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Hoi

It is a very unlikely series of events, but it is possible.

– Robin Banks, narrator Mythbusters
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Abstract

Event-by-event flow fluctuations have long been a recognized influence on anisotropic
flow measurements and the cause of factorization breaking of two-particle correlations.
A Principle Component Analysis (PCA) provides a measure for anisotropic flow and
quantifies these underlying fluctuations. PCA produces leading modes, which are com-
parable with flow harmonics (vn), and sub-leading modes, which relate to different causes
of event-by-event flow fluctuations. PCA of elliptic flow and its fluctuations is presented
at
√
sNN = 2.76 TeV in PbPb collisions for two-particle azimuthal correlations as a func-

tion of pseudorapidity (η) and transverse momentum (pT ) with data from the ALICE
detector at the LHC. The results are presented for multiple centrality windows. The
leading modes and the first sub-leading modes are used to present factorization break-
ing effects for both pT - and η-dependence. Also a comparison is made between PCA
and the accepted Q-cumulants method for two-particle correlations. It can be concluded
that PCA can be used to determine elliptic flow and, moreover, gives new information
about event-by-event effects on flow. These effects can be attributed to hydrodynamic
processes, namely the event-by-event initial density fluctuations and torque effects due
to forward-backward moving particles.
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Chapter 1

Introduction

Anisotropic flow, vn is a key observable in the field of heavy-ion collisions[1][2]. Even
though azimuthal anisotropies have been measured since the very first high energy nu-
clear collisions, they became a popular observable when large, significant in-plane elliptic
flow, v2, was first discovered at RHIC[3]. Due to the fact that anisotropies are created in
the early stages of the system, it gives unique information about the first few fm/c after
the collision, where the Quark-Gluon Plasma (QGP) is thought to exist.

Anisotropic flow is defined as the Fourier coefficients of the azimuthal dependence of
the invariant particle yield with respect to the reaction plane[4]:

2π

N

dN

dφ
= 1 + 2

∞∑
n=1

vn(pT , η) cos(n(φ−Ψn(pT , η))) (1.1)

Current techniques of measuring anisotropic flow coefficients, such as analysis with Q-
cumulants[5][6] and the event-plane method[7], are affected by multiplicity and flow fluc-
tuations in a non trivial way, making it difficult to decouple their effect. The latter
method also forces one to approximate the reaction plane, which cannot be measured
directly. This results in approximations for the reaction plane and incomplete use of all
the information available. Furthermore, as a result of event-by-event fluctuations of the
shape of the initial energy density, anisotropic flow fluctuates. This event-by-event flow
fluctuation is still a matter of debate, even though it has long been recognized to have
an important role in nuclear collisions[8]. These fluctuations can be the cause of small
factorization effects, which were found in several experiments [9][10][11].

A new way to use all information has been introduced in [12] and further examined
at CMS in [13], where the flow model is used that, varying per event, particles are
emitted with a certain probability distribution dependent upon transverse momentum,
pT , pseudorapidity1, η and azimuthal angle, φ. The single particle distribution with
dp ≡ dpT dη dφ can then be written as:

dN

dp
=

+∞∑
n=−∞

Vn(pT , η)einφ (1.2)

and the same applies for the pair distribution:〈
dNpairs
dp1dp2

〉
=

+∞∑
n=−∞

Vn∆(pT,1, pT,2, η1, η2)ein(φ1−φ2) (1.3)

The brackets denote an average over every event. The advantage of two- (or multiple-)
particle correlations is the suppression of non-flow2 correlations, due to the collective

1Pseudorapidity η = − ln
[
tan

(
θ
2

)]
with θ the angle between the beam axis and the particles trajec-

tory
2Non-flow correlations are correlations, which cannot be attributed to collective behavior. Examples

are resonance decays, jet fragmentation or Bose-Einstein correlations[14].
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nature of anisotropic flow. Here correlations caused by non-flow are left out, since these
become negligible small for large systems. The resulting Fourier coefficients for Vn∆

become a covariance matrix.

Vn∆(pT,1, pT,2, η1, η2) = 〈Vn(pT,1, η1)V ∗n (pT,2, η2)〉 (1.4)

This thesis uses a Principal Component Analysis[12] (PCA) to fully exploit all the hid-
den information in the correlation matrix Vn∆. This gives both pT - and η-dependences
for anisotropic flow and, for this thesis especially, elliptic flow (v2). Furthermore, the
eigenmodes and eigenvalues of Vn∆ reveal multiple modes, where the leading mode is the
anisotropic flow and on top of that the sub-leading modes contain new information on the
initial state and conditions of the collision. By analyzing ALICE data these eigenmodes
can be determined and compared to the flow analysis with Q-cumulants for both pT - and
η-dependence on the same data.
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Chapter 2

Experimental Setup

ALICE [15] (A Large Ion Collider Experiment) is a dedicated heavy-ion experiment at
CERN’s Large Hadron Collider in Geneva. It was designed to handle the large parti-
cle densities reached in the most head-on PbPb collisions. Furthermore, it can measure
particle transverse momentum down to pminT ≈ 0.15 GeV/c. Among the many subde-
tectors of ALICE, the ones used in the current analysis are the V0 detectors, the Inner
Tracking System (ITS) and the Time Projection Chamber (TPC). The V0 detectors are
used for centrality1 determination using the mean multiplicity. ITS tracks particle paths
and decay vertexes. Lastly, the TPC is the main tracking detector at midrapidity with
excellent particle identification (PID) capabilities.

For this thesis, a sample of 10M PbPb collisions at
√
sNN = 2.76 TeV is used. The

data was collected by ALICE in 2010. The events included in the analysis are up to
centrality 60%.

Tracks are selected requiring a minimum number of 70 TPC clusters for pT > 1.5 GeV/c
and a minimum of 100 TPC clusters for pT > 20 GeV/c after first tracking iteration[16].
Further selection and computation is executed with AliRoot2. The corresponding code
can be found in Appendix C. Only the tracks in the region |η| < 0.8 and 0.2 < pT < 5.0
GeV/c are selected.

A correction for the non-uniform azimuthal acceptance is made (see equations 3.8, 3.11
and 3.15), though it contributes for less than 0.5% of the final value of v2. This small
contribution is expected, since the detectors have full nominal azimuthal acceptance.
Statistical uncertainties for the PCA are calculated by analyzing subparts of the data
and subsequently determining the root mean squared error of v2. Tracking efficiencies
are not corrected for in the final results, but have been estimated to contribute by a few
percent maximum.

