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Abstract

The honeycomb lattice of carbon atoms forming graphene has many interesting
properties including a remarkable electronic band structure. In the band struc-
ture the valence and conduction band touch forming a so-called Dirac cone, a lin-
ear energy-momentum dispersion. The square-depleted lattice, or Lieb lattice, has
one corner and two edge sites per unit cell in a signi�cantly di�erent geometry to
graphene but also contains Dirac cones in its bandstructure. In this case there is also
a third, �at, band intersecting the Dirac cone at the Fermi energy. This �at band is
localised on the two edge sites of the unit cell while the corner sites onlycontribute
to the top and bottom bands converging into a Dirac cone. The band structure of
the Lieb lattice has, however, never been measured and proved in an arti�cial elec-
tronic lattice. In this thesis we show the experimental realisation of constructing
and measuring an arti�cial electronic Lieb lattice made by nano-scale patterning
of a two-dimensional electron gas. CO molecules were manipulated on a Cu(111)
surface to create a Lieb lattice in the existing surface state. By performing scanning
tunneling spectroscopy and di�erential conductance mapping we con�rmed the lo-
calisation of the wavefunctions contributing to the bandstructure which is shown to
be di�erent for the states contributing to the �at band and the states contributing
to the upper and lower bands converging to a Dirac cone. We show further that
changes in the unit cell size can tune the energy of the band structure. We also in-
vestigated the higher-energy e�ects encountered in the bandstructure. These results
could be used for further investigations into the possibilities to tune the electronic
structure of nano-patterned surface states.

Cover �gure: Scanning tunneling microscope image of an ordered group of 349

CO molecules all manipulated laterally into place by hand forming three di�erent

lattices. (Left) 12 by 12 square lattice with a unit cell of 1.33 by 1.28 nm. (Centre)
5 by 5 Lieb lattice with surrounding wall with a unit cell of 2.66 by 2.56 nm. (Right)
5 by 5 square lattice with a unit cell of 2.66 by 2.56 nm. Dimensions of the �gure

are 20 by 50 nm.
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1 Introduction

True two-dimensional materials of one atom or molecule thick are novel materials that
have attracted a lot of attention in the last decade. This is mainly due to graphene, a
one-atom thick carbon honeycomb lattice with fascinating properties discovered in 2004
[1]. Some interesting properties of graphene arise from the extraordinary band structure
which consists of two touching bands forming a so-called Dirac cone [2]. A Dirac point
is where two bands touch forming a cone because the dispersion has a linear energy-
momentum relation in reciprocal space.

Not only hexagonal structures can have a Dirac cone, the Lieb lattice has it too [3].
However, the Lieb lattice has an extra interesting feature in the band structure, a �at
band intersecting the Dirac cone. A �at band indicates a high density of states in a very
narrow energy range while also theoretically leading to zero conductivity at the Dirac
point [4]. The dispersionless band is also interesting in the �eld of topology [5] although
this will not be discussed in this thesis .

To investigate the band structure of a Lieb lattice one has to create a two-dimensional
Lieb lattice �rst as the lattice has never before been reported to exist as a physical lattice
in nature. Various research groups have used di�erent approaches to construct such an
arti�cial lattice. Two examples include the cold atom approach [6, 7] and photonic lattices
[8]. However, these methods do not create an electronic lattice. Gomes et al. successfully
synthesized the �rst arti�cial electronic lattice, a molecular graphene system assembled
by manipulating carbon monoxide molecules on a two-dimensional electron gas on a
copper surface in a scanning tunneling microscope (STM) [9]. The measurements of the
band structure were performed in-situ by scanning tunneling spectroscopy and di�erential
conductance maps. As the tunnelling conductance can be related to the (local) DOS, it
is a crucial tool for investigation of electronic band structures in the STM.

In this research we want to create an electronic Lieb lattice by lateral manipulation of
CO molecules evaporated on to Cu(111) [10, 11] and subsequently measure its electronic
structure while relating the experimental results to theoretical calculations.

By creating an arti�cial lattice in the STM we can measure the electronic structure
of the lattice immediately after completion. Due to the ability to modify such arti�cial
lattices this research opens up new pathways to change parameters in a system inducing
superconductivity [12], spin-orbit coupling [13] or the fractional quantum hall e�ect [14]
e�ectively broadening the range of materials one can investigate.
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2 Theory

In this chapter there will be a short description of the Lieb lattice and its electronic struc-
ture, the sample and its properties, measurement techniques and DFT on the system.

The Lieb lattice is a line-centered square lattice [5], or square-depleted lattice, with
three equivalent sites in the unit cell as shown in Figure 1a. The edge sites (A and C)
are di�erent to the corner sites (B) when comparing neighbours. The edge sites have
only two neighbouring sites while the corner sites have four neighbours. The Lieb lattice
has garnered much interest due to an unusual band structure with the presence of a
topological �at band intersecting a Dirac cone [7, 15] (Figure 1b). In a Dirac cone the
electronic band structure has a linear dependence on the wavevector k instead of the
expected square dependence [16]. A well-known example of a material exhibiting Dirac
cones is the honeycomb lattice of graphene where due to the Dirac cone, electrons travel
ballistically [17]. The Lieb lattice is however most de�nitely not a honeycomb structure,
but also shows a Dirac cone in reciprocal space. The Lieb lattice has a di�erent geometry
than graphene, so in reciprocal space the Dirac cone appears at the M-point instead of
the K-point.

Many papers have investigated the electronic structure of a Lieb lattice using tight-
binding and other methods [3, 5, 19], and some even subsequently propose how to make
an electronic Lieb lattice in the STM [20]. However, no one has experimentally proved the
existence of an arti�cial electronic Lieb lattice. Photonic Lieb lattices have been created
[8, 21] and measured proving the existence of the Lieb band structure, however they are
not electronic. When using photonic lattices there are no electrons but photons at the
three lattice sites and therefore the properties of such a lattice will not be comparable to
real lattices made from atoms. E�ectively an atom is a collection of electrons surrounding
a nucleus, so to make an arti�cial electronic Lieb lattice one must use a method that
enables electrons to be in the position of the Lieb lattice nucleus sites.

