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Abstract

We analyse the effect of two simple forms of collusion on the efficiency and payoffs of a two-bidder, second-

price auction for a single good, where both bidders have private and independent valuations. In the first

form, the auction is preceded by one round of bribing, i.e. one bidder can try to bribe the other to stay

out of the auction. In the unique and continuous equilibria of this model, bidders with a type below a

certain threshold, reveal themselves as the amount they offer depends uniquely on their type. All bidders

with a type above the threshold, offer the same amount. This can result in an inefficient auction. Due to

the bribing, the payoffs of the bidders increase, while the income of the seller decreases, compared to the

regular second-price auction payoffs. In the two-rounds bribing model, both bidders get the opportunity to

bribe the other in exchange for her commitment to leave the auction. These bribes are offered in turn and

the order is determined exogenously. There exists an efficient equilibrium, in which the first bidder offers

her valuation minus her surplus. The second bidder either accepts, or rejects and counteroffers the surplus

of the first bidder. Due to full revelation of the first bidders type, the auction remains efficient. In this

model, there is always one bidder who excludes herself from the auction. Hence, the payoff of the seller is

zero. Furthermore, due to information asymmetry, the first bidder’s payoff remains the same as in a regular

second-price auction, while the second bidder’s payoff increases.
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Nomenclature

β a behavioural strategy

∆m the strategy space

Γi the income of bidder i

R+ the real positive numbers

1X the indicator function for event X

µ the belief system

πi(θi) the surplus of bidder i given her valuation

θi the valuation bidder i has of an object

~p∗ the best reply

~p the probability distribution of a strategy

A(Ii) the set of player i’s actions possible at a certain information set

A(x) the highest type of bidder 2 that accepts the bribe x of bidder 1

b the bribing function of bidder 1

b∗ the highest bid offered

b2(·|x) the bribing function of bidder 2

bi the amount bidder i offers for an object

h a history is a possible sequence of actions in an extensive game

Hi the set of histories after which player i moves

Ii an information set known to player i

ki the highest bid offered by all bidders except for bidder i

p∗ the selling price of an object

pr the reserve price of an object

R the income of the seller

r the amount bidder 2 counteroffers in the two-rounds bribing model

Wi the expected payoff of bidder i

Ws the expected income of the seller

x the amount bidder 1 offers to bidder 2
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1. Introduction

A serious problem in auctions is collusion among several participants. A simple form of
collusion involves a group of cartel members, who meet up before the auction to decide
who will participate in the auction. All members report their valuation simultanuously, on
which is then based which member will submit what amount on behalf on the whole cartel.
However, in reality, these collusive agreements are determined sequentially; the different
parties negotiate with each other until an agreement is reached. During the negotiation
process, the parties can signal their private valuations to each other. This signalling leads
to the question whether it is optimal to fully reveal private information or not. ([6], p. 191)

In this thesis, we examine the effect bribing has on the efficiency and the payoffs of a
second-price auction. In a second-price auction, the participant with the highest bid wins
the object, but only pays the second-highest amount offered. Whether an auction is efficient
or not, depends on who obtains the object. If the participant with the highest valuation of
the object always wins the item, the auction is called efficient. If not, the auction is called
inefficient. We will examine two different bribing models. The first model is from an article
of Eső and Schummer ([1]), and the second model is from an article of Rachmilevitch ([6]).
In both models, the setting is a second-price auction for a single object with two participants.

The model of Eső and Schummer is a one-round bribing model. In here, only one of the
participants, exogenously chosen, say bidder 1, can offer the other participant, bidder 2, a
bribe in exchange for her commitment to leave the auction. As a result, bidder 1 becomes
the sole bidder in the auction. Eső and Schummer concluded that bribing leads to an
inefficient auction. The model of Rachmilevicth is an extension of this one-round bribing
model. Bidder 1 has again the opportunity to offer bidder 2 a bribe to stay out of the
auction. Next, bidder 2 cannot only decide whether to accept or reject this offer, but she
can also make a counteroffer. Now bidder 1 must choose between accepting or rejecting the
offer. If both players reject the bribes, the auction will proceed as a regular second-price
auction. In contract to Eső and Schummer, Rachmilevitch found that in a two-rounds
bribing model, the auction remains efficient.

We will compare the analysis of both articles and examine the differences between the one-
round bribing model where only one participant has bargaining power, and the two-rounds
bribing model where both participants can initiate a collusive agreement.

6



2. Game Theory

Game theory analyses situations in which competition and cooperation occur between
several parties. By studying this mathematical discipline, we gain insights in the decision-
making of the involved parties, the interaction between them, and the outcome of different
strategies. Game theoretic models are applicable in almost all study fields, but particularly
in political, economic and social disciplines; examples of these applications are the voting
for political candidates, the problem of a fair allocation of taxes and competitive animal
behaviour. ([5], p. 1; [4], p. 1)

In game theory, players are the parties that make the decisions. Every player has a set of
feasible actions and is not only affected by her own action, but also by the actions of others.
Furthermore, all players have certain preferences concerning their action profile, the list of
a player’s possible actions. These preferences depend on the payoff these actions yield.
([4], p. 13). A main assumption in game theory is that all players act rational : given a set
of actions, they choose the best action in line with their preferences. ([4], p. 5) Taking her
actions and preferences into account, a player determines a strategy to play a game. This
strategy states for each decision that must be made, which action she will take. ([5], p. 54)

Henceforth, we assume there are only two players participating in a game and that both
are rational. The payoffs of the game can be presented in normal form, which is a m× n-
bimatrix (A, B), where m,n ∈ N>0. This implies that (row-)player 1 has m different
strategies with payoffs A, and that (column-)player 2 has n different strategies with payoffs
B. It follows that both players can choose between different strategies. The set of all possible
strategies of a player, is called the strategy space. Denoting the probability distribution of
the strategy as ~p, the strategy space is defined as follows:

∆m :=

{
~p = (p1, . . . , pm) ∈ Rm

∣∣∣∣ m∑
i=1

pi = 1, pi ≤ 0 ∀i = 1, . . . ,m

}
.

If ∃k ∈ [1,m] such that pk = 1, strategy ~p of player 1 is called a pure strategy ; if ∀i pi 6= 1,
strategy ~p is called a mixed strategy. ([5], p. 25-26) Suppose now that player 1 plays ~p and
player 2 plays ~q. The expected payoff of player 1 is equal to ~pA~q, and the expected payoff
of player 2 is ~pB~q. ([5], p. 38)

In general, the optimal strategy of player 1 depends on the strategy of player 2. Therefore,
when determining her optimal strategy, a player must consider the actions the other player
can choose. She must form a belief about the other player’s strategy. ([4], p. 21)

Definition 2.1 (Best Reply ([5], p. 38)). A strategy ~p∗ of player 1 is a best reply to a
strategy ~q of player 2 in an m× n-bimatrix game (A, B) if

~p∗A~q ≥ ~pA~q ∀~p ∈ ∆m.

Similarly, ~q∗ of player 2 is a best reply to ~p of player 1 if

~p∗B~q ≥ ~pB~q ∀~q ∈ ∆n.
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Definition 2.2 (Nash Equilibrium ([5], p. 39)). A pair of strategies (~p∗, ~q∗) in a bimatrix
game (A, B) is a Nash equilibrium if ~p∗ is a best reply of player 1 to ~q∗, and ~q∗ is a best
reply of player 2 to ~p∗. A Nash equilibrium (~p∗, ~q∗) is called pure if both ~p∗ and ~q∗ are
pure strategies.

Furthermore, if ~p∗A~q > ~pA~q for all ~p ∈ ∆m and ~p∗B~q > ~pB~q for all ~q ∈ ∆n then (~p∗, ~q∗) is
a strict Nash equilibrium.

To illustrate the theory mentioned above, we will discuss the well-known Prisoner’s
Dilemma. In this particular game, we have two prisoners who committed a major crime
together; they are interrogated in separate rooms. There is enough evidence to convict
them of a minor crime, but not sufficient to declare them guilty of the major crime, unless
one of the suspects witnesses against the other. Thus, both prisoners can either cooperate
(C) and stay quiet, of defect (D) and betray their partner. If they cooperate, they will only
be convicted of the minor crime and go to prison for one year. If either of them defects,
she will be freed to witness, and the other suspect will spend ten years in jail. If both
prisoners defect, the punishment is nine years of prison. We can represent this in normal
form, which gives us figure 1.