1Centrality is used for the categorization of nuclear collisions, where centrality is parametrized by the
impact parameter b, the distance between the two colliding nuclei. As b is not a direct observable, the
centrality can be experimentally inferred from the multiplicity of the produced hadrons[14].

2For more information see: AliRoot installation

http://aliweb.cern.ch/Offline/AliRoot/Installation.html
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Chapter 3

Analysis Technique

For this thesis, two methods are used to analyze the data from ALICE mentioned above.
Firstly, the Q-cumulants method from [5] and [6] is used to measure the elliptic flow
coefficient, v2. Secondly, the principal component analysis (PCA) is used, as discussed in
[12]. The two analyses are expected to provide two different measurements of the elliptic
flow coefficient, in particular of its dependence on pT and η at different centralities. In
[13] it was found that the two analyses should give two values, which are connected to
each other:

vPCAn (pT , η) ∼
√
Npairsv

Q
n (pT , η) (3.1)

However, it’s still not clear whether the values are expected to coincide. Moreover,
the PCA provides multiple sub-leading modes, which provide more information on the
underlying event-by-event flow fluctuations. In the equations in this chapter, n is used
to characterize the different coefficients of anisotropic flow. However, this thesis only
looks at elliptic flow (n = 2). In consideration of the readability and reusability of the
equations, n is not inserted.

3.1 Q-cumulants

In this thesis, the analysis for two-particle azimuthal correlations from [5] is used. Among
the available methods, this one shows the most resemblance to the calculations used in
the PCA. Higher particle correlations are neglected, since the PCA is also based on
two-particle correlations. The errors are calculated with the methods from [6].

3.1.1 Reference Flow

Firstly, we calculate a reference flow averaged for each event over the complete range of
pT or η.

〈2〉 =

∑M
i,j=1 e

in(φi−φj) −M
M(M − 1)

(3.2)

Here, M is the number of tracks and 〈2〉 is the reference flow for a single-event. The
sum is more commonly noted as |Qn|2, which explains the name Q-cumulants. |Qn|2 is
usually referred to as the flow vector[2] and can also be rewritten to:

M∑
i,j=1

ein(φi−φj) = einφie−inφj (3.3)

=
(

cosnφi + i sinnφi

)
·
(

cosnφj − i sinnφj

)
(3.4)

= cosnφi cosnφj + sinnφi sinnφj

+ i (sinnφi cosnφj − cosnφi sinnφj)
(3.5)
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Note that the imaginary part can be ignored. Next the average over all events is calcu-
lated.

〈〈2〉〉 ≡

∑
Events

(
w〈2〉

)
i
〈2〉i∑

Events

(
w〈2〉

)
i

(3.6)

=

∑
Events

Mi(Mi − 1)〈2〉i∑
Events

Mi(Mi − 1)
(3.7)

Weights are added to ensure minimal fluctuations due to different event multiplicities.
After adding an azimuthal correction to correct for the non-uniform acceptance of the
detector, the reference flow is obtained. The double brackets indicate an average over all
tracks and over all events.

Reference F low = 〈〈2〉〉 −
[
〈〈cosnφ1〉〉2 + 〈〈sinnφ1〉〉2

]
(3.8)

3.1.2 Differential Flow

The calculations for differential flow are analogous to those for the reference flow. The
only difference is that differential flow is calculated per bin, instead of over all bins.
Therefore the variable m is needed, which is the number of tracks in a certain bin. The
differential flow averaged for each event becomes:

〈2′〉 =

m∑
i=1

∑′M

j=1
ein(ψi−φj)

m(M − 1)
(3.9)

The second sum is taken over all j 6= i . Here ψi and φj are the azimuthal angles of
particles in the desired bin and all bins, respectively. Averaging over all events gives the
uncorrected differential flow 〈〈2′〉〉.

〈〈2′〉〉 ≡

∑
Events

mi(Mi − 1)〈2′〉i∑
Events

mi(Mi − 1)
(3.10)

Again non-uniform azimuthal detector acceptance is corrected for by subtracting correc-
tion terms. This results in the following final differential flow.

Differential F low = 〈〈2′〉〉 − [〈〈cosnψ1〉〉〈〈cosnφ2〉〉+ 〈〈sinnψ1〉〉〈〈sinnφ2〉〉] (3.11)

Where ψ1 is averaged over all tracks and all events in the corresponding bin and φ2 is
averaged over all bins. The anisotropic flow, vn, can now easily be calculated from the
differential and reference flow.

vn =
DifferentialF low√
ReferenceF low

(3.12)

3.2 Principle Component Analysis

The mathematical concept of PCA is to construct independent components, which, to-
gether, explain the correlations between two particles, Vn∆ and thereby the flow fluctu-
ations per event. In a more mathematical way this is denoted as:

Vn∆(pT,1, pT,2, η1, η2) ≈
k∑

α=1

V (α)
n (pT,1, η1)V (α)∗

n (pT,2, η2) (3.13)

For k = 1, equation 3.13 gives only one mode for the correlation, which is the usual
anisotropic flow. However, for k > 1 factorization breaking takes place and new modes
are added, which also contribute to Vn∆. These new components may reveal informa-
tion about flow fluctuations. Therefore the correlations between particles need to be
calculated to determine the components.



3.2. PRINCIPLE COMPONENT ANALYSIS 7

3.2.1 Construction of the correlation matrix

The detector acceptance is divided intoNb bins for either pT or η. The assigned number of
bins is not only relevant for the logical distribution of entries per bin, but also determines
the size of the covariance matrix calculated below and therefore the number of modes
which are calculated, since k ≤ Nb. A new flow vector Qn is determined corresponding
to the flow model sketched in chapter 1.

Qn(pT , η) =
1

2π∆pT∆η

m∑
j=1

einφj (3.14)

The first component is a normalization with ∆pT and ∆η the range in transverse momen-
tum and pseudorapidity space for a specific bin1. m is again the number of particles in
a particular bin. Subsequently, the correlations between different bins Vn∆ is calculated.
For all bins, this gives a covariance matrix Vn∆ : {Nb ×Nb}.