2.1 Theoretical approach

Using a three-site model we can perform tight-binding calculations on the Lieb lattice.
The calculations produce a bandstructure as shown in Figure 1b. Here we see the Dirac
points with linear energy-momentum dispersions intersected by the �at band. The den-
sity of states of this bandstructure is shown in Figure 1c where the �at band (in green)
generates a very high, sharp peak at the Fermi energy, precisely in the middle of the two
bands (in blue) that converge to the Dirac cone. The �at band DOS is only generated
by states localised on the edge sites meaning that the states at the Fermi energy are
e�ectively forming a square electronic crystal. The upper and lower bands contain states
located on both corner and edge sites where the corner sites have a higher intensity. This
is, however, all true for a nearest-neighbour approximation. When including real e�ects
such as next-nearest-neighbour interactions the relative intensities and positions of these
three interesting features change as can be seen in the mu�n-tin potential calculation
shown in Figure 1d. Most notably the density of states of the �at band broadens due to
corrugation appearing in the �at band. This is however not the scope of this thesis. Also,
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because we cannot build perfect periodic and in�nite lattices, the e�ects of building a
�nite lattice are including in this calculation. The upper band contributing to the Dirac
cone gains intensity in comparison to the lower band, while an extra peak appears in the

B

A

C

a b

E

kx

ky

c
Energy (a.u.)

LD
O

S 
(a

.u
.)

0.0 0.2 0.4- 0.4 - 0.2
Energy (a.u.)

LD
O

S 
(a

.u
.)

0.0 0.2 0.4- 0.4 - 0.2 d

Figure 1: Description of the Lieb lattice (a) Schematic representation of the Lieb lattice
with three sites (A, B and C) per unit cell (dashed black square). Sites A and C are
equivalent edge sites, both having two neighbouring sites while B is a corner site with 4
nearest neighbours. (b) Band structure of the Lieb lattice in a nearest-neighbour tight-
binding approximation with kx and ky in the horizontal plane as a function of energy. The
band structure consists of three bands of which the top and bottom band touch at the
M points in reciprocal space forming a Dirac cone intersected by the third, dispersionless
band. (c) Nearest-neighbour tight-binding calculation of the local density of states of
the edge sites (green) and corner sites (blue) of a Lieb lattice as a function of energy.
Realise that the relative intensities of (c) vary slightly due to discretisation of the band
structure. For example, the high DOS of the �at band is in principle a delta function,
but is portrayed with an arti�cial broadening. (d) Mu�n-tin calculation of the local
density of states of the edge sites (green) and corner sites (blue) of a �nite Lieb lattice as
a function of energy. Note the change in relative intensities of the corner site spectrum
and the extra peak in the edge site spectrum. We included a broadening of 80mV for
the mu�n-tin model. Adapted from [18].
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Figure 2: The principle of the scanning tunneling microscope. On the left and right are
the densities of states of the sample and tip respectively. In the centre a vacuum barrier
(UHV) is situated creating a potential barrier for the tunnel current. The energy states
are �lled to the Fermi energy EF . A tunnel current can �ow from the sample to the tip
by applying a negative bias voltage to the tip or a positive bias voltage to the sample.
Figure adapted from [24].

edge spectrum at slightly higher energies than the �at band itself.

2.2 Scanning tunneling microscopy

Scanning tunneling microscopy (STM) is a very versatile technique developed in 1982 by
Binnig and Rohrer [22]. Generally seen, this technique consists of an atomically sharp
sharp needle, or tip, scanning over a conductive surface while measuring the tunnel
current going from sample to tip. It relies on the basic quantum mechanical principle
of tunneling. Tunneling is where a particle, in this case an electron, has a non-zero
probability to appear at the other side of a potential barrier. This is schematically
illustrated in Figure 2. This concept is used in the STM where the ultra-high vacuum
(UHV) of ∼ 10−10 mbar is the potential barrier. If the tip is very far from the sample
surface the probability of electrons tunneling to the tip is virtually zero. Approaching the
tip to ranges of several nanometers increases the current exponentially with the distance
to a few hundred pA or tens of nA. The standard setting for the STM is in a feedback
loop linked to the tunneling current. Applying a certain bias voltage over the tip and
sample generates a tunnel current. The feedback loop maintains the current setting, if it
becomes too low, e.g. due to a CO molecule with very few electrons at the bias voltage,
the feedback mechanism approaches the tip to increase the probability of tunneling and
thus the tunnel current. If the current becomes too high, the tip is retracted. A molecule,
or system has multiple energy levels, or bands. Reversely if the bias voltage applied over
the tip and sample is in resonance with such a band or energy level, the tunnel current
will be much higher than when not in resonance [23].
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Scanning tunneling spectroscopy

Scanning tunneling spectroscopy (STS) is a technique to measure the di�erential con-
ductance as a function of the voltage at a certain position on your sample. During a
spectrum the voltage is swept from a starting voltage (e.g. 1V) to an end voltage (-1V)
and back again. This gives a current versus voltage or I(V) spectrum. The derivative
of this signal gives a dI /dV signal which is proportional to the local density of states
(LDOS). This di�erential is acquired using standard lock-in techniques.

The spectrum obtained is proportional to the LDOS of the sample and the tip [25, 26],
see equation (1).

dI

dV
∝ ρs(EF − eV ) · ρt(EF ) (1)

Where ρs is the DOS of the sample, ρt is the DOS of the tip, EF is the Fermi energy
and eV is the applied bias voltage. When the dI /dV signal increases it means that
there are more electrons tunnelling at that certain energy. This corresponds to a higher
availability of electrons meaning a higher density of states. Due to a spectrum being
taken at a single point it is a local DOS (LDOS). Because only the DOS of the sample is
desired one has to remove the DOS of the tip and Cu surface. This is done by dividing
the spectrum by an average spectrum taken on bare Cu(111) with the same tip as used
for the measurements on the lattice. Spectra taken on Cu(111) di�er with each set of
measurements due to a di�erent con�guration of the tip. This also shows how important
it is to divide the spectra taken on the lattices by the `correct' Cu(111) spectrum to be
able to compare the edge and corner spectra e�ectively.

Di�erential conductance maps

A di�erential conductance map is a scan taken at constant height with a certain applied
bias voltage. Such a map visualises the localisation of certain states in the system, at the
voltage applied, and thus the wavefunctions. A stack of maps taken at various energies
is in principle equivalent to many spectra taken at each point in the grid and slicing
them at a certain energies. A map visualises the LDOS better than spectra because the
spatial resolution is inherent in a map. Also the relative intensities are visualised by the
contrast in an e�ective way.

