as follows.
Consider the measure space (Z≥0, ℘(Z≥0), pµ), where ℘(Z≥0) denotes the power set of Z≥0 and pµ
defines a Poisson distribution with mean µ: pµ({k}) = e−µµk/k! for all k ∈ Z≥0. Let (Ω,F ,P)
denote the product of (Z≥0, ℘(Z≥0), pµ) and (SN,ΣN, pN) endowed with the product measure (ΣN

denotes the product σ-algebra on SN). An element of Ω has the form ω = (n(ω), s1(ω), s2(ω), . . .).
For ω ∈ Ω, we now define the random set P(ω) = {s1(ω), . . . , sn(ω)(ω)} ⊂ S (if n(ω) = 0 this is
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the empty set). With probability 1 the set P(ω) is finite and has |P(ω)| = n(ω) elements (this
holds if all si are distinct). We claim that P = P(ω) is the required Poisson process. Let A ⊂ S
be measurable and write p = p(A) = µ(A)/µ(S). Now because |P| follows a Poisson distribution
with mean µ(S), we can compute

P(|P ∩A| = k) =
∑
n≥k

P(|P ∩A| = k | |P| = n)P(|P| = n)

=
∑
n≥k

(
n

k

)
pk(1− p)n−ke−µ(S)µ(S)n

n!

= e−µ(S) p
kµ(S)k

k!

∑
n≥k

((1− p)µ(S))n−k

(n− k)!
= e−µ(S) (pµ(S))k

k!

because
∑

n≥k
((1−p)µ(S))n−k

(n−k)! =
∑

`≥0
((1−p)µ(S))`

(`)! = e(1−p)µ(S). We conclude that |P ∩ A| follows

a Poisson distribution with mean pµ(S) = µ(A). This proves condition (ii) of Definition 1.3.1.
For condition (i), we consider disjoint mesaurable subsets A1, . . . , An of S. Write pi = p(Ai)
for 1 ≤ i ≤ n and let p0 = 1 −

∑n
i=1 pi. Consider nonnegative integers k1, . . . , kn with sum

k1 + . . .+ kn = k. We have

P (|P ∩Ai| = ki for 1 ≤ i ≤ n) =
∑
m≥k

P(|P ∩Ai| = ki for 1 ≤ i ≤ n | |P| = m)P(|P| = m)

=
∑
m≥k

(
m

k1, k2, . . . , kn

)( n∏
i=1

pkii

)
pm−k0 e−µ(S)µ(S)m

m!

= e−µ(S)

(
n∏
i=1

pkii
ki!

)
µ(S)k

∑
m≥k

pm−k0 µ(S)m−k

(m− k)!

= e−µ(S)

(
n∏
i=1

pkii
ki!

)
µ(S)kep0µ(S)

=

n∏
i=1

(µ(S)pi)
ki

ki!
e−µ(S)pi =

n∏
i=1

P(|P ∩Ai| = ki)

because |P ∩ Ai| follows a Poisson distribution with mean µ(Ai) = piµ(S) for each i. This shows
independence, so P satisfies both conditions in Definition 1.3.1. We conclude that P is the required
Poisson process.

We call two Poisson processes P1 and P2 on S independent if the random variables |P1∩A| and
|P2 ∩ B| are independent for any measurable A,B ⊂ S. The following result allows us to “add”
independent Poisson processes. It can be seen as an extension of the standard result that the sum
of two independent Poisson variables is again Poisson distributed.

Theorem 1.3.6 (Superposition Theorem). Let P1 and P2 be independent Poisson process on S
with mean measures µ1 and µ2 respectively. If µ1×µ2(∆S) = 0, then P1 ∪P2 is a Poisson process
on S with mean measure µ1 + µ2.

Proof. For measurable subsets C of S × S we define M(C) = E|P1 × P2 ∩ C|. Clearly, M defines
a measure on S × S. For measurable A,B ⊂ S we have, using independence of P1 and P2,

M(A×B) = E|P1 × P2 ∩A×B|
= E|P1 ∩A||P2 ∩B| = E|P1 ∩A|E|P2 ∩B| = µ1(A)µ2(B) = µ1 × µ2(A×B).
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By uniqueness of measure extensions, it follows that M = µ1 × µ2. In particular,

E|P1 ∩ P2| = E|P1 × P2 ∩∆S | = M(∆S) = µ1 × µ2(S) = 0

so P1 and P2 are disjoint with probability 1. Let A1, . . . , An be disjoint subsets of S. The 2n
random variables |Pi ∩ Aj | for i ∈ {1, 2}, j ∈ {1, 2, . . . , n} are all independent, so the same holds
for the random variables |(P1∪P2)∩Aj | = |P1∩Aj |+ |P2∩Aj | for j ∈ {1, 2, . . . , n}. Similarly, for
measurable A ⊂ S we know that |(P1 ∪ P2) ∩ A| = |P1 ∩ A|+ |P2 ∩ A| is the sum of independent
Poisson distributed variables with means µ1(A) and µ2(A), respectively. We see that |(P1∪P2)∩A|
follows a Poisson distribution with mean µ(A) = µ1(A) + µ2(A), so P1 ∪ P2 indeed is a Poisson
process with mean measure µ1 + µ2.

The final result we prove allows us to transfer a Poisson process from one space to another
(Theorem 1.3.8). Let S and T be measure spaces whose diagonals are measurable and let f : S → T
be a measurable function. If µ is a measure on S, then µ∗(A) = µ(f−1(A)) defines a measure on
T , called the induced measure.

We will need the following elementary lemma.

Lemma 1.3.7. The induced measure (µ × µ)∗ of the product measure µ × µ on S × S under the
map f× : S × S → T × T , f× : (s, s′) 7→ (f(s), f(s′)) coincides with the product measure µ∗ × µ∗.

Proof. By uniqueness of extended measures, it suffices to show that (µ × µ)∗ = µ∗ × µ∗ on all
subsets of T × T of the form A×B with A,B measurable subsets of T . For such sets we have

(µ× µ)∗(A×B) = µ× µ((f×)−1(A×B)) = µ× µ(f−1(A)× f−1(B)) = µ(f−1(A))µ(f−1(B))

= µ∗(A)µ∗(B) = µ∗ × µ∗(A×B),

as required.

Theorem 1.3.8 (Mapping Theorem). Let P be a Poisson process on S with mean measure µ.
Suppose f : S → T is a measurable function and let µ∗ be the induced measure. Assume that
µ∗ × µ∗(∆T ) = 0, where ∆T = {(t, t) : t ∈ T} is the diagonal of T × T . Then f(P) defines a
Poisson process on T with µ∗ as its mean measure.

Proof. If f is injective on P we have |f(P) ∩ A| = |P ∩ f−1(A)| for all measurable A ⊂ T , from
which the conclusion immediately follows. It therefore suffices to show that f is injective on P with
probability 1. Write F = {(s1, s2) ∈ S × S : f(s1) = f(s2)} = (f×)−1(∆T ), where f× is defined as
in Lemma 1.3.7. Applying this Lemma yields that µ× µ(F ) = (µ× µ)∗(∆T ) = µ∗ × µ∗(∆T ) = 0.
Write ∆P = {(p, p) : p ∈ P} for the diagonal of P × P. For measurable subsets C of S × S we
define M(C) = E [|(P × P \∆P) ∩ C|] as the expected number of pairs of points (p, q) ∈ P × P
with p 6= q that lie in C. It is clear that M defines a measure on S × S. For measurable subsets
A,B of S we have

M(A×B) = E [|(P × P \∆P ) ∩ (A×B)|]
= E [|(P × P) ∩ (A×B)|]− E [|∆P ∩ (A×B)|]
= E [|(P ∩A)× (P ∩B)|]− E [|P ∩ (A ∩B)|]
= Cov(|P ∩A| , |P ∩B|) + E [|P ∩A|]E [|P ∩B|]− E [|P ∩ (A ∩B)|]
= µ(A ∩B) + µ(A)µ(B)− µ(A ∩B) = µ(A)µ(B) = µ× µ(A×B),

where we used Lemma 1.3.3 to compute the covariance. It follows that the measures M and µ×µ
coincide on all sets of the form A × B with A,B ⊂ S measurable. By uniqueness of extended
measures, these measures coincide. We find M(F ) = µ× µ(F ) = 0, hence

E [|{p, q ∈ P : p 6= q, f(p) = f(q)}|] = E [|(P × P \∆P) ∩ {(s1, s2) ∈ S × S : f(s1) = f(s2)}|] = 0.

It follows that f is injective on P with probability 1, as required.
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2

Hyperbolic random graphs

This chapter starts with the introduction of the KPKVB model (Section 2.1), which is the random
graph model that this thesis is about. After defining the model, we also summarize its known
properties. Next, in Section 2.2 we present some bounds on relevant parameters in the KPKVB
model. In Section 2.3 we define a second random geometric graph model, this time in Euclidean
space, that can be used as an approximation for the KPKVB model.

2.1 The KPKVB model

We study a specific model for random geometric graphs in the hyperbolic plane that we refer to
as the Krioukov-Papadopoulos-Kitsak-Vahdat-Boguñá model or KPKVB model, after its authors
[21]. In this section we describe the construction of this random graph.

The model is denoted by G(N ;α, ν). Here N denotes the number of vertices and α, ν > 0 are
fixed parameters. We think of N as “large”; later we study the asymptotic behavior of the graph
as N tends to infinity. The construction starts by setting R = 2 log(N/ν). The vertex set of the
graph will be a set of N points inside the disk DR with radius R centered at the origin in the
hyperbolic plane (we work in the Poincaré disk model). The N points are sampled independently
according to the probability density function

f(r, ϑ) =
1

2π

α sinh(αr)

cosh(αR)− 1
(r ∈ [0, R], ϑ ∈ (−π, π]).

Here (r, ϑ) denote the polar coordinates of a point in the hyperbolic plane, so r denotes the
(hyperbolic) distance to the origin and ϑ denotes the angle with the positive x-axis in the Poincaré
disk representation. Equivalently, ϑ and r are sampled independently from the uniform distribution
on (−π, π] and the distribution on [0, R] determined by the probability density function f(r) =
α sinh(αr)

cosh(αR)−1 , respectively. For α = 1 the resulting distribution is the uniform distribution on DR
(this follows from Lemma 1.2.11). For α < 1 there is a bias towards the center of the disk; for
α > 1 there is a bias towards the periphery of the disk. We refer to the resulting distribution on
DR as the (α,R)-quasi uniform distribution.

The random set of N points serves as the vertex set of our graph. We connect a pair of vertices
by an edge if and only if their hyperbolic distance is at most R. This means for example that if
the origin O were to be one of the chosen points, then it would be connected to all other vertices
of the graph.

The motivation behind this hyperbolic random graph model is that it has some of the properties
of complex networks discussed in Section 1.1. As explained in Section 1.2, that these properties
arise has to do with the fact that length and area increase exponentially in the hyperbolic plane.
The inventors of the KPKVB model have used their model to study a variety of real-world networks,
including the internet [5] and the world trade network [13]. The model has also been used to link
complex networks to theoretical cosmology [20].

In our proofs, we will also consider a Poissonized variant of the model, in which the number
of vertices is not fixed but sampled from a Poisson distribution with mean N . The vertex set
of the graph then can be interpreted as the point set of a Poisson process on DR with intensity
function Nf(r, ϑ). The advantage of this approach is that what happens in disjoint subsets of
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DR is now independent (this is not the case in the original model, because if we know in the
original model that the upper half of the disk contains N points, we can be sure that the lower
half does not contain any points). The connection rule in the Poissonized model, which is denoted
by GPo(N ;α, ν), is the same as in the original model. The following Lemma shows that if an event
happens a.a.s. in the Poissonized model, it also happens a.a.s. in the original model, provided the
probability of the event approaches 1 sufficiently fast in the Poissonized model.

Lemma 2.1.1. Let X be an event that happens with probability 1−O(N−1) in GPo(N ;α, ν). Then
X happens a.a.s. in G(N ;α, ν).

Proof. Let Z denote the number of vertices of GPo. Then Z ∼ Po(N). We find

P(Z = N) =
NNe−N

N !
=

(
N

e

)N
(N !)−1 ∼ 1√

2πN

by Stirling’s approximation [10, p. 37], so P(Z = N) = Θ(N−
1
2 ). Furthermore, we see that

G(N ;α, ν) is obtained when GPo(N ;α, ν) is conditioned on Z = N . We compute

P(Xc | Z = N) ≤ P(Xc)

P(Z = N)
=
O(N−1)

Θ(N−
1
2 )

= O(N−
1
2 ) = o(1),

so X happens a.a.s. when conditioned on Z = N .