The figure makes clear that for both prisoners it is better to play D. It yields a higher
payoff no matter what the other prisoner does; in other words, C is strictly dominated
by D. This indicates that strategy D is the best reply for both suspects. Consequently,
(D,D) is a Nash equilibrium with payoffs (−9,−9).

Note that both prisoners could obtain a higher payoff, if they would cooperate. Therefore,
the Nash equilibrium (D,D) is not Pareto optimal. ([5], p. 6; [4], p. 14-15)
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Figure 1: Prisoner’s Dilemma in Normal Form

2.1. Signalling Games

In a two-player signalling game, only player 1 is informed about a certain variable that
is relevant to both players; information is asymmetric. In general, player 1 will take an
action, which will be observed by player 2, who then sequentially takes an action that will
affect both players. The asymmetric information can be modelled with a chance node
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called Nature, that assigns a type to player 1. Player 2 is unaware of the type of player 1,
and only responds to player 1’s action. In some cases, the action of player 1 can signal her
private information. This happens if each type of player 1 takes a different action. In that
case player 2 can determine the type of player 1 by observing the latter’s action. Equilibria
in which this occurs, are called separating equilibria. If all types of player 1 choose the
same action, the equilibrium is called a pooling equilibrium. ([4], p. 331-334)

To clarify, we will discuss an adjusted version of the Entry Deterrence game. Suppose a
market is monopolized by a single firm, and a new firm wants to enter. The entrant is
either strong or weak, both with probability p = 1

2 . Only the entrant knows her type and
she will enter the market independent of whether she is strong of weak. After observing her
type, the entrant may decide to remain unready (U) or to get ready (R) to fight with the
incumbent by advertising her products on TV. The incumbent observes the entrant’s action
and responds by either colluding (C), or fighting (F ) by dropping her prices significantly.
([4], p. 332) We can represent this extensive form game1 as in figure 2, where Nature
determines the type of the entrant. Note that both the incumbent and the entrant have
four strategies, respectively (FF, FC,CF,CC) and (UU,UR,RU,RR). For each strategy
of the incumbent, the left action is played after observing ready, and the right action after
observing unready. The entrant plays the left action of her strategy after observing weak,
and the right action after observing strong.

Nature

Entrant(20,−10) Fight

(40, 20) Collude

Ready

(50, 20)Collude

(30,−10)Fight
Unready

1
2

S
tr
on
g

Entrant

(0, 10) Fight

(20, 0) Collude
Ready

(50, 0)Collude

(30, 10)Fight

Unready

1
2

W
ea
k

Incumbent Incumbent

Figure 2: Entry Deterrence with Imperfect Information

We can show that this game has a separating equilibrium, i.e. (UR,CF ). Here, a weak
entrant plays U, a strong entrant plays R, and the incumbent plays C after observing
ready and F after observing unready. If the entrant is weak, she will always prefer to
remain unready as her payoff is higher regardless of the action of the incumbent. The
incumbent will respond with fighting as this yields a higher payoff. If the entrant chooses
ready, she signals the incumbent that her type is strong; if her type would be weak, she
would have chosen unready. Knowing this, the incumbent will choose to collude as this

1The extensive form is a way of presenting games using a game tree consisting of nodes and edges. Since
each node corresponds to a different point in time, this graphical representation is often used to model
sequential games, in which players move in turn.
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gives her a payoff of 20 rather than −10. Consequently, we have a separating equilibrium
(UR,CF ), where the entrant signals her type. If the entrant is weak, she chooses unready
and the incumbent will choose to fight; if the entrant is strong, she chooses ready and the
incumbent will choose to collude.

The other possible equilibrium in the game is (UU,CC). If a strong entrant chooses to
remain unready as well, the incumbent will belief that the entrant is strong with probability
1
2 and weak with probability 1

2 . Her expected payoff of colluding is (20 + 0) · 12 = 10 and
the expected payoff of fighting is (−10 + 10) · 12 = 0. Hence, colluding is the best reply for
the incumbent, and (UU,CC) is a pooling equilibrium. ([4], p. 333)

2.2. Weak Sequential Equilibria

A refinement of Nash equilibria, are weak sequential equilibria. To define the latter, we
start by introducing other terminology.

Firstly, in an extensive game a history is a possible sequence of actions. ([4], p. 153) The
set of histories after which player i moves, is called Hi. In case of perfect information,
player i knows exactly which history h ∈ Hi has occurred. However, in case of imperfect
information, player i is informed about a partition of Hi. Suppose there is a history set
Hi = {A,B,C}, where A, B and C are possible sequences. Furthermore, the information
partition of player i contains two information sets Ii = {B} and Ii = {A,C}. This implies
that if she moves after B, she is informed that B has occurred, but if she moves after A or
C, she is only informed that B has not occurred. ([4], p. 313)

As mentioned before, players form a belief about the history that has happened. In
case of perfect information, an information set only consists of one history. Player i
then beliefs that this history has happened with probability 1. However, if an infor-
mation set contains multiple histories, player i assigns probabilities to each history. We
call this set of probabilities the belief system µ of the particular information set. ([4], p. 323)

Given that A(Ii) is the set of player i’s actions possible at a certain information set ([4],
p. 318), we can define her behavioural strategy β. This β is a function that assigns
a probability distribution to the set of actions in A(Ii), for all of player i’s informa-
tion sets Ii. A combination of a behavioural strategy and a belief system (µ, β) is called
an assessment. ([4], p. 324-325) We can now define a weak sequential equilibrium as follows:

Definition 2.3 (Weak Sequential Equilibrium ([5], p. 261)). A weak sequential equilibrium
in an extensive form game is an assessment such that the following two conditions are
satisfied:

(i) sequential rationality: the players choose optimally given their beliefs;

(ii) consistency: beliefs are consistent with the history at every information set reached.

The first requirement implies that all players must maximize their expected payoffs given
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their beliefs, and the second requirement implies that for each player at every information
set she reaches playing her strategy, her beliefs about the history are correct and updated.
([4], p. 329)

To illustrate, we will discuss another version of the Entry Deterrence game, see figure 3.
Only taking into account pure strategies, this game has two Nash equilibria, (U,C) and
(O,F ). Consider the first equilibrium. Choosing to collude is always the optimal strategy
for the incumbent, so the first condition is satisfied. To satisfy the second requirement,
the incumbent must belief that the history is U . Hence, β = (U,C) combined with the
belief µ that U is the history, is a weak sequential equilibrium. Now consider the second
equilibrium. As colluding always yields a higher payoff than fighting, fighting is not the
optimal choice regardless of the incumbent’s belief. Ergo, (O,F ) does not satisfy the first
condition, meaning there is no assessment with β = (O,F ), that is a weak sequential
equilibrium. ([4], p. 330)

Entrant

(30, 30)

Collude

(10, 10)

Fight

Ready

(40, 30)

Collude

(0, 20)

Fight

Unready

(20, 40)

Out

Incumbent

Figure 3: Weak Sequential Equilibria in the Entry Deterrence Game
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3. Second-Price Auction

Auctions are market mechanisms that determine to whom and at what price items will
be sold. They are particularly helpful when it is hard to set a market price, for instance
when selling a painting of Van Gogh. ([2], p. 1) There are several types of auctions; for
this thesis however, we only examine the second-price auction. First, we will introduce the
necessary terminology.