2.3 Cu(111) surface patterned by CO molecules

A large bene�t of the STM is that you can manipulate the substrate to create a system
you want to measure, and measure it immediately afterwards. Due to an electronic
lattice needing electrons at the lattice sites the creation of an arti�cial electronic lattice
requires having electrons available in the locations where one would expect the sites of
the lattice. To do this we use the surface state of a clean and atomically �at Cu(111)
crystal. The surface state exists in the bulk bandgap of metals and is located at the
surface of a terminated crystal [25, 27]. A single copper crystal can be described by a
nearly-free electron model in the bulk, but at the surface of a crystal the wave functions
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Figure 3: Representative copper spectrum taken on bare Cu(111) with the surface state
visible at -0.45V.

of the electrons suddenly have a vacuum to deal with instead of neighbouring Cu atoms.
This surface state has a very sharp onset at -0.45 V [26], see Figure 3 for an example
of a Cu(111) spectrum visualising the surface state. Due to the surface state there
is a relatively high concentration of electrons at the surface forming a so-called two-
dimensional electron gas or 2DEG.

Adding surface modi�cations to the 2DEG induces modulation of the electron gas
and can force, or guide, the electrons into a desirable pattern [9, 28, 29]. Many di�erent
elements or molecules can be used for surface modi�cations such as Xe [30], Ag [29]
and CO molecules [31]. We chose to use CO molecules as scatterers based on the good
manipulability and e�ects shown in [9, 31]. When CO molecules are placed on the
copper surface they change the electron presence by diminishing the electron density
in their immediate surroundings. Therefore we have to place the CO molecules in an
anti-Lieb lattice pattern so that the electrons of the 2DEG are located at the Lieb lattice
sites. We do this in a way shown in Figure 4. Here we see the Lieb lattice in (a) with
the three sites per unit cell. In (b) we see the placement of CO molecules in a cross
shape which gives the electron density a kinetic deformation [32]. Simply placing carbon
monoxide molecules in the empty centre of the unit cell of the Lieb lattice would have
generated a square lattice of carbon monoxide. For this inverted molecular lattice to
show a similar electronic band structure as the real Lieb lattice the spacing of the carbon
monoxide molecules must be carefully arranged. If the outer four CO molecules are placed
too close to the central CO molecule the Lieb lattice could e�ectively become a square
lattice. A lattice spacing that is too large will cause the electrons to lose con�nement
into the lattice sites. Also, as explained in section 4.4, an increase in unit cell size will
yield the system nearly unmeasurable by STM due to the interesting e�ects dropping to
energies lower than the surface state onset.

The exact placement of carbon monoxide molecules on the hexagonally arranged
Cu(111) surface to create a square anti-Lieb lattice had dimensions of 2.66 by 2.56 nm
and is described in more detail in section 4.4 `In�uence of unit cell size'.
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Figure 4: (a) Schematic representation of a �nite Lieb lattice with three sites (A, B
and C) per unit cell (black dashed square). Sites A and C have two nearest neighbours
while site B has four nearest neighbours. (b) Schematic representation of a �nite inverse
Lieb lattice with `crosses' of 5 CO molecules in dark grey. This pattern is expected to
modify the 2D electron gas into a Lieb lattice pattern with three sites as visualised by
the red, green and blue shaded areas. These areas correspond to the three sites A, B and
C in the Lieb lattice.

2.4 Density functional theory

The electron densities of an inverse Lieb lattice built by placement of CO molecules on
a Cu(111) surface in comparison to a clean Cu(111) surface were investigated in collabo-
ration with Riande Dekker during the course `Computational Quantum Mechanics' [33].
The results were not as expected on the basis of previous studies by Ropo et al. and
Paavilaien et al. [34, 35], as we expected an increase in electron density between the CO
molecules due to being repulsed by the negative charge of the CO. The results we found
were, however, that the electron density just below and in the immediate surroundings
(radius of 3Å) of CO molecules was diminished, but that the only increase of electron
density was found in deeper layers of the Cu(111). We could see no increase of electron
density between the CO molecules. It might therefore be a better explanation that the
CO molecules deny the electrons of the 2DEG access to the locations the molecules are
located at. In this way the procedure of placing the CO molecules in an anti lattice
makes much more sense.
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3 Experimental Methods

3.1 Experimental setup

The measurements done for this thesis were performed in a low-temperature microscope
built by Omicron Nanosciences shown in Figure 5. The microscope was cooled to 4.5K
by a cryostat �lled with liquid helium and liquid nitrogen, while the pressure in the
STM chamber was in the 10−10mbar range. A W-tip was used which was sharpened by
voltage pulses and controlled crashes into the Cu(111) surface resulting in a Cu-covered
tip sharp enough to manipulate CO molecules and stable enough to take spectroscopy
measurements.

For the experiments a single crystal of Cu(111) was used as substrate due to the
presence of a surface state near the Fermi level creating a two-dimensional electron gas
at the surface [27]. The crystal was cleaned by repeated cycles of sputtering with Ar-gas
(at 3.7 · 10−6mbar) and annealing by heating the crystal to 460◦C. Subsequently the
sample was transferred to the LT-STM and cooled to 4.5K. CO gas was leaked into the
chamber to 2 · 10−8mbar for 3 minutes with a line of sight to the cold crystal enabling
CO molecules to adsorb onto the sample.

3.2 Atom manipulation

The random position of the CO molecules adsorbed to the Cu(111) surface is far from
the structure we actually want. The tip of the STM can be used to manipulate surface
adsorbates to the required position [10, 36]. There are two techniques for manipulation:
vertical, and lateral manipulation. We use lateral manipulation which drags or pushes
the CO molecule over the surface [11] whereas vertical manipulation actually picks the
molecule up and deposits it again in the required position [37]. To laterally manipulate a
CO molecule to the desired position one has to approach the tip to the CO molecule by
increasing the tunnel current and decreasing the bias, or gap-, voltage and move the tip
to the desired location, see Figure 6a. The standard scanning parameters were a 50mV
gap-voltage with a 1 nA tunnel current setpoint, although the scan parameters are not
of in�uence on the success rate of the lateral manipulations. One can be a lot further
away from the surface (e.g. at 500mV and 100 pA) and still get reliable manipulations.