We continue by summarizing some of the known properties of the KPKVB model. The KPKVB
model was rigorously studied first by Gugelmann et al. [14]. The usual approach is to study the
asymptotic behavior of the graph for N → ∞ for a fixed choice of the parameters α and ν.
The original model of Krioukov et al. [21] also included a third parameter ζ, which controls the
curvature of the hyperbolic plane on which the graph lives. Our setup corresponds to ζ = 1, which
can be chosen without any loss of generality [3]. We also remark that some authors (e.g. [14]) use
C = −2 log(ν) as a parameter instead of ν.

What we will see below is that the behavior of the random graph depends strongly on the values
of α and ν. There are roughly three regimes with different behavior: these regimes correspond to
values of α that are in (0, 1

2), (1
2 , 1) and (1,∞), respectively. What happens at the critical values

of α = 1
2 and α = 1 is found to depend on ν.

Figure 2.1 shows examples of KPKVB random graphs for different values of α.

The degree sequence

The shape of the degree sequence depends on α. For α < 1
2 the average degree is not bounded,

but increases with N (see Corollary 2.2.5 below). However, for α > 1
2 the average degree is

bounded. Gugelmann et al. [14] prove the following results:

• for α > 1
2 , the degree sequence is a power law with exponent 2α+ 1;

• the (expected) average degree of G(N ;α, ν) approaches a limit that is proportional to ν.

In the original paper, Krioukov et al. [21] already provided heuristic arguments for the fact that
the degree sequence is a power law.

We see that by choosing the α and ν parameters of the model, one gains control over the degree
sequence. The power law exponent can be tuned to any number > 2 by choosing the α parameter
and the average degree can be tuned to any number by choosing the ν parameter. Because in real-
world networks power-law exponents are usually found between 2 and 3, in the study of KPKVB
random graphs values of α between 1

2 and 1 have received the most interest.
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Figure 2.1: Computer simulations of the KPKVB model for different values of α. Graphs are
drawn in the native representation of the hyperbolic plane, in which hyperbolic polar coordinates
(r, ϑ) are interpreted as if they were Euclidean polar coordinates. Parameters used: N = 300,
ν = 1, α = 0.3 (left), α = 0.8 (center), α = 1.3 (right).

Connectivity

The results on the degree sequence imply that for α > 1
2 the graph G(N ;α, ν) is disconnected

a.a.s., because there will be isolated vertices. For α < 1
2 it is however easy to prove that G(N ;α, ν)

is connected [4]. This is done by showing that a.a.s. there is a connected set of 8 vertices close to
the origin such that each vertex of the graph is connected to one of these 8 vertices. Furthermore,
Bode et al. [4] study the connectivity at the critical value of α = 1

2 and show that the probability
that the graph is connected tends to a limit f(ν). They also prove that f is a continuous function
of ν that has limit 0 for ν → 0, is strictly increasing on (0, π) and is equal to 1 for ν ≥ π [4].

Component structure

For values of α > 1
2 , for which G(N ;α, ν) is a.a.s. disconnected, it makes sense to study the

component structure of G(N ;α, ν). In doing so, it turns out that there is another phase transition
at α = 1. Bode et al. [3] study the size of the largest component. For α > 1 the size |L1| of the
largest component is sublinear in N , which means that a.a.s. we have |L1| = o(N) [3]. For α < 1
however, the largest component is linear in N : we have |L1| = Ω(N) a.a.s.. Because the second
largest component is sublinear [19], the largest component could for α ∈ (1

2 , 1) be called the giant
component . At α = 1 the existence of a linear component depends on the value of ν [3].

Fountoulakis and Müller [11] study the size of the largest component in more detail. They
show that for any α, ν there exists a c = c(ν, α) such that |L1|/N → c in probability as N → ∞.
This is referred to as a law of large numbers for the largest component. For α ≤ 1

2 it turns out
that c = 1 [11]. For α > 1 it was already known that c = 0, whereas for α < 1 it is positive [3].
At α = 1 it depends on ν whether c is positive. It turns out that there exists a critical value νcrit

such that c = 0 for ν < νcrit but c > 0 for ν > νcrit [11]. Fountoulakis and Müller [11] further show
that c is decreasing in α and increasing in ν.

Distances

Kiwi and Mitsche [19] study the diameter in the KPKVB model for α ∈ (1
2 , 1). They prove a

polylogarithmic upper bound, i.e. an upper bound that is a polynomial in logN , for the diameter
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of each component that holds a.a.s.. As a complementary result, they show that a.a.s. there are
components of diameter Ω(logN) [19]. The results of Kiwi and Mitsche are improved by Friedrich
and Krohmer [12], who show that a.a.s. the giant component has diameter Ω(logN). Furthermore,
they improve the exponent in the polylogarithmic upper bound [12]. In both cases, the lower
bounds on the diameter are proven by showing that there are induced paths of logarithmic length
close to the boundary of the disk. The upper bounds are proven by finding short paths between
vertices. The work by Friedrich and Krohmer [12] shows that there is an “inner core” of diameter
O(log logN) which consists of all vertices at distance at least Θ(logR) from the boundary. However,
their results leave open the possibility that some vertices are at polylogarithmic distance from the
inner core.

In this work, we show that for α ∈ (1
2 , 1) the diameter of the giant component is in fact

logarithmic in the number of vertices, by proving a logarithmic upper bound that holds a.a.s.. Our
upper bound also holds for the other components of the graph. For α = 1 and ν sufficiently large
we also prove a logarithmic upper bound. We do not discuss the case α > 1 (or α = 1 and small
ν), for which the giant component disappears. For α < 1

2 it follows from [4] that the graph is a.a.s.
connected and has diameter at most 3.

Instead of looking at maximum distances, Abdullah et al. [1] consider typical distances. They
show that for α ∈ (1

2 , 1) the distance between two randomly chosen vertices in the same component
is of the order log logN . In the terminology of [26], this means that KPKVB random graphs are
“ultra-small networks”.

2.2 Some estimates

In this section we use the results of Section 1.2 to give bounds on relevant quantities in the
KPKVB model. The estimates below can for instance be used to determine whether two vertices
are connected (Lemma 2.2.3) or what the expected degree of a vertex is (Lemma 2.2.4).

Recall that the (α,R)-quasi uniform distribution has density f(r, ϑ) = α sinh(αr)
2π(cosh(αR)−1) , where∫

DR f = 1. The expected number of vertices of G = G(N ;α, ν) and GPo = GPo(N ;α, ν) in a

subregion A ⊂ DR equals Nµ(A), where µ(A) =
∫
A f . The number of vertices of GPo in A follows

a Poisson distribution with mean Nµ(A).
We first give bounds for the total density of a disk centered at the origin. By Bu(x) we denote

the disk in the hyperbolic plane with center u and hyperbolic radius x.

Lemma 2.2.1. For 0 ≤ x ≤ R we have

(1− e−αx)2e−α(R−x) ≤ µ(B0(x)) ≤ e−α(R−x).

Proof. Note that

µ(B0(x)) =

∫ 2π

0

∫ x

0
f(y) dy dϑ =

∫ x

0

α sinh(αy)

cosh(αR)− 1
dy

=
cosh(αx)− 1

cosh(αR)− 1
=

eαx + e−αx − 2

eαR + e−αR − 2
=
eαx

eαR
·
(

1− e−αx

1− e−αR

)2

= e−α(R−x) ·
(

1− e−αx

1− e−αR

)2

.

Because x ≤ R we have 1−e−αx
1−e−αR ≤ 1. This proves the upper bound. The lower bound follows from

the fact that 1− e−αR ≤ 1.

Lemma 2.2.1 can be used to show that for α > 1
2 , a.a.s. there are no vertices close to the origin.
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Lemma 2.2.2. Let α > 1
2 and write ε = 1

2(1 − 1
2α). A.a.s., there are no vertices of GPo or G in

B0(εR).

Proof. Using Lemma 2.2.1 we estimate that the expected number of vertices in B0(εR) is

Nµ(B0(εR)) ≤ νeR/2e−α(R−εR) = O(eR(
1
2−α+αε)) = o(1),

because 1
2 − α+ αε = 1

2 − α+ α(1
2 −

1
4α) = 1

4 −
1
2α < 0. (Note that in the asymptotics above, the

implicit constant may depend on ν.)

We now consider the connection rule of G. Recall that two points (r1, ϑ1) and (r2, ϑ2) in DR
are connected by an edge in the KPKVB model if and only if their hyperbolic distance is at most
R. Let ϑ(r1, r2) ∈ [0, π] denote the maximal value of ϕ such that two points with radial coordinates
r1 and r2 and angular distance ϕ are connected. Then (r1, ϑ1) and (r2, ϑ2) are connected by an
edge if and only if |ϑ1 − ϑ2|2π ≤ ϑ(r1, r2). Note that if r1 + r2 ≤ R we have ϑ(r1, r2) = π because
(r1, ϑ1) and (r2, ϑ2) are always connected by the triangle inequality. Therefore, we assume that
r1 + r2 > R.

r1

r2

R

O ϑ(r1, r2)

Figure 2.2: Using the hyperbolic cosine rule.

Note that ϑ(r1, r2) is the angle opposite to R in a hyperbolic triangle with side lengths r1, r2

and R (Figure 2.2). We can therefore use the hyperbolic cosine rule (Theorem 1.2.9) to compute
ϑ(r1, r2). The following lemma, which is similar to Lemma 27 in [11], gives us sharp bounds for
the resulting expression. We need the assumption that r1/R and r2/R are bounded away from 0,
which can usually be guaranteed by Lemma 2.2.2.

Lemma 2.2.3. Let γ > 0. There exists a constant K > 0 such that for all sufficiently large R and
r1, r2 ∈ [0, R] satisfying r1 + r2 > R and min(r1, r2) ≥ γR, we have

2e
1
2

(R−r1−r2) −Ke
1
2

(−R−3 min(r1,r2)+max(r1,r2)) ≤ ϑ(r1, r2) ≤ 2e
1
2

(R−r1−r2) + 3e
3
2

(R−r1−r2).

As a consequence, we also have the weaker bounds ϑ(r1, r2) = Θ(e
1
2

(R−r1−r2)) and ϑ(r1, r2) =

2e
1
2

(R−r1−r2) ±O(eR−r1−r2).

Proof. By the hyperbolic cosine rule, we have

cos(ϑ(r1, r2)) =
cosh(r1) cosh(r2)− cosh(R)

sinh(r1) sinh(r2)

= 1 + 2 · e
−2r1 + e−2r2 − eR−r1−r2 − e−R−r1−r2

(1− e−2r1)(1− e−2r2)
.
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Because (e−r1 − e−r2)2 ≥ 0, we have

e−2r1 + e−2r2 ≥ 2e−r1−r2 ≥ e−R−r1−r2 + e−2r1−2r2 = e−R−r1−r2(1 + eR−r1−r2).

Multiplying by 1− eR−r1−r2 ≥ 0, it follows that

(e−2r1 + e−2r2)(1− eR−r1−r2) ≥ e−R−r1−r2(1 + eR−r1−r2)(1− eR−r1−r2)

= e−R−r1−r2 − eR−3r1−3r2 ,

or, equivalently,

e−2r1 + e−2r2 − eR−3r1−r2 − eR−r1−3r2 ≥ e−R−r1−r2 − eR−3r1−3r2 .

Adding eR−r1−r2 + eR−3r1−3r2 − e−2r1 − e−2r2 to both sides, this rewrites to

eR−r1−r2(1− e−2r1)(1− e−2r2) ≥ eR−r1−r2 + e−R−r1−r2 − e−2r1 − e−2r2 .

We divide both sides by −(1− e−2r1)(1− e−2r2) < 0 to obtain

−eR−r1−r2 ≤ e−2r1 + e−2r2 − eR−r1−r2 − e−R−r1−r2
(1− e−2r1)(1− e−2r2)

.

It follows that

1− 2eR−r1−r2 ≤ 1 + 2 · e
−2r1 + e−2r2 − eR−r1−r2 − e−R−r1−r2

(1− e−2r1)(1− e−2r2)
= cos(ϑ(r1, r2))

Since cos(t) ≤ 1− 2t2

π2 on [0, π], it follows that

1− 2eR−r1−r2 ≤ cos(ϑ(r1, r2)) ≤ 1− 2ϑ(r1, r2)2

π2
,

implying ϑ(r1, r2) ≤ πe
1
2

(R−r1−r2). Now, by cos(t) ≤ 1− t2

2 + t4

24 we also have

1− 2eR−r1−r2 ≤ cos(ϑ(r1, r2)) ≤ 1− ϑ(r1, r2)2

2
+
ϑ(r1, r2)4

24
.

