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Abstract

Using the NEURON simulation environment, I examine the effect of the location
of synapses on the shunting effect of the signal. I do this by first off recreating
the results of C. Koch’s, T. Poggio’s and V. Torre’s ”Nonlinear interactions in a
dendritic tree: localization, timing, and role in information processing” [3] and
look at the conditions for which these results hold. I find that on path shunting
is only more effective than shunting at the location of excitation, when the peak
conductance of the excitatory synapse and membrane resistivity are sufficiently
high. Then I try to recreate the results of A. Gidon’s and I. Segev’s ”Principles
governing the operation of synaptic inhibition in dendrites” [4]. I do not succeed in
measuring the input resistance while the synapses are firing, and therefore cannot
recreate their results.
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1 Introduction

In neuroscience a lot of research is done by experimenting. One can research
what the effect of certain proteins or neurotransmitters is on the growth of
synapses by experiment. Or what happens with boutons when nearby excitatory
synapses are stimulated. There can even be measured what happens to the
soma potential when a current is injected in the dendrite. But some things are
hard to research by just experimenting, because you cannot control and change
things as precisely as you would want to. At such moments it is easier to make
a computational model. There are already a lot of ways to model a neuron,
of which I am going to use a couple in a computational program called NEU-
RON. One of the things that are easier to research by modeling, is the effect of a
single synapse on the signal as received by the soma, which is what I am going to do.

The locations where an axon and a dendrite are connected through inhibitory
synapses are sometimes quite locally positioned, and sometimes spread over a large
part of the dendrite tree. This brings to question what the effect of location is on
the shunting effect of these synapses. Is it more effective to place them close to
each other, or spread them out widely? This may be dependent on the shape of
the dendrite. To research this, it is important to know how the position a single
inhibitory synapse affects the signal of an excitatory synapse. When we know this,
we can see what more synapses will do, and maybe even make an analytic model.
I am going to look at the shunting effect of an inhibitory synapse: Can I reproduce
the results out of certain papers in the program NEURON? And how stable are
these results in my simulation? I will do this by first off learning how to make
models of simple neurons in the program NEURON. At first, I will look at the
effect of the place of the excitatory synapse(s) on the signal as recorded in the
soma. Then I will try to reproduce the results of earlier papers by Koch et al.[3]
and Gidon and Segev[4] in my simulation and find out on which conditions these
results are valid. Both these papers concentrate on the shunting effect of synapses
and how the placing of these synapses influences this effect.

2 Background Theory

Before a physicist can work in biophysics, one should study some biology. This the-
sis falls in the domain of neuroscience, which we will explore in the following section.
We should also look more into the program in which this model is made: NEURON.
In this section I will introduce all one should know to read and understand what I
am doing in this thesis.
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2.1 Neuroscience

AxonSoma

Dendrites

synapses

Axon of another neuron

Figure 1: A schematic representation of a neuron. The direction of the signal is to the
right.

The way a brain works is through electrical and chemical signals in neurons. A
neuron consists of a soma, an axon and dendrites (see figure 1). The electrical
signals are carried by the following ions: K+, Na+, Ca+ and Cl−. Between
neurons, signals are passed through synapses. In this thesis we will focus on the
passage of the electrical signal from the synapse in a dendrite to the soma. In rest,
the whole neuron is in its resting membrane potential. There are many different
kinds of neurons, each with their own typical resting potential. Most neurons have
a resting potential between −100mV and 0mV . This resting potential can be de-
polarized and hyperpolarized by synaptic inputs. When the resting potential of the
neuron is sufficiently depolarized, there is a spike induced, which we call an action
potential. When a action potential is induced, synapses in the axon of this neuron
will be activated and pass the signal through synapses to another dendrite. The
movement of ions in the neuron can be described by laws and relations of diffusion,
drift, mobility and space-charge neutrality. Because the signal passed is an elec-
trical one, we can also learn more about this by making an equivalent circuit model.