Vn∆(paT , p
b
T , η

a, ηb) = 〈Qn(pT,1, η1)Q∗n(pT,2, η2)〉 −
〈M(pT,1, η1)〉 δpT,1,pT,2

δη1,η2

(2π∆pT∆η)
2

− 〈Qn(pT,1, η1)〉 〈Q∗n(pT,2, η2)〉
(3.15)

The second term subtracts self correlations on the diagonal of the matrix. The last term
corrects for a non-uniform detector acceptance by deducting the average Q-vectors[17].
The brackets indicate the average over all events. The resulting matrix is positive semidef-
inite by construction, when only the first term is taken into account, since it results from
an inner product. This means all eigenvalues are positive. After considering the other
two terms, some eigenvalues become negative due to non-flow correlations.

3.2.2 Calculation of eigenmodes

Next step is diagonalizing Vn∆, which gives the eigenvalues and eigenmodes.

Vn∆(paT , p
b
T , η

a, ηb) =
∑
α

λ(α)ψ(α)(pT,1, η1)ψ(α)(pT,2, η2) (3.16)

Here 0 < α ≤ Nb ,eigenvalues are ordered from largest to smallest (λ(1) > λ(2) > . . . )
and ψ(α)(pT , η) is the corresponding eigenvector. Comparing equations 3.13 and 3.16,

quickly learns that there is a way to express V
(α)
n (pT , η) as a function of the eigenvalues

and eigenmodes.

V (α)
n (pT , η) ≡

√
λ(α)ψ(α)(pT , η) (3.17)

The downside to this equation is that it requires eigenvalues to be positive. Therefore non-
flow correlations cannot be calculated by this analysis. To achieve a value for anisotropic

flow for one particle, V
(α)
n is divided by the average multiplicity.

v(α)
n (pT , η) ≡ V

(α)
n (pT , η)

〈m(pT , η)〉
(3.18)

Just as in equation 3.9, m(pT , η) is the multiplicity per bin. Evaluation of this equation
shows that for n = 0 relative multiplicity fluctuations can be studied and that for this
thesis, n = 2 gives the various components for elliptic flow.

3.2.3 Factorization breaking

The small factorization breaking effects[9], which were briefly touched upon in chapter 1
can be conveniently explained by the PCA components. A measure for this factorization
breaking is introduced in [18].

rn(paT , p
b
T ) ≡ Vn∆(paT , p

b
T )√

Vn∆(paT , p
a
T )Vn∆(pbT , p

b
T )

(3.19)

1This is the bin width and either 4.8 or 1.6, depending on which dependence is assessed.
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rn can take values between -1 and 1 and is ±1 for factorization (i.e. k = 1 in 3.13).
Implementing equation 3.16 with only α = 1, 2 and taking a Taylor approximation for

v
(1)
n � v

(2)
n , gives:

rn(paT , p
b
T ) ≈ 1− 1

2

(
v

(2)
n (paT )

v
(1)
n (paT )

− v
(2)
n (pbT )

v
(1)
n (pbT )

)2

(3.20)

Naturally, this equation also holds true for η-dependence. Therefore PCA provides a
natural way of explaining and quantifying factorization breaking in nuclear collissions.
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Chapter 4

Results

4.1 Comparison between PCA and Q-cumulants

Fig.4.1 shows the ratio between the principal component analysis and Q-cumulants anal-
ysis of the second flow coefficient (elliptic flow) for both pT and η at

√
sNN = 2.76 TeV

in high-multiplicity PbPb collisions. Only 20-30% centrality is shown1; in all other cen-
tralities the ratios are compatible. For PCA the outcome of equation 3.18 with α = 1
and n = 2 is used. For the Q-cumulants approach, equation 3.12 is taken with n = 2.

Figure 4.1 – Ratio between PCA and Q-cumulants analysis outcome for v2 as a function
of pT (left) and η (right) in multiple centrality windows at

√
sNN = 2.76TeV.

From Fig. 4.1, it can be seen that both analyses display the same dependence, dif-
fering less than 6% and 60% as a function of η and pT , respectively. The two analyses
do not necessarily have to give the same result, as underlying flow fluctuations are taken
into account in different ways. Nevertheless, a close resemblance is expected and also
found.

4.2 PCA of pseudorapidity

Leading and sub-leading components of the PCA are shown in Fig.4.2 for central (0-10%)
up to peripheral (50-60%) collisions with their η-dependences in the |η| < 0.8 window
at a binsize of 0.1. This results in a 16 × 16-matrix, corresponding to the η-bins and
accordingly, 16 eigenmodes. In general, there is a strong ordering between leading and
sub-leading eigenvalues: λ(1)/λ(2) ∼ 4.

1All centralities can be found in Appendix B
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Figure 4.2 – Leading (α = 1) and sub-leading (α = 2) modes of the principal compo-
nent analysis of elliptic flow (n = 2) for multiple centrality windows as a function of
pseudorapidity at

√
sNN = 2.76 TeV for PbPb collisions. The error bars correspond to

statistical uncertainties.

From Figures 4.2 and 4.3 it is clear that the principal components are orthogonal, since

the modes are sinusoidal with increasing number of nodes: v
(α)
2 ∼ sin ((α− 1)η)).

Figure 4.3 – Multiple (2 ≤ α ≤ 5) modes of the
principal component analysis of elliptic flow for
the 20-30% centrality range as a function of pseu-
dorapidity. The error bars are statistical uncer-
tainties.

Figure 4.4 – Schematic
representation of torque
effects due to for-
ward/backward moving
particles adapted from
[19]. The principal axes
of the initial elliptical
volume change from
negative to positive
pseudorapidity.
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For α ≥ 3, eigenvalues show an ordering of λ(α)/λ(α+1) ∼ 1.005, which is small. This can
be attributed to the contribution of non-flow at small values of relative pseudorapidity
∆η. As can be seen in Fig.4.3, flow components for α ≥ 3 become less distinct due to
increasingly large statistical errors. Therefore they are left out in further discussion. A
full list of eigenvalues for η can be found in table A.2 in Appendix A. For η-dependence,
no eigenvalues are negative in this case.