It follows (using π4 < 144) that

ϑ(r1, r2)2 ≤ 4eR−r1−r2+
ϑ(r1, r2)4

12
≤ 4eR−r1−r2+

π4

12
e2(R−r1−r2) ≤

(
2e

1
2

(R−r1−r2) + 3e
3
2

(R−r1−r2)
)2
.

This concludes the proof of the upper bound.
For the lower bound, we note that since r1 and r2 are bounded away from 0 by r1, r2 ≥ γR, we

have
1

1− e−2r1
= 1 +O(e−2r1) and

1

1− e−2r2
= 1 +O(e−2r2).

It follows that

cos(ϑ(r1, r2)) = 1 + 2 · e
−2r1 + e−2r2 − eR−r1−r2 − e−R−r1−r2

(1− e−2r1)(1− e−2r2)

= 1 + 2(e−2r1 + e−2r2 − eR−r1−r2 − e−R−r1−r2)(1 +O(e−2r1))(1 +O(e−2r2))

= 1 + 2(e−2r1 + e−2r2 − eR−r1−r2 − e−R−r1−r2)(1 +O(e−2r1) +O(e−2r2))

= 1− 2eR−r1−r2 +O(e−2r1) +O(e−2r2) = 1− 2eR−r1−r2 +O(e−2 min(r1,r2)).
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By the inequality cos(t) ≥ 1− t2

2 (or, equivalently, t2 ≥ 2(1− cos(t))) we find

ϑ(r1, r2)2 ≥ 4eR−r1−r2 −O(e−2 min(r1,r2)),

hence for some constant L > 0 we have ϑ(r1, r2)2 ≥ 4eR−r1−r2 − Le−2 min(r1,r2). Take K such that
4K = L+ 1. Because −r1 − r2 − 3 min(r1, r2) + max(r1, r2) = −4 min(r1, r2), we have

Le
1
2

(−r1−r2−3 min(r1,r2)+max(r1,r2)) = Le−2 min(r1,r2).

Furthermore, the inequality

e
1
2

(−r1−r2−3 min(r1,r2)+max(r1,r2)) ≥ K2e−R−3 min(r1,r2)+max(r1,r2)

holds for sufficiently large R. Indeed, the ratio between the right hand side and the left hand
side is K2e−R−min(r1,r2)+max(r1,r2) ≤ K2e−R−γR+R = K2e−γR which is ≤ 1 for sufficiently large R.
Adding these two inequalities yields (using 4K = L+ 1)

4Ke
1
2

(−r1−r2−3 min(r1,r2)+max(r1,r2)) ≥ Le−2 min(r1,r2) +K2e−R−3 min(r1,r2)+max(r1,r2)

for sufficiently large R. It follows that

ϑ(r1, r2)2 ≥ 4eR−r1−r2 − Le−2 min(r1,r2) ≥
(

2e
1
2

(R−r1−r2) −Ke
1
2

(−R−3 min(r1,r2)+max(r1,r2))
)2
.

The required conclusion now follows by taking square roots.

For a point u ∈ DR the set of points in DR that lie at hyperbolic distance at most R from u is
given by B0(R) ∩ Bu(R). If u is a vertex of G, then another vertex is a neighbor of u if and only
if it lies inside B0(R) ∩ Bu(R). The following lemma gives rough bounds for the area of this set.
It can be used to estimate the degree of u.

Lemma 2.2.4. Let α > 1
2 . Suppose u ∈ DR lies at distance x from the origin. Then we have

µ(B0(R) ∩Bu(R)) = Θ(e−x/2).

Proof. From Lemma 2.2.3 we have ϑ(r1, r2) = Θ(e(R−r1−r2)/2). Furthermore, we have

f(r, ϑ) =
α sinh(αr)

2π(cosh(αR)− 1)
= Θ(eα(r−R)).

We now compute

µ(B0(R) ∩Bu(R)) =

∫ R

0

∫ ϑ(x,r)

−ϑ(x,r)
f(r, ϑ) dϑ dr

= Θ

(∫ R

0
e(R−r−x)/2eα(r−R) dr

)
= Θ

(
e−x/2eR( 1

2
−α)

∫ R

0
e−r(

1
2
−α) dr

)
= Θ

(
e−x/2eR( 1

2
−α)e−R( 1

2
−α)
)

= Θ(e−x/2),

as required.

Corollary 2.2.5. For α < 1
2 , the expected degree of a random chosen vertex of G(N ;α, ν) is

Ω(logN).
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Proof. We use Lemma 2.2.4. The radial coordinate y of a point chosen according to the (α,R)-quasi

uniform distribution is a random variable with density f(y) = 1[0,R]
α sinh(αy)

cosh(αR)−1 = 1[0,R]Θ(eα(y−R)).
It follows that the expected degree of a vertex equals∫ R

0
Θ(eα(y−R))Θ(Ne−y/2) dy = Θ

(∫ R

0
e(α− 1

2
)(y−R) dy

)
= Ω(R)

(the integrand is at least 1 because (α− 1
2)(y −R) > 0), as required.

2.3 The idealized model

In this section we will construct a random graph model that behaves similarly to the KPKVB
model but is more convenient to deal with. This model, which we will call the idealized model ,
was introduced by Fountoulakis and Müller [11]. We will motivate it by looking in detail at the
connection rule in the KPKVB model. For this we use Lemma 2.2.3, which tells us that ϑ(r1, r2)

can be approximated by 2e
R−r1−r2

2 . Therefore, the approximate connection rule is

(r1, ϑ1) ∼ (r2, ϑ2) ⇐⇒ |ϑ1 − ϑ2|2π ≤ 2e
R−r1−r2

2 .

We now change our coordinate system on DR as follows. We scale the angle of a point by 1
2e
R/2

and we replace the radial coordinate r by R − r. In other words, we replace (r, ϑ) by (r′, ϑ′) =
(R− r, 1

2e
R/2ϑ). Note that

(r1, ϑ1) ∼ (r2, ϑ2) ⇐⇒ |ϑ1 − ϑ2|2π ≤ 2e
R−r1−r2

2

⇐⇒ 1
2e
R/2|ϑ1 − ϑ2|2π ≤ e

(R−r1)+(R−r2)
2 ,

so the new approximate connection rule reads

(r′1, ϑ
′
1) ∼ (r′2, ϑ

′
2) ⇐⇒ |ϑ′1 − ϑ′2|πeR/2 ≤ e

r′1+r
′
2

2 .

DR

Ψ

ER

−π
2
eR/2 π

2
eR/2

R

R

Figure 2.3: Ψ maps DR to a rectangle ER ⊂ R2.

We will interpret the new coordinates as Euclidean x and y coordinates, with R− r becoming
the y coordinate and 1

2e
R/2ϑ becoming the x coordinate. Put more formally, we define Ψ : DR →

R2 given by Ψ : (r, ϑ) 7→
(
ϑ · 1

2e
R/2, R− r

)
. The image of DR under Ψ is the rectangle ER =

(−π
2 e
R/2, π2 e

R/2] × [0, R] ⊂ R2 (Figure 2.3; we take the radial coordinates in (−π, π]). Using the
map Ψ, we can map the random hyperbolic graph living on DR to a graph living on ER. In light of
the above derivations, we expect that the connection rule of the resulting graph will approximately
be (x, y) ∼ (x′, y′) ⇐⇒ |x − x′|πeR/2 ≤ e

1
2

(y+y′). The graph that we will use to approximate the
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KPKVB random graph will be a graph Γ living on ER that has this connection rule. We now need
to determine an appropriate vertex set for Γ.

Let X1, X2, . . .∈ DR be an infinite supply of points chosen independently according the
(α,R)-distribution on DR. Let G = G(N ;α, ν) and GPo = GPo(N ;α, ν). Denote the number
of vertices of GPo by Z; then Z ∼ Po(N). By taking {X1, . . . , XN} as the vertex set of G and
{X1, . . . , XZ} as the vertex set of GPo, we obtain a coupling between G and GPo. Recall that
{X1, . . . , XZ} can be viewed as the point set of a Poisson point process on DR. The Mapping
Theorem for Poisson processes (Theorem 1.3.8) suggests that the vertex set of Γ could be given
by a Poisson process on ER. The correct Poisson process turns out to have intensity function
fα,λ(x, y) = 1ERλe

−αy for λ = να
π . We denote this Poisson process by Pλ and its point set by

Vλ. The graph Γ = Γλ that we will use has vertex set Vλ and as connection rule the rule
(x, y) ∼ (x′, y′) ⇐⇒ |x− x′|πeR/2 ≤ e

1
2

(y+y′)described above.

Lemma 2.3.1 ([11], Lemma 26). Let α > 1
2 . There exists a coupling such that a.a.s. Vνα/π is the

image of the vertex set of GPo under Ψ.

Proof. The vertex set V of GPo is the point set of a Poisson process on DR with intensity function
f(r, ϑ) = N

2π
α sinh(αr)

cosh(αR)−1 . By Theorem 1.3.8, Ψ(V ) is a Poisson process on ER. By the changes of
variables formula, we see that its intensity function fΨ(V ) satisfies

fΨ(V )(x, y) =
f(Ψ−1(x, y))

|det(JΨ)|
,

where JΨ is the Jacobian of Ψ. We compute | det(JΨ)| =
∣∣∣ 0 1

2
eR/2

−1 0

∣∣∣ = 1
2e
R/2 to find, writing

λ = να/π,

fΨ(V )(x, y) =
f(Ψ−1(x, y))

|det(JΨ)|
=
νeR/2

2π
· α sinh(α(R− y))

cosh(αR)− 1
· 2e−R/2 = λe−αy · 1− 2e2α(y−R)

1 + e−2αR − 2e−αR
.

We now define independent Poisson processes P0, P1 and P2 on ER, with intensity functions
respectively fmin = min(fα,λ, fΨ(V )), f1 = fΨ(V ) − fmin and f2 = fα,λ − fmin. Now P0 ∪ P1 is a
Poisson process with intensity function fΨ(V ) (Theorem 1.3.6) and P0 ∪ P2 is a Poisson process
with intensity function fα,λ. We define a coupling between Ψ(V ) and Vλ by setting Ψ(V ) = P0∪P1

and Vλ = P0 ∪ P2. It remains to show that this coupling has the required property that a.a.s.
Ψ(V ) = Vλ. This amounts to showing that P1 ∪ P2 = ∅ holds a.a.s.. Note that by the above
computation, P1 ∪ P2 is a Poisson process with intensity

f1(x, y) + f2(x, y) =
∣∣fΨ(V )(x, y)− fα,λ(x, y)

∣∣
= λe−αy

∣∣∣∣∣1− 1− e2α(y−R)

1 + e−2αR − 2e−αR

∣∣∣∣∣
= λe−αy

∣∣∣∣∣2eα(y−R) + o(1)

1 + o(1)

∣∣∣∣∣ = O(e−αye2α(y−R)) = O(eαy−2αR).

We therefore have

E|P1 ∪ P2| = πeR/2
∫ R

0
O(eαy−2αR) dy

= O

(
eR/2

∫ R

0
eαy−2αR dy

)
= O(eR/2e−αR) = O(e( 1

2
−α)R) = o(1),

where we use the assumption α > 1
2 in the final step.
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Let X̃1, X̃2, . . .∈ ER be the images of X1, X2, . . . under Ψ. On the coupling space of Lemma
2.3.1, a.a.s. we have Vλ = {X̃1, . . . , X̃Z} for the vertex set of Γλ. The following Lemma is similar
to Lemma 29 in [11].

Lemma 2.3.2. Let α > 1
2 . On the coupling space of Lemma 2.3.1, a.a.s. it holds for 1 ≤ i, j ≤ Z

that

(i) if ri, rj ≥ 1
2R and X̃iX̃j ∈ E(Γνα/π), then XiXj ∈ E(GPo).

(ii) if ri + rj ≥ 3
2R, then X̃iX̃j ∈ E(Γνα/π) ⇐⇒ XiXj ∈ E(GPo).

Here ri and rj denote the radial coordinates of Xi, Xj ∈ DR.

