
 

 

Naïve Bayes classifier: normally distributed continuous 
attributes versus the discretized version of those attributes 

Bachelor thesis 7.5 ECTS 

 

I. Majoor 
5516013 

 
Supervisor: dr. S. Renooij 

Second reviewer: dr. ir. J.M. Broersen 
 

Bachelor Artificial Intelligence  
Utrecht University 

30 – 06 – 2017 
 

  



2 
 

 

 

 

 

 

Abstract 

In this paper, the differences between training a Naïve Bayes classifier on normally distributed 

continuous attributes and training a Naïve Bayes classifier on the discretized version of those 

continuous attributes have been examined. First, the methods that have been used in the 

experiment have been chosen carefully. To test if an attribute has a normal distribution, the Shapiro-

Wilk test was executed. The discretization has taken place with the unsupervised method equal 

frequency and a supervised method using the minimum description length principle. Monte-Carlo 

cross validation was used to get three means of the percentages wrongly classified unseen instances 

per dataset after 25 runs: when using the continuous attributes themselves and when the attributes 

were discretized using the two discretization methods. In the results, the means have been tested 

with the paired t-test. The conclusion is to keep the continuous attributes when dealing with a larger 

dataset (2280 till 5000 instances) as there were less unseen instances wrongly classified and the true 

difference between the means was significant. When dealing with a smaller dataset (114 till 250 

instances), the true difference between the means was not significant. Only when a smaller dataset 

has an unbalanced split of number of instances per different classification with a ratio of 1:2.5, 

keeping the normally distributed continuous attributes resulted in a better accuracy.    

  



3 
 

 

Content 
1. Introduction ..................................................................................................................................... 4 

1.1 Continuous vs Categorical ................................................................................................... 4 

2. Preliminaries .................................................................................................................................... 5 

2.1 Central Limit Theorem ................................................................................................................... 5 

2.2 The Naïve Bayes classifier.............................................................................................................. 6 

2.2.1 Accuracy ................................................................................................................................. 7 

2.2.1 The Naïve Bayes classifier in our experiment ......................................................................... 8 

2.3 Normally Distributed ..................................................................................................................... 9 

2.3.1 Shapiro-Wilk ........................................................................................................................... 9 

2.4 Discretization ................................................................................................................................. 9 

2.4.1 Equal frequency .................................................................................................................... 11 

2.4.2 Minimum description length principle ................................................................................. 11 

2.5 Validation .................................................................................................................................... 12 

3. Experiments ................................................................................................................................... 13 

3.1 Used Data Sets ............................................................................................................................. 13 

3.2 Experimental set-up .................................................................................................................... 14 

3.3 Results & discussion .................................................................................................................... 15 

4. Conclusion & Future Research ...................................................................................................... 16 

References ............................................................................................................................................. 19 

Appendix A: R-code ............................................................................................................................... 21 

Appendix B: prediction .......................................................................................................................... 26 

Appendix C: means and standard deviations per attribute .................................................................. 28 

Appendix D: Shapiro-Wilk test results ................................................................................................... 30 

Appendix E: Monte-Carlo results .......................................................................................................... 34 

 

  



4 
 

1. Introduction 
More and more companies make use of artificial intelligence to make the decisions that have 

to be taken based on a lot of data. With machine learning, it is possible to calculate the best 

option in a particular situation. Take for example a bank. A person will only get a loan if it is 

likely that he can repay it. Otherwise, the risk is too high and the bank can lose a lot of money. 

Classification is a good method to check if the person’s risk is too high. Based on the person’s 

data, like income, debt and home-situation, and historical data of all the customers who 

received a loan in the past (along with an indication if the customer could repay the loan or 

not), it can be calculated which situation has a greater chance of happening: the person will 

be able to repay his new loan or he won’t be able to repay his new loan. As a result, the bank 

will now be able to get the most out of their money. 

One classifier to do this, is the Naïve Bayes classifier. The goal of the classifier is to assign a 

classification to a new instance. A classification is the category to which an instance belongs. 

If we want to classify the sex of a person based on his/her height and weight, the classification 

can be “male” or “female”. To get this classification we use the attributes “height” and 

“weight”: the properties that belongs to the instance. The person itself is the instance: an 

observation that has its own values for all the attributes. If you take multiple instances, 

including their corresponding classifications, you will get a dataset the Naïve Bayes classifier 

can train on. Now, whenever you receive a new instance without a classification, you can use 

the trained Naïve Bayes classifier to get the classification the new instance most likely belongs 

to. The Naïve Bayes classifier is useful for problems in real-life, like recognizing end-user 

transactions [1]. As the Naïve Bayes classifier is a useful classification method, it is good to 

know how to use it in different situations to get the best results. 

1.1 Continuous vs Categorical 

The type of the attributes the Naïve Bayes classifier trains on may differ. It could be numeric 

or categorical.  A numeric attribute could contain an infinite number of values, continuous, or 

a finite number of values, discrete. A categorical attribute has a value that describes what it 

is: “low” or “high”, “A” or “B” or “C”, and so on. A categorical attribute does not have to be a 

word or letter, it can also be numeric like the categories 1 to 5. It is possible to replace the 

infinite number of continuous values with a finite number of categorical values using 

discretization. For example, instead of having a different height for each person, the top 

twenty percent can be classified as “tall”, the bottom twenty percent as “short” and the rest 

as “average”. 

Using discretization on continuous attributes can lead to wrong results as there is data loss in 

most cases [2]. For continuous attributes, a normal distribution must be assumed when using 

the Naïve Bayes classifier, even when it is verified that an attribute does not have a normal 

distribution. There has been an experiment in which a comparison has been made between 

continuous attributes and a discretized version of those attributes, to find out which one has 

the highest classification accuracy for unseen instances using the Naïve Bayes classifier. As 

discretization can be done in many ways, they discretized the attributes with not one, but four 

different methods. The results have shown that the discretized attributes, no matter which 

method has been used, had a higher accuracy than the continuous values [3]. The authors are 



5 
 

dealing with both the data loss due to discretization and the obligatory assumption of having 

continuous attributes. It was not verified that the continuous attributes of the used datasets 

were normally distributed. In fact, the authors have said that normally distributed assumption 

was “inappropriate”. This could be a reason that the accuracy of the Naïve Bayes classifier on 

the datasets with the continuous attributes is lower than on the datasets with the discretized 

attributes as a wrong assumption may lead to wrong results. 

In this paper, it will be clear if the data loss due to discretization is suddenly much more 

prominent when the normal distribution assumption is true. There will also be a comparison 

between continuous attributes and the discretized version of those attributes, to find out 

which one has the highest classification accuracy for unseen instances using Naïve Bayes. 

However, it will not be assumed that the attributes have a normal distribution; before a data 

set is used, it will be verified that the distribution is normal. Our research question is: if it is 

verified that the continuous attributes of a dataset have a normal distribution, what will 

have a higher accuracy: using the Naïve Bayes classifier on the continuous attributes or using 

the Naïve Bayes classifier on the discretized version of those attributes? Now, only the data 

loss due to discretization can influence the results.  

In the following section, we shall talk about the relevance of this paper and an explanation 

for the methods we shall use during the experiment. In section 3, we will go deeper into the 

experiment itself: the datasets we will use, the set-up and the results. The conclusion and 

possible future research are discussed in the final section. 

2. Preliminaries  

2.1 Central Limit Theorem 
The conclusion to this experiment will only be relevant to the datasets that contain normally 

distributed continuous attributes. The next question follows: does a normal distribution really 

occur in real life?  Because, if no normally distributed continuous attributes appear in real life 

data, none of the future datasets will benefit from our conclusion. Except for datasets that 

have specifically been generated to have a normal distribution of course. To get an 

explanation for the occurrence of normal distributions in real life data, we can use the central 

limit theorem: the distribution of the sum (or the mean) of a lot of independent, identically 

distributed variables will be approximately normal. The variables are independent if they do 

not influence each other: if you change the value of one of the variables, the values of the 

other variables should remain the same. The variables are identically distributed if every 

instance has the same probability distribution for all of the variables [4]. 

In [5], an example of the central limit theorem is given. The weight of loaves of bread will vary 

according to the normal distribution if you use the same recipe for all the loaves of bread. 

When you make 100 loaves of bread, it is impossible to follow the recipe exactly the same 

every single time.  Maybe you have added 201 grams of flour to the first loaf, but only 198 

grams to the next one. Also, more milk can remain in the measuring cup after you have 

poured, than remained last time. The sum of those variables is the weight of the loaf. The 

distribution of all those sums (weights) will approach the normal distribution. 