Equation 3.13 doesn’t assign a sign, which means a choice has to be made regarding par-

ity for v
(α)
2 . In Fig.4.2 v

(2)
2 is chosen positive for positive pseudorapidity. The asymmetric

rapidity shape of α = 2 is attributed to event-by-event torque effects due to initial fluctu-
ations of the nuclei densities and the preference for forward (backward) moving particles
to keep moving forward (backward) after collision[19]. This is schematically represented
in Fig.4.4. This results in a difference of principal axis of the transverse momentum
distributions of the detected particles as a function of η. Therefore the sub-leading com-
ponent changes sign from negative to positive pseudorapidity. With this component, the
torque effect can be measured experimentally.

4.3 PCA of transverse momentum

Figure 4.5 – Leading (α = 1) and sub-leading (α = 2) modes of the principal component
analysis of elliptic flow (n = 2) for multiple centrality windows as a function of trans-
verse momentum at

√
sNN = 2.76 TeV for PbPb collisions. Bins for low pT are smaller

due to higher multiplicity. The error bars correspond to statistical uncertainties.

In Fig.4.5 the first two components (α = 1, 2) are shown for the PCA as a function of
pT for centrality windows between 0-60%. The pT -range from 0.2 to 5 GeV is considered
with the conventional choice of bin size, which minimizes multiplicity variations between
the bins. This leads to a 19 × 19-correlationmatrix with 19 corresponding eigenvalues.
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Depending on centrality, 3-5 modes are unusable as a result of negative eigenvalues (table
A.1 in Appendix A). The origin of these modes is not fully understood. The eigenvalues
show for α ≥ 2 a strong ordering for all centrality ranges: λ(α)/λ(α+1) ∼ 1.65. This
suggests a long range correlation in ∆pT , as opposed to what is the case for pseudo-
rapidity. The ratio between the leading and sub-leading modes (∼ 30) indicate that
pT -dependence of elliptic flow is less influenced by flow fluctuations than for η. Further-

more, v
(2)
2 increases for large pT and more peripheral collisions, just as its leading mode.

This can be attributed to event-by-event fluctuations in the initial density distributions.
These density inhomogenities cause the anisotropic flow angles to vary with pT [10][11].

The magnitude of v
(2)
2 gives a measure of this variance, which is 5-15% for high pT ac-

cording to Fig.4.5. As can be seen in Fig.4.6, statistical errors increase for higher modes,
but nevertheless for 2 ≤ α ≤ 5 the same dependence is visible for all centralities (only
20-30% is shown).

Figure 4.6 – Multiple (2 ≤ α ≤ 5) modes of the principal component analysis of elliptic
flow for the 20-30% centrality range as a function of transverse momentum. The error
bars are statistical uncertainties.

4.4 Factorization breaking

The factorization breaking coefficient, r2, from equation 3.20 quantifies the influences of
sub-leading modes on flow fluctuations. As can be seen in Fig.4.7, factorization breaking
takes place for η 6= 0 and increases with η for all centralities. This is expected, since

Fig. 4.2 shows that v
(2)
2 is significant for large |η|. There is no clear dependence between

the magnitude of r2 and the centrality. It seems that for more peripheral collisions, the
factorization breaking is larger. However, the centrality window 0-10% contradicts this.
Nonetheless, the shape of the function agrees with cumulative measures of the torque in
[19], which used Monte Carlo simulations.

In Fig.4.8, it can be seen that r2 becomes significantly different from 1 for large pT .

This corresponds with the findings in Fig.4.5, where v
(2)
2 increases with pT . Just as

in Fig.4.7, r2 seems to become smaller for larger centralities with the exception of the
most head-on collisions (0-10%). The statistical errors are also very large in the 0-10%
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Figure 4.7 – Factorization breaking coefficient r2 as a function of η for centralities 0-60%.
The thin bars correspond to the error propagation of the statistical uncertainties of the
variables in equation 3.20.

centrality. Therefore it can be concluded that these results are not fully usable (at least
in the 0-10% centrality window) and more research is needed to get a clear view of the
factorization breaking calculations with PCA. Nevertheless, the shape and magnitudes
correspond with theoretical models in [10]2 of PbPb collisions at

√
sNN = 2.76 TeV.

Figure 4.8 – Factorization breaking coefficient r2 as a function of pT for centralities 0-60%.
The thin bars correspond to the error propagation of the statistical uncertainties of the
variables in equation 3.20.

2In this paper MC-Glauber and MC-KLN models are used.
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Chapter 5

Conclusion

PCA uses all the information available from two-particle correlations and may thus pro-
vide a new way to understand anisotropic flow and its inherent fluctuations. Factorization
breakdown of flow can now be explained by the interplay between the leading and sub-
leading modes. The latter reveal, for both transverse momentum and pseudorapidity, a
significant effect, which can be attributed to two physical processes in the initial state.
These processes are the density inhomogenities of the two colliding nuclei and torque
effects on the principal axis of the matter after collision. They can now be measured and
examined in further research. Also a way to quantify the factorization breaking is given,
which flows directly from the components of the PCA.

To summarize, principal components analysis may give an unique insight into the fluctu-
ations of anisotropic flow in heavy-ion collisions, which, although being identified since
several years, influence the measurements of flow coefficients in a way which is still under
debate. PCA consists of a new way to calculate anisotropic flow with the same precision
as previous methods and provides further observables, the sub-leading modes, to quantify
its fluctuations. Although the interpretation of PCA results is still not fully understood,
this analysis may open the way to numerous new experimental and theoretical programs
investigating flow in heavy-ion collisions.
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Appendix A

Tables with eigenvalues

Table A.1 – Eigenvalues for pT

0-10% 10-20% 20-30% 30-40% 40-50% 50-60%

0 254.329 7.13575 5.4371 3.02831 1.28898 0.426696

1 4.82651 0.262705 0.170246 0.105673 0.0599403 0.0299446

2 0.26827 0.157493 0.103236 0.0571476 0.0307422 0.0136895

3 0.162848 0.0973572 0.0615172 0.0331436 0.0178535 0.00754277

4 0.0976929 0.0580559 0.0348233 0.0202198 0.010328 0.00421407

5 0.0593541 0.0377274 0.021579 0.0117402 0.00611057 0.00266755

6 0.0366464 0.022406 0.013738 0.00765769 0.00342419 0.00162917

7 0.0237037 0.0148542 0.00857553 0.00522276 0.00205772 0.000848191

8 0.0164859 0.0113767 0.00637626 0.00371307 0.00149081 0.000418766

9 0.0123858 0.0073828 0.00429559 0.00177498 0.00094343 0.000356879

10 0.00680651 0.00523759 0.00266756 0.00129795 0.000738205 0.000234678

11 0.0036665 0.00245202 0.0014237 0.000432613 0.000286046 9.63654e-05

12 0.000819913 0.000793954 0.000504419 0.000243401 0.000118029 5.50477·10−5

13 0.000468831 0.000495992 0.000368334 5.92212·10−5 7.22258·10−5 1.96098·10−5

14 0.000276377 0.000266515 0.000178831 4.12965·10−5 1.84579·10−5 -1.50037·10−7

15 0.000132403 0.000165013 6.02127·10−5 -9.383·10−6 1.58659e·10−6 -6.06382·10−6

16 1.61483·10−5 -1.19513·10−5 1.02768e·10−5 -3.12189·10−5 -2.62834·10−5 -9.57577·10−6