Proof. We first deal with (i). Let A denote the number of pairs (i, j) with i < j ≤ Z and
min(ri, rj) ≥ R/2 such that X̃i and X̃j are neighbors in Γνα/π, but Xi and Xj are not neighbors

in GPo. We write X̃i = (xi, yi) in cartesian coordinates and Xi = (ri, ϑi) in hyperbolic polar
coordinates. We have

A = #
{
i < j ≤ Z : min(ri, rj) ≥ R/2, |xi − xj |πeR/2 ≤ e

(yi+yj)/2 and |ϑi − ϑj |2π > ϑ(ri, rj)
}
.

By Lemma 2.2.3, we know that |ϑi − ϑj |2π > ϑ(ri, rj) implies

|xi − xj |πeR/2 > 1
2e
R/2ϑ(ri, rj) ≥ e(yi+yj)/2 − K

2

(
e−R+ 3

2
max(yi,yj)− 1

2
min(yi,yj)

)
(the K is from Lemma 2.2.3), so A ≤ #{i < j ≤ Z : Aij}, where Aij denotes the “bad” event

{min(ri, rj) ≥ R/2} ∩
{
|xi − xj |πeR/2 ∈

(
e(yi+yj)/2 − K

2 e
−R+ 3

2
max(yi,yj)− 1

2
min(yi,yj), e(yi+yj)/2

]}
.

Note that p = P(Aij) is independent of i and j, so we obtain

EA ≤
∑
i,j

P(i, j ≤ Z) p = pE
(
Z
2

)
=
pN2

2
,

because 2E
(
Z
2

)
= EZ2 − EZ = Var(Z) + (EZ)2 − EZ = N + N2 − N = N2. From the law of

total expectation we have p = E[1Aij ] = E[1yi,yj≤R/2E[1Aij | yi, yj ]]. If yi, yj ≤ R/2, the inner
expectation equals

E[1Aij | yi, yj ] = O
(
e−R+ 3

2
max(yi,yj)− 1

2
min(yi,yj)

)
(1

2πe
R/2)−1 = O

(
e−

3
2
R+ 3

2
max(yi,yj)− 1

2
min(yi,yj)

)
,

because the horizontal distance |xi − xj |πeR/2 follows a uniform distribution on [0, 1
2πe

R/2]. Note
that yi, yj are independent random variables with density function

f(y) =
1[0,R]λe

−αy∫ R
0 λe−αt dt

= 1[0,R]
α e−αy

1− e−αR
= 1[0,R]O(e−αy).

We find

p = E
[
1yi,yj≤R/2O

(
e−

3
2
R+ 3

2
max(yi,yj)− 1

2
min(yi,yj)

)]
= O

(∫ R/2

0

∫ R/2

0
e−

3
2
R+ 3

2
max(yi,yj)− 1

2
min(yi,yj)e−αyie−αyj dyj dyi

)

= O

(∫ R/2

0

∫ R/2

yi

e−
3
2
R+ 3

2
yj− 1

2
yi−αyi−αyj dyj dyi

)

= O

(
e−

3
2
R

∫ R/2

0
e(− 1

2
−α)yi

∫ R/2

yi

e( 3
2
−α)yj dyj dyi

)
= O

(
e−

3
2
Re

1
2

( 3
2
−α)R

)
.
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Using α > 1
2 , it follows that

EA ≤ pN2

2
= O(eR)O

(
e−

3
2
Re

1
2

( 3
2
−α)R

)
= O(e

1
4

(1−2α)R) = o(1),

so a.a.s. A = 0, as required. This completes the proof of (i).
The argument for (ii) is similar. Let B be the number of indices i < j ≤ Z such that X̃i and

X̃j are not neighbors in Γνα/π but Xi and Xj are neighbors in GPo and such that furthermore
yi + yj ≤ R/2. By Lemma 2.2.3 we have

B ≤ #
{
i < j ≤ Z : yi + yj ≤ R/2 and |xi − xj |πeR/2 ∈ (e(yi+yj)/2, e(yi+yj)/2 + 3

2e
(3yi+3yj−2R)/2]

}
.

Let Bij denote the “bad” event

{yi + yj ≤ R/2} ∩
{
|xi − xj |πeR/2 ∈

(
e(yi+yj)/2, e(yi+yj)/2 + 3

2e
(3yi+3yj−2R)/2

]}
.

As before, we have EB ≤ N2q
2 , where q = P(Bij). We have

q = E[1Bij ] = E[1{yi+yj≤R/2}E[1Bij | yi, yj ]].

If yi + yj ≤ R/2, the inner expectation equals

3
2e

(3yi+3yj−2R)/2(1
2πe

R/2)−1 = O(e
3
2

(yi+yj−R)),

so we obtain

EB = O
(
eR E

[
1{yi+yj≤R/2}e

3
2

(yi+yj−R)
])

= O

(
e−R/2

∫ R/2

0

∫ R/2

0
1{yi+yj≤R/2}e

( 3
2
−α)(yi+yj) dyj dyi

)

= O

(
e−R/2

∫ R/2

0

∫ R/2

0
e( 3

2
−α)R/2 dyj dyi

)
= O

(
R2e( 1

2
−α)R/2

)
= o(1),

because α > 1
2 . Hence a.a.s. there are no indices i, j such that yi + yj ≤ R/2, Xi and Xj are

neighbors in GPo, but X̃i and X̃j are not neighbors in Γνα/π. Together with (i) this proves (ii).

An example of GPo and Γνα/π is shown in Figure 2.4.
Finally, we show that Lemma 2.3.1 and 2.3.2 remain true when conditioned on Z = N .

Lemma 2.3.3 (Lemma 2.3.1 conditional on Z = N). Let α > 1
2 . On the coupling space of Lemma

2.3.1, conditional on Z = N , a.a.s. Vνα/π is the image of the vertex set of GPo under Ψ. (We say
that an event A happens a.a.s. conditional on B if P(A | B)→ 1 as N →∞.)

Proof. Write V = {X1, . . . , XZ} and Ṽ = Vνα/π. As in the proof of Lemma 2.3.1, there are

independent Poisson processes P0, P1, P2 on ER such that Ψ(V ) = P0 ∪ P1, Ṽ = P0 ∪ P2 and
E|P1|, E|P2| = o(1). We now find

P(Ṽ = Ψ(V ) | Z = N) = P(|P1| = |P2| = 0 | |P0|+ |P1| = N)

= P(|P1| = 0 | |P0|+ |P1| = N)P(|P2| = 0),

because P0, P1 and P2 are independent. From E|P2| = o(1) it follows that P(|P2| = 0) = 1− o(1).
Furthermore, since the conditional distribution of a Poisson distributed variable given its sum
with an independent Poisson distributed variable is binomial, we have P(|P1| = 0 | |P0| + |P1| =
N) =

(
N
N

)
(1 − E|P1|/N)N = (1 − o(1)/N)N = e−o(1) = 1 − o(1), from which it follows that

P(Ṽ = Ψ(V ) | Z = N) = 1− o(1).
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Figure 2.4: An example of the hyperbolic random graph GPo (left) and the graph Γνα/π (right),
under the coupling of Lemma 2.3.1. The graph GPo is drawn in the native model of the hyperbolic
plane, where a point with hyperbolic polar coordinates (r, ϑ) is plotted with Euclidean polar
coordinates (r, ϑ). Points are colored based on their angular coordinate. The edges for which the
coupling fails are drawn in black in the picture of GPo and as dotted lines in the picture of Γνα/π.
The parameters used are N = 200, α = 0.8 and ν = 1.3.

Lemma 2.3.4 (Lemma 2.3.2 conditional on Z = N). Let α > 1
2 . On the coupling space of Lemma

2.3.3, conditional on Z = N , a.a.s. it holds for 1 ≤ i, j ≤ Z that

(i) if ri, rj ≥ 1
2R and X̃iX̃j ∈ E(Γνα/π), then XiXj ∈ E(GPo).

(ii) if ri + rj ≥ 3
2R, then X̃iX̃j ∈ E(Γνα/π) ⇐⇒ XiXj ∈ E(GPo).

Here ri and rj denote the radial coordinates of Xi, Xj ∈ DR.

Proof. Let AZ denote the event that (i) or (ii) fails for some i, j ≤ Z and let AN denote the
event that (i) or (ii) fails for some i, j ≤ min(N,Z). Note that P(AZ → 0 by Lemma 2.3.2 and
P(Z ≥ N)→ 1

2 by (for example) the Central Limit Theorem. We now compute

P(AN | Z ≥ N) ≤ P(AN )

P(Z ≥ N)
≤ P(AZ)

P(Z ≥ N)

N→∞−→ 0

1/2
= 0.

It follows that P(AZ | Z = N) = P(AN | Z = N) = P(AN | Z ≥ N) = o(1) so, conditioned on
Z = N , a.a.s. (i) and (ii) hold.
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3

The diameter in the KPKVB model

In this chapter we study the diameter in the KPKVB model. In Section 3.1 we show that for
α > 1

2 , a.a.s. there are components of diameter Ω(logN) [12, 19]. In Section 3.2 we show that for
α ∈ (1

2 , 1), a.a.s. every component has diameter O(logN). We show the same upper bound for the
case α = 1 and ν sufficiently large.

Together these results imply that the maximum diameter (over all components) in the KPKVB
model is logarithmic in the number of vertices. This is also the case for the Chung–Lu model for
complex networks [7]. In preferential attachment models, the diameter may even be of the order
log logN [9].

3.1 Logarithmic lower bound

In this section we prove an asymptotic lower bound for the diameter that holds asymptotically
almost surely. The idea of the proof is from [19]. The result is that a.a.s. G = G(N ;α, ν) has
a component of diameter Ω(logN). Friedrich and Krohmer [12] elaborated on these results by
showing that this lower bound in fact holds for the giant component. The general strategy of the
proof is to find an induced path of logarithmic length close to the boundary of the disk. This path
is found by independently exploring a number of disjoint sectors for such a path.

Theorem 3.1.1 (Asymptotic lower bound for the diameter). Let α > 1
2 . A.a.s., G has a compo-

nent with diameter Ω(logN).

Proof. We define Gδ to be the graph resulting from G after removal of all vertices in B0(εR), where
ε = 1

2(1 − 1
2α). By Lemma 2.2.2 we know that a.a.s. G = Gδ. We define GδPo analogously. We

start by studying GPo. Below we frequently make use of the fact that the number of vertices of
GPo in disjoint subregions of DR is independent.

We divide DR into sectors S0, S1, S2, . . . of angle 1
2e
−R/2 = Θ(N−1). Consider a sector Si.

Let Ai be the subset of Si consisting of points at distance at least R − 1 from the origin (i.e. at
distance at most 1 from the boundary of the disk). We define the following events:

• Ei = {Ai contains exactly one vertex vi of GPo};

• Fi = {Ei happens and vi has no neighbors in GδPo that lie in B0(R− 1)}.

We claim that Fi happens with probability e−Θ(1). The number of vertices of GPo in Ai follows a
Poisson distribution with mean

Nµ(Ai) = Θ(eR/2)Θ(e−R/2)

∫ R

R−1
Θ(e(r−R)α) dr = Θ(1),

because f(r, ϑ) = Θ(e(r−R)α) (see the proof of Lemma 2.2.4). It follows that

P(Ei) = Nµ(Ai)e
−Nµ(Ai) = Θ(1)e−Θ(1) = e−Θ(1).

We have P(Fi) = P(Fi | Ei)P(Ei), so we now consider P(Fi | Ei). Note that a vertex u in Ai is

isolated with probability e−Nµ(B0(R)∩Bu(R)) = e−Θ(eR/2)Θ(eR/2) = e−Θ(1) by Lemma 2.2.4. We find

P(Fi | Ei) ≤ P(vi is isolated in GPo | Ei) = e−Θ(1),
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so we indeed have P(Fi) = e−Θ(1). Now consider consecutive sectors S1, S2, . . . , Sp. Suppose
the event

⋂p
i=1Ei happens. The event Fi prescribes that there are no vertices of GδPo that lie in

B0(R − 1) ∩ Bvi(R). We call this region Bi. We also choose subregions B′i ⊂ Bi for each i, such
that B′1, . . . , B′p form a partition of

⋃p
i=1Bi. Let Gi ⊃ Fi denote the event that B′i contains no

vertices of GδPo. Note that the events G1, . . . , Gp, E1, . . . , Ep are all independent because they
concern disjoint subregions of DR. We find

P

(
p⋂
i=1

Fi

∣∣∣∣∣
p⋂
i=1

Ei

)
= P

((
p⋃
i=1

Bi

)
contains no vertices of GδPo

∣∣∣∣∣
p⋂
i=1

Ei

)
= P

(
p⋂
i=1

Gi

∣∣∣∣∣
p⋂
i=1

Ei

)

=

p∏
i=1

P

(
Gi

∣∣∣∣∣
p⋂
i=1

Ei

)
≥

p∏
i=1

P

(
Fi

∣∣∣∣∣
p⋂
i=1

Ei

)
=

p∏
i=1

(Fi | Ei) = e−pΘ(1).