This shows us that we face normally distributed data in real life that could benefit from our 



6 
 

experiment. If we would bake 100 loaves of bread from not one, but two different recipes, we 

could use a classifier to find out if an unknown bread is baked according to recipe one or two. 

After we have an answer to our research question, we should be able to decide whether to 

use the classifier with the continuous values for attribute weight or with a discretized version 

of those continuous values. 

Not only the weight of baked food follows a normal distribution, many continuous attributes 

closely follow a normal distribution. The data set obtained from [6], contains the height and 

weight of 25.000 humans. After using our normality test (see Normally Distributed), we can 

assume that human heights are normally distributed. The minimum value is 60.3 inch (153.1 

cm), the maximum value is 75.2 inch (190.9 cm), the mean is 68.0 inch (172.7 cm) and the 

standard deviation is 1.9 inch (4.8 cm). There are a lot of factors, the variables, which influence 

your height, the sum of those variables [7]. Not only your height is normally distributed. For 

example: birthweights, IQ scores and SAT scores also follow this distribution [8]. This means 

that our experiment will be relevant for the Naïve Bayes classifier in practice. 

2.2 The Naïve Bayes classifier  
The Naïve Bayes classifier is a statistical classifier. A trained Naïve Bayes classifier can predict 

the classification of an unseen instance based on the instance’s values for the attributes. The 

prediction will be based on the probability for each of the possible classifications based on the 

values of the attributes for this instance [9]. One way for deciding which classification most 

likely belongs to the unseen instance, and what we will use in this experiment, is by choosing 

the classification with the highest probability: the winner takes all.  

The Naïve Bayes classifier uses Bayes’ theorem: if we use vector (x1 … xn) as the values for the 

attributes for an unseen instance and Ci for a possible classification, the chance of  

P(Ci | x1 … xn) is equal to P(x1 … xn | Ci)P(Ci) / P(x1 … xn). This chance is called the posterior 

probability and can be calculated for all possible classifications. We can leave out the division 

by P(x1 … xn), since for every possible classification Ci, P(x1 … xn) will have the same value: it 

is a constant that can be used if you want to normalize the probabilities. This leaves us with 

the calculation of P(x1 … xn | Ci)P(Ci). When a Naïve Bayes classifier is used, the number of 

instances in the dataset is normally not enough to be able to calculate P(x1 … xn | Ci). To be 

able to calculate P(x1 … xn | Ci), you need every possible combination of values for the 

attributes. Even if you have all the possible combinations, it takes a lot of time to calculate. 

That is why the classifier has the naïve assumption, hence the name Naïve Bayes, that all the 

attributes are independent given the class value [9]. But even if there are dependent 

attributes, the Naïve Bayes classifier has a high accuracy [10]. If you take the naïve assumption 

into account, it is possible to substitute P(x1 … xn | Ci) [9]: 

𝑃(𝑥1  … 𝑥𝑛 | 𝐶𝑖) = ∏ 𝑃(𝑥𝑘  | 𝐶𝑖)

𝑛

𝑘=1

 

The P(xk | Ci) can be easily calculated from the dataset: the total number of times value xk for 
the corresponding attribute occurs in all the instances with classification Ci divided by the 
total number of instances with classification Ci. To make the formula complete, we still have 
to add the P(Ci): the total number of instances with classification Ci divided by the total 



7 
 

number of instances. Due to this naïve assumption, the formula without normalizing can be 
calculated easily [9]:  

P(Ci | x1  … xn) 𝑃(𝑥1  … 𝑥𝑛 | 𝐶𝑖)𝑃(𝐶𝑖) = 𝑃(𝐶𝑖) ∏ 𝑃(𝑥𝑘  | 𝐶𝑖)

𝑛

𝑘=1

 

Or with the constant to normalize: 

P(Ci | x1  … xn) =
 𝑃(𝑥1  … 𝑥𝑛 | 𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑥1  … 𝑥𝑛)
=

1

𝑃(𝑥1  … 𝑥𝑛)
𝑃(𝐶𝑖) ∏ 𝑃(𝑥𝑘  | 𝐶𝑖)

𝑛

𝑘=1

 

An example: with the given instances found in Table 1, we will calculate the posterior 

probability of both the possible classifications for a new instance. This new instance has the 

value “sour” for attribute Taste and “false” for attribute colorRed. 

 P(apple|taste=sour, colorRed = false)  P(apple) * 

P(taste=sour|apple) * P(colorRed=false|apple) =  

1/3 * 1/3 * 1/3 = 0.03704 

P(orange|taste=sour, colorRed = false)  P(orange) * 

P(taste=sour|orange) * P(colorRed=false|orange) =  

1/3 * 2/3 * 2/3 = 0.14815    

           Table 1: Example dataset 

For this example, the classification “orange” is chosen for the new instance. As we did not 
normalize, the values do not add up to 1. But, because we choose the classification with the 
highest posterior probability, this does not matter. With normalization, the posterior 
probability of “orange” will still be higher than the posterior probability of “apple”, as both 
posterior probabilities will be multiplied by the same constant.  

The formula that assumes that the variables are independent works with categorical 
attributes, but continuous attributes are also often found in datasets. As the number of 
possible values for a continuous attribute is infinite, it is possible that the posterior 
probabilities of all the classifications is zero, since it is very likely that none of the instances in 
the training set share the same continuous value as the unseen instance. We need another 
formula for the calculation of P(xk | Ci) when using continuous attributes. The Naïve Bayes 
classifier assumes that a continuous attribute has a normal distribution. Because a normally 
distributed continuous attribute has a mean, μ, and the variance, σ, the following formula can 
be used [11]: 

 𝑃(𝑥𝑘 | 𝐶𝑖)  =  
1

√2𝜋𝜎𝐶𝑖

2

𝑒𝑥𝑝 −
(𝑥𝑘 − 𝜇𝐶𝑖

)
2

2𝜎𝐶𝑖

2  

2.2.1 Accuracy 

How can the accuracy of a classifier on a dataset be calculated? We are using supervised 

learning, so for all the instances in a dataset, the correct classification is given. We split the 

dataset in two parts: a training set and a test set. The instances in Table 1 can be seen as a 

training set. Based on the values of those instances, the classification of an unseen instance is 

predicted. The unseen instances can be seen as the test set. They do not share their attribute 

values during the training of the classifier. Since for all the instances in the dataset the correct 

Taste ColorRed Fruit 
sour true apple 

sour false orange 

sweet false apple 

sweet true apple 

sour true orange 

sweet false orange 



8 
 

classification is given, and the test set is a part of the dataset, all the instances in the test set 

also have a correct classification. The accuracy of the classifier can now be calculated by 

comparing the predicted classification and the correct classification of all the instances in the 

test set.  

2.2.1 The Naïve Bayes classifier in our experiment 

We now know how the Naïve Bayes classifier works and how it handles categorical and 

continuous attributes. In our experiment, we used package “caret” in R as our Naïve Bayes 

classifier [12]. The code we used can be found in detail in Appendix A. First of all, we had to 

train the Naïve Bayes classifier using the training set. Function train(x, y, method=”nb”) 

returns the model on which we can use the test set. Parameter x represents the attributes of 

the training set and parameter y represents the vector with the classifications of the training 

set. As method, we gave “nb” which stands for Naïve Bayes. When using this function, tuning 

parameters fL, adjust and useKernel can be used [13]. In this experiment, the tuning 

parameters fL and adjust had default value 0 and parameter useKernel had default value false: 

we did not use any tuning.  

Using the function predict(model, x) with parameter model as the result of the train function 

and parameter x as all the attributes of the test set, a vector with the predicted classifications 

is returned. It is also possible to return the posterior probability for every classification per 

instance when parameter type=”prob” is used instead of the default type=”raw. The 

predicted classification is always the one with the highest posterior probability, as seen when 

comparing the results of using type=”prob” and type=”raw” (see Appendix B). In this 

experiment, the default type=”raw” is used. 