There are roughly two kinds of synapses, inhibitory and excitatory synapses.
A reversal potential of a synapse is the potential at which a neurotransmitter of
that synapse will not cause a net current flow of ions through that ion channel.
Inhibitory synapses have a reversal potential equal to or less than the resting
potential of the dendrite, and can therefore hyperpolarize the neuron. Excitatory
synapses have a reversal potential higher than the resting potential of the dendrite,
and this creates a depolarization. The excitatory synapses have a reversal potential
around the 0mV . The inhibitory synapse can never induce an potential. When
the inhibitory synapse fires, it does change the conductance and can therefor shunt
a signal from another synapse.
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There are different ways to simulate a neuron, but one of the most used is the
cable model. Here we assume that the dendrite is passive and is shaped like a cable,
with one sealed end and the other end connected to the soma. Being passive means
that the cable has a certain membrane resistance, rm, a membrane conductivity, cm
and an axial resistance, ri, which are linear and uniform throughout the dendrite.
We also assume the current flow is in just one dimension; along the cable. To
calculate the way this action-potential travels through the dendrite we have Rall’s
cable equation [2]:

1

ri

∂2Vm
∂x2

= cm
∂Vm
∂t

+
Vm
rm

(1)

With x the distance (cm), t the time (msec), Vm the membrane potential (mV ),
ri the axial resistance (Ω/cm), rm the membrane resistance (Ωcm) and cm the
membrane capacitance (F/cm). These relate to cable specific parameters as follows:

Ri = πa2ri (2)

Rm = 2πarm (3)

Cm =
cm
2πa

(4)

With a the radius of the dendrite, Ri the specific intracellular resistivity (Ωcm),
Rm the specific membrane resisitivity (Ωcm2) and Cm the specific membrane
capacitance (F/cm2).

With this equation the simplest models of neurons are made. The easiest way
to think about this model, is to picture it as a water hose with the water pressure
as voltage. An inhibitory synapse can shunt the signal of an excitatory synapse by
making a hole in the hose, it does this by lowering the input resistance locally.

We can make the model more physically accurate by adding simulations of
ionchannels, which allows the ions to move trough the membrane, down their
concentration gradient. This makes the model active, and adds sometimes
non-linear compounds. These channels are influenced by the transmembrane
voltage. The channels are in their open state with a probability of a and closed
with a probability of (1 − a). There are two types of these channels. If the
membrane of one of these is depolarized, the energy available for switching from
open to closed decreases, and therefore the probability of the gate being open
increases. Hyperpolarization of the membrane will do the opposite to this channel.
The other type of channel works in the exact opposite way, and is activated by
membrane hyperpolarization. When the potential of a dendrite comes above a
certain threshold, the channels respond by opening or closing, and thereby letting
extra negatively loaded ions in, and thereby depolarizing the cell further. This
happens rapidly and induces a spike in the membrane potential. After this spike,
there is a short period of hyperpolarizing which makes is impossible for the signal
spike to travel backwards.

In the soma we use the Hudgkin-Huxley model, or the HH-model. With this
model Hudgkin and Huxley described the behavior of conduction, nerve excitation
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and Na+ and K+ channels. They came up with eleven equations called the
Hodgkin and Huxley equations which they solved numerically. They pictured the
ion channels as parallel conductance channels in a electric circuit, and because the
channels were controlled by gating particles they could come up with equations
using gating variables and maximum conductances. Then they experimentally
determined the precise equations and found those fit the experimental data really
well. These equations can be found in Foundations of Cellular Neurophysiology [2].
You can use this HH-model in NEURON really easily, as it is already programmed
in and you can call it with a simple commando.

2.2 NEURON

The NEURON simulation environment is a environment where one can construct
and apply mechanisms to simulate the working of neurons and neural networks. I
use the C-based language .hoc to write my code, this language is developed espe-
cially for the NEURON program. I used The Neuron Book [1] to learn to use this
program, and subscribed to the NEURON forum for more background information.
In NEURON I was able to create an active soma with a passive dendrite and mea-
sure for instance the peak voltage at the soma. The program can run simulations
and numerically calculate voltage, input resistance and such, but some a lot easier
than others.

3 Previous results

3.1 By Koch et al.

In their groundbreaking paper of 1983 [3], Koch et al. showed that inhibition on
path can be more effective than inhibition at the place of excitation by solving
the system of Volterra integral equations. They computed the F-factor, which is
the ratio of the maximum of the somatic depolarization without inhibition to the
somatic depolarization with inhibition.