To manipulate, the parameters are changed to 10mV and 40 nA. The tip is closer to
the surface and therefore has more interaction with the CO molecule. When moving the
tip the CO molecule moves along with it [31]. The feedback loop was enabled during the
manipulations. When manipulating the CO molecule one can track the Z(r) signal to
see if the manipulation was successful. This signal is the tip height as a function of the
distance travelled during the manipulation, see Figure 6b. Here the corresponding Z(r)
signal for multiple lengths and directions of successful manipulations are shown (except
for the grey line). The purple line for example shows that the CO molecule was not
following a close-packed line at �rst, but during the second half of the manipulation is
hopping from one top site of the Cu(111) surface atoms to another. All of them have
equally spaced features corresponding to top, bridge and valley sites of the hexagonal
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Figure 5: Scanning Tunneling Microscope used for the measurements on the Lieb lattice.
(A) is the cryostat keeping the microscope head including tip and sample at 4.5K. (B)
Position of the microscope head including tip and sample.
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Figure 6: Lateral manipulation of CO molecules (a) Schematic representation of a
lateral CO manipulation. The tip is relocated above a CO molecule after which the bias
voltage is reduced to 10 mV and the tunnel current setpoint is increased to 40 nA. Both
these actions approach the tip towards the CO molecule. Relocating the tip drags the
CO molecule along with it, after which the tip retracts again. (b) The Z(r) signal of
the tip shows the surface corrugation and thus the Cu(111) surface atoms for multiple
manipulations. In grey one can see an example of a failed manipulation, where the CO
molecule was not moved. All other colours correspond to successful manipulations

Cu(111) surface. One extra requirement for manipulation is most important, the tip must
be sharp. Good imaging of the CO molecules generally leads to successful manipulations
up to several tens of nanometres in one go.

The end position of the CO molecule after a manipulation will not always be where
you expected because the molecules want to sit on top sites of the Cu(111)surface [37].
If the end of the manipulation is in between three Cu sites, it will jump to either one
of them. As one can see in Figure 6b the Z(r) signals do not always end on a top site.
Subsequent correction manipulations are then required. Various steps in the creation
process are shown in Figure 7. In (a) we start o� with a disordered pattern of CO
molecules on a �at Cu(111) surface and progressing through (b)-(d) we arrive at (e)
where the completed lattice is shown. The time for manual construction of a 5 by 5 Lieb
lattice with surrounding walls can be as short as 5 hours.

Automating the manipulations is a natural next step, as manual manipulations be-
come tedious rather quickly. In a similar fashion as Celotti et al. the decision was made
to write a programme to speed up the process of building the required lattices and pat-
terns. Ing. Stephan Zevenhuizen wrote SnapZone in Python which can take STM scans,
recognize CO molecules, reposition the tip above the CO molecule and manipulate it to
a pre-de�ned template. It also calculates the shortest paths from the CO positions to the
desired positions, reducing the total manipulation time. In theory and digitally it works
really well, however practically it does not as the calibration of the STM has not been
corrected enough to compensate the problems of mismatching templates and reality on
large scale. On a small scale of ∼ 5 by 5 nm the manipulations are correct so utilising
small building zones to create a large lattice should be a viable procedure.
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Figure 7: Height scans showing the construction of an inverse Lieb lattice. (a) Un-
touched Cu(111) surface with a random distribution of CO molecules. (b) - (d) Overview
scans of the construction of an inverse Lieb lattice. (e) Final inverse Lieb lattice con-
sisting of 169 CO molecules. Scan settings are 1 nA and 50mV. All scale bars are 5 nm

Building a square structure on a hexagonal Cu(111) surface is not easy to start with.
Unless you go to really large sizes, one cannot build a perfect square on a hexagonal
lattice. We did try some close approximations as shown later in Figure 14. The nearest-
neighbour distance of a Cu(111) surface is 2.556Å [9, 38] so CO molecules must be
placed at multiples of this distance (when considering close-packed rows). The most
square option was a 2.66 by 2.56 nm unit cell.

3.3 Local density of states measurements

To visualise the local density of states (LDOS) many spectra were taken on various sized
Lieb lattices. The spectra were taken from 1.00V to -1.00V with 501 points or 1.00V to
-0.70V with 301 points and an integration time τ of 100ms. The settings from which the
spectra were started was a feedback bias voltage of 1.00V with a current of 5 nA. The
Lakeshore lock-in ampli�er was set to a frequency f of 273Hz, an oscillation amplitude
Aosc of 20mV rms and a sensitivity of 50mV.

The di�erential conductance or dI /dV maps were taken from -500mV to 600mV in
steps of 50mV resulting in 23 maps. Each map has dimensions of 18 nm by 36 nm and
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was measured with 200 by 400 points using an integration time of 10ms per point. The
settings before starting the map measurements were a bias voltage of 50mV, a current
of 1 nA and a ∆Z of 0.100 nm. The maps were taken with the feedback loop disabled.
The lock-in ampli�er was set to a frequency f of 273Hz, an oscillation amplitude Aosc

of 20mV and a sensitivity of 5mV.
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4 Results and Discussion

Many measurements have been performed on the arti�cial Lieb lattices. We have suc-
ceeded in measuring the electronic structure of Lieb lattices and have seen the Lieb
signatures in the measurements indicating that we have succeeded in building an arti-
�cial electronic Lieb lattice. The results have been split into di�erent aspects although
frequently the various aspects came from the same set of measurements.

An arti�cial Lieb lattice was constructed in an inverse way as described in Chapter
3 and is shown in Figure 8. Here one can see the CO molecules in black on a Cu(111)
surface. An edge and corner site are indicated by the respectively green and blue coloured
circles. Note that the physical dimensions of a corner site are identical to an edge site,
the di�erence lies purely in the number of neighbouring sites where a corner site has four
edge sites as neighbours and an edge site only two corner sites.

The results will be discussed in various ways starting with spectra taken on the
corenr and edge sites followed by spectra taken along a whole line within the lattice.
Subsequently di�erential conductance maps are shown due to their power of visualisation.
The e�ect of changing lattice parameters is discussed extensively while also higher energy
states in both the square lattice and the Lieb lattice will be shown.

4.1 Scanning tunneling spectroscopy

A spectrum taken in the STM is a di�erential conductance, or dI /dV, plot which shows
derivative of the current at each applied voltage. As mentioned in Chapter 2 the signal is
proportional to the density of states of the tip and of the corresponding sample. We divide
the spectra by an average spectrum taken on bare Cu(111) as shown in `Experimental
Methods'. Do realise that dividing by the Cu(111) spectrum does not create the Lieb
signature, it only removes the background. The Lieb signature is always visible in the
raw spectra as well.