To get a nice overview of the predictions and the actual classifications of the test set, method 

table(pred, y) is used. Parameter pred is the vector with predicted classifications returned 

from the predict function and y is the vector with the actual classifications of the test set. The 

accuracy, the total number of correctly classified instances in the test set, can be calculated 

from this table. In the table, the top row stands for the actual classifications of the instances 

and the left column for the predicted classifications of the instances by the Naïve Bayes 

classifier. The numbers in the diagonal from the top left till the bottom right are the correctly 

classified instances. The other numbers are the wrongly classified instances. For example, in 

Table 2, one instance was predicted to have a classification of “3”, but its actual classification 

is “1”. The accuracy in this case is the total number of correctly predicted instances divided by 

the total number of instances times 100%: (11 + 17 + 11) / (11 + 17 + 11 + 2 + 1) * 100% = 

92.86%. 

                    actual 

predicted     1    2    3 

             1   11    2    0 

             2     0  17    0 

             3     1    0  11 

Table 2: Example of a table returned by method table(pred,y); bold numbers are the correctly predicted instances 



9 
 

2.3 Normally Distributed 
Our experiment focuses on normally distributed continuous attributes. So, before we can use 

a continuous attribute of a dataset, we have to verify that the attribute has a normal 

distribution. What do we mean exactly by “an attribute has a normal distribution”? For all 

possible classifications, C1 … Cn, in the dataset, continuous attribute X has a normal 

distribution if and only if P(X|Ci) has a normal distribution with i = {1, ..., n}. For example, if 

we want to check if attribute weight has a normal distribution and the dataset of which 

attribute weight is part has possible classifications “male” and “female”, than attribute weight 

is normally distributed if all the instances with classification “male” as well as all the instances 

with classification “female” have a normal distribution for attribute weight.  

We can test an attribute with graphical methods, such as boxplots, histograms and QQ plots, 

to see if the attributes has a normal distribtion. Those graphical methods make it easier for 

someone to get an idea of the distribution at a glance, since most people understand a visual 

representation faster than an array of numbers. But even if you conclude with the help of 

those methods that an attribute has a normal distribution, this does not have to be correct 

[14]. To get a more reliable answer, normality tests are often used. There are multiple tests 

available, such as the Jarque-Bera test and the Lilliefors test, but studies have shown that the 

Shapiro-Wilk test is the most reliable [15,16]. But, the Shapiro-Wilk test is only reliable to use 

if the sample size is bigger than thirty [16]. So, to prevent attributes classified as having a 

normal distribution even if they have not, we will only use the datasets in which all the 

classifications have more than thirty instances. 

2.3.1 Shapiro-Wilk 

The Shapiro-Wilk test will be used on one attribute at the time and separately for all possible 

classifications. For example, if we want to test if the loaves of bread from the example in 

section 2.1 have a normal distribution for the continuous attribute weight, we will first use 

the Shapiro-Wilk test on attribute weight for all the loaves of recipe one and then on all the 

loaves of recipe two. We will only use attribute weight for our Naïve Bayes classifier if both 

tests succeed and there are at least thirty loaves of bread per recipe.  

There are two hypotheses. The null hypothesis assumes that the continuous attribute forms a 

normal distribution and the alternative hypothesis the opposite: the attribute is not normally 

distributed. The test returns a probability value, a p-value, which we can use to decide if we 

have to reject or cannot reject the null hypothesis. If the p-value is smaller or equal to 0.05, 

we can assume that the attribute is not normally distributed as there is a only very small 

chance that it is: we have to reject the null hypothesis. The null hypothesis does not have to 

be rejected if the p-value is bigger than 0.05, as you cannot claim that the attribute is not 

normally distributed [17]. We will run this test on all the attributes in the dataset for every 

classification individually and only keep the attributes of which, it cannot be claimed, to not 

be normally distributed. An example of how we used the Shapiro-Wilk test has been given in 

Appendix A. 

2.4 Discretization 
The goal is to use the Naïve Bayes classifier on normally distributed datasets to see if the 

continuous attributes themselves or the categorical version of those attributes will be 



10 
 

classified wrong less often. To get those categorical values, we will have to find a way to divide 

the continuous attributes in multiple categories: we have to discretize the attributes. There 

are multiple methods to achieve our goal. We can use a supervised technique like the 

minimum-entropy-based discretization by Fayyad and Irani or an unsupervised technique like 

equal frequency or equal width. Six discretization methods for the Naïve Bayes classifier have 

been compared in terms of mean error (divided into bias and variance) and accuracy. Equal 

frequency with 10 bins has the highest average accuracy and the lowest mean error [18]. Due 

to this conclusion, the unsupervised method equal frequency with ten bins will be used in this 

experiment. A bin can be seen as an interval. Every instance, of which the value of the attribute 

that is being discretized falls in that interval, should get the category of that bin as a value for 

the newly discretized attribute. The first bin has an interval that starts with minus infinity and 

the last bin has an interval that ends with infinity. That equal frequency has the highest 

average accuracy and the lowest mean error, does not necessarily mean that this 

unsupervised method will give the highest accuracy in comparison with other discretization 

methods.  

Two unsupervised methods, equal width and equal frequency, and one supervised method, 

entropy-based discretization, were tested on the same eight datasets. Both the unsupervised 

method and the supervised method had a better accuracy half the time: four times each [19]. 

Since this is the case, we will use a supervised and an unsupervised discretization method, 

instead of only unsupervised method equal frequency. This is to prevent having an incomplete 

conclusion. After all, by chance it may happen that we will pick datasets that would have 

higher accuracies if using a supervised method. Then, if only equal frequency has been used, 

the difference between the accuracy of the continuous and the discretized version will not be 

conclusive: the continuous attributes may give a better accuracy, but maybe if a supervised 

method would have been used, the discretized attributes could be more accurate. Supervised 

methods take, in contrast to unsupervised methods, the classifications of the instances in 

consideration when discretizing. Using this extra information, the supervised methods try to 

get the bins that provide the highest accuracy of classifying unseen instances. 

In this experiment, the supervised method to calculate the boundaries of the bins will be by 

using the minimum description length principle. As more bins increases the chance of 

overfitting and decreases generalization [20], this supervised method is extra useful next to 

equal frequency. The minimum description length principle calculates the simplest set of cut 

points with the best accuracy. Generally, this is less than the ten bins we use for the equal 

frequency discretization. When a simple model is used, there is less chance of overfitting on 

the noise in data [21]. As we use two different discretization methods that complement each 

other (supervised vs unsupervised and difference in over- and underfitting), we will get a more 

reliable answer to our question what the difference is between Naïve Bayes on normally 

distributed continuous attributes and the discretized version of those attributes: for some 

datasets unsupervised methods work better than supervised methods [19]. To prevent the 

possible overfitting of equal frequency, we could use five bins instead of ten. But looking at 

the variety of sizes, small and big, of the datasets used in [18] and the results of using ten bins 

in compared to the five bins equal frequency, ten bins is still preferable to fewer bins.  



11 
 

Before the discretization can take place, the dataset has to be split into a training set and a 

test set. The training set will contain 80% of the available instances and the test set the other 

20%. The reason for splitting before discretizing is because you may not use any data from the 

test set to influence the training of the Naïve Bayes classifier. Because the dataset is split 

before discretization and the Naïve Bayes classifier only trains on the training set, the test set 

has no influence on the results. 

As stated previously, the first bin has an interval that starts with minus infinity and the last bin 

ends with infinity. The use of infinities is necessary due to the instances in the test set. Those 

instances will be using the same bins as the training set. If the minus infinity and infinity were 

not being used, it could happen that a value of a test set instance does not belong to any bin 

(the value could be smaller than the smallest value in the training set) and we may not change 

the bin boundaries according to the smallest and largest value of the whole dataset (only the 

training set). This leaves us with using the infinities. 

2.4.1 Equal frequency 

To get the ten bins we want for equal frequency, we need to know nine more values since we 
already know a boundary of the first and last bin (the infinities). To get the other nine 
boundaries, the instances in the training set should be ordered from small to large according 
to the value of the attribute that is being discretized. Then, a formula can be used to get the 
sought values. For i = 0.1, 0.2 … 0.9, the value of the attribute at place “total number of 

instances in the training set * i” should become a boundary. If the total number of instances 
is not easily divided by ten, the “total number of instances in the training set * i” should be 
rounded up. This ensures the best distribution of instances in all the bins. Now the eleven 
boundaries are known and can be used to set the intervals of the ten bins. 

2.4.2 Minimum description length principle 

The minimum description length principle (MDLP) assumes that the best, most compact 

representation of data best represents the data [22]. We will use the function mdlp() of the 

“discretization” package in R. This function uses the entropy criterion and has the MDLP as 

the stopping rule [23]. With a training set with less than 50 instances, the result can be that 

the MLDP does not return any boundaries, since it has a problem with finding enough useful 

boundaries due to the small training set size [24]. That is why we will make sure that the 

training sets have at least 50% more instances: more than 75.  

Entropy-based discretization works the following way: using a formula, the optimal boundary 

is calculated by picking the value of an attribute with the highest gain. Now, the data is split 

in two on that value. For the smaller sets the new value with the highest gain can be calculated 

again and the corresponding set can be split again. This goes on and on until a stop criterium 

is reached. The gain is calculated with the formula Gain(A, T; S) = Ent(S) – E(A, T; S). S is the 

set we want to split and A is the attribute which we want to split on the value T. Ent(S) is the 

class entropy of the set and E(A, T; S) is the weighted average of the entropies of the two sets 

S splits in when the split is made on value T: sets S1 and S2. Set S1 has all the instances with a 

value smaller or equal to T for attribute A and set S2 has all the other instances [25]. 