To comprehend the behaviour of the bidders, it is important to understand the difference
between a value, a bid, the selling price and the reserve price. The value θi bidder i has
of an object is the maximum amount she is willing to pay. The bid bi is what she offers
for the object. There are three strategies she can follow: sincere bidding, where she offers
bi = θi, overbidding, where she offers bi > θi, and underbidding, where she offers bi < θi.
The selling price p∗ is the final price the highest bidder will actually pay; this depends
on the type of auction. In a second-price auction, this is the amount the second-highest
bidder has offered. At last, the reserve price pr is the minimum price for which the seller is
willing to sell her object. Consequently, if p∗ < pr, the seller may decide to break off the
sale. ([2], p. 2-5)

Henceforward, the highest bid will be denoted by b∗. Now suppose bidder i has offered the
most, i.e. bi = b∗. Her income is now equal to her valuation of the object, thus Γi = θi. Her
surplus corresponds with the difference between her income and costs, ergo πi(θi) = Γi−p∗.
If bidder i has not made the highest bid, both her income and surplus are equal to zero.
The seller’s income is logically equal to the selling price, i.e. R = p∗. ([2], p. 6-7)

In the next section, the setting is a particular type of second-price auctions, where
the bidders all have private and independent values. This means that the valuation of
an arbitrary bidder i is only known to her, and is independent of the values that the
other bidders assign to the object. The latter implies that the values of all bidders are
independently distributed. Furthermore, the bidders are risk neutral, which means that
they play the strategy that maximizes their expected surplus. ([2], p. 17-18) In a second-
price auction, the expected surplus of bidder i is equal to her chance of winning the object
times the surplus she receives from winning. Thus, given that bidder i wins and bidder j
offered the second highest bid, E[πi(θi)] = P [winning](θi − bj). Moreover, the auction is
a sealed-bid auction, meaning that the bidders can only simultaneously submit one bid.
Ergo, the bidders are unware of the amount the other participants have offered. This gives
bidders the incentive to bid their true value. ([2], p. 7, 11)

Theorem 3.1. In a second-price sealed-bid auction with private, independent values, it is
a dominant strategy for every bidder i to bid her true value, bi = θi.

Proof. Let ki = maxj 6=i bj be the highest bid offered by all bidders except for bidder i. If
bidder i considers overbidding, bi > θi, the following situations can happen:

• If bi > θi > ki, bidder i wins the object with a surplus of θi − ki > 0. However, if she
had bid sincerely, she would have obtained the exact same surplus.

12



• If bi > ki > θi, bidder i wins the object with the negative surplus of θi − ki < 0. She
would have been better off bidding sincerely and receiving a surplus of zero by not
winning the object.

• If ki > bi > θi, bidder i does not win the object. However, by bidding sincerely she
would not have obtained the object either, ergo, her surplus would have been the same.

Hence, sincere bidding yields a surplus that is at least as high as the surplus of overbidding.

Now suppose that bidder i considers underbidding, bi < θi. There are again three situations:

• If ki < bi < θi, bidder i wins the object with a surplus of θi − ki > 0. However, bidding
sincerely would have given her the same surplus.

• If bi < ki < θi, bidder i does not obtain the object and receives a surplus of zero. However,
if she had bid her true value, she would have won the object and received a surplus of
θi − ki > 0.

• If bi < θi < ki, bidder i does not win the object. As bidding sincerely would not have
assigned the object to her either, her surplus would have been the same.

Hence, sincere bidding yields a surplus that is at least as high as the surplus of underbidding.

We may conclude that sincere bidding never yields a lower surplus than overbidding or
underbidding. Thus, bidder i has no incentive to deviate from bidding her true value.
Sincere bidding is therefore a dominant strategy. ([3], p. 245; [2], p. 22-23)

An auction is called efficient if the objects are assigned to the bidders whose valuations of
the objects are the highest. Given that all bidders submit their true value in a second-price
sealed-bid auction, the bidder with the highest valuation will win the object. Hence, this
type of auction is efficient. ([2], p. 31)

13



4. One-Round Bribing Model

Suppose we have a second-price sealed-bid auction for a single object, with two risk-neutral
bidders who both have private, independent values. Eső and Schummer ([1]) examined
whether this type of auction is immune to a particular form of collusion. The form where
one bidder can bribe the other to stay out of the auction.

In the model presented by Eső and Schummer, the private valuations of both bidders,
θ1, θ2 ∈ [0, 1] are drawn independently according to the same differentiable cumulative
distribution function F . They assume that 0 < F ′(t) < ∞ ∀t ∈ [0, 1]. Apart from the
private valuations, everything is commonly known. After the bidders are informed about
their valuations, but before the start of the auction, bidder 1 is given the opportunity
to offer bidder 2 a bribe x ∈ [0, 1]. If bidder 2 accepts the offer, she commits to leaving
the auction, which is modelled as her bidding 0. If she rejects the offer, the auction will
continue as a regular second-price sealed-bid auction.

As proven in section 3, bidders bid their true valuation in a second-price auction. The
exception here is if bidder 2 accepts the offer of bidder 1 and must bid 0. In that case, the
payoffs for 1 and 2 are respectively θ1 − x and x. If bidder 2 rejects the bribe, or bidder 1
initially decided not to bribe, i.e. offer 0, the surpluses are max(θ1, θ2)−min(θ1, θ2) for the
bidder with the highest valuation, and 0 for the other. Note that, for the simplification of
the formulas, the reserve price pr is set at zero. Nonetheless, if pr > 0, the results of Eső
and Schummer continue to hold.

As defined in section 2.2, a weak sequential equilibrium is a combination of strategies
and beliefs, that satisfies the conditions of sequential rationality and consistency. Eső
and Schummer have defined a strategy for bidder 1 as a function that maps types into
offers, b : [0, 1]→ R+. Since bidder 1 herself can determine how much she offers, she can
signal information to bidder 2 about her type. A strategy for bidder 2 specifies the set of
types that accept the offer x ∈ R+, A(x) ⊆ [0, 1]. In particular, her equilibrium strategies
are sets of the form A(x) = [0, A(x)〉2, such that any offer x ∈ R+ is accepted by a set.
Thus, the weak sequential equilibrium of this model is a combination of a pair of strategies
β = (x,A(x)) and a posterior belief distribution µ. Here, the beliefs are those formed by
bidder 2 about the type of bidder 1, after she received the offer x ∈ R+.

4.1. Results

Eső and Schummer proved that there is an equilibrium in which the strategy of bidder 1 is
continuous. In this equilibrium, the bribing function b is strictly increasing on a certain
interval [0, θ̄1); on the interval [θ̄1, 1] the function is constant. This threshold exists, as for
bidders with a high enough type, it suffices to signal that they are sufficiently strong to
make sure that their bribes are accepted. Furthermore, if bidder 1 offers a bribe b(θ1) that

2In certain games, there are equilibria that are completely similar, apart from the behaviour of one single
type. For example, if all types θ2 <

1
2

accept a certain offer, and all types θ2 >
1
2

reject it, we have the
borderline type θ2 = 1

2
who is indifferent between both actions. Therefore, ∀ 0 ≤ a ≤ 1, the notation

[0, a〉 is introduced; this means either [0, a) or [0, a]. Hence, we can have unique equilibria, where only
certain types on the interval boundaries might behave differently.
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is below b(θ̄1), her type θ1 is revealed. Bidder 2 will only accept if this offer is higher than
her payoff in the auction would be, i.e. θ2−θ1 < b(θ1), which is equivalent to θ2 < θ1+b(θ1).
To make sure that bidder 1 reveals her type and not slightly overbids, the bribing function
has to be characterized as follows:

Theorem 4.1. ([1], p. 309)
Suppose F is log-concave.3 In any weak sequential equilibrium in which bribing occurs, if
bidder 1’s bribing strategy function b is continuous, then it is the unique solution to the
following equation satisfying b(0) = 0:

b′(θ1) =


F ′(θ1 + b(θ1))(θ1 − b(θ1)

F (θ1 + b(θ1))− F ′(θ1 + b(θ1))(θ1 − b(θ1)
if θ1 + b(θ1) < 1

0 otherwise
(1)

Conversely, there exists a weak sequential equilibrium in which 1’s continuous strategy b is
described by equation 1, with b(0) = 0.

Note that equation 1 tells us that b strictly increases up to a certain θ̄1, after which it is
constant with θ̄1 + b(θ̄1) = 1. Hence, if the valuation of bidder 1 is below θ̄1, she signals
her type to bidder 2 by offering a bribe.

Building further on theorem 4.1, the main result found by Eső and Schummer is that in
equilibrium, the bribing function of bidder 1 has to be characterized as in following theorem.

Theorem 4.2. ([1], p. 311)
Suppose F is log-concave. We have a weak sequential equilibrium if and only if the bribing
function b is such that

(i) for some θ̂1 ≤ θ̄1,

b(θ1) =

{
b∗(θ1) if θ1 < θ̂1

b̂ ≡ θ̂1 − F (θ̂1 + b∗(θ̂1))(θ̂1 + b∗(θ̂1)) if θ1 > θ̂1
(2)

and b(θ̂1) ∈ {b∗(θ̂1), b̂}, where b∗ is the continuous bribing function described in theorem
4.1, and

(ii) b̂ ≥ 1− E
[
θ1 | θ1 ≥ θ̂1

]
.