F factor =
∆Vsoma, without inhibition

∆Vsoma, with inhibition
(5)

They found that sometimes inhibition on path is more effective than inhibition
at the place of excitation. They said that when ge and gi are small, the optimal
location of inhibition is at the location of the excitatory synapse and, when ge
and/or Rm increase, the optimal location moves along the direct path toward the
soma[3]. This was an important discovery, because prior to this publication it was
thought that inhibition at the place of excitation was always the most effective. The
conditions, under which they showed this was the case, were as follows: The mem-
brane resistance Rm = 14kΩ/cm2, the conductance peak of the excitatory synapse
ge = 100nS, the membrane capacity Cm = 1µF/cm2, and the input resistance
Ri = 70Ωcm.
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Figure 2: The F-factor with Rm = 14kΩ/cm2, ge = 100nS, as calculated and shown by
Koch et al. [3] They show on the x-axis the delay of the inhibitory synapse relative to
the excitatory synapse.

3.2 By Gidon and Segev

In Principles Governing the Operation of Synaptic Inhibition in Dendrites by Gidon
and Segev [4], it is shown that in certain cases, off path inhibition is more effective
than on path inhibition. They show this by making a numerical simulation of an
isopotential soma with a sealed-end dendrite and putting a hotspot at X = 0.6L.
A hotspot in their case is a spot where twenty NMDA synapses, which are a type of
excitatory synapses, are firing at a rate of 20Hz. In the supplementary information
they show that the same conclusions can be reached with a single, very strong,
synapse, and this is what I used. They use in their figures and further analytic
calculations the shunt-level, SL, which measures how much the inhibitory synapse
shunts the excitatory synapse. They define the shunt-level at d as follows:

SLd =
∆Rd

Rd
(6)

with Rd the input-resistance (Ω) at d and ∆Rd the difference in input-resistance
(Ω) at d due to a synaptic conductance perturbation.

With this definition they plot the SL as a function of the distance of the
inhibitory synapse to the excitatory synapse. They show that the shunt level can
be higher off path than on path at the same distance from the hotspot, which
means off path inhibition can be more effective than on path inhibition. In their
supplementary information they show how different electrotonic lengths influence
the SL, although the conclusion stays the same.
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Figure 3: The value of SL at the hotspot in a ball and stick model as a function of the
distance of the inhibitory synapse from the hotspot as depicted by Gidon and Segev [4].
Off-path inhibition attenuates less steeply compared to the respective on-path inhibition.

They also show that when inhibitory synapses are placed at the same spot
on different branches, the shunt level is higher at the junction of these branches
than at the place of inhibition when enough, in their case eight, branches are
used. This number may vary when varying the parameters, for which they
used: the conductance perturbation gi = 1nS, and the distance from each of the
perturbations to the junction X = 0.4. For two synapses they could calculate this
condition. The shunt level at the junction is higher than at one of the synapse
loci, i or j, when SLj

junction is larger than SLi
i. For more than two synapses they

didn’t calculate this condition and they concluded that for two synapses, the best
shunting place is always at the location of one of the synapses. They also note
that where the shunt level may be higher at the junction, but in passive models
the voltage change is always highest at one of the synaptic loci.

They also calculate the shunt level at d, (SLd), for two conductance perturba-
tions, i.e. two synapses:

SLd =
SLi

d + SLj
d − 2SLj

jSL
i
iAi,jAj,dAd,i

1 − SLj
jSL

i
j

(7)

with SLa
b the shunt level at b due to a conductance perturbation at a (dimen-

sionless), and Ac,d the steady voltage attenuation, (
Vj

Vi
), from c to d (dimensionless).

The shunt level at d due to a single conductance perturbation at i can be calculated
as follows:

SLi
d = [

giRi

1 + giRi
]Ai,dAd,i (8)

with i the location of the conductance perturbation, gi the conductance pertur-
bation at i, Ri the input resistance at i, and Ai,d as defined before.
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4 Experimental Methods and Results

4.1 Model Structure

As mentioned before, I am using NEURON’s simulation environment to simulate
neurons. I do this by first loading the neuron GUI library so I can use the pre-
programmed functions. Then I set up the general shape of the neuron by creat-
ing the soma and dendrites and connecting them. These I give some biophysical
properties like length, diameter, membrane resistance, number of segments, etc..
Thereafter, I declare functions, proc’s, and data storages and I set the simulation
controls. Finally, I run the simulation while I let NEURON store the data to .dat
files, which I can open and process in Mathematica. In the appendix you can find
two of the models I made. In appendix A you can find the code for the nine branches
experiment (figure 8), and in appendix B you can find the code I used to calculate
the shunt level (figure 19).