12 
 

𝐸𝑛𝑡(𝑆) =  − ∑ 𝑃(𝐶𝑖, 𝑆)𝑙𝑜𝑔2(𝑃(𝐶𝑖, 𝑆))

𝑘

𝑖=1

 

𝐸(𝐴, 𝑇; 𝑆) =  
|𝑆1|

|𝑆|
𝐸𝑛𝑡(𝑆1) +

|𝑆2|

|𝑆|
𝐸𝑛𝑡(𝑆2)  

Now we know how the optimal boundaries are calculated using entropy. What is the stop 

criterium exactly? When using MDLP as stop criterium, a split on value T for attribute A is 

accepted for set S if the following formula is true, otherwise there will not be a split on value 

T. N is the number of instances in set S and ki the number of classifications in the Si [25]. 

𝐺𝑎𝑖𝑛(𝐴, 𝑇; 𝑆) >  
𝑙𝑜𝑔2 (𝑁 − 1)

𝑁
+

𝛥(𝐴, 𝑇; 𝑆)

𝑁
 

𝛥(𝐴, 𝑇; 𝑆) =  𝑙𝑜𝑔2 (3𝑘 − 2) − [𝑘𝐸𝑛𝑡(𝑆) − 𝑘1𝐸𝑛𝑡(𝑆1) − 𝑘2𝐸𝑛𝑡(𝑆2)]  

The worst case scenario is only having one bin as a result: minus infinity through to infinity. 

This scenario comes up when there is never a gain high enough so a split can take place. That 

is why there were datasets with zero bins in [24]. 

2.5 Validation 
The results will consist of the percentage of wrongly classified unseen instances. To get those 

percentages, we are going to use Monte-Carlo cross validation:  

The instances of a dataset are randomly shuffled and divided into two separated 

groups: the training data (the first 80%) and the test data (the last 20%). The training and test 

set both contain random instances, since we randomly shuffled before we split. Every instance 

occurs only once in either the training set or the test set. This specific partition is used three 

times: once to train the Naïve Bayes on the continuous attributes, once to train the Naïve 

Bayes on the discretized version of those continuous attributes using equal frequency and 

once on the discretized version of those continuous attributes using the MLDP. Of the three 

training sets, two sets, and their corresponding test sets, are being discretized with the two 

discretization methods. After training the three Naïve Bayes classifiers on the training datasets 

to get the models, the models are used on the corresponding test datasets and the results, 

the percentage of wrongly evaluated instances, is calculated. 

This algorithm, from the shuffling and splitting of the dataset to the calculations of the 

percentage of wrongly evaluated instances, is done 25 times. That means we have 25 

percentages for all three tested attributes (continuous, discretized by equal frequency and 

discretized by MLDP): for every run one. Those percentages are then returned in a table so 

the three means and three standard deviations of the mean can be calculated. All of this was 

done in R. The code of the Monte-Carlo cross validation, including the discretization of the 

datasets, can be found in Appendix A. 

The reason for using the percentage of wrongly classified unseen instances instead of the 

generally used accuracy, the percentage of correctly classified unseen instances, is because 

the goal of this experiment is not to make a classifier that is as good as possible. The accuracy 

will not be as high as could be achieved when using all attributes of a dataset instead of only 

the normally distributed continuous attributes. The goal is to check whether it is better to 



13 
 

discretize or to keep normally distributed continuous attributes. The one that has the smallest 

percentage of wrongly classified unseen instances is in that case better, if the true difference 

between means is significant. 

3. Experiments 

3.1 Used Data Sets 

In the past sections, the methods this experiment will use have been explained. But before 

the actual experiment can take place, the datasets are needed. Four datasets have been 

picked carefully, since those datasets had normally distributed continuous attributes. It seems 

like we are doing feature selection, but this is not the case. We do not want to make a classifier 

that is as good as possible. We want to have a clear picture of the difference between normally 

distributed continuous attributes and the discretized version of those. The best way to make 

sure that no other attributes influence the results, is to only use the normally distributed 

continuous attributes to train the Naïve Bayes classifier. None of the datasets used in this 

experiment have missing values. Each dataset will be explained briefly and then some 

information about the artificial datasets will be given. The attribute numbers emphasized 

between brackets represent the attribute number in the data files found on the UCI repository 

[26].  

Planning Relax 
“The dataset concerns with the classification of two mental stages from recorded EEG 

signals: Planning (during imagination of motor act) and Relax state.” – [27] 

In this dataset, a total of 13 attributes are available: 12 continuous and 1 for the classification. 

Because we want to look at normally distributed data, all the attributes have been tested with 

the Shapiro-Wilk test. Only six continuous attributes passed the test (2, 3, 4, 5, 6 and 8). The 

182 instances are divided into two classes: 130 are classified as “1” and the other 52 as “2”. 

This split is unbalanced and it will happen that an unseen instance will be classified as “1” 

more often. The more data available of class value “1” in comparison with class value “2” leads 

to having a higher probability of having class value “1” in general. It is interesting to see what 

the difference in results is if the continuous attributes of this dataset are normally distributed.  

Kernels 
“Measurements of geometrical properties of kernels belonging to three different varieties of 

wheat.”- [28] 

This dataset only has four attributes that passed all the criteria.: the perimeter of the wheat 

kernel (2), the compactness (3), the length of the kernel (4) and the length of the kernel groove 

(7). For each of the three different varieties of wheat, Kama, Rosa and Canadian, seventy 

randomly selected kernels were chosen: a total amount of 210 instances. 

Wine 
“These data are the results of a chemical analysis of wines grown in the same region in Italy 

but derived from three different cultivars.” – [26] 

The 178 instances consist of three types of wines: 59 of type “1”, 71 of type “2 “ and 48 of 

type “3”. Even though there are only 48 wines with classification “3”, this is still more than the 



14 
 

thirty instances required per class to be able to use the Shapiro-Wilk test. The four normal 

distributed attributes indicate the quantity of the following constituents: alcohol (2), ash (4), 

alkalinity of ash (5) and OD280/OD315 of diluted wines (13). 

Wimbledon 

This dataset contains the match statistics for the men at the Wimbledon tennis tournament 

of the year 2013. – [26] 

For this dataset the classifier tries to determine if player one or player two has won. The 

classifications are “0” if player one has lost and “1” if he managed to win. Of the 114 matches, 

player one lost 59 times and won 55 times. The attributes mean the following: first serve 

percentage for player one (7), second serve percentage for player one (9), winners earned by 

player one (13), first serve percentage for player two (25) and second serve percentage for 

player two (27). 

Artificial datasets 
Not only those four datasets have been used in this paper. In real life, it is possible that there 
is more data available than the hundred or two hundred instances as in the datasets above. 
To verify that the end results will remain the same when the number of instances increase, 
artificial datasets have been generated. Using the knowledge that the attributes are normally 
distributed, the mean and standard deviation per attribute per class of the datasets we found 
on the UCI repository (overview in Appendix C) can be calculated. Based on those values, as 
many instances as wanted can be made for a new dataset. Keeping the same ratio of instances 
with different classifications as in the original dataset, all four datasets have been made 
twenty times bigger. The twenty times as big newly generated datasets have been tested the 
same way as the original datasets: tested with the Shapiro-Wilk test to verify that the 
continuous attributes are normally distributed, discretized with the two methods and 
validated with Monte-Carlo cross validation.  

Next to those four artificial datasets, two extra datasets have been made. One dataset with 
random means and standard deviation for five attributes and two classifications: class “1” has 
100 instances and class “2” has 150 instances. This represents a random possible real life 
dataset. The second has the same means and standard deviations but there are twenty times 
more instances: 2000 for class “1” and 3000 for “2”. We have given this dataset an unbalanced 
number of instances per classification as a real life dataset is not always balanced and we want 
to simulate that. 
 

3.2 Experimental set-up 
Now that it has been decided which methods and datasets to use, the actual experiment can 

begin. First of all, the chosen datasets have at least one continuous attribute. All of the 

continuous attributes in the chosen datasets were tested with the Shapiro-Wilk test to see if 

the continuous attributes had a normal distribution. Of all the attributes in the dataset, only 

the normally distributed continuous attributes will be used in this test. The p-values, the result 

of the Shapiro-Wilk test, for all the continuous attributes used in this experiment, are written 

down in Appendix D. Then, per dataset, the Monte-Carlo cross validation method was used to 

get a table with 25 rows: one for each run. Every row contains the three percentages of 

wrongly classified unseen instances: one for the continuous attributes and one for each of the 



15 
 

two discretized attributes. Those tables can be found in Appendix E. After the Monte-Carlo 

cross validation was finished, the means and the corresponding standard deviation of each 

column in the table were calculated.  