Figure 4 shows us that the functions b and b∗ are the same if θ̂1 = θ̄1.

Now given that b′ = limθ1↑θ̂1b(θ1) and b” = {b(θ1) : θ1 > θ̂1}, we can denote bidder 2’s
strategy as

A(b(θ1)) =

{
b−1(b(θ1)) + b(θ1) = θ1 + b(θ1) if b(θ1) < b′

1 if b(θ1) = b”.
(3)

It follows that inefficiency occurs. Whenever θ2 > θ1 and b(θ1) = b”, bidder 2 will ac-

3F is log-concave if d[F/F ′]
dθ

≥ 0.
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θ̂1 θ̄1 1

b̂

b(θ̄1)
b∗

b

θ1

bribe

Figure 4: Bribing Function of the One-Round Bribing Model

cept the bribe, even though she would have won the object in a regular second-price auction.

Conclusively, we have found a unique and continuous bribing equilibrium in which ineffi-
ciency can occur. The equilibrium is mostly-separating, since every bidder with a type
below the threshold θ̂1 perfectly reveals herself by offering a bribe. All bidders with a
type above the threshold offer the same amount. Every bribe is accepted with a positive
probability and the highest bribe is always accepted.

4.2. Concrete Effect

To concretize the effect, we will determine the effect on the efficiency and the payoffs, given
that θ1 and θ2 are independently and identically distributed from U(0, 1).

4.2.1. Effect on Efficiency

To decide whether the bribing round has effect on the efficiency of the auction, we will
determine the best reply of bidder 2 given the strategy of bidder 1. Given the uniform
distribution, we can present the strategy of bidder 1 as follows:

b(θ1) =

{
1
2θ1, if θ1 ∈

[
0, 23
]

1
3 , if θ1 ∈

[
2
3 , 1
]
.

(4)

Remark. Note that the strategy of bidder 1 is mostly-separating. If θ1 <
2
3 , bidder 1 signals

her type to bidder 2 by offering her a bribe.

The strategy of bidder 2 is of the form [0, A(x)〉, i.e. for a given bribe b(θ1), she accepts if
θ2 < A(x). Suppose that b(θ1) <

1
3 , that is θ1 = 2x. bidder 2 only accepts the bribe if her

possible payoff of the game is below b(θ1). Her payoff W2(θ1, θ2) is equal to

W2(θ1, θ2) =

{
0, if θ2 ≤ θ1
θ2 − θ1, if θ2 ≥ θ1.

(5)
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Hence, bidder 2 accepts the bribe if θ2 ≤ θ1 = 2x, that is 1
2θ2 ≤ x. However, she also

accepts if θ2 ≥ θ1 = 2x and θ2 − 2x ≤ x; i.e. if 2x ≤ θ2 ≤ 3x. Thus, if θ2 ≥ 3x she rejects
the offer and if θ2 ≤ 3x she accepts. Ergo, we have found that A(x) = 3x, which implies
that [0, A(x)〉 = [0, 3x〉. If b(θ1) = 1

3 , it follows immediately that A(x) = 3 · 13 = 1.

This leads to the conclusion that inefficient outcomes occur; for instance if θ1 = 2
3 and

θ2 = 1, bidder 2 will accept the offer, even though she could have won the object.

4.2.2. Probability of Winning the Auction

Next, we will calculate the probability that bidder 1(2) wins.

We know that bidder 1 wins if bidder 2 accepts her bribe. Bidder 2 can obtain the object
if she does not accept the bribe and wins the auction. We will calculate the probability
that bidder 2 wins the object and use it to determine the probability that bidder 1 wins.

Bidder 2 does not accept the bribe and wins the auction if θ1 < θ2 <
2
3 . We can represent

this in a graph, see figure 5. If the valuations give a coordinate in area I, bidder 2 wins.
This happens with probability 1

2 − (12 ·
1
3 ·

1
3) = 4

9 . It follows that bidder 1 wins the object
with probability 5

9 . Hence, a one-round bribe increases the chances of obtaining the object
for the bidder who offers the bribe.

θ1

θ2
1

1

2
3

2
3

I

IIθ 1
=
θ 2

Figure 5: Winning Graph

Remark. Area II shows all the combinations of θ2 and θ1, where bidder 1 wins even though
the valuation of bidder 2 is higher. We can call this the inefficiency area.

4.2.3. Surplus without a Bribing Round

To be able to compare the expected payoffs of the bidders and the expected income of the
seller with the situation without a bribing round, we will first compute the surpluses in
the normal situation without a bribe.

Due to symmetry, the expected surpluses of both bidders are equal. Given that 1X is the
indicator function for event X, we can calculate the surpluses W1 and W2 as follows:
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W1 = W2 =

∫ 1

0

∫ 1

0

(
θ2 − θ1

)
1
(
θ2 ≥ θ1

)
dθ2 dθ1

=

∫ 1

0

∫ 1

θ1

(
θ2 − θ1

)
dθ2 dθ1

=

∫ 1

0

[
1
2θ

2
2 − θ2 · θ1

]θ2=1

θ2=θ1
dθ1

=

∫ 1

0

(
1
2 − θ1 −

1
2θ

2
1 + θ21

)
dθ1

= 1
2 −

1
2 + 1

6 = 1
6 .

The expected income of the seller Ws is equivalent to

Ws =

∫ 1

0

∫ 1

0
θ1 1

(
θ2 ≥ θ1

)
dθ2 dθ1 +

∫ 1

0

∫ 1

0
θ2 1

(
θ1 ≥ θ2

)
dθ2 dθ1

= 2 ·
∫ 1

0

∫ 1

θ1

θ1 dθ2 dθ1

= 2 ·
∫ 1

0

[
θ1 · θ2

]θ2=1

θ2=θ1
dθ1

= 2 ·
∫ 1

0

(
θ1 − θ21

)
dθ1

= 2 ·
(

1
2 −

1
3

)
= 1

3 .

Hence, we have found that in the case of no bribing, W1 = W2 = 1
6 and Ws = 1

3 .

4.2.4. Effect on Payoff Bidders

Now, suppose that bidder 1 can offer a bribe to bidder 2, as in the model of Eső and
Schummer. Bidder 1 only has a positive payoff if her bribe is accepted. This happens
if θ1 > 2

3 , and if θ2 < θ1 < 2
3 . In figure 6 this corresponds with area’s I and II

respectively.

θ1

θ2
1

1

2
3

2
3

I

III

II

θ 1
=
θ 2

Figure 6: Payoff Graph

Hence, the payoff of bidder 1 is:
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W1 =

∫
I

∫ (
θ1 − 1

3

)
dθ2 dθ1 +

∫
II

∫ (
θ1 − 1

2θ1
)
dθ2 dθ1

=

∫ 1

2
3

∫ 1

0

(
θ1 − 1

3

)
dθ2 dθ1 +

∫ 2
3

0

∫ θ1

0

(
1
2θ1

)
dθ2 dθ1

=

∫ 1

2
3

(
θ1 − 1

3

)
dθ1 +

∫ 2
3

0

(
1
2θ

2
1

)
dθ1

=
[

1
2θ

2
1 − 1

3θ1
]θ2=1

θ2=
2
3

+
[

1
6θ

3
1

]θ2= 2
3

θ2=0

=
(

1
2 −

1
3 −

1
2 ·

4
9 + 1

3 ·
4
9

)
+
(

1
6 ·

8
27

)
= 35

162 .

Ergo, the expected payoff received by bidder 1 is W1 = 35
162 . For bidder 2 we proceed in

the same manner. There are two cases in which she has a positive payoff. She can either
accept the bribe, or reject the bribe but win the auction. Bidder 2 accepts the bribe if
θ1 >

2
3 or θ2 < θ1 <

2
3 . In figure 6 these restrictions correspond respectively with the area’s

I and II. The expected payoff of this situation is:

W 1
2 =

∫
I

∫
1
3 dθ2 dθ1 +

∫
II

∫ (
1
2θ1

)
dθ2 dθ1

= 1
9 + 1

2

∫ 2
3

0

∫ θ1

0
θ1 dθ2 dθ1

= 1
9 + 1

2

∫ 2
3

0

[
θ1 · θ2

]θ2=θ1
θ2=0

dθ1

= 1
9 + 1

2

∫ 2
3

0
θ21 dθ1 = 13

81 .