4.2 Results

v

Figure 4: The shape of the neuron used in the first simulations: the isopotential soma on
the left and one branched dendrite. The soma is spherical and has a diameter of 30µm.
All the branches have a length of 100µm, a diameter of 1µm

To get a feeling for NEURON, we begin with a simple simulation where I placed
one excitatory synapse on different locations on a neuron with an isopotential soma
and a passive branched dendrite with sealed ends. I ran a simulation for each
location, measured the potential at the soma, and plotted the maximums (figure
5). You notice that, when the excitatory synapse is close enough to the soma, it
produces a spike in the action-potential. Furthermore, there seems to be a slight
discontinuity at the place where the child dendrites are connected to the parent
dendrite. I thought this may be this way because all dendrite parts have the same
diameter, and therefore do not follow the power rule for dendrites as told by the
Rall model:

(dparent)
3
2 =

∑
(dchild)

3
2 (9)

with d the diameter. With this power rule a semi-infinite branched dendrite can
be simplified to a mathematically and electrically equivalent semi-infinite cable. For
finite cables the extra assumption is made that they all end at the same electrotonic
length. The electrotonic length at which dendrites end can be calculated in Rall’s
model by the following equation [2]:

L =
lparent
λparent

+
lchild
λchild

(10)

λ =

√
dRm

4Ri
(11)
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with L the electrotonic length (dimensionless), l the physical length (µm), d
the diameter of the dendrite (µm), and λ the length or space constant (µm). With
these equations I calculated that the equivalent cable should, in this case, be 100 +
100 · 31/3µm long.
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(a) Overview
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(b) A zoomed in picture of the transition from parent branch to child branch

Figure 5: The potential as measured in the soma for different places of an excitatory
synapse. The place is the relative place in the dendrite, with the places of the child den-
drite added to 1 to ensure easy reading. The excitatory synapse has a reversal potential
of 0mV , and peak conductance of 0.03µS
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Figure 6: The potential as measured in the soma for different places of an excitatory
synapse. The location x is measured from the soma. The excitatory synapse has a reversal
potential of 0mV , and peak conductance of 0.03µS. In this simulation the diameter of
the parent dendrite is changed from d = 1µm to d = 32/3µm. The equivalent cylinder has
the same properties as the parent and child dendrites, but a length of 100 + 100 · 31/3µm
and a diameter of 32/3µm.

The bump in the potential becomes much smaller, but does not totally
disappear when I change the diameter of the parent dendrite to 3(2/3)µm (see
figure 6), so the diameters of the dendrite parts cannot be the sole reason for this
bump. The equivalent cable I simulate shows almost the same results, until I place
the excitatory synapse on one of the child dendrites. When the excitatory synapse
is placed on the child dendrite, the potential of the anatomically correct model
suddenly drops, whereas the potential of the equivalent cylinder does not show
this sudden drop.

To look at the effect of multiple synapses, we place two excitatory synapses on
different locations on the child dendrites of the same model and let one excitatory
synapse ’walk’ over the dendrites.
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0.0 0.2 0.4 0.6 0.8 1.0

-61.2

-61.0

-60.8

-60.6

-60.4

-60.2

-60.0

X

V
(m
V
) Dendrite branch 1

Dendrite branch 2

Dendrite branch 3

Figure 7: The maximums of the voltage as measured at the soma. The place X is where
an excitatory synapse is placed on the branch of the dendrite, 0 ≤ X ≤ 1 with 0 the zero
end of the branch that is connected to the parent branch, and 1 the sealed end. There
are also two excitatory synapses placed as seen above (the red dots), at 5/18 on the first
branch and 17/18 at the second branch (red lines in the plot). The resting potential is
set at −65mV . All the synapses are the same: the onset is at 0.5ms, they excite the
membrane to 0mV , their peak conductance change is 0.01µS, and time constant τ is
0.1ms.

You can easily see in figure 7 that excitatory synapses on different branches of
a dendrite can be more effective than when the synapses are placed on the same
branch. This is partly because when they are on the same branch, they shunt each
others signal, and therefore the whole signal gets less effective.