The positions in the lattices where the spectra were taken are shown in Figure 8.
The spectra taken on the square lattice are shown in red, while the spectra taken on the
inverse Lieb structure are shown in blue (corner sites) and green (edge sites).

The spectra were taken between -1.00V or -0.70V and 1.00V which is the region
in which the local density of states is expected to change due to the presence of CO
molecules [9]. The surface state of a Cu(111) surface has its onset at -0.450V and is
visible in Figure 9 as the yellow line. Di�erent tips will change the Cu(111) spectrum,
sometimes so drastically that the surface state onset is not visible anymore. Here one
can see that the Cu(111) spectrum matches the shape of the spectra taken on the Lieb
and square lattice quite well and can therefore be used to divide the spectra.

In Figure 9 the di�erential conductance spectra on a Lieb lattice and a corresponding
square lattice are shown. The average copper spectrum is in yellow, the average spectra
taken on the corner sites of the square lattice are in red and the average spectra taken
on a Lieb corner and edge are shown in blue and green respectively. The surface state
onset slope, visible in the Cu(111) spectrum around -0.45V changes due to placement
of the CO molecules [39]. In this �gure we can already see intensity di�erences at the
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Figure 8: Arrangement of 313 CO molecules (black) into a 5 by 5 inverse Lieb lattice
with a surrounding wall to increase the number of equivalent sites and a 12 by 12 square
lattice. Spectra positions in the square lattice are indicated by the red circles, positions
in the inverse Lieb lattice are given in blue (corner sites) and green (edge sites). The
measurement settings for the scan were 1 nA and 50mV. Scale bar is 5 nm.

energies of interest visualised by the dashed lines at -200mV, -50mV and 150mV which
are the same energies in Figure 10. However the density of states of the tip is still in the
spectrum. To remove the e�ect of the DOS of the tip the spectra are divided by the Cu
spectrum. The result is visible in Figure 10.

The dashed lines in Figure 10 indicate the energies of interest at -200mV, -50mV
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Figure 9: Raw spectra taken on Cu(111) and the Lieb lattice with the trace and retrace
averaged and a small convolution �lter applied to reduce noise. Dashed lines are included
at the energies of interest (-200mV, -50mV and 150mV) at which dI /dV maps were
taken.

and 150mV. At these energies di�erential conductance maps are shown in section 4.3.
The spectra for the corner sites and the edge sites di�er at various points indicating the
presence of an electronic Lieb lattice. At -200mV the corner sites have a slightly higher
intensity than the edge sites and again at 150 mV. At -50 mV the situation is reversed
whereby the edge sites have higher intensity than the corner sites. If one compares the
spectrum of the square lattice to the Lieb spectra, one can see that between -300mV and
200mV the square spectrum rises in a more or less straight line. The spectra on a corner
and edge site in the Lieb lattice de�nitely do not stay straight in this region and di�er
drastically from each other.

An interesting e�ect on the spectra caused by �nite size-e�ects is the presence of an
extra peak in the edge spectrum around 100mV. This peak can be attributed to the
�niteness of the lattice [18]. In this measurement series we built an inverse Lieb lattice
of 5 by 5 unit cells. This is of course far from an ideal periodic lattice which would be
periodic over tens of nanometers. If we compare the experimental spectra to the mu�n-
tin calculation shown in Figure 1d they match really well, connecting our results with
the theory.
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Figure 10: Spectra taken on the square and Lieb lattice divided by the corresponding
Cu spectrum. This removes the tip DOS from the spectrum as well as removing any
e�ects caused by the Cu(111) surface state. Insert Spectrum taken on a corner site of a
square lattice with similar dimensions to the Lieb lattice.

4.2 Spectra on line

The spectra discussed in the previous section were taken on the di�erent sites by manually
positioning the tip in the centre of such a site. Spectra on line remove the small deviation
induced by manual positioning by simply taking spectra on many points along a line.
This enables us to visualise the transistion from a corner site to an edge site and back
again. Figure 11 shows spectra when taken along a line in the Lieb lattice (a�c) or on
the square lattice (d�f) used as a reference lattice. In (b) the spectra between -0.4V
and 0.2V alternate between spectra with two peaks (corner sites) corresponding to the
convergence of the top and bottom band, and one peak (edge sites) corresponding to
the �at band. The two types of positions are separated by bridge sites where a high
intensity is only visible around 0.55V. Single spectra selected from the line spectra are
shwon in (c). The characteristics match the locations they were measured in very well
and conform nicely to the pattern such as gathered from Figure 10.

The spectra taken on a line in the small square lattice (Figure 11e) show the spectra
on the corner sites. The di�erences between the corner spectra on the square lattice and
the Lieb lattice are the same as seen in Figure 10. The corner sites on the square lattice
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Figure 11: Line spectra (a) STM image of the Lieb lattice with the line along which
100 spectra were taken in purple. (b) Contour plot of 100 spectra taken on a Lieb
lattice at the positions shown in (a). (c) Example of three spectra from the line spectra
representative for the contour plot in (b). Spectrum taken at a corner site in dark blue, an
edge site in red and a bridge site in light blue. (d) STM image of the square lattice with
the line along which 125 spectra were taken in purple. (e) Contour plot of 125 spectra
taken on a square lattice at the positions shown in (d) (f) Example of two spectra from
the line spectra representative for the contour plot in (e). Spectrum taken at a corner
site in dark blue and a bridge site in light blue. All scale bars are 5 nm.

have one highest intensity peak, and show no signatures of a Lieb lattice at the energies
of interest.

The spectra on line certainly enhance the understanding of the di�erence in DOS
at edge and corner sites. However, one of the best ways to visualise spatial intensity
patterns is by using di�erential conductance mapping.

4.3 Di�erential conductance maps

Di�erential conductance maps are often a good visualisation for information about the
local density of states in a system although the information contained in a stack of maps
at various bias voltages is analogous to spectra taken in many places on the lattice.
Figure 12 contains three maps taken at three energies which con�rm the characteristics
of the electronic structure of a Lieb lattice: the �at band only contains states localised
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Figure 12: Di�erential conductance maps at various bias voltages, (a) -200mV, (b)
-50mV and (c) 150mV, all with a scale bar of 5 nm. The maps were taken on a Lieb
lattice with a square lattice of similar dimensions built next to it as a reference lattice.
The full series of maps can be seen in the Appendix Figure 20.

on the edge sites while the upper and lower bands contains states located on both corner
and edge sites where the corner sites are more dominant. Figure 12a shows the lower
band which will converge into the Dirac cone situated around -200mV where the corner
sites have a larger intensity than the edge sites. This corresponds to the lowest band of
the density of states calculated from tight-binding calculations, shown in Figure 1c and
d in the Theory. In Figure 12b the map taken at -50mV is shown where there is high
intensity at the edge sites and much less at the corner sites. This corresponds to the
�at band intersecting the Dirac cone at the Fermi energy. Figure 12c shows the upper
band at a higher energy (150mV) than the �at band. Here the edge sites have much
less intensity than the corner sites. Also one can see higher orders of the band structure
emerging within the inverse Lieb lattice block. Higher-energy e�ects are quite visible
in the bandstructure in the maps from 200mV onwards, shown in Appendix 20. These
higher order e�ects are explained in section 4.5.