The other case is if she rejects the auction, but wins the object, that is if θ1 < θ2 <
2
3 . This

corresponds with area III. The payoff she receives can be calculated as follows:

W 2
2 =

∫
III

∫ (
θ2 − θ1

)
dθ2 dθ1

=

∫ 2
3

0

∫ 1

θ1

(
θ2 − θ1

)
dθ2 dθ1

=

∫ 2
3

0

[
1
2θ

2
2 − θ2 · θ1

]θ2=1

θ2=θ1
dθ1

=

∫ 2
3

0

(
1
2 − θ1 + 1

2θ
2
1

)
dθ1

=
[

1
2θ1 −

1
2θ

2
1 + 1

6θ
3
1

]θ2= 2
3

θ2=0

= 1
3 −

2
9 + 1

6 ·
8
27 = 13

81 .

The total expected payoff received by bidder 2 is then W2 = W 1
2 +W 2

2 = 26
81 .
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Note that the expected payoff of bidder 2 increases much more as a result of the bribing
round. Without the bribing round, bidder 2 only receives a positive payoff if she wins the
object. However, with the introduction of the bribing round, she can also receive a positive
payoff by accepting the bribe of bidder 1. Suppose θ1 > θ2 and bidder 2 accepts the bribe,
the payoff of bidder 2 now has increased compared to the situation without a bribing round.
Bidder 1 still only receives a positive payoff if she wins the auction. Nonetheless, due to
the inefficiency area, the expected payoff of bidder 1 still increases.

4.2.5. Effect on Income Seller

As determined in the previous subsection, both bidder’s expected payoffs increase if bribing
is possible. Consequently, we expect that the income of the seller will decrease. To confirm
whether this is true, we will calculate her expected income.

She only profits if the bribe is rejected. This happens if θ1 < θ2 <
2
3 , i.e. area III in figure

6. We obtain

Ws =

∫
III

∫
θ1 dθ2 dθ1

=

∫ 2
3

0

∫ 1

θ1

θ1 dθ2 dθ1

=

∫ 2
3

0

[
θ1 − θ21

]θ2=1

θ2=θ1
dθ1

=
[

1
2θ

2
1 − 1

3θ
3
1

]θ2=1

θ2=θ1
dθ1

= 1
2 ·

4
9 −

1
3 ·

8
27 = 10

81 .

Thus the expected income of the seller is Ws = 10
81 , which is much less than the 1

3 she
receives if bribing is not possible. We can conclude that a one-round bribe leads to a larger
profit for the bidders, but a loss for the seller.

20



5. Two-Rounds Bribing Model

Similar to Eső and Schummer, Rachmilevitch ([6]) examined whether a second-price sealed-
bid auction is immune to a certain type of collusion. Rachmilevitch extended the game of
Eső and Schummer by analysing a two-rounds bribing model.

The setting of Rachmilevitch’s model is the same. We have a second-price sealed-bid
auction for a single object, and two risk-neutral bidders with private, independent values.
These values θi ∈ [0, 1] with i = 1, 2 are drawn independently according to a log-concave
distribution function Fi, of which fi is a strictly positive and differentiable density function.
The reserve price is again set at zero for simplicity, but one can generalize the model and
use a reserve price pr ∈ (0, 1) without changing the results. Furthermore, everything is
commonly known, except the private valuations.

Before the auction starts, the two bidders can, in turn, offer each other a bribe; by accepting
a bribe a bidder commits herself to staying out of the auction, which is again modelled as
bidding 0. More specifically, we have two rounds of bribing. In the first round, bidder 1
can offer bidder 2 a bribe, which 2 can either accept or reject. If she accepts, she leaves
the auction, implying that bidder 1 becomes the sole participant and therefore obtains
the object. If she rejects, she can make a counteroffer, which bidder 1 must accept or
reject. Accepting leads again to an auction with only one participant. Rejecting leads
to a regular second-price sealed-bid auction, in which they bid truthfully and the bidder
with the highest valuation has a payoff of max(θ1, θ2)−min(θ1, θ2), and the other a pay-
off of 0. It is also possible for both bidders to not offer a bribe, this is modelled as offering 0.

A strategy of bidder 1 is defined as the bribing function b : [0, 1] → R+ and a family of
functions {aθ1}θ1 ∈ [0, 1], where aθ1 : R+ → {accept, reject} gives the response of type
θ1 to all possible counteroffers made by bidder 2. A strategy for bidder 2 is defined as a
family of functions {b2(·|x)}x∈R+ , where b2(·|x) : [0, 1]→ R+∪{accept} gives the behaviour
of bidder 2 after she is offered the amount x. Here, r ∈ R+ means that 2 rejects the
bribe and counteroffers the amount r. Henceforth, unless otherwise specified, the term
bribing function always refers to the bribing function of bidder 1; not to the counter-bribing
function of bidder 2.

A weak sequential equilibrium is, as defined earlier, a strategy-belief pair (µ, β), that
satisfies the conditions of sequential rationality and consistency. Here, given the beliefs µ1,
β1 is the best reply of bidder 1 against β2 in each of 1’s information sets; µ1 are bidder
1’s beliefs about the type of bidder 2. Analogously, given µ2, β2 is the best reply against
β1 in each of 2’s information sets, with µ2 bidder 2’s beliefs about the type of bidder 1.
In section 5.1, an equilibrium is a weak sequential equilibrium that satisfies four extra
requirements. Given that b is the equilibrium bribing function, for every bribe x offered,
b−1(x) is the set of bidder types who make this offer. The four requirements are:

1. If bidder 1 receives an unexpected offer x ≤ 1 from bidder 2, any belief she might
form, gives probability 1 to the event {θ2 ≥ x};

2. The offer 0 is never accepted by a bidder with a strictly positive type;
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3. ∀x in the range of b, b−1(x) has a minimum;

4. ∀x in the range of b, b−1(x) is convex.

As discussed in section 4.1, Eső and Schummer proved that in a one-round bribing model
inefficiency occurs with a positive probability, since there is no incentive for bidder 1 to fully
reveal her type. To clarify, suppose we have an equilibrium in which the bribing function
of bidder 1 is strictly increasing, and thus fully revealing. Now assume that a bidder with
type θ1 = 1 pretends to be 1 − ε, for a small ε > 0. Bidder 2 will now still accept the
lowered bribe, as she cannot hope to receive more than ε in the regular second-price auction.
Hence, all types above a certain threshold will offer the same amount. In the two-rounds
bribing model of Rachmilevitch, this no longer holds. In the second round, bidder 2 can
reject an offer without triggering the regular auction. Ergo, it no longer suffices for bidder
1 to signal that her type is sufficiently strong to make sure her bribe is accepted.

Remark. In the model of Eső and Schummer, bidder 1 would never offer an amount higher
than her valuation. However, in the two-rounds model low types of bidder 1 might do
so, hoping that their offer will be rejected and lead to a higher counteroffer. This leads
to pooling equilibria in the first round, where bidders with a low type all offer the same
amount, even though it might lead to a negative payoff. This is because the probability
that bidder 2 has a higher type is large enough, implying that 2 will reject the bribe and
will counteroffer.

5.1. Results

We start by introducing the lemmas Rachmilevitch used to describe the structure of the
efficient equilibria of his model. The first lemma says that if bidder 2 with type θ2 accepts
a certain bribe of bidder 1, then so do all bidders with a type below θ2; this can be
proved using contradiction. The second lemma implies that the bribing function b is strictly
increasing and can be proved using lemma 5.1. Lemma 5.3 and 5.4 define b(θ1) ≡ θ1−π1(θ1)
as the bribe offered by bidder 1 with type θ1, if her bribe is strictly positive. The proofs
are based on the previous lemmas and the model of Eső and Schummer.4

Lemma 5.1. (Monotone acceptance). Consider an arbitrary equilibrium and let b be its
bribing function. If b(θ1) > 0 for some θ1, then bidder 2’s equilibrium-response to the offer
b(θ1) is monotonic: if θ2 accepts b(θ1), then so do all θ′2 < θ2.

Lemma 5.2. (Revelation by strictly positive bribes). Let b be the bribing function of an
efficient equilibrium. Then if θ1 and θ′1 are two types of bidder 1 such that b(t) > 0 for both
t ∈ {θ1, θ′1}, then b(θ1) 6= b(θ′1).