To look more closely at the shunting, we can do the same simulation again, but
with an inhibitory synapse to ’walk’ over the dendrites. The inhibitory synapse
itself does not create a difference in the resting potential of the soma or dendrites,
so the shunting effect is the only effect created. The shunting effect is the highest
when the potential as measured at the soma is the lowest.
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Figure 8: The maximums of the voltage as measured at the soma. The place X is where
an inhibitory synapse is placed on the branch of the dendrite. The two excitatory synapses
are placed as before, at 5/18 on the first branch and 17/18 at the second branch (red lines
in the plot). The resting potential is set at −65mV , which is also the reversal potential
of the inhibitory synapse. Without the inhibitory synapse, the maximal potential as
measured at the soma is V = −61.9637mV .

In figure 8 you can see that the shunting effect of the inhibitory synapse
is the most effective when placed at the same spot as the excitatory synapse.
But you can also see, when looking very closely, that at the end of branch 2,
the off path shunting is less effective than the on path shunting at the same
distance from the excitatory synapse. This is the opposite of what Gidon and
Segev have shown in their paper. It is also interesting to think about the fact
that apparently, it is more effective to shunt a more distally located excitatory
synapse than a more closely located one. Because that is when the best shunting
effect is reached, by placing an inhibitory synapse at the same spot as the most
distally placed excitatory synapse, as seen in dendrite branch 2 in figure 8. Placing
the inhibitory synapse on the end of the branch without any synapses, still has
a significant effect. The effect of this is ∆V = −61.964mV +62.075mV = 0.111mV .

To further explore the effects of multiple synapses, I wondered what would
happen when I gave the dendrite more branches and put an excitatory synapse
on a different place on each of the branches. I expected to see one dip in the
maximum potential on each branch, at the spot of the excitatory synapse. This
proved to be wrong, as there were more effects at work.
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Figure 9: The maximums of the voltage as measured at the soma. The place X is where a
inhibitory synapse is placed on the branch of the dendrite. There is an excitatory synapse
on each branch at number branch+1

2
/18 (the red lines in the plot, the first is on branch 1,

the second on branch 2, etc.), with the same strength as before. The resting potential
is set at −65mV , which is also the reversal potential of the inhibitory synapse. All the
synapses have a peak conductance of gmax = 0.01µS

The potential in figure 9 is a lot higher than in the first two figures. This
is the case, because with so many excitatory synapses an action-potential is
generated. More interesting is that there are multiple dips in this potential per
branch, not only at the place of excitation. The maximum shunt is at the 0-end
of all branches, which seems like an effect that Gidon and Segev [4] have also
shown, where the shunting level of multiple inhibitory synapses is higher on the
junction of different dendrites than on the place of the synapses themselves.
Furthermore, the dips in voltage after this first dip are not at the exact place
of excitation, but after. This may have an similar reason. It also seems that
the place where the inhibition is most effective on the 1-side of the branches
is at the end around X = 0.95 of the 7th branch. It looks like this is the
same result as before, that shunting more distally placed excitatory synapses is
more effective than shunting the closely located ones. The location where the
inhibitory synapse is the least effective is almost an intuitive one: we would
expect that this is at the end of the first dendrite branch. This is almost true,
except that it is not the end of the branch, but around X = 0.7. It seems like
the pattern of multiple dips is the reason for this place of the minimum in shunting.
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Figure 10: The maximums of the voltage as measured at the soma. The place X is where a
inhibitory synapse is placed on the branch of the dendrite. There is an excitatory synapse
on each branch at number branch+1

2
/18 (the red lines in the plot, the first is on branch 1, the

second on branch 2, etc.), with the same strength as before. The resting potential is set at
−65mV , which is also the reversal potential of the inhibitory synapse. All the excitatory
synapses have a peak conductance of gmax = 0.001µS, and the inhibitory synapse has a
peak conductance of gmax = 0.01µS

These multiple potential dips per synapse disappear when we let the peak
conductance of all excitatory synapses be ten times lower gmax = 0.001µS, so no
action potential is generated. The best place on each branch for the inhibitory
synapse to shunt the signal is at the place of excitation. The best place for
inhibition overall, is at the place of excitation on branch 9. This is again the most
distally placed excitatory synapse, just like in figure 8.