17 -3.535·10−5 -6.08836·10−5 -3.06824·10−5 -0.000145367 -4.27281e·10−5 -1.56544·10−5

18 -0.000281056 -0.000293957 -0.000155489 -0.00018148 -8.46634·10−5 -6.22198·10−5
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Table A.2 – Eigenvalues for η

0-10% 10-20% 20-30% 30-40% 40-50% 50-60%

0 4.30922 5.22043 3.89613 2.21133 0.999875 0.379517

1 1.42226 0.973763 0.658106 0.428748 0.258765 0.145058

2 1.32845 0.896259 0.605666 0.394358 0.239905 0.135148

3 1.3263 0.883966 0.594723 0.387293 0.234823 0.131798

4 1.3236 0.881328 0.591983 0.384083 0.232477 0.130395

5 1.31854 0.880426 0.591091 0.382939 0.232101 0.129829

6 1.3158 0.878087 0.588432 0.380747 0.230835 0.129222

7 1.31184 0.877339 0.58817 0.380299 0.229897 0.129149

8 1.30868 0.87655 0.585348 0.37923 0.229211 0.128699

9 1.30287 0.874389 0.584903 0.378694 0.228967 0.128487

10 1.29787 0.872756 0.583601 0.37775 0.228552 0.12811

11 1.29431 0.87083 0.582601 0.377259 0.228389 0.12802

12 1.28989 0.868432 0.581742 0.376398 0.227708 0.127852

13 1.26567 0.866306 0.580212 0.375922 0.227569 0.127705

14 1.25743 0.857387 0.577004 0.374105 0.22617 0.126917

15 0.315656 0.849372 0.570981 0.369998 0.223991 0.125792
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Appendix B

Ratios between PCA and
Q-cumulants

Figure B.1 – Ratios between PCA and Q-cumulants for pT -dependence for the 0-60%
centrality window.
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Figure B.2 – Ratios between PCA and Q-cumulants for η-dependence for the 0-60%
centrality window.
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Appendix C

Analysis code

C.1 PCA Code

Only the code for transverse momentum is shown, but for pseudorapidity the code is the
same. The calculations come from [12] and [13].

1 // Constants

const Int_t sigmaevents = 1000000; // Number of events in one subcalculation

const Int_t sigmaN = 16; // Number of subcalculations to determine the statistical variation

// Parameters

6 Double_t Q1Re[nPtBins] = {}, // Real part Q-vector per event

Q1Im[nPtBins] = {}, // Imaginary part Q-vector per event

Q1ReTo[nPtBins ][ nCentralityRanges] = {}, // Real part Q-vector total

Q1ImTo[nPtBins ][ nCentralityRanges] = {}, // Imaginary part Q-vector total

sigmaQ1ReTo[nPtBins ][ sigmaN ][ nCentralityRanges] = {}, // Real part Q-vector subtotal

11 sigmaQ1ImTo[nPtBins ][ sigmaN ][ nCentralityRanges] = {}, // Imaginary part Q-vector subtotal

sigmaV2Delta[nCentralityRanges ][ sigmaN ][ nPtBins*nPtBins] = {}, // Correlationmatrix for subcalculation

SubEllipticFlow[nPtBins ][ nPtBins ][ sigmaN ][ nCentralityRanges] = {}, // Elliptic flow for subcalculation

V2Delta[nCentralityRanges ][ nPtBins*nPtBins] = {}, // Correlationmatrix

normalization[nPtBins ][ nPtBins], // Normalization

16 flow[nPtBins ][ nPtBins ][ nCentralityRanges] = {}; // Elliptic flow

Int_t QTo[nPtBins] = {}, // Multiplicity counter per event

Multiplicity[nPtBins ][ nCentralityRanges] = {}, // Total Multiplicity

sigmaMultiplicity[nPtBins ][ sigmaN ][ nCentralityRanges] = {}, // Total Multiplicity per subcalculation

sigma = 0; // Counter for subcalculations

21

// Normalization determination

for (Int_t r = 0; r<nPtBins; r++) {

for (Int_t c = 0; c<nPtBins; c++) {

normalization[r][c] = TMath :: Power (2*pi*PtRange*EtaRange ,2);

26 }

}

// For -loop over the events (n)

for(Int_t n = 0; n < nEvents; n++) {

31 inTree ->GetEntry(n);

if (n%sigmaevents ==0 && n!=0)

sigma += 1;

// Centrality binning

36 Double_t centrality = eventData ->v0Cent;

if (centrality >=60)

continue;

Int_t binnc = (centrality /10);

41 // For -loop over the Tracks (i)

for(Int_t i = 0; i < nTracks; i++) {

// Track selection and pt binning

if (Ti->pt >5)

46 continue;

if (Ti->eta > 0.8 || Ti->eta <-0.8)

continue;

for (Int_t k = 1; k <= nPtBins; k++) {

if (Ti ->pt < PtBin[k] && Ti ->pt > PtBin[k-1])

51 Int_t binn = k-1;

}

Q1Re[binn] += TMath ::Cos (2*Ti->phi);

Q1Im[binn] += TMath ::Sin (2*Ti->phi);

56 Q1ReTo[binn][ binnc] += TMath ::Cos (2*Ti->phi);

Q1ImTo[binn][binnc] += TMath ::Sin (2*Ti->phi);

QTo[binn] += 1;

sigmaQ1ReTo[binn][sigma][ binnc] += TMath ::Cos (2*Ti->phi);

sigmaQ1ImTo[binn][sigma][ binnc] += TMath ::Sin (2*Ti->phi);