3.3 Results & discussion 

Table 3: Percentage wrongly classified unseen instances of using Naïve Bayes with two discretization methods 

Using only the normally distributed attributes of the datasets as attributes for the Naïve Bayes 
classifier, the percentage of wrongly classified unseen instances has been calculated. In Table 
3 the results are shown, including the standard deviation of the mean, for the three tests: 
Naïve Bayes using the continuous values themselves and using the values discretized with 
equal frequency and with the MDLP method. The hyphens under MDLP mean that one (or 
more) of the attributes of the dataset only has one bin. For every dataset, the number of class 
values and instances are given. Also, how many attributes of the dataset we used: the number 
of normally distributed continuous variables in the dataset. The results show that whenever 
an attribute in a dataset only gets one bin using MDLP, the dataset that is twenty times bigger 
also only gets one bin. For those datasets, there is never a gain high enough so a split will take 
place.  
 
In eight of the ten datasets, using the continuous attributes results in the lowest percentage 
of wrongly classified instances. But just looking at the different means and standard deviation 
does not provide an accurate conclusion. Using the paired t-test, we can calculate if the 
differences in mean are significance. If the p-value is bigger than our alpha, 0.05, we will accept 
our null hypothesis: the means are equal. If the p-value is smaller than our alpha, we will reject 
our null hypothesis: the means are not equal. We used the t.test function in R to calculate the 
t-values. The t.test function expects a column with the percentages per run, instead of the 
mean we calculated for Table 3. Those percentages per run are available in Appendix E. The 
results of the paired t-tests are shown in Table 4. An example of how we used the t.test 
function is given in Appendix A. 
 
 

Dataset # of 
attributes 

# of 
class 
values 

# of 
instances 

Continuous Equal Frequency MDLP 

Mean SD Mean SD Mean SD 

Planning 
Relax 

6 2  182 29% 7.82 38.78% 6.39 - - 

Planning 
Relax (x20) 

6 2 3640 28.46% 0.85 28.69% 0.95 - - 

Kernels 4 3 210 9.52% 3.37 10.1% 3.91 11.05% 3.82 

Kernels 
(x20) 

4 3 4200 3.50% 0.54 3.94% 0.54 3.97% 0.64 

Wine 4 3 178 8.22% 5.04 9.44% 5.13 7.67% 6.02 

Wine (x20)  4 3 3560 5.65% 0.85 6.69% 0.69 6.69% 0.83 

Wimbledon 5 2 114 44.35% 8.87 43.83% 8.51 - - 

Wimbledon 
(x20) 

5 2 2280 31.41% 2.03 32.04% 2.18 - - 

Artificial set  5 2 250 5.84% 3.05 6.64% 3.30 8.40% 3.74 

Artificial set 
(x20) 

5 2 5000 6.69% 0.60 7.48% 0.73 7.45% 0.69 



16 
 

Dataset p-value between 
continuous and equal 
frequency 

p-value between 
continuous  and MLDP 

p-value between equal 
frequency and MLDP 

Planning Relax 1.009e-05 - - 

Planning Relax (x20) 0.003938 - - 

Kernels 0.4775 0.07261 0.2178 

Kernels (x20) 3.889e-06 5.006e-05 0.7934 

Wine 0.1487 0.5934 0.126 

Wine (x20)  1.302e-09 9.128e-07 0.9956 

Wimbledon 0.8115 - - 

Wimbledon (x20) 0.005419 - - 

Artificial set  0.1059 0.0008102 0.02775 

Artificial set (x20) 2.18e-11 1.969e-07 0.7936 

Table 4: t-values between the means of the percentages of the different trained Naïve Bayes classifier; bold numbers 
indicate significant differences 

For all the datasets that are twenty times larger, there is a true difference between the mean 

when using the continuous attributes and the mean when using the attributes discretized with 

equal frequency or MLDP. For all of those datasets, the difference between using the 

attributes discretized with equal frequency and the attributes discretized with MLDP is not 

significant. If you compare the percentages of wrongly classified unseen instances of those 

datasets, you can see that for all those datasets, the datasets that are twenty times larger, the 

mean when using the continuous attributes is lower than the means of the other two. A lower 

mean means less wrongly classified unseen instances. 

For the original datasets Kernels, Wine and Wimbledon, the difference between the mean 

when using the continuous attributes and the means when using the discretized attributes is 

not significant. It does not matter which discretization method is used, as the difference 

between their means is not significant either. 

The mean when using continuous attributes and the mean when using the attributes that are 

discretized using equal frequency of the small artificial dataset are not significantly different 

either. But the other two paired t-tests, between continuous attributes and the attributes 

discretized with MDLP, and between the two discretization methods, show a significant 

difference. The means of the continuous attributes and the attributes discretized with equal 

frequency  are lower than the mean when using the attributes using MLDP. 

The original dataset Planning Relax with the unbalanced split of number of instances per 

different classification is an exception for the smaller datasets. There is a significant difference 

between using the continuous attributes themselves and using the discretized attributes using 

equal frequency.  

4. Conclusion & Future Research 
Our experiment gives an answer to our question: if we verify that the attributes of a dataset 

are normally distributed, which will give a higher accuracy using Naïve Bayes: the continuous 

attributes themselves or the discretized version of those? Using the paired t-test we have 

investigated if the difference of the means is significant. We have smaller datasets, between 

114 and 250 instances, and larger datasets, between 2280 and 5000 instances. For the larger 

datasets, using the continuous attributes themselves is in our experiment always better than 

using discretized attributes. The discretization method does not matter in this experiment as 



17 
 

the difference between the means of the supervised and unsupervised method is not 

significant. So, if we verify that the attributes of a dataset are normally distributed and there 

are a large number of instances, it is better to use the continuous attributes themselves.  

For the smaller datasets, the answer to our question will be different. For most datasets, it 

does not matter if we use the continuous attributes themselves or if we use the discretized 

attributes as the difference between their means is not significant. Only if the split of the 

number of instances per class value is unbalanced, is it better to use the continuous attributes 

themselves. The ratio of the split for this dataset is 2.5:1: for every instance with classification 

“2”,  there are 2.5 instances with classification “1”. That it is better to use the continuous 

attributes themselves is probably because, for the discretized values, a lot of bins have more 

instances of classification “1” than of classification “2”. The chance that an unseen instance 

has classification “1”, is higher in that case. For the continuous attributes, the probability of a 

classification is calculated with a formula in which the instances of the other classifications are 

not included. The formula could result in a high probability for classification “2” even if a lot 

of instances of classification “1” have around the same values for the attributes as the unseen 

instance. In a future experiment, different ratios can be tried to find the ratio for which the 

difference in means are not significant anymore for smaller datasets. 

The answers above are useful to know for future classifications. As [3] has concluded that 

discretization of continuous attributes provides the best accuracy of unseen instances and we 

have just concluded that it is best for the normally distributed continuous attributes to keep 

them as they are for large datasets, there is a possibility that a combined version of those 

conclusions is even better to use. A new experiment that discretizes all continuous attributes, 

except for the normally distributed continuous attributes, will presumably get even higher 

accuracies! If that is the case, companies can adjust their current classifications and get better 

results. For example the bank that wants to know when to give a loan and when the risk is too 

high. If the new experiment shows that the combination of our experiment and the 

experiment in [3] improves the classifications, the bank will lose even less money. Mixing 

continuous attributes and categorical attributes is possible for the Naïve Bayes classifier if you 

extend it to handle both [29]. This is only useful for large datasets as the smaller datasets can 

just be discretized along with the not normally distributed continuous attributes. On the other 

hand, small datasets with an unbalanced split for number of instances per classification can 

maybe profit when, like large datasets, using the extended Naïve Bayes classifier so that the 

normally distributed continuous attributes do not have to be discretized. Once again, there 

should be an experiment first to see for which ratios this is true or if maybe it is better to 

replace the winner takes all rule with a threshold. 

In our experiment we only used one unsupervised and one supervised method to discretize. 

Those methods were selected very carefully using the results of other papers, but those 

papers have not verified that they were using normally distributed continuous attributes. It is 

possible that other discretization methods work more accurately with verified normally 

distributed values. In another experiment this could be investigated. We do have seen that 

the two discretization methods do not have a significant difference in the means. Only once, 

using equal frequency gave less wrongly classified unseen instances. If you have to choose 



18 
 

between using equal frequency and MLDP for discretization, it could be better to use equal 

frequency when dealing with normally distributed continuous attributes. 