It follows that

P

(
p⋂
i=1

Fi

)
= P

(
p⋂
i=1

Fi

∣∣∣∣∣
p⋂
i=1

Ei

)
p∏
i=1

P (Ei) = e−pΘ(1)e−pΘ(1) = e−pΘ(1).

We now consider what we know if F =
⋂p
i=1 Fi happens. By definition then A1, . . . , Ap each

contain a vertex vi ∈ Ai that have no neighbors in B0(R − 1). The angular distance between vi
and vi+1 is at most e−R/2 ≤ 2e−R/2 − O(e−R) and it follows from Lemma 2.2.3 that vi and vi+1

are neighbors in GPo. In particular, v1 and vp lie in the same component of GPo. A path from v1

to vp in GδPo lies completely inside DR \B0(R− 1). The angular distance between v1 and vp is at
least Θ(peR/2). Each step, the path travels an angular distance of at most

2e(R−(R−1)−(R−1))/2 +O(eR−(R−1)−(R−1)) ≤ 6e−R/2

for sufficiently large R (we again use Lemma 2.2.3). It follows that the path takes at least Θ(p)
steps, so GδPo has diameter at least Ω(p) if

⋂p
i=1 Fi happens.

We now take p = cR = Θ(logN) for a choice of c to be specified later. A neighbor of a vertex
in Ai that lies outside B0(εR) lies at angular distance at most Θ(e(R−εR−(R−1))/2) = Θ(e−εR/2)
from Ai. It follows that to determine whether the event F happens, we need to explore a big sector
of total angle Θ(e−εR/2) + p · 1

2e
−R/2 + Θ(e−εR/2) = Θ(e−εR/2) (recall that p = O(R)). This means

that we can make Θ(eεR/2) big sectors, in each of which we can run an independent trial of the
event F . The probability that all of them fail is at most

(1− e−pΘ(1))Θ(eεR/2) ≤ exp
(
−e−pΘ(1)Θ(eεR/2)

)
= exp

(
−Θ

(
eεR/2−Θ(1)cR

))
≤ exp(−R/2) = O(N−1)

where the last inequality holds for sufficiently small c. It follows that for c small enough, with
probability 1 − O(N−1) there is at least one sector where the event F happens. Therefore, with
probability 1−O(N−1) there is a component of GδPo with diameter Θ(cR) = Ω(logN).

It follows from Lemma 2.1.1 that a.a.s. the graph Gδ also has a component of diameter Ω(logN).
If we combine this result with Lemma 2.2.2, we see that a.a.s. G has a component with diameter
Ω(logN).

3.2 Logarithmic upper bound

In this section we prove an asymptotic upper bound for the diameter. The main result is the
following.
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Theorem 3.2.1 (Asymptotic upper bound for the diameter). Let α, ν > 0. Then the following
holds:

(i) For 1
2 < α < 1 and ν arbitrary, a.a.s. every component of G(N ;α, ν) has diameter O(log(N)).

(ii) For α = 1 and ν sufficiently large, a.a.s. every component of G(N ;α, ν) has diameter
O(log(N)).

By the triangle inequality, all vertices of G = G(N ;α, ν) inside B0(R/2) (i.e. the vertices at
distance at most R/2 from the origin) form a clique. Let G∆ be the subgraph of G induced by the
vertices outside this clique. We define G∆

Po similarly. (Note that in comparison with the graphs
Gδ and GδPo from Section 3.1, we remove more vertices.) By adding back the vertices in B0(R/2),
the diameter cannot grow too much:

Lemma 3.2.2. If every component of G∆ has diameter at most d, then every component of G has
diameter at most 2d+ 3. Similarly, if every component of G∆

Po has diameter at most d, then every
component of GPo has diameter at most 2d+ 3.

Proof. Let C be a component of G. If C contains no vertices inside B0(R/2), then C is a component
of G∆ as well. We then immediately find that C has diameter at most d. If not, then there is a
path of length at most d+ 1 from any vertex in C to a vertex in B0(R/2). Because the vertices in
B0(R/2) form a clique, we then find that C has diameter at most (d+ 1) + 1 + (d+ 1) = 2d+ 3,
as required. The proof for GPo is identical.

In light of Lemma 3.2.2, it suffices to prove bounds for the diameter for the graphs G∆ and
G∆

Po. In our proofs, we will make use of the idealized model, which was introduced earlier.
Recall from Section 2.3 that Γλ is a graph with vertex set Vλ, where two vertices (x, y) and

(x′, y′) are connected by an edge if and only if |x − x′|πeR/2 ≤ e
1
2

(y+y′). Here Vλ is the point
set of the Poisson process Pλ on ER = (−π

2 e
R/2, π2 e

R/2] × [0, R] ⊂ R2 with intensity 1ERλe
−αy.

Analogously to the definitions above, we also define the subgraph Γ∆
λ of Γλ, induced by the vertices

in V ∆
λ = {(x, y) ∈ Vλ : y ≤ R/2}. This graph lives on the lower half (−π

2 e
R/2, π2 e

R/2]× [0, R/2] of
ER.

From Lemma 2.3.1 and Lemma 2.3.2, we know that for λ = να/π, the graphs Γλ and GPo

are rather similar. The graphs Γ∆
λ and G∆

Po are even more similar: in fact, from Lemma 2.3.2 it
follows that a.a.s. Γ∆

λ is isomorphic to a spanning subgraph of G∆
Po. We will therefore continue by

studying the diameter of Γλ and Γ∆
λ .

Discretization of the model

We start in a somewhat more general setting, where V ⊂ ER is any finite set of points and Γ is
the graph with vertex set V and connection rule (x, y) ∼ (x′, y′) ⇐⇒ |x−x′|πeR/2 ≤ e

1
2

(y+y′). We
dissect ER into a number of rectangles, which have the property that vertices of Γ in rectangles
with nonempty intersection are necessarily connected by an edge. This is done as follows. First,
divide ER into `+ 1 layers L0, L1, . . . , L`, where

Li = {(x, y) ∈ ER : i log(2) ≤ y < (i+ 1) log(2)}

for i < ` and L` = {(x, y) ∈ ER : y ≥ ` log(2)}. Here ` is defined by ` = b log(6π)+R/2
log(2) c, such that

6πeR/2 ≥ 2` > 3πeR/2. We divide Li into 2`−i (closed) rectangles of equal width 2i−` ·πeR/2 = 2i ·b,
where b = 2−` · πeR/2 ∈ [1

6 ,
1
3) is the width of a rectangle in the lowest layer L0 (Figure 3.1). In

each layer, one of the rectangles has its left edge on the line x = 0. We have now partitioned ER
into 2`+1 − 1 = O(N) boxes.
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L0

L1

L2

L3

L4

...

L`

b

log(2)

Figure 3.1: Left: Partioning ER with boxes. All layers except L` have height log(2). The boxes in
layer Li have width 2ib, where b ∈ [1

6 ,
1
3) is the width of a box in L0. The small circles serve as an

example of V .

The boxes are the vertices of a graph B in which two boxes are connected if they share at least
a corner (Figure 3.2, left). Here we identify the left and right edge of ER with each other, so that
(for example) also the leftmost and rightmost box in each layer become neighbors. We will call
a box active if it contains a vertex of Γ and inactive otherwise. The dissection has the following
properties:

Lemma 3.2.3. (i) If vertices of Γ lie in boxes that are neighbors in B, then they are connected
by an edge in Γ.

(ii) The number of boxes that lie (partly) above the line y = R/2 is at most 63.

Proof. We start with (i). Consider two points (x, y) and (x′, y′) that lie in boxes that are neighbors
in B. Suppose that the lowest of these two points lies in Li. Then y, y′ ≥ i log(2). Furthermore,
the horizontal distance between (x, y) and (x′, y′) is at most 3 times the width of a box in Li. It
follows that

|x− x′|πeR/2 ≤ 3 · 2i · b ≤ 2i ≤ e
1
2

(y+y′),

so (x, y) and (x′, y′) are indeed connected in Γ.
To show (ii), we note that the first layer Li that extends above the line y = R/2 has index

i = b R/2log 2c. Therefore, we must count the boxes in the layers Li, Li+1, . . . , L`, of which there are

2`−i+1 − 1. We have

`− i+ 1 =

⌊
log(6π) +R/2

log 2

⌋
−
⌊
R/2

log 2

⌋
+ 1 ≤

⌈
log(6π)

log 2

⌉
+ 1 = 6,

so there are indeed at most 26 − 1 = 63 boxes that extend above the line y = R/2.

Let B∗ be the subgraph of B where we remove the edges between boxes that have only a single
point in common (Figure 3.2). Note that B∗ is a planar graph and that B is obtained from B∗
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Figure 3.2: The connection rules of B and B∗. Left: a box with its 8 neighbors in B. Right: a box
with its 5 neighbors in B∗.

X

Y

X

Y

Figure 3.3: If two blue boxes X and Y are not connected by a path of blue (striped) boxes, then a
red (dotted) walk exists that intersects every path in B from X from Y (Observation 3.2.4). This
walk can be chosen such that it either connects two boxes in L0 (left) or is cyclic (right).

by adding the diagonals of each face ([17] deals with a more general notation of matching pairs of
graphs). We make the following observation (Figure 3.3; compare Proposition 2.1 in [17]) for later
reference. The idea of the proof is from Bollobás ([6], p. 13 – 15).

Observation 3.2.4. Suppose each box in B is colored red or blue. If there is no path of blue boxes
in B between two blue boxes X and Y , then B∗ (and hence also B) contains a walk of red boxes Q
that intersects every walk (and hence also every path) in B from X to Y .

Figure 3.4: Left: the graph D. Right: the graph D and its dual D∗ (dashed).
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Proof. We construct an infinite graph D as follows. The vertex set of D is the set of all points in
the Euclidean plane whose polar coordinates (r, ϑ) have the property that r is a positive integer
and ϑ is an integral multiple of π/2r−1. This means that for each positive integer r there are 2r

vertices of D on the circle with radius r centered at the origin. We connect vertices by an edge if
they are adjacent points on the same circle, or if they have the same angular coordinate and their
radii are 1 apart (Figure 3.4, left). Clearly, D is a planar graph. Let D∗ denote the dual of D
(Figure 3.4, right).

There is a natural bijection between B and the vertices of D∗ within the circle with radius `+1
centered at the origin, in which the layer Li corresponds to the annulus {ϑ ∈ [`− i, `− i+1]}. Two
vertices are connected in D∗ if and only if the corresponding boxes in B share at least an edge, so
these vertices of D∗ form a subgraph D∗` of D∗ isomorphic to B∗.

If each box in B is colored red or blue then we also obtain a coloring of D∗ as follows: the
vertices in D∗` that correspond to a blue box in B are colored blue, and all other vertices in D∗ are
colored red. We color the edges of D that are adjacent to at least one blue face (i.e. a blue vertex
of D∗) blue and all other edges red.

Now consider blue boxes X and Y such that B does not contain a path of blue boxes from X
and Y . The box X corresponds to some blue vertex in D∗` , i.e. a blue face of D. We choose one
vertex x adjacent to this face and we let Cx denote the set of vertices of D that can be reached
from x by a path of blue edges. We define y and Cy similarly. Because B does not contain a path
of blue boxes from X to Y , D does not contain a path of blue edges from x to y. We therefore
must have Cx ∩Cy = ∅. The graph D \Cx, obtained by removing the vertices in Cx, has a unique
infinite component C∞x . Let ∂Cx denote the set of edges of D that connect a vertex in Cx with

a vertex in C∞x . We orient each edge in ∂Cx towards the vertex in C∞x . For each edge
−→
ab ∈ ∂Cx

with a ∈ Cx and b ∈ C∞x , we can consider the dual edge −→uv, oriented such that a is to the right of

this edge. This edge connects two red faces u and v (the edge
−→
ab is red because b 6∈ Cx, so both

faces adjacent to this edge are red). Let (∂Cx)∗ denote the set of these dual edges.

p q r

t s

a b

c

d

e
o

Figure 3.5: Every edge in (∂Cx)∗ has a successor.