61 } // end of loop over i

// Correlationmatrix

for (Int_t r = 0; r<nPtBins; r++) {

for (Int_t c = 0; c<nPtBins; c++) {

66 if (r==c) { // Multiplicity correction

V2Delta[binnc ][r*nPtBins+c] += (Q1Re[r]*Q1Re[c] + Q1Im[r]*Q1Im[c] - QTo[r])/normalization[r][c];

sigmaV2Delta[binnc ][ sigma][r*nPtBins+c] += (Q1Re[r]*Q1Re[c] + Q1Im[r]*Q1Im[c] - QTo[r])/normalization[r][c];

}

else {

71 V2Delta[binnc][r*nPtBins+c] += (Q1Re[r]*Q1Re[c] + Q1Im[r]*Q1Im[c])/normalization[r][c];

sigmaV2Delta[binnc ][ sigma][r*nPtBins+c] += (Q1Re[r]*Q1Re[c] + Q1Im[r]*Q1Im[c])/normalization[r][c];

}

} // end of loop over c

} // end of loop over r
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76

// empty Q-vectors

for (Int_t m = 0; m<nPtBins; m++) {

Multiplicity[m][binnc] += QTo[m];

sigmaMultiplicity[m][sigma][binnc] += QTo[m];

81 Q1Re[m] = 0;

Q1Im[m] = 0;

QTo[m] = 0;

} // end of loop over m

} // end of loop over n

86

// For -loop over the centrality ranges (ce)

for(Int_t ce = 0; ce < nCentralityRanges; ce++) {

for (Int_t r = 0; r<nPtBins; r++) { // Azimuthal correction on correlationmatrix

for (Int_t c = 0; c<nPtBins; c++) {

91 V2Delta[ce][r*nPtBins+c] = V2Delta[ce][r*nPtBins+c]/nEvents -( Q1ReTo[r][ce]* Q1ReTo[c][ce]+ Q1ImTo[r][ce]* Q1ImTo[c

][ce])/( nEvents*nEvents);

for (Int_t s = 0; s<(sigmaN -1); s++) {

sigmaV2Delta[ce][s][r*nPtBins+c] = sigmaV2Delta[ce][s][r*nPtBins+c]/ sigmaevents -( sigmaQ1ReTo[r][s][ce]*

sigmaQ1ReTo[c][s][ce]+ sigmaQ1ImTo[r][s][ce]* sigmaQ1ImTo[c][s][ce])/( sigmaevents*sigmaevents*normalization[r][c]);

}

sigmaV2Delta[ce][sigmaN -1][r*nPtBins+c] = sigmaV2Delta[ce][sigmaN -1][r*nPtBins+c]/ sigmaevents -( sigmaQ1ReTo[r][

sigmaN -1][ce]* sigmaQ1ReTo[c][sigmaN -1][ce]+ sigmaQ1ImTo[r][sigmaN -1][ce]* sigmaQ1ImTo[c][sigmaN -1][ce])/(( nEvents%

sigmaevents)*( nEvents%sigmaevents)*normalization[r][c]);

96 }

}

// Subcalculations to determine the variation in Elliptic flow

for (Int_t s = 0; s<sigmaN; s++) {

101 TMatrixDSym sigmacorrelationmatrix(nPtBins ,sigmaV2Delta[ce][s]);

TMatrixDSymEigen sigmaeigenmatrix(sigmacorrelationmatrix);

TVectorD sigmaeigenval = sigmaeigenmatrix.GetEigenValues ();

TMatrixD sigmaeigenvec = sigmaeigenmatrix.GetEigenVectors ();

for (Int_t m = 0; m<nPtBins; m++) {

106 for (Int_t a = 0; a<nPtBins; a++) {

if (sigmaeigenval(a) >=0 && sigmaMultiplicity[m][s][ce]>0) { // negative eigenvalues are mostly due to non -flow

if (s!=(sigmaN -1))

SubEllipticFlow[a][m][s][ce] = (TMath::Sqrt(sigmaeigenval(a)) * sigmaeigenvec(m,a) * sigmaevents)/(

sigmaMultiplicity[m][s][ce]);

else

111 SubEllipticFlow[a][m][s][ce] = (TMath ::Sqrt(sigmaeigenval(a)) * sigmaeigenvec(m,a) * (nEvents%sigmaevents)

)/( sigmaMultiplicity[m][s][ce]);

} // end of if

} // end of loop over a

SubEllipticFlow1[ce]->Fill(PtBin[m],SubEllipticFlow [0][m][s][ce]);

SubEllipticFlow2[ce]->Fill(PtBin[m],SubEllipticFlow [1][m][s][ce]);

116 SubEllipticFlow3[ce]->Fill(PtBin[m],SubEllipticFlow [2][m][s][ce]);

SubEllipticFlow4[ce]->Fill(PtBin[m],SubEllipticFlow [3][m][s][ce]);

SubEllipticFlow5[ce]->Fill(PtBin[m],SubEllipticFlow [4][m][s][ce]);

} // end of loop over m

} // end of loop over s

121

// Matrix eigenvector calculations

TMatrixDSym correlationmatrix(nPtBins ,V2Delta[ce]);

TMatrixDSymEigen eigenmatrix(correlationmatrix);

TVectorD eigenval = eigenmatrix.GetEigenValues ();

126 TMatrixD eigenvec = eigenmatrix.GetEigenVectors ();

// Elliptic Flow calculations

for (Int_t m = 0; m<nPtBins; m++) {

for (Int_t a = 0; a<nPtBins; a++) {

131 if (eigenval(a) >=0 && Multiplicity[m][ce]>0) { // negative eigenvalues are mostly due to non -flow

flow[a][m][ce] = (TMath ::Sqrt(eigenval(a)) * eigenvec(m,a) * nEvents)/( Multiplicity[m][ce]);

} // end of if

} // end of loop over a

EllipticFlowComponent1[ce]->SetBinContent(m+1,flow [0][m][ce]);

136 EllipticFlowComponent2[ce]->SetBinContent(m+1,flow [1][m][ce]);

EllipticFlowComponent3[ce]->SetBinContent(m+1,flow [2][m][ce]);

EllipticFlowComponent4[ce]->SetBinContent(m+1,flow [3][m][ce]);

EllipticFlowComponent5[ce]->SetBinContent(m+1,flow [4][m][ce]);

EllipticFlowComponent1[ce]->SetBinError(m+1, SubEllipticFlow1[ce]->GetBinError(m));

141 EllipticFlowComponent2[ce]->SetBinError(m+1, SubEllipticFlow2[ce]->GetBinError(m));

EllipticFlowComponent3[ce]->SetBinError(m+1, SubEllipticFlow3[ce]->GetBinError(m));

EllipticFlowComponent4[ce]->SetBinError(m+1, SubEllipticFlow4[ce]->GetBinError(m));

EllipticFlowComponent5[ce]->SetBinError(m+1, SubEllipticFlow5[ce]->GetBinError(m));

} // end of loop over m

146 } // end of loop over ce
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C.2 Q-cumulants code

Again only the code for transverse momentum is shown, but with minimum effort the
code for pseudorapidity can be obtained. The code is based on the calculations in [5]
and [6].