Lemma 5.3. Let b be a bribing function of an efficient equilibrium. Then there is a

4For the interested reader, the full proofs of all lemmas are gathered in Appendix A. The proofs of
propositions 5.1, 5.2 and 5.3, and theorem 5.5 can be found on page 196-197 and in the Appendix of the
article of Rachmilevitch [6].
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constant C ≥ 0 such that the following holds for each θ1:

b(θ1) > 0⇒ b(θ1) = θ1 − π1(θ1)− C.

Lemma 5.4. (Characterization of strictly positive bribes). The constant described in
lemma 5.3, C, is zero. In particular, in any efficient equilibrium, if type θ1 offers a strictly
positive bribe then her offer is given by:

b(θ1) ≡ θ1 − π1(θ1).

In the proof of lemma 5.3, Rachmilevitch denotes the counteroffer of bidder 2 as r(θ1). He
then states there is a cut-off type θ2 = θ1, who is indifferent between offering this, and
accepting the offer of bidder 1: b(θ1) = θ1− r(θ1). It follows from this equation and lemma
5.4 that in an efficient equilibrium with bribing function b, bidder 2 counteroffers π1(θ1) if
she rejects the offer of bidder 1. Furthermore, lemma 5.3 and 5.4 imply that in an efficient
equilibrium, a bidder with type θ1 = 0, offers a bribe of zero. At last, the lemmas result in
the following corollaries.

Corollary 5.4.1. Let b∗ be the bribing function of an efficient equilibrium. Suppose that
b∗ is continuous. Then either b∗ = b or b∗ = 0.

Corollary 5.4.2. Let b∗ be the bribing function of an efficient equilibrium. Suppose that b∗

is non-decreasing. Then there is a t ≥ 0 such that b∗(θ1) = b(θ1) for θ1 ≥ t and b∗(θ1) = 0
otherwise.

The following proposition is obtained using the corollaries.

Proposition 5.1. Suppose that f ′1(0) > 0. Let b∗ be the bribing function of an efficient
equilibrium. Suppose that b∗ is either continuous or non-decreasing (or both). Then b∗ = b.

The idea behind proposition 5.1, is that it eliminates the no-bribing equilibria in the
second round. If a small offer ε is made in the second round, all θ1 ∈ [0, ε] will accept
it. Since, f ′1(0) > 0, relatively-strong types are more likely in the neighbourhood of zero
than relatively-weak ones. Ergo, by counteroffering a relatively low amount, bidder 2 can
eliminate opponents who are relatively strong. Hence, bribing will occur in the second
round. Due to efficiency, this leads to the fact that bribing must also occur in the first
round. Using the lemmas, it follows that b, defined as in lemma 5.4, is the bribing function.

The proposition only applies to equilibria whose bribing function is minimally well-behaved,
i.e. either continuous or non-decreasing. However in this bribing game there exist equilibria
which are not that well-behaved. In fact, there even exist efficient equilibria like that.
Consider for instance the bribing function b̃ of equation 6, which is certainly neither
continuous, nor non-decreasing. Rachmilevitch proved that there is an efficient equilibrium
with this bribing function.

Proposition 5.2. Suppose that E[θ2] ≥ 1
2 . Then there exists an efficient equilibrium
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whose bribing function is b̃, with b̃ defined as follows:

b̃(θ1) =

{
0, if θ1 ∈ Q
b(θ1), if θ1 /∈ Q.

(6)

Furthermore, if the condition f ′1(0) > 0 does not hold, the bribing function of a well-behaved
equilibrium is not necessarily b.

Proposition 5.3. Suppose that Fi is uniform for each i = 1, 2. Then a no-bribing equilib-
rium exists. In it, bidder 1’s bribing function is identically zero, bidder 2 reciprocates zero
with the counter offer zero, and the auction is played non-cooperatively with probability one.

The following theorem embodies the main result of Rachmilevitch. It states the necessary
and sufficient condition for an efficient equilibrium in which the bribing function of bidder
1 is equal to b.

Theorem 5.5. There exists an efficient equilibrium whose bribing function is b if and only
if E[θ2] ≥ 1

2 .

The condition E[θ2] ≥ 1
2 originates from the following lemma:

Lemma 5.6. E[θ2] ≥ 1
2 , if and only if π1(θ1) ≤ θ1

2 ∀θ1 ∈ [0, 1].

We will show the necessity of this condition. Suppose that for some θ1, π1(θ1) >
θ1
2 . Fur-

thermore, assume this type θ1 was truthfully revealed in the first round and that θ2 > θ1.
Now, bidder 2 has an incentive to deviate from the equilibrium by offering π1(θ1) − ε
for a small ε > 0. Bidder 1 will believe with probability 1 that θ2 ≥ π1(θ1) − ε. Hence,
she will accept the lower offer if π1(θ1) − ε ≥ θ1 − (π1(θ1) − ε), which is true for small
ε > 0. However, if π1(θ1) ≤ θ1

2 , the previous condition no longer holds, and bidder 2 has
no incentive to deviate from the equilibrium.

The efficient equilibrium is now defined as follows. In the first round, bidder 1 offers
b = θ1 − π1(θ1), and therefore fully reveals her type. In the second round, bidder 2 accepts
the offer if θ2 ≤ θ1. If she rejects the bribe, she makes the counteroffer π1(θ1), which is
always accepted by bidder 1. Hence, the equilibrium payoff of bidder 1 is equal to her
payoff in a regular second-price auction, independent of the type of bidder 2. The payoff
of bidder 2, however, increases independently of whether she chooses to accept or reject.
She accepts the offer of bidder 1 if θ2 ≤ θ1. Her payoff in a regular auction would have
been zero, but now she obtains b = θ1 − π1(θ1) > 0. If she rejects the offer, i.e. if θ2 ≥ θ1,
her payoff would have been θ2 − θ1. Now however, she obtains θ2 − π1(θ1), and since
π1(θ1) ≤ θ1

2 , her payoff has again increased.

The difference in the effect on the payoff, is due to information asymmetry. Since bidder
2 knows bidder 1’s type before having to make her move, she is able to exclude bidder 1
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from the auction at the lowest price possible.

Remark. One might think that after bidder 2 rejects the offer of bidder 1, which in an
efficient equilibrium implies that θ2 > θ1, she counteroffers an arbitrarily small amount.
Bidder 1 would have already observed that bidder 2 is a stronger opponent since she
rejected the offer, and therefore accept any offer. However, if this were the case, low types
of bidder 2 would pretend to have a higher type, hoping that bidder 1 will accept a small
offer. Ergo, this is not part of an equilibrium.

Conclusively, there exists a continuous bribing equilibrium, of which the first round is fully
separating. All types of bidder 1 perfectly reveal themselves by offering a bribe. Due to
this full revelation of bidder 1’s type, the equilibrium is efficient.

5.2. Concrete Effect

We will again concretize the effect on the efficiency and the payoffs, given that θ1 and θ2
are independently and identically distributed from U(0, 1).

5.2.1. Effect on Efficiency

As explained earlier, in the model of Rachmilevitch, there is no threshold. Consequently,
the strategy of bidder 1 is simply to bribe b(θ1) = θ1 − π1(θ1). The best reply of bidder
2 now is to accept if θ2 ≤ θ1 and to reject if θ2 ≥ θ1. Thus, we have [0, A(x)〉 = [0, θ1〉.
Hence, the bidder with the highest valuations always obtains the object, which makes the
auction efficient despite the bribing. Note that as the auction is efficient, both bidders win
the auction with probability 1

2 .

For the uniform distribution, the specific expected payoff π1(θ1) and bribing function b(θ1)
are

π1(θ1) =

∫ θ1

0

(
θ1 − θ2

)
dθ2

=
[
θ1θ2 − 1

2θ
2
2

]θ2=θ1
θ2=0

= 1
2θ

2
1

and thus

b(θ1) = θ1 − π1(θ1) = θ1 − 1
2θ

2
1.