We claim that for each such dual edge −→uv ∈ (∂Cx)∗ there is a successor −→vw ∈ (∂Cx)∗. Consider
an edge of (∂Cx)∗ that points to the face o (Figure 3.5). The case that o is the face containing
the origin is straightforward, so we suppose this is not the case. Then there are 5 vertices of D
adjacent to o, which we call p, q, r, s, t (Figure 3.5).

The edge of (∂Cx)∗ with head o has tail a, b, c, d or e as in Figure 3.5. If the edge is −→ao, then we

have q ∈ Cx and p 6∈ Cx. If t ∈ Cx we have −→oe ∈ (∂Cx)∗. If t 6∈ Cx but s ∈ Cx we have
−→
od ∈ (∂Cx)∗.

If s, t 6∈ Cx but r ∈ Cx we have −→oc ∈ (∂Cx)∗. If finally r, s, t 6∈ Cx we have
−→
ob ∈ (∂Cx)∗. We

conclude that the edge −→ao has a successor in (∂Cx)∗. The arguments for the edges
−→
bo, −→co,

−→
do and

−→eo are completely similar.
Because (∂Cx)∗ is a finite directed graph in which each edge has a successor, we find that

(∂Cx)∗ contains a cycle Qx. We draw Qx in the plane by connecting the centers of the relevant
faces as in Figure 3.4, right. Note that Qx separates the plane into two components by the Jordan
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Curve Theorem. Furthermore, C∞x must lie completely outside Qx because Qx only crosses edges
of D in ∂Cx and C∞x is infinite. It follows that Cx lies inside Qx.

Since Cx ∩ Cy = ∅, Cy lies either completely inside Qx or completely outside Qx. In the first
case, it is easy to see that x lies outside Qy. In the second case, y lies outside Qx. Without loss of
generality, we assume that y lies outside Qx. The faces in Qx form a cycle in D∗. Each path in D∗
from X to Y contains at least one face of this cycle, because a corresponding path in D from x to
y crosses Qx. The intersection of Qx and D∗` is either all of Qx (in which case the corresponding
boxes form a red cycle Q in B∗ with the required property) or a union of paths, starting and ending
in a face that corresponds to a box in L0. Each of these paths borders a component of D∗` ∩ C∞x .
The path bordering the component containing y corresponds to a path of boxes Q in B∗ starting
and ending in L0. This path has the required property, because removing it separates D∗` into two
components, with one containing x and the other containing y.

We have now in all cases found the required walk Q of red boxes in B∗ with the property that
each path in B from X to Y contains at least one box in Q.

Constructing short paths

We will use the boxes defined in the previous section to construct short paths between vertices
of Γ. Recall that V ⊂ ER is a finite set of points and Γ is the graph with vertex set V and
connection rule (x, y) ∼ (x′, y′) ⇐⇒ |x− x′|πeR/2 ≤ e

1
2

(y+y′).
One can easily deduce that the graph Γ has the following geometric properties:

Lemma 3.2.5 ([11], Lemma 3). Let x, y, z, w ∈ V .

(i) If xy ∈ E(Γ) and z lies above the line segment [x, y] (i.e. [x, y] intersects the segment joining
z and the projection of z on the horizontal axis), then at least one of xz and yz is also present
in Γ.

(ii) If xy, wz ∈ E(Γ) and the segments [x, y] and [z, w] intersect, then at least one of the edges
xw, xz, yw and yz is also present in Γ. In particular, {x, y, z, w} is a connected subset of Γ.

Proof. Write x = (x0, x1), y = (y0, y1), z = (z0, z1) and w = (w0, w1).
For (i) we assume without loss of generality that x1 = min(x1, y1). It follows that z1 ≥ x1,

because z lies above [x, y]. We now find

|z0 − y0|πeR/2 ≤ |x0 − y0|πeR/2 ≤ e
1
2

(x1+y1) ≤ e
1
2

(z1+y1),

so yz is present in Γ.
For (ii) we assume without loss of generality that x0 ≤ w0 ≤ y0 ≤ z0. Still without loss of

generality, we can also assume that w1 ≤ y1. From

|y0 − z0|πeR/2 ≤ |w0 − z0|πeR/2 ≤ e
1
2

(w1+z1) ≤ e
1
2

(y1+z1)

we now conclude that the edge yz is present in Γ.

We now prove a lemma that allows us to compare paths in Γ with walks in B. This will enable
us to translate information about Γ (such as that two boxes contain vertices in the same component
of Γ) to information about the states of the boxes.

Lemma 3.2.6. Suppose boxes X,Y ∈ B contain vertices x, y ∈ V respectively that lie in the same
component of Γ. Then B contains a walk X = B0, B1, . . . , Bn = Y with the following property:
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x

ye

vm−2

vm−1

v′0

v0

v1

v2

vm

v′m

Figure 3.6: Proof of Lemma 3.2.6. The edge e of Γ connects vertices x and y. If a red walk of
boxes exists that separates the boxes containing x and y, then e intersects one of the segments
[vi, vi+1], [v0, v

′
0] or [vm, v

′
m]. This contradicts the assumption that no red box contains a neighbor

of x or y.

(∗) if Bi and Bj are active but Bi+1, Bi+2, . . . , Bj−1 are not, then Γ has vertices a ∈ Bi, b ∈ Bj
that are connected in Γ by a path of length at most 3.

Proof. We prove the statement by induction on the length of the shortest path from x to y in Γ.
First suppose that this length is 1, so that there is an edge e connecting x and y. We claim

that a walk X = B0, B1, . . . , Bn = Y in B exists with the property that if Bi is active, then Bi
contains a neighbor of x or y. For this we use Lemma 3.2.4. We color a box blue if it is either
inactive or active and contains a neighbor of x or y. All other boxes are colored red. Note that X
and Y are blue, because X contains the neighbor x of y and Y contains the neighbor y of x. We
intend to show that B contains a blue path from X to Y . Aiming for a contradiction, we suppose
that this is not the case. By Lemma 3.2.4, there must then exist a red walk S = S0, S1, . . . , Sm
that intersects each path in B from X to Y . If we remove S from ER then ER\S falls apart in a
number of components. Because there is no path in B from X to Y that does not intersect S, X
and Y lie in different components. We therefore say that S separates X and Y . We let si denote
the center of Si and we also choose vertices vi ∈ V ∩ Si for all i (these vertices exist because all
red boxes are active; see Figure 3.6). By Lemma 3.2.3(i), vi and vi+1 are neighbors in Γ for each i.

We may assume that either S0 and Sm are both boxes in the lowest layer L0, or S0 and Sm are
adjacent in B (Figure 3.3). In the latter case, we consider the polygonal line S′ consisting of the
line segments [s0, s1], [s1, s2], . . . , [sm, s0], each of which lies completely inside boxes in S. Because
S separates X and Y , S′ separates x and y. If we replace each si by the corresponding vertex vi,
S′ is replaced by the polygonal line through the points v0, v1, . . . , vm. This polygonal line consists
of edges of Γ. Each of these edges passes through boxes in S and maybe also boxes adjacent to
boxes in S. In particular, none of these edges can pass through X, because X is not adjacent to
a box in S (this box should then have been blue by Lemma 3.2.3(i)). From this it follows that
the polygonal line through the points v0, v1, . . . , vm also separates x and y. Therefore, the edge e
crosses an edge [vi, vi+1] of Γ (Figure 3.6). By Lemma 3.2.5(ii) this means that vi or vi+1 neighbors
x or y, which is a contradiction because vi and vi+1 do not lie in a blue box.

We are left with the case that S0 and Sm lie in the lowest layer L0. Let v′0 and v′m denote
the projections of v0 and vm, respectively, on the horizontal axis. By an analogous argument, we
find that the polygonal line through v′0, v0, v1, . . . , vm, v′m separates x and y. We now see that
e either crosses an edge [vi, vi+1] (we then find a contradiction with Lemma 3.2.5(ii)) or one of
the segments [v0, v

′
0] and [vm, v

′
m] (we then find a contradiction with Lemma 3.2.5(i)). From the

contradiction we conclude that a blue path must exist connecting X and Y .
We have now shown that if x and y are neighbors in Γ, there exists a walk X = B0, B1, . . . ,

Bn = Y such that the Bi that are active contain a neighbor of x or y. This means that if Bi, Bi+1,
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. . . , Bj are such that Bi and Bj are active but Bi+1, . . . , Bj−1 are not, then Bi contains a vertex
a that neighbors x or y and Bj contains a vertex b that neighbors x or y. Now dΓ(a, b) ≤ 3 follows
from the fact that both a and b neighbor an endpoint of the same edge e.

We conclude that if x and y are neighbors in Γ, then a walk satisfying (∗) exists. Now suppose
that the statement holds whenever x and y satisfy dΓ(x, y) ≤ k and consider two vertices x and
y with dΓ(x, y) = k + 1. Choose a neighbor y′ of y such that dΓ(x, y′) = k. Let Y ′ be the active
box containing y′. By the induction hypothesis, there exists walks from X to Y ′ and from Y ′ to
Y satisfying (∗). By concatenating these two walks we obtain a walk from X to Y satisfying (∗),
as desired.

L(A,A′)

A

A′

A

A′

W (A,A′)

Figure 3.7: Two boxes A,A′ in B and the path L(A,A′) that connects them (left). We can form
L(A,A′) by concatenating the shortest paths from A and A′ to the lowest box lying above both
A and A′. In the right image active boxes are colored gray and inactive boxes are colored white.
The union of L(A,A′) and the inactive components intersecting L(A,A′) is called W (A,A′) and
outlined in black.

From every box in B there is a path of length ` ≤ R to the unique box in the highest layer
L`. Therefore, for every two boxes A,A′ ∈ B there exists a path L(A,A′) from A to A′ of length
at most 2R, consisting of the boxes lying above A or A′ (Figure 3.7, left). We define W (A,A′)
as the set of boxes that either lie in L(A,A′) or from which an inactive path exists to a box in
L(A,A′) (Figure 3.7, right). Note that W (A,A′) is a connected subset of B, consisting of all boxes
in L(A,A′) and all inactive components intersecting W (A,A′) (by an inactive component we mean
a component of the induced subgraph of B on the inactive boxes). We will show that if vertices
x ∈ A, x′ ∈ A′ of Γ lie in the same component of Γ, then their graph-theoretic distance can be
bounded in terms of the size of W (A,A′). This gives an upper bound on the diameter of each
component of Γ.

Lemma 3.2.7. Let A,A′ ∈ B. If vertices x ∈ A, x′ ∈ A′ lie in the same component of Γ, then
dΓ(x, x′) ≤ 37|W (A,A′)|.

Proof. We claim that there is a walk S = S0, S1, . . . , Sn in B from A to A′ satisfying

(i) if Si and Sj are active but Si+1, . . . , Sj−1 are not, then Γ has vertices a ∈ Si, b ∈ Sj that
are connected in Γ by a path of length at most 3;

(ii) if Si is active, then either Si itself or an inactive box adjacent to Si belongs to W (A,A′).
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We define Bx to be the set of active boxes that contain vertices of the component of Γ that contains
x and x′. By assumption we have A,A′ ∈ Bx. If A and A′ are the only boxes in L(A,A′), then we
can take S = (A,A′). Now suppose A and A′ are the only boxes in L(A,A′) that belong to Bx.
Then the boxes in between A and A′ are either inactive, or they are active but contain vertices
of a different component of Γ. The box B in L(A,A′) directly following A must be inactive and
belongs to some inactive component F (recall that an inactive component is a component of the
induced subgraph of B on the inactive boxes). We will prove the stronger statement that a walk
S = S0, S1, . . . , Sn from A to A′ exists satisfying (i) and

(ii’) if Si is active, then Si is adjacent to a box in F .

By Lemma 3.2.6 there exists a walk S from A to A′ satisfying (i). We will modify S such that also
(ii’) holds. We proceed in two steps. In Step 1 we modify S such that all inactive boxes in S that
are not in F are removed. In Step 2 we remove all active boxes from S that are not adjacent to a
box in F .

Step 1. There is a walk S satisfying (i) that contains no inactive boxes outside F .