Double_t Q1Re = 0, //Real part Q-vector reference flow

Q1Im = 0, // Imaginary part Q-vector reference flow

qpt1Re[nPtBins] = {}, // Real part Q-vector differential flow

4 qpt1Im[nPtBins] = {}; // Imaginary part Q-vector differential flow

azirefre[nCentralityRanges] = {}, //Real part azimuthal correction reference flow

azirefim[nCentralityRanges] = {}, // Imaginary part azimuthal correction reference flow

azirefM[nCentralityRanges] = {}, // Multiplicity counter azimuthal correction reference flow

aziref[nCentralityRanges] = {}, // Azimuthal correction reference flow

9 azidifre[nPtBins ][ nCentralityRanges] = {}, // Real part azimuthal correction differential flow

azidifim[nPtBins ][ nCentralityRanges] = {}, // Imaginary part azimuthal correction differential flow

azidifM[nPtBins ][ nCentralityRanges] = {}, // Multiplicity counter all events azimuthal correction

differential flow

azidif[nPtBins ][ nCentralityRanges] = {}; // Azimuthal correction differential flow

Int_t Q1M = 0, // Multiplicity counter per event reference flow

14 qpt1M[nPtBins] = {}; // Multiplicity counter per event differential flow

// Sums needed to calculate errors and weights

Double_t sum1[nPtBins ][ nCentralityRanges] = {},

sum2[nPtBins ][ nCentralityRanges] = {},

19 sum3[nPtBins ][ nCentralityRanges] = {},

sum4[nPtBins ][ nCentralityRanges] = {},

sum5[nPtBins ][ nCentralityRanges] = {},

sumw1[nPtBins ][ nCentralityRanges] = {},

sumw2[nPtBins ][ nCentralityRanges] = {},

24 sumw3[nPtBins ][ nCentralityRanges] = {},

sumw4[nPtBins ][ nCentralityRanges] = {},

sumw5[nPtBins ][ nCentralityRanges] = {};

// For -loop over the events (n)

29 for(Int_t n = 0; n < nEvents; n++) {

inTree ->GetEntry(n);

// Centrality binning

Double_t centrality = eventData ->v0Cent;

34 if (centrality >= 60)

continue;

Int_t binnc = (centrality /10);

// For -loop over the Tracks (i)

39 for(Int_t i = 0; i < nTracks; i++) {

// Track selection and pt binning

if (Ti->pt >5)

continue;

44 if (Ti ->eta > 0.8 || Ti ->eta <-0.8)

continue;

for (Int_t k = 1; k <= nPtBins; k++) {

if (Ti ->pt < PtBin[k] && Ti ->pt > PtBin[k-1])

Int_t binn = k-1;

49 }

Q1Re += TMath::Cos(2*Ti ->phi);

Q1Im += TMath::Sin(2*Ti ->phi);

Q1M += 1;

54 qpt1Re[binn] += TMath::Cos(2*Ti ->phi);

qpt1Im[binn] += TMath::Sin(2*Ti->phi);

qpt1M[binn] += 1;

} // end of loop over i

59

if (Q1M > 1) {

Double_t differential[nPtBins ]; // differential flow

Double_t reference = (Q1Re*Q1Re + Q1Im*Q1Im)/(Q1M*Q1M -Q1M); // reference flow

azirefre[binnc] += Q1Re;

64 azirefim[binnc] += Q1Im;

azirefM[binnc] += Q1M;

// For -loop over the bins (m)

for (Int_t m = 0; m<nPtBins; m++) {

69 ReferencePlot[binnc]->Fill(PtBins[m],reference ,Q1M*Q1M);

if (qpt1M[m] > 1) {

azidifre[m][ binnc] += qpt1Re[m];

azidifim[m][ binnc] += qpt1Im[m];

azidifM[m][binnc] += qpt1M[m];

74 differential[m] = (qpt1Re[m]*Q1Re + qpt1Im[m]*Q1Im)/( qpt1M[m]*Q1M -qpt1M[m]);

DifferentialPlot[binnc]->Fill(PtBins[m],differential[m],qpt1M[m]*Q1M -qpt1M[m]);

} // end of if

} // end of loop over m

} // end of if

79

// empty q-vectors

Q1Re = 0;

Q1Im = 0;

Q1M = 0;

84 for (Int_t m = 0; m<nPtBins; m++) {

qpt1Re[m] = 0.;

qpt1Im[m] = 0.;

qpt1M[m] = 0.;

}

89 } // end of loop over n

// For -loop over the centrality ranges (c)

// Loop is needed to add the azimuthal correction

for(Int_t c = 0; c < nCentralityRanges; c++) {

94

if (azirefM[c] > 0)

aziref[c] = (azirefre[c]* azirefre[c])/( azirefM[c]* azirefM[c]) + (azirefim[c]* azirefim[c])/( azirefM[c]* azirefM[c]);

else

aziref[c] = 0;

99 Double_t Reference[nCentralityRanges ]; // Total Reference Flow

Reference[c] = ReferencePlot[c]->GetBinContent (3);

Reference[c] = Reference[c] - aziref[c];

// For -loop over the bins (m)
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104 for (Int_t m = 0; m<nPtBins; m++) {

if(azidifM[m][c] > 0 && azirefM[c] > 0)

azidif[m][c] = (azidifre[m][c]* azirefre[c])/( azidifM[m][c]* azirefM[c]) + (azidifim[m][c]* azirefim[c])/( azidifM[m

][c]* azirefM[c]);

else

azidif[m][c] = 0;