Now we are somewhat familiar with the program NEURON and we can be-
gin to simulate a neuron with the same physiological properties as Koch et al. and
see if we can recreate their results: the fact that inhibition on path can be more
effective than at the place of excitation. The first simulation I ran did not show
this effect, inhibition at the location of the excitation was more effective than
inhibition on path, and inhibition at the soma was the least effective. I used the
same model as seen in figure 4.
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Figure 11: The F factor for different places of the inhibitory synapse. The excitatory
synapse is located at 17

18
of one of the child dendrites, the on path synapse is located at 5

18
.

Rm = 5kΩ ∗ cm, Cm = 1µF/cm2, Ra = 100Ωcm.

A explanation for the different results is that I may have used slightly different
parameters. Thus I altered several different parameters, and I got similar results
when I increased the membrane resistance, Rm = 14kΩ/cm2, and the conductance
peak of the excitatory synapse, ge = 100nS. This makes sense, because when the
resistance is higher, a conductance peak has more influence on the signal. Think
of a water hose: with a higher membrane resistivity it is less leaky, then when you
poke a hole it in, it will have a bigger effect than when the hose was leaky in the
first place. When alternating other parameters, like the length of the dendrite, the
cytoplasmic resistivity and the place of the excitatory synapse, the peaks of the F-
factor did change, but the inhibition at the excitation kept being the most effective.
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Figure 12: The F-factor with Rm = 14kΩ/cm2, ge = 100nS

When I made a model to calculate the shunt factor like Gidon and Segev,
I got different results than the results they showed in their paper. One of the
biggest differences was that they found that the peak in the shunt factor was
always precisely at the point of excitation, the peak I found was often off-path and
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seemed to be asymptotic. I also found that my SL was much lower than theirs:
while their maximum shunt level in one of the figures was around 0.3, mine kept
being under 0.01. Also the ’peak’ in the shunt level was a minimum, when we
would expect a maximum (see figure 13). I tried to differ several parameters, but I
never got the same or comparable results. I even found more asymptotic behavior
and seemingly random peaks. It is hard to get exactly the same results, partly
because I sometimes could not find which parameters Gidon and Segev used so I
had to guess, and partly because NEURON did not facilitate all the models that
they used. For example: One problem is that they use a semi-infinite cylindrical
dendrite, and this is not possible to simulate in this numerical program.
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Figure 13: Shunt level at 11
18

as a function of the place of one of the conductance pertur-
bations. The other conductance perturbation is placed at 11

18
.

As we look at figure 13, we see that there are two abnormal points: around 0.61
and 0.82. The first case of asymptotic behavior coincides with the point where the
excitatory synapse is placed, but the second one seems to be completely random,
as there is no point process or anything located at that point, so it should not be
any different from the others. Even if it coincided with something, we should not
expect asymptotic behavior in a realistic model.
For these reasons I do not think I can trust my results, but I really do not know
how to improve them. I have tried altering a lot of different simulation parameters,
but it never got any closer. When, for example, I tried a much longer or shorter
dendrite (my shorter dendrite was 100µm and my longer one 10000µm), I got these
two plots:
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(b) for L = 10000µm

Figure 14: The shunt level at the place of the excitatory synapse (X = 0.6L) as a function
of the place of the inhibitory synapse.

In figure 14a you can see that on path shunting is much more effective than
off path shunting in a short dendrite. This is the opposite of what Gidon and
Segev showed. Other than that, this is at least a smooth function. From all the
starting parameters I tried changing, the length of the dendrite gave the most
interesting figures. In figure 14b you can see what happens when I elongate the
dendrite enough, the simulation seems to be completely unstable around the place
of the excitatory synapse, which may be caused by rounding errors. Furthermore,
the shunt level is next to nothing and thus completely insignificant for the whole
length of the dendrite, this happened even when I cranked up the maximum peak
conductance of both synapses to 100nS.

These discrepancies did not show in the input resistance I measured prior to
putting the synapses on the dendrite. This input resistance was always a smooth
function with the lowest value at the 0-end of the dendrite and the highest value at
the 1-end. So I think something goes wrong when measuring the input resistance
after putting the synapses in place, or possibly the results of Gidon and Segev do
not hold up in this kind of simulation.
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Figure 15: Input resistance as a function of place on the dendrite without any synapses.