  



19 
 

References 
[1]   Hellerstein, J. L., Jayram, T. S., & Rish, I. (2000). Recognizing End-User Transactions in 

Performance Management. Austin, Texas: Proceedings of the Seventeenth National 

Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of 

Artificial Intelligence. 

[2]   Jin, R., Breitbart, Y., & Muoh, C. (2007). Data Discretization Unification. Seventh IEEE 

International Conference on Data Mining (ICDM 2007).  

[3] Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of 

continuous features. Proceedings of the Twelfth International Conference on Machine 

Learning, 194-202. 

[4]  Hildebrand, A.J. (2008, April 9) The Central Limit Theorem. Retrieved from 

http://www.math.uiuc.edu/~ajh/408/408clt.pdf 

[5]  Mlodinow, L. (2009). The Drunkards walk: how randomness rules our lives. New York: Vintage 

Books. 

[6]  SOCR Data Dinov 020108 HeightsWeights. (2008, February 1). Retrieved from 

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights 

[7] Goldstein, H. (1971). Factors influencing the height of seven year old children—results from 

the national child development study. Human Biology, 43(1), 92-111. 

[8]  Mahumud, R.A., Sultana, M. & Sarker, A.R. (2017). Distribution and Determinants of Low 

Birth Weight in Developing Counties. Journal of Preventive Medicine & Public Health, 50(1), 

18-28. 

[9]  Leung, K. M. (2007, November 28). Naive Bayesian Classifier. Retrieved from 
http://cis.poly.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf 

[10]  Domingos, P., & Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier under 

Zero-One Loss. Machine Learning, 29, 103-130. 

[11]  John, G.H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. 
San Mateo, California: Proceedings of the Eleventh Conference on Uncertainty in Artificial 
Intelligence. 

[12]  Kuhn, M. (2017, April 18). Package “caret”. Retrieved from https://cran.r-
project.org/web/packages/caret/caret.pdf 

[13] Kuhn, M. (2016, November 29). The caret Package. Retrieved from 
http://topepo.github.io/caret/available-models.html 

[14]  Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-

statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486-489 

[15]  Mendes, M., & Pala, A. (2003). Type I error rate and power of three normality tests. Pakistan 

Journal of Information and Technology, 2(2), 135-139. 

[16]  Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, 

Lilliefors and Anderson-Darling tests . Journal of Statistical Modeling and Analytics, 2(1), 21-

33. 

https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf


20 
 

[17]  Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete 

samples). Biometrika, 52(3-4), 591-611.  

[18]  Flores, M. J., Gámez, J. A., Martínez, A. M., & Puerta, J. M. (2011). Handling numeric 

attributes when comparing Bayesian network classifiers: does the discretization method 

matter? Applied Intelligence, 34(3), 372-385. 

[19] Ibrahim, M. H., & Hacibeyoğlu, M. (2016). Comparison of the effect of unsupervised and 
supervised discretization methods on classification process. International Journal of 
Intelligent Systems and Applications in Engineering, 4(Special Issue), 105-108 

 
[20] Bosman, P.A.N. & Thierens, D. (2006). Numerical optimization with real-values estimation-of-

distribution algorithms. Studies in Computational Intelligence, 33, 91-120 

[21]  Grünwlad, P.D. (2007). The minimum description length principle. Cambridge, 
Massachusetts: The MIT Press. 

[22] Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465-471  

[23] Kim, H. (2015, February 19). Package ‘discretization’. Retrieved from https://cran.r-

project.org/web/packages/discretization/discretization.pdf 

[24]  An, A. & Cercone, N. (1999). Discretization of continuous attributes for learning classification 

rules. PAKDD 1999: Methodologies for Knowledge Discovery and Data Mining, 509-514 

[25]  Fayyad, U. M. & Irani, K. B. (1993). Multi-interval discretization of continuous-valued 

attributes for classification learning, Proceedings of the International Joint Conference on 

Uncertainty in AI, 1022-1027 

[26]  Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, 

CA: University of California, School of Information and Computer Science 

[27]  Rajen Bhatt, 'Planning-Relax Dataset for Automatic Classification of EEG Signals', UCI Machine 

Learning Repository  

[28]  Placed on the UCI Repository [26] by the Institute of Agrophysics of the Polish Academy of 

Sciences in Lublin. 

[29] Hsu, C., Huang, Y. & Chang, K. (2008). Extended Naïve Bayes classifier for mixed data. Expert 
Systems with Applications, 35(3), 1080-1083   

  



21 
 

Appendix A: R-code 
In this section we will go deeper into some used code with some explanation of how we 

interpreted the results. The libraries  we have used are: “gridExtra”, “dplyr”, “ggpubr”, 

“caret”, “klaR” and “discretization”. 

Monte-Carlo cross validation (including discretization) 
We will use the wine dataset as an example. First of all, we need a place to store the results 
for every run and import the data: 
 

mydata = read.csv("bankk.txt", header = FALSE) 

mydata = mydata[c("V2","V4","V5","V13","V1")] 

colnames(mydata) = c("x1", "x2", "x3", "x4", "y") 

mydata["y"] <- lapply(mydata["y"], factor) 

results <- matrix(ncol=3, nrow=25) 

 
Then, we have a loop that runs over the following code 25 times, and adds the results to the 
matrix above. First of all, we have to make the new attributes so we are able to save the 
discretized values somewhere: 
 
 mydata = mydata[sample(nrow(mydata)),] #shuffle data 

 

 divider = round(nrow(mydata)*0.2) #20% testdata, 80% trainingdata 

 

 #Continuous attribute 

 test = mydata[0:divider,] 

 training = mydata[-(0:divider),] 

 

 #Discretized attribute – equal frequency 

 test2 = mydata[0:divider,] 

 training2 = mydata[-(0:divider),] 

 

 #Discretized attribute – MLDP  

 test3 = mydata[0:divider,] 

 training3 = mydata[-(0:divider),] 

 
For equal frequency we have to calculate the ten bin boundaries and give the right category 
per instance in the training and test set. The following code should be executed for every 
attribute: 
 
 number = nrow(training2) 

 

 ordered = training2[order(training2$x1),] 

 c1 = -Inf 

 c2 = ordered[ceiling(number * 0.1),]$x1 

 c3 = ordered[ceiling(number * 0.2),]$x1 

 c4 = ordered[ceiling(number * 0.3),]$x1 

 c5 = ordered[ceiling(number * 0.4),]$x1 

 c6 = ordered[ceiling(number * 0.5),]$x1 

 c7 = ordered[ceiling(number * 0.6),]$x1 

 c8 = ordered[ceiling(number * 0.7),]$x1 

 c9 = ordered[ceiling(number * 0.8),]$x1 

 c10 = ordered[ceiling(number * 0.9),]$x1 

 c11 = Inf 

training2$x1<-cut(training2$x1, 

c(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11), right=FALSE, labels=c(1:10)) 



22 
 

test2$x1<-cut(test2$x1, c(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11), 

right=FALSE, labels=c(1:10)) 

 

 training2$x1 = as.factor(training2$x1) 

test2$x1 = as.factor(test2$x1) 

 
For MLDP, we have to calculate the boundaries of the bins. We use the function mdlp() from 
the library “discretization”. For all continuous attributes the following code should be 
executed:  
 
 training3 = mdlp(training3) 

 k = c(-Inf, training3$cutp[[1]], Inf) 

test3$x1<-cut(test3$x1, k, right=FALSE, labels=(c(1:(length(k) - 

1)))) 

 
Next, the Naïve Bayes classifier can be trained using the training sets. We want to have a 
table with the classifications of the unseen instances in the test set. That table can be used 
to calculate the percentage wrongly classified instances: 
 
 # Results Continuous and Discretized attributes 

 model = train(training[,1:4], training[,5], method="nb") 

 pred = predict(model, test[,1:4]) 

 table1 = table(pred, test[,5], dnn=list('predicted', 'actual')) 

  

 model2 = train(training2[,1:4], training2[,5], method="nb") 

 pred2 = predict(model2, test2[,1:4]) 

 table2 = table(pred2, test2[,5], dnn=list('predicted', 'actual')) 

 

 model3 = train(training3[,1:4], training3[,5], method="nb") 

 pred3 = predict(model3, test3[,1:4]) 

 table3 = table(pred3, test3[,5], dnn=list('predicted', 'actual')) 

 