5.2.2. Effect on Payoff Bidders and Income Seller

In section 4.2.3 we calculated the expected income of the seller and the expected surplus
of both bidders in a situation without a bribing round. Recall that we found the values
Ws = 1

3 , W1 = 1
6 and W2 = 1

6 .
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Now consider the two-rounds bribing model, where the amount offered by bidder 1 is equal
to b(θ1) = θ1 − 1

2θ
2
1. Bidder 1 can make a profit in two distinct ways. Firstly, if bidder 2

accepts her bribe, she gains θ1 − b(θ1) = 1
2θ

2
1. Secondly, if bidder 2 rejects her bribe and

makes a counteroffer, she obtains r = π1(θ1) = 1
2θ

2
1. As she receives the same payoff in

both cases, we can calculate it the following way:

W1 =

∫ 1

0

∫ 1

0
π1(θ1) dθ1 dθ2

=

∫ 1

0

∫ 1

0

(
1
2θ

2
1

)
dθ1 dθ2

=

∫ 1

0

[
1
6θ

3
1

]θ1=1

θ1=0
dθ2

=
[

1
6θ2

]θ2=1

θ2=0
= 1

6 .

For bidder 2 we also have two possible situations in which she can get a positive payoff.
If she accepts the bribe, she gains b(θ1) = θ1 − 1

2θ
2
1. If she rejects the bribe, she gains

θ2 − r = θ2 − 1
2θ

2
1. We will start by calculating her expected payoff if she accepts the offer;

this is equal to

W 1
2 =

∫ 1

0

∫ 1

0
b(θ1) 1

(
θ1 ≥ θ2

)
dθ1 dθ2

=

∫ 1

0

∫ 1

θ2

(
θ1 − 1

2θ
2
1

)
dθ1 dθ2

=

∫ 1

0

[
1
2θ

2
1 − 1

6θ
3
1

]θ1=1

θ1=θ2
dθ2

=

∫ 1

0

(
1
3 −

1
2θ

2
2 + 1

6θ
3
2

)
dθ2

=
[

1
3θ2 −

1
6θ

3
2 + 1

24θ
4
2

]θ2=1

θ2=0

= 1
3 −

1
6 + 1

24 = 5
24 .

Next, we calculate her expected payoff if she rejects and makes the counteroffer r; we now
obtain

W 2
2 =

∫ 1

0

∫ 1

0

(
θ2 − π1(θ1)

)
1
(
θ2 ≥ θ1

)
dθ1 dθ2

=

∫ 1

0

∫ θ2

0

(
θ2 − 1

2θ
2
1

)
dθ1 dθ2

=

∫ 1

0

[
θ1θ2 − 1

6θ
3
1

]θ1=θ2
θ1=0

dθ2

=

∫ 1

0

(
θ22 − 1

6θ
3
2

)
dθ2

=
[

1
3θ

3
2 − 1

24θ
4
2

]θ2=1

θ2=0
= 7

24 .

Hence the total expected payoff of bidder 2 is W2 = W 1
2 +W 2

2 = 5
24 + 7

24 = 1
2 .
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At last, we will discuss the expected income for the seller. As a result of the two-rounds
bribing, there is always one bidder that accepts a bribe from the other bidder, and therefore
commits to staying out of the auction. Even though, the auction is still efficient, the seller
will never receive a positive income, which means unfortunately that Ws = 0. Note that
her income is now zero as pr = 0; if pr > 0, her income is logically Ws = pr > 0.
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6. Conclusion

In this thesis, we have examined the effect of two simple forms of collusion on the efficiency
and payoffs of a second-price auction. The specific setting was a second-price sealed-bid
auction for a single object, with two risk-neutral bidders. Both bidders had private and
independent valuations θ1, θ2 ∈ [0, 1]. Recall that in a regular second-price auction bid-
ders bid their true value. Hence, the payoff of the bidder with the highest valuation is
max(θ1, θ2)−min(θ1, θ2), while the payoff of the other bidder is zero.

The form of collusion Eső and Schummer studied, is a one-round bribing model. Here, only
bidder 1 gets the opportunity to exclude bidder 2 from the auction by offering her a bribe.
If she accepts, she commits to leaving the auction, i.e. submitting a bid of zero. If she
rejects, the auction continues as a regular second-price auction, in which the bidders bid
their true valuation. The main result was that there exists a unique and continuous bribing
equilibrium in which inefficiency occurs with a positive probability. All bidders with a
type below a certain threshold θ̂1 offer a unique amount as a function of their type. Hence,
since these bidders reveal their type, the equilibrium is mostly-separating. The bidders
with a type above θ̂1 all offer the same bribe. This threshold exists since it is enough for
bidder 1 to signal that she is sufficiently strong to make sure her bribe is accepted. Hence,
every bribe is accepted with a positive probability and the highest bribe is always accepted,
which leads to the positive probability of inefficiency.

The collusion type studied by Rachmilevitch is an extension of the model of Eső and
Schummer. The main result was that there exists an efficient equilibrium whose bribing
function is b if and only if E[θ2] ≥ 1

2 . The equilibrium is now as follows. In the first round,
given that bidder 1 offers a strictly positive bribe, she offers b(θ1) = θ1 − π1(θ1). In the
second round, if θ2 < θ1, bidder 2 accepts this offer. The payoffs are now respectively
π1(θ1) and b(θ1). If θ2 > θ1, bidder 2 rejects and counteroffers π1(θ1), which bidder 1
always accepts. Now the payoffs for bidder 1 and 2 are respectively π1(θ1) and θ2 − π1(θ1).
Given that π1(θ1) ≤ θ1

2 , the payoff of bidder 2 always increases compared to the regular
second-price auction, while the payoff of bidder 1 remains the same. The two-rounds bribing
model is more beneficial for bidder 2 than for bidder 1 due to information asymmetry.
Since b is strictly increasing, the first round is fully separating. Since bidder 2 is aware of
the type of bidder 1, she can bribe 1 to stay out of the auction by offering the minimum price.

Conclusively, if we have a second-price auction with private and independent values, it
matters whether the bribing model consists of one or two rounds. In a one-round model,
efficiency is impossible, since bidder 1 has no incentive to fully reveal her type. There is
pooling among types of bidder 1 above the threshold, and thus inefficiency will occur with
a positive probability. In a two-rounds model, it is no longer enough for bidder 1 to signal
that her type is sufficiently strong. Ergo, there is no threshold. Bidder 2 will only accept
the bribe is her type is actually lower than θ1. Hence, we have full revelation of the type
of bidder 1, and thus efficiency.

At last, in sections 4.2 and 5.2 we found the payoffs given a uniform distribution. In
the case of no bribing, the total amount circulating in the auction is Ws + W1 + W2 =
1
3 + 1

6 + 1
6 = 2

3 = 108
162 . In the one-round bribing model it was 10

81 + 35
162 + 26

81 = 107
162 , and in

28



the two-rounds bribing model we found 0 + 1
6 + 1

2 = 2
3 . Hence, for the inefficient model,

the total amount decreased slightly, while in the efficient model, the amount remained
the same. This could be a coincidence, but might be an interesting angle to examine further.
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Appendices

A. Proofs Lemmas Two-Rounds Bribing Model

The proofs are adopted from Rachmilevitch ([6]) using a slightly changed notation. They
are shown here, so that the interested reader does not have to look up the original article.

Lemma A.1. (Monotone acceptance). Consider an arbitrary equilibrium and let b be its
bribing function. If b(θ1) > 0 for some θ1, then bidder 2’s equilibrium-response to the offer
b(θ1) is monotonic: if θ2 accepts b(θ1), then so do all θ′2 < θ2.

Proof. Make the aforementioned assumptions and assume by contradiction that θ2 and θ′2
are two types of bidder 2 such that (in the equilibrium under consideration) the former
type accepts b(θ1), the latter rejects it and counters it with the offer r, and θ′2 < θ2. Let
p denote the probability that bidder 1 accepts r. Note that p < 1, because otherwise we
would have θ′2− r ≥ b(θ1) ≥ θ2− r, in contradiction to θ′2 < θ2. The fact that p < 1 implies
that the auction that follows the rejection of r happens on the equilibrium path. Let φ
be bidder 2’s payoff function in this auction. The incentive constraints for θ2 and θ′2 are
therefore:

p(θ′2 − r) + (1− p)φ(θ′2) ≥ b(θ1) ≥ p(θ2 − r) + (1− p)φ(θ2) (7)

which implies
p(θ′2 − θ2) ≥ (1− p)(φ(θ2)− φ(θ′2)) ≥ 0. (8)

Inequality 8 implies p = 0, and substituting p = 0 into 7 gives φ(θ′2) ≥ φ(θ2), and therefore
φ(θ′2) = φ(θ2). This means that the winning probability of θ′2 in the auction that follows
the rejection of r is zero, because in that auction whenever θ′2 wins then surely θ2 wins,
and θ2’s payoff from winning is greater than θ′2’s by the constant ∆ ≡ θ2− θ′2 > 0. The fact
that θ′2’s winning probability in the aforementioned auction is zero implies that rejecting
b(θ1) > 0 and countering it with r is strictly sub-optimal – in contradiction to equilibrium.