The input resistance as a function of the location of the inhibitory synapse after
putting the synapses on the dendrite is where weird things start happening. I think
this may be some kind of rounding error, for the input resistance after putting the
synapses on the dendrite is almost the same as the input resistance at 11

18before
putting the synapses on the dendrite, leading me to believe that while running a
simulation, and thereby firing the synapses, NEURON cannot measure the input
resistance.
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Figure 16: The input resistance at the place of excitation (X = 11
18

) as a function of the
location of inhibitory synapse.

I also tried to use the equation that Gidon and Segev used to calculate the
shunting level due to two perturbation levels (see equation 7). For this, I let
NEURON measure the voltage attenuation Ad,i and Ai,d for a fixed d = 11

18 ,
and a varying i. The results of these are shown in figure 17. These values for
the attenuation seem logical, for the voltage from the dendrite end to the soma
attenuates for both more steeply than the other way around. Also the voltage
attenuation for d = i is one, which also makes sense as this is measured at the spot
of injection.
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0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

i

A
i,d

(b) The voltage attenuation from i to d.

Figure 17: The voltage attenuation for a fixed d = 11
18

and a varying i.

Furthermore, I measured the input resistance for all i. This also seemed fine;
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the input resistance closer to the soma is less then further along the dendrite and
between the 100 and 300 MΩ.
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Figure 18: The input resistance at i, in the dendrite of the ball and stick model. The
dendrite is 100µm long.

Figure 19 shows the calculated shunt level with the values for voltage attenua-
tion and input resistance as shown in figures 17 and 18, and a peak conductance
for both synapses of gmax = 1µS. This is an unbelievably high shunt level,
we expect it to be more in the range of 0 to 0.3, besides that we expect it to
vary. This result didn’t change significantly when, for example, the conductance
perturbations ware set to be gmax = 0.1µS or the length of the dendrite was altered.

The shunt level looks more realistic when the second synapse is not taken into
account. Still, where Gidon and Segev show that the shunt level stays under 0.3,
ours climbs to almost 1, when the synapse is at the place of measuring. This may
be a nudge in the right direction of where it went wrong, but I cannot see where
exactly the calculation went wrong.
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Figure 19: The shunt level as calculated by equation 7. The shunt level is constant at a
value of SL = 0.994727.
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Figure 20: The shunt level at X = 11
18

as a function of i, the place of the inhibitory
synapse.

5 Discussion

The irregularity in figure 5b can be made smaller by satisfying the 3/2 power
rule, see figure 6. It is not a rule of nature that dendrite branches follow this
power rule, but, according to Johnson and Mio-Sin Wu [2], a number of studies
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have suggested that in spinal motor neurons, cortical neurons, and hippocampal
neurons the dendrite branching do seem to approximately follow this rule. But it
was not true that by this rule we could find a equivalent cylinder which would give
the same results as the branched dendrite. Maybe for this to work we should also
alter the peak conductance of reversal potential of the synapse. It would make
sense that, to make the whole neuron into an equivalent single cable model, we
should also scale some parameters of the synapses. Also, we learned from looking
at other models, that what happens on different branches influences each other,
in sometimes anti-intuitive ways. This means that we can never catch the whole
functionality of a dendrite tree by an equivalent cylinder model.

The result of a more branched dendrite as seen in figure 9 leads me to think
that the maximum shunting effect, as seen in figure 8 and figure 10, may also not
be exactly at the place of excitation, but this deviation is too small to be visible
in the simulation I made. This means that synapses on other branches have a big
effect on where the point of the best shunting effect is located. So when thinking
about whether inhibition on a certain branch is the most effective on path, off
path, or at the excitation, you cannot only consider the synapse on that branch.
Every extra synapse we consider, even on another branch, has an effect on the
most effective shunting place.