 # Put results in a matrix 

 totaldata =  nrow(test2) 

results[i, 1]  = (totaldata - table1[1, "1"] - table1[2, "2"] - 

table1[3, "3"]) / totaldata * 100 

results[i, 2]  = (totaldata - table2[1, "1"] - table2[2, "2"] - 

table2[3, "3"]) / totaldata * 100 

results[i, 3]  = (totaldata - table3[1, "1"] - table3[2, "2"] - 

table3[3, "3"]) / totaldata * 100 

 
A table looks like this: 
 

         actual 

predicted  1  2  3 

        1 12  0  0 

        2  2 12  1 

        3  0  2  7 
 
When this has run 25 times (i = 1 … 25), the results should be printed like the tables in 
Appendix D:  
 

#Print final results 

dfResults = data.frame(results) 

 

mean1 = mean(dfResults[["X1"]]) 



23 
 

mean2 = mean(dfResults[["X2"]]) 

mean3 = mean(dfResults[["X3"]]) 

sd1= sd(dfResults[["X1"]], na.rm = FALSE) 

sd2= sd(dfResults[["X2"]], na.rm = FALSE) 

sd3= sd(dfResults[["X3"]], na.rm = FALSE) 

 

dfResults = round(dfResults,2) 

dfResults = cbind(Row.Names = rownames(dfResults), dfResults) 

colnames(dfResults) = 

c("Attempt","Continuous","EqualFrequency","MDLP") 

dfResults$Continuous = paste(dfResults$Continuous, "%", sep="") 

dfResults$EqualFrequency= paste(dfResults$EqualFrequency, "%", 

sep="") 

dfResults$MDLP = paste(dfResults$MDLP, "%", sep="") 

 

png("wine_4attributes_table.png", height = 570, width = 300) 

grid.table(dfResults, rows = NULL) 

dev.off() 

 
The mean and standard deviation of the mean have also been calculated so we were able to 
put it in the result section: 
 
 

mean1 = round(mean1,2) 

mean1 = paste(mean1, "%", sep="") 

mean2 = round(mean2,2) 

mean2 = paste(mean2, "%", sep="") 

mean3 = round(mean3,2) 

mean3 = paste(mean3, "%", sep="") 

means = data.frame(mean1, mean2, mean3) 

sd1 = round(sd1, 2) 

sd2 = round(sd2, 2) 

sd3 = round(sd3, 2) 

sd1 = as.character(sd1) 

sd2 = as.character(sd2) 

sd3 = as.character(sd3) 

sd = data.frame(sd1, sd2, sd3) 

sd = cbind(" " = "Standard Deviation", sd) 

means = cbind(" " = "Mean", means) 

colnames(means) = c(" ", "Continuous","EqualFrequency","MDLP") 

colnames(sd) = c(" ", "Continuous","EqualFrequency","MDLP") 

means = rbind(means, sd) 

 

png("150madexx_5attributes_means.png", height = 80, width = 360) 

grid.table(means, rows = NULL) 

dev.off() 

 
Artificial data and the Shapiro-Wilk test 
In the following code, it is shown how the artificial data is being generated in this experiment 
and the Shapiro-Wilk test is executed on the newly generated data. The Shapiro-Wilk test on 
the real life datasets is done in the same way. The newly generated data is generated based 
on the information in the following table: 
 
 
 
 
 

Attribute Class value Sample Size Mean Standard deviation 

X1 1 2000 6 6.25 

2 2000 3 3.6 

X2 1 2000 1 0.75 

2 2000 2 0.25 



24 
 

 
#generate new attribute values 

x11 = rnorm(2000,6,6.25) 

shapiro.test(x11) 

x12 = rnorm(2000,3.3,6) 

shapiro.test(x12) 

x1 = c(x11,x12) 

 

x21 = rnorm(2000,1,0.75) 

shapiro.test(x21) 

x22 = rnorm(2000,2,0.25) 

shapiro.test(x22) 

x2 = c(x21,x22) 

 
# combine the newly generated attribute values with the class value 

(“1” or “2”) in a dataframe 

 y1 = rep(1,2000) 

y2 = rep(2,2000) 

y = c(y1,y2) 

df = data.frame(x1, x2, y) 

 

The Shapiro-Wilk test output will contain a p-value. This p-value will be used to determine if 
the attribute is normally distributed for that particular classification. For example, the 
shapiro.test(x11)returns a p-value of 0.5387. This is more than 0.05, so we can 
assume that the attribute is normally distributed for this classification: 
 
        Shapiro-Wilk normality test 

 

data:  x11 

W = 0.99919, p-value = 0.5387 

 
An example of an attribute that is nog normally distributed for a classification can be given 
with the line: shapiro.test(runif(2000)). Runif(x)generates x random values 
between 0 and 1. This vector has the same amount of instances as “x11”, but the p-value is 
smaller than 2.2e-16, so we cannot say that the attribute is normally distributed in this case: 
 

Shapiro-Wilk normality test 

 

data:  runif(2000) 

W = 0.9541, p-value < 2.2e-16 

 

t.test 
Using the information from the tables in Appendix D, we can execute our paired t-test to see 

if the different means are significant. For the artificial dataset, the following code is used: 

# artificial 

i1 = c(2, 4, 2, 4, 12, 8, 8, 2, 4, 6,  

 12, 6, 6, 6, 2, 4, 6, 10, 6, 4, 

 8, 8, 2, 10, 4) #continuous 

i2 = c(4, 6, 2, 4, 12, 10, 8, 2, 8, 4, 

 14, 12, 8, 6, 6, 2, 6, 10, 4, 8,  

 8, 6, 2, 6, 8) #equal frequency 

i3 = c(2, 4, 4, 10, 10, 12, 16, 4, 10, 8, 

 14, 10, 10, 4, 4, 10, 6, 12, 8, 8, 



25 
 

 6, 14, 12, 6, 6) #MLDP 

t.test(i1,i2,paired=TRUE) 

t.test(i1,i3,paired=TRUE) 

t.test(i2,i3,paired=TRUE)  

 

The results show the means of the normally distributed continuous attributes and of the 
discretized attributes using equal frequency are not significant different. The p-value of 
0.1059 is bigger than our alpha of 0.05, what leads us to the acceptance of the null 
hypothesis: the true difference in means is equal. Two means that are not equal are the 
mean of the normally distributed continuous attributes and the discretized attributes using 
MLDP. That p-value of 0.0008102 is smaller than our alpha, so we have to reject the null 
hypothesis and accept the alternative hypothesis: the difference in means is significant 
enough. The results of the t.test function follow: 
 

        Paired t-test 

 

data:  i1 and i2 

t = -1.6803, df = 24, p-value = 0.1059 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -1.7826123  0.1826123 

sample estimates: 

mean of the differences  

                   -0.8  

 

 

        Paired t-test 

 

data:  i1 and i3 

t = -3.8293, df = 24, p-value = 0.0008102 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -3.93978 -1.18022 

sample estimates: 

mean of the differences  

                  -2.56   



26 
 

Appendix B: prediction 
To find out what prediction the predict method returned, the following data has been used. On the 

left, the predict method has been used with parameter type=”prob”. This returns the posterior 

probability per class per instance in the test set. On that same test set, the predict method has been 

used again. This time, the parameter type had value “raw”. This returned a vector with all the 

predictions for every instance.  

We have made the highest posterior probability bold for every instance. Comparing the bold 

probabilities, with the predicted classification, we came to the conclusion that every predicted 

classification was the classification with the highest posterior probability. 

 

Predict(model, test attributes, type=”prob”)     Predict(model, test attributes, type=”raw”)  

               1             2 
250  4.998912e-05  9.999500e-01   2 
51   8.229313e-01  1.770687e-01   1 
8    9.686041e-01  3.139591e-02   1 
85   9.999992e-01  7.578852e-07   1 
25   6.451755e-01  3.548245e-01   1 
174  7.110436e-06  9.999929e-01   2 
182  1.280581e-01  8.719419e-01   2 
135  8.326408e-07  9.999992e-01   2 
131  7.635828e-03  9.923642e-01   2 
139  9.910268e-02  9.008973e-01   2 
150  2.747544e-03  9.972525e-01   2 
246  3.081964e-03  9.969180e-01   2 
94   9.112790e-01  8.872102e-02   1 
78   9.648195e-01  3.518052e-02   1 
180  4.333802e-03  9.956662e-01   2 
72   7.883276e-01  2.116724e-01   1 
59   9.485187e-01  5.148130e-02   1 
242 1.046420e-02  9.895358e-01   2 
32   9.922288e-01  7.771175e-03   1 
161  6.579077e-04  9.993421e-01   2 
70   9.997493e-01  2.507043e-04   1 
5    9.982993e-01  1.700690e-03   1 
74   9.897583e-01  1.024168e-02   1 
71   9.999995e-01  4.567310e-07   1 
122  1.021879e-13  1.000000e+00   2 
13   8.279950e-01  1.720050e-01   1 
222 1.422757e-03  9.985772e-01   2 
186  5.269493e-11  1.000000e+00   2 
65   9.951235e-01  4.876550e-03   1 
117  5.477719e-06  9.999945e-01   2 
171  1.082382e-03  9.989176e-01   2 
89   9.999459e-01  5.407778e-05   1 
31   8.617059e-01  1.382941e-01   1 
28   9.957744e-01  4.225559e-03   1 
91   9.994952e-01  5.047785e-04   1 
136  1.829980e-05  9.999817e-01   2 