109 Double_t Differential[nCentralityRanges ]; // Total Differential Flow

Differential[c] = DifferentialPlot[c]->GetBinContent(m);

Differential[c] = Differential[c] - azidif[m][c];

TotalDifferentialPlot[c]->SetBinContent(m+1, Differential[c]);

TotalReferencePlot[c]->SetBinContent(m+1,Reference[c]);

114 } // end of loop over m

} // end of loop over c

// For -loop over the events (n)

for(Int_t n = 0; n < nEvents; n++) {

119

inTree ->GetEntry(n);

Double_t centrality = eventData ->v0Cent;

if (centrality >= 60)

continue;

124 Int_t binnc = (centrality /10);

// For -loop over the Tracks (i)

for(Int_t i = 0; i < nTracks; i++) {

129 // Track selection and pt binning

if (Ti->pt >5)

continue;

if (Ti->eta > 0.8 || Ti ->eta <-0.8)

continue;

134 for (Int_t k = 1; k <= nPtBins; k++) {

if (Ti->pt < PtBin[k] && Ti ->pt > PtBin[k-1])

Int_t binn = k-1;

}

Q1Re += TMath::Cos(2*Ti ->phi);

139 Q1Im += TMath::Sin(2*Ti ->phi);

Q1M += 1;

qpt1Re[binn] += TMath::Cos(2*Ti->phi);

qpt1Im[binn] += TMath::Sin(2*Ti->phi);

qpt1M[binn] += 1;

144 } // end of loop over i

if (Q1M > 1) {

Double_t differential[nPtBins ]; // Differential flow per event

Double_t difweight[nPtBins ]; // weight of differential flow

Double_t refweight = Q1M*Q1M; // weight of reference flow

149 Double_t reference = (Q1Re*Q1Re + Q1Im*Q1Im)/(Q1M*Q1M -Q1M); // Reference flow per event

// For -loop over the bins (m)

for (Int_t m = 0; m<nPtBins; m++) {

if (qpt1M[m] > 1) {

154 differential[m] = (qpt1Re[m]*Q1Re + qpt1Im[m]*Q1Im)/(qpt1M[m]*Q1M -qpt1M[m]);

difweight[m] = qpt1M[m]*Q1M -qpt1M[m];

// calculation of the sums needed for the errors

sum2[m][binnc] += (difweight[m])*( differential[m]-( TotalDifferentialPlot[binnc]->GetBinContent(m)))*(

differential[m]-( TotalDifferentialPlot[binnc]->GetBinContent(m)));

sum5[m][binnc] += (difweight[m])*( differential[m]);

159 sumw1[m][ binnc] += (difweight[m])*( difweight[m]);

sumw2[m][binnc] += difweight[m];

sum1[m][binnc] += (refweight)*(reference -( TotalReferencePlot[binnc]->GetBinContent(m)))*(reference -(

TotalReferencePlot[binnc]->GetBinContent(m)));

sum3[m][binnc] += (refweight)*( difweight[m])*( reference)*( differential[m]);

sum4[m][binnc] += (refweight)*( reference);

164 sumw3[m][ binnc] += (refweight)*( refweight);

sumw4[m][binnc] += refweight;

sumw5[m][binnc] += (difweight[m])*( refweight);

} // end of if

} // end of loop over m

169 } // end of if

// empty q-vectors

Q1Re = 0;

Q1Im = 0;

Q1M = 0;

174 for (Int_t m = 0; m<nPtBins; m++) {

qpt1Re[m] = 0.;

qpt1Im[m] = 0.;

qpt1M[m] = 0.;

} // end of loop over m

179 } // end of loop over n

// For -loop over the centrality ranges (c)

for(Int_t c = 0; c < nCentralityRanges; c++) {

184 // For -loop over the bins (m)

for (Int_t m = 0; m<nPtBins; m++) {

Double_t V2[nCentralityRanges ]; // Elliptic flow

Double_t error2[nPtBins ][ nCentralityRanges ]; // Variation

Double_t error[nPtBins ][ nCentralityRanges ]; // Standard deviation

189 if (TMath::Sqrt(( TotalReferencePlot[c]->GetBinContent(m))) > 0 && (TotalDifferentialPlot[c]->GetBinContent(m)) !=

0) {

if (sumw4[m][c]*( sumw4[m][c]*sumw4[m][c]-sumw3[m][c])!=0 && (sum3[m][c]*sumw4[m][c]*sumw2[m][c]-sumw5[m][c]*sum4

[m][c]*sum5[m][c])!= 0 && (sumw4[m][c]*sumw2[m][c]-sumw5[m][c])*sumw4[m][c]*sumw2[m][c]!=0){

error2[m][c] = (( TotalDifferentialPlot[c]->GetBinContent(m))*( TotalDifferentialPlot[c]->GetBinContent(m))*

sumw3[m][c]*sum1[m][c]) / (4*( TotalReferencePlot[c]->GetBinContent(m))*( TotalReferencePlot[c]->GetBinContent(m))*(

TotalReferencePlot[c]->GetBinContent(m))*sumw4[m][c]*( sumw4[m][c]*sumw4[m][c]-sumw3[m][c])) + (sumw1[m][c]*sum2[m

][c]) / (( TotalReferencePlot[c]->GetBinContent(m))*sumw2[m][c]*( sumw2[m][c]*sumw2[m][c]-sumw1[m][c])) - ((

TotalDifferentialPlot[c]->GetBinContent(m))*(sum3[m][c]*sumw4[m][c]*sumw2[m][c]-sumw5[m][c]*sum4[m][c]*sum5[m][c])

) / (( TotalReferencePlot[c]->GetBinContent(m))*( TotalReferencePlot[c]->GetBinContent(m))*( sumw4[m][c]*sumw2[m][c]-

sumw5[m][c])*sumw4[m][c]* sumw2[m][c]);

error[m][c] = TMath::Sqrt(TMath ::Abs(error2[m][c]));

V2[c] = (TotalDifferentialPlot[c]->GetBinContent(m))/TMath::Sqrt(( TotalReferencePlot[c]->GetBinContent(m)));

194 EllipticFlowPlot[c]->SetBinContent(m+1,V2[c]);

EllipticFlowPlot[c]-> SetBinError(m+1,error[m][c]);

} // end of if for error2

} //end of if for Ref >0

} // end of loop over m

199 } // end of loop over c
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