The three maps represent the Lieb electronic structure very well, however the energy
spacing between the maps was rather large at 50mV.

4.4 In�uence of unit cell size

As shown in Figure 13 there is a large in�uence of the unit cell size on the position of
the peaks in spectra measured on the Lieb lattices, which is also shown by Gomes et al.
for molecular graphene [9]. The di�erently-sized lattices are shown in (a)�(c) going from
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Figure 13: Three inverse Lieb lattices built with di�erent unit cell sizes. All scale bars
are 5 nm. (a) 4 by 4 lattice with a unit cell size of 3.06 x 3.09 nm (red). (b) 5 by 5 lattice
with a unit cell size of 2.66 x 2.56 nm (blue). (c) 8 by 8 lattice with a unit cell size of 1.76
x 1.79 nm (green). (d) Spectra taken on the corner sites of three di�erent sizes of Lieb
lattices varying from 1.76 x 1.79 nm (green) to 2.66 x 2.55 nm (blue) to 3.06 x 3.09 nm
(red). The arrows indicate the peaks of interest.

a large unit cell to a small unit cell. For a small unit cell size of a Lieb lattice of 1.76 x
1.79 nm (blue) the right hand peak of the Dirac cone is located around 700mV while for a
lattice with a unit cell nearly twice as large (3.06 x 3.09 nm in red) the same peak is only
just higher than 0mV. This is a large shift, but in the same range of order as Gomes et
al. found when changing lattice parameters. The shifting of the bands is due to a larger
degree of con�nement of the surface state electrons. The less space they have, the higher
in energy the band structure becomes [40]. Further measurements should de�nitely be
performed to quantitatively check the in�uence of spacing of the unit cells, the spacing of
the CO molecules within the unit cell and if the energy shifts are comparable to those in
molecular graphene. Another aspect which can be noticed in the size-dependent spectra
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Lattice Unit cell ratio (ch/cv) horizontal ratio (ah/bh) vertical ratio (av/bv)
Large 1.01 1.33 1.00
Medium 1.04 1.00 1.00
Small 0.99 1.00 1.33

Table 1: Ratios of various lattice size unit cells determining the equivalency of various
dimensions.

is the peak width: a decrease in unit cell size increases the peak width. This e�ect is
assigned to coupling of the energy bands to bulk Cu states [41].

For clarity of Figure 13 only spectra taken on corner sites are shown although spectra
on edge sites show an identical trend. The various unit cell sizes were built and measured
with di�erent tips and therefore the spectra do not all have the same shape. The Lieb
signature is however still always visible, further consolidating our results.

The shifting of the bands to higher or lower energies generates a type of doping.
Doping a system means adding either more electrons (n-doping) or less electrons (p-
doping) to a system [9]. Because we are building a lattice on a steady Cu surface state
we cannot change the amount of electrons while we can change the size of the system, or
unit cell, which contains electrons. The Fermi energy of the Cu surface state is �xed at
0 V so the medium unit cell size in Figure 13b is �lled to the middle of the two bands
contributing to a Dirac cone shape yielding a relatively neutral system. By enlarging the
system the bands shift to lower energies. As the Fermi energy of the electrons stays at
0V the system is now �lled to the upper band. When decreasing the unit cell size the
bands shift to higher energies meaning that they will only be �lled to the bottom band.
By tuning the system size one can thus tune the electronic stucture.

So in theory, any unit cell size and shape can thus be chosen and the peaks will shift
accordingly. However, the size of the unit cell also implicitly in�uences the positioning
of the CO molecules in real space on the Cu(111) crystal. Because there is a limitation
to placing CO molecules on the top sites of the copper surface, geometry issues start to
play a role when creating small unit cell sizes. One can see a small asymmetry within the
small lattice unit cell in Figure 13c as the width of the CO cross shape is larger than the
height. For the large unit cell (Figure 13a) it is vice versa, the height is larger than the
width. This illustrates the problems of building a square lattice on a hexagonal substrate,
it is nearly impossible especially on a small scale. This is illustrated in a schematic way
in Figure 14. Here one can see the positioning of CO molecules to create three di�erent
sized unit cells and the interior dimensions. The CO molecules are portrayed by red
circles positioned on top sites of the Cu(111) surface (light yellow), while the unit cells
are indicated by dashed squares. The ratios of these dimensions (ah - cv) are gathered
in Table 1 for comparison. When the horizontal and vertical ratios are equal to 1.00
the edge sites are of equal shape and size as is the case for the medium lattice (2.66 x
2.56 nm). The medium lattice has a larger error in the unit cell ratio, but the edge sites
are equally shaped which is more important as shown in the next paragraph. Also the
error in unit cell ratio is only 4% which is not large.
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Figure 14: Schematic representation of various sizes and the relative dimensions of and
within the unit cells of the Lieb lattices. CO molecules are represented in red with the
Cu(111) surface in light yellow with a nearest neighbour distance of 0.2556 nm. (a) 3.09
x 3.06 nm unit cell. (b) 2.66 x 2.56 nm unit cell. (c) 1.77 x 1.79 nm unit cell.
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Figure 15: (a) Spectra taken on the small lattice with a unit cell of 1.77 x 1.79 nm
with corner spectra in blue, edge spectra bordered by the CO molecules on the top and
bottom in green and edge spectra bordered on the left and right in red. (b) STM image
taken at 1 nA and 50mV with the unit cell indicated by the white dashed square, corner
sites (blue), edge sites bordered on the top and bottom (green) and edge sites bordered
on the left and right (red). The scale bar is 1 nm.