27 
 

7    9.998079e-01  1.920546e-04   1 
3    9.516224e-01  4.837761e-02   1 
175  2.122911e-06  9.999979e-01   2 
214  1.490735e-12  1.000000e+00   2 
118  4.930508e-01  5.069492e-01   2 
197  4.587606e-03  9.954124e-01   2 
185  5.992491e-05  9.999401e-01   2 
169  3.664085e-04  9.996336e-01   2 
49   8.605017e-01  1.394983e-01   1 
37   8.985189e-01  1.014811e-01   1 
63   9.441253e-01  5.587467e-02   1 
245  5.641984e-07  9.999994e-01   2 
109  1.234364e-11  1.000000e+00   2 
240  1.137882e-01  8.862118e-01   2 

  



28 
 

Appendix C: means and standard deviations per attribute 
In the following tables, one for each dataset, the mean and standard deviation per normally 
distributed attribute per class are shown. The attribute numbers represent the attribute 
number in the data files found on the UCI repository [26]. 
 

Planning Relax 

Attribute Class value Mean Standard deviation 

2 1 -0.00742 0.399 

2 0.00697 0.347 

3 1 -0.00566 0.347 

2 -0.01317 0.337 

4 1 -0.02563 0.406 

2 0.02153 0.434 

5 1 0.01208 0.481 

2 -0.03700 0.468 

6 1 -0.01426 0.418 

2 0.01808 0.371 

8 1 0.00247 0.382 

2 0.00010 0.402 

 

Kernels 

Attribute Class value Mean Standard deviation 

2 1 14.29 0.577 

2 16.14 0.617 

3 13.25 0.340 

3 1 0.88 0.016 

2 0.88 0.016 

3 0.85 0.022 

4 1 5.51 0.232 

2 6.15 0.268 

3 5.23 0.138 

7 1 5.09 0.264 

2 6.02 0.254 

3 5.12 0.162 

 

Wine 

Attribute Class value Mean Standard deviation 

2 1 13.74 0.462 

2 12.28 0.538 

3 13.15 0.530 

4 1 2.46 0.227 

2 2.24 0.315 

3 2.44 0.185 

5 1 17.04 2.546 

2 20.24 3.350 

3 21.42 2.258 

13 1 3.16 0.357 



29 
 

2 2.79 0.497 

3 1.68 0.272 

 

Wimbledon 

Attribute Class value Mean Standard deviation 

7 0 62.69 6.50 

1 65.91 6.01 

9 0 37.31 6.50 

1 34.09 6.01 

13 0 36.69 14.84 

1 45.84 14.26 

25 0 64.29 6.49 

1 63.6 6.22 

27 0 35.71 6.49 

1 36.4 6.22 

 

Artificial 
Attribute Class value Mean Standard deviation 

1 1 40 14 

2 35 7 

2 1 6 1.2 

2 9 2.4 

3 1 12 8 

2 8 4 

4 1 14 0.5 

2 15 0.8 

5 1 90 65 

2 36 52 

 

 

  



30 
 

Appendix D: Shapiro-Wilk test results 
For every continuous attributes in the used dataset (including the artificial datasets) the Shapiro-Wilk 

test is tested to make sure the attributes are normally distributed. The p-values, the result of the 

Shapiro-Wilk test, are in the tables below per dataset per attribute per class value. The p-values of 

the attributes in the artificial datasets are the result of the attribute values we generated to have our 

final results. Based on those p-values we were able to conclude that the distribution is normal. 

Planning Relax 

Attribute Class value Sample Size p-value 

2 1 130 0.3417 

2 52 0.7537 

3 1 130 0.5276 

2 52 0.5632 

4 1 130 0.4673 

2 52 0.8806 

5 1 130 0.1735 

2 52 0.5318 

6 1 130 0.4614 

2 52 0.8794 

8 1 130 0.7704 

2 52 0.9336 

 

Planning Relax (x20) 
Attribute Class value Sample Size p-value 

2 1 2600 0.3004 

2 1040 0.2218 

3 1 2600 0.4988 

2 1040 0.5150 

4 1 2600 0.3985 

2 1040 0.5408 

5 1 2600 0.7369 

2 1040 0.2358 

6 1 2600 0.7437 

2 1040 0.8250 

8 1 2600 0.6740 

2 1040 0.3567 

 

 

 

 

 

 

 

 



31 
 

 

Kernels 

Attribute Class value Sample Size p-value 

2 1 70 0.5954 

2 70 0.2091 

3 70 0.7436 

3 1 70 0.9937 

2 70 0.2251 

3 70 0.5397 

4 1 70 0.5367 

2 70 0.521 

3 70 0.8631 

7 1 70 0.6602 

2 70 0.1016 

3 70 0.612 

 

Kernels (x20) 
Attribute Class value Sample Size p-value 

2 1 1400 0.2770 

2 1400 0.7834 

3 1400 0.8828 

3 1 1400 0.8101 

2 1400 0.1183 

3 1400 0.2382 

4 1 1400 0.8223 

2 1400 0.9588 

3 1400 0.3096 

7 1 1400 0.7404 

2 1400 0.5175 

3 1400 0.3065 

 

Wine 

Attribute Class value Sample Size p-value 

2 1 59 0.4791 

2 71 0.114  

3 48 0.6408 

4 1 59 0.1556 

2 71 0.6198 

3 48 0.1092 

5 1 59 0.2161 

2 71 0.07397 

3 48 0.09874 

13 1 59 0.07745 

2 71 0.08904 

3 48 0.08311 

 

 



32 
 

 

Wine (x20) 
Attribute Class value Sample Size p-value 

2 1 1180 0.9571 

2 1420 0.6455 

3 960 0.4241 

4 1 1180 0.3908 

2 1420 0.5445 

3 960 0.9325 

5 1 1180 0.2788 

2 1420 0.8888 

3 960 0.4877 

13 1 1180 0.1279 

2 1420 0.6332 

3 960 0.3468 

 

Wimbledon 

Attribute Class value Sample Size p-value 

7 0 59 0.09125 

1 55 0.3946 

9 0 59 0.09125 

1 55 0.3946 

13 0 59 0.3079 

1 55 0.3309 

25 0 59 0.4082 

1 55 0.4213 

27 0 59 0.4082 

1 55 0.4213 

 

Wimbledon (x20) 
Attribute Class value Sample Size p-value 

7 0 1180 0.1971 

1 1100 0.9794 

9 0 1180 0.2016 

1 1100 0.9726 

13 0 1180 0.6850 

1 1100 0.8842 

25 0 1180 0.1279 

1 1100 0.8491 

27 0 1180 0.1141 

1 1100 0.3873 

 

 

 

 



33 
 

 

Artificial 
Attribute Class value Sample Size p-value 

1 1 100 0.3663 

2 150 0.7725 

2 1 100 0.6079 

2 150 0.7293 

3 1 100 0.6096 

2 150 0.8214 

4 1 100 0.7624 

2 150 0.8493 

5 1 100 0.3160 

2 150 0.8708 

 

Artificial (x20) 
Attribute Class value Sample Size p-value 

1 1 2000 0.7971 

2 3000 0.5861 

2 1 2000 0.8443 

2 3000 0.5076 

3 1 2000 0.5103 

2 3000 0.2204 

4 1 2000 0.5918 

2 3000 0.9322 

5 1 2000 0.3034 

2 3000 0.9332 

  



34 
 

Appendix E: Monte-Carlo results 
The Monte-Carlo cross validation runs 25 times. We get 25 percentages wrongly classified unseen 

instances per trained Naïve Bayes classifier (one for the continuous attributes, one for the discretized 

attributes using equal frequency and one for the discretized attributes using MLDP). Those 

percentage will be shown in the tables below per dataset.  

 
  Figure 1: Planning Relax   Figure 2: Planning Relax (x20)  Figure 3: Kernels 



35 
 

  
    Figure 4: Kernels (x20)              Figure 5: Wine  

 

  
   Figure 6: Wine (x20)   Figure 7: Wimbledon 



36 
 

  
 Figure 8: Wimbledon (x20)     Figure 9: Artificial 

 
Figure 10: Artificial (x20) 