We start with the walk S that Lemma 3.2.6 provides. This walk satisfies (i). Suppose S
contains some inactive box X not in F (Figure 3.8, left). Because B ∈ F , there can then be no
inactive path in B from X to B. It follows from Lemma 3.2.4 that there is an active walk Q that
intersects all walks in B from X to B (we apply Lemma 3.2.4 with the inactive boxes colored blue
and all other boxes colored red). One such walk is obtained by following S towards A (which
is a neighbor of B). Another possible walk is obtained by first following S towards A′ and then
following L(A,A′) towards B. We define boxes E and E′ such that Q intersects the walk in B
from X to B via S and A in E and the walk in B from X to B via S, A′ and L(A,A′) in E′

(Figure 3.8, left). Because E belongs to S, E also belongs to Bx. It follows that E′ also belongs
to Bx, which implies that E′ lies in S (the boxes in L(A,A′) between A and A′ do not lie in Bx
by assumption). We see that Q contains two active boxes E and E′ that lie on either side of X.
Because Q contains only active boxes, we can replace the part of S from E to E′ by a walk of
active boxes from E to E′. Doing so we find a walk that still satisfies (i) but from which the box
X is removed. By repeatedly applying this procedure, we remove all such boxes X from S. The
resulting walk satisfies (i) and contains no inactive boxes outside F .

Step 2. There is a walk S satisfying (i) that contains no active boxes outside F ′, where F ′ is
the set of active boxes adjacent to a box in F .

We start with the walk constructed in Step 1. Since A is adjacent to B it belongs to F ′. Let
B′ be the box in L(A,A′) directly preceding A′. We claim that B′ belongs to F . Note that B′

is inactive. We use Lemma 3.2.4 to show that an inactive path from B to B′ exists. If such a
path would not exist, then an active walk Q would exist that intersects all walks from B to B′. In
particular, Q would contain an active box in L(A,A′) \ {A,A′} (which does not lie in Bx, because
by assumption A and A′ are the only boxes in L(A,A′) that belong to Bx) and an active box in
S (which lies in Bx, because we know there is a path in Γ from a vertex in this box to a vertex in
A). This is a contradiction, because by Lemma 3.2.3(i) there cannot be an active walk between an
active box in Bx and an active box not in Bx. It follows that an inactive path from B to B′ exists,
so B′ belongs to F . Furthermore, every box in S that has an inactive neighbor in S also lies in
F ′, because this inactive neighbor lies in F by Step 1.

Now consider active boxes Si, Si+1, . . . , Sj in S such that Si and Sj lie in F ′ but Si+1, . . . ,
Sj−1 do not (Figure 3.8, right). We claim that there is a path in F ′ from Si to Sj . Color all boxes
in F ′ blue and all other boxes red. Then our claim is that B contains a blue path from Si to Sj .
We use Lemma 3.2.4 and argue by contradiction. If this blue path would not exist, then there
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B′
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L(A,A′)
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Si

B

A′Sj

B′

S

Figure 3.8: Proof of Lemma 8. Left: Step 1. The walk S satisfies (i) and connects A with A′. If
from an inactive box X there is no inactive path to B (dotted line), then there is an active walk
Q (dashed line) that connects active boxes E and E′ in S on either side of X. Right: Step 2. The
walk S satisfies (i) and contains no inactive boxes outside F . The boxes A, Si, Sj and A′ (striped)
all belong to F ′. The proof works by finding a path in F ′ from Si to Sj (dashed line). In both
figures active boxes are colored gray and inactive boxes are colored white.

would exist a red walk Q that intersects every walk from Si to Sj . Because Si and Sj lie in F ′,
there exists such a walk that apart from Si and Sj contains only boxes in F . Because Q does not
contain Si and Sj (which are blue) it must contain a box in F . Furthermore, Q also contains one
of the active boxes Si+1, . . . , Sj . Therefore, Q is a connected set of boxes that contains a box in
F and an active box. This implies that Q must also contain a box in F ′, which contradicts the
fact that Q consists of red boxes. This contradiction shows that there must be a blue path in B
from Si to Sj , i.e. a path in F ′ from Si to Sj . We replace the boxes Si+1, . . . , Sj−1 of S by this
path, thereby removing the boxes Si+1, . . . , Sj−1 from S. Repeatedly applying this operation, we
remove all active boxes that do not lie in F ′ from S. This completes Step 2.

The walk constructed in Step 2 satisfies (i) and (ii’), so we are now done with the case that
L(A,A′) contains no boxes in Bx other than A and A′.

Now suppose A and A′ are not the only boxes in L(A,A′) that belong to Bx; let A = A0, A1, . . . ,
An = A′ be all the boxes in L(A,A′) that belong to Bx (ordered by their position in L(A,A′)). All
these boxes contain vertices in the same component of Γ. For all i we have L(Ai, Ai+1) ⊂ L(A,A′)
and furthermore Ai and Ai+1 are the only boxes in L(Ai, Ai+1) that belong to Bx. Therefore, a
walk from Ai to Ai+1 satisfying (i) and (ii) exists. By concatenating these walks for all i we find
a walk S from A to A′ satisfying (i) and (ii).

We now construct a path in Γ from x to x′ of length at most 37|W (A,A′)|. We may assume
that the active boxes in S are all distinct, because if S contains an active box twice we can remove
the intermediate part of S. The number of active boxes in S is at most 9|W (A,A′)| because each
active box in S lies in W (A,A′) or is one of the at most 8 neighbors of an inactive box in W (A,A′).
Suppose Si and Sj are active boxes in S such that Si+1, . . . , Sj−1 are all inactive. Then for every
vertex v ∈ Si there is a path in Γ of length at most 4 to a vertex in Sj : by (i) there are vertices
a ∈ Si, b ∈ Sj such that dΓ(a, b) ≤ 3 and furthermore v and a are neighbors because they lie in
the same box. It follows that there is a path of length at most 36|W (A,A′)| from x to a vertex in
A′, hence a path of length at most 36|W (A,A′)|+ 1 ≤ 37|W (A,A′)| from x to x′.
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Bounding the diameter

In this paragraph, we use the results from the previous paragraph to prove that for α = 1
and ν sufficiently large, as well as for α ∈ (1

2 , 1) and ν arbitrary, a.a.s. all components of the
graphs G(N ;α, ν) and GPo(N ;α, ν) have diameter O(R) = O(log(N)). We first show that when
λ = να

π , Γ∆
λ (the subgraph of Γλ induced by the vertices with y-coordinate at most R/2) satisfies

the conditions in the Lemma below. In particular, this would imply that a.a.s. all components of
Γ∆
λ have diameter O(R). In the final part of this paragraph we translate this result to the KPKVB

model.

Lemma 3.2.8. Let V ⊂ ER be a finite set of points and let Γ be the graph with vertex set V and
connection rule (x, y) ∼ (x′, y′) ⇐⇒ |x − x′|πeR/2 ≤ e

1
2

(y+y′). Let K = {(x, y) ∈ ER : y > R/4}.
Consider the following two conditions:

(i) For any two boxes A and A′ we have |W (A,A′)| = O(R);

(ii) There is no inactive path in B connecting a box in L0 with a box in K.

If (i) holds, then each component of Γ has diameter O(R). If furthermore (ii) holds, then the same
holds for any graph Γ′ that is obtained from Γ by adding a number of edges, each of which has an
endpoint in K.

Proof. The first statement is a direct consequence of Lemma 3.2.7.
If furthermore (ii) holds, there exists a cycle of active boxes in ER\K that separates K from

L0. Since vertices in neighboring boxes are connected in Γ, this means that there is a cycle in Γ
that separates K from L0. Every vertex in K lies above some edge in this cycle and thereby lies
in the component C of this cycle by Lemma 3.2.5(i). Thus, every edge of Γ′ that is not present in
Γ has an endpoint in the component C of Γ.

Let d be the maximum diameter over all components of Γ. We claim that every component of
Γ′ has diameter at most 3d+ 2. This is clear for a component of Γ′ disjoint with C, because such
a component is also a component of Γ. In the component of Γ′ containing C there exists a path of
length at most d+ 1 from each vertex to a vertex in C. Since C has diameter at most d, it follows
that this component indeed has diameter at most 3d+ 2. This implies that if every component of
Γ has diameter O(R), then every component of Γ′ also has diameter O(R).

We start by showing that Γ∆
λ has property (i) of Lemma 3.2.8. To do so, we need to estimate

the probability that a box is inactive if the graph Γ is given by Γλ (i.e. if V is the point set Vλ of
the Poisson process Pα,λ).

Lemma 3.2.9. If Γ = Γλ, then the probability that a box in layer Li is inactive (i.e. contains no
vertex of Γ) is at most exp(− 1

12 · λ · 2
(1−α)i). The same bound holds if Γ = Γ∆

λ and Li lies below
the line y = R/2.

Proof. The expected number of points of Pα,λ that fall inside a box B in layer Li satisfies

E(|B ∩ Pα,λ|) ≥
∫ (i+1) log(2)

i log(2)

∫ 2ib

0
λe−αy dx dy = λ · b · 1− 2−α

α
· 2(1−α)i

(this is an equality for i < `). Therefore, the probability that B contains no vertices of Γλ is

bounded by exp(−λ · b · 1−2−α

α · 2(1−α)i) ≤ exp(− 1
12 ·λ · 2

(1−α)i) because b · 1−2−α

α ≥ 1
12 . The second

part follows immediately from the first part, because Γ∆
λ is the subgraph of Γλ induced by the

vertices below the line y = R/2.
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If α = 1, Lemma 3.2.9 tells us that for Γ = Γ∆
λ , every box below the line y = R/2 is inactive

with probability at most exp(− λ
12). The at most 63 boxes (partly) above the line y = R/2 are

inactive with higher probability, because in Γ∆
λ the vertices with y-coordinate exceeding R/2 are

removed. If a box lies completely above the line y = R/2 it is even always inactive.

Lemma 3.2.10. Let α = 1 and let λ be sufficiently large. Then if Γ = Γ∆
λ it holds with probability

1−O(N−1) that for any two boxes A and A′ we have |W (A,A′)| = O(R).

Proof. We show that the probability that there are boxes A and A′ which satisfy |W (A,A′)| > 32R
is O(N−1). Suppose that |W (A,A′)| > 32R for two boxes A and A′. Since W (A,A′) is a connected
subgraph of B, there exists a walk P , starting at A, through all boxes in W (A,A′), that uses no
edge in B more than twice (this is a general property of a connected graph). Because no box has
more than 8 neighbors, P visits no box more than 8 times. Therefore, the first 32R steps of P
(which exist since |W (A,A′)| > 32R) pass through at least 32R/8 = 4R distinct boxes, of which
at least 4R−2R−63 ≥ R are inactive and lie below the line y = R/2 (we subtract the at most 2R
boxes in L(A,A′) and the at most 63 boxes partly above the line y = R/2; the estimate R ≥ 63
of course holds for sufficiently large R). The probability that these boxes are indeed inactive is
bounded by exp(−λ/12 · R) = exp(−λR/12), because by Lemma 3.2.9, exp(−λ/12) is an upper
bound for the probability that a box below the line y = R/2 is inactive.

The walk P can be chosen in at most 932R ways. Therefore, the probability that |W (A,A′)| >
32R for some boxes A and A′ (which can be chosen in at most O(eR) ways) is at most

O(eR)932R exp(−λR/12) = exp(O(R)− λR/12) ≤ exp(−R/2) = O(N−1),

where the inequality holds for sufficiently large λ.

We now want to show that for the graph Γ∆
λ the estimate |W (A,A′)| = O(R) also holds a.a.s.

when α ∈ (1
2 , 1) and λ is arbitrary. The probability that a box in layer i is inactive is bounded by

exp(− λ
122(1−α)i) (this bound now depends on i), which decreases rapidly if i increases. However,

for low values of i and λ this expression can be arbitrarily close to 1. To gain control over the
boxes in the lowest layers, we merge boxes in the lowest layers into larger blocks.

An h-block is defined as the union of a box in Lh−1 and all 2h − 2 boxes lying below this
box (Figure 3.9, left). In other words, an h-block consists of 2h − 1 boxes in the lowest h layers
that together form a rectangle. The following Lemma shows that the probability that an h-block
contains a horizontal inactive path can be made arbitrarily small by taking h large.

Lemma 3.2.11. Let α < 1 and let ph be the probability that an h-block contains a horizontal
inactive path (that is, a path in B of inactive boxes connecting a box touching its left edge to a box
touching its right edge). For the graph Γ∆

λ we have ph → 0 as h→∞.
(Here we always assume that (h + 1) log 2 ≤ R/2, to make sure that the h-blocks we consider do
not extend above the line y = R/2.)

Proof. Because the boxes we consider do not extend above the line y = R/2, we can use Lemma
3.2.9 to estimate the probability that a box is inactive.