The importance of having equally shaped edge sites is shown in Figure 15. In this
lattice the horizontal and vertical ratios are 1.00 and 1.33 respectively. This means that
the dimensions of the edge sites are not equivalent. The asymmetry of the edge sites
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is due to the di�ering degrees of con�nement by the CO molecules. The e�ect of this
inequivalency is shown by the spectra in Figure 15. When the con�nement is larger, i.e.
the edge site is smaller, the spectrum shifts to higher energy. This is analogous to the
unit cell size e�ect described earlier. The di�erence of con�nement is only a few Å and
shows just how subtle the interplay is between unit cell size and unit cell symmetry.

To remove this clearly unwanted e�ect of inequivalent sites, one must adjust the
spacing of the CO molecules to create an equivalency of edge sites while maintaining an
(almost) square unit cell. An optimum con�guration was found using the unit cell size
of 2.66 x 2.56 nm.

4.5 Higher-energy e�ects

The maps shown earlier in section 4.3 are not the only maps of interest when looking
at higher-energy e�ects in the Lieb and square lattice. The map at 150mV (Figure 12c)
showed extra sites forming in the CO cross of the Lieb lattice. To visualise the e�ects on
the LDOS better one can look at the di�erential conductance maps at a higher energy
such as in Figure 16a, a map taken at 550mV. Here one can see that the corner sites in
the square lattice have diminished so much in intensity they have a similar contrast as
CO molecules while the bridge sites now have high intensity in contrast to the maps seen
earlier in Figure 12. A few real CO molecules have been marked with a yellow circle to
help guide the eye. The intensity pattern of the sites surrounding the CO molecule bears
a huge resemblance with the intensity pattern produced by the `standard' Lieb lattice
measured at the resonance of the �at band shown in the bottom of Figure 12b. In both
cases the sides of a Lieb lattice unit cell have been split into 3 sites of which the central
one has a high intensity and the two outer corner sites have a lower intensity.

A similar e�ect occurs in the Lieb lattice when going from -50mV to 550mV. The
edge sites where there was high intensity at -50mV become low intensity sites at 550mV
while the corner sites stay at low intensity. The bridge sites which acted as nodal sites
in Figure 12b become high intensity sites in Figure 16a. This means there are now 5
sites along one length of a Lieb unit cell and 11 sites within the unit cell (white dashed
square) in comparison with the 3 in the standard Lieb lattice.

These higher order e�ects can be explained in a schematic �gure with various sites
and how they can be made by placement of CO molecules. This is done in Figure 16b�i.
A square lattice consists of one site per unit cell as depicted in (b). It can be created by
CO molecules on Cu(111) by placing a single CO molecule in the centre of the square
unit cell (g). If one includes the `bridge' sites as seen in the top half of (a) then you
get 3 sites per unit cell (c). A unit cell with three sites is actually a Lieb lattice as
shown in (d). The Lieb lattice can (as shown earlier) be built by a cross shape of 5
CO molecules (h). If we repeat the process, but then with the Lieb unit cell, including
the extra `bridge' sites (e) we end up with a superlieb structure with 11 sites per unit
cell (f). If we compare the pseudo-superlieb structure from (e) to the intensities in the
bottom half of (a) we can see that a higher order of the Lieb lattice is a pseudo-superlieb
lattice. Both have 5 sites per side of the unit cell where blue circles correspond to low
intensity and red circles correspond to high intensity. A superlieb lattice could be made

24



  550 mV

a

b

c

d

e

f

g

h

i

j

E

Figure 16: Schematic representation of higher order states going from square to Lieb
to superlieb structures. (a) Di�erential conductance map of a square (top) and Lieb
(bottom) lattice taken at 550 mV with the CO molecules marked by yellow circles to
guide the eye. The unit cells are indicated by the white dashed square. The scale bar
is 5 nm.(b) 2 by 2 square lattice with the single site per unit cell in blue. (c) 2 by 2
square lattice with interstitial sites in red forming a Lieb lattice with 3 sites per unit cell.
(d) 2 by 2 Lieb lattice with the sites in blue. (e) 2 by 2 Lieb lattice with interstitial
sites in red forming a superlieb lattice with 11 sites per unit cell. (f) 2 by 2 superlieb
lattice with the sites in blue. (g) Single CO molecule used to create the square lattice in
(b) (h) Cross arrangement of 5 CO molecules used to create the Lieb lattice in (d) (i)
Advanced cross arrangement of 21 CO molecules used to create a superlieb lattice in (f).
(j) Sketch indicating waves with an increasing amount of antinodes from bottom to top
going from 1 to 3 to 5.

by combining four CO crosses with a central CO molecule, much like the CO cross is
formed by 4 CO molecules with a central one.

When measuring at higher energies one thus encounters higher order states which
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Figure 17: Di�erential conductance maps taken on a large square lattice with a unit
cell of 2.66 by 2.56 nm visualising higher order e�ects (a) Map taken at -300mV with
high intensity at corner sites. (b) Map taken at -150mV with low intensity at the corner
sites and high intensity at `edge' sites. (c) Map taken at 250mV with high intensity at
the corner sites, a slight intensity at the `edge' sites and low intensity at `bridge' sites.
(d) Map taken at 575mV with high intensity at the `bridge' sites and low intensity at
the corner and `edge' sites. All scale bars are 5 nm

are similar to the ground states, but then with more nodal planes. One can compare
it to Figure 16j where a comparison in 1D is drawn. Gaining in energy a wavefunction
will have more antinodes going from 1 to 3 to 5 when going from bottom to top. The
increase of nodes at higher energies is similar to the particle in a box model [40] where
wavefunctions with n more nodes increase the energy of the wave with n2.

The results we �nd in the di�erential conductance maps are in agreement with the
results we obtained earlier on unit cell size-e�ects. In the case of the square lattice the
unit cell is half the dimensions of the Lieb unit cell and therefore it is not unexpected
that the higher energy states of a square lattice would be occurring at higher energies
than the Lieb e�ects occuring in the Lieb lattice do. Taking this comparison further we
would expect the higher energy states of a square lattice with the same unit cell size of
the Lieb lattice (2.66 x2.56 nm) would occur at lower energies.