Lemma A.2. (Revelation by strictly positive bribes). Let b be the bribing function of an
efficient equilibrium. Then if θ1 and θ′1 are two types of bidder 1 such that b(t) > 0 for both
t ∈ {θ1, θ′1}, then b(θ1) 6= b(θ′1).

Proof. Let b be the bribing function of an efficient equilibrium and suppose that there
is a b(θ1) > 0 for some θ1. Let θ1 be the minimal type who offers b(θ1). By lemma A.1,
all θ2 ≤ k accept b(θ1) for some cut-off k = k(b(θ1)).

5 By efficiency, k ≤ θ1; otherwise,
efficiency would fail for any type-realization where bidder 1’s type is θ1 and bidder 2’s
type is in (θ1, k). I argue that k = θ1 . To see this, assume by contradiction that k < θ1
and let r denote the counter-bribing function employed by bidder 2 in this equilibrium
after she rejects b(θ1). Efficiency dictates that θ1 rejects all counters r(t), t ∈ (k, θ1).
This implies that on the equilibrium path any such counter r(t) (for t ∈ (k, θ1)) is re-
jected by bidder 1. The reason is that θ1 prefers to reject a counter-offer and compete
in the auction, then so does any other θ′1 > θ1,

6 and by assumption θ1 is the minimal
type who offers b(θ1). This means that for types θ2 ∈ (k, θ1), the continuation payoff that

5It is easy to see that k > 0, because all θ2 < b(θ1) accept b(θ1).
6A proof of this fact is analogous to that of lemma A.1, and is therefore omitted.
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follows the rejection of b(θ1) > 0 is zerowhich is impossible in equilibrium. Therefore k = θ1.

Now suppose that there is a θ′1 > θ1 such that b(θ′1) = b(θ1). Therefore, by requirement 4
(see section 5), there is an interval of types who offer b(θ1). Look at some θ2 ∈ (k, θ′1) =

(θ1, θ
′
1). This type rejects b(θ1) and she therefore assigns probability at least η ≡ b(θ1)

θ′1
> 0

to the event {bidder 1’s type < θ2}.7 This is true for every such θ2, no matter how close
to k. Therefore, P (θ1 = k | b(θ1)) ≥ η, which is impossible, because there is a continuum
of briber-types who offer b(θ1).

Lemma A.3. Let b be a bribing function of an efficient equilibrium. Then there is a
constant C ≥ 0 such that the following holds for each θ1:

b(θ1) > 0⇒ b(θ1) = θ1 − π1(θ1)− C.

Proof. Let b be such a function and consider a θ1 such that b(θ1) > 0. It follows from the
combination of lemma A.2 and the equilibrium’s efficiency that bidder 2 accepts this offer
if θ2 < θ1 and rejects if θ2 > θ1. It follows that bidder 2’s rejection of the revealing offer
b(θ1) implies that θ2 ≥ θ1and therefore implies that bidder 1 can only obtain a positive
payoff through the acceptance of a counter bribe, so she indeed accepts the counter, if it is
strictly positive.

Now consider θ2 ∈ (θ1, θ1 + b(θ1)). This θ2 rejects the revealing offer b(θ1) > 0, thereby
forgoing the sure payoff b(θ1). Since θ2 ∈ (θ1, θ1 + (θ1)) she will not counter with zero,
because this will trigger the auction with certainty, in which case her net payoff will be
smaller than b(θ1). Therefore θ2’s counter is strictly positive. We noted above that bidder 1
can only obtain a positive payoff through the acceptance of a counter bribe, so she accepts
the strictly positive counter. Moreover, it is easy to see that no two such offers can be made
in equilibrium: if two strictly positive counters are proposed by bidder 2 and accepted
by the self-revealing θ1, then the more generous one cannot be a part of the equilibrium.
Therefore, a single offer is made, call it r(θ1), and the cut-off type θ2 = θ1 is indifferent
between offering it and accepting bidder 1’s offer:

θ1 − r(θ1) = b(θ1). (9)

Therefore, θ1’s equilibrium payoff is F2(θ1)(θ1 − b(θ1)) + (1 − F2(θ1))r(θ1) = θ1 − b(θ1).
On the other hand, since our bribing game can be thought of as a revelation mechanism,
it follows that θ1’s expected equilibrium payoff is π1(θ1) + C where C is the equilibrium
payoff of type θ1 = 0, which is obviously non-negative in our game (the reason is that the
efficient equilibrium implements the same allocation as the dominant-strategy equilibrium).
Therefore θ1 − b(θ1) = π1(θ1) + C, or b(θ1) = θ1 − π1(θ1)− C, as argued.

Lemma A.4. (Characterization of strictly positive bribes). The constant described in
lemma A.3, C, is zero. In particular, in any efficient equilibrium, if type θ1 offers a strictly

7Once such θ2 rejects b(θ1), she knows, because of the equilibrium’s efficiency, that the only way for her
to end up with a positive payoff is in the event {θ1 ≤ θ2}. Letting p be the probability of {bidder 1’s
type < θ2} the following obviously must be satisfied pθ2 ≥ b(θ1)⇒ p ≥ η
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positive bribe then her offer is given by:

b(θ1) = θ1 − π1(θ1).

Proof. Assume by contradiction that C > 0. Note that θ1 = C offers a zero bribe; otherwise,
by lemma A.3, her offer would be C − π1(C) − C = −π1(C) < 0, which is impossible.
Therefore, the expected equilibrium payoff of type θ1 = C is obtained by triggering a
counteroffer of bidder 2. Hence, this payoff is bounded from above by:∫ 1

0
max{r(t),max{C − t, 0}}f2(t) dt,

where r is the function describing the counter-offers of bidder 2 that follows the rejection
of the bribe offer zero. The reason is that once arrived in this second round, bidder 1’s
payoff cannot decrease if, in addition to bidder 2’s offer r(θ2) bidder 1 is provided with the
information regarding bidder 2’s type (the function r need not be invertible); conditional
on this information, bidder 1 can optimally decide whether to accept the counteroffer or
compete in the auction.

Now notice that C =
∫ 1
0 r(t)f2(t) dt, since C is the equilibrium payoff of θ1 = 0 and it

hence must be equal to the expected counter-bribe. Since C > 0 it follows that r is strictly
positive on a set of positive measure; it therefore follows from Eső and Schummer that r is
weakly increasing and strictly positive on an interval of the form [x, 1], which implies:∫ 1

0
max{r(t),max{C − t, 0}}f2(t) dt <

∫ 1

0

[
r(t) + {max{C − t, 0}

]
f2(t) dt

=

∫ 1

0
r(t)f2(t) dt+

∫ 1

0
max{C − t, 0}f2(t) dt = C + π1(C).

However, recalling that the equilibrium payoff of type θ1 = C is C + π1(C), we obtain
C + π1(C) < C + π1(C) – a contradiction.

Lemma A.5. E[θ2] ≥ 1
2 , if and only if π1(θ1) ≤ θ1

2 ∀θ1 ∈ [0, 1].

Proof. Suppose that π1(θ1) ≤ θ1
2 ∀θ1 ∈ [0, 1]. Taking θ1 = 1 gives 1 − E[θ2] ≤ 1

2 , or
E[θ2] ≥ 1

2 . Conversely, suppose that E[θ2] ≥ 1
2 . We need to prove that γ(θ1) ≥ 0, where

γ(θ1) ≡ θ1
2 − π1(θ1). Note that γ′(θ1) = 1

2 − F2(θ1), hence γ′′(θ1) = −f2(θ1) ≤ 0, so γ is
concave. Also, γ(0) = 0 and γ(1) = 1

2 − (1−E[θ2])) = E[θ2]− 1
2 ≥ 0, where the inequality

is by assumption. Therefore, γ(θ1) ≥ θ1γ(1) + (1− θ1)γ(0) = θ1γ(1) ≥ 0.
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