Evidently my results concerning the shunt levels calculated by measuring the
input resistance with and without synapses do not seem that believable. I tried
to fix this by altering the length of the dendrite, the peak conductances of both
the excitatory and the inhibitory synapse, the membrane resistivity, the diameter
of the dendrite, the number of segments in the dendrite, and the general ordering
of my code. Nothing seemed to change my results in the direction of what Gidon
and Segev found. Maybe there is something in the library of NEURON that
works really different from what I expected, and therefore my use of it is wrong.
Maybe the program NEURON just is not usable for the kind of simulation I
wanted to make, but this seems rather an extreme conclusion to draw. Maybe I
made an assumption in the model which I should not have made, but I could not
find everything I needed in the paper (with supplementary information) I based
this model on. The impedance class is a tool in NEURON with which you can
measure the input resistance, voltage attenuation and such. I now suspect that
this impedance class, which I use to measure the input resistance, cannot be used
during a simulation, and therefore only measures the resistance when the synapses
are inactive. This is obviously not what I wanted, and would also explain the really
low shunt levels I found. It would, however, not explain the weird asymptotic
behavior. This would mean that the way you measure the input resistance is dif-
ferent from, for example, the way you measure the membrane potential. For I can
measure the membrane potential by running a simulation, and after the simulation
ask NEURON for the membrane potential at a certain timepoint or the maximum
potential etc.. I tried to use the ’.record’ command, which saves the values of a
certain variable during a simulation, but then the input resistance seemed constant
and unrelated to the place of the inhibitory synapse. The reason that NEURON
can’t measure the input resistance while at the same time running a simula-
tion, may be that it’s a voltage based model, in stead of a conductance based model.
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The fact that even when I use the exact equation as Gidon and Segev and still
don’t get similar results, I cannot explain. I believe I use realistic parameters,
and when possible the same as Gidon and Segev. I got the same results with a
equation I simplified myself as with the un-simplified equation.

I would also not recommend any other researchers to try learning .hoc when
trying to model neurons. I think it is easier to use Python if you want to use
NEURON, because the documentation of this language is much larger and therefore
it is easier to learn and use. I often could not find how to use the .hoc code or
what certain commands really did. There are just two or three sources where you
can find out more about the language .hoc and a lot more to find documentation
of python, because it is more widely used. When you use a more documented and
less specific language, the time I used digging deep in the NEURON forum to find
out what exactly the right syntax is, can be used to construct some functionality
yourself and thereby get a better understanding of how neurons work.

6 Conclusions

The calculated results of Koch et al. hold up in the simulation I set up in
NEURON. These only hold when the excitatory peak conductance and the
membrane resistivity are relatively high, which is also what Koch et al. found.

I have not succeeded to recreate the results of Gidon and Segev with a
simulation I set up in NEURON. This is probably because I cannot find or do not
understand some of the functionality of NEURON. Or because there is something
in the equations of Gidon and Segev that needs alternate interpretation.

The location of the inhibitory synapse has an effect on the shunting of a signal
from an excitatory synapse. The two ways we looked at shunting in this thesis,
may not give the same results, i.e. looking at SL may give different conclusions
that looking at the change in potential. But to say where the most effective place
for shunting is, is probably dependent on the exact situation. For sometimes it will
be most effective to shunt at the place of excitation, but adding a synapse in a
whole other part of the dendrite tree might make it more effective to shunt slightly
off path. The most notable finding of this thesis is that when synapses of the same
strength are located on different branches of the passive dendrite tree, it is the most
effective to place the inhibitory synapse at the place of the most distally located
excitatory synapse (when no spike is generated).

7 Further Research

Interesting would be to see what effect adding ion-channels to the dendrites would
have on the shunting effects and when they are most effective. One can do this
in the program NEURON and add it to the simulation I already made (see for
example appendix A).

It would clearly also be interesting to get the simulation to measure the shunt
levels working, if necessary in another simulation environment. Here we can also
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add active channels to measure these shunt levels and get a more complete and
realistic picture of how neurons work.

References

[1] N.T. Carnevale, M.L. Hines: The Neuron Book, Cambridge University Press,
2005

[2] D. Johnston, S. Miao-Sin Wu.: Foundations of Cellular Neurophysiology, Mas-
sachusetts Institute of Technology, 1995

[3] C. Koch, T. Poggio, V. Torre: Nonlinear interactions in a dendritic tree: local-
ization, timing, and role in information processing. Proc Natl Acad Sci USA.
Vol. 80, pp. 2799-2802, May 1983

[4] A. Gidon, I. Segev: Principles governing the operation of synaptic inhibition
in dendrites. Neuron. Volume 75, Issue 2, p330–341, 26 July 2012

25



A

Appendix A

26



27



28



29



30



B

Appendix B

31



32



33



34