An (h+1)-block H consists of one box B in layer Lh and two h-blocks B1, B2. If H is inactive,
then B is inactive or both B1 and B2 are inactive. It follows that

ph+1 ≤ exp(− λ
12γ

h) + p2
h ≤ max(2 exp(− λ

12γ
h), 2p2

h),

because B is inactive with probability at most exp(− λ
12γ

h), where γ = 21−α ∈ (1, 2). Writing

ph = e−yh/2, we see that yh+1 ≥ min
(
λ
12γ

h − log(4), 2yh
)
. We will show that this implies yh →∞.

There exists an h0 such that λ
12γ

h−1(2 − γ) ≥ log(4) for h ≥ h0. If for some n ≥ h0 we have
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2h−1 · b

h · log(2)

L0

L1

L2

...

Lh−1

Lh

L0

L1

L2

...

Lh−1

Lh

Lh+1

...

B

B1 B2

Figure 3.9: Left: an h-block (in the figure h = 5). An h-block is the union of 2h − 1 boxes in
the lowest h layers. Right: definition of a lonely block (used in the proof of Lemma 3.2.12). The
lowest h layers are partitioned into h-blocks. An h-block B in W ′ is called lonely if both boxes B1

and B2 lying above it are not in W ′. If |W ′| > 3 and B is lonely, one of the blocks adjacent to B
contains a horizontal path in W .

yn ≥ λ
12γ

n−1−log(4), then it follows that yn+1 ≥ λ
12γ

n−log(4) or yn+1 ≥ 2yn ≥ 2( λ12γ
n−1−log(4)) ≥

λ
12γ

n−log(4). By induction, we then find yh ≥ λ
12γ

h−1−log(4) for all h ≥ n, showing that yh →∞.
If not, we have yn ≥ 2yn−1 for all n ≥ h0 and it follows that yh ≥ 2h2−h0yh0 for all h ≥ h0. In that
case we also clearly have yh →∞.

Lemma 3.2.12. Let α ∈ (1
2 , 1) and let λ be arbitrary. Then for Γ∆

λ it holds with probability
1−O(N−1) that for any two boxes A and A′ we have |W (A,A′)| = O(R).

Proof. Let ph be the probability that an h-block contains a horizontal inactive path and let qh be the
maximum probability that a box outside the lowest h layers (but below the line y = R/2) is inactive.
Since qh ≤ exp(− λ

12 · 2
(1−α)h) by Lemma 3.2.9, we have qh → 0 as h → ∞. By Lemma 3.2.11 we

also have ph → 0 for h→∞. Therefore, we can choose h such that max(ph, qh) < 9−1104e−3/2. As
in Lemma 3.2.11, for sufficiently large R, all h-blocks lie completely below the line y = R/2.

We need to show that that

P
(
|W (A,A′)| ≤ CR for all A,A′ ∈ B

)
= 1−O(N−1)

for some constant C. We take C = 1104(2h − 1) for the value of h specified above.
We replace the boxes in the h lowest layers by h-blocks. These h-blocks and the boxes above

the lowest h layers together are the vertex set of a graph B′, where boxes or blocks are neighbors
if they share at least a corner. Note that the maximum degree of B′ is at most 8. Furthermore,
if W ≥ CR then W ′ ≥ 1104R, where W ′ is the corresponding connected subset of B′. In B′ there
exists a walk P through all boxes and blocks in W ′ that visits no box or block more than 8 times.
The first 1104R steps of the walk P can be chosen in at most 91104R ways.

For a given choice of P (and hence W ′) we let r denote the number of blocks in P and s denote
the number of boxes in P . We have r + s = 1104R. We will now estimate the probability that
these boxes and blocks indeed occur as W ′.

First suppose s ≥ 32R. Because each box occurs at most 8 times in P , this means that W ′

contains at least 4R distinct boxes. After subtracting the at most 2R boxes in L(A,A′) and the

47



at most 63 boxes (partly) above the line y = R/2, we find that there are at least R inactive boxes
in W ′ that lie below the line y = R/2. The probability that these boxes (which are specified by
our choice of P ) are indeed inactive, is at most qRh .

If s < 32R we must have r ≥ 1072R. We now count lonely blocks, which we define as blocks
B for which the two boxes in Lh adjacent to B both do not lie in W (Figure 3.9, right). Since
there are at most s boxes in Lh, there are at most 4s blocks that are not lonely (each box in
Lh is adjacent to 4 blocks). Since there are at least r

8 distinct blocks in W , there are at least
r
8 − 4s = r−32s

8 = 33r−32(r+s)
8 ≥ 33·1072R−32·1104R

8 = 6R lonely blocks. If we assume |W ′| > 3 then
for each lonely block B, one of the two blocks adjacent to B must contain a horizontal path in W .
Since each block is adjacent to 2 other blocks, there are at least 3R blocks in W ′ that contain a
horizontal path in W . Since there are at most 2 blocks in L(A,A′), there are at least 3R− 2 ≥ R
blocks in W ′ that contain a horizontal inactive path. The probability that this happens is at most
pRh .

Noting that there are O(eR) pairs of boxes, we see that

P(|W (A,A′)| > CR for some A,A′ ∈ B) ≤ O(eR) · 91104R ·max(qRh , p
R
h )

= O((91104emax(ph, qh))R) = O(e−R/2) = O(N−1)

because we chose h such that 91104emax(ph, qh) < e−1/2.

We now turn to the proof of (ii) of Lemma 3.2.8.

Lemma 3.2.13. Suppose that α = 1 and λ is sufficiently large. Then if Γ = Γ∆
λ it holds with

probability 1 − O(N−1) that there are no inactive paths in B from L0 to K, where K = {(x, y) ∈
ER : y > R/4}. The same holds for α ∈ (1

2 , 1) and λ arbitrary.

Proof. Since only the boxes below the line y = R/2 are relevant, we can freely use Lemma 3.2.9.
Note that an inactive path in B from L0 to K would have length at least R/4 (the height of each
layer equals log 2 < 1) and that it would have a subpath of length at least R/8 that lies completely
in {(x, y) : y > R/8}. Let q be the maximum probability that a box between the lines y = R/8 and
y = R/2 is inactive. Since there are exp(O(R)) boxes and at most 9k paths of length k starting
at any given box, the probability that such a subpath exists is at most exp(O(R))9R/8qR/8 =
exp(O(R) + log(q)R/8). If α = 1 then q ≤ exp(−λ/12), which can be chosen arbitrarily small
by choosing λ sufficiently large. For sufficiently small q we then have exp(O(R) + log(q)R/8) ≤
exp(−R/2) = O(N−1) and therefore such a path does not exist with probability 1 − O(N−1). If
α < 1 we have q ≤ exp(−λ/12 ·2(1−α)R/8) and it follows that exp(O(R)+log(q)R/8) = exp(O(R)−
λ/12·2(1−α)R/8 ·R/8) ≤ exp(−R/2) for sufficiently large R, so we can draw the same conclusion.

We can now prove Theorem 3.2.1 for the Poissonized version of the model.

Theorem 3.2.14 (Theorem 3.2.1 for GPo). Let α, ν > 0. Then the following holds:

(i) For 1
2 < α < 1 and ν arbitrary, a.a.s. every component of GPo(N ;α, ν) has diameter

O(log(N)).

(ii) For α = 1 and ν sufficiently large, a.a.s. every component of GPo(N ;α, ν) has diameter
O(log(N)).

Proof. We first deal with (i), so suppose α ∈ (1
2 , 1) and ν is arbitrary. By Lemma 3.2.2, it

suffices to prove that a.a.s. every component of G∆
Po has diameter O(logN). By Lemma 2.3.1 and

Lemma 2.3.2, a.a.s. a graph isomorphic to G∆
Po can be obtained from Γ∆

να/π by adding a number

of edges, each of which has an endpoint in K = {(x, y) ∈ ER : y > R/4}. Lemma 3.2.8 will now
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show that a.a.s. every component of G∆
Po (and hence also GPo) has diameter O(logN) (recall that

R = O(logN)). Indeed, Lemma 3.2.12 shows that Γ∆
να/π satisfies condition (i) of Lemma 3.2.8,

and Lemma 3.2.13 shows that Γ∆
να/π satisfies condition (ii) of Lemma 3.2.8. The proof is complete.

The argument for (ii), where α = 1 and ν (hence λ = να/π) is sufficiently large, is identical.
For the conditions of Lemma 3.2.8, we now refer to Lemma 3.2.10 and Lemma 3.2.13.

Finally, we give a proof of Theorem 3.2.1.

Proof. Assume α and ν satisfy the conditions of this theorem, i.e. α = 1 and ν is sufficiently large
or α ∈ (1

2 , 1) and ν is arbitrary. By Lemma 3.2.2, it suffices to show that a.a.s. every component
of the graph G∆ has diameter O(logN). In light of Lemma 2.3.3 and 2.3.4, it now suffices to show
that when conditioned on Z = N , Γ∆

να/π a.a.s. satisfies the conditions (i) and (ii) of Lemma 3.2.8.

By Lemma 3.2.10, Lemma 3.2.12 and Lemma 3.2.13, Γ∆
να/π satisfies conditions (i) and (ii) with

probability at least 1−O(N−1). The desired result now follows from applying Lemma 2.1.1.
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Discussion

In this thesis we have discussed the KPKVB model, a random geometric graph model in the hyper-
bolic plane that has characteristics reminiscent of complex networks. The original contribution of
the thesis is a proof of a logarithmic upper bound for the diameter in this model, which holds with
probability tending to 1 as the number of vertices tends to infinity. This proof was provided in
Section 3.2. Together with an already known lower bound [19, 12], which we presented in Section
3.1, this leads to the following precise statement: for fixed values of α ∈ (1

2 , 1) and ν > 0, there
are constants C1 and C2 such that with probability tending to 1, the maximum diameter of all
components in the KPKVB model lies between C1 logN and C2 logN . Put differently, when the
power law exponent is between 2 and 3, the diameter in the KPKVB model is logarithmic in the
number of vertices. This makes the diameter of the KPKVB model similar to that of other models
for complex networks, such as the Chung–Lu model, and emphasizes the “small-world” property
of the model.

A natural remaining question is what happens for values of α outside (1
2 , 1). These regimes are

of less importance for network scientists (power law exponents are usually found between 2 and 3
in practice), but equally interesting from a mathematical perspective. The lower bound provided
in Section 3.1 works for all values of α > 1

2 . Our upper bound also works for α = 1 and large
values of ν, so this case is also settled. The only thing we have proven for α > 1 or α = 1 and small
ν (values for which the giant component disappears) is that there are components of logarithmic
diameter. However, it may be the case that for these parameter values there are components of
even larger diameter. For α < 1

2 the diameter is known to be constant (see Section 2.1); the case
α = 1

2 also remains open.
For α ∈ (1

2 , 1) the asymptotic upper and lower bound for the diameter differ by a multiplicative
constant. It would be interesting to further close this gap. It might be the case that there exists
some function C(α, ν) such that the diameter tends to C(α, ν) logN in probability (this would be
a result similar in flavor to recent results on the size of the largest component [11]). One could also
wonder how the diameter depends on the values of α and ν. For this purpose, a careful analysis
of the proofs in Chapter 3 would be instructive.

The strategy used in the proof of the upper bound for the diameter may be applicable to a
broader range of random geometric graphs. The main ingredients we used in the proof are the
properties of our discretized model, summarized in Lemma 3.2.3, and the geometric properties of
Lemma 3.2.5. If a random geometric graph is given in which points are connected if they have at
most a certain distance from each at other (which is not the case for our idealized model), then
Lemma 3.2.5 follows immediately from the triangle inequality. The conditions on the dissection
(Lemma 3.2.3) also seem flexible enough to be true for other random geometric graph models.
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polylogarithmic bound 24
power law 8, 9, 23
preferential attachment model 9
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quasi-uniform distribution 25, 30

random geometric graph 6, 50
random graph 6
random hyperbolic graph 6
real-world network 8, 22
regime 23

scale-free network 8
sector 34
six degrees of separation 8
small-world network 8

small-world phenomenon 8, 50

social network 6, 8

sparse 8

Stirling’s approximation 23

sublinear 24

successor 39

triangle inequality 26, 36, 50

typical distance 9, 25

ultra-small network 25
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[18] J. F. C. Kingman. Poisson Processes. Oxford Studies in Probability. Clarendon Press, 1993.

[19] M. Kiwi and D. Mitsche. A bound for the diameter of random hyperbolic graphs. In Proceed-
ings of the Meeting on Analytic Algorithmics and Combinatorics, pages 26–39, SIAM, 2015.
ArXiv version: https://arxiv.org/abs/1408.2947.

[20] D. Krioukov, M. Kitsak, R. S. Sinkovits, D. Rideout, D. Meyer, and M. Boguñá. Network
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