In Figure 17 one can see four di�erential conductance maps on a large square lattice
with a unit cell of exactly the same dimensions as the Lieb lattice in Figure 16. In (a) a
map taken at -300mV is shown where corner sites have a high intensity and the bridge
sites (or `edge' sites) have a low intensity similar to the LDOS of the lower band of the
Lieb lattice. (b) Shows a �ipping of intensities, where the bridge sites start acting as
edge sites would in a Lieb lattice. It forms a quasi-Lieb lattice where the edge sites have
a higher intensity than the corner sites corresponding to the �at band. Still increasing
the energy we arrive at 250mV (c). Here one sees that the three site model of (a) and
(b) no longer su�ces to describe the intensity spacing. The corner sites have the highest
intensity followed by the edge sites. The secondary bridge sites in between the corner
and edge sites have a low intensity. The eleven site model proposed in Figure 16(e and
f) is not totally applicable as with the square lattice there is only one CO molecule per
unit cell. Due to the absence of the 4 extra CO molecules, the eleven site model does
not describe the available sites for the electrons any more. A map taken at 575mV (d)
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shows the large square where the intensities have changed again, the corner and edge
sites are low intensity while the secondary bridge sites have a high intensity. This e�ect
is also found in the centre of the unit cell, not only along the sides, which explains the
high intensity located immediately around the CO molecule.

These patterns correspond neatly to the results we obtained in the Lieb and smaller
square lattice while also proving the shift of the enegries of the bands when changing
lattice parameters.

The fact that we see the Lieb signatures in all spectra visualisation techniques is a
strong supporting argument that our con�guration of �ve CO molecules per unit cell
modifying the 2DEG of Cu(111) actually generates an electronic Lieb lattice. In all
measurements on the arti�cial Lieb lattice the Lieb signature, a �at band and two bands
converging into a Dirac cone as explained in the theory, can be seen. All spectra taken
on edge sites show a density of states corresponding to a �at band while spectra taken
on corner sites have two prominent peaks due to the Dirac cone being formed.
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5 Conclusion

An arti�cial electronic Lieb lattice was created by atomically precise manipulations of
CO molecules on a Cu(111) substrate leading to sub nano-scale patterning of the two-
dimensional electron gas at the surface of the Cu crystal. Di�erential conductance spectra
were taken at the three sites within a unit cell of the Lieb lattice. The spectra correspond
to the theoretical shape of the density of states where the edge sites in the Lieb lattice
have a high intensity round the Fermi energy and the corner sites have high intensity at
the energies corresponding to the top and bottom band of the theoretical band structure.
There are �nite-size e�ects present as the measurements were performed on a 5 by 5
unit cell lattice. This causes an extra peak in the edge spectrum. The e�ect on the
spectra by changing the unit cell dimensions was investigated showing possibilities to
dope a Lieb lattice simply by changing the unit cell size. Higher-energy e�ects have been
studied in the Lieb lattice and a large square lattice showing the existence of a pseudo
super-Lieb lattice in a Lieb lattice when imaging at higher energies. The line spectra,
di�erential conductance maps and higher energy states all correspond to the expected
theoretical predictions. Together they all indicate that we have created an arti�cial
electronic Lieb lattice on Cu(111) by atomically precise positioning of CO molecules
leading to modi�cation of the 2DEG on the surface of Cu.
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6 Outlook

The measurements in this thesis have shown that one can create arti�cial structures with
Dirac cones and a �at band. These characteristics are a very hot topic at the moment
especially as the Nobel Prize for Physics 2016 was awarded for topological phases which a
really �at band would be categorised as. We would like to continue the research on these
arti�cial lattices and investigate ways to manipulate the band structure shapes. Creating
the honeycomb lattices that Gomes et al. did [9] extends the range of lattices to work
with. The e�ect of inducing defects in such lattices is very interesting as they induce
local changes in the electronic structure. Combining these e�ects with superconductivity,
spin-orbit coupling, and edge e�ects in various 2D lattices and substrates will generate
a nearly limitless amount of ideas to work on.

To consolidate our knowledge of the e�ect of unit cell and spacing lengths, I suggest
that we do a short but comprehensive comparison of various sizes of Lieb lattices and
graphene and measure them all with the same tip. This could be achieved by building a
large array of various sized, spaced and types of lattices near each other and measuring
them with a constant tip. Due to the �nite-size e�ects on the spectra a logical step is
to create larger arti�cial electronic Lieb lattices. Building 10 by 10 unit cell lattices or
even larger would de�nitely diminish the peak due to �nite-size found in the spectra.
Arti�cial electronic lattices have all the properties of a real lattice save the ability to be
picked up and viewed under an optical microscope. Using the techniques we have shown
in this thesis, one could easily build many more 2D systems, lattices or molecules that
simply have not been able to be investigated in the past due to the type of lattice not
existing in nature. Based on the similarity of the higher-order e�ects to fractal patterns,
the construction of fractal lattices such as a Sierpinski carpet [42], which could be seen
as a Lieb lattice of Lieb lattices, could yield very interesting band structures, besides
being aesthetically pleasing.

The research in this thesis is quite fundamental and will never be used as is in any
consumer product any time soon. In 2002 though, the possibilities to use CO molecules
in logic circuits was shown by Heinrich et al. [43]. He created molecular cascades of CO
molecules which could thereby perform simple and/or comparisons. This shows just how
versatile a `simple' system of CO molecules on a Cu(111) surface can be.

Once we have SnapZone working e�ciently and reliably nearly any pattern or lattice
can be designed, built and immediately measured, enabling a relatively high-throughput
for measurements. Manual manipulation is really only exciting for so many manipula-
tions, and automation can also utilise general down-time such as nights and weekends.
This would de�nitely increase the e�ective usage time of the STM's and be one step
further in the automation of our set-up.

I am con�dent that with some hard work in the next few years we will be able to say:

You name it, we build it.
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Appendix

Spectroscopy results for other tips

Voltage (V)
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Figure 18: Spectrocopy taken on a 5 by 5 inverse Lieb lattice similar to the lattice
used in Figure 9. The tip however has a signi�cantly di�erent con�guration indicated by
the Cu spectrum in yellow. Also the surface state onset around -0.45V is not a sharp
transition. The Lieb signature is however slightly clearer than in Figure 9. The dashed
lines indicate the energies of interest (-200mV, -50mV, 150mV) where the corner and
edge sites have di�erent intensities.
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Figure 19: Spectroscopy taken with the same tip as 18 and divided by the CU spectrum.
The Lieb signature is a lot clearer in this Figure. Here one sees the corner spectra in blue
with high intensities at -200mV and 150mV and the edge spectra with high intensity
around -50mV and the extra peak due to �nite-size e�ects around 75mV. The spectra
taken on the square lattice show no remarkable features in this energy range due to a
fairly constant increase in the intensity, which you could see as a background intensity.
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Di�erential conductance map